src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 03 Jun 2010 17:14:20 -0700

author
jjg
date
Thu, 03 Jun 2010 17:14:20 -0700
changeset 576
559c9a37d9f6
parent 567
593a59e40bdb
child 580
46cf751559ae
permissions
-rw-r--r--

6955264: add option to suppress Abort in Check.completionError
Reviewed-by: mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Types types;
    64     private final JCDiagnostic.Factory diags;
    65     private final boolean skipAnnotations;
    66     private boolean warnOnSyntheticConflicts;
    67     private boolean suppressAbortOnBadClassFile;
    68     private final TreeInfo treeinfo;
    70     // The set of lint options currently in effect. It is initialized
    71     // from the context, and then is set/reset as needed by Attr as it
    72     // visits all the various parts of the trees during attribution.
    73     private Lint lint;
    75     public static Check instance(Context context) {
    76         Check instance = context.get(checkKey);
    77         if (instance == null)
    78             instance = new Check(context);
    79         return instance;
    80     }
    82     protected Check(Context context) {
    83         context.put(checkKey, this);
    85         names = Names.instance(context);
    86         log = Log.instance(context);
    87         syms = Symtab.instance(context);
    88         infer = Infer.instance(context);
    89         this.types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         Options options = Options.instance(context);
    92         lint = Lint.instance(context);
    93         treeinfo = TreeInfo.instance(context);
    95         Source source = Source.instance(context);
    96         allowGenerics = source.allowGenerics();
    97         allowAnnotations = source.allowAnnotations();
    98         allowCovariantReturns = source.allowCovariantReturns();
    99         complexInference = options.get("-complexinference") != null;
   100         skipAnnotations = options.get("skipAnnotations") != null;
   101         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   102         suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
   104         Target target = Target.instance(context);
   105         syntheticNameChar = target.syntheticNameChar();
   107         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   108         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   109         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   110         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   112         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   113                 enforceMandatoryWarnings, "deprecated");
   114         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   115                 enforceMandatoryWarnings, "unchecked");
   116         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   117                 enforceMandatoryWarnings, "sunapi");
   118     }
   120     /** Switch: generics enabled?
   121      */
   122     boolean allowGenerics;
   124     /** Switch: annotations enabled?
   125      */
   126     boolean allowAnnotations;
   128     /** Switch: covariant returns enabled?
   129      */
   130     boolean allowCovariantReturns;
   132     /** Switch: -complexinference option set?
   133      */
   134     boolean complexInference;
   136     /** Character for synthetic names
   137      */
   138     char syntheticNameChar;
   140     /** A table mapping flat names of all compiled classes in this run to their
   141      *  symbols; maintained from outside.
   142      */
   143     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   145     /** A handler for messages about deprecated usage.
   146      */
   147     private MandatoryWarningHandler deprecationHandler;
   149     /** A handler for messages about unchecked or unsafe usage.
   150      */
   151     private MandatoryWarningHandler uncheckedHandler;
   153     /** A handler for messages about using Sun proprietary API.
   154      */
   155     private MandatoryWarningHandler sunApiHandler;
   157 /* *************************************************************************
   158  * Errors and Warnings
   159  **************************************************************************/
   161     Lint setLint(Lint newLint) {
   162         Lint prev = lint;
   163         lint = newLint;
   164         return prev;
   165     }
   167     /** Warn about deprecated symbol.
   168      *  @param pos        Position to be used for error reporting.
   169      *  @param sym        The deprecated symbol.
   170      */
   171     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   172         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   173             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   174     }
   176     /** Warn about unchecked operation.
   177      *  @param pos        Position to be used for error reporting.
   178      *  @param msg        A string describing the problem.
   179      */
   180     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   181         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   182             uncheckedHandler.report(pos, msg, args);
   183     }
   185     /** Warn about using Sun proprietary API.
   186      *  @param pos        Position to be used for error reporting.
   187      *  @param msg        A string describing the problem.
   188      */
   189     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   190         if (!lint.isSuppressed(LintCategory.SUNAPI))
   191             sunApiHandler.report(pos, msg, args);
   192     }
   194     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   195         if (lint.isEnabled(LintCategory.STATIC))
   196             log.warning(pos, msg, args);
   197     }
   199     /**
   200      * Report any deferred diagnostics.
   201      */
   202     public void reportDeferredDiagnostics() {
   203         deprecationHandler.reportDeferredDiagnostic();
   204         uncheckedHandler.reportDeferredDiagnostic();
   205         sunApiHandler.reportDeferredDiagnostic();
   206     }
   209     /** Report a failure to complete a class.
   210      *  @param pos        Position to be used for error reporting.
   211      *  @param ex         The failure to report.
   212      */
   213     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   214         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   215         if (ex instanceof ClassReader.BadClassFile
   216                 && !suppressAbortOnBadClassFile) throw new Abort();
   217         else return syms.errType;
   218     }
   220     /** Report a type error.
   221      *  @param pos        Position to be used for error reporting.
   222      *  @param problem    A string describing the error.
   223      *  @param found      The type that was found.
   224      *  @param req        The type that was required.
   225      */
   226     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   227         log.error(pos, "prob.found.req",
   228                   problem, found, req);
   229         return types.createErrorType(found);
   230     }
   232     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   233         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   234         return types.createErrorType(found);
   235     }
   237     /** Report an error that wrong type tag was found.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param required   An internationalized string describing the type tag
   240      *                    required.
   241      *  @param found      The type that was found.
   242      */
   243     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   244         // this error used to be raised by the parser,
   245         // but has been delayed to this point:
   246         if (found instanceof Type && ((Type)found).tag == VOID) {
   247             log.error(pos, "illegal.start.of.type");
   248             return syms.errType;
   249         }
   250         log.error(pos, "type.found.req", found, required);
   251         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   252     }
   254     /** Report an error that symbol cannot be referenced before super
   255      *  has been called.
   256      *  @param pos        Position to be used for error reporting.
   257      *  @param sym        The referenced symbol.
   258      */
   259     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   260         log.error(pos, "cant.ref.before.ctor.called", sym);
   261     }
   263     /** Report duplicate declaration error.
   264      */
   265     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   266         if (!sym.type.isErroneous()) {
   267             log.error(pos, "already.defined", sym, sym.location());
   268         }
   269     }
   271     /** Report array/varargs duplicate declaration
   272      */
   273     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   274         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   275             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   276         }
   277     }
   279 /* ************************************************************************
   280  * duplicate declaration checking
   281  *************************************************************************/
   283     /** Check that variable does not hide variable with same name in
   284      *  immediately enclosing local scope.
   285      *  @param pos           Position for error reporting.
   286      *  @param v             The symbol.
   287      *  @param s             The scope.
   288      */
   289     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   290         if (s.next != null) {
   291             for (Scope.Entry e = s.next.lookup(v.name);
   292                  e.scope != null && e.sym.owner == v.owner;
   293                  e = e.next()) {
   294                 if (e.sym.kind == VAR &&
   295                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   296                     v.name != names.error) {
   297                     duplicateError(pos, e.sym);
   298                     return;
   299                 }
   300             }
   301         }
   302     }
   304     /** Check that a class or interface does not hide a class or
   305      *  interface with same name in immediately enclosing local scope.
   306      *  @param pos           Position for error reporting.
   307      *  @param c             The symbol.
   308      *  @param s             The scope.
   309      */
   310     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   311         if (s.next != null) {
   312             for (Scope.Entry e = s.next.lookup(c.name);
   313                  e.scope != null && e.sym.owner == c.owner;
   314                  e = e.next()) {
   315                 if (e.sym.kind == TYP &&
   316                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   317                     c.name != names.error) {
   318                     duplicateError(pos, e.sym);
   319                     return;
   320                 }
   321             }
   322         }
   323     }
   325     /** Check that class does not have the same name as one of
   326      *  its enclosing classes, or as a class defined in its enclosing scope.
   327      *  return true if class is unique in its enclosing scope.
   328      *  @param pos           Position for error reporting.
   329      *  @param name          The class name.
   330      *  @param s             The enclosing scope.
   331      */
   332     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   333         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   334             if (e.sym.kind == TYP && e.sym.name != names.error) {
   335                 duplicateError(pos, e.sym);
   336                 return false;
   337             }
   338         }
   339         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   340             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   341                 duplicateError(pos, sym);
   342                 return true;
   343             }
   344         }
   345         return true;
   346     }
   348 /* *************************************************************************
   349  * Class name generation
   350  **************************************************************************/
   352     /** Return name of local class.
   353      *  This is of the form    <enclClass> $ n <classname>
   354      *  where
   355      *    enclClass is the flat name of the enclosing class,
   356      *    classname is the simple name of the local class
   357      */
   358     Name localClassName(ClassSymbol c) {
   359         for (int i=1; ; i++) {
   360             Name flatname = names.
   361                 fromString("" + c.owner.enclClass().flatname +
   362                            syntheticNameChar + i +
   363                            c.name);
   364             if (compiled.get(flatname) == null) return flatname;
   365         }
   366     }
   368 /* *************************************************************************
   369  * Type Checking
   370  **************************************************************************/
   372     /** Check that a given type is assignable to a given proto-type.
   373      *  If it is, return the type, otherwise return errType.
   374      *  @param pos        Position to be used for error reporting.
   375      *  @param found      The type that was found.
   376      *  @param req        The type that was required.
   377      */
   378     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   379         if (req.tag == ERROR)
   380             return req;
   381         if (found.tag == FORALL)
   382             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   383         if (req.tag == NONE)
   384             return found;
   385         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   386             return found;
   387         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   388             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   389         if (found.isSuperBound()) {
   390             log.error(pos, "assignment.from.super-bound", found);
   391             return types.createErrorType(found);
   392         }
   393         if (req.isExtendsBound()) {
   394             log.error(pos, "assignment.to.extends-bound", req);
   395             return types.createErrorType(found);
   396         }
   397         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   398     }
   400     /** Instantiate polymorphic type to some prototype, unless
   401      *  prototype is `anyPoly' in which case polymorphic type
   402      *  is returned unchanged.
   403      */
   404     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   405         if (pt == Infer.anyPoly && complexInference) {
   406             return t;
   407         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   408             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   409             return instantiatePoly(pos, t, newpt, warn);
   410         } else if (pt.tag == ERROR) {
   411             return pt;
   412         } else {
   413             try {
   414                 return infer.instantiateExpr(t, pt, warn);
   415             } catch (Infer.NoInstanceException ex) {
   416                 if (ex.isAmbiguous) {
   417                     JCDiagnostic d = ex.getDiagnostic();
   418                     log.error(pos,
   419                               "undetermined.type" + (d!=null ? ".1" : ""),
   420                               t, d);
   421                     return types.createErrorType(pt);
   422                 } else {
   423                     JCDiagnostic d = ex.getDiagnostic();
   424                     return typeError(pos,
   425                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   426                                      t, pt);
   427                 }
   428             } catch (Infer.InvalidInstanceException ex) {
   429                 JCDiagnostic d = ex.getDiagnostic();
   430                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   431                 return types.createErrorType(pt);
   432             }
   433         }
   434     }
   436     /** Check that a given type can be cast to a given target type.
   437      *  Return the result of the cast.
   438      *  @param pos        Position to be used for error reporting.
   439      *  @param found      The type that is being cast.
   440      *  @param req        The target type of the cast.
   441      */
   442     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   443         if (found.tag == FORALL) {
   444             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   445             return req;
   446         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   447             return req;
   448         } else {
   449             return typeError(pos,
   450                              diags.fragment("inconvertible.types"),
   451                              found, req);
   452         }
   453     }
   454 //where
   455         /** Is type a type variable, or a (possibly multi-dimensional) array of
   456          *  type variables?
   457          */
   458         boolean isTypeVar(Type t) {
   459             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   460         }
   462     /** Check that a type is within some bounds.
   463      *
   464      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   465      *  type argument.
   466      *  @param pos           Position to be used for error reporting.
   467      *  @param a             The type that should be bounded by bs.
   468      *  @param bs            The bound.
   469      */
   470     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   471          if (a.isUnbound()) {
   472              return;
   473          } else if (a.tag != WILDCARD) {
   474              a = types.upperBound(a);
   475              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   476                  if (!types.isSubtype(a, l.head)) {
   477                      log.error(pos, "not.within.bounds", a);
   478                      return;
   479                  }
   480              }
   481          } else if (a.isExtendsBound()) {
   482              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   483                  log.error(pos, "not.within.bounds", a);
   484          } else if (a.isSuperBound()) {
   485              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   486                  log.error(pos, "not.within.bounds", a);
   487          }
   488      }
   490     /** Check that a type is within some bounds.
   491      *
   492      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   493      *  type argument.
   494      *  @param pos           Position to be used for error reporting.
   495      *  @param a             The type that should be bounded by bs.
   496      *  @param bs            The bound.
   497      */
   498     private void checkCapture(JCTypeApply tree) {
   499         List<JCExpression> args = tree.getTypeArguments();
   500         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   501             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   502                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   503                 break;
   504             }
   505             args = args.tail;
   506         }
   507      }
   509     /** Check that type is different from 'void'.
   510      *  @param pos           Position to be used for error reporting.
   511      *  @param t             The type to be checked.
   512      */
   513     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   514         if (t.tag == VOID) {
   515             log.error(pos, "void.not.allowed.here");
   516             return types.createErrorType(t);
   517         } else {
   518             return t;
   519         }
   520     }
   522     /** Check that type is a class or interface type.
   523      *  @param pos           Position to be used for error reporting.
   524      *  @param t             The type to be checked.
   525      */
   526     Type checkClassType(DiagnosticPosition pos, Type t) {
   527         if (t.tag != CLASS && t.tag != ERROR)
   528             return typeTagError(pos,
   529                                 diags.fragment("type.req.class"),
   530                                 (t.tag == TYPEVAR)
   531                                 ? diags.fragment("type.parameter", t)
   532                                 : t);
   533         else
   534             return t;
   535     }
   537     /** Check that type is a class or interface type.
   538      *  @param pos           Position to be used for error reporting.
   539      *  @param t             The type to be checked.
   540      *  @param noBounds    True if type bounds are illegal here.
   541      */
   542     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   543         t = checkClassType(pos, t);
   544         if (noBounds && t.isParameterized()) {
   545             List<Type> args = t.getTypeArguments();
   546             while (args.nonEmpty()) {
   547                 if (args.head.tag == WILDCARD)
   548                     return typeTagError(pos,
   549                                         Log.getLocalizedString("type.req.exact"),
   550                                         args.head);
   551                 args = args.tail;
   552             }
   553         }
   554         return t;
   555     }
   557     /** Check that type is a reifiable class, interface or array type.
   558      *  @param pos           Position to be used for error reporting.
   559      *  @param t             The type to be checked.
   560      */
   561     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   562         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   563             return typeTagError(pos,
   564                                 diags.fragment("type.req.class.array"),
   565                                 t);
   566         } else if (!types.isReifiable(t)) {
   567             log.error(pos, "illegal.generic.type.for.instof");
   568             return types.createErrorType(t);
   569         } else {
   570             return t;
   571         }
   572     }
   574     /** Check that type is a reference type, i.e. a class, interface or array type
   575      *  or a type variable.
   576      *  @param pos           Position to be used for error reporting.
   577      *  @param t             The type to be checked.
   578      */
   579     Type checkRefType(DiagnosticPosition pos, Type t) {
   580         switch (t.tag) {
   581         case CLASS:
   582         case ARRAY:
   583         case TYPEVAR:
   584         case WILDCARD:
   585         case ERROR:
   586             return t;
   587         default:
   588             return typeTagError(pos,
   589                                 diags.fragment("type.req.ref"),
   590                                 t);
   591         }
   592     }
   594     /** Check that each type is a reference type, i.e. a class, interface or array type
   595      *  or a type variable.
   596      *  @param trees         Original trees, used for error reporting.
   597      *  @param types         The types to be checked.
   598      */
   599     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   600         List<JCExpression> tl = trees;
   601         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   602             l.head = checkRefType(tl.head.pos(), l.head);
   603             tl = tl.tail;
   604         }
   605         return types;
   606     }
   608     /** Check that type is a null or reference type.
   609      *  @param pos           Position to be used for error reporting.
   610      *  @param t             The type to be checked.
   611      */
   612     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   613         switch (t.tag) {
   614         case CLASS:
   615         case ARRAY:
   616         case TYPEVAR:
   617         case WILDCARD:
   618         case BOT:
   619         case ERROR:
   620             return t;
   621         default:
   622             return typeTagError(pos,
   623                                 diags.fragment("type.req.ref"),
   624                                 t);
   625         }
   626     }
   628     /** Check that flag set does not contain elements of two conflicting sets. s
   629      *  Return true if it doesn't.
   630      *  @param pos           Position to be used for error reporting.
   631      *  @param flags         The set of flags to be checked.
   632      *  @param set1          Conflicting flags set #1.
   633      *  @param set2          Conflicting flags set #2.
   634      */
   635     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   636         if ((flags & set1) != 0 && (flags & set2) != 0) {
   637             log.error(pos,
   638                       "illegal.combination.of.modifiers",
   639                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   640                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   641             return false;
   642         } else
   643             return true;
   644     }
   646     /** Check that the type inferred using the diamond operator does not contain
   647      *  non-denotable types such as captured types or intersection types.
   648      *  @param t the type inferred using the diamond operator
   649      */
   650     List<Type> checkDiamond(ClassType t) {
   651         DiamondTypeChecker dtc = new DiamondTypeChecker();
   652         ListBuffer<Type> buf = ListBuffer.lb();
   653         for (Type arg : t.getTypeArguments()) {
   654             if (!dtc.visit(arg, null)) {
   655                 buf.append(arg);
   656             }
   657         }
   658         return buf.toList();
   659     }
   661     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
   662         public Boolean visitType(Type t, Void s) {
   663             return true;
   664         }
   665         @Override
   666         public Boolean visitClassType(ClassType t, Void s) {
   667             if (t.isCompound()) {
   668                 return false;
   669             }
   670             for (Type targ : t.getTypeArguments()) {
   671                 if (!visit(targ, s)) {
   672                     return false;
   673                 }
   674             }
   675             return true;
   676         }
   677         @Override
   678         public Boolean visitCapturedType(CapturedType t, Void s) {
   679             return false;
   680         }
   681     }
   683     /**
   684      * Check that vararg method call is sound
   685      * @param pos Position to be used for error reporting.
   686      * @param argtypes Actual arguments supplied to vararg method.
   687      */
   688     void checkVararg(DiagnosticPosition pos, List<Type> argtypes) {
   689         Type argtype = argtypes.last();
   690         if (!types.isReifiable(argtype))
   691             warnUnchecked(pos,
   692                               "unchecked.generic.array.creation",
   693                               argtype);
   694     }
   696     /** Check that given modifiers are legal for given symbol and
   697      *  return modifiers together with any implicit modififiers for that symbol.
   698      *  Warning: we can't use flags() here since this method
   699      *  is called during class enter, when flags() would cause a premature
   700      *  completion.
   701      *  @param pos           Position to be used for error reporting.
   702      *  @param flags         The set of modifiers given in a definition.
   703      *  @param sym           The defined symbol.
   704      */
   705     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   706         long mask;
   707         long implicit = 0;
   708         switch (sym.kind) {
   709         case VAR:
   710             if (sym.owner.kind != TYP)
   711                 mask = LocalVarFlags;
   712             else if ((sym.owner.flags_field & INTERFACE) != 0)
   713                 mask = implicit = InterfaceVarFlags;
   714             else
   715                 mask = VarFlags;
   716             break;
   717         case MTH:
   718             if (sym.name == names.init) {
   719                 if ((sym.owner.flags_field & ENUM) != 0) {
   720                     // enum constructors cannot be declared public or
   721                     // protected and must be implicitly or explicitly
   722                     // private
   723                     implicit = PRIVATE;
   724                     mask = PRIVATE;
   725                 } else
   726                     mask = ConstructorFlags;
   727             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   728                 mask = implicit = InterfaceMethodFlags;
   729             else {
   730                 mask = MethodFlags;
   731             }
   732             // Imply STRICTFP if owner has STRICTFP set.
   733             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   734               implicit |= sym.owner.flags_field & STRICTFP;
   735             break;
   736         case TYP:
   737             if (sym.isLocal()) {
   738                 mask = LocalClassFlags;
   739                 if (sym.name.isEmpty()) { // Anonymous class
   740                     // Anonymous classes in static methods are themselves static;
   741                     // that's why we admit STATIC here.
   742                     mask |= STATIC;
   743                     // JLS: Anonymous classes are final.
   744                     implicit |= FINAL;
   745                 }
   746                 if ((sym.owner.flags_field & STATIC) == 0 &&
   747                     (flags & ENUM) != 0)
   748                     log.error(pos, "enums.must.be.static");
   749             } else if (sym.owner.kind == TYP) {
   750                 mask = MemberClassFlags;
   751                 if (sym.owner.owner.kind == PCK ||
   752                     (sym.owner.flags_field & STATIC) != 0)
   753                     mask |= STATIC;
   754                 else if ((flags & ENUM) != 0)
   755                     log.error(pos, "enums.must.be.static");
   756                 // Nested interfaces and enums are always STATIC (Spec ???)
   757                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   758             } else {
   759                 mask = ClassFlags;
   760             }
   761             // Interfaces are always ABSTRACT
   762             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   764             if ((flags & ENUM) != 0) {
   765                 // enums can't be declared abstract or final
   766                 mask &= ~(ABSTRACT | FINAL);
   767                 implicit |= implicitEnumFinalFlag(tree);
   768             }
   769             // Imply STRICTFP if owner has STRICTFP set.
   770             implicit |= sym.owner.flags_field & STRICTFP;
   771             break;
   772         default:
   773             throw new AssertionError();
   774         }
   775         long illegal = flags & StandardFlags & ~mask;
   776         if (illegal != 0) {
   777             if ((illegal & INTERFACE) != 0) {
   778                 log.error(pos, "intf.not.allowed.here");
   779                 mask |= INTERFACE;
   780             }
   781             else {
   782                 log.error(pos,
   783                           "mod.not.allowed.here", asFlagSet(illegal));
   784             }
   785         }
   786         else if ((sym.kind == TYP ||
   787                   // ISSUE: Disallowing abstract&private is no longer appropriate
   788                   // in the presence of inner classes. Should it be deleted here?
   789                   checkDisjoint(pos, flags,
   790                                 ABSTRACT,
   791                                 PRIVATE | STATIC))
   792                  &&
   793                  checkDisjoint(pos, flags,
   794                                ABSTRACT | INTERFACE,
   795                                FINAL | NATIVE | SYNCHRONIZED)
   796                  &&
   797                  checkDisjoint(pos, flags,
   798                                PUBLIC,
   799                                PRIVATE | PROTECTED)
   800                  &&
   801                  checkDisjoint(pos, flags,
   802                                PRIVATE,
   803                                PUBLIC | PROTECTED)
   804                  &&
   805                  checkDisjoint(pos, flags,
   806                                FINAL,
   807                                VOLATILE)
   808                  &&
   809                  (sym.kind == TYP ||
   810                   checkDisjoint(pos, flags,
   811                                 ABSTRACT | NATIVE,
   812                                 STRICTFP))) {
   813             // skip
   814         }
   815         return flags & (mask | ~StandardFlags) | implicit;
   816     }
   819     /** Determine if this enum should be implicitly final.
   820      *
   821      *  If the enum has no specialized enum contants, it is final.
   822      *
   823      *  If the enum does have specialized enum contants, it is
   824      *  <i>not</i> final.
   825      */
   826     private long implicitEnumFinalFlag(JCTree tree) {
   827         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   828         class SpecialTreeVisitor extends JCTree.Visitor {
   829             boolean specialized;
   830             SpecialTreeVisitor() {
   831                 this.specialized = false;
   832             };
   834             @Override
   835             public void visitTree(JCTree tree) { /* no-op */ }
   837             @Override
   838             public void visitVarDef(JCVariableDecl tree) {
   839                 if ((tree.mods.flags & ENUM) != 0) {
   840                     if (tree.init instanceof JCNewClass &&
   841                         ((JCNewClass) tree.init).def != null) {
   842                         specialized = true;
   843                     }
   844                 }
   845             }
   846         }
   848         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   849         JCClassDecl cdef = (JCClassDecl) tree;
   850         for (JCTree defs: cdef.defs) {
   851             defs.accept(sts);
   852             if (sts.specialized) return 0;
   853         }
   854         return FINAL;
   855     }
   857 /* *************************************************************************
   858  * Type Validation
   859  **************************************************************************/
   861     /** Validate a type expression. That is,
   862      *  check that all type arguments of a parametric type are within
   863      *  their bounds. This must be done in a second phase after type attributon
   864      *  since a class might have a subclass as type parameter bound. E.g:
   865      *
   866      *  class B<A extends C> { ... }
   867      *  class C extends B<C> { ... }
   868      *
   869      *  and we can't make sure that the bound is already attributed because
   870      *  of possible cycles.
   871      */
   872     private Validator validator = new Validator();
   874     /** Visitor method: Validate a type expression, if it is not null, catching
   875      *  and reporting any completion failures.
   876      */
   877     void validate(JCTree tree, Env<AttrContext> env) {
   878         try {
   879             if (tree != null) {
   880                 validator.env = env;
   881                 tree.accept(validator);
   882                 checkRaw(tree, env);
   883             }
   884         } catch (CompletionFailure ex) {
   885             completionError(tree.pos(), ex);
   886         }
   887     }
   888     //where
   889     void checkRaw(JCTree tree, Env<AttrContext> env) {
   890         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   891             tree.type.tag == CLASS &&
   892             !TreeInfo.isDiamond(tree) &&
   893             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   894             tree.type.isRaw()) {
   895             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   896         }
   897     }
   899     /** Visitor method: Validate a list of type expressions.
   900      */
   901     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   902         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   903             validate(l.head, env);
   904     }
   906     /** A visitor class for type validation.
   907      */
   908     class Validator extends JCTree.Visitor {
   910         @Override
   911         public void visitTypeArray(JCArrayTypeTree tree) {
   912             validate(tree.elemtype, env);
   913         }
   915         @Override
   916         public void visitTypeApply(JCTypeApply tree) {
   917             if (tree.type.tag == CLASS) {
   918                 List<Type> formals = tree.type.tsym.type.allparams();
   919                 List<Type> actuals = tree.type.allparams();
   920                 List<JCExpression> args = tree.arguments;
   921                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   922                 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   924                 // For matching pairs of actual argument types `a' and
   925                 // formal type parameters with declared bound `b' ...
   926                 while (args.nonEmpty() && forms.nonEmpty()) {
   927                     validate(args.head, env);
   929                     // exact type arguments needs to know their
   930                     // bounds (for upper and lower bound
   931                     // calculations).  So we create new TypeVars with
   932                     // bounds substed with actuals.
   933                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   934                                                       formals,
   935                                                       actuals));
   937                     args = args.tail;
   938                     forms = forms.tail;
   939                 }
   941                 args = tree.arguments;
   942                 List<Type> tvars_cap = types.substBounds(formals,
   943                                           formals,
   944                                           types.capture(tree.type).allparams());
   945                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   946                     // Let the actual arguments know their bound
   947                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   948                     args = args.tail;
   949                     tvars_cap = tvars_cap.tail;
   950                 }
   952                 args = tree.arguments;
   953                 List<Type> tvars = tvars_buf.toList();
   955                 while (args.nonEmpty() && tvars.nonEmpty()) {
   956                     Type actual = types.subst(args.head.type,
   957                         tree.type.tsym.type.getTypeArguments(),
   958                         tvars_buf.toList());
   959                     checkExtends(args.head.pos(),
   960                                  actual,
   961                                  (TypeVar)tvars.head);
   962                     args = args.tail;
   963                     tvars = tvars.tail;
   964                 }
   966                 checkCapture(tree);
   968                 // Check that this type is either fully parameterized, or
   969                 // not parameterized at all.
   970                 if (tree.type.getEnclosingType().isRaw())
   971                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   972                 if (tree.clazz.getTag() == JCTree.SELECT)
   973                     visitSelectInternal((JCFieldAccess)tree.clazz);
   974             }
   975         }
   977         @Override
   978         public void visitTypeParameter(JCTypeParameter tree) {
   979             validate(tree.bounds, env);
   980             checkClassBounds(tree.pos(), tree.type);
   981         }
   983         @Override
   984         public void visitWildcard(JCWildcard tree) {
   985             if (tree.inner != null)
   986                 validate(tree.inner, env);
   987         }
   989         @Override
   990         public void visitSelect(JCFieldAccess tree) {
   991             if (tree.type.tag == CLASS) {
   992                 visitSelectInternal(tree);
   994                 // Check that this type is either fully parameterized, or
   995                 // not parameterized at all.
   996                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   997                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   998             }
   999         }
  1000         public void visitSelectInternal(JCFieldAccess tree) {
  1001             if (tree.type.tsym.isStatic() &&
  1002                 tree.selected.type.isParameterized()) {
  1003                 // The enclosing type is not a class, so we are
  1004                 // looking at a static member type.  However, the
  1005                 // qualifying expression is parameterized.
  1006                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1007             } else {
  1008                 // otherwise validate the rest of the expression
  1009                 tree.selected.accept(this);
  1013         @Override
  1014         public void visitAnnotatedType(JCAnnotatedType tree) {
  1015             tree.underlyingType.accept(this);
  1018         /** Default visitor method: do nothing.
  1019          */
  1020         @Override
  1021         public void visitTree(JCTree tree) {
  1024         Env<AttrContext> env;
  1027 /* *************************************************************************
  1028  * Exception checking
  1029  **************************************************************************/
  1031     /* The following methods treat classes as sets that contain
  1032      * the class itself and all their subclasses
  1033      */
  1035     /** Is given type a subtype of some of the types in given list?
  1036      */
  1037     boolean subset(Type t, List<Type> ts) {
  1038         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1039             if (types.isSubtype(t, l.head)) return true;
  1040         return false;
  1043     /** Is given type a subtype or supertype of
  1044      *  some of the types in given list?
  1045      */
  1046     boolean intersects(Type t, List<Type> ts) {
  1047         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1048             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1049         return false;
  1052     /** Add type set to given type list, unless it is a subclass of some class
  1053      *  in the list.
  1054      */
  1055     List<Type> incl(Type t, List<Type> ts) {
  1056         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1059     /** Remove type set from type set list.
  1060      */
  1061     List<Type> excl(Type t, List<Type> ts) {
  1062         if (ts.isEmpty()) {
  1063             return ts;
  1064         } else {
  1065             List<Type> ts1 = excl(t, ts.tail);
  1066             if (types.isSubtype(ts.head, t)) return ts1;
  1067             else if (ts1 == ts.tail) return ts;
  1068             else return ts1.prepend(ts.head);
  1072     /** Form the union of two type set lists.
  1073      */
  1074     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1075         List<Type> ts = ts1;
  1076         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1077             ts = incl(l.head, ts);
  1078         return ts;
  1081     /** Form the difference of two type lists.
  1082      */
  1083     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1084         List<Type> ts = ts1;
  1085         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1086             ts = excl(l.head, ts);
  1087         return ts;
  1090     /** Form the intersection of two type lists.
  1091      */
  1092     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1093         List<Type> ts = List.nil();
  1094         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1095             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1096         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1097             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1098         return ts;
  1101     /** Is exc an exception symbol that need not be declared?
  1102      */
  1103     boolean isUnchecked(ClassSymbol exc) {
  1104         return
  1105             exc.kind == ERR ||
  1106             exc.isSubClass(syms.errorType.tsym, types) ||
  1107             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1110     /** Is exc an exception type that need not be declared?
  1111      */
  1112     boolean isUnchecked(Type exc) {
  1113         return
  1114             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1115             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1116             exc.tag == BOT;
  1119     /** Same, but handling completion failures.
  1120      */
  1121     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1122         try {
  1123             return isUnchecked(exc);
  1124         } catch (CompletionFailure ex) {
  1125             completionError(pos, ex);
  1126             return true;
  1130     /** Is exc handled by given exception list?
  1131      */
  1132     boolean isHandled(Type exc, List<Type> handled) {
  1133         return isUnchecked(exc) || subset(exc, handled);
  1136     /** Return all exceptions in thrown list that are not in handled list.
  1137      *  @param thrown     The list of thrown exceptions.
  1138      *  @param handled    The list of handled exceptions.
  1139      */
  1140     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1141         List<Type> unhandled = List.nil();
  1142         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1143             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1144         return unhandled;
  1147 /* *************************************************************************
  1148  * Overriding/Implementation checking
  1149  **************************************************************************/
  1151     /** The level of access protection given by a flag set,
  1152      *  where PRIVATE is highest and PUBLIC is lowest.
  1153      */
  1154     static int protection(long flags) {
  1155         switch ((short)(flags & AccessFlags)) {
  1156         case PRIVATE: return 3;
  1157         case PROTECTED: return 1;
  1158         default:
  1159         case PUBLIC: return 0;
  1160         case 0: return 2;
  1164     /** A customized "cannot override" error message.
  1165      *  @param m      The overriding method.
  1166      *  @param other  The overridden method.
  1167      *  @return       An internationalized string.
  1168      */
  1169     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1170         String key;
  1171         if ((other.owner.flags() & INTERFACE) == 0)
  1172             key = "cant.override";
  1173         else if ((m.owner.flags() & INTERFACE) == 0)
  1174             key = "cant.implement";
  1175         else
  1176             key = "clashes.with";
  1177         return diags.fragment(key, m, m.location(), other, other.location());
  1180     /** A customized "override" warning message.
  1181      *  @param m      The overriding method.
  1182      *  @param other  The overridden method.
  1183      *  @return       An internationalized string.
  1184      */
  1185     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1186         String key;
  1187         if ((other.owner.flags() & INTERFACE) == 0)
  1188             key = "unchecked.override";
  1189         else if ((m.owner.flags() & INTERFACE) == 0)
  1190             key = "unchecked.implement";
  1191         else
  1192             key = "unchecked.clash.with";
  1193         return diags.fragment(key, m, m.location(), other, other.location());
  1196     /** A customized "override" warning message.
  1197      *  @param m      The overriding method.
  1198      *  @param other  The overridden method.
  1199      *  @return       An internationalized string.
  1200      */
  1201     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1202         String key;
  1203         if ((other.owner.flags() & INTERFACE) == 0)
  1204             key = "varargs.override";
  1205         else  if ((m.owner.flags() & INTERFACE) == 0)
  1206             key = "varargs.implement";
  1207         else
  1208             key = "varargs.clash.with";
  1209         return diags.fragment(key, m, m.location(), other, other.location());
  1212     /** Check that this method conforms with overridden method 'other'.
  1213      *  where `origin' is the class where checking started.
  1214      *  Complications:
  1215      *  (1) Do not check overriding of synthetic methods
  1216      *      (reason: they might be final).
  1217      *      todo: check whether this is still necessary.
  1218      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1219      *      than the method it implements. Augment the proxy methods with the
  1220      *      undeclared exceptions in this case.
  1221      *  (3) When generics are enabled, admit the case where an interface proxy
  1222      *      has a result type
  1223      *      extended by the result type of the method it implements.
  1224      *      Change the proxies result type to the smaller type in this case.
  1226      *  @param tree         The tree from which positions
  1227      *                      are extracted for errors.
  1228      *  @param m            The overriding method.
  1229      *  @param other        The overridden method.
  1230      *  @param origin       The class of which the overriding method
  1231      *                      is a member.
  1232      */
  1233     void checkOverride(JCTree tree,
  1234                        MethodSymbol m,
  1235                        MethodSymbol other,
  1236                        ClassSymbol origin) {
  1237         // Don't check overriding of synthetic methods or by bridge methods.
  1238         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1239             return;
  1242         // Error if static method overrides instance method (JLS 8.4.6.2).
  1243         if ((m.flags() & STATIC) != 0 &&
  1244                    (other.flags() & STATIC) == 0) {
  1245             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1246                       cannotOverride(m, other));
  1247             return;
  1250         // Error if instance method overrides static or final
  1251         // method (JLS 8.4.6.1).
  1252         if ((other.flags() & FINAL) != 0 ||
  1253                  (m.flags() & STATIC) == 0 &&
  1254                  (other.flags() & STATIC) != 0) {
  1255             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1256                       cannotOverride(m, other),
  1257                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1258             return;
  1261         if ((m.owner.flags() & ANNOTATION) != 0) {
  1262             // handled in validateAnnotationMethod
  1263             return;
  1266         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1267         if ((origin.flags() & INTERFACE) == 0 &&
  1268                  protection(m.flags()) > protection(other.flags())) {
  1269             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1270                       cannotOverride(m, other),
  1271                       other.flags() == 0 ?
  1272                           Flag.PACKAGE :
  1273                           asFlagSet(other.flags() & AccessFlags));
  1274             return;
  1277         Type mt = types.memberType(origin.type, m);
  1278         Type ot = types.memberType(origin.type, other);
  1279         // Error if overriding result type is different
  1280         // (or, in the case of generics mode, not a subtype) of
  1281         // overridden result type. We have to rename any type parameters
  1282         // before comparing types.
  1283         List<Type> mtvars = mt.getTypeArguments();
  1284         List<Type> otvars = ot.getTypeArguments();
  1285         Type mtres = mt.getReturnType();
  1286         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1288         overrideWarner.warned = false;
  1289         boolean resultTypesOK =
  1290             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1291         if (!resultTypesOK) {
  1292             if (!allowCovariantReturns &&
  1293                 m.owner != origin &&
  1294                 m.owner.isSubClass(other.owner, types)) {
  1295                 // allow limited interoperability with covariant returns
  1296             } else {
  1297                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1298                           "override.incompatible.ret",
  1299                           cannotOverride(m, other),
  1300                           mtres, otres);
  1301                 return;
  1303         } else if (overrideWarner.warned) {
  1304             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1305                     "override.unchecked.ret",
  1306                     uncheckedOverrides(m, other),
  1307                     mtres, otres);
  1310         // Error if overriding method throws an exception not reported
  1311         // by overridden method.
  1312         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1313         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1314         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1315         if (unhandledErased.nonEmpty()) {
  1316             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1317                       "override.meth.doesnt.throw",
  1318                       cannotOverride(m, other),
  1319                       unhandledUnerased.head);
  1320             return;
  1322         else if (unhandledUnerased.nonEmpty()) {
  1323             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1324                           "override.unchecked.thrown",
  1325                          cannotOverride(m, other),
  1326                          unhandledUnerased.head);
  1327             return;
  1330         // Optional warning if varargs don't agree
  1331         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1332             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1333             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1334                         ((m.flags() & Flags.VARARGS) != 0)
  1335                         ? "override.varargs.missing"
  1336                         : "override.varargs.extra",
  1337                         varargsOverrides(m, other));
  1340         // Warn if instance method overrides bridge method (compiler spec ??)
  1341         if ((other.flags() & BRIDGE) != 0) {
  1342             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1343                         uncheckedOverrides(m, other));
  1346         // Warn if a deprecated method overridden by a non-deprecated one.
  1347         if ((other.flags() & DEPRECATED) != 0
  1348             && (m.flags() & DEPRECATED) == 0
  1349             && m.outermostClass() != other.outermostClass()
  1350             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1351             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1354     // where
  1355         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1356             // If the method, m, is defined in an interface, then ignore the issue if the method
  1357             // is only inherited via a supertype and also implemented in the supertype,
  1358             // because in that case, we will rediscover the issue when examining the method
  1359             // in the supertype.
  1360             // If the method, m, is not defined in an interface, then the only time we need to
  1361             // address the issue is when the method is the supertype implemementation: any other
  1362             // case, we will have dealt with when examining the supertype classes
  1363             ClassSymbol mc = m.enclClass();
  1364             Type st = types.supertype(origin.type);
  1365             if (st.tag != CLASS)
  1366                 return true;
  1367             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1369             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1370                 List<Type> intfs = types.interfaces(origin.type);
  1371                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1373             else
  1374                 return (stimpl != m);
  1378     // used to check if there were any unchecked conversions
  1379     Warner overrideWarner = new Warner();
  1381     /** Check that a class does not inherit two concrete methods
  1382      *  with the same signature.
  1383      *  @param pos          Position to be used for error reporting.
  1384      *  @param site         The class type to be checked.
  1385      */
  1386     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1387         Type sup = types.supertype(site);
  1388         if (sup.tag != CLASS) return;
  1390         for (Type t1 = sup;
  1391              t1.tsym.type.isParameterized();
  1392              t1 = types.supertype(t1)) {
  1393             for (Scope.Entry e1 = t1.tsym.members().elems;
  1394                  e1 != null;
  1395                  e1 = e1.sibling) {
  1396                 Symbol s1 = e1.sym;
  1397                 if (s1.kind != MTH ||
  1398                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1399                     !s1.isInheritedIn(site.tsym, types) ||
  1400                     ((MethodSymbol)s1).implementation(site.tsym,
  1401                                                       types,
  1402                                                       true) != s1)
  1403                     continue;
  1404                 Type st1 = types.memberType(t1, s1);
  1405                 int s1ArgsLength = st1.getParameterTypes().length();
  1406                 if (st1 == s1.type) continue;
  1408                 for (Type t2 = sup;
  1409                      t2.tag == CLASS;
  1410                      t2 = types.supertype(t2)) {
  1411                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1412                          e2.scope != null;
  1413                          e2 = e2.next()) {
  1414                         Symbol s2 = e2.sym;
  1415                         if (s2 == s1 ||
  1416                             s2.kind != MTH ||
  1417                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1418                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1419                             !s2.isInheritedIn(site.tsym, types) ||
  1420                             ((MethodSymbol)s2).implementation(site.tsym,
  1421                                                               types,
  1422                                                               true) != s2)
  1423                             continue;
  1424                         Type st2 = types.memberType(t2, s2);
  1425                         if (types.overrideEquivalent(st1, st2))
  1426                             log.error(pos, "concrete.inheritance.conflict",
  1427                                       s1, t1, s2, t2, sup);
  1434     /** Check that classes (or interfaces) do not each define an abstract
  1435      *  method with same name and arguments but incompatible return types.
  1436      *  @param pos          Position to be used for error reporting.
  1437      *  @param t1           The first argument type.
  1438      *  @param t2           The second argument type.
  1439      */
  1440     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1441                                             Type t1,
  1442                                             Type t2) {
  1443         return checkCompatibleAbstracts(pos, t1, t2,
  1444                                         types.makeCompoundType(t1, t2));
  1447     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1448                                             Type t1,
  1449                                             Type t2,
  1450                                             Type site) {
  1451         Symbol sym = firstIncompatibility(t1, t2, site);
  1452         if (sym != null) {
  1453             log.error(pos, "types.incompatible.diff.ret",
  1454                       t1, t2, sym.name +
  1455                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1456             return false;
  1458         return true;
  1461     /** Return the first method which is defined with same args
  1462      *  but different return types in two given interfaces, or null if none
  1463      *  exists.
  1464      *  @param t1     The first type.
  1465      *  @param t2     The second type.
  1466      *  @param site   The most derived type.
  1467      *  @returns symbol from t2 that conflicts with one in t1.
  1468      */
  1469     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1470         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1471         closure(t1, interfaces1);
  1472         Map<TypeSymbol,Type> interfaces2;
  1473         if (t1 == t2)
  1474             interfaces2 = interfaces1;
  1475         else
  1476             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1478         for (Type t3 : interfaces1.values()) {
  1479             for (Type t4 : interfaces2.values()) {
  1480                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1481                 if (s != null) return s;
  1484         return null;
  1487     /** Compute all the supertypes of t, indexed by type symbol. */
  1488     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1489         if (t.tag != CLASS) return;
  1490         if (typeMap.put(t.tsym, t) == null) {
  1491             closure(types.supertype(t), typeMap);
  1492             for (Type i : types.interfaces(t))
  1493                 closure(i, typeMap);
  1497     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1498     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1499         if (t.tag != CLASS) return;
  1500         if (typesSkip.get(t.tsym) != null) return;
  1501         if (typeMap.put(t.tsym, t) == null) {
  1502             closure(types.supertype(t), typesSkip, typeMap);
  1503             for (Type i : types.interfaces(t))
  1504                 closure(i, typesSkip, typeMap);
  1508     /** Return the first method in t2 that conflicts with a method from t1. */
  1509     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1510         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1511             Symbol s1 = e1.sym;
  1512             Type st1 = null;
  1513             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1514             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1515             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1516             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1517                 Symbol s2 = e2.sym;
  1518                 if (s1 == s2) continue;
  1519                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1520                 if (st1 == null) st1 = types.memberType(t1, s1);
  1521                 Type st2 = types.memberType(t2, s2);
  1522                 if (types.overrideEquivalent(st1, st2)) {
  1523                     List<Type> tvars1 = st1.getTypeArguments();
  1524                     List<Type> tvars2 = st2.getTypeArguments();
  1525                     Type rt1 = st1.getReturnType();
  1526                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1527                     boolean compat =
  1528                         types.isSameType(rt1, rt2) ||
  1529                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1530                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1531                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1532                          checkCommonOverriderIn(s1,s2,site);
  1533                     if (!compat) return s2;
  1537         return null;
  1539     //WHERE
  1540     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1541         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1542         Type st1 = types.memberType(site, s1);
  1543         Type st2 = types.memberType(site, s2);
  1544         closure(site, supertypes);
  1545         for (Type t : supertypes.values()) {
  1546             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1547                 Symbol s3 = e.sym;
  1548                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1549                 Type st3 = types.memberType(site,s3);
  1550                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1551                     if (s3.owner == site.tsym) {
  1552                         return true;
  1554                     List<Type> tvars1 = st1.getTypeArguments();
  1555                     List<Type> tvars2 = st2.getTypeArguments();
  1556                     List<Type> tvars3 = st3.getTypeArguments();
  1557                     Type rt1 = st1.getReturnType();
  1558                     Type rt2 = st2.getReturnType();
  1559                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1560                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1561                     boolean compat =
  1562                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1563                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1564                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1565                     if (compat)
  1566                         return true;
  1570         return false;
  1573     /** Check that a given method conforms with any method it overrides.
  1574      *  @param tree         The tree from which positions are extracted
  1575      *                      for errors.
  1576      *  @param m            The overriding method.
  1577      */
  1578     void checkOverride(JCTree tree, MethodSymbol m) {
  1579         ClassSymbol origin = (ClassSymbol)m.owner;
  1580         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1581             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1582                 log.error(tree.pos(), "enum.no.finalize");
  1583                 return;
  1585         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1586              t = types.supertype(t)) {
  1587             TypeSymbol c = t.tsym;
  1588             Scope.Entry e = c.members().lookup(m.name);
  1589             while (e.scope != null) {
  1590                 if (m.overrides(e.sym, origin, types, false))
  1591                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1592                 else if (e.sym.kind == MTH &&
  1593                         e.sym.isInheritedIn(origin, types) &&
  1594                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1595                         !m.isConstructor()) {
  1596                     Type er1 = m.erasure(types);
  1597                     Type er2 = e.sym.erasure(types);
  1598                     if (types.isSameTypes(er1.getParameterTypes(),
  1599                             er2.getParameterTypes())) {
  1600                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1601                                     "name.clash.same.erasure.no.override",
  1602                                     m, m.location(),
  1603                                     e.sym, e.sym.location());
  1606                 e = e.next();
  1611     /** Check that all abstract members of given class have definitions.
  1612      *  @param pos          Position to be used for error reporting.
  1613      *  @param c            The class.
  1614      */
  1615     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1616         try {
  1617             MethodSymbol undef = firstUndef(c, c);
  1618             if (undef != null) {
  1619                 if ((c.flags() & ENUM) != 0 &&
  1620                     types.supertype(c.type).tsym == syms.enumSym &&
  1621                     (c.flags() & FINAL) == 0) {
  1622                     // add the ABSTRACT flag to an enum
  1623                     c.flags_field |= ABSTRACT;
  1624                 } else {
  1625                     MethodSymbol undef1 =
  1626                         new MethodSymbol(undef.flags(), undef.name,
  1627                                          types.memberType(c.type, undef), undef.owner);
  1628                     log.error(pos, "does.not.override.abstract",
  1629                               c, undef1, undef1.location());
  1632         } catch (CompletionFailure ex) {
  1633             completionError(pos, ex);
  1636 //where
  1637         /** Return first abstract member of class `c' that is not defined
  1638          *  in `impl', null if there is none.
  1639          */
  1640         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1641             MethodSymbol undef = null;
  1642             // Do not bother to search in classes that are not abstract,
  1643             // since they cannot have abstract members.
  1644             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1645                 Scope s = c.members();
  1646                 for (Scope.Entry e = s.elems;
  1647                      undef == null && e != null;
  1648                      e = e.sibling) {
  1649                     if (e.sym.kind == MTH &&
  1650                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1651                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1652                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1653                         if (implmeth == null || implmeth == absmeth)
  1654                             undef = absmeth;
  1657                 if (undef == null) {
  1658                     Type st = types.supertype(c.type);
  1659                     if (st.tag == CLASS)
  1660                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1662                 for (List<Type> l = types.interfaces(c.type);
  1663                      undef == null && l.nonEmpty();
  1664                      l = l.tail) {
  1665                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1668             return undef;
  1671     /** Check for cyclic references. Issue an error if the
  1672      *  symbol of the type referred to has a LOCKED flag set.
  1674      *  @param pos      Position to be used for error reporting.
  1675      *  @param t        The type referred to.
  1676      */
  1677     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1678         checkNonCyclicInternal(pos, t);
  1682     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1683         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1686     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1687         final TypeVar tv;
  1688         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1689             return;
  1690         if (seen.contains(t)) {
  1691             tv = (TypeVar)t;
  1692             tv.bound = types.createErrorType(t);
  1693             log.error(pos, "cyclic.inheritance", t);
  1694         } else if (t.tag == TYPEVAR) {
  1695             tv = (TypeVar)t;
  1696             seen = seen.prepend(tv);
  1697             for (Type b : types.getBounds(tv))
  1698                 checkNonCyclic1(pos, b, seen);
  1702     /** Check for cyclic references. Issue an error if the
  1703      *  symbol of the type referred to has a LOCKED flag set.
  1705      *  @param pos      Position to be used for error reporting.
  1706      *  @param t        The type referred to.
  1707      *  @returns        True if the check completed on all attributed classes
  1708      */
  1709     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1710         boolean complete = true; // was the check complete?
  1711         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1712         Symbol c = t.tsym;
  1713         if ((c.flags_field & ACYCLIC) != 0) return true;
  1715         if ((c.flags_field & LOCKED) != 0) {
  1716             noteCyclic(pos, (ClassSymbol)c);
  1717         } else if (!c.type.isErroneous()) {
  1718             try {
  1719                 c.flags_field |= LOCKED;
  1720                 if (c.type.tag == CLASS) {
  1721                     ClassType clazz = (ClassType)c.type;
  1722                     if (clazz.interfaces_field != null)
  1723                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1724                             complete &= checkNonCyclicInternal(pos, l.head);
  1725                     if (clazz.supertype_field != null) {
  1726                         Type st = clazz.supertype_field;
  1727                         if (st != null && st.tag == CLASS)
  1728                             complete &= checkNonCyclicInternal(pos, st);
  1730                     if (c.owner.kind == TYP)
  1731                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1733             } finally {
  1734                 c.flags_field &= ~LOCKED;
  1737         if (complete)
  1738             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1739         if (complete) c.flags_field |= ACYCLIC;
  1740         return complete;
  1743     /** Note that we found an inheritance cycle. */
  1744     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1745         log.error(pos, "cyclic.inheritance", c);
  1746         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1747             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1748         Type st = types.supertype(c.type);
  1749         if (st.tag == CLASS)
  1750             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1751         c.type = types.createErrorType(c, c.type);
  1752         c.flags_field |= ACYCLIC;
  1755     /** Check that all methods which implement some
  1756      *  method conform to the method they implement.
  1757      *  @param tree         The class definition whose members are checked.
  1758      */
  1759     void checkImplementations(JCClassDecl tree) {
  1760         checkImplementations(tree, tree.sym);
  1762 //where
  1763         /** Check that all methods which implement some
  1764          *  method in `ic' conform to the method they implement.
  1765          */
  1766         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1767             ClassSymbol origin = tree.sym;
  1768             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1769                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1770                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1771                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1772                         if (e.sym.kind == MTH &&
  1773                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1774                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1775                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1776                             if (implmeth != null && implmeth != absmeth &&
  1777                                 (implmeth.owner.flags() & INTERFACE) ==
  1778                                 (origin.flags() & INTERFACE)) {
  1779                                 // don't check if implmeth is in a class, yet
  1780                                 // origin is an interface. This case arises only
  1781                                 // if implmeth is declared in Object. The reason is
  1782                                 // that interfaces really don't inherit from
  1783                                 // Object it's just that the compiler represents
  1784                                 // things that way.
  1785                                 checkOverride(tree, implmeth, absmeth, origin);
  1793     /** Check that all abstract methods implemented by a class are
  1794      *  mutually compatible.
  1795      *  @param pos          Position to be used for error reporting.
  1796      *  @param c            The class whose interfaces are checked.
  1797      */
  1798     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1799         List<Type> supertypes = types.interfaces(c);
  1800         Type supertype = types.supertype(c);
  1801         if (supertype.tag == CLASS &&
  1802             (supertype.tsym.flags() & ABSTRACT) != 0)
  1803             supertypes = supertypes.prepend(supertype);
  1804         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1805             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1806                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1807                 return;
  1808             for (List<Type> m = supertypes; m != l; m = m.tail)
  1809                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1810                     return;
  1812         checkCompatibleConcretes(pos, c);
  1815     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1816         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1817             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1818                 // VM allows methods and variables with differing types
  1819                 if (sym.kind == e.sym.kind &&
  1820                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1821                     sym != e.sym &&
  1822                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1823                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1824                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1825                     return;
  1831     /** Report a conflict between a user symbol and a synthetic symbol.
  1832      */
  1833     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  1834         if (!sym.type.isErroneous()) {
  1835             if (warnOnSyntheticConflicts) {
  1836                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  1838             else {
  1839                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  1844     /** Check that class c does not implement directly or indirectly
  1845      *  the same parameterized interface with two different argument lists.
  1846      *  @param pos          Position to be used for error reporting.
  1847      *  @param type         The type whose interfaces are checked.
  1848      */
  1849     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1850         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1852 //where
  1853         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1854          *  with their class symbol as key and their type as value. Make
  1855          *  sure no class is entered with two different types.
  1856          */
  1857         void checkClassBounds(DiagnosticPosition pos,
  1858                               Map<TypeSymbol,Type> seensofar,
  1859                               Type type) {
  1860             if (type.isErroneous()) return;
  1861             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1862                 Type it = l.head;
  1863                 Type oldit = seensofar.put(it.tsym, it);
  1864                 if (oldit != null) {
  1865                     List<Type> oldparams = oldit.allparams();
  1866                     List<Type> newparams = it.allparams();
  1867                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1868                         log.error(pos, "cant.inherit.diff.arg",
  1869                                   it.tsym, Type.toString(oldparams),
  1870                                   Type.toString(newparams));
  1872                 checkClassBounds(pos, seensofar, it);
  1874             Type st = types.supertype(type);
  1875             if (st != null) checkClassBounds(pos, seensofar, st);
  1878     /** Enter interface into into set.
  1879      *  If it existed already, issue a "repeated interface" error.
  1880      */
  1881     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1882         if (its.contains(it))
  1883             log.error(pos, "repeated.interface");
  1884         else {
  1885             its.add(it);
  1889 /* *************************************************************************
  1890  * Check annotations
  1891  **************************************************************************/
  1893     /** Annotation types are restricted to primitives, String, an
  1894      *  enum, an annotation, Class, Class<?>, Class<? extends
  1895      *  Anything>, arrays of the preceding.
  1896      */
  1897     void validateAnnotationType(JCTree restype) {
  1898         // restype may be null if an error occurred, so don't bother validating it
  1899         if (restype != null) {
  1900             validateAnnotationType(restype.pos(), restype.type);
  1904     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1905         if (type.isPrimitive()) return;
  1906         if (types.isSameType(type, syms.stringType)) return;
  1907         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1908         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1909         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1910         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1911             validateAnnotationType(pos, types.elemtype(type));
  1912             return;
  1914         log.error(pos, "invalid.annotation.member.type");
  1917     /**
  1918      * "It is also a compile-time error if any method declared in an
  1919      * annotation type has a signature that is override-equivalent to
  1920      * that of any public or protected method declared in class Object
  1921      * or in the interface annotation.Annotation."
  1923      * @jls3 9.6 Annotation Types
  1924      */
  1925     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1926         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1927             Scope s = sup.tsym.members();
  1928             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1929                 if (e.sym.kind == MTH &&
  1930                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1931                     types.overrideEquivalent(m.type, e.sym.type))
  1932                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1937     /** Check the annotations of a symbol.
  1938      */
  1939     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1940         if (skipAnnotations) return;
  1941         for (JCAnnotation a : annotations)
  1942             validateAnnotation(a, s);
  1945     /** Check the type annotations
  1946      */
  1947     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  1948         if (skipAnnotations) return;
  1949         for (JCTypeAnnotation a : annotations)
  1950             validateTypeAnnotation(a, isTypeParameter);
  1953     /** Check an annotation of a symbol.
  1954      */
  1955     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1956         validateAnnotation(a);
  1958         if (!annotationApplicable(a, s))
  1959             log.error(a.pos(), "annotation.type.not.applicable");
  1961         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1962             if (!isOverrider(s))
  1963                 log.error(a.pos(), "method.does.not.override.superclass");
  1967     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1968         if (a.type == null)
  1969             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  1970         validateAnnotation(a);
  1972         if (!isTypeAnnotation(a, isTypeParameter))
  1973             log.error(a.pos(), "annotation.type.not.applicable");
  1976     /** Is s a method symbol that overrides a method in a superclass? */
  1977     boolean isOverrider(Symbol s) {
  1978         if (s.kind != MTH || s.isStatic())
  1979             return false;
  1980         MethodSymbol m = (MethodSymbol)s;
  1981         TypeSymbol owner = (TypeSymbol)m.owner;
  1982         for (Type sup : types.closure(owner.type)) {
  1983             if (sup == owner.type)
  1984                 continue; // skip "this"
  1985             Scope scope = sup.tsym.members();
  1986             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1987                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1988                     return true;
  1991         return false;
  1994     /** Is the annotation applicable to type annotations */
  1995     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1996         Attribute.Compound atTarget =
  1997             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1998         if (atTarget == null) return true;
  1999         Attribute atValue = atTarget.member(names.value);
  2000         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2001         Attribute.Array arr = (Attribute.Array) atValue;
  2002         for (Attribute app : arr.values) {
  2003             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2004             Attribute.Enum e = (Attribute.Enum) app;
  2005             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  2006                 return true;
  2007             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2008                 return true;
  2010         return false;
  2013     /** Is the annotation applicable to the symbol? */
  2014     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2015         Attribute.Compound atTarget =
  2016             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2017         if (atTarget == null) return true;
  2018         Attribute atValue = atTarget.member(names.value);
  2019         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2020         Attribute.Array arr = (Attribute.Array) atValue;
  2021         for (Attribute app : arr.values) {
  2022             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2023             Attribute.Enum e = (Attribute.Enum) app;
  2024             if (e.value.name == names.TYPE)
  2025                 { if (s.kind == TYP) return true; }
  2026             else if (e.value.name == names.FIELD)
  2027                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2028             else if (e.value.name == names.METHOD)
  2029                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2030             else if (e.value.name == names.PARAMETER)
  2031                 { if (s.kind == VAR &&
  2032                       s.owner.kind == MTH &&
  2033                       (s.flags() & PARAMETER) != 0)
  2034                     return true;
  2036             else if (e.value.name == names.CONSTRUCTOR)
  2037                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2038             else if (e.value.name == names.LOCAL_VARIABLE)
  2039                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2040                       (s.flags() & PARAMETER) == 0)
  2041                     return true;
  2043             else if (e.value.name == names.ANNOTATION_TYPE)
  2044                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2045                     return true;
  2047             else if (e.value.name == names.PACKAGE)
  2048                 { if (s.kind == PCK) return true; }
  2049             else if (e.value.name == names.TYPE_USE)
  2050                 { if (s.kind == TYP ||
  2051                       s.kind == VAR ||
  2052                       (s.kind == MTH && !s.isConstructor() &&
  2053                        s.type.getReturnType().tag != VOID))
  2054                     return true;
  2056             else
  2057                 return true; // recovery
  2059         return false;
  2062     /** Check an annotation value.
  2063      */
  2064     public void validateAnnotation(JCAnnotation a) {
  2065         if (a.type.isErroneous()) return;
  2067         // collect an inventory of the members
  2068         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  2069         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2070              e != null;
  2071              e = e.sibling)
  2072             if (e.sym.kind == MTH)
  2073                 members.add((MethodSymbol) e.sym);
  2075         // count them off as they're annotated
  2076         for (JCTree arg : a.args) {
  2077             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2078             JCAssign assign = (JCAssign) arg;
  2079             Symbol m = TreeInfo.symbol(assign.lhs);
  2080             if (m == null || m.type.isErroneous()) continue;
  2081             if (!members.remove(m))
  2082                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2083                           m.name, a.type);
  2084             if (assign.rhs.getTag() == ANNOTATION)
  2085                 validateAnnotation((JCAnnotation)assign.rhs);
  2088         // all the remaining ones better have default values
  2089         for (MethodSymbol m : members)
  2090             if (m.defaultValue == null && !m.type.isErroneous())
  2091                 log.error(a.pos(), "annotation.missing.default.value",
  2092                           a.type, m.name);
  2094         // special case: java.lang.annotation.Target must not have
  2095         // repeated values in its value member
  2096         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2097             a.args.tail == null)
  2098             return;
  2100         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2101         JCAssign assign = (JCAssign) a.args.head;
  2102         Symbol m = TreeInfo.symbol(assign.lhs);
  2103         if (m.name != names.value) return;
  2104         JCTree rhs = assign.rhs;
  2105         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2106         JCNewArray na = (JCNewArray) rhs;
  2107         Set<Symbol> targets = new HashSet<Symbol>();
  2108         for (JCTree elem : na.elems) {
  2109             if (!targets.add(TreeInfo.symbol(elem))) {
  2110                 log.error(elem.pos(), "repeated.annotation.target");
  2115     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2116         if (allowAnnotations &&
  2117             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2118             (s.flags() & DEPRECATED) != 0 &&
  2119             !syms.deprecatedType.isErroneous() &&
  2120             s.attribute(syms.deprecatedType.tsym) == null) {
  2121             log.warning(pos, "missing.deprecated.annotation");
  2125 /* *************************************************************************
  2126  * Check for recursive annotation elements.
  2127  **************************************************************************/
  2129     /** Check for cycles in the graph of annotation elements.
  2130      */
  2131     void checkNonCyclicElements(JCClassDecl tree) {
  2132         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2133         assert (tree.sym.flags_field & LOCKED) == 0;
  2134         try {
  2135             tree.sym.flags_field |= LOCKED;
  2136             for (JCTree def : tree.defs) {
  2137                 if (def.getTag() != JCTree.METHODDEF) continue;
  2138                 JCMethodDecl meth = (JCMethodDecl)def;
  2139                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2141         } finally {
  2142             tree.sym.flags_field &= ~LOCKED;
  2143             tree.sym.flags_field |= ACYCLIC_ANN;
  2147     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2148         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2149             return;
  2150         if ((tsym.flags_field & LOCKED) != 0) {
  2151             log.error(pos, "cyclic.annotation.element");
  2152             return;
  2154         try {
  2155             tsym.flags_field |= LOCKED;
  2156             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2157                 Symbol s = e.sym;
  2158                 if (s.kind != Kinds.MTH)
  2159                     continue;
  2160                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2162         } finally {
  2163             tsym.flags_field &= ~LOCKED;
  2164             tsym.flags_field |= ACYCLIC_ANN;
  2168     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2169         switch (type.tag) {
  2170         case TypeTags.CLASS:
  2171             if ((type.tsym.flags() & ANNOTATION) != 0)
  2172                 checkNonCyclicElementsInternal(pos, type.tsym);
  2173             break;
  2174         case TypeTags.ARRAY:
  2175             checkAnnotationResType(pos, types.elemtype(type));
  2176             break;
  2177         default:
  2178             break; // int etc
  2182 /* *************************************************************************
  2183  * Check for cycles in the constructor call graph.
  2184  **************************************************************************/
  2186     /** Check for cycles in the graph of constructors calling other
  2187      *  constructors.
  2188      */
  2189     void checkCyclicConstructors(JCClassDecl tree) {
  2190         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2192         // enter each constructor this-call into the map
  2193         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2194             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2195             if (app == null) continue;
  2196             JCMethodDecl meth = (JCMethodDecl) l.head;
  2197             if (TreeInfo.name(app.meth) == names._this) {
  2198                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2199             } else {
  2200                 meth.sym.flags_field |= ACYCLIC;
  2204         // Check for cycles in the map
  2205         Symbol[] ctors = new Symbol[0];
  2206         ctors = callMap.keySet().toArray(ctors);
  2207         for (Symbol caller : ctors) {
  2208             checkCyclicConstructor(tree, caller, callMap);
  2212     /** Look in the map to see if the given constructor is part of a
  2213      *  call cycle.
  2214      */
  2215     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2216                                         Map<Symbol,Symbol> callMap) {
  2217         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2218             if ((ctor.flags_field & LOCKED) != 0) {
  2219                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2220                           "recursive.ctor.invocation");
  2221             } else {
  2222                 ctor.flags_field |= LOCKED;
  2223                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2224                 ctor.flags_field &= ~LOCKED;
  2226             ctor.flags_field |= ACYCLIC;
  2230 /* *************************************************************************
  2231  * Miscellaneous
  2232  **************************************************************************/
  2234     /**
  2235      * Return the opcode of the operator but emit an error if it is an
  2236      * error.
  2237      * @param pos        position for error reporting.
  2238      * @param operator   an operator
  2239      * @param tag        a tree tag
  2240      * @param left       type of left hand side
  2241      * @param right      type of right hand side
  2242      */
  2243     int checkOperator(DiagnosticPosition pos,
  2244                        OperatorSymbol operator,
  2245                        int tag,
  2246                        Type left,
  2247                        Type right) {
  2248         if (operator.opcode == ByteCodes.error) {
  2249             log.error(pos,
  2250                       "operator.cant.be.applied",
  2251                       treeinfo.operatorName(tag),
  2252                       List.of(left, right));
  2254         return operator.opcode;
  2258     /**
  2259      *  Check for division by integer constant zero
  2260      *  @param pos           Position for error reporting.
  2261      *  @param operator      The operator for the expression
  2262      *  @param operand       The right hand operand for the expression
  2263      */
  2264     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2265         if (operand.constValue() != null
  2266             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2267             && operand.tag <= LONG
  2268             && ((Number) (operand.constValue())).longValue() == 0) {
  2269             int opc = ((OperatorSymbol)operator).opcode;
  2270             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2271                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2272                 log.warning(pos, "div.zero");
  2277     /**
  2278      * Check for empty statements after if
  2279      */
  2280     void checkEmptyIf(JCIf tree) {
  2281         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2282             log.warning(tree.thenpart.pos(), "empty.if");
  2285     /** Check that symbol is unique in given scope.
  2286      *  @param pos           Position for error reporting.
  2287      *  @param sym           The symbol.
  2288      *  @param s             The scope.
  2289      */
  2290     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2291         if (sym.type.isErroneous())
  2292             return true;
  2293         if (sym.owner.name == names.any) return false;
  2294         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2295             if (sym != e.sym &&
  2296                 sym.kind == e.sym.kind &&
  2297                 sym.name != names.error &&
  2298                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2299                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2300                     varargsDuplicateError(pos, sym, e.sym);
  2301                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2302                     duplicateErasureError(pos, sym, e.sym);
  2303                 else
  2304                     duplicateError(pos, e.sym);
  2305                 return false;
  2308         return true;
  2310     //where
  2311     /** Report duplicate declaration error.
  2312      */
  2313     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2314         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2315             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2319     /** Check that single-type import is not already imported or top-level defined,
  2320      *  but make an exception for two single-type imports which denote the same type.
  2321      *  @param pos           Position for error reporting.
  2322      *  @param sym           The symbol.
  2323      *  @param s             The scope
  2324      */
  2325     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2326         return checkUniqueImport(pos, sym, s, false);
  2329     /** Check that static single-type import is not already imported or top-level defined,
  2330      *  but make an exception for two single-type imports which denote the same type.
  2331      *  @param pos           Position for error reporting.
  2332      *  @param sym           The symbol.
  2333      *  @param s             The scope
  2334      *  @param staticImport  Whether or not this was a static import
  2335      */
  2336     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2337         return checkUniqueImport(pos, sym, s, true);
  2340     /** Check that single-type import is not already imported or top-level defined,
  2341      *  but make an exception for two single-type imports which denote the same type.
  2342      *  @param pos           Position for error reporting.
  2343      *  @param sym           The symbol.
  2344      *  @param s             The scope.
  2345      *  @param staticImport  Whether or not this was a static import
  2346      */
  2347     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2348         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2349             // is encountered class entered via a class declaration?
  2350             boolean isClassDecl = e.scope == s;
  2351             if ((isClassDecl || sym != e.sym) &&
  2352                 sym.kind == e.sym.kind &&
  2353                 sym.name != names.error) {
  2354                 if (!e.sym.type.isErroneous()) {
  2355                     String what = e.sym.toString();
  2356                     if (!isClassDecl) {
  2357                         if (staticImport)
  2358                             log.error(pos, "already.defined.static.single.import", what);
  2359                         else
  2360                             log.error(pos, "already.defined.single.import", what);
  2362                     else if (sym != e.sym)
  2363                         log.error(pos, "already.defined.this.unit", what);
  2365                 return false;
  2368         return true;
  2371     /** Check that a qualified name is in canonical form (for import decls).
  2372      */
  2373     public void checkCanonical(JCTree tree) {
  2374         if (!isCanonical(tree))
  2375             log.error(tree.pos(), "import.requires.canonical",
  2376                       TreeInfo.symbol(tree));
  2378         // where
  2379         private boolean isCanonical(JCTree tree) {
  2380             while (tree.getTag() == JCTree.SELECT) {
  2381                 JCFieldAccess s = (JCFieldAccess) tree;
  2382                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2383                     return false;
  2384                 tree = s.selected;
  2386             return true;
  2389     private class ConversionWarner extends Warner {
  2390         final String key;
  2391         final Type found;
  2392         final Type expected;
  2393         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2394             super(pos);
  2395             this.key = key;
  2396             this.found = found;
  2397             this.expected = expected;
  2400         @Override
  2401         public void warnUnchecked() {
  2402             boolean warned = this.warned;
  2403             super.warnUnchecked();
  2404             if (warned) return; // suppress redundant diagnostics
  2405             Object problem = diags.fragment(key);
  2406             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2410     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2411         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2414     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2415         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial