src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 06 Oct 2011 18:39:31 +0100

author
mcimadamore
date
Thu, 06 Oct 2011 18:39:31 +0100
changeset 1103
47147081d5b4
parent 1085
ed338593b0b6
child 1127
ca49d50318dc
permissions
-rw-r--r--

7090499: missing rawtypes warnings in anonymous inner class
Summary: javac does not detect raw types inside anonymous inner classes
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 import static com.sun.tools.javac.main.OptionName.*;
    50 /** Type checking helper class for the attribution phase.
    51  *
    52  *  <p><b>This is NOT part of any supported API.
    53  *  If you write code that depends on this, you do so at your own risk.
    54  *  This code and its internal interfaces are subject to change or
    55  *  deletion without notice.</b>
    56  */
    57 public class Check {
    58     protected static final Context.Key<Check> checkKey =
    59         new Context.Key<Check>();
    61     private final Names names;
    62     private final Log log;
    63     private final Symtab syms;
    64     private final Enter enter;
    65     private final Infer infer;
    66     private final Types types;
    67     private final JCDiagnostic.Factory diags;
    68     private final boolean skipAnnotations;
    69     private boolean warnOnSyntheticConflicts;
    70     private boolean suppressAbortOnBadClassFile;
    71     private boolean enableSunApiLintControl;
    72     private final TreeInfo treeinfo;
    74     // The set of lint options currently in effect. It is initialized
    75     // from the context, and then is set/reset as needed by Attr as it
    76     // visits all the various parts of the trees during attribution.
    77     private Lint lint;
    79     // The method being analyzed in Attr - it is set/reset as needed by
    80     // Attr as it visits new method declarations.
    81     private MethodSymbol method;
    83     public static Check instance(Context context) {
    84         Check instance = context.get(checkKey);
    85         if (instance == null)
    86             instance = new Check(context);
    87         return instance;
    88     }
    90     protected Check(Context context) {
    91         context.put(checkKey, this);
    93         names = Names.instance(context);
    94         log = Log.instance(context);
    95         syms = Symtab.instance(context);
    96         enter = Enter.instance(context);
    97         infer = Infer.instance(context);
    98         this.types = Types.instance(context);
    99         diags = JCDiagnostic.Factory.instance(context);
   100         Options options = Options.instance(context);
   101         lint = Lint.instance(context);
   102         treeinfo = TreeInfo.instance(context);
   104         Source source = Source.instance(context);
   105         allowGenerics = source.allowGenerics();
   106         allowAnnotations = source.allowAnnotations();
   107         allowCovariantReturns = source.allowCovariantReturns();
   108         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   109         complexInference = options.isSet(COMPLEXINFERENCE);
   110         skipAnnotations = options.isSet("skipAnnotations");
   111         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   112         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   113         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   115         Target target = Target.instance(context);
   116         syntheticNameChar = target.syntheticNameChar();
   118         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   119         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   120         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   121         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   123         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   124                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   125         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   126                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   127         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   128                 enforceMandatoryWarnings, "sunapi", null);
   130         deferredLintHandler = DeferredLintHandler.immediateHandler;
   131     }
   133     /** Switch: generics enabled?
   134      */
   135     boolean allowGenerics;
   137     /** Switch: annotations enabled?
   138      */
   139     boolean allowAnnotations;
   141     /** Switch: covariant returns enabled?
   142      */
   143     boolean allowCovariantReturns;
   145     /** Switch: simplified varargs enabled?
   146      */
   147     boolean allowSimplifiedVarargs;
   149     /** Switch: -complexinference option set?
   150      */
   151     boolean complexInference;
   153     /** Character for synthetic names
   154      */
   155     char syntheticNameChar;
   157     /** A table mapping flat names of all compiled classes in this run to their
   158      *  symbols; maintained from outside.
   159      */
   160     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   162     /** A handler for messages about deprecated usage.
   163      */
   164     private MandatoryWarningHandler deprecationHandler;
   166     /** A handler for messages about unchecked or unsafe usage.
   167      */
   168     private MandatoryWarningHandler uncheckedHandler;
   170     /** A handler for messages about using proprietary API.
   171      */
   172     private MandatoryWarningHandler sunApiHandler;
   174     /** A handler for deferred lint warnings.
   175      */
   176     private DeferredLintHandler deferredLintHandler;
   178 /* *************************************************************************
   179  * Errors and Warnings
   180  **************************************************************************/
   182     Lint setLint(Lint newLint) {
   183         Lint prev = lint;
   184         lint = newLint;
   185         return prev;
   186     }
   188     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   189         DeferredLintHandler prev = deferredLintHandler;
   190         deferredLintHandler = newDeferredLintHandler;
   191         return prev;
   192     }
   194     MethodSymbol setMethod(MethodSymbol newMethod) {
   195         MethodSymbol prev = method;
   196         method = newMethod;
   197         return prev;
   198     }
   200     /** Warn about deprecated symbol.
   201      *  @param pos        Position to be used for error reporting.
   202      *  @param sym        The deprecated symbol.
   203      */
   204     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   205         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   206             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   207     }
   209     /** Warn about unchecked operation.
   210      *  @param pos        Position to be used for error reporting.
   211      *  @param msg        A string describing the problem.
   212      */
   213     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   214         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   215             uncheckedHandler.report(pos, msg, args);
   216     }
   218     /** Warn about unsafe vararg method decl.
   219      *  @param pos        Position to be used for error reporting.
   220      *  @param sym        The deprecated symbol.
   221      */
   222     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   223         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   224             log.warning(LintCategory.VARARGS, pos, key, args);
   225     }
   227     /** Warn about using proprietary API.
   228      *  @param pos        Position to be used for error reporting.
   229      *  @param msg        A string describing the problem.
   230      */
   231     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   232         if (!lint.isSuppressed(LintCategory.SUNAPI))
   233             sunApiHandler.report(pos, msg, args);
   234     }
   236     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   237         if (lint.isEnabled(LintCategory.STATIC))
   238             log.warning(LintCategory.STATIC, pos, msg, args);
   239     }
   241     /**
   242      * Report any deferred diagnostics.
   243      */
   244     public void reportDeferredDiagnostics() {
   245         deprecationHandler.reportDeferredDiagnostic();
   246         uncheckedHandler.reportDeferredDiagnostic();
   247         sunApiHandler.reportDeferredDiagnostic();
   248     }
   251     /** Report a failure to complete a class.
   252      *  @param pos        Position to be used for error reporting.
   253      *  @param ex         The failure to report.
   254      */
   255     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   256         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   257         if (ex instanceof ClassReader.BadClassFile
   258                 && !suppressAbortOnBadClassFile) throw new Abort();
   259         else return syms.errType;
   260     }
   262     /** Report a type error.
   263      *  @param pos        Position to be used for error reporting.
   264      *  @param problem    A string describing the error.
   265      *  @param found      The type that was found.
   266      *  @param req        The type that was required.
   267      */
   268     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   269         log.error(pos, "prob.found.req",
   270                   problem, found, req);
   271         return types.createErrorType(found);
   272     }
   274     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   275         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   276         return types.createErrorType(found);
   277     }
   279     /** Report an error that wrong type tag was found.
   280      *  @param pos        Position to be used for error reporting.
   281      *  @param required   An internationalized string describing the type tag
   282      *                    required.
   283      *  @param found      The type that was found.
   284      */
   285     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   286         // this error used to be raised by the parser,
   287         // but has been delayed to this point:
   288         if (found instanceof Type && ((Type)found).tag == VOID) {
   289             log.error(pos, "illegal.start.of.type");
   290             return syms.errType;
   291         }
   292         log.error(pos, "type.found.req", found, required);
   293         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   294     }
   296     /** Report an error that symbol cannot be referenced before super
   297      *  has been called.
   298      *  @param pos        Position to be used for error reporting.
   299      *  @param sym        The referenced symbol.
   300      */
   301     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   302         log.error(pos, "cant.ref.before.ctor.called", sym);
   303     }
   305     /** Report duplicate declaration error.
   306      */
   307     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   308         if (!sym.type.isErroneous()) {
   309             Symbol location = sym.location();
   310             if (location.kind == MTH &&
   311                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   312                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   313                         kindName(sym.location()), kindName(sym.location().enclClass()),
   314                         sym.location().enclClass());
   315             } else {
   316                 log.error(pos, "already.defined", kindName(sym), sym,
   317                         kindName(sym.location()), sym.location());
   318             }
   319         }
   320     }
   322     /** Report array/varargs duplicate declaration
   323      */
   324     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   325         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   326             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   327         }
   328     }
   330 /* ************************************************************************
   331  * duplicate declaration checking
   332  *************************************************************************/
   334     /** Check that variable does not hide variable with same name in
   335      *  immediately enclosing local scope.
   336      *  @param pos           Position for error reporting.
   337      *  @param v             The symbol.
   338      *  @param s             The scope.
   339      */
   340     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   341         if (s.next != null) {
   342             for (Scope.Entry e = s.next.lookup(v.name);
   343                  e.scope != null && e.sym.owner == v.owner;
   344                  e = e.next()) {
   345                 if (e.sym.kind == VAR &&
   346                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   347                     v.name != names.error) {
   348                     duplicateError(pos, e.sym);
   349                     return;
   350                 }
   351             }
   352         }
   353     }
   355     /** Check that a class or interface does not hide a class or
   356      *  interface with same name in immediately enclosing local scope.
   357      *  @param pos           Position for error reporting.
   358      *  @param c             The symbol.
   359      *  @param s             The scope.
   360      */
   361     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   362         if (s.next != null) {
   363             for (Scope.Entry e = s.next.lookup(c.name);
   364                  e.scope != null && e.sym.owner == c.owner;
   365                  e = e.next()) {
   366                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   367                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   368                     c.name != names.error) {
   369                     duplicateError(pos, e.sym);
   370                     return;
   371                 }
   372             }
   373         }
   374     }
   376     /** Check that class does not have the same name as one of
   377      *  its enclosing classes, or as a class defined in its enclosing scope.
   378      *  return true if class is unique in its enclosing scope.
   379      *  @param pos           Position for error reporting.
   380      *  @param name          The class name.
   381      *  @param s             The enclosing scope.
   382      */
   383     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   384         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   385             if (e.sym.kind == TYP && e.sym.name != names.error) {
   386                 duplicateError(pos, e.sym);
   387                 return false;
   388             }
   389         }
   390         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   391             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   392                 duplicateError(pos, sym);
   393                 return true;
   394             }
   395         }
   396         return true;
   397     }
   399 /* *************************************************************************
   400  * Class name generation
   401  **************************************************************************/
   403     /** Return name of local class.
   404      *  This is of the form    <enclClass> $ n <classname>
   405      *  where
   406      *    enclClass is the flat name of the enclosing class,
   407      *    classname is the simple name of the local class
   408      */
   409     Name localClassName(ClassSymbol c) {
   410         for (int i=1; ; i++) {
   411             Name flatname = names.
   412                 fromString("" + c.owner.enclClass().flatname +
   413                            syntheticNameChar + i +
   414                            c.name);
   415             if (compiled.get(flatname) == null) return flatname;
   416         }
   417     }
   419 /* *************************************************************************
   420  * Type Checking
   421  **************************************************************************/
   423     /** Check that a given type is assignable to a given proto-type.
   424      *  If it is, return the type, otherwise return errType.
   425      *  @param pos        Position to be used for error reporting.
   426      *  @param found      The type that was found.
   427      *  @param req        The type that was required.
   428      */
   429     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   430         return checkType(pos, found, req, "incompatible.types");
   431     }
   433     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   434         if (req.tag == ERROR)
   435             return req;
   436         if (found.tag == FORALL)
   437             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   438         if (req.tag == NONE)
   439             return found;
   440         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   441             return found;
   442         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   443             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   444         if (found.isSuperBound()) {
   445             log.error(pos, "assignment.from.super-bound", found);
   446             return types.createErrorType(found);
   447         }
   448         if (req.isExtendsBound()) {
   449             log.error(pos, "assignment.to.extends-bound", req);
   450             return types.createErrorType(found);
   451         }
   452         return typeError(pos, diags.fragment(errKey), found, req);
   453     }
   455     /** Instantiate polymorphic type to some prototype, unless
   456      *  prototype is `anyPoly' in which case polymorphic type
   457      *  is returned unchanged.
   458      */
   459     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   460         if (pt == Infer.anyPoly && complexInference) {
   461             return t;
   462         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   463             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   464             return instantiatePoly(pos, t, newpt, warn);
   465         } else if (pt.tag == ERROR) {
   466             return pt;
   467         } else {
   468             try {
   469                 return infer.instantiateExpr(t, pt, warn);
   470             } catch (Infer.NoInstanceException ex) {
   471                 if (ex.isAmbiguous) {
   472                     JCDiagnostic d = ex.getDiagnostic();
   473                     log.error(pos,
   474                               "undetermined.type" + (d!=null ? ".1" : ""),
   475                               t, d);
   476                     return types.createErrorType(pt);
   477                 } else {
   478                     JCDiagnostic d = ex.getDiagnostic();
   479                     return typeError(pos,
   480                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   481                                      t, pt);
   482                 }
   483             } catch (Infer.InvalidInstanceException ex) {
   484                 JCDiagnostic d = ex.getDiagnostic();
   485                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   486                 return types.createErrorType(pt);
   487             }
   488         }
   489     }
   491     /** Check that a given type can be cast to a given target type.
   492      *  Return the result of the cast.
   493      *  @param pos        Position to be used for error reporting.
   494      *  @param found      The type that is being cast.
   495      *  @param req        The target type of the cast.
   496      */
   497     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   498         if (found.tag == FORALL) {
   499             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   500             return req;
   501         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   502             return req;
   503         } else {
   504             return typeError(pos,
   505                              diags.fragment("inconvertible.types"),
   506                              found, req);
   507         }
   508     }
   509 //where
   510         /** Is type a type variable, or a (possibly multi-dimensional) array of
   511          *  type variables?
   512          */
   513         boolean isTypeVar(Type t) {
   514             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   515         }
   517     /** Check that a type is within some bounds.
   518      *
   519      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   520      *  type argument.
   521      *  @param pos           Position to be used for error reporting.
   522      *  @param a             The type that should be bounded by bs.
   523      *  @param bs            The bound.
   524      */
   525     private boolean checkExtends(Type a, TypeVar bs) {
   526          if (a.isUnbound()) {
   527              return true;
   528          } else if (a.tag != WILDCARD) {
   529              a = types.upperBound(a);
   530              return types.isSubtype(a, bs.bound);
   531          } else if (a.isExtendsBound()) {
   532              return types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings);
   533          } else if (a.isSuperBound()) {
   534              return !types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound());
   535          }
   536          return true;
   537      }
   539     /** Check that type is different from 'void'.
   540      *  @param pos           Position to be used for error reporting.
   541      *  @param t             The type to be checked.
   542      */
   543     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   544         if (t.tag == VOID) {
   545             log.error(pos, "void.not.allowed.here");
   546             return types.createErrorType(t);
   547         } else {
   548             return t;
   549         }
   550     }
   552     /** Check that type is a class or interface type.
   553      *  @param pos           Position to be used for error reporting.
   554      *  @param t             The type to be checked.
   555      */
   556     Type checkClassType(DiagnosticPosition pos, Type t) {
   557         if (t.tag != CLASS && t.tag != ERROR)
   558             return typeTagError(pos,
   559                                 diags.fragment("type.req.class"),
   560                                 (t.tag == TYPEVAR)
   561                                 ? diags.fragment("type.parameter", t)
   562                                 : t);
   563         else
   564             return t;
   565     }
   567     /** Check that type is a class or interface type.
   568      *  @param pos           Position to be used for error reporting.
   569      *  @param t             The type to be checked.
   570      *  @param noBounds    True if type bounds are illegal here.
   571      */
   572     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   573         t = checkClassType(pos, t);
   574         if (noBounds && t.isParameterized()) {
   575             List<Type> args = t.getTypeArguments();
   576             while (args.nonEmpty()) {
   577                 if (args.head.tag == WILDCARD)
   578                     return typeTagError(pos,
   579                                         diags.fragment("type.req.exact"),
   580                                         args.head);
   581                 args = args.tail;
   582             }
   583         }
   584         return t;
   585     }
   587     /** Check that type is a reifiable class, interface or array type.
   588      *  @param pos           Position to be used for error reporting.
   589      *  @param t             The type to be checked.
   590      */
   591     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   592         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   593             return typeTagError(pos,
   594                                 diags.fragment("type.req.class.array"),
   595                                 t);
   596         } else if (!types.isReifiable(t)) {
   597             log.error(pos, "illegal.generic.type.for.instof");
   598             return types.createErrorType(t);
   599         } else {
   600             return t;
   601         }
   602     }
   604     /** Check that type is a reference type, i.e. a class, interface or array type
   605      *  or a type variable.
   606      *  @param pos           Position to be used for error reporting.
   607      *  @param t             The type to be checked.
   608      */
   609     Type checkRefType(DiagnosticPosition pos, Type t) {
   610         switch (t.tag) {
   611         case CLASS:
   612         case ARRAY:
   613         case TYPEVAR:
   614         case WILDCARD:
   615         case ERROR:
   616             return t;
   617         default:
   618             return typeTagError(pos,
   619                                 diags.fragment("type.req.ref"),
   620                                 t);
   621         }
   622     }
   624     /** Check that each type is a reference type, i.e. a class, interface or array type
   625      *  or a type variable.
   626      *  @param trees         Original trees, used for error reporting.
   627      *  @param types         The types to be checked.
   628      */
   629     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   630         List<JCExpression> tl = trees;
   631         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   632             l.head = checkRefType(tl.head.pos(), l.head);
   633             tl = tl.tail;
   634         }
   635         return types;
   636     }
   638     /** Check that type is a null or reference type.
   639      *  @param pos           Position to be used for error reporting.
   640      *  @param t             The type to be checked.
   641      */
   642     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   643         switch (t.tag) {
   644         case CLASS:
   645         case ARRAY:
   646         case TYPEVAR:
   647         case WILDCARD:
   648         case BOT:
   649         case ERROR:
   650             return t;
   651         default:
   652             return typeTagError(pos,
   653                                 diags.fragment("type.req.ref"),
   654                                 t);
   655         }
   656     }
   658     /** Check that flag set does not contain elements of two conflicting sets. s
   659      *  Return true if it doesn't.
   660      *  @param pos           Position to be used for error reporting.
   661      *  @param flags         The set of flags to be checked.
   662      *  @param set1          Conflicting flags set #1.
   663      *  @param set2          Conflicting flags set #2.
   664      */
   665     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   666         if ((flags & set1) != 0 && (flags & set2) != 0) {
   667             log.error(pos,
   668                       "illegal.combination.of.modifiers",
   669                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   670                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   671             return false;
   672         } else
   673             return true;
   674     }
   676     /** Check that usage of diamond operator is correct (i.e. diamond should not
   677      * be used with non-generic classes or in anonymous class creation expressions)
   678      */
   679     Type checkDiamond(JCNewClass tree, Type t) {
   680         if (!TreeInfo.isDiamond(tree) ||
   681                 t.isErroneous()) {
   682             return checkClassType(tree.clazz.pos(), t, true);
   683         } else if (tree.def != null) {
   684             log.error(tree.clazz.pos(),
   685                     "cant.apply.diamond.1",
   686                     t, diags.fragment("diamond.and.anon.class", t));
   687             return types.createErrorType(t);
   688         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   689             log.error(tree.clazz.pos(),
   690                 "cant.apply.diamond.1",
   691                 t, diags.fragment("diamond.non.generic", t));
   692             return types.createErrorType(t);
   693         } else if (tree.typeargs != null &&
   694                 tree.typeargs.nonEmpty()) {
   695             log.error(tree.clazz.pos(),
   696                 "cant.apply.diamond.1",
   697                 t, diags.fragment("diamond.and.explicit.params", t));
   698             return types.createErrorType(t);
   699         } else {
   700             return t;
   701         }
   702     }
   704     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   705         MethodSymbol m = tree.sym;
   706         if (!allowSimplifiedVarargs) return;
   707         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   708         Type varargElemType = null;
   709         if (m.isVarArgs()) {
   710             varargElemType = types.elemtype(tree.params.last().type);
   711         }
   712         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   713             if (varargElemType != null) {
   714                 log.error(tree,
   715                         "varargs.invalid.trustme.anno",
   716                         syms.trustMeType.tsym,
   717                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   718             } else {
   719                 log.error(tree,
   720                             "varargs.invalid.trustme.anno",
   721                             syms.trustMeType.tsym,
   722                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   723             }
   724         } else if (hasTrustMeAnno && varargElemType != null &&
   725                             types.isReifiable(varargElemType)) {
   726             warnUnsafeVararg(tree,
   727                             "varargs.redundant.trustme.anno",
   728                             syms.trustMeType.tsym,
   729                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   730         }
   731         else if (!hasTrustMeAnno && varargElemType != null &&
   732                 !types.isReifiable(varargElemType)) {
   733             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   734         }
   735     }
   736     //where
   737         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   738             return (s.flags() & VARARGS) != 0 &&
   739                 (s.isConstructor() ||
   740                     (s.flags() & (STATIC | FINAL)) != 0);
   741         }
   743     /**
   744      * Check that vararg method call is sound
   745      * @param pos Position to be used for error reporting.
   746      * @param argtypes Actual arguments supplied to vararg method.
   747      */
   748     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym) {
   749         Type argtype = argtypes.last();
   750         if (!types.isReifiable(argtype) &&
   751                 (!allowSimplifiedVarargs ||
   752                 msym.attribute(syms.trustMeType.tsym) == null ||
   753                 !isTrustMeAllowedOnMethod(msym))) {
   754             warnUnchecked(pos,
   755                               "unchecked.generic.array.creation",
   756                               argtype);
   757         }
   758     }
   760     /**
   761      * Check that type 't' is a valid instantiation of a generic class
   762      * (see JLS 4.5)
   763      *
   764      * @param t class type to be checked
   765      * @return true if 't' is well-formed
   766      */
   767     public boolean checkValidGenericType(Type t) {
   768         return firstIncompatibleTypeArg(t) == null;
   769     }
   770     //WHERE
   771         private Type firstIncompatibleTypeArg(Type type) {
   772             List<Type> formals = type.tsym.type.allparams();
   773             List<Type> actuals = type.allparams();
   774             List<Type> args = type.getTypeArguments();
   775             List<Type> forms = type.tsym.type.getTypeArguments();
   776             ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   778             // For matching pairs of actual argument types `a' and
   779             // formal type parameters with declared bound `b' ...
   780             while (args.nonEmpty() && forms.nonEmpty()) {
   781                 // exact type arguments needs to know their
   782                 // bounds (for upper and lower bound
   783                 // calculations).  So we create new TypeVars with
   784                 // bounds substed with actuals.
   785                 tvars_buf.append(types.substBound(((TypeVar)forms.head),
   786                                                   formals,
   787                                                   actuals));
   788                 args = args.tail;
   789                 forms = forms.tail;
   790             }
   792             args = type.getTypeArguments();
   793             List<Type> tvars_cap = types.substBounds(formals,
   794                                       formals,
   795                                       types.capture(type).allparams());
   796             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   797                 // Let the actual arguments know their bound
   798                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   799                 args = args.tail;
   800                 tvars_cap = tvars_cap.tail;
   801             }
   803             args = type.getTypeArguments();
   804             List<Type> tvars = tvars_buf.toList();
   806             while (args.nonEmpty() && tvars.nonEmpty()) {
   807                 Type actual = types.subst(args.head,
   808                     type.tsym.type.getTypeArguments(),
   809                     tvars_buf.toList());
   810                 if (!isTypeArgErroneous(actual) &&
   811                         !tvars.head.getUpperBound().isErroneous() &&
   812                         !checkExtends(actual, (TypeVar)tvars.head)) {
   813                     return args.head;
   814                 }
   815                 args = args.tail;
   816                 tvars = tvars.tail;
   817             }
   819             args = type.getTypeArguments();
   820             tvars = tvars_buf.toList();
   822             for (Type arg : types.capture(type).getTypeArguments()) {
   823                 if (arg.tag == TYPEVAR &&
   824                         arg.getUpperBound().isErroneous() &&
   825                         !tvars.head.getUpperBound().isErroneous() &&
   826                         !isTypeArgErroneous(args.head)) {
   827                     return args.head;
   828                 }
   829                 tvars = tvars.tail;
   830                 args = args.tail;
   831             }
   833             return null;
   834         }
   835         //where
   836         boolean isTypeArgErroneous(Type t) {
   837             return isTypeArgErroneous.visit(t);
   838         }
   840         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   841             public Boolean visitType(Type t, Void s) {
   842                 return t.isErroneous();
   843             }
   844             @Override
   845             public Boolean visitTypeVar(TypeVar t, Void s) {
   846                 return visit(t.getUpperBound());
   847             }
   848             @Override
   849             public Boolean visitCapturedType(CapturedType t, Void s) {
   850                 return visit(t.getUpperBound()) ||
   851                         visit(t.getLowerBound());
   852             }
   853             @Override
   854             public Boolean visitWildcardType(WildcardType t, Void s) {
   855                 return visit(t.type);
   856             }
   857         };
   859     /** Check that given modifiers are legal for given symbol and
   860      *  return modifiers together with any implicit modififiers for that symbol.
   861      *  Warning: we can't use flags() here since this method
   862      *  is called during class enter, when flags() would cause a premature
   863      *  completion.
   864      *  @param pos           Position to be used for error reporting.
   865      *  @param flags         The set of modifiers given in a definition.
   866      *  @param sym           The defined symbol.
   867      */
   868     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   869         long mask;
   870         long implicit = 0;
   871         switch (sym.kind) {
   872         case VAR:
   873             if (sym.owner.kind != TYP)
   874                 mask = LocalVarFlags;
   875             else if ((sym.owner.flags_field & INTERFACE) != 0)
   876                 mask = implicit = InterfaceVarFlags;
   877             else
   878                 mask = VarFlags;
   879             break;
   880         case MTH:
   881             if (sym.name == names.init) {
   882                 if ((sym.owner.flags_field & ENUM) != 0) {
   883                     // enum constructors cannot be declared public or
   884                     // protected and must be implicitly or explicitly
   885                     // private
   886                     implicit = PRIVATE;
   887                     mask = PRIVATE;
   888                 } else
   889                     mask = ConstructorFlags;
   890             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   891                 mask = implicit = InterfaceMethodFlags;
   892             else {
   893                 mask = MethodFlags;
   894             }
   895             // Imply STRICTFP if owner has STRICTFP set.
   896             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   897               implicit |= sym.owner.flags_field & STRICTFP;
   898             break;
   899         case TYP:
   900             if (sym.isLocal()) {
   901                 mask = LocalClassFlags;
   902                 if (sym.name.isEmpty()) { // Anonymous class
   903                     // Anonymous classes in static methods are themselves static;
   904                     // that's why we admit STATIC here.
   905                     mask |= STATIC;
   906                     // JLS: Anonymous classes are final.
   907                     implicit |= FINAL;
   908                 }
   909                 if ((sym.owner.flags_field & STATIC) == 0 &&
   910                     (flags & ENUM) != 0)
   911                     log.error(pos, "enums.must.be.static");
   912             } else if (sym.owner.kind == TYP) {
   913                 mask = MemberClassFlags;
   914                 if (sym.owner.owner.kind == PCK ||
   915                     (sym.owner.flags_field & STATIC) != 0)
   916                     mask |= STATIC;
   917                 else if ((flags & ENUM) != 0)
   918                     log.error(pos, "enums.must.be.static");
   919                 // Nested interfaces and enums are always STATIC (Spec ???)
   920                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   921             } else {
   922                 mask = ClassFlags;
   923             }
   924             // Interfaces are always ABSTRACT
   925             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   927             if ((flags & ENUM) != 0) {
   928                 // enums can't be declared abstract or final
   929                 mask &= ~(ABSTRACT | FINAL);
   930                 implicit |= implicitEnumFinalFlag(tree);
   931             }
   932             // Imply STRICTFP if owner has STRICTFP set.
   933             implicit |= sym.owner.flags_field & STRICTFP;
   934             break;
   935         default:
   936             throw new AssertionError();
   937         }
   938         long illegal = flags & StandardFlags & ~mask;
   939         if (illegal != 0) {
   940             if ((illegal & INTERFACE) != 0) {
   941                 log.error(pos, "intf.not.allowed.here");
   942                 mask |= INTERFACE;
   943             }
   944             else {
   945                 log.error(pos,
   946                           "mod.not.allowed.here", asFlagSet(illegal));
   947             }
   948         }
   949         else if ((sym.kind == TYP ||
   950                   // ISSUE: Disallowing abstract&private is no longer appropriate
   951                   // in the presence of inner classes. Should it be deleted here?
   952                   checkDisjoint(pos, flags,
   953                                 ABSTRACT,
   954                                 PRIVATE | STATIC))
   955                  &&
   956                  checkDisjoint(pos, flags,
   957                                ABSTRACT | INTERFACE,
   958                                FINAL | NATIVE | SYNCHRONIZED)
   959                  &&
   960                  checkDisjoint(pos, flags,
   961                                PUBLIC,
   962                                PRIVATE | PROTECTED)
   963                  &&
   964                  checkDisjoint(pos, flags,
   965                                PRIVATE,
   966                                PUBLIC | PROTECTED)
   967                  &&
   968                  checkDisjoint(pos, flags,
   969                                FINAL,
   970                                VOLATILE)
   971                  &&
   972                  (sym.kind == TYP ||
   973                   checkDisjoint(pos, flags,
   974                                 ABSTRACT | NATIVE,
   975                                 STRICTFP))) {
   976             // skip
   977         }
   978         return flags & (mask | ~StandardFlags) | implicit;
   979     }
   982     /** Determine if this enum should be implicitly final.
   983      *
   984      *  If the enum has no specialized enum contants, it is final.
   985      *
   986      *  If the enum does have specialized enum contants, it is
   987      *  <i>not</i> final.
   988      */
   989     private long implicitEnumFinalFlag(JCTree tree) {
   990         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   991         class SpecialTreeVisitor extends JCTree.Visitor {
   992             boolean specialized;
   993             SpecialTreeVisitor() {
   994                 this.specialized = false;
   995             };
   997             @Override
   998             public void visitTree(JCTree tree) { /* no-op */ }
  1000             @Override
  1001             public void visitVarDef(JCVariableDecl tree) {
  1002                 if ((tree.mods.flags & ENUM) != 0) {
  1003                     if (tree.init instanceof JCNewClass &&
  1004                         ((JCNewClass) tree.init).def != null) {
  1005                         specialized = true;
  1011         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1012         JCClassDecl cdef = (JCClassDecl) tree;
  1013         for (JCTree defs: cdef.defs) {
  1014             defs.accept(sts);
  1015             if (sts.specialized) return 0;
  1017         return FINAL;
  1020 /* *************************************************************************
  1021  * Type Validation
  1022  **************************************************************************/
  1024     /** Validate a type expression. That is,
  1025      *  check that all type arguments of a parametric type are within
  1026      *  their bounds. This must be done in a second phase after type attributon
  1027      *  since a class might have a subclass as type parameter bound. E.g:
  1029      *  class B<A extends C> { ... }
  1030      *  class C extends B<C> { ... }
  1032      *  and we can't make sure that the bound is already attributed because
  1033      *  of possible cycles.
  1035      * Visitor method: Validate a type expression, if it is not null, catching
  1036      *  and reporting any completion failures.
  1037      */
  1038     void validate(JCTree tree, Env<AttrContext> env) {
  1039         validate(tree, env, true);
  1041     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1042         new Validator(env).validateTree(tree, checkRaw, true);
  1045     /** Visitor method: Validate a list of type expressions.
  1046      */
  1047     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1048         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1049             validate(l.head, env);
  1052     /** A visitor class for type validation.
  1053      */
  1054     class Validator extends JCTree.Visitor {
  1056         boolean isOuter;
  1057         Env<AttrContext> env;
  1059         Validator(Env<AttrContext> env) {
  1060             this.env = env;
  1063         @Override
  1064         public void visitTypeArray(JCArrayTypeTree tree) {
  1065             tree.elemtype.accept(this);
  1068         @Override
  1069         public void visitTypeApply(JCTypeApply tree) {
  1070             if (tree.type.tag == CLASS) {
  1071                 List<JCExpression> args = tree.arguments;
  1072                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1074                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1075                 if (incompatibleArg != null) {
  1076                     for (JCTree arg : tree.arguments) {
  1077                         if (arg.type == incompatibleArg) {
  1078                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1080                         forms = forms.tail;
  1084                 forms = tree.type.tsym.type.getTypeArguments();
  1086                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1088                 // For matching pairs of actual argument types `a' and
  1089                 // formal type parameters with declared bound `b' ...
  1090                 while (args.nonEmpty() && forms.nonEmpty()) {
  1091                     validateTree(args.head,
  1092                             !(isOuter && is_java_lang_Class),
  1093                             false);
  1094                     args = args.tail;
  1095                     forms = forms.tail;
  1098                 // Check that this type is either fully parameterized, or
  1099                 // not parameterized at all.
  1100                 if (tree.type.getEnclosingType().isRaw())
  1101                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1102                 if (tree.clazz.getTag() == JCTree.SELECT)
  1103                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1107         @Override
  1108         public void visitTypeParameter(JCTypeParameter tree) {
  1109             validateTrees(tree.bounds, true, isOuter);
  1110             checkClassBounds(tree.pos(), tree.type);
  1113         @Override
  1114         public void visitWildcard(JCWildcard tree) {
  1115             if (tree.inner != null)
  1116                 validateTree(tree.inner, true, isOuter);
  1119         @Override
  1120         public void visitSelect(JCFieldAccess tree) {
  1121             if (tree.type.tag == CLASS) {
  1122                 visitSelectInternal(tree);
  1124                 // Check that this type is either fully parameterized, or
  1125                 // not parameterized at all.
  1126                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1127                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1131         public void visitSelectInternal(JCFieldAccess tree) {
  1132             if (tree.type.tsym.isStatic() &&
  1133                 tree.selected.type.isParameterized()) {
  1134                 // The enclosing type is not a class, so we are
  1135                 // looking at a static member type.  However, the
  1136                 // qualifying expression is parameterized.
  1137                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1138             } else {
  1139                 // otherwise validate the rest of the expression
  1140                 tree.selected.accept(this);
  1144         /** Default visitor method: do nothing.
  1145          */
  1146         @Override
  1147         public void visitTree(JCTree tree) {
  1150         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1151             try {
  1152                 if (tree != null) {
  1153                     this.isOuter = isOuter;
  1154                     tree.accept(this);
  1155                     if (checkRaw)
  1156                         checkRaw(tree, env);
  1158             } catch (CompletionFailure ex) {
  1159                 completionError(tree.pos(), ex);
  1163         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1164             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1165                 validateTree(l.head, checkRaw, isOuter);
  1168         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1169             if (lint.isEnabled(LintCategory.RAW) &&
  1170                 tree.type.tag == CLASS &&
  1171                 !TreeInfo.isDiamond(tree) &&
  1172                 !withinAnonConstr(env) &&
  1173                 tree.type.isRaw()) {
  1174                 log.warning(LintCategory.RAW,
  1175                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1179         boolean withinAnonConstr(Env<AttrContext> env) {
  1180             return env.enclClass.name.isEmpty() &&
  1181                     env.enclMethod != null && env.enclMethod.name == names.init;
  1185 /* *************************************************************************
  1186  * Exception checking
  1187  **************************************************************************/
  1189     /* The following methods treat classes as sets that contain
  1190      * the class itself and all their subclasses
  1191      */
  1193     /** Is given type a subtype of some of the types in given list?
  1194      */
  1195     boolean subset(Type t, List<Type> ts) {
  1196         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1197             if (types.isSubtype(t, l.head)) return true;
  1198         return false;
  1201     /** Is given type a subtype or supertype of
  1202      *  some of the types in given list?
  1203      */
  1204     boolean intersects(Type t, List<Type> ts) {
  1205         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1206             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1207         return false;
  1210     /** Add type set to given type list, unless it is a subclass of some class
  1211      *  in the list.
  1212      */
  1213     List<Type> incl(Type t, List<Type> ts) {
  1214         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1217     /** Remove type set from type set list.
  1218      */
  1219     List<Type> excl(Type t, List<Type> ts) {
  1220         if (ts.isEmpty()) {
  1221             return ts;
  1222         } else {
  1223             List<Type> ts1 = excl(t, ts.tail);
  1224             if (types.isSubtype(ts.head, t)) return ts1;
  1225             else if (ts1 == ts.tail) return ts;
  1226             else return ts1.prepend(ts.head);
  1230     /** Form the union of two type set lists.
  1231      */
  1232     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1233         List<Type> ts = ts1;
  1234         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1235             ts = incl(l.head, ts);
  1236         return ts;
  1239     /** Form the difference of two type lists.
  1240      */
  1241     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1242         List<Type> ts = ts1;
  1243         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1244             ts = excl(l.head, ts);
  1245         return ts;
  1248     /** Form the intersection of two type lists.
  1249      */
  1250     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1251         List<Type> ts = List.nil();
  1252         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1253             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1254         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1255             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1256         return ts;
  1259     /** Is exc an exception symbol that need not be declared?
  1260      */
  1261     boolean isUnchecked(ClassSymbol exc) {
  1262         return
  1263             exc.kind == ERR ||
  1264             exc.isSubClass(syms.errorType.tsym, types) ||
  1265             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1268     /** Is exc an exception type that need not be declared?
  1269      */
  1270     boolean isUnchecked(Type exc) {
  1271         return
  1272             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1273             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1274             exc.tag == BOT;
  1277     /** Same, but handling completion failures.
  1278      */
  1279     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1280         try {
  1281             return isUnchecked(exc);
  1282         } catch (CompletionFailure ex) {
  1283             completionError(pos, ex);
  1284             return true;
  1288     /** Is exc handled by given exception list?
  1289      */
  1290     boolean isHandled(Type exc, List<Type> handled) {
  1291         return isUnchecked(exc) || subset(exc, handled);
  1294     /** Return all exceptions in thrown list that are not in handled list.
  1295      *  @param thrown     The list of thrown exceptions.
  1296      *  @param handled    The list of handled exceptions.
  1297      */
  1298     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1299         List<Type> unhandled = List.nil();
  1300         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1301             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1302         return unhandled;
  1305 /* *************************************************************************
  1306  * Overriding/Implementation checking
  1307  **************************************************************************/
  1309     /** The level of access protection given by a flag set,
  1310      *  where PRIVATE is highest and PUBLIC is lowest.
  1311      */
  1312     static int protection(long flags) {
  1313         switch ((short)(flags & AccessFlags)) {
  1314         case PRIVATE: return 3;
  1315         case PROTECTED: return 1;
  1316         default:
  1317         case PUBLIC: return 0;
  1318         case 0: return 2;
  1322     /** A customized "cannot override" error message.
  1323      *  @param m      The overriding method.
  1324      *  @param other  The overridden method.
  1325      *  @return       An internationalized string.
  1326      */
  1327     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1328         String key;
  1329         if ((other.owner.flags() & INTERFACE) == 0)
  1330             key = "cant.override";
  1331         else if ((m.owner.flags() & INTERFACE) == 0)
  1332             key = "cant.implement";
  1333         else
  1334             key = "clashes.with";
  1335         return diags.fragment(key, m, m.location(), other, other.location());
  1338     /** A customized "override" warning message.
  1339      *  @param m      The overriding method.
  1340      *  @param other  The overridden method.
  1341      *  @return       An internationalized string.
  1342      */
  1343     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1344         String key;
  1345         if ((other.owner.flags() & INTERFACE) == 0)
  1346             key = "unchecked.override";
  1347         else if ((m.owner.flags() & INTERFACE) == 0)
  1348             key = "unchecked.implement";
  1349         else
  1350             key = "unchecked.clash.with";
  1351         return diags.fragment(key, m, m.location(), other, other.location());
  1354     /** A customized "override" warning message.
  1355      *  @param m      The overriding method.
  1356      *  @param other  The overridden method.
  1357      *  @return       An internationalized string.
  1358      */
  1359     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1360         String key;
  1361         if ((other.owner.flags() & INTERFACE) == 0)
  1362             key = "varargs.override";
  1363         else  if ((m.owner.flags() & INTERFACE) == 0)
  1364             key = "varargs.implement";
  1365         else
  1366             key = "varargs.clash.with";
  1367         return diags.fragment(key, m, m.location(), other, other.location());
  1370     /** Check that this method conforms with overridden method 'other'.
  1371      *  where `origin' is the class where checking started.
  1372      *  Complications:
  1373      *  (1) Do not check overriding of synthetic methods
  1374      *      (reason: they might be final).
  1375      *      todo: check whether this is still necessary.
  1376      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1377      *      than the method it implements. Augment the proxy methods with the
  1378      *      undeclared exceptions in this case.
  1379      *  (3) When generics are enabled, admit the case where an interface proxy
  1380      *      has a result type
  1381      *      extended by the result type of the method it implements.
  1382      *      Change the proxies result type to the smaller type in this case.
  1384      *  @param tree         The tree from which positions
  1385      *                      are extracted for errors.
  1386      *  @param m            The overriding method.
  1387      *  @param other        The overridden method.
  1388      *  @param origin       The class of which the overriding method
  1389      *                      is a member.
  1390      */
  1391     void checkOverride(JCTree tree,
  1392                        MethodSymbol m,
  1393                        MethodSymbol other,
  1394                        ClassSymbol origin) {
  1395         // Don't check overriding of synthetic methods or by bridge methods.
  1396         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1397             return;
  1400         // Error if static method overrides instance method (JLS 8.4.6.2).
  1401         if ((m.flags() & STATIC) != 0 &&
  1402                    (other.flags() & STATIC) == 0) {
  1403             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1404                       cannotOverride(m, other));
  1405             return;
  1408         // Error if instance method overrides static or final
  1409         // method (JLS 8.4.6.1).
  1410         if ((other.flags() & FINAL) != 0 ||
  1411                  (m.flags() & STATIC) == 0 &&
  1412                  (other.flags() & STATIC) != 0) {
  1413             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1414                       cannotOverride(m, other),
  1415                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1416             return;
  1419         if ((m.owner.flags() & ANNOTATION) != 0) {
  1420             // handled in validateAnnotationMethod
  1421             return;
  1424         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1425         if ((origin.flags() & INTERFACE) == 0 &&
  1426                  protection(m.flags()) > protection(other.flags())) {
  1427             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1428                       cannotOverride(m, other),
  1429                       other.flags() == 0 ?
  1430                           Flag.PACKAGE :
  1431                           asFlagSet(other.flags() & AccessFlags));
  1432             return;
  1435         Type mt = types.memberType(origin.type, m);
  1436         Type ot = types.memberType(origin.type, other);
  1437         // Error if overriding result type is different
  1438         // (or, in the case of generics mode, not a subtype) of
  1439         // overridden result type. We have to rename any type parameters
  1440         // before comparing types.
  1441         List<Type> mtvars = mt.getTypeArguments();
  1442         List<Type> otvars = ot.getTypeArguments();
  1443         Type mtres = mt.getReturnType();
  1444         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1446         overrideWarner.clear();
  1447         boolean resultTypesOK =
  1448             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1449         if (!resultTypesOK) {
  1450             if (!allowCovariantReturns &&
  1451                 m.owner != origin &&
  1452                 m.owner.isSubClass(other.owner, types)) {
  1453                 // allow limited interoperability with covariant returns
  1454             } else {
  1455                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1456                           "override.incompatible.ret",
  1457                           cannotOverride(m, other),
  1458                           mtres, otres);
  1459                 return;
  1461         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1462             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1463                     "override.unchecked.ret",
  1464                     uncheckedOverrides(m, other),
  1465                     mtres, otres);
  1468         // Error if overriding method throws an exception not reported
  1469         // by overridden method.
  1470         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1471         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1472         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1473         if (unhandledErased.nonEmpty()) {
  1474             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1475                       "override.meth.doesnt.throw",
  1476                       cannotOverride(m, other),
  1477                       unhandledUnerased.head);
  1478             return;
  1480         else if (unhandledUnerased.nonEmpty()) {
  1481             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1482                           "override.unchecked.thrown",
  1483                          cannotOverride(m, other),
  1484                          unhandledUnerased.head);
  1485             return;
  1488         // Optional warning if varargs don't agree
  1489         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1490             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1491             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1492                         ((m.flags() & Flags.VARARGS) != 0)
  1493                         ? "override.varargs.missing"
  1494                         : "override.varargs.extra",
  1495                         varargsOverrides(m, other));
  1498         // Warn if instance method overrides bridge method (compiler spec ??)
  1499         if ((other.flags() & BRIDGE) != 0) {
  1500             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1501                         uncheckedOverrides(m, other));
  1504         // Warn if a deprecated method overridden by a non-deprecated one.
  1505         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1506             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1509     // where
  1510         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1511             // If the method, m, is defined in an interface, then ignore the issue if the method
  1512             // is only inherited via a supertype and also implemented in the supertype,
  1513             // because in that case, we will rediscover the issue when examining the method
  1514             // in the supertype.
  1515             // If the method, m, is not defined in an interface, then the only time we need to
  1516             // address the issue is when the method is the supertype implemementation: any other
  1517             // case, we will have dealt with when examining the supertype classes
  1518             ClassSymbol mc = m.enclClass();
  1519             Type st = types.supertype(origin.type);
  1520             if (st.tag != CLASS)
  1521                 return true;
  1522             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1524             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1525                 List<Type> intfs = types.interfaces(origin.type);
  1526                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1528             else
  1529                 return (stimpl != m);
  1533     // used to check if there were any unchecked conversions
  1534     Warner overrideWarner = new Warner();
  1536     /** Check that a class does not inherit two concrete methods
  1537      *  with the same signature.
  1538      *  @param pos          Position to be used for error reporting.
  1539      *  @param site         The class type to be checked.
  1540      */
  1541     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1542         Type sup = types.supertype(site);
  1543         if (sup.tag != CLASS) return;
  1545         for (Type t1 = sup;
  1546              t1.tsym.type.isParameterized();
  1547              t1 = types.supertype(t1)) {
  1548             for (Scope.Entry e1 = t1.tsym.members().elems;
  1549                  e1 != null;
  1550                  e1 = e1.sibling) {
  1551                 Symbol s1 = e1.sym;
  1552                 if (s1.kind != MTH ||
  1553                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1554                     !s1.isInheritedIn(site.tsym, types) ||
  1555                     ((MethodSymbol)s1).implementation(site.tsym,
  1556                                                       types,
  1557                                                       true) != s1)
  1558                     continue;
  1559                 Type st1 = types.memberType(t1, s1);
  1560                 int s1ArgsLength = st1.getParameterTypes().length();
  1561                 if (st1 == s1.type) continue;
  1563                 for (Type t2 = sup;
  1564                      t2.tag == CLASS;
  1565                      t2 = types.supertype(t2)) {
  1566                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1567                          e2.scope != null;
  1568                          e2 = e2.next()) {
  1569                         Symbol s2 = e2.sym;
  1570                         if (s2 == s1 ||
  1571                             s2.kind != MTH ||
  1572                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1573                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1574                             !s2.isInheritedIn(site.tsym, types) ||
  1575                             ((MethodSymbol)s2).implementation(site.tsym,
  1576                                                               types,
  1577                                                               true) != s2)
  1578                             continue;
  1579                         Type st2 = types.memberType(t2, s2);
  1580                         if (types.overrideEquivalent(st1, st2))
  1581                             log.error(pos, "concrete.inheritance.conflict",
  1582                                       s1, t1, s2, t2, sup);
  1589     /** Check that classes (or interfaces) do not each define an abstract
  1590      *  method with same name and arguments but incompatible return types.
  1591      *  @param pos          Position to be used for error reporting.
  1592      *  @param t1           The first argument type.
  1593      *  @param t2           The second argument type.
  1594      */
  1595     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1596                                             Type t1,
  1597                                             Type t2) {
  1598         return checkCompatibleAbstracts(pos, t1, t2,
  1599                                         types.makeCompoundType(t1, t2));
  1602     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1603                                             Type t1,
  1604                                             Type t2,
  1605                                             Type site) {
  1606         return firstIncompatibility(pos, t1, t2, site) == null;
  1609     /** Return the first method which is defined with same args
  1610      *  but different return types in two given interfaces, or null if none
  1611      *  exists.
  1612      *  @param t1     The first type.
  1613      *  @param t2     The second type.
  1614      *  @param site   The most derived type.
  1615      *  @returns symbol from t2 that conflicts with one in t1.
  1616      */
  1617     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1618         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1619         closure(t1, interfaces1);
  1620         Map<TypeSymbol,Type> interfaces2;
  1621         if (t1 == t2)
  1622             interfaces2 = interfaces1;
  1623         else
  1624             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1626         for (Type t3 : interfaces1.values()) {
  1627             for (Type t4 : interfaces2.values()) {
  1628                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1629                 if (s != null) return s;
  1632         return null;
  1635     /** Compute all the supertypes of t, indexed by type symbol. */
  1636     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1637         if (t.tag != CLASS) return;
  1638         if (typeMap.put(t.tsym, t) == null) {
  1639             closure(types.supertype(t), typeMap);
  1640             for (Type i : types.interfaces(t))
  1641                 closure(i, typeMap);
  1645     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1646     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1647         if (t.tag != CLASS) return;
  1648         if (typesSkip.get(t.tsym) != null) return;
  1649         if (typeMap.put(t.tsym, t) == null) {
  1650             closure(types.supertype(t), typesSkip, typeMap);
  1651             for (Type i : types.interfaces(t))
  1652                 closure(i, typesSkip, typeMap);
  1656     /** Return the first method in t2 that conflicts with a method from t1. */
  1657     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1658         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1659             Symbol s1 = e1.sym;
  1660             Type st1 = null;
  1661             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1662             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1663             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1664             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1665                 Symbol s2 = e2.sym;
  1666                 if (s1 == s2) continue;
  1667                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1668                 if (st1 == null) st1 = types.memberType(t1, s1);
  1669                 Type st2 = types.memberType(t2, s2);
  1670                 if (types.overrideEquivalent(st1, st2)) {
  1671                     List<Type> tvars1 = st1.getTypeArguments();
  1672                     List<Type> tvars2 = st2.getTypeArguments();
  1673                     Type rt1 = st1.getReturnType();
  1674                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1675                     boolean compat =
  1676                         types.isSameType(rt1, rt2) ||
  1677                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1678                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1679                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1680                          checkCommonOverriderIn(s1,s2,site);
  1681                     if (!compat) {
  1682                         log.error(pos, "types.incompatible.diff.ret",
  1683                             t1, t2, s2.name +
  1684                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1685                         return s2;
  1687                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1688                         !checkCommonOverriderIn(s1, s2, site)) {
  1689                     log.error(pos,
  1690                             "name.clash.same.erasure.no.override",
  1691                             s1, s1.location(),
  1692                             s2, s2.location());
  1693                     return s2;
  1697         return null;
  1699     //WHERE
  1700     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1701         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1702         Type st1 = types.memberType(site, s1);
  1703         Type st2 = types.memberType(site, s2);
  1704         closure(site, supertypes);
  1705         for (Type t : supertypes.values()) {
  1706             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1707                 Symbol s3 = e.sym;
  1708                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1709                 Type st3 = types.memberType(site,s3);
  1710                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1711                     if (s3.owner == site.tsym) {
  1712                         return true;
  1714                     List<Type> tvars1 = st1.getTypeArguments();
  1715                     List<Type> tvars2 = st2.getTypeArguments();
  1716                     List<Type> tvars3 = st3.getTypeArguments();
  1717                     Type rt1 = st1.getReturnType();
  1718                     Type rt2 = st2.getReturnType();
  1719                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1720                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1721                     boolean compat =
  1722                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1723                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1724                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1725                     if (compat)
  1726                         return true;
  1730         return false;
  1733     /** Check that a given method conforms with any method it overrides.
  1734      *  @param tree         The tree from which positions are extracted
  1735      *                      for errors.
  1736      *  @param m            The overriding method.
  1737      */
  1738     void checkOverride(JCTree tree, MethodSymbol m) {
  1739         ClassSymbol origin = (ClassSymbol)m.owner;
  1740         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1741             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1742                 log.error(tree.pos(), "enum.no.finalize");
  1743                 return;
  1745         for (Type t = origin.type; t.tag == CLASS;
  1746              t = types.supertype(t)) {
  1747             if (t != origin.type) {
  1748                 checkOverride(tree, t, origin, m);
  1750             for (Type t2 : types.interfaces(t)) {
  1751                 checkOverride(tree, t2, origin, m);
  1756     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1757         TypeSymbol c = site.tsym;
  1758         Scope.Entry e = c.members().lookup(m.name);
  1759         while (e.scope != null) {
  1760             if (m.overrides(e.sym, origin, types, false)) {
  1761                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1762                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1765             e = e.next();
  1769     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1770         ClashFilter cf = new ClashFilter(origin.type);
  1771         return (cf.accepts(s1) &&
  1772                 cf.accepts(s2) &&
  1773                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1777     /** Check that all abstract members of given class have definitions.
  1778      *  @param pos          Position to be used for error reporting.
  1779      *  @param c            The class.
  1780      */
  1781     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1782         try {
  1783             MethodSymbol undef = firstUndef(c, c);
  1784             if (undef != null) {
  1785                 if ((c.flags() & ENUM) != 0 &&
  1786                     types.supertype(c.type).tsym == syms.enumSym &&
  1787                     (c.flags() & FINAL) == 0) {
  1788                     // add the ABSTRACT flag to an enum
  1789                     c.flags_field |= ABSTRACT;
  1790                 } else {
  1791                     MethodSymbol undef1 =
  1792                         new MethodSymbol(undef.flags(), undef.name,
  1793                                          types.memberType(c.type, undef), undef.owner);
  1794                     log.error(pos, "does.not.override.abstract",
  1795                               c, undef1, undef1.location());
  1798         } catch (CompletionFailure ex) {
  1799             completionError(pos, ex);
  1802 //where
  1803         /** Return first abstract member of class `c' that is not defined
  1804          *  in `impl', null if there is none.
  1805          */
  1806         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1807             MethodSymbol undef = null;
  1808             // Do not bother to search in classes that are not abstract,
  1809             // since they cannot have abstract members.
  1810             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1811                 Scope s = c.members();
  1812                 for (Scope.Entry e = s.elems;
  1813                      undef == null && e != null;
  1814                      e = e.sibling) {
  1815                     if (e.sym.kind == MTH &&
  1816                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1817                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1818                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1819                         if (implmeth == null || implmeth == absmeth)
  1820                             undef = absmeth;
  1823                 if (undef == null) {
  1824                     Type st = types.supertype(c.type);
  1825                     if (st.tag == CLASS)
  1826                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1828                 for (List<Type> l = types.interfaces(c.type);
  1829                      undef == null && l.nonEmpty();
  1830                      l = l.tail) {
  1831                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1834             return undef;
  1837     void checkNonCyclicDecl(JCClassDecl tree) {
  1838         CycleChecker cc = new CycleChecker();
  1839         cc.scan(tree);
  1840         if (!cc.errorFound && !cc.partialCheck) {
  1841             tree.sym.flags_field |= ACYCLIC;
  1845     class CycleChecker extends TreeScanner {
  1847         List<Symbol> seenClasses = List.nil();
  1848         boolean errorFound = false;
  1849         boolean partialCheck = false;
  1851         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1852             if (sym != null && sym.kind == TYP) {
  1853                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1854                 if (classEnv != null) {
  1855                     DiagnosticSource prevSource = log.currentSource();
  1856                     try {
  1857                         log.useSource(classEnv.toplevel.sourcefile);
  1858                         scan(classEnv.tree);
  1860                     finally {
  1861                         log.useSource(prevSource.getFile());
  1863                 } else if (sym.kind == TYP) {
  1864                     checkClass(pos, sym, List.<JCTree>nil());
  1866             } else {
  1867                 //not completed yet
  1868                 partialCheck = true;
  1872         @Override
  1873         public void visitSelect(JCFieldAccess tree) {
  1874             super.visitSelect(tree);
  1875             checkSymbol(tree.pos(), tree.sym);
  1878         @Override
  1879         public void visitIdent(JCIdent tree) {
  1880             checkSymbol(tree.pos(), tree.sym);
  1883         @Override
  1884         public void visitTypeApply(JCTypeApply tree) {
  1885             scan(tree.clazz);
  1888         @Override
  1889         public void visitTypeArray(JCArrayTypeTree tree) {
  1890             scan(tree.elemtype);
  1893         @Override
  1894         public void visitClassDef(JCClassDecl tree) {
  1895             List<JCTree> supertypes = List.nil();
  1896             if (tree.getExtendsClause() != null) {
  1897                 supertypes = supertypes.prepend(tree.getExtendsClause());
  1899             if (tree.getImplementsClause() != null) {
  1900                 for (JCTree intf : tree.getImplementsClause()) {
  1901                     supertypes = supertypes.prepend(intf);
  1904             checkClass(tree.pos(), tree.sym, supertypes);
  1907         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  1908             if ((c.flags_field & ACYCLIC) != 0)
  1909                 return;
  1910             if (seenClasses.contains(c)) {
  1911                 errorFound = true;
  1912                 noteCyclic(pos, (ClassSymbol)c);
  1913             } else if (!c.type.isErroneous()) {
  1914                 try {
  1915                     seenClasses = seenClasses.prepend(c);
  1916                     if (c.type.tag == CLASS) {
  1917                         if (supertypes.nonEmpty()) {
  1918                             scan(supertypes);
  1920                         else {
  1921                             ClassType ct = (ClassType)c.type;
  1922                             if (ct.supertype_field == null ||
  1923                                     ct.interfaces_field == null) {
  1924                                 //not completed yet
  1925                                 partialCheck = true;
  1926                                 return;
  1928                             checkSymbol(pos, ct.supertype_field.tsym);
  1929                             for (Type intf : ct.interfaces_field) {
  1930                                 checkSymbol(pos, intf.tsym);
  1933                         if (c.owner.kind == TYP) {
  1934                             checkSymbol(pos, c.owner);
  1937                 } finally {
  1938                     seenClasses = seenClasses.tail;
  1944     /** Check for cyclic references. Issue an error if the
  1945      *  symbol of the type referred to has a LOCKED flag set.
  1947      *  @param pos      Position to be used for error reporting.
  1948      *  @param t        The type referred to.
  1949      */
  1950     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1951         checkNonCyclicInternal(pos, t);
  1955     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1956         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1959     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1960         final TypeVar tv;
  1961         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1962             return;
  1963         if (seen.contains(t)) {
  1964             tv = (TypeVar)t;
  1965             tv.bound = types.createErrorType(t);
  1966             log.error(pos, "cyclic.inheritance", t);
  1967         } else if (t.tag == TYPEVAR) {
  1968             tv = (TypeVar)t;
  1969             seen = seen.prepend(tv);
  1970             for (Type b : types.getBounds(tv))
  1971                 checkNonCyclic1(pos, b, seen);
  1975     /** Check for cyclic references. Issue an error if the
  1976      *  symbol of the type referred to has a LOCKED flag set.
  1978      *  @param pos      Position to be used for error reporting.
  1979      *  @param t        The type referred to.
  1980      *  @returns        True if the check completed on all attributed classes
  1981      */
  1982     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1983         boolean complete = true; // was the check complete?
  1984         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1985         Symbol c = t.tsym;
  1986         if ((c.flags_field & ACYCLIC) != 0) return true;
  1988         if ((c.flags_field & LOCKED) != 0) {
  1989             noteCyclic(pos, (ClassSymbol)c);
  1990         } else if (!c.type.isErroneous()) {
  1991             try {
  1992                 c.flags_field |= LOCKED;
  1993                 if (c.type.tag == CLASS) {
  1994                     ClassType clazz = (ClassType)c.type;
  1995                     if (clazz.interfaces_field != null)
  1996                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1997                             complete &= checkNonCyclicInternal(pos, l.head);
  1998                     if (clazz.supertype_field != null) {
  1999                         Type st = clazz.supertype_field;
  2000                         if (st != null && st.tag == CLASS)
  2001                             complete &= checkNonCyclicInternal(pos, st);
  2003                     if (c.owner.kind == TYP)
  2004                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2006             } finally {
  2007                 c.flags_field &= ~LOCKED;
  2010         if (complete)
  2011             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2012         if (complete) c.flags_field |= ACYCLIC;
  2013         return complete;
  2016     /** Note that we found an inheritance cycle. */
  2017     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2018         log.error(pos, "cyclic.inheritance", c);
  2019         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2020             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2021         Type st = types.supertype(c.type);
  2022         if (st.tag == CLASS)
  2023             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2024         c.type = types.createErrorType(c, c.type);
  2025         c.flags_field |= ACYCLIC;
  2028     /** Check that all methods which implement some
  2029      *  method conform to the method they implement.
  2030      *  @param tree         The class definition whose members are checked.
  2031      */
  2032     void checkImplementations(JCClassDecl tree) {
  2033         checkImplementations(tree, tree.sym);
  2035 //where
  2036         /** Check that all methods which implement some
  2037          *  method in `ic' conform to the method they implement.
  2038          */
  2039         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2040             ClassSymbol origin = tree.sym;
  2041             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2042                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2043                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2044                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2045                         if (e.sym.kind == MTH &&
  2046                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2047                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2048                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2049                             if (implmeth != null && implmeth != absmeth &&
  2050                                 (implmeth.owner.flags() & INTERFACE) ==
  2051                                 (origin.flags() & INTERFACE)) {
  2052                                 // don't check if implmeth is in a class, yet
  2053                                 // origin is an interface. This case arises only
  2054                                 // if implmeth is declared in Object. The reason is
  2055                                 // that interfaces really don't inherit from
  2056                                 // Object it's just that the compiler represents
  2057                                 // things that way.
  2058                                 checkOverride(tree, implmeth, absmeth, origin);
  2066     /** Check that all abstract methods implemented by a class are
  2067      *  mutually compatible.
  2068      *  @param pos          Position to be used for error reporting.
  2069      *  @param c            The class whose interfaces are checked.
  2070      */
  2071     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2072         List<Type> supertypes = types.interfaces(c);
  2073         Type supertype = types.supertype(c);
  2074         if (supertype.tag == CLASS &&
  2075             (supertype.tsym.flags() & ABSTRACT) != 0)
  2076             supertypes = supertypes.prepend(supertype);
  2077         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2078             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2079                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2080                 return;
  2081             for (List<Type> m = supertypes; m != l; m = m.tail)
  2082                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2083                     return;
  2085         checkCompatibleConcretes(pos, c);
  2088     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2089         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2090             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2091                 // VM allows methods and variables with differing types
  2092                 if (sym.kind == e.sym.kind &&
  2093                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2094                     sym != e.sym &&
  2095                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2096                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2097                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2098                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2099                     return;
  2105     /** Check that all non-override equivalent methods accessible from 'site'
  2106      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2108      *  @param pos  Position to be used for error reporting.
  2109      *  @param site The class whose methods are checked.
  2110      *  @param sym  The method symbol to be checked.
  2111      */
  2112     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2113          ClashFilter cf = new ClashFilter(site);
  2114          //for each method m1 that is a member of 'site'...
  2115          for (Symbol s1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2116             //...find another method m2 that is overridden (directly or indirectly)
  2117             //by method 'sym' in 'site'
  2118             for (Symbol s2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2119                 if (s1 == s2 || !sym.overrides(s2, site.tsym, types, false)) continue;
  2120                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2121                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2122                 if (!types.isSubSignature(sym.type, types.memberType(site, s1), false) &&
  2123                         types.hasSameArgs(s1.erasure(types), s2.erasure(types))) {
  2124                     sym.flags_field |= CLASH;
  2125                     String key = s2 == sym ?
  2126                             "name.clash.same.erasure.no.override" :
  2127                             "name.clash.same.erasure.no.override.1";
  2128                     log.error(pos,
  2129                             key,
  2130                             sym, sym.location(),
  2131                             s1, s1.location(),
  2132                             s2, s2.location());
  2133                     return;
  2141     /** Check that all static methods accessible from 'site' are
  2142      *  mutually compatible (JLS 8.4.8).
  2144      *  @param pos  Position to be used for error reporting.
  2145      *  @param site The class whose methods are checked.
  2146      *  @param sym  The method symbol to be checked.
  2147      */
  2148     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2149         ClashFilter cf = new ClashFilter(site);
  2150         //for each method m1 that is a member of 'site'...
  2151         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2152             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2153             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2154             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2155                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2156                 log.error(pos,
  2157                         "name.clash.same.erasure.no.hide",
  2158                         sym, sym.location(),
  2159                         s, s.location());
  2160                 return;
  2165      //where
  2166      private class ClashFilter implements Filter<Symbol> {
  2168          Type site;
  2170          ClashFilter(Type site) {
  2171              this.site = site;
  2174          boolean shouldSkip(Symbol s) {
  2175              return (s.flags() & CLASH) != 0 &&
  2176                 s.owner == site.tsym;
  2179          public boolean accepts(Symbol s) {
  2180              return s.kind == MTH &&
  2181                      (s.flags() & SYNTHETIC) == 0 &&
  2182                      !shouldSkip(s) &&
  2183                      s.isInheritedIn(site.tsym, types) &&
  2184                      !s.isConstructor();
  2188     /** Report a conflict between a user symbol and a synthetic symbol.
  2189      */
  2190     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2191         if (!sym.type.isErroneous()) {
  2192             if (warnOnSyntheticConflicts) {
  2193                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2195             else {
  2196                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2201     /** Check that class c does not implement directly or indirectly
  2202      *  the same parameterized interface with two different argument lists.
  2203      *  @param pos          Position to be used for error reporting.
  2204      *  @param type         The type whose interfaces are checked.
  2205      */
  2206     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2207         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2209 //where
  2210         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2211          *  with their class symbol as key and their type as value. Make
  2212          *  sure no class is entered with two different types.
  2213          */
  2214         void checkClassBounds(DiagnosticPosition pos,
  2215                               Map<TypeSymbol,Type> seensofar,
  2216                               Type type) {
  2217             if (type.isErroneous()) return;
  2218             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2219                 Type it = l.head;
  2220                 Type oldit = seensofar.put(it.tsym, it);
  2221                 if (oldit != null) {
  2222                     List<Type> oldparams = oldit.allparams();
  2223                     List<Type> newparams = it.allparams();
  2224                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2225                         log.error(pos, "cant.inherit.diff.arg",
  2226                                   it.tsym, Type.toString(oldparams),
  2227                                   Type.toString(newparams));
  2229                 checkClassBounds(pos, seensofar, it);
  2231             Type st = types.supertype(type);
  2232             if (st != null) checkClassBounds(pos, seensofar, st);
  2235     /** Enter interface into into set.
  2236      *  If it existed already, issue a "repeated interface" error.
  2237      */
  2238     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2239         if (its.contains(it))
  2240             log.error(pos, "repeated.interface");
  2241         else {
  2242             its.add(it);
  2246 /* *************************************************************************
  2247  * Check annotations
  2248  **************************************************************************/
  2250     /**
  2251      * Recursively validate annotations values
  2252      */
  2253     void validateAnnotationTree(JCTree tree) {
  2254         class AnnotationValidator extends TreeScanner {
  2255             @Override
  2256             public void visitAnnotation(JCAnnotation tree) {
  2257                 if (!tree.type.isErroneous()) {
  2258                     super.visitAnnotation(tree);
  2259                     validateAnnotation(tree);
  2263         tree.accept(new AnnotationValidator());
  2266     /** Annotation types are restricted to primitives, String, an
  2267      *  enum, an annotation, Class, Class<?>, Class<? extends
  2268      *  Anything>, arrays of the preceding.
  2269      */
  2270     void validateAnnotationType(JCTree restype) {
  2271         // restype may be null if an error occurred, so don't bother validating it
  2272         if (restype != null) {
  2273             validateAnnotationType(restype.pos(), restype.type);
  2277     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2278         if (type.isPrimitive()) return;
  2279         if (types.isSameType(type, syms.stringType)) return;
  2280         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2281         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2282         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2283         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2284             validateAnnotationType(pos, types.elemtype(type));
  2285             return;
  2287         log.error(pos, "invalid.annotation.member.type");
  2290     /**
  2291      * "It is also a compile-time error if any method declared in an
  2292      * annotation type has a signature that is override-equivalent to
  2293      * that of any public or protected method declared in class Object
  2294      * or in the interface annotation.Annotation."
  2296      * @jls 9.6 Annotation Types
  2297      */
  2298     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2299         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2300             Scope s = sup.tsym.members();
  2301             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2302                 if (e.sym.kind == MTH &&
  2303                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2304                     types.overrideEquivalent(m.type, e.sym.type))
  2305                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2310     /** Check the annotations of a symbol.
  2311      */
  2312     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2313         if (skipAnnotations) return;
  2314         for (JCAnnotation a : annotations)
  2315             validateAnnotation(a, s);
  2318     /** Check an annotation of a symbol.
  2319      */
  2320     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2321         validateAnnotationTree(a);
  2323         if (!annotationApplicable(a, s))
  2324             log.error(a.pos(), "annotation.type.not.applicable");
  2326         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2327             if (!isOverrider(s))
  2328                 log.error(a.pos(), "method.does.not.override.superclass");
  2332     /** Is s a method symbol that overrides a method in a superclass? */
  2333     boolean isOverrider(Symbol s) {
  2334         if (s.kind != MTH || s.isStatic())
  2335             return false;
  2336         MethodSymbol m = (MethodSymbol)s;
  2337         TypeSymbol owner = (TypeSymbol)m.owner;
  2338         for (Type sup : types.closure(owner.type)) {
  2339             if (sup == owner.type)
  2340                 continue; // skip "this"
  2341             Scope scope = sup.tsym.members();
  2342             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2343                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2344                     return true;
  2347         return false;
  2350     /** Is the annotation applicable to the symbol? */
  2351     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2352         Attribute.Compound atTarget =
  2353             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2354         if (atTarget == null) return true;
  2355         Attribute atValue = atTarget.member(names.value);
  2356         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2357         Attribute.Array arr = (Attribute.Array) atValue;
  2358         for (Attribute app : arr.values) {
  2359             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2360             Attribute.Enum e = (Attribute.Enum) app;
  2361             if (e.value.name == names.TYPE)
  2362                 { if (s.kind == TYP) return true; }
  2363             else if (e.value.name == names.FIELD)
  2364                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2365             else if (e.value.name == names.METHOD)
  2366                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2367             else if (e.value.name == names.PARAMETER)
  2368                 { if (s.kind == VAR &&
  2369                       s.owner.kind == MTH &&
  2370                       (s.flags() & PARAMETER) != 0)
  2371                     return true;
  2373             else if (e.value.name == names.CONSTRUCTOR)
  2374                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2375             else if (e.value.name == names.LOCAL_VARIABLE)
  2376                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2377                       (s.flags() & PARAMETER) == 0)
  2378                     return true;
  2380             else if (e.value.name == names.ANNOTATION_TYPE)
  2381                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2382                     return true;
  2384             else if (e.value.name == names.PACKAGE)
  2385                 { if (s.kind == PCK) return true; }
  2386             else if (e.value.name == names.TYPE_USE)
  2387                 { if (s.kind == TYP ||
  2388                       s.kind == VAR ||
  2389                       (s.kind == MTH && !s.isConstructor() &&
  2390                        s.type.getReturnType().tag != VOID))
  2391                     return true;
  2393             else
  2394                 return true; // recovery
  2396         return false;
  2399     /** Check an annotation value.
  2400      */
  2401     public void validateAnnotation(JCAnnotation a) {
  2402         // collect an inventory of the members (sorted alphabetically)
  2403         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2404             public int compare(Symbol t, Symbol t1) {
  2405                 return t.name.compareTo(t1.name);
  2407         });
  2408         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2409              e != null;
  2410              e = e.sibling)
  2411             if (e.sym.kind == MTH)
  2412                 members.add((MethodSymbol) e.sym);
  2414         // count them off as they're annotated
  2415         for (JCTree arg : a.args) {
  2416             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2417             JCAssign assign = (JCAssign) arg;
  2418             Symbol m = TreeInfo.symbol(assign.lhs);
  2419             if (m == null || m.type.isErroneous()) continue;
  2420             if (!members.remove(m))
  2421                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2422                           m.name, a.type);
  2425         // all the remaining ones better have default values
  2426         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2427         for (MethodSymbol m : members) {
  2428             if (m.defaultValue == null && !m.type.isErroneous()) {
  2429                 missingDefaults.append(m.name);
  2432         if (missingDefaults.nonEmpty()) {
  2433             String key = (missingDefaults.size() > 1)
  2434                     ? "annotation.missing.default.value.1"
  2435                     : "annotation.missing.default.value";
  2436             log.error(a.pos(), key, a.type, missingDefaults);
  2439         // special case: java.lang.annotation.Target must not have
  2440         // repeated values in its value member
  2441         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2442             a.args.tail == null)
  2443             return;
  2445         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2446         JCAssign assign = (JCAssign) a.args.head;
  2447         Symbol m = TreeInfo.symbol(assign.lhs);
  2448         if (m.name != names.value) return;
  2449         JCTree rhs = assign.rhs;
  2450         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2451         JCNewArray na = (JCNewArray) rhs;
  2452         Set<Symbol> targets = new HashSet<Symbol>();
  2453         for (JCTree elem : na.elems) {
  2454             if (!targets.add(TreeInfo.symbol(elem))) {
  2455                 log.error(elem.pos(), "repeated.annotation.target");
  2460     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2461         if (allowAnnotations &&
  2462             lint.isEnabled(LintCategory.DEP_ANN) &&
  2463             (s.flags() & DEPRECATED) != 0 &&
  2464             !syms.deprecatedType.isErroneous() &&
  2465             s.attribute(syms.deprecatedType.tsym) == null) {
  2466             log.warning(LintCategory.DEP_ANN,
  2467                     pos, "missing.deprecated.annotation");
  2471     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2472         if ((s.flags() & DEPRECATED) != 0 &&
  2473                 (other.flags() & DEPRECATED) == 0 &&
  2474                 s.outermostClass() != other.outermostClass()) {
  2475             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2476                 @Override
  2477                 public void report() {
  2478                     warnDeprecated(pos, s);
  2480             });
  2481         };
  2484     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2485         if ((s.flags() & PROPRIETARY) != 0) {
  2486             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2487                 public void report() {
  2488                     if (enableSunApiLintControl)
  2489                       warnSunApi(pos, "sun.proprietary", s);
  2490                     else
  2491                       log.strictWarning(pos, "sun.proprietary", s);
  2493             });
  2497 /* *************************************************************************
  2498  * Check for recursive annotation elements.
  2499  **************************************************************************/
  2501     /** Check for cycles in the graph of annotation elements.
  2502      */
  2503     void checkNonCyclicElements(JCClassDecl tree) {
  2504         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2505         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2506         try {
  2507             tree.sym.flags_field |= LOCKED;
  2508             for (JCTree def : tree.defs) {
  2509                 if (def.getTag() != JCTree.METHODDEF) continue;
  2510                 JCMethodDecl meth = (JCMethodDecl)def;
  2511                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2513         } finally {
  2514             tree.sym.flags_field &= ~LOCKED;
  2515             tree.sym.flags_field |= ACYCLIC_ANN;
  2519     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2520         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2521             return;
  2522         if ((tsym.flags_field & LOCKED) != 0) {
  2523             log.error(pos, "cyclic.annotation.element");
  2524             return;
  2526         try {
  2527             tsym.flags_field |= LOCKED;
  2528             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2529                 Symbol s = e.sym;
  2530                 if (s.kind != Kinds.MTH)
  2531                     continue;
  2532                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2534         } finally {
  2535             tsym.flags_field &= ~LOCKED;
  2536             tsym.flags_field |= ACYCLIC_ANN;
  2540     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2541         switch (type.tag) {
  2542         case TypeTags.CLASS:
  2543             if ((type.tsym.flags() & ANNOTATION) != 0)
  2544                 checkNonCyclicElementsInternal(pos, type.tsym);
  2545             break;
  2546         case TypeTags.ARRAY:
  2547             checkAnnotationResType(pos, types.elemtype(type));
  2548             break;
  2549         default:
  2550             break; // int etc
  2554 /* *************************************************************************
  2555  * Check for cycles in the constructor call graph.
  2556  **************************************************************************/
  2558     /** Check for cycles in the graph of constructors calling other
  2559      *  constructors.
  2560      */
  2561     void checkCyclicConstructors(JCClassDecl tree) {
  2562         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2564         // enter each constructor this-call into the map
  2565         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2566             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2567             if (app == null) continue;
  2568             JCMethodDecl meth = (JCMethodDecl) l.head;
  2569             if (TreeInfo.name(app.meth) == names._this) {
  2570                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2571             } else {
  2572                 meth.sym.flags_field |= ACYCLIC;
  2576         // Check for cycles in the map
  2577         Symbol[] ctors = new Symbol[0];
  2578         ctors = callMap.keySet().toArray(ctors);
  2579         for (Symbol caller : ctors) {
  2580             checkCyclicConstructor(tree, caller, callMap);
  2584     /** Look in the map to see if the given constructor is part of a
  2585      *  call cycle.
  2586      */
  2587     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2588                                         Map<Symbol,Symbol> callMap) {
  2589         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2590             if ((ctor.flags_field & LOCKED) != 0) {
  2591                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2592                           "recursive.ctor.invocation");
  2593             } else {
  2594                 ctor.flags_field |= LOCKED;
  2595                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2596                 ctor.flags_field &= ~LOCKED;
  2598             ctor.flags_field |= ACYCLIC;
  2602 /* *************************************************************************
  2603  * Miscellaneous
  2604  **************************************************************************/
  2606     /**
  2607      * Return the opcode of the operator but emit an error if it is an
  2608      * error.
  2609      * @param pos        position for error reporting.
  2610      * @param operator   an operator
  2611      * @param tag        a tree tag
  2612      * @param left       type of left hand side
  2613      * @param right      type of right hand side
  2614      */
  2615     int checkOperator(DiagnosticPosition pos,
  2616                        OperatorSymbol operator,
  2617                        int tag,
  2618                        Type left,
  2619                        Type right) {
  2620         if (operator.opcode == ByteCodes.error) {
  2621             log.error(pos,
  2622                       "operator.cant.be.applied.1",
  2623                       treeinfo.operatorName(tag),
  2624                       left, right);
  2626         return operator.opcode;
  2630     /**
  2631      *  Check for division by integer constant zero
  2632      *  @param pos           Position for error reporting.
  2633      *  @param operator      The operator for the expression
  2634      *  @param operand       The right hand operand for the expression
  2635      */
  2636     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2637         if (operand.constValue() != null
  2638             && lint.isEnabled(LintCategory.DIVZERO)
  2639             && operand.tag <= LONG
  2640             && ((Number) (operand.constValue())).longValue() == 0) {
  2641             int opc = ((OperatorSymbol)operator).opcode;
  2642             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2643                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2644                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2649     /**
  2650      * Check for empty statements after if
  2651      */
  2652     void checkEmptyIf(JCIf tree) {
  2653         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(LintCategory.EMPTY))
  2654             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2657     /** Check that symbol is unique in given scope.
  2658      *  @param pos           Position for error reporting.
  2659      *  @param sym           The symbol.
  2660      *  @param s             The scope.
  2661      */
  2662     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2663         if (sym.type.isErroneous())
  2664             return true;
  2665         if (sym.owner.name == names.any) return false;
  2666         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2667             if (sym != e.sym &&
  2668                     (e.sym.flags() & CLASH) == 0 &&
  2669                     sym.kind == e.sym.kind &&
  2670                     sym.name != names.error &&
  2671                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2672                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2673                     varargsDuplicateError(pos, sym, e.sym);
  2674                     return true;
  2675                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  2676                     duplicateErasureError(pos, sym, e.sym);
  2677                     sym.flags_field |= CLASH;
  2678                     return true;
  2679                 } else {
  2680                     duplicateError(pos, e.sym);
  2681                     return false;
  2685         return true;
  2688     /** Report duplicate declaration error.
  2689      */
  2690     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2691         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2692             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2696     /** Check that single-type import is not already imported or top-level defined,
  2697      *  but make an exception for two single-type imports which denote the same type.
  2698      *  @param pos           Position for error reporting.
  2699      *  @param sym           The symbol.
  2700      *  @param s             The scope
  2701      */
  2702     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2703         return checkUniqueImport(pos, sym, s, false);
  2706     /** Check that static single-type import is not already imported or top-level defined,
  2707      *  but make an exception for two single-type imports which denote the same type.
  2708      *  @param pos           Position for error reporting.
  2709      *  @param sym           The symbol.
  2710      *  @param s             The scope
  2711      *  @param staticImport  Whether or not this was a static import
  2712      */
  2713     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2714         return checkUniqueImport(pos, sym, s, true);
  2717     /** Check that single-type import is not already imported or top-level defined,
  2718      *  but make an exception for two single-type imports which denote the same type.
  2719      *  @param pos           Position for error reporting.
  2720      *  @param sym           The symbol.
  2721      *  @param s             The scope.
  2722      *  @param staticImport  Whether or not this was a static import
  2723      */
  2724     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2725         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2726             // is encountered class entered via a class declaration?
  2727             boolean isClassDecl = e.scope == s;
  2728             if ((isClassDecl || sym != e.sym) &&
  2729                 sym.kind == e.sym.kind &&
  2730                 sym.name != names.error) {
  2731                 if (!e.sym.type.isErroneous()) {
  2732                     String what = e.sym.toString();
  2733                     if (!isClassDecl) {
  2734                         if (staticImport)
  2735                             log.error(pos, "already.defined.static.single.import", what);
  2736                         else
  2737                             log.error(pos, "already.defined.single.import", what);
  2739                     else if (sym != e.sym)
  2740                         log.error(pos, "already.defined.this.unit", what);
  2742                 return false;
  2745         return true;
  2748     /** Check that a qualified name is in canonical form (for import decls).
  2749      */
  2750     public void checkCanonical(JCTree tree) {
  2751         if (!isCanonical(tree))
  2752             log.error(tree.pos(), "import.requires.canonical",
  2753                       TreeInfo.symbol(tree));
  2755         // where
  2756         private boolean isCanonical(JCTree tree) {
  2757             while (tree.getTag() == JCTree.SELECT) {
  2758                 JCFieldAccess s = (JCFieldAccess) tree;
  2759                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2760                     return false;
  2761                 tree = s.selected;
  2763             return true;
  2766     private class ConversionWarner extends Warner {
  2767         final String uncheckedKey;
  2768         final Type found;
  2769         final Type expected;
  2770         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2771             super(pos);
  2772             this.uncheckedKey = uncheckedKey;
  2773             this.found = found;
  2774             this.expected = expected;
  2777         @Override
  2778         public void warn(LintCategory lint) {
  2779             boolean warned = this.warned;
  2780             super.warn(lint);
  2781             if (warned) return; // suppress redundant diagnostics
  2782             switch (lint) {
  2783                 case UNCHECKED:
  2784                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2785                     break;
  2786                 case VARARGS:
  2787                     if (method != null &&
  2788                             method.attribute(syms.trustMeType.tsym) != null &&
  2789                             isTrustMeAllowedOnMethod(method) &&
  2790                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2791                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2793                     break;
  2794                 default:
  2795                     throw new AssertionError("Unexpected lint: " + lint);
  2800     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2801         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2804     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2805         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial