src/share/classes/com/sun/tools/javac/comp/Lower.java

Wed, 02 Jul 2008 12:56:02 -0700

author
xdono
date
Wed, 02 Jul 2008 12:56:02 -0700
changeset 54
eaf608c64fec
parent 33
ec29a1a284ca
child 81
8973372aedf8
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

duke@1 1 /*
xdono@54 2 * Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
duke@1 31 import com.sun.tools.javac.jvm.*;
duke@1 32 import com.sun.tools.javac.tree.*;
duke@1 33 import com.sun.tools.javac.util.*;
duke@1 34 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 35 import com.sun.tools.javac.util.List;
duke@1 36
duke@1 37 import com.sun.tools.javac.code.Symbol.*;
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Type.*;
duke@1 40
duke@1 41 import com.sun.tools.javac.jvm.Target;
duke@1 42
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.Kinds.*;
duke@1 45 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 46 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 47
duke@1 48 /** This pass translates away some syntactic sugar: inner classes,
duke@1 49 * class literals, assertions, foreach loops, etc.
duke@1 50 *
duke@1 51 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 52 * you write code that depends on this, you do so at your own risk.
duke@1 53 * This code and its internal interfaces are subject to change or
duke@1 54 * deletion without notice.</b>
duke@1 55 */
duke@1 56 public class Lower extends TreeTranslator {
duke@1 57 protected static final Context.Key<Lower> lowerKey =
duke@1 58 new Context.Key<Lower>();
duke@1 59
duke@1 60 public static Lower instance(Context context) {
duke@1 61 Lower instance = context.get(lowerKey);
duke@1 62 if (instance == null)
duke@1 63 instance = new Lower(context);
duke@1 64 return instance;
duke@1 65 }
duke@1 66
duke@1 67 private Name.Table names;
duke@1 68 private Log log;
duke@1 69 private Symtab syms;
duke@1 70 private Resolve rs;
duke@1 71 private Check chk;
duke@1 72 private Attr attr;
duke@1 73 private TreeMaker make;
duke@1 74 private DiagnosticPosition make_pos;
duke@1 75 private ClassWriter writer;
duke@1 76 private ClassReader reader;
duke@1 77 private ConstFold cfolder;
duke@1 78 private Target target;
duke@1 79 private Source source;
duke@1 80 private boolean allowEnums;
duke@1 81 private final Name dollarAssertionsDisabled;
duke@1 82 private final Name classDollar;
duke@1 83 private Types types;
duke@1 84 private boolean debugLower;
duke@1 85
duke@1 86 protected Lower(Context context) {
duke@1 87 context.put(lowerKey, this);
duke@1 88 names = Name.Table.instance(context);
duke@1 89 log = Log.instance(context);
duke@1 90 syms = Symtab.instance(context);
duke@1 91 rs = Resolve.instance(context);
duke@1 92 chk = Check.instance(context);
duke@1 93 attr = Attr.instance(context);
duke@1 94 make = TreeMaker.instance(context);
duke@1 95 writer = ClassWriter.instance(context);
duke@1 96 reader = ClassReader.instance(context);
duke@1 97 cfolder = ConstFold.instance(context);
duke@1 98 target = Target.instance(context);
duke@1 99 source = Source.instance(context);
duke@1 100 allowEnums = source.allowEnums();
duke@1 101 dollarAssertionsDisabled = names.
duke@1 102 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 103 classDollar = names.
duke@1 104 fromString("class" + target.syntheticNameChar());
duke@1 105
duke@1 106 types = Types.instance(context);
duke@1 107 Options options = Options.instance(context);
duke@1 108 debugLower = options.get("debuglower") != null;
duke@1 109 }
duke@1 110
duke@1 111 /** The currently enclosing class.
duke@1 112 */
duke@1 113 ClassSymbol currentClass;
duke@1 114
duke@1 115 /** A queue of all translated classes.
duke@1 116 */
duke@1 117 ListBuffer<JCTree> translated;
duke@1 118
duke@1 119 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 120 */
duke@1 121 Env<AttrContext> attrEnv;
duke@1 122
duke@1 123 /** A hash table mapping syntax trees to their ending source positions.
duke@1 124 */
duke@1 125 Map<JCTree, Integer> endPositions;
duke@1 126
duke@1 127 /**************************************************************************
duke@1 128 * Global mappings
duke@1 129 *************************************************************************/
duke@1 130
duke@1 131 /** A hash table mapping local classes to their definitions.
duke@1 132 */
duke@1 133 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 134
duke@1 135 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 136 * to the actually referred symbol in superclasses.
duke@1 137 */
duke@1 138 Map<Symbol,Symbol> actualSymbols;
duke@1 139
duke@1 140 /** The current method definition.
duke@1 141 */
duke@1 142 JCMethodDecl currentMethodDef;
duke@1 143
duke@1 144 /** The current method symbol.
duke@1 145 */
duke@1 146 MethodSymbol currentMethodSym;
duke@1 147
duke@1 148 /** The currently enclosing outermost class definition.
duke@1 149 */
duke@1 150 JCClassDecl outermostClassDef;
duke@1 151
duke@1 152 /** The currently enclosing outermost member definition.
duke@1 153 */
duke@1 154 JCTree outermostMemberDef;
duke@1 155
duke@1 156 /** A navigator class for assembling a mapping from local class symbols
duke@1 157 * to class definition trees.
duke@1 158 * There is only one case; all other cases simply traverse down the tree.
duke@1 159 */
duke@1 160 class ClassMap extends TreeScanner {
duke@1 161
duke@1 162 /** All encountered class defs are entered into classdefs table.
duke@1 163 */
duke@1 164 public void visitClassDef(JCClassDecl tree) {
duke@1 165 classdefs.put(tree.sym, tree);
duke@1 166 super.visitClassDef(tree);
duke@1 167 }
duke@1 168 }
duke@1 169 ClassMap classMap = new ClassMap();
duke@1 170
duke@1 171 /** Map a class symbol to its definition.
duke@1 172 * @param c The class symbol of which we want to determine the definition.
duke@1 173 */
duke@1 174 JCClassDecl classDef(ClassSymbol c) {
duke@1 175 // First lookup the class in the classdefs table.
duke@1 176 JCClassDecl def = classdefs.get(c);
duke@1 177 if (def == null && outermostMemberDef != null) {
duke@1 178 // If this fails, traverse outermost member definition, entering all
duke@1 179 // local classes into classdefs, and try again.
duke@1 180 classMap.scan(outermostMemberDef);
duke@1 181 def = classdefs.get(c);
duke@1 182 }
duke@1 183 if (def == null) {
duke@1 184 // If this fails, traverse outermost class definition, entering all
duke@1 185 // local classes into classdefs, and try again.
duke@1 186 classMap.scan(outermostClassDef);
duke@1 187 def = classdefs.get(c);
duke@1 188 }
duke@1 189 return def;
duke@1 190 }
duke@1 191
duke@1 192 /** A hash table mapping class symbols to lists of free variables.
duke@1 193 * accessed by them. Only free variables of the method immediately containing
duke@1 194 * a class are associated with that class.
duke@1 195 */
duke@1 196 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 197
duke@1 198 /** A navigator class for collecting the free variables accessed
duke@1 199 * from a local class.
duke@1 200 * There is only one case; all other cases simply traverse down the tree.
duke@1 201 */
duke@1 202 class FreeVarCollector extends TreeScanner {
duke@1 203
duke@1 204 /** The owner of the local class.
duke@1 205 */
duke@1 206 Symbol owner;
duke@1 207
duke@1 208 /** The local class.
duke@1 209 */
duke@1 210 ClassSymbol clazz;
duke@1 211
duke@1 212 /** The list of owner's variables accessed from within the local class,
duke@1 213 * without any duplicates.
duke@1 214 */
duke@1 215 List<VarSymbol> fvs;
duke@1 216
duke@1 217 FreeVarCollector(ClassSymbol clazz) {
duke@1 218 this.clazz = clazz;
duke@1 219 this.owner = clazz.owner;
duke@1 220 this.fvs = List.nil();
duke@1 221 }
duke@1 222
duke@1 223 /** Add free variable to fvs list unless it is already there.
duke@1 224 */
duke@1 225 private void addFreeVar(VarSymbol v) {
duke@1 226 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 227 if (l.head == v) return;
duke@1 228 fvs = fvs.prepend(v);
duke@1 229 }
duke@1 230
duke@1 231 /** Add all free variables of class c to fvs list
duke@1 232 * unless they are already there.
duke@1 233 */
duke@1 234 private void addFreeVars(ClassSymbol c) {
duke@1 235 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 236 if (fvs != null) {
duke@1 237 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 238 addFreeVar(l.head);
duke@1 239 }
duke@1 240 }
duke@1 241 }
duke@1 242
duke@1 243 /** If tree refers to a variable in owner of local class, add it to
duke@1 244 * free variables list.
duke@1 245 */
duke@1 246 public void visitIdent(JCIdent tree) {
duke@1 247 result = tree;
duke@1 248 visitSymbol(tree.sym);
duke@1 249 }
duke@1 250 // where
duke@1 251 private void visitSymbol(Symbol _sym) {
duke@1 252 Symbol sym = _sym;
duke@1 253 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 254 while (sym != null && sym.owner != owner)
duke@1 255 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 256 if (sym != null && sym.owner == owner) {
duke@1 257 VarSymbol v = (VarSymbol)sym;
duke@1 258 if (v.getConstValue() == null) {
duke@1 259 addFreeVar(v);
duke@1 260 }
duke@1 261 } else {
duke@1 262 if (outerThisStack.head != null &&
duke@1 263 outerThisStack.head != _sym)
duke@1 264 visitSymbol(outerThisStack.head);
duke@1 265 }
duke@1 266 }
duke@1 267 }
duke@1 268
duke@1 269 /** If tree refers to a class instance creation expression
duke@1 270 * add all free variables of the freshly created class.
duke@1 271 */
duke@1 272 public void visitNewClass(JCNewClass tree) {
duke@1 273 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 274 addFreeVars(c);
duke@1 275 if (tree.encl == null &&
duke@1 276 c.hasOuterInstance() &&
duke@1 277 outerThisStack.head != null)
duke@1 278 visitSymbol(outerThisStack.head);
duke@1 279 super.visitNewClass(tree);
duke@1 280 }
duke@1 281
duke@1 282 /** If tree refers to a qualified this or super expression
duke@1 283 * for anything but the current class, add the outer this
duke@1 284 * stack as a free variable.
duke@1 285 */
duke@1 286 public void visitSelect(JCFieldAccess tree) {
duke@1 287 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 288 tree.selected.type.tsym != clazz &&
duke@1 289 outerThisStack.head != null)
duke@1 290 visitSymbol(outerThisStack.head);
duke@1 291 super.visitSelect(tree);
duke@1 292 }
duke@1 293
duke@1 294 /** If tree refers to a superclass constructor call,
duke@1 295 * add all free variables of the superclass.
duke@1 296 */
duke@1 297 public void visitApply(JCMethodInvocation tree) {
duke@1 298 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 299 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
duke@1 300 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 301 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 302 if (c.hasOuterInstance() &&
duke@1 303 tree.meth.getTag() != JCTree.SELECT &&
duke@1 304 outerThisStack.head != null)
duke@1 305 visitSymbol(outerThisStack.head);
duke@1 306 }
duke@1 307 super.visitApply(tree);
duke@1 308 }
duke@1 309 }
duke@1 310
duke@1 311 /** Return the variables accessed from within a local class, which
duke@1 312 * are declared in the local class' owner.
duke@1 313 * (in reverse order of first access).
duke@1 314 */
duke@1 315 List<VarSymbol> freevars(ClassSymbol c) {
duke@1 316 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 317 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 318 if (fvs == null) {
duke@1 319 FreeVarCollector collector = new FreeVarCollector(c);
duke@1 320 collector.scan(classDef(c));
duke@1 321 fvs = collector.fvs;
duke@1 322 freevarCache.put(c, fvs);
duke@1 323 }
duke@1 324 return fvs;
duke@1 325 } else {
duke@1 326 return List.nil();
duke@1 327 }
duke@1 328 }
duke@1 329
duke@1 330 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 331
duke@1 332 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 333 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 334 if (map == null)
duke@1 335 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 336 return map;
duke@1 337 }
duke@1 338
duke@1 339 /** This map gives a translation table to be used for enum
duke@1 340 * switches.
duke@1 341 *
duke@1 342 * <p>For each enum that appears as the type of a switch
duke@1 343 * expression, we maintain an EnumMapping to assist in the
duke@1 344 * translation, as exemplified by the following example:
duke@1 345 *
duke@1 346 * <p>we translate
duke@1 347 * <pre>
duke@1 348 * switch(colorExpression) {
duke@1 349 * case red: stmt1;
duke@1 350 * case green: stmt2;
duke@1 351 * }
duke@1 352 * </pre>
duke@1 353 * into
duke@1 354 * <pre>
duke@1 355 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 356 * case 1: stmt1;
duke@1 357 * case 2: stmt2
duke@1 358 * }
duke@1 359 * </pre>
duke@1 360 * with the auxilliary table intialized as follows:
duke@1 361 * <pre>
duke@1 362 * class Outer$0 {
duke@1 363 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 364 * static {
duke@1 365 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 366 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 367 * }
duke@1 368 * }
duke@1 369 * </pre>
duke@1 370 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 371 */
duke@1 372 class EnumMapping {
duke@1 373 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 374 this.forEnum = forEnum;
duke@1 375 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 376 this.pos = pos;
duke@1 377 Name varName = names
duke@1 378 .fromString(target.syntheticNameChar() +
duke@1 379 "SwitchMap" +
duke@1 380 target.syntheticNameChar() +
duke@1 381 writer.xClassName(forEnum.type).toString()
duke@1 382 .replace('/', '.')
duke@1 383 .replace('.', target.syntheticNameChar()));
duke@1 384 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 385 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 386 varName,
duke@1 387 new ArrayType(syms.intType, syms.arrayClass),
duke@1 388 outerCacheClass);
duke@1 389 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 390 }
duke@1 391
duke@1 392 DiagnosticPosition pos = null;
duke@1 393
duke@1 394 // the next value to use
duke@1 395 int next = 1; // 0 (unused map elements) go to the default label
duke@1 396
duke@1 397 // the enum for which this is a map
duke@1 398 final TypeSymbol forEnum;
duke@1 399
duke@1 400 // the field containing the map
duke@1 401 final VarSymbol mapVar;
duke@1 402
duke@1 403 // the mapped values
duke@1 404 final Map<VarSymbol,Integer> values;
duke@1 405
duke@1 406 JCLiteral forConstant(VarSymbol v) {
duke@1 407 Integer result = values.get(v);
duke@1 408 if (result == null)
duke@1 409 values.put(v, result = next++);
duke@1 410 return make.Literal(result);
duke@1 411 }
duke@1 412
duke@1 413 // generate the field initializer for the map
duke@1 414 void translate() {
duke@1 415 make.at(pos.getStartPosition());
duke@1 416 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 417
duke@1 418 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 419 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 420 names.values,
duke@1 421 forEnum.type,
duke@1 422 List.<Type>nil());
duke@1 423 JCExpression size = make // Color.values().length
duke@1 424 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 425 syms.lengthVar);
duke@1 426 JCExpression mapVarInit = make
duke@1 427 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 428 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 429
duke@1 430 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 431 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 432 Symbol ordinalMethod = lookupMethod(pos,
duke@1 433 names.ordinal,
duke@1 434 forEnum.type,
duke@1 435 List.<Type>nil());
duke@1 436 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 437 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 438 syms.noSuchFieldErrorType,
duke@1 439 syms.noSymbol),
duke@1 440 null),
duke@1 441 make.Block(0, List.<JCStatement>nil())));
duke@1 442 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 443 VarSymbol enumerator = e.getKey();
duke@1 444 Integer mappedValue = e.getValue();
duke@1 445 JCExpression assign = make
duke@1 446 .Assign(make.Indexed(mapVar,
duke@1 447 make.App(make.Select(make.QualIdent(enumerator),
duke@1 448 ordinalMethod))),
duke@1 449 make.Literal(mappedValue))
duke@1 450 .setType(syms.intType);
duke@1 451 JCStatement exec = make.Exec(assign);
duke@1 452 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 453 stmts.append(_try);
duke@1 454 }
duke@1 455
duke@1 456 owner.defs = owner.defs
duke@1 457 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 458 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 459 }
duke@1 460 }
duke@1 461
duke@1 462
duke@1 463 /**************************************************************************
duke@1 464 * Tree building blocks
duke@1 465 *************************************************************************/
duke@1 466
duke@1 467 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 468 * pos as make_pos, for use in diagnostics.
duke@1 469 **/
duke@1 470 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 471 make_pos = pos;
duke@1 472 return make.at(pos);
duke@1 473 }
duke@1 474
duke@1 475 /** Make an attributed tree representing a literal. This will be an
duke@1 476 * Ident node in the case of boolean literals, a Literal node in all
duke@1 477 * other cases.
duke@1 478 * @param type The literal's type.
duke@1 479 * @param value The literal's value.
duke@1 480 */
duke@1 481 JCExpression makeLit(Type type, Object value) {
duke@1 482 return make.Literal(type.tag, value).setType(type.constType(value));
duke@1 483 }
duke@1 484
duke@1 485 /** Make an attributed tree representing null.
duke@1 486 */
duke@1 487 JCExpression makeNull() {
duke@1 488 return makeLit(syms.botType, null);
duke@1 489 }
duke@1 490
duke@1 491 /** Make an attributed class instance creation expression.
duke@1 492 * @param ctype The class type.
duke@1 493 * @param args The constructor arguments.
duke@1 494 */
duke@1 495 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 496 JCNewClass tree = make.NewClass(null,
duke@1 497 null, make.QualIdent(ctype.tsym), args, null);
duke@1 498 tree.constructor = rs.resolveConstructor(
duke@1 499 make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
duke@1 500 tree.type = ctype;
duke@1 501 return tree;
duke@1 502 }
duke@1 503
duke@1 504 /** Make an attributed unary expression.
duke@1 505 * @param optag The operators tree tag.
duke@1 506 * @param arg The operator's argument.
duke@1 507 */
duke@1 508 JCUnary makeUnary(int optag, JCExpression arg) {
duke@1 509 JCUnary tree = make.Unary(optag, arg);
duke@1 510 tree.operator = rs.resolveUnaryOperator(
duke@1 511 make_pos, optag, attrEnv, arg.type);
duke@1 512 tree.type = tree.operator.type.getReturnType();
duke@1 513 return tree;
duke@1 514 }
duke@1 515
duke@1 516 /** Make an attributed binary expression.
duke@1 517 * @param optag The operators tree tag.
duke@1 518 * @param lhs The operator's left argument.
duke@1 519 * @param rhs The operator's right argument.
duke@1 520 */
duke@1 521 JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
duke@1 522 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 523 tree.operator = rs.resolveBinaryOperator(
duke@1 524 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 525 tree.type = tree.operator.type.getReturnType();
duke@1 526 return tree;
duke@1 527 }
duke@1 528
duke@1 529 /** Make an attributed assignop expression.
duke@1 530 * @param optag The operators tree tag.
duke@1 531 * @param lhs The operator's left argument.
duke@1 532 * @param rhs The operator's right argument.
duke@1 533 */
duke@1 534 JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
duke@1 535 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 536 tree.operator = rs.resolveBinaryOperator(
duke@1 537 make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
duke@1 538 tree.type = lhs.type;
duke@1 539 return tree;
duke@1 540 }
duke@1 541
duke@1 542 /** Convert tree into string object, unless it has already a
duke@1 543 * reference type..
duke@1 544 */
duke@1 545 JCExpression makeString(JCExpression tree) {
duke@1 546 if (tree.type.tag >= CLASS) {
duke@1 547 return tree;
duke@1 548 } else {
duke@1 549 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 550 names.valueOf,
duke@1 551 syms.stringType,
duke@1 552 List.of(tree.type));
duke@1 553 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 554 }
duke@1 555 }
duke@1 556
duke@1 557 /** Create an empty anonymous class definition and enter and complete
duke@1 558 * its symbol. Return the class definition's symbol.
duke@1 559 * and create
duke@1 560 * @param flags The class symbol's flags
duke@1 561 * @param owner The class symbol's owner
duke@1 562 */
duke@1 563 ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
duke@1 564 // Create class symbol.
duke@1 565 ClassSymbol c = reader.defineClass(names.empty, owner);
duke@1 566 c.flatname = chk.localClassName(c);
duke@1 567 c.sourcefile = owner.sourcefile;
duke@1 568 c.completer = null;
duke@1 569 c.members_field = new Scope(c);
duke@1 570 c.flags_field = flags;
duke@1 571 ClassType ctype = (ClassType) c.type;
duke@1 572 ctype.supertype_field = syms.objectType;
duke@1 573 ctype.interfaces_field = List.nil();
duke@1 574
duke@1 575 JCClassDecl odef = classDef(owner);
duke@1 576
duke@1 577 // Enter class symbol in owner scope and compiled table.
duke@1 578 enterSynthetic(odef.pos(), c, owner.members());
duke@1 579 chk.compiled.put(c.flatname, c);
duke@1 580
duke@1 581 // Create class definition tree.
duke@1 582 JCClassDecl cdef = make.ClassDef(
duke@1 583 make.Modifiers(flags), names.empty,
duke@1 584 List.<JCTypeParameter>nil(),
duke@1 585 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 586 cdef.sym = c;
duke@1 587 cdef.type = c.type;
duke@1 588
duke@1 589 // Append class definition tree to owner's definitions.
duke@1 590 odef.defs = odef.defs.prepend(cdef);
duke@1 591
duke@1 592 return c;
duke@1 593 }
duke@1 594
duke@1 595 /**************************************************************************
duke@1 596 * Symbol manipulation utilities
duke@1 597 *************************************************************************/
duke@1 598
duke@1 599 /** Report a conflict between a user symbol and a synthetic symbol.
duke@1 600 */
duke@1 601 private void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 602 if (!sym.type.isErroneous()) {
duke@1 603 log.error(pos, "synthetic.name.conflict", sym, sym.location());
duke@1 604 }
duke@1 605 }
duke@1 606
duke@1 607 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 608 * @param pos Position for error reporting.
duke@1 609 * @param sym The symbol.
duke@1 610 * @param s The scope.
duke@1 611 */
duke@1 612 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 613 if (sym.name != names.error && sym.name != names.empty) {
duke@1 614 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 615 if (sym != e.sym && sym.kind == e.sym.kind) {
duke@1 616 // VM allows methods and variables with differing types
duke@1 617 if ((sym.kind & (MTH|VAR)) != 0 &&
duke@1 618 !types.erasure(sym.type).equals(types.erasure(e.sym.type)))
duke@1 619 continue;
duke@1 620 duplicateError(pos, e.sym);
duke@1 621 break;
duke@1 622 }
duke@1 623 }
duke@1 624 }
duke@1 625 s.enter(sym);
duke@1 626 }
duke@1 627
duke@1 628 /** Look up a synthetic name in a given scope.
duke@1 629 * @param scope The scope.
duke@1 630 * @param name The name.
duke@1 631 */
duke@1 632 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 633 Symbol sym = s.lookup(name).sym;
duke@1 634 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 635 }
duke@1 636
duke@1 637 /** Look up a method in a given scope.
duke@1 638 */
duke@1 639 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
duke@1 640 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
duke@1 641 }
duke@1 642
duke@1 643 /** Look up a constructor.
duke@1 644 */
duke@1 645 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 646 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 647 }
duke@1 648
duke@1 649 /** Look up a field.
duke@1 650 */
duke@1 651 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 652 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 653 }
duke@1 654
duke@1 655 /**************************************************************************
duke@1 656 * Access methods
duke@1 657 *************************************************************************/
duke@1 658
duke@1 659 /** Access codes for dereferencing, assignment,
duke@1 660 * and pre/post increment/decrement.
duke@1 661 * Access codes for assignment operations are determined by method accessCode
duke@1 662 * below.
duke@1 663 *
duke@1 664 * All access codes for accesses to the current class are even.
duke@1 665 * If a member of the superclass should be accessed instead (because
duke@1 666 * access was via a qualified super), add one to the corresponding code
duke@1 667 * for the current class, making the number odd.
duke@1 668 * This numbering scheme is used by the backend to decide whether
duke@1 669 * to issue an invokevirtual or invokespecial call.
duke@1 670 *
duke@1 671 * @see Gen.visitSelect(Select tree)
duke@1 672 */
duke@1 673 private static final int
duke@1 674 DEREFcode = 0,
duke@1 675 ASSIGNcode = 2,
duke@1 676 PREINCcode = 4,
duke@1 677 PREDECcode = 6,
duke@1 678 POSTINCcode = 8,
duke@1 679 POSTDECcode = 10,
duke@1 680 FIRSTASGOPcode = 12;
duke@1 681
duke@1 682 /** Number of access codes
duke@1 683 */
duke@1 684 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 685
duke@1 686 /** A mapping from symbols to their access numbers.
duke@1 687 */
duke@1 688 private Map<Symbol,Integer> accessNums;
duke@1 689
duke@1 690 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 691 * access code.
duke@1 692 */
duke@1 693 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 694
duke@1 695 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 696 */
duke@1 697 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 698
duke@1 699 /** A queue for all accessed symbols.
duke@1 700 */
duke@1 701 private ListBuffer<Symbol> accessed;
duke@1 702
duke@1 703 /** Map bytecode of binary operation to access code of corresponding
duke@1 704 * assignment operation. This is always an even number.
duke@1 705 */
duke@1 706 private static int accessCode(int bytecode) {
duke@1 707 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 708 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 709 else if (bytecode == ByteCodes.string_add)
duke@1 710 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 711 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 712 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 713 else
duke@1 714 return -1;
duke@1 715 }
duke@1 716
duke@1 717 /** return access code for identifier,
duke@1 718 * @param tree The tree representing the identifier use.
duke@1 719 * @param enclOp The closest enclosing operation node of tree,
duke@1 720 * null if tree is not a subtree of an operation.
duke@1 721 */
duke@1 722 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 723 if (enclOp == null)
duke@1 724 return DEREFcode;
duke@1 725 else if (enclOp.getTag() == JCTree.ASSIGN &&
duke@1 726 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 727 return ASSIGNcode;
duke@1 728 else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
duke@1 729 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
duke@1 730 return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
duke@1 731 else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
duke@1 732 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 733 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 734 else
duke@1 735 return DEREFcode;
duke@1 736 }
duke@1 737
duke@1 738 /** Return binary operator that corresponds to given access code.
duke@1 739 */
duke@1 740 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 741 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 742 e != null;
duke@1 743 e = e.sibling) {
duke@1 744 if (e.sym instanceof OperatorSymbol) {
duke@1 745 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 746 if (accessCode(op.opcode) == acode) return op;
duke@1 747 }
duke@1 748 }
duke@1 749 return null;
duke@1 750 }
duke@1 751
duke@1 752 /** Return tree tag for assignment operation corresponding
duke@1 753 * to given binary operator.
duke@1 754 */
duke@1 755 private static int treeTag(OperatorSymbol operator) {
duke@1 756 switch (operator.opcode) {
duke@1 757 case ByteCodes.ior: case ByteCodes.lor:
duke@1 758 return JCTree.BITOR_ASG;
duke@1 759 case ByteCodes.ixor: case ByteCodes.lxor:
duke@1 760 return JCTree.BITXOR_ASG;
duke@1 761 case ByteCodes.iand: case ByteCodes.land:
duke@1 762 return JCTree.BITAND_ASG;
duke@1 763 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 764 case ByteCodes.ishll: case ByteCodes.lshll:
duke@1 765 return JCTree.SL_ASG;
duke@1 766 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 767 case ByteCodes.ishrl: case ByteCodes.lshrl:
duke@1 768 return JCTree.SR_ASG;
duke@1 769 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 770 case ByteCodes.iushrl: case ByteCodes.lushrl:
duke@1 771 return JCTree.USR_ASG;
duke@1 772 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 773 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 774 case ByteCodes.string_add:
duke@1 775 return JCTree.PLUS_ASG;
duke@1 776 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 777 case ByteCodes.fsub: case ByteCodes.dsub:
duke@1 778 return JCTree.MINUS_ASG;
duke@1 779 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 780 case ByteCodes.fmul: case ByteCodes.dmul:
duke@1 781 return JCTree.MUL_ASG;
duke@1 782 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 783 case ByteCodes.fdiv: case ByteCodes.ddiv:
duke@1 784 return JCTree.DIV_ASG;
duke@1 785 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 786 case ByteCodes.fmod: case ByteCodes.dmod:
duke@1 787 return JCTree.MOD_ASG;
duke@1 788 default:
duke@1 789 throw new AssertionError();
duke@1 790 }
duke@1 791 }
duke@1 792
duke@1 793 /** The name of the access method with number `anum' and access code `acode'.
duke@1 794 */
duke@1 795 Name accessName(int anum, int acode) {
duke@1 796 return names.fromString(
duke@1 797 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 798 }
duke@1 799
duke@1 800 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 801 * @param sym The accessed private symbol.
duke@1 802 * @param tree The accessing tree.
duke@1 803 * @param enclOp The closest enclosing operation node of tree,
duke@1 804 * null if tree is not a subtree of an operation.
duke@1 805 * @param protAccess Is access to a protected symbol in another
duke@1 806 * package?
duke@1 807 * @param refSuper Is access via a (qualified) C.super?
duke@1 808 */
duke@1 809 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 810 boolean protAccess, boolean refSuper) {
duke@1 811 ClassSymbol accOwner = refSuper && protAccess
duke@1 812 // For access via qualified super (T.super.x), place the
duke@1 813 // access symbol on T.
duke@1 814 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 815 // Otherwise pretend that the owner of an accessed
duke@1 816 // protected symbol is the enclosing class of the current
duke@1 817 // class which is a subclass of the symbol's owner.
duke@1 818 : accessClass(sym, protAccess, tree);
duke@1 819
duke@1 820 Symbol vsym = sym;
duke@1 821 if (sym.owner != accOwner) {
duke@1 822 vsym = sym.clone(accOwner);
duke@1 823 actualSymbols.put(vsym, sym);
duke@1 824 }
duke@1 825
duke@1 826 Integer anum // The access number of the access method.
duke@1 827 = accessNums.get(vsym);
duke@1 828 if (anum == null) {
duke@1 829 anum = accessed.length();
duke@1 830 accessNums.put(vsym, anum);
duke@1 831 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 832 accessed.append(vsym);
duke@1 833 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 834 }
duke@1 835
duke@1 836 int acode; // The access code of the access method.
duke@1 837 List<Type> argtypes; // The argument types of the access method.
duke@1 838 Type restype; // The result type of the access method.
duke@1 839 List<Type> thrown; // The thrown execeptions of the access method.
duke@1 840 switch (vsym.kind) {
duke@1 841 case VAR:
duke@1 842 acode = accessCode(tree, enclOp);
duke@1 843 if (acode >= FIRSTASGOPcode) {
duke@1 844 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 845 if (operator.opcode == string_add)
duke@1 846 argtypes = List.of(syms.objectType);
duke@1 847 else
duke@1 848 argtypes = operator.type.getParameterTypes().tail;
duke@1 849 } else if (acode == ASSIGNcode)
duke@1 850 argtypes = List.of(vsym.erasure(types));
duke@1 851 else
duke@1 852 argtypes = List.nil();
duke@1 853 restype = vsym.erasure(types);
duke@1 854 thrown = List.nil();
duke@1 855 break;
duke@1 856 case MTH:
duke@1 857 acode = DEREFcode;
duke@1 858 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 859 restype = vsym.erasure(types).getReturnType();
duke@1 860 thrown = vsym.type.getThrownTypes();
duke@1 861 break;
duke@1 862 default:
duke@1 863 throw new AssertionError();
duke@1 864 }
duke@1 865
duke@1 866 // For references via qualified super, increment acode by one,
duke@1 867 // making it odd.
duke@1 868 if (protAccess && refSuper) acode++;
duke@1 869
duke@1 870 // Instance access methods get instance as first parameter.
duke@1 871 // For protected symbols this needs to be the instance as a member
duke@1 872 // of the type containing the accessed symbol, not the class
duke@1 873 // containing the access method.
duke@1 874 if ((vsym.flags() & STATIC) == 0) {
duke@1 875 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 876 }
duke@1 877 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 878 MethodSymbol accessor = accessors[acode];
duke@1 879 if (accessor == null) {
duke@1 880 accessor = new MethodSymbol(
duke@1 881 STATIC | SYNTHETIC,
duke@1 882 accessName(anum.intValue(), acode),
duke@1 883 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 884 accOwner);
duke@1 885 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 886 accessors[acode] = accessor;
duke@1 887 }
duke@1 888 return accessor;
duke@1 889 }
duke@1 890
duke@1 891 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 892 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 893 * sym is static.
duke@1 894 * @param sym The accessed symbol.
duke@1 895 */
duke@1 896 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 897 return (sym.flags() & STATIC) != 0
duke@1 898 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 899 : makeOwnerThis(pos, sym, true);
duke@1 900 }
duke@1 901
duke@1 902 /** Do we need an access method to reference private symbol?
duke@1 903 */
duke@1 904 boolean needsPrivateAccess(Symbol sym) {
duke@1 905 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 906 return false;
duke@1 907 } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
duke@1 908 // private constructor in local class: relax protection
duke@1 909 sym.flags_field &= ~PRIVATE;
duke@1 910 return false;
duke@1 911 } else {
duke@1 912 return true;
duke@1 913 }
duke@1 914 }
duke@1 915
duke@1 916 /** Do we need an access method to reference symbol in other package?
duke@1 917 */
duke@1 918 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 919 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 920 sym.owner.owner == currentClass.owner || // fast special case
duke@1 921 sym.packge() == currentClass.packge())
duke@1 922 return false;
duke@1 923 if (!currentClass.isSubClass(sym.owner, types))
duke@1 924 return true;
duke@1 925 if ((sym.flags() & STATIC) != 0 ||
duke@1 926 tree.getTag() != JCTree.SELECT ||
duke@1 927 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 928 return false;
duke@1 929 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 930 }
duke@1 931
duke@1 932 /** The class in which an access method for given symbol goes.
duke@1 933 * @param sym The access symbol
duke@1 934 * @param protAccess Is access to a protected symbol in another
duke@1 935 * package?
duke@1 936 */
duke@1 937 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 938 if (protAccess) {
duke@1 939 Symbol qualifier = null;
duke@1 940 ClassSymbol c = currentClass;
duke@1 941 if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
duke@1 942 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 943 while (!qualifier.isSubClass(c, types)) {
duke@1 944 c = c.owner.enclClass();
duke@1 945 }
duke@1 946 return c;
duke@1 947 } else {
duke@1 948 while (!c.isSubClass(sym.owner, types)) {
duke@1 949 c = c.owner.enclClass();
duke@1 950 }
duke@1 951 }
duke@1 952 return c;
duke@1 953 } else {
duke@1 954 // the symbol is private
duke@1 955 return sym.owner.enclClass();
duke@1 956 }
duke@1 957 }
duke@1 958
duke@1 959 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 960 * @param sym The accessed symbol.
duke@1 961 * @param tree The tree referring to the symbol.
duke@1 962 * @param enclOp The closest enclosing operation node of tree,
duke@1 963 * null if tree is not a subtree of an operation.
duke@1 964 * @param refSuper Is access via a (qualified) C.super?
duke@1 965 */
duke@1 966 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 967 // Access a free variable via its proxy, or its proxy's proxy
duke@1 968 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 969 sym.owner.enclClass() != currentClass) {
duke@1 970 // A constant is replaced by its constant value.
duke@1 971 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 972 if (cv != null) {
duke@1 973 make.at(tree.pos);
duke@1 974 return makeLit(sym.type, cv);
duke@1 975 }
duke@1 976 // Otherwise replace the variable by its proxy.
duke@1 977 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 978 assert sym != null && (sym.flags_field & FINAL) != 0;
duke@1 979 tree = make.at(tree.pos).Ident(sym);
duke@1 980 }
duke@1 981 JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
duke@1 982 switch (sym.kind) {
duke@1 983 case TYP:
duke@1 984 if (sym.owner.kind != PCK) {
duke@1 985 // Convert type idents to
duke@1 986 // <flat name> or <package name> . <flat name>
duke@1 987 Name flatname = Convert.shortName(sym.flatName());
duke@1 988 while (base != null &&
duke@1 989 TreeInfo.symbol(base) != null &&
duke@1 990 TreeInfo.symbol(base).kind != PCK) {
duke@1 991 base = (base.getTag() == JCTree.SELECT)
duke@1 992 ? ((JCFieldAccess) base).selected
duke@1 993 : null;
duke@1 994 }
duke@1 995 if (tree.getTag() == JCTree.IDENT) {
duke@1 996 ((JCIdent) tree).name = flatname;
duke@1 997 } else if (base == null) {
duke@1 998 tree = make.at(tree.pos).Ident(sym);
duke@1 999 ((JCIdent) tree).name = flatname;
duke@1 1000 } else {
duke@1 1001 ((JCFieldAccess) tree).selected = base;
duke@1 1002 ((JCFieldAccess) tree).name = flatname;
duke@1 1003 }
duke@1 1004 }
duke@1 1005 break;
duke@1 1006 case MTH: case VAR:
duke@1 1007 if (sym.owner.kind == TYP) {
duke@1 1008
duke@1 1009 // Access methods are required for
duke@1 1010 // - private members,
duke@1 1011 // - protected members in a superclass of an
duke@1 1012 // enclosing class contained in another package.
duke@1 1013 // - all non-private members accessed via a qualified super.
duke@1 1014 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1015 || needsProtectedAccess(sym, tree);
duke@1 1016 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1017
duke@1 1018 // A base has to be supplied for
duke@1 1019 // - simple identifiers accessing variables in outer classes.
duke@1 1020 boolean baseReq =
duke@1 1021 base == null &&
duke@1 1022 sym.owner != syms.predefClass &&
duke@1 1023 !sym.isMemberOf(currentClass, types);
duke@1 1024
duke@1 1025 if (accReq || baseReq) {
duke@1 1026 make.at(tree.pos);
duke@1 1027
duke@1 1028 // Constants are replaced by their constant value.
duke@1 1029 if (sym.kind == VAR) {
duke@1 1030 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1031 if (cv != null) return makeLit(sym.type, cv);
duke@1 1032 }
duke@1 1033
duke@1 1034 // Private variables and methods are replaced by calls
duke@1 1035 // to their access methods.
duke@1 1036 if (accReq) {
duke@1 1037 List<JCExpression> args = List.nil();
duke@1 1038 if ((sym.flags() & STATIC) == 0) {
duke@1 1039 // Instance access methods get instance
duke@1 1040 // as first parameter.
duke@1 1041 if (base == null)
duke@1 1042 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1043 args = args.prepend(base);
duke@1 1044 base = null; // so we don't duplicate code
duke@1 1045 }
duke@1 1046 Symbol access = accessSymbol(sym, tree,
duke@1 1047 enclOp, protAccess,
duke@1 1048 refSuper);
duke@1 1049 JCExpression receiver = make.Select(
duke@1 1050 base != null ? base : make.QualIdent(access.owner),
duke@1 1051 access);
duke@1 1052 return make.App(receiver, args);
duke@1 1053
duke@1 1054 // Other accesses to members of outer classes get a
duke@1 1055 // qualifier.
duke@1 1056 } else if (baseReq) {
duke@1 1057 return make.at(tree.pos).Select(
duke@1 1058 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1059 }
duke@1 1060 }
duke@1 1061 }
duke@1 1062 }
duke@1 1063 return tree;
duke@1 1064 }
duke@1 1065
duke@1 1066 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1067 * @param tree The identifier tree.
duke@1 1068 */
duke@1 1069 JCExpression access(JCExpression tree) {
duke@1 1070 Symbol sym = TreeInfo.symbol(tree);
duke@1 1071 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1072 }
duke@1 1073
duke@1 1074 /** Return access constructor for a private constructor,
duke@1 1075 * or the constructor itself, if no access constructor is needed.
duke@1 1076 * @param pos The position to report diagnostics, if any.
duke@1 1077 * @param constr The private constructor.
duke@1 1078 */
duke@1 1079 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1080 if (needsPrivateAccess(constr)) {
duke@1 1081 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1082 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1083 if (aconstr == null) {
duke@1 1084 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1085 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1086 argtypes = argtypes
duke@1 1087 .prepend(syms.intType)
duke@1 1088 .prepend(syms.stringType);
duke@1 1089 aconstr = new MethodSymbol(
duke@1 1090 SYNTHETIC,
duke@1 1091 names.init,
duke@1 1092 new MethodType(
duke@1 1093 argtypes.append(
duke@1 1094 accessConstructorTag().erasure(types)),
duke@1 1095 constr.type.getReturnType(),
duke@1 1096 constr.type.getThrownTypes(),
duke@1 1097 syms.methodClass),
duke@1 1098 accOwner);
duke@1 1099 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1100 accessConstrs.put(constr, aconstr);
duke@1 1101 accessed.append(constr);
duke@1 1102 }
duke@1 1103 return aconstr;
duke@1 1104 } else {
duke@1 1105 return constr;
duke@1 1106 }
duke@1 1107 }
duke@1 1108
duke@1 1109 /** Return an anonymous class nested in this toplevel class.
duke@1 1110 */
duke@1 1111 ClassSymbol accessConstructorTag() {
duke@1 1112 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1113 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1114 target.syntheticNameChar() +
duke@1 1115 "1");
duke@1 1116 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1117 if (ctag == null)
duke@1 1118 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
duke@1 1119 return ctag;
duke@1 1120 }
duke@1 1121
duke@1 1122 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1123 * @param sym The symbol.
duke@1 1124 */
duke@1 1125 void makeAccessible(Symbol sym) {
duke@1 1126 JCClassDecl cdef = classDef(sym.owner.enclClass());
duke@1 1127 assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
duke@1 1128 if (sym.name == names.init) {
duke@1 1129 cdef.defs = cdef.defs.prepend(
duke@1 1130 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1131 } else {
duke@1 1132 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1133 for (int i = 0; i < NCODES; i++) {
duke@1 1134 if (accessors[i] != null)
duke@1 1135 cdef.defs = cdef.defs.prepend(
duke@1 1136 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1137 }
duke@1 1138 }
duke@1 1139 }
duke@1 1140
duke@1 1141 /** Construct definition of an access method.
duke@1 1142 * @param pos The source code position of the definition.
duke@1 1143 * @param vsym The private or protected symbol.
duke@1 1144 * @param accessor The access method for the symbol.
duke@1 1145 * @param acode The access code.
duke@1 1146 */
duke@1 1147 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1148 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1149 currentClass = vsym.owner.enclClass();
duke@1 1150 make.at(pos);
duke@1 1151 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1152
duke@1 1153 // Find actual symbol
duke@1 1154 Symbol sym = actualSymbols.get(vsym);
duke@1 1155 if (sym == null) sym = vsym;
duke@1 1156
duke@1 1157 JCExpression ref; // The tree referencing the private symbol.
duke@1 1158 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1159 if ((sym.flags() & STATIC) != 0) {
duke@1 1160 ref = make.Ident(sym);
duke@1 1161 args = make.Idents(md.params);
duke@1 1162 } else {
duke@1 1163 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1164 args = make.Idents(md.params.tail);
duke@1 1165 }
duke@1 1166 JCStatement stat; // The statement accessing the private symbol.
duke@1 1167 if (sym.kind == VAR) {
duke@1 1168 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1169 int acode1 = acode - (acode & 1);
duke@1 1170
duke@1 1171 JCExpression expr; // The access method's return value.
duke@1 1172 switch (acode1) {
duke@1 1173 case DEREFcode:
duke@1 1174 expr = ref;
duke@1 1175 break;
duke@1 1176 case ASSIGNcode:
duke@1 1177 expr = make.Assign(ref, args.head);
duke@1 1178 break;
duke@1 1179 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
duke@1 1180 expr = makeUnary(
duke@1 1181 ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
duke@1 1182 break;
duke@1 1183 default:
duke@1 1184 expr = make.Assignop(
duke@1 1185 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1186 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1187 }
duke@1 1188 stat = make.Return(expr.setType(sym.type));
duke@1 1189 } else {
duke@1 1190 stat = make.Call(make.App(ref, args));
duke@1 1191 }
duke@1 1192 md.body = make.Block(0, List.of(stat));
duke@1 1193
duke@1 1194 // Make sure all parameters, result types and thrown exceptions
duke@1 1195 // are accessible.
duke@1 1196 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1197 l.head.vartype = access(l.head.vartype);
duke@1 1198 md.restype = access(md.restype);
duke@1 1199 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1200 l.head = access(l.head);
duke@1 1201
duke@1 1202 return md;
duke@1 1203 }
duke@1 1204
duke@1 1205 /** Construct definition of an access constructor.
duke@1 1206 * @param pos The source code position of the definition.
duke@1 1207 * @param constr The private constructor.
duke@1 1208 * @param accessor The access method for the constructor.
duke@1 1209 */
duke@1 1210 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1211 make.at(pos);
duke@1 1212 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1213 accessor.externalType(types),
duke@1 1214 null);
duke@1 1215 JCIdent callee = make.Ident(names._this);
duke@1 1216 callee.sym = constr;
duke@1 1217 callee.type = constr.type;
duke@1 1218 md.body =
duke@1 1219 make.Block(0, List.<JCStatement>of(
duke@1 1220 make.Call(
duke@1 1221 make.App(
duke@1 1222 callee,
duke@1 1223 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1224 return md;
duke@1 1225 }
duke@1 1226
duke@1 1227 /**************************************************************************
duke@1 1228 * Free variables proxies and this$n
duke@1 1229 *************************************************************************/
duke@1 1230
duke@1 1231 /** A scope containing all free variable proxies for currently translated
duke@1 1232 * class, as well as its this$n symbol (if needed).
duke@1 1233 * Proxy scopes are nested in the same way classes are.
duke@1 1234 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1235 * in an additional innermost scope, where they represent the constructor
duke@1 1236 * parameters.
duke@1 1237 */
duke@1 1238 Scope proxies;
duke@1 1239
duke@1 1240 /** A stack containing the this$n field of the currently translated
duke@1 1241 * classes (if needed) in innermost first order.
duke@1 1242 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1243 * in an additional innermost scope, where they represent the constructor
duke@1 1244 * parameters.
duke@1 1245 */
duke@1 1246 List<VarSymbol> outerThisStack;
duke@1 1247
duke@1 1248 /** The name of a free variable proxy.
duke@1 1249 */
duke@1 1250 Name proxyName(Name name) {
duke@1 1251 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1252 }
duke@1 1253
duke@1 1254 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1255 * @param pos The source code position of the definition.
duke@1 1256 * @param freevars The free variables.
duke@1 1257 * @param owner The class in which the definitions go.
duke@1 1258 */
duke@1 1259 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
duke@1 1260 long flags = FINAL | SYNTHETIC;
duke@1 1261 if (owner.kind == TYP &&
duke@1 1262 target.usePrivateSyntheticFields())
duke@1 1263 flags |= PRIVATE;
duke@1 1264 List<JCVariableDecl> defs = List.nil();
duke@1 1265 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1266 VarSymbol v = l.head;
duke@1 1267 VarSymbol proxy = new VarSymbol(
duke@1 1268 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1269 proxies.enter(proxy);
duke@1 1270 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1271 vd.vartype = access(vd.vartype);
duke@1 1272 defs = defs.prepend(vd);
duke@1 1273 }
duke@1 1274 return defs;
duke@1 1275 }
duke@1 1276
duke@1 1277 /** The name of a this$n field
duke@1 1278 * @param type The class referenced by the this$n field
duke@1 1279 */
duke@1 1280 Name outerThisName(Type type, Symbol owner) {
duke@1 1281 Type t = type.getEnclosingType();
duke@1 1282 int nestingLevel = 0;
duke@1 1283 while (t.tag == CLASS) {
duke@1 1284 t = t.getEnclosingType();
duke@1 1285 nestingLevel++;
duke@1 1286 }
duke@1 1287 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1288 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1289 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1290 return result;
duke@1 1291 }
duke@1 1292
duke@1 1293 /** Definition for this$n field.
duke@1 1294 * @param pos The source code position of the definition.
duke@1 1295 * @param owner The class in which the definition goes.
duke@1 1296 */
duke@1 1297 JCVariableDecl outerThisDef(int pos, Symbol owner) {
duke@1 1298 long flags = FINAL | SYNTHETIC;
duke@1 1299 if (owner.kind == TYP &&
duke@1 1300 target.usePrivateSyntheticFields())
duke@1 1301 flags |= PRIVATE;
duke@1 1302 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
duke@1 1303 VarSymbol outerThis = new VarSymbol(
duke@1 1304 flags, outerThisName(target, owner), target, owner);
duke@1 1305 outerThisStack = outerThisStack.prepend(outerThis);
duke@1 1306 JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
duke@1 1307 vd.vartype = access(vd.vartype);
duke@1 1308 return vd;
duke@1 1309 }
duke@1 1310
duke@1 1311 /** Return a list of trees that load the free variables in given list,
duke@1 1312 * in reverse order.
duke@1 1313 * @param pos The source code position to be used for the trees.
duke@1 1314 * @param freevars The list of free variables.
duke@1 1315 */
duke@1 1316 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1317 List<JCExpression> args = List.nil();
duke@1 1318 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1319 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1320 return args;
duke@1 1321 }
duke@1 1322 //where
duke@1 1323 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1324 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1325 }
duke@1 1326
duke@1 1327 /** Construct a tree simulating the expression <C.this>.
duke@1 1328 * @param pos The source code position to be used for the tree.
duke@1 1329 * @param c The qualifier class.
duke@1 1330 */
duke@1 1331 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1332 if (currentClass == c) {
duke@1 1333 // in this case, `this' works fine
duke@1 1334 return make.at(pos).This(c.erasure(types));
duke@1 1335 } else {
duke@1 1336 // need to go via this$n
duke@1 1337 return makeOuterThis(pos, c);
duke@1 1338 }
duke@1 1339 }
duke@1 1340
duke@1 1341 /** Construct a tree that represents the outer instance
duke@1 1342 * <C.this>. Never pick the current `this'.
duke@1 1343 * @param pos The source code position to be used for the tree.
duke@1 1344 * @param c The qualifier class.
duke@1 1345 */
duke@1 1346 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1347 List<VarSymbol> ots = outerThisStack;
duke@1 1348 if (ots.isEmpty()) {
duke@1 1349 log.error(pos, "no.encl.instance.of.type.in.scope", c);
duke@1 1350 assert false;
duke@1 1351 return makeNull();
duke@1 1352 }
duke@1 1353 VarSymbol ot = ots.head;
duke@1 1354 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1355 TypeSymbol otc = ot.type.tsym;
duke@1 1356 while (otc != c) {
duke@1 1357 do {
duke@1 1358 ots = ots.tail;
duke@1 1359 if (ots.isEmpty()) {
duke@1 1360 log.error(pos,
duke@1 1361 "no.encl.instance.of.type.in.scope",
duke@1 1362 c);
duke@1 1363 assert false; // should have been caught in Attr
duke@1 1364 return tree;
duke@1 1365 }
duke@1 1366 ot = ots.head;
duke@1 1367 } while (ot.owner != otc);
duke@1 1368 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1369 chk.earlyRefError(pos, c);
duke@1 1370 assert false; // should have been caught in Attr
duke@1 1371 return makeNull();
duke@1 1372 }
duke@1 1373 tree = access(make.at(pos).Select(tree, ot));
duke@1 1374 otc = ot.type.tsym;
duke@1 1375 }
duke@1 1376 return tree;
duke@1 1377 }
duke@1 1378
duke@1 1379 /** Construct a tree that represents the closest outer instance
duke@1 1380 * <C.this> such that the given symbol is a member of C.
duke@1 1381 * @param pos The source code position to be used for the tree.
duke@1 1382 * @param sym The accessed symbol.
duke@1 1383 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1384 * sym's owner, even if it doesn't contain sym
duke@1 1385 * due to hiding, overriding, or non-inheritance
duke@1 1386 * due to protection?
duke@1 1387 */
duke@1 1388 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1389 Symbol c = sym.owner;
duke@1 1390 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1391 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1392 // in this case, `this' works fine
duke@1 1393 return make.at(pos).This(c.erasure(types));
duke@1 1394 } else {
duke@1 1395 // need to go via this$n
duke@1 1396 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1397 }
duke@1 1398 }
duke@1 1399
duke@1 1400 /**
duke@1 1401 * Similar to makeOwnerThis but will never pick "this".
duke@1 1402 */
duke@1 1403 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1404 Symbol c = sym.owner;
duke@1 1405 List<VarSymbol> ots = outerThisStack;
duke@1 1406 if (ots.isEmpty()) {
duke@1 1407 log.error(pos, "no.encl.instance.of.type.in.scope", c);
duke@1 1408 assert false;
duke@1 1409 return makeNull();
duke@1 1410 }
duke@1 1411 VarSymbol ot = ots.head;
duke@1 1412 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1413 TypeSymbol otc = ot.type.tsym;
duke@1 1414 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1415 do {
duke@1 1416 ots = ots.tail;
duke@1 1417 if (ots.isEmpty()) {
duke@1 1418 log.error(pos,
duke@1 1419 "no.encl.instance.of.type.in.scope",
duke@1 1420 c);
duke@1 1421 assert false;
duke@1 1422 return tree;
duke@1 1423 }
duke@1 1424 ot = ots.head;
duke@1 1425 } while (ot.owner != otc);
duke@1 1426 tree = access(make.at(pos).Select(tree, ot));
duke@1 1427 otc = ot.type.tsym;
duke@1 1428 }
duke@1 1429 return tree;
duke@1 1430 }
duke@1 1431
duke@1 1432 /** Return tree simulating the assignment <this.name = name>, where
duke@1 1433 * name is the name of a free variable.
duke@1 1434 */
duke@1 1435 JCStatement initField(int pos, Name name) {
duke@1 1436 Scope.Entry e = proxies.lookup(name);
duke@1 1437 Symbol rhs = e.sym;
duke@1 1438 assert rhs.owner.kind == MTH;
duke@1 1439 Symbol lhs = e.next().sym;
duke@1 1440 assert rhs.owner.owner == lhs.owner;
duke@1 1441 make.at(pos);
duke@1 1442 return
duke@1 1443 make.Exec(
duke@1 1444 make.Assign(
duke@1 1445 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1446 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1447 }
duke@1 1448
duke@1 1449 /** Return tree simulating the assignment <this.this$n = this$n>.
duke@1 1450 */
duke@1 1451 JCStatement initOuterThis(int pos) {
duke@1 1452 VarSymbol rhs = outerThisStack.head;
duke@1 1453 assert rhs.owner.kind == MTH;
duke@1 1454 VarSymbol lhs = outerThisStack.tail.head;
duke@1 1455 assert rhs.owner.owner == lhs.owner;
duke@1 1456 make.at(pos);
duke@1 1457 return
duke@1 1458 make.Exec(
duke@1 1459 make.Assign(
duke@1 1460 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1461 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1462 }
duke@1 1463
duke@1 1464 /**************************************************************************
duke@1 1465 * Code for .class
duke@1 1466 *************************************************************************/
duke@1 1467
duke@1 1468 /** Return the symbol of a class to contain a cache of
duke@1 1469 * compiler-generated statics such as class$ and the
duke@1 1470 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1471 * (unless one already exists) and return its symbol. However,
duke@1 1472 * for backward compatibility in 1.4 and earlier we use the
duke@1 1473 * top-level class itself.
duke@1 1474 */
duke@1 1475 private ClassSymbol outerCacheClass() {
duke@1 1476 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1477 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1478 !target.useInnerCacheClass()) return clazz;
duke@1 1479 Scope s = clazz.members();
duke@1 1480 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1481 if (e.sym.kind == TYP &&
duke@1 1482 e.sym.name == names.empty &&
duke@1 1483 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
duke@1 1484 return makeEmptyClass(STATIC | SYNTHETIC, clazz);
duke@1 1485 }
duke@1 1486
duke@1 1487 /** Return symbol for "class$" method. If there is no method definition
duke@1 1488 * for class$, construct one as follows:
duke@1 1489 *
duke@1 1490 * class class$(String x0) {
duke@1 1491 * try {
duke@1 1492 * return Class.forName(x0);
duke@1 1493 * } catch (ClassNotFoundException x1) {
duke@1 1494 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1495 * }
duke@1 1496 * }
duke@1 1497 */
duke@1 1498 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1499 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1500 MethodSymbol classDollarSym =
duke@1 1501 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1502 outerCacheClass.members());
duke@1 1503 if (classDollarSym == null) {
duke@1 1504 classDollarSym = new MethodSymbol(
duke@1 1505 STATIC | SYNTHETIC,
duke@1 1506 classDollar,
duke@1 1507 new MethodType(
duke@1 1508 List.of(syms.stringType),
duke@1 1509 types.erasure(syms.classType),
duke@1 1510 List.<Type>nil(),
duke@1 1511 syms.methodClass),
duke@1 1512 outerCacheClass);
duke@1 1513 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1514
duke@1 1515 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1516 try {
duke@1 1517 md.body = classDollarSymBody(pos, md);
duke@1 1518 } catch (CompletionFailure ex) {
duke@1 1519 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1520 chk.completionError(pos, ex);
duke@1 1521 }
duke@1 1522 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1523 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1524 }
duke@1 1525 return classDollarSym;
duke@1 1526 }
duke@1 1527
duke@1 1528 /** Generate code for class$(String name). */
duke@1 1529 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1530 MethodSymbol classDollarSym = md.sym;
duke@1 1531 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1532
duke@1 1533 JCBlock returnResult;
duke@1 1534
duke@1 1535 // in 1.4.2 and above, we use
duke@1 1536 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1537 // which requires we cache the current loader in cl$
duke@1 1538 if (target.classLiteralsNoInit()) {
duke@1 1539 // clsym = "private static ClassLoader cl$"
duke@1 1540 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1541 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1542 syms.classLoaderType,
duke@1 1543 outerCacheClass);
duke@1 1544 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1545
duke@1 1546 // emit "private static ClassLoader cl$;"
duke@1 1547 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1548 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1549 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1550
duke@1 1551 // newcache := "new cache$1[0]"
duke@1 1552 JCNewArray newcache = make.
duke@1 1553 NewArray(make.Type(outerCacheClass.type),
duke@1 1554 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1555 null);
duke@1 1556 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1557 syms.arrayClass);
duke@1 1558
duke@1 1559 // forNameSym := java.lang.Class.forName(
duke@1 1560 // String s,boolean init,ClassLoader loader)
duke@1 1561 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1562 types.erasure(syms.classType),
duke@1 1563 List.of(syms.stringType,
duke@1 1564 syms.booleanType,
duke@1 1565 syms.classLoaderType));
duke@1 1566 // clvalue := "(cl$ == null) ?
duke@1 1567 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1568 JCExpression clvalue =
duke@1 1569 make.Conditional(
duke@1 1570 makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
duke@1 1571 make.Assign(
duke@1 1572 make.Ident(clsym),
duke@1 1573 makeCall(
duke@1 1574 makeCall(makeCall(newcache,
duke@1 1575 names.getClass,
duke@1 1576 List.<JCExpression>nil()),
duke@1 1577 names.getComponentType,
duke@1 1578 List.<JCExpression>nil()),
duke@1 1579 names.getClassLoader,
duke@1 1580 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 1581 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 1582
duke@1 1583 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 1584 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 1585 makeLit(syms.booleanType, 0),
duke@1 1586 clvalue);
duke@1 1587 returnResult = make.
duke@1 1588 Block(0, List.<JCStatement>of(make.
duke@1 1589 Call(make. // return
duke@1 1590 App(make.
duke@1 1591 Ident(forNameSym), args))));
duke@1 1592 } else {
duke@1 1593 // forNameSym := java.lang.Class.forName(String s)
duke@1 1594 Symbol forNameSym = lookupMethod(make_pos,
duke@1 1595 names.forName,
duke@1 1596 types.erasure(syms.classType),
duke@1 1597 List.of(syms.stringType));
duke@1 1598 // returnResult := "{ return Class.forName(param1); }"
duke@1 1599 returnResult = make.
duke@1 1600 Block(0, List.of(make.
duke@1 1601 Call(make. // return
duke@1 1602 App(make.
duke@1 1603 QualIdent(forNameSym),
duke@1 1604 List.<JCExpression>of(make.
duke@1 1605 Ident(md.params.
duke@1 1606 head.sym))))));
duke@1 1607 }
duke@1 1608
duke@1 1609 // catchParam := ClassNotFoundException e1
duke@1 1610 VarSymbol catchParam =
duke@1 1611 new VarSymbol(0, make.paramName(1),
duke@1 1612 syms.classNotFoundExceptionType,
duke@1 1613 classDollarSym);
duke@1 1614
duke@1 1615 JCStatement rethrow;
duke@1 1616 if (target.hasInitCause()) {
duke@1 1617 // rethrow = "throw new NoClassDefFoundError().initCause(e);
duke@1 1618 JCTree throwExpr =
duke@1 1619 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1620 List.<JCExpression>nil()),
duke@1 1621 names.initCause,
duke@1 1622 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 1623 rethrow = make.Throw(throwExpr);
duke@1 1624 } else {
duke@1 1625 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 1626 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 1627 names.getMessage,
duke@1 1628 syms.classNotFoundExceptionType,
duke@1 1629 List.<Type>nil());
duke@1 1630 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 1631 rethrow = make.
duke@1 1632 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1633 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 1634 getMessageSym),
duke@1 1635 List.<JCExpression>nil()))));
duke@1 1636 }
duke@1 1637
duke@1 1638 // rethrowStmt := "( $rethrow )"
duke@1 1639 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 1640
duke@1 1641 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 1642 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 1643 rethrowStmt);
duke@1 1644
duke@1 1645 // tryCatch := "try $returnResult $catchBlock"
duke@1 1646 JCStatement tryCatch = make.Try(returnResult,
duke@1 1647 List.of(catchBlock), null);
duke@1 1648
duke@1 1649 return make.Block(0, List.of(tryCatch));
duke@1 1650 }
duke@1 1651 // where
duke@1 1652 /** Create an attributed tree of the form left.name(). */
duke@1 1653 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
duke@1 1654 assert left.type != null;
duke@1 1655 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 1656 TreeInfo.types(args));
duke@1 1657 return make.App(make.Select(left, funcsym), args);
duke@1 1658 }
duke@1 1659
duke@1 1660 /** The Name Of The variable to cache T.class values.
duke@1 1661 * @param sig The signature of type T.
duke@1 1662 */
duke@1 1663 private Name cacheName(String sig) {
duke@1 1664 StringBuffer buf = new StringBuffer();
duke@1 1665 if (sig.startsWith("[")) {
duke@1 1666 buf = buf.append("array");
duke@1 1667 while (sig.startsWith("[")) {
duke@1 1668 buf = buf.append(target.syntheticNameChar());
duke@1 1669 sig = sig.substring(1);
duke@1 1670 }
duke@1 1671 if (sig.startsWith("L")) {
duke@1 1672 sig = sig.substring(0, sig.length() - 1);
duke@1 1673 }
duke@1 1674 } else {
duke@1 1675 buf = buf.append("class" + target.syntheticNameChar());
duke@1 1676 }
duke@1 1677 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 1678 return names.fromString(buf.toString());
duke@1 1679 }
duke@1 1680
duke@1 1681 /** The variable symbol that caches T.class values.
duke@1 1682 * If none exists yet, create a definition.
duke@1 1683 * @param sig The signature of type T.
duke@1 1684 * @param pos The position to report diagnostics, if any.
duke@1 1685 */
duke@1 1686 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 1687 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1688 Name cname = cacheName(sig);
duke@1 1689 VarSymbol cacheSym =
duke@1 1690 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 1691 if (cacheSym == null) {
duke@1 1692 cacheSym = new VarSymbol(
duke@1 1693 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 1694 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 1695
duke@1 1696 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 1697 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1698 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 1699 }
duke@1 1700 return cacheSym;
duke@1 1701 }
duke@1 1702
duke@1 1703 /** The tree simulating a T.class expression.
duke@1 1704 * @param clazz The tree identifying type T.
duke@1 1705 */
duke@1 1706 private JCExpression classOf(JCTree clazz) {
duke@1 1707 return classOfType(clazz.type, clazz.pos());
duke@1 1708 }
duke@1 1709
duke@1 1710 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
duke@1 1711 switch (type.tag) {
duke@1 1712 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 1713 case DOUBLE: case BOOLEAN: case VOID:
duke@1 1714 // replace with <BoxedClass>.TYPE
duke@1 1715 ClassSymbol c = types.boxedClass(type);
duke@1 1716 Symbol typeSym =
duke@1 1717 rs.access(
duke@1 1718 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 1719 pos, c.type, names.TYPE, true);
duke@1 1720 if (typeSym.kind == VAR)
duke@1 1721 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 1722 return make.QualIdent(typeSym);
duke@1 1723 case CLASS: case ARRAY:
duke@1 1724 if (target.hasClassLiterals()) {
duke@1 1725 VarSymbol sym = new VarSymbol(
duke@1 1726 STATIC | PUBLIC | FINAL, names._class,
duke@1 1727 syms.classType, type.tsym);
duke@1 1728 return make_at(pos).Select(make.Type(type), sym);
duke@1 1729 }
duke@1 1730 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 1731 // where
duke@1 1732 // - <tsig> is the type signature of T,
duke@1 1733 // - <cache> is the cache variable for tsig.
duke@1 1734 String sig =
duke@1 1735 writer.xClassName(type).toString().replace('/', '.');
duke@1 1736 Symbol cs = cacheSym(pos, sig);
duke@1 1737 return make_at(pos).Conditional(
duke@1 1738 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
duke@1 1739 make.Assign(
duke@1 1740 make.Ident(cs),
duke@1 1741 make.App(
duke@1 1742 make.Ident(classDollarSym(pos)),
duke@1 1743 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 1744 .setType(syms.stringType))))
duke@1 1745 .setType(types.erasure(syms.classType)),
duke@1 1746 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 1747 default:
duke@1 1748 throw new AssertionError();
duke@1 1749 }
duke@1 1750 }
duke@1 1751
duke@1 1752 /**************************************************************************
duke@1 1753 * Code for enabling/disabling assertions.
duke@1 1754 *************************************************************************/
duke@1 1755
duke@1 1756 // This code is not particularly robust if the user has
duke@1 1757 // previously declared a member named '$assertionsDisabled'.
duke@1 1758 // The same faulty idiom also appears in the translation of
duke@1 1759 // class literals above. We should report an error if a
duke@1 1760 // previous declaration is not synthetic.
duke@1 1761
duke@1 1762 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 1763 // Outermost class may be either true class or an interface.
duke@1 1764 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 1765
duke@1 1766 // note that this is a class, as an interface can't contain a statement.
duke@1 1767 ClassSymbol container = currentClass;
duke@1 1768
duke@1 1769 VarSymbol assertDisabledSym =
duke@1 1770 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 1771 container.members());
duke@1 1772 if (assertDisabledSym == null) {
duke@1 1773 assertDisabledSym =
duke@1 1774 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 1775 dollarAssertionsDisabled,
duke@1 1776 syms.booleanType,
duke@1 1777 container);
duke@1 1778 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 1779 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 1780 names.desiredAssertionStatus,
duke@1 1781 types.erasure(syms.classType),
duke@1 1782 List.<Type>nil());
duke@1 1783 JCClassDecl containerDef = classDef(container);
duke@1 1784 make_at(containerDef.pos());
duke@1 1785 JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
duke@1 1786 classOfType(types.erasure(outermostClass.type),
duke@1 1787 containerDef.pos()),
duke@1 1788 desiredAssertionStatusSym)));
duke@1 1789 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 1790 notStatus);
duke@1 1791 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
duke@1 1792 }
duke@1 1793 make_at(pos);
duke@1 1794 return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
duke@1 1795 }
duke@1 1796
duke@1 1797
duke@1 1798 /**************************************************************************
duke@1 1799 * Building blocks for let expressions
duke@1 1800 *************************************************************************/
duke@1 1801
duke@1 1802 interface TreeBuilder {
duke@1 1803 JCTree build(JCTree arg);
duke@1 1804 }
duke@1 1805
duke@1 1806 /** Construct an expression using the builder, with the given rval
duke@1 1807 * expression as an argument to the builder. However, the rval
duke@1 1808 * expression must be computed only once, even if used multiple
duke@1 1809 * times in the result of the builder. We do that by
duke@1 1810 * constructing a "let" expression that saves the rvalue into a
duke@1 1811 * temporary variable and then uses the temporary variable in
duke@1 1812 * place of the expression built by the builder. The complete
duke@1 1813 * resulting expression is of the form
duke@1 1814 * <pre>
duke@1 1815 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 1816 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 1817 * </pre>
duke@1 1818 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 1819 * in the let expression.
duke@1 1820 */
duke@1 1821 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 1822 rval = TreeInfo.skipParens(rval);
duke@1 1823 switch (rval.getTag()) {
duke@1 1824 case JCTree.LITERAL:
duke@1 1825 return builder.build(rval);
duke@1 1826 case JCTree.IDENT:
duke@1 1827 JCIdent id = (JCIdent) rval;
duke@1 1828 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 1829 return builder.build(rval);
duke@1 1830 }
duke@1 1831 VarSymbol var =
duke@1 1832 new VarSymbol(FINAL|SYNTHETIC,
duke@1 1833 Name.fromString(names,
duke@1 1834 target.syntheticNameChar()
duke@1 1835 + "" + rval.hashCode()),
duke@1 1836 type,
duke@1 1837 currentMethodSym);
mcimadamore@4 1838 rval = convert(rval,type);
duke@1 1839 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 1840 JCTree built = builder.build(make.Ident(var));
duke@1 1841 JCTree res = make.LetExpr(def, built);
duke@1 1842 res.type = built.type;
duke@1 1843 return res;
duke@1 1844 }
duke@1 1845
duke@1 1846 // same as above, with the type of the temporary variable computed
duke@1 1847 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 1848 return abstractRval(rval, rval.type, builder);
duke@1 1849 }
duke@1 1850
duke@1 1851 // same as above, but for an expression that may be used as either
duke@1 1852 // an rvalue or an lvalue. This requires special handling for
duke@1 1853 // Select expressions, where we place the left-hand-side of the
duke@1 1854 // select in a temporary, and for Indexed expressions, where we
duke@1 1855 // place both the indexed expression and the index value in temps.
duke@1 1856 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 1857 lval = TreeInfo.skipParens(lval);
duke@1 1858 switch (lval.getTag()) {
duke@1 1859 case JCTree.IDENT:
duke@1 1860 return builder.build(lval);
duke@1 1861 case JCTree.SELECT: {
duke@1 1862 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 1863 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 1864 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 1865 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 1866 return abstractRval(s.selected, new TreeBuilder() {
duke@1 1867 public JCTree build(final JCTree selected) {
duke@1 1868 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 1869 }
duke@1 1870 });
duke@1 1871 }
duke@1 1872 case JCTree.INDEXED: {
duke@1 1873 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 1874 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 1875 public JCTree build(final JCTree indexed) {
duke@1 1876 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 1877 public JCTree build(final JCTree index) {
duke@1 1878 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 1879 (JCExpression)index);
duke@1 1880 newLval.setType(i.type);
duke@1 1881 return builder.build(newLval);
duke@1 1882 }
duke@1 1883 });
duke@1 1884 }
duke@1 1885 });
duke@1 1886 }
duke@1 1887 }
duke@1 1888 throw new AssertionError(lval);
duke@1 1889 }
duke@1 1890
duke@1 1891 // evaluate and discard the first expression, then evaluate the second.
duke@1 1892 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 1893 return abstractRval(expr1, new TreeBuilder() {
duke@1 1894 public JCTree build(final JCTree discarded) {
duke@1 1895 return expr2;
duke@1 1896 }
duke@1 1897 });
duke@1 1898 }
duke@1 1899
duke@1 1900 /**************************************************************************
duke@1 1901 * Translation methods
duke@1 1902 *************************************************************************/
duke@1 1903
duke@1 1904 /** Visitor argument: enclosing operator node.
duke@1 1905 */
duke@1 1906 private JCExpression enclOp;
duke@1 1907
duke@1 1908 /** Visitor method: Translate a single node.
duke@1 1909 * Attach the source position from the old tree to its replacement tree.
duke@1 1910 */
duke@1 1911 public <T extends JCTree> T translate(T tree) {
duke@1 1912 if (tree == null) {
duke@1 1913 return null;
duke@1 1914 } else {
duke@1 1915 make_at(tree.pos());
duke@1 1916 T result = super.translate(tree);
duke@1 1917 if (endPositions != null && result != tree) {
duke@1 1918 Integer endPos = endPositions.remove(tree);
duke@1 1919 if (endPos != null) endPositions.put(result, endPos);
duke@1 1920 }
duke@1 1921 return result;
duke@1 1922 }
duke@1 1923 }
duke@1 1924
duke@1 1925 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 1926 */
duke@1 1927 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 1928 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 1929 }
duke@1 1930
duke@1 1931 /** Visitor method: Translate tree.
duke@1 1932 */
duke@1 1933 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 1934 JCExpression prevEnclOp = this.enclOp;
duke@1 1935 this.enclOp = enclOp;
duke@1 1936 T res = translate(tree);
duke@1 1937 this.enclOp = prevEnclOp;
duke@1 1938 return res;
duke@1 1939 }
duke@1 1940
duke@1 1941 /** Visitor method: Translate list of trees.
duke@1 1942 */
duke@1 1943 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 1944 JCExpression prevEnclOp = this.enclOp;
duke@1 1945 this.enclOp = enclOp;
duke@1 1946 List<T> res = translate(trees);
duke@1 1947 this.enclOp = prevEnclOp;
duke@1 1948 return res;
duke@1 1949 }
duke@1 1950
duke@1 1951 /** Visitor method: Translate list of trees.
duke@1 1952 */
duke@1 1953 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 1954 if (trees == null) return null;
duke@1 1955 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 1956 l.head = translate(l.head, type);
duke@1 1957 return trees;
duke@1 1958 }
duke@1 1959
duke@1 1960 public void visitTopLevel(JCCompilationUnit tree) {
duke@1 1961 if (tree.packageAnnotations.nonEmpty()) {
duke@1 1962 Name name = names.package_info;
duke@1 1963 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 1964 if (target.isPackageInfoSynthetic())
duke@1 1965 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 1966 flags = flags | Flags.SYNTHETIC;
duke@1 1967 JCClassDecl packageAnnotationsClass
duke@1 1968 = make.ClassDef(make.Modifiers(flags,
duke@1 1969 tree.packageAnnotations),
duke@1 1970 name, List.<JCTypeParameter>nil(),
duke@1 1971 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 1972 ClassSymbol c = reader.enterClass(name, tree.packge);
duke@1 1973 c.flatname = names.fromString(tree.packge + "." + name);
duke@1 1974 c.sourcefile = tree.sourcefile;
duke@1 1975 c.completer = null;
duke@1 1976 c.members_field = new Scope(c);
duke@1 1977 c.flags_field = flags;
duke@1 1978 c.attributes_field = tree.packge.attributes_field;
duke@1 1979 tree.packge.attributes_field = List.nil();
duke@1 1980 ClassType ctype = (ClassType) c.type;
duke@1 1981 ctype.supertype_field = syms.objectType;
duke@1 1982 ctype.interfaces_field = List.nil();
duke@1 1983 packageAnnotationsClass.sym = c;
duke@1 1984
duke@1 1985
duke@1 1986 translated.append(packageAnnotationsClass);
duke@1 1987 }
duke@1 1988 }
duke@1 1989
duke@1 1990 public void visitClassDef(JCClassDecl tree) {
duke@1 1991 ClassSymbol currentClassPrev = currentClass;
duke@1 1992 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 1993 currentClass = tree.sym;
duke@1 1994 currentMethodSym = null;
duke@1 1995 classdefs.put(currentClass, tree);
duke@1 1996
duke@1 1997 proxies = proxies.dup(currentClass);
duke@1 1998 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 1999
duke@1 2000 // If this is an enum definition
duke@1 2001 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2002 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2003 visitEnumDef(tree);
duke@1 2004
duke@1 2005 // If this is a nested class, define a this$n field for
duke@1 2006 // it and add to proxies.
duke@1 2007 JCVariableDecl otdef = null;
duke@1 2008 if (currentClass.hasOuterInstance())
duke@1 2009 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2010
duke@1 2011 // If this is a local class, define proxies for all its free variables.
duke@1 2012 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2013 tree.pos, freevars(currentClass), currentClass);
duke@1 2014
duke@1 2015 // Recursively translate superclass, interfaces.
duke@1 2016 tree.extending = translate(tree.extending);
duke@1 2017 tree.implementing = translate(tree.implementing);
duke@1 2018
duke@1 2019 // Recursively translate members, taking into account that new members
duke@1 2020 // might be created during the translation and prepended to the member
duke@1 2021 // list `tree.defs'.
duke@1 2022 List<JCTree> seen = List.nil();
duke@1 2023 while (tree.defs != seen) {
duke@1 2024 List<JCTree> unseen = tree.defs;
duke@1 2025 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2026 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2027 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2028 l.head = translate(l.head);
duke@1 2029 outermostMemberDef = outermostMemberDefPrev;
duke@1 2030 }
duke@1 2031 seen = unseen;
duke@1 2032 }
duke@1 2033
duke@1 2034 // Convert a protected modifier to public, mask static modifier.
duke@1 2035 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2036 tree.mods.flags &= ClassFlags;
duke@1 2037
duke@1 2038 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2039 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2040
duke@1 2041 // Add this$n and free variables proxy definitions to class.
duke@1 2042 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2043 tree.defs = tree.defs.prepend(l.head);
duke@1 2044 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2045 }
duke@1 2046 if (currentClass.hasOuterInstance()) {
duke@1 2047 tree.defs = tree.defs.prepend(otdef);
duke@1 2048 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2049 }
duke@1 2050
duke@1 2051 proxies = proxies.leave();
duke@1 2052 outerThisStack = prevOuterThisStack;
duke@1 2053
duke@1 2054 // Append translated tree to `translated' queue.
duke@1 2055 translated.append(tree);
duke@1 2056
duke@1 2057 currentClass = currentClassPrev;
duke@1 2058 currentMethodSym = currentMethodSymPrev;
duke@1 2059
duke@1 2060 // Return empty block {} as a placeholder for an inner class.
duke@1 2061 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2062 }
duke@1 2063
duke@1 2064 /** Translate an enum class. */
duke@1 2065 private void visitEnumDef(JCClassDecl tree) {
duke@1 2066 make_at(tree.pos());
duke@1 2067
duke@1 2068 // add the supertype, if needed
duke@1 2069 if (tree.extending == null)
duke@1 2070 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2071
duke@1 2072 // classOfType adds a cache field to tree.defs unless
duke@1 2073 // target.hasClassLiterals().
duke@1 2074 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2075 setType(types.erasure(syms.classType));
duke@1 2076
duke@1 2077 // process each enumeration constant, adding implicit constructor parameters
duke@1 2078 int nextOrdinal = 0;
duke@1 2079 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2080 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2081 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2082 for (List<JCTree> defs = tree.defs;
duke@1 2083 defs.nonEmpty();
duke@1 2084 defs=defs.tail) {
duke@1 2085 if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2086 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2087 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2088 values.append(make.QualIdent(var.sym));
duke@1 2089 enumDefs.append(var);
duke@1 2090 } else {
duke@1 2091 otherDefs.append(defs.head);
duke@1 2092 }
duke@1 2093 }
duke@1 2094
duke@1 2095 // private static final T[] #VALUES = { a, b, c };
duke@1 2096 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2097 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2098 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2099 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2100 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2101 valuesName,
duke@1 2102 arrayType,
duke@1 2103 tree.type.tsym);
duke@1 2104 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2105 List.<JCExpression>nil(),
duke@1 2106 values.toList());
duke@1 2107 newArray.type = arrayType;
duke@1 2108 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2109 tree.sym.members().enter(valuesVar);
duke@1 2110
duke@1 2111 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2112 tree.type, List.<Type>nil());
duke@1 2113 JCTypeCast valuesResult =
duke@1 2114 make.TypeCast(valuesSym.type.getReturnType(),
duke@1 2115 make.App(make.Select(make.Ident(valuesVar),
duke@1 2116 syms.arrayCloneMethod)));
duke@1 2117 JCMethodDecl valuesDef =
duke@1 2118 make.MethodDef((MethodSymbol)valuesSym,
duke@1 2119 make.Block(0, List.<JCStatement>nil()
duke@1 2120 .prepend(make.Return(valuesResult))));
duke@1 2121 enumDefs.append(valuesDef);
duke@1 2122
duke@1 2123 /** The template for the following code is:
duke@1 2124 *
duke@1 2125 * public static E valueOf(String name) {
duke@1 2126 * return (E)Enum.valueOf(E.class, name);
duke@1 2127 * }
duke@1 2128 *
duke@1 2129 * where E is tree.sym
duke@1 2130 */
duke@1 2131 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2132 names.valueOf,
duke@1 2133 tree.sym.type,
duke@1 2134 List.of(syms.stringType));
duke@1 2135 assert (valueOfSym.flags() & STATIC) != 0;
duke@1 2136 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2137 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2138 JCStatement enum_ValueOf =
duke@1 2139 make.Return(make.TypeCast(tree.sym.type,
duke@1 2140 makeCall(make.Ident(syms.enumSym),
duke@1 2141 names.valueOf,
duke@1 2142 List.of(e_class, nameVal))));
duke@1 2143 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2144 make.Block(0, List.of(enum_ValueOf)));
duke@1 2145 nameVal.sym = valueOf.params.head.sym;
duke@1 2146 if (debugLower)
duke@1 2147 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2148 enumDefs.append(valueOf);
duke@1 2149
duke@1 2150 enumDefs.appendList(otherDefs.toList());
duke@1 2151 tree.defs = enumDefs.toList();
duke@1 2152
duke@1 2153 // Add the necessary members for the EnumCompatibleMode
duke@1 2154 if (target.compilerBootstrap(tree.sym)) {
duke@1 2155 addEnumCompatibleMembers(tree);
duke@1 2156 }
duke@1 2157 }
duke@1 2158
duke@1 2159 /** Translate an enumeration constant and its initializer. */
duke@1 2160 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2161 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2162 varDef.args = varDef.args.
duke@1 2163 prepend(makeLit(syms.intType, ordinal)).
duke@1 2164 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2165 }
duke@1 2166
duke@1 2167 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2168 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2169 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2170 // argument list for each constructor of an enum.
duke@1 2171 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2172 Param(names.fromString(target.syntheticNameChar() +
duke@1 2173 "enum" + target.syntheticNameChar() + "name"),
duke@1 2174 syms.stringType, tree.sym);
duke@1 2175 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2176
duke@1 2177 JCVariableDecl ordParam = make.
duke@1 2178 Param(names.fromString(target.syntheticNameChar() +
duke@1 2179 "enum" + target.syntheticNameChar() +
duke@1 2180 "ordinal"),
duke@1 2181 syms.intType, tree.sym);
duke@1 2182 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2183
duke@1 2184 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2185
duke@1 2186 MethodSymbol m = tree.sym;
duke@1 2187 Type olderasure = m.erasure(types);
duke@1 2188 m.erasure_field = new MethodType(
duke@1 2189 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2190 olderasure.getReturnType(),
duke@1 2191 olderasure.getThrownTypes(),
duke@1 2192 syms.methodClass);
duke@1 2193
duke@1 2194 if (target.compilerBootstrap(m.owner)) {
duke@1 2195 // Initialize synthetic name field
duke@1 2196 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
duke@1 2197 tree.sym.owner.members());
duke@1 2198 JCIdent nameIdent = make.Ident(nameParam.sym);
duke@1 2199 JCIdent id1 = make.Ident(nameVarSym);
duke@1 2200 JCAssign newAssign = make.Assign(id1, nameIdent);
duke@1 2201 newAssign.type = id1.type;
duke@1 2202 JCExpressionStatement nameAssign = make.Exec(newAssign);
duke@1 2203 nameAssign.type = id1.type;
duke@1 2204 tree.body.stats = tree.body.stats.prepend(nameAssign);
duke@1 2205
duke@1 2206 // Initialize synthetic ordinal field
duke@1 2207 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
duke@1 2208 tree.sym.owner.members());
duke@1 2209 JCIdent ordIdent = make.Ident(ordParam.sym);
duke@1 2210 id1 = make.Ident(ordinalVarSym);
duke@1 2211 newAssign = make.Assign(id1, ordIdent);
duke@1 2212 newAssign.type = id1.type;
duke@1 2213 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
duke@1 2214 ordinalAssign.type = id1.type;
duke@1 2215 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
duke@1 2216 }
duke@1 2217 }
duke@1 2218
duke@1 2219 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2220 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2221 try {
duke@1 2222 currentMethodDef = tree;
duke@1 2223 currentMethodSym = tree.sym;
duke@1 2224 visitMethodDefInternal(tree);
duke@1 2225 } finally {
duke@1 2226 currentMethodDef = prevMethodDef;
duke@1 2227 currentMethodSym = prevMethodSym;
duke@1 2228 }
duke@1 2229 }
duke@1 2230 //where
duke@1 2231 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2232 if (tree.name == names.init &&
duke@1 2233 (currentClass.isInner() ||
duke@1 2234 (currentClass.owner.kind & (VAR | MTH)) != 0)) {
duke@1 2235 // We are seeing a constructor of an inner class.
duke@1 2236 MethodSymbol m = tree.sym;
duke@1 2237
duke@1 2238 // Push a new proxy scope for constructor parameters.
duke@1 2239 // and create definitions for any this$n and proxy parameters.
duke@1 2240 proxies = proxies.dup(m);
duke@1 2241 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2242 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2243 JCVariableDecl otdef = null;
duke@1 2244 if (currentClass.hasOuterInstance())
duke@1 2245 otdef = outerThisDef(tree.pos, m);
duke@1 2246 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
duke@1 2247
duke@1 2248 // Recursively translate result type, parameters and thrown list.
duke@1 2249 tree.restype = translate(tree.restype);
duke@1 2250 tree.params = translateVarDefs(tree.params);
duke@1 2251 tree.thrown = translate(tree.thrown);
duke@1 2252
duke@1 2253 // when compiling stubs, don't process body
duke@1 2254 if (tree.body == null) {
duke@1 2255 result = tree;
duke@1 2256 return;
duke@1 2257 }
duke@1 2258
duke@1 2259 // Add this$n (if needed) in front of and free variables behind
duke@1 2260 // constructor parameter list.
duke@1 2261 tree.params = tree.params.appendList(fvdefs);
duke@1 2262 if (currentClass.hasOuterInstance())
duke@1 2263 tree.params = tree.params.prepend(otdef);
duke@1 2264
duke@1 2265 // If this is an initial constructor, i.e., it does not start with
duke@1 2266 // this(...), insert initializers for this$n and proxies
duke@1 2267 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2268 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2269
duke@1 2270 List<JCStatement> added = List.nil();
duke@1 2271 if (fvs.nonEmpty()) {
duke@1 2272 List<Type> addedargtypes = List.nil();
duke@1 2273 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 2274 if (TreeInfo.isInitialConstructor(tree))
duke@1 2275 added = added.prepend(
duke@1 2276 initField(tree.body.pos, proxyName(l.head.name)));
duke@1 2277 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2278 }
duke@1 2279 Type olderasure = m.erasure(types);
duke@1 2280 m.erasure_field = new MethodType(
duke@1 2281 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2282 olderasure.getReturnType(),
duke@1 2283 olderasure.getThrownTypes(),
duke@1 2284 syms.methodClass);
duke@1 2285 }
duke@1 2286 if (currentClass.hasOuterInstance() &&
duke@1 2287 TreeInfo.isInitialConstructor(tree))
duke@1 2288 {
duke@1 2289 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2290 }
duke@1 2291
duke@1 2292 // pop local variables from proxy stack
duke@1 2293 proxies = proxies.leave();
duke@1 2294
duke@1 2295 // recursively translate following local statements and
duke@1 2296 // combine with this- or super-call
duke@1 2297 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2298 if (target.initializeFieldsBeforeSuper())
duke@1 2299 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2300 else
duke@1 2301 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2302
duke@1 2303 outerThisStack = prevOuterThisStack;
duke@1 2304 } else {
duke@1 2305 super.visitMethodDef(tree);
duke@1 2306 }
duke@1 2307 result = tree;
duke@1 2308 }
duke@1 2309
duke@1 2310 public void visitTypeCast(JCTypeCast tree) {
duke@1 2311 tree.clazz = translate(tree.clazz);
duke@1 2312 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2313 tree.expr = translate(tree.expr, tree.type);
duke@1 2314 else
duke@1 2315 tree.expr = translate(tree.expr);
duke@1 2316 result = tree;
duke@1 2317 }
duke@1 2318
duke@1 2319 public void visitNewClass(JCNewClass tree) {
duke@1 2320 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2321
duke@1 2322 // Box arguments, if necessary
duke@1 2323 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2324 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2325 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2326 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2327 tree.varargsElement = null;
duke@1 2328
duke@1 2329 // If created class is local, add free variables after
duke@1 2330 // explicit constructor arguments.
duke@1 2331 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2332 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2333 }
duke@1 2334
duke@1 2335 // If an access constructor is used, append null as a last argument.
duke@1 2336 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2337 if (constructor != tree.constructor) {
duke@1 2338 tree.args = tree.args.append(makeNull());
duke@1 2339 tree.constructor = constructor;
duke@1 2340 }
duke@1 2341
duke@1 2342 // If created class has an outer instance, and new is qualified, pass
duke@1 2343 // qualifier as first argument. If new is not qualified, pass the
duke@1 2344 // correct outer instance as first argument.
duke@1 2345 if (c.hasOuterInstance()) {
duke@1 2346 JCExpression thisArg;
duke@1 2347 if (tree.encl != null) {
duke@1 2348 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2349 thisArg.type = tree.encl.type;
duke@1 2350 } else if ((c.owner.kind & (MTH | VAR)) != 0) {
duke@1 2351 // local class
duke@1 2352 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2353 } else {
duke@1 2354 // nested class
duke@1 2355 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2356 }
duke@1 2357 tree.args = tree.args.prepend(thisArg);
duke@1 2358 }
duke@1 2359 tree.encl = null;
duke@1 2360
duke@1 2361 // If we have an anonymous class, create its flat version, rather
duke@1 2362 // than the class or interface following new.
duke@1 2363 if (tree.def != null) {
duke@1 2364 translate(tree.def);
duke@1 2365 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2366 tree.def = null;
duke@1 2367 } else {
duke@1 2368 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2369 }
duke@1 2370 result = tree;
duke@1 2371 }
duke@1 2372
duke@1 2373 // Simplify conditionals with known constant controlling expressions.
duke@1 2374 // This allows us to avoid generating supporting declarations for
duke@1 2375 // the dead code, which will not be eliminated during code generation.
duke@1 2376 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2377 // for constant expressions in the sense of JLS 15.27, which
duke@1 2378 // are guaranteed to have no side-effects. More agressive
duke@1 2379 // constant propagation would require that we take care to
duke@1 2380 // preserve possible side-effects in the condition expression.
duke@1 2381
duke@1 2382 /** Visitor method for conditional expressions.
duke@1 2383 */
duke@1 2384 public void visitConditional(JCConditional tree) {
duke@1 2385 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2386 if (cond.type.isTrue()) {
duke@1 2387 result = convert(translate(tree.truepart, tree.type), tree.type);
duke@1 2388 } else if (cond.type.isFalse()) {
duke@1 2389 result = convert(translate(tree.falsepart, tree.type), tree.type);
duke@1 2390 } else {
duke@1 2391 // Condition is not a compile-time constant.
duke@1 2392 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2393 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2394 result = tree;
duke@1 2395 }
duke@1 2396 }
duke@1 2397 //where
duke@1 2398 private JCTree convert(JCTree tree, Type pt) {
duke@1 2399 if (tree.type == pt) return tree;
duke@1 2400 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
duke@1 2401 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
duke@1 2402 : pt;
duke@1 2403 return result;
duke@1 2404 }
duke@1 2405
duke@1 2406 /** Visitor method for if statements.
duke@1 2407 */
duke@1 2408 public void visitIf(JCIf tree) {
duke@1 2409 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2410 if (cond.type.isTrue()) {
duke@1 2411 result = translate(tree.thenpart);
duke@1 2412 } else if (cond.type.isFalse()) {
duke@1 2413 if (tree.elsepart != null) {
duke@1 2414 result = translate(tree.elsepart);
duke@1 2415 } else {
duke@1 2416 result = make.Skip();
duke@1 2417 }
duke@1 2418 } else {
duke@1 2419 // Condition is not a compile-time constant.
duke@1 2420 tree.thenpart = translate(tree.thenpart);
duke@1 2421 tree.elsepart = translate(tree.elsepart);
duke@1 2422 result = tree;
duke@1 2423 }
duke@1 2424 }
duke@1 2425
duke@1 2426 /** Visitor method for assert statements. Translate them away.
duke@1 2427 */
duke@1 2428 public void visitAssert(JCAssert tree) {
duke@1 2429 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2430 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2431 if (!tree.cond.type.isTrue()) {
duke@1 2432 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2433 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2434 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2435 if (!tree.cond.type.isFalse()) {
duke@1 2436 cond = makeBinary
duke@1 2437 (JCTree.AND,
duke@1 2438 cond,
duke@1 2439 makeUnary(JCTree.NOT, tree.cond));
duke@1 2440 }
duke@1 2441 result =
duke@1 2442 make.If(cond,
duke@1 2443 make_at(detailPos).
duke@1 2444 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2445 null);
duke@1 2446 } else {
duke@1 2447 result = make.Skip();
duke@1 2448 }
duke@1 2449 }
duke@1 2450
duke@1 2451 public void visitApply(JCMethodInvocation tree) {
duke@1 2452 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2453 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2454 if (allowEnums &&
duke@1 2455 meth.name==names.init &&
duke@1 2456 meth.owner == syms.enumSym)
duke@1 2457 argtypes = argtypes.tail.tail;
duke@1 2458 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2459 tree.varargsElement = null;
duke@1 2460 Name methName = TreeInfo.name(tree.meth);
duke@1 2461 if (meth.name==names.init) {
duke@1 2462 // We are seeing a this(...) or super(...) constructor call.
duke@1 2463 // If an access constructor is used, append null as a last argument.
duke@1 2464 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 2465 if (constructor != meth) {
duke@1 2466 tree.args = tree.args.append(makeNull());
duke@1 2467 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 2468 }
duke@1 2469
duke@1 2470 // If we are calling a constructor of a local class, add
duke@1 2471 // free variables after explicit constructor arguments.
duke@1 2472 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 2473 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2474 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2475 }
duke@1 2476
duke@1 2477 // If we are calling a constructor of an enum class, pass
duke@1 2478 // along the name and ordinal arguments
duke@1 2479 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 2480 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 2481 if (currentMethodSym.owner.hasOuterInstance())
duke@1 2482 params = params.tail; // drop this$n
duke@1 2483 tree.args = tree.args
duke@1 2484 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 2485 .prepend(make.Ident(params.head.sym)); // name
duke@1 2486 }
duke@1 2487
duke@1 2488 // If we are calling a constructor of a class with an outer
duke@1 2489 // instance, and the call
duke@1 2490 // is qualified, pass qualifier as first argument in front of
duke@1 2491 // the explicit constructor arguments. If the call
duke@1 2492 // is not qualified, pass the correct outer instance as
duke@1 2493 // first argument.
duke@1 2494 if (c.hasOuterInstance()) {
duke@1 2495 JCExpression thisArg;
duke@1 2496 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 2497 thisArg = attr.
duke@1 2498 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 2499 tree.meth = make.Ident(constructor);
duke@1 2500 ((JCIdent) tree.meth).name = methName;
duke@1 2501 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
duke@1 2502 // local class or this() call
duke@1 2503 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 2504 } else {
duke@1 2505 // super() call of nested class
duke@1 2506 thisArg = makeOwnerThis(tree.meth.pos(), c, false);
duke@1 2507 }
duke@1 2508 tree.args = tree.args.prepend(thisArg);
duke@1 2509 }
duke@1 2510 } else {
duke@1 2511 // We are seeing a normal method invocation; translate this as usual.
duke@1 2512 tree.meth = translate(tree.meth);
duke@1 2513
duke@1 2514 // If the translated method itself is an Apply tree, we are
duke@1 2515 // seeing an access method invocation. In this case, append
duke@1 2516 // the method arguments to the arguments of the access method.
duke@1 2517 if (tree.meth.getTag() == JCTree.APPLY) {
duke@1 2518 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 2519 app.args = tree.args.prependList(app.args);
duke@1 2520 result = app;
duke@1 2521 return;
duke@1 2522 }
duke@1 2523 }
duke@1 2524 result = tree;
duke@1 2525 }
duke@1 2526
duke@1 2527 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 2528 List<JCExpression> args = _args;
duke@1 2529 if (parameters.isEmpty()) return args;
duke@1 2530 boolean anyChanges = false;
duke@1 2531 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 2532 while (parameters.tail.nonEmpty()) {
duke@1 2533 JCExpression arg = translate(args.head, parameters.head);
duke@1 2534 anyChanges |= (arg != args.head);
duke@1 2535 result.append(arg);
duke@1 2536 args = args.tail;
duke@1 2537 parameters = parameters.tail;
duke@1 2538 }
duke@1 2539 Type parameter = parameters.head;
duke@1 2540 if (varargsElement != null) {
duke@1 2541 anyChanges = true;
duke@1 2542 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 2543 while (args.nonEmpty()) {
duke@1 2544 JCExpression arg = translate(args.head, varargsElement);
duke@1 2545 elems.append(arg);
duke@1 2546 args = args.tail;
duke@1 2547 }
duke@1 2548 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 2549 List.<JCExpression>nil(),
duke@1 2550 elems.toList());
duke@1 2551 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 2552 result.append(boxedArgs);
duke@1 2553 } else {
duke@1 2554 if (args.length() != 1) throw new AssertionError(args);
duke@1 2555 JCExpression arg = translate(args.head, parameter);
duke@1 2556 anyChanges |= (arg != args.head);
duke@1 2557 result.append(arg);
duke@1 2558 if (!anyChanges) return _args;
duke@1 2559 }
duke@1 2560 return result.toList();
duke@1 2561 }
duke@1 2562
duke@1 2563 /** Expand a boxing or unboxing conversion if needed. */
duke@1 2564 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 2565 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 2566 boolean havePrimitive = tree.type.isPrimitive();
duke@1 2567 if (havePrimitive == type.isPrimitive())
duke@1 2568 return tree;
duke@1 2569 if (havePrimitive) {
duke@1 2570 Type unboxedTarget = types.unboxedType(type);
duke@1 2571 if (unboxedTarget.tag != NONE) {
duke@1 2572 if (!types.isSubtype(tree.type, unboxedTarget))
duke@1 2573 tree.type = unboxedTarget; // e.g. Character c = 89;
duke@1 2574 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 2575 } else {
duke@1 2576 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 2577 }
duke@1 2578 } else {
duke@1 2579 tree = (T)unbox((JCExpression)tree, type);
duke@1 2580 }
duke@1 2581 return tree;
duke@1 2582 }
duke@1 2583
duke@1 2584 /** Box up a single primitive expression. */
duke@1 2585 JCExpression boxPrimitive(JCExpression tree) {
duke@1 2586 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 2587 }
duke@1 2588
duke@1 2589 /** Box up a single primitive expression. */
duke@1 2590 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 2591 make_at(tree.pos());
duke@1 2592 if (target.boxWithConstructors()) {
duke@1 2593 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 2594 box,
duke@1 2595 List.<Type>nil()
duke@1 2596 .prepend(tree.type));
duke@1 2597 return make.Create(ctor, List.of(tree));
duke@1 2598 } else {
duke@1 2599 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2600 names.valueOf,
duke@1 2601 box,
duke@1 2602 List.<Type>nil()
duke@1 2603 .prepend(tree.type));
duke@1 2604 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 2605 }
duke@1 2606 }
duke@1 2607
duke@1 2608 /** Unbox an object to a primitive value. */
duke@1 2609 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 2610 Type unboxedType = types.unboxedType(tree.type);
duke@1 2611 // note: the "primitive" parameter is not used. There muse be
duke@1 2612 // a conversion from unboxedType to primitive.
duke@1 2613 make_at(tree.pos());
duke@1 2614 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 2615 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 2616 tree.type,
duke@1 2617 List.<Type>nil());
duke@1 2618 return make.App(make.Select(tree, valueSym));
duke@1 2619 }
duke@1 2620
duke@1 2621 /** Visitor method for parenthesized expressions.
duke@1 2622 * If the subexpression has changed, omit the parens.
duke@1 2623 */
duke@1 2624 public void visitParens(JCParens tree) {
duke@1 2625 JCTree expr = translate(tree.expr);
duke@1 2626 result = ((expr == tree.expr) ? tree : expr);
duke@1 2627 }
duke@1 2628
duke@1 2629 public void visitIndexed(JCArrayAccess tree) {
duke@1 2630 tree.indexed = translate(tree.indexed);
duke@1 2631 tree.index = translate(tree.index, syms.intType);
duke@1 2632 result = tree;
duke@1 2633 }
duke@1 2634
duke@1 2635 public void visitAssign(JCAssign tree) {
duke@1 2636 tree.lhs = translate(tree.lhs, tree);
duke@1 2637 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 2638
duke@1 2639 // If translated left hand side is an Apply, we are
duke@1 2640 // seeing an access method invocation. In this case, append
duke@1 2641 // right hand side as last argument of the access method.
duke@1 2642 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 2643 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 2644 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 2645 result = app;
duke@1 2646 } else {
duke@1 2647 result = tree;
duke@1 2648 }
duke@1 2649 }
duke@1 2650
duke@1 2651 public void visitAssignop(final JCAssignOp tree) {
duke@1 2652 if (!tree.lhs.type.isPrimitive() &&
duke@1 2653 tree.operator.type.getReturnType().isPrimitive()) {
duke@1 2654 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
duke@1 2655 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
duke@1 2656 // (but without recomputing x)
duke@1 2657 JCTree arg = (tree.lhs.getTag() == JCTree.TYPECAST)
duke@1 2658 ? ((JCTypeCast)tree.lhs).expr
duke@1 2659 : tree.lhs;
duke@1 2660 JCTree newTree = abstractLval(arg, new TreeBuilder() {
duke@1 2661 public JCTree build(final JCTree lhs) {
duke@1 2662 int newTag = tree.getTag() - JCTree.ASGOffset;
duke@1 2663 // Erasure (TransTypes) can change the type of
duke@1 2664 // tree.lhs. However, we can still get the
duke@1 2665 // unerased type of tree.lhs as it is stored
duke@1 2666 // in tree.type in Attr.
duke@1 2667 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
duke@1 2668 newTag,
duke@1 2669 attrEnv,
duke@1 2670 tree.type,
duke@1 2671 tree.rhs.type);
duke@1 2672 JCExpression expr = (JCExpression)lhs;
duke@1 2673 if (expr.type != tree.type)
duke@1 2674 expr = make.TypeCast(tree.type, expr);
duke@1 2675 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
duke@1 2676 opResult.operator = newOperator;
duke@1 2677 opResult.type = newOperator.type.getReturnType();
duke@1 2678 JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
duke@1 2679 opResult);
duke@1 2680 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
duke@1 2681 }
duke@1 2682 });
duke@1 2683 result = translate(newTree);
duke@1 2684 return;
duke@1 2685 }
duke@1 2686 tree.lhs = translate(tree.lhs, tree);
duke@1 2687 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
duke@1 2688
duke@1 2689 // If translated left hand side is an Apply, we are
duke@1 2690 // seeing an access method invocation. In this case, append
duke@1 2691 // right hand side as last argument of the access method.
duke@1 2692 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 2693 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 2694 // if operation is a += on strings,
duke@1 2695 // make sure to convert argument to string
duke@1 2696 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
duke@1 2697 ? makeString(tree.rhs)
duke@1 2698 : tree.rhs;
duke@1 2699 app.args = List.of(rhs).prependList(app.args);
duke@1 2700 result = app;
duke@1 2701 } else {
duke@1 2702 result = tree;
duke@1 2703 }
duke@1 2704 }
duke@1 2705
duke@1 2706 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 2707 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 2708 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 2709 // or
duke@1 2710 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 2711 // where OP is += or -=
duke@1 2712 final boolean cast = tree.arg.getTag() == JCTree.TYPECAST;
duke@1 2713 final JCExpression arg = cast ? ((JCTypeCast)tree.arg).expr : tree.arg;
duke@1 2714 return abstractLval(arg, new TreeBuilder() {
duke@1 2715 public JCTree build(final JCTree tmp1) {
duke@1 2716 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 2717 public JCTree build(final JCTree tmp2) {
duke@1 2718 int opcode = (tree.getTag() == JCTree.POSTINC)
duke@1 2719 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 2720 JCTree lhs = cast
duke@1 2721 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 2722 : tmp1;
duke@1 2723 JCTree update = makeAssignop(opcode,
duke@1 2724 lhs,
duke@1 2725 make.Literal(1));
duke@1 2726 return makeComma(update, tmp2);
duke@1 2727 }
duke@1 2728 });
duke@1 2729 }
duke@1 2730 });
duke@1 2731 }
duke@1 2732
duke@1 2733 public void visitUnary(JCUnary tree) {
duke@1 2734 boolean isUpdateOperator =
duke@1 2735 JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
duke@1 2736 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 2737 switch(tree.getTag()) {
duke@1 2738 case JCTree.PREINC: // ++ e
duke@1 2739 // translate to e += 1
duke@1 2740 case JCTree.PREDEC: // -- e
duke@1 2741 // translate to e -= 1
duke@1 2742 {
duke@1 2743 int opcode = (tree.getTag() == JCTree.PREINC)
duke@1 2744 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 2745 JCAssignOp newTree = makeAssignop(opcode,
duke@1 2746 tree.arg,
duke@1 2747 make.Literal(1));
duke@1 2748 result = translate(newTree, tree.type);
duke@1 2749 return;
duke@1 2750 }
duke@1 2751 case JCTree.POSTINC: // e ++
duke@1 2752 case JCTree.POSTDEC: // e --
duke@1 2753 {
duke@1 2754 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 2755 return;
duke@1 2756 }
duke@1 2757 }
duke@1 2758 throw new AssertionError(tree);
duke@1 2759 }
duke@1 2760
duke@1 2761 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 2762
duke@1 2763 if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
duke@1 2764 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 2765 }
duke@1 2766
duke@1 2767 // If translated left hand side is an Apply, we are
duke@1 2768 // seeing an access method invocation. In this case, return
duke@1 2769 // that access method invokation as result.
duke@1 2770 if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
duke@1 2771 result = tree.arg;
duke@1 2772 } else {
duke@1 2773 result = tree;
duke@1 2774 }
duke@1 2775 }
duke@1 2776
duke@1 2777 public void visitBinary(JCBinary tree) {
duke@1 2778 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 2779 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 2780 switch (tree.getTag()) {
duke@1 2781 case JCTree.OR:
duke@1 2782 if (lhs.type.isTrue()) {
duke@1 2783 result = lhs;
duke@1 2784 return;
duke@1 2785 }
duke@1 2786 if (lhs.type.isFalse()) {
duke@1 2787 result = translate(tree.rhs, formals.tail.head);
duke@1 2788 return;
duke@1 2789 }
duke@1 2790 break;
duke@1 2791 case JCTree.AND:
duke@1 2792 if (lhs.type.isFalse()) {
duke@1 2793 result = lhs;
duke@1 2794 return;
duke@1 2795 }
duke@1 2796 if (lhs.type.isTrue()) {
duke@1 2797 result = translate(tree.rhs, formals.tail.head);
duke@1 2798 return;
duke@1 2799 }
duke@1 2800 break;
duke@1 2801 }
duke@1 2802 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 2803 result = tree;
duke@1 2804 }
duke@1 2805
duke@1 2806 public void visitIdent(JCIdent tree) {
duke@1 2807 result = access(tree.sym, tree, enclOp, false);
duke@1 2808 }
duke@1 2809
duke@1 2810 /** Translate away the foreach loop. */
duke@1 2811 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 2812 if (types.elemtype(tree.expr.type) == null)
duke@1 2813 visitIterableForeachLoop(tree);
duke@1 2814 else
duke@1 2815 visitArrayForeachLoop(tree);
duke@1 2816 }
duke@1 2817 // where
duke@1 2818 /**
duke@1 2819 * A statment of the form
duke@1 2820 *
duke@1 2821 * <pre>
duke@1 2822 * for ( T v : arrayexpr ) stmt;
duke@1 2823 * </pre>
duke@1 2824 *
duke@1 2825 * (where arrayexpr is of an array type) gets translated to
duke@1 2826 *
duke@1 2827 * <pre>
duke@1 2828 * for ( { arraytype #arr = arrayexpr;
duke@1 2829 * int #len = array.length;
duke@1 2830 * int #i = 0; };
duke@1 2831 * #i < #len; i$++ ) {
duke@1 2832 * T v = arr$[#i];
duke@1 2833 * stmt;
duke@1 2834 * }
duke@1 2835 * </pre>
duke@1 2836 *
duke@1 2837 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 2838 */
duke@1 2839 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 2840 make_at(tree.expr.pos());
duke@1 2841 VarSymbol arraycache = new VarSymbol(0,
duke@1 2842 names.fromString("arr" + target.syntheticNameChar()),
duke@1 2843 tree.expr.type,
duke@1 2844 currentMethodSym);
duke@1 2845 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
duke@1 2846 VarSymbol lencache = new VarSymbol(0,
duke@1 2847 names.fromString("len" + target.syntheticNameChar()),
duke@1 2848 syms.intType,
duke@1 2849 currentMethodSym);
duke@1 2850 JCStatement lencachedef = make.
duke@1 2851 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
duke@1 2852 VarSymbol index = new VarSymbol(0,
duke@1 2853 names.fromString("i" + target.syntheticNameChar()),
duke@1 2854 syms.intType,
duke@1 2855 currentMethodSym);
duke@1 2856
duke@1 2857 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 2858 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 2859
duke@1 2860 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
duke@1 2861 JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
duke@1 2862
duke@1 2863 JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
duke@1 2864
duke@1 2865 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 2866 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 2867 make.Ident(index)).setType(elemtype);
mcimadamore@33 2868 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 2869 tree.var.name,
mcimadamore@33 2870 tree.var.vartype,
mcimadamore@33 2871 loopvarinit).setType(tree.var.type);
mcimadamore@33 2872 loopvardef.sym = tree.var.sym;
duke@1 2873 JCBlock body = make.
mcimadamore@33 2874 Block(0, List.of(loopvardef, tree.body));
duke@1 2875
duke@1 2876 result = translate(make.
duke@1 2877 ForLoop(loopinit,
duke@1 2878 cond,
duke@1 2879 List.of(step),
duke@1 2880 body));
duke@1 2881 patchTargets(body, tree, result);
duke@1 2882 }
duke@1 2883 /** Patch up break and continue targets. */
duke@1 2884 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 2885 class Patcher extends TreeScanner {
duke@1 2886 public void visitBreak(JCBreak tree) {
duke@1 2887 if (tree.target == src)
duke@1 2888 tree.target = dest;
duke@1 2889 }
duke@1 2890 public void visitContinue(JCContinue tree) {
duke@1 2891 if (tree.target == src)
duke@1 2892 tree.target = dest;
duke@1 2893 }
duke@1 2894 public void visitClassDef(JCClassDecl tree) {}
duke@1 2895 }
duke@1 2896 new Patcher().scan(body);
duke@1 2897 }
duke@1 2898 /**
duke@1 2899 * A statement of the form
duke@1 2900 *
duke@1 2901 * <pre>
duke@1 2902 * for ( T v : coll ) stmt ;
duke@1 2903 * </pre>
duke@1 2904 *
duke@1 2905 * (where coll implements Iterable<? extends T>) gets translated to
duke@1 2906 *
duke@1 2907 * <pre>
duke@1 2908 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 2909 * T v = (T) #i.next();
duke@1 2910 * stmt;
duke@1 2911 * }
duke@1 2912 * </pre>
duke@1 2913 *
duke@1 2914 * where #i is a freshly named synthetic local variable.
duke@1 2915 */
duke@1 2916 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 2917 make_at(tree.expr.pos());
duke@1 2918 Type iteratorTarget = syms.objectType;
duke@1 2919 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 2920 syms.iterableType.tsym);
duke@1 2921 if (iterableType.getTypeArguments().nonEmpty())
duke@1 2922 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 2923 Type eType = tree.expr.type;
duke@1 2924 tree.expr.type = types.erasure(eType);
duke@1 2925 if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
duke@1 2926 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 2927 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 2928 names.iterator,
duke@1 2929 types.erasure(syms.iterableType),
duke@1 2930 List.<Type>nil());
duke@1 2931 VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
duke@1 2932 types.erasure(iterator.type.getReturnType()),
duke@1 2933 currentMethodSym);
duke@1 2934 JCStatement init = make.
duke@1 2935 VarDef(itvar,
duke@1 2936 make.App(make.Select(tree.expr, iterator)));
duke@1 2937 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 2938 names.hasNext,
duke@1 2939 itvar.type,
duke@1 2940 List.<Type>nil());
duke@1 2941 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 2942 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 2943 names.next,
duke@1 2944 itvar.type,
duke@1 2945 List.<Type>nil());
duke@1 2946 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
duke@1 2947 if (iteratorTarget != syms.objectType)
duke@1 2948 vardefinit = make.TypeCast(iteratorTarget, vardefinit);
mcimadamore@33 2949 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 2950 tree.var.name,
mcimadamore@33 2951 tree.var.vartype,
mcimadamore@33 2952 vardefinit).setType(tree.var.type);
mcimadamore@33 2953 indexDef.sym = tree.var.sym;
duke@1 2954 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
duke@1 2955 result = translate(make.
duke@1 2956 ForLoop(List.of(init),
duke@1 2957 cond,
duke@1 2958 List.<JCExpressionStatement>nil(),
duke@1 2959 body));
duke@1 2960 patchTargets(body, tree, result);
duke@1 2961 }
duke@1 2962
duke@1 2963 public void visitVarDef(JCVariableDecl tree) {
duke@1 2964 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 2965 tree.mods = translate(tree.mods);
duke@1 2966 tree.vartype = translate(tree.vartype);
duke@1 2967 if (currentMethodSym == null) {
duke@1 2968 // A class or instance field initializer.
duke@1 2969 currentMethodSym =
duke@1 2970 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 2971 names.empty, null,
duke@1 2972 currentClass);
duke@1 2973 }
duke@1 2974 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 2975 result = tree;
duke@1 2976 currentMethodSym = oldMethodSym;
duke@1 2977 }
duke@1 2978
duke@1 2979 public void visitBlock(JCBlock tree) {
duke@1 2980 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 2981 if (currentMethodSym == null) {
duke@1 2982 // Block is a static or instance initializer.
duke@1 2983 currentMethodSym =
duke@1 2984 new MethodSymbol(tree.flags | BLOCK,
duke@1 2985 names.empty, null,
duke@1 2986 currentClass);
duke@1 2987 }
duke@1 2988 super.visitBlock(tree);
duke@1 2989 currentMethodSym = oldMethodSym;
duke@1 2990 }
duke@1 2991
duke@1 2992 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 2993 tree.body = translate(tree.body);
duke@1 2994 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2995 result = tree;
duke@1 2996 }
duke@1 2997
duke@1 2998 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 2999 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3000 tree.body = translate(tree.body);
duke@1 3001 result = tree;
duke@1 3002 }
duke@1 3003
duke@1 3004 public void visitForLoop(JCForLoop tree) {
duke@1 3005 tree.init = translate(tree.init);
duke@1 3006 if (tree.cond != null)
duke@1 3007 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3008 tree.step = translate(tree.step);
duke@1 3009 tree.body = translate(tree.body);
duke@1 3010 result = tree;
duke@1 3011 }
duke@1 3012
duke@1 3013 public void visitReturn(JCReturn tree) {
duke@1 3014 if (tree.expr != null)
duke@1 3015 tree.expr = translate(tree.expr,
duke@1 3016 types.erasure(currentMethodDef
duke@1 3017 .restype.type));
duke@1 3018 result = tree;
duke@1 3019 }
duke@1 3020
duke@1 3021 public void visitSwitch(JCSwitch tree) {
duke@1 3022 Type selsuper = types.supertype(tree.selector.type);
duke@1 3023 boolean enumSwitch = selsuper != null &&
duke@1 3024 (tree.selector.type.tsym.flags() & ENUM) != 0;
duke@1 3025 Type target = enumSwitch ? tree.selector.type : syms.intType;
duke@1 3026 tree.selector = translate(tree.selector, target);
duke@1 3027 tree.cases = translateCases(tree.cases);
duke@1 3028 if (enumSwitch) {
duke@1 3029 result = visitEnumSwitch(tree);
duke@1 3030 patchTargets(result, tree, result);
duke@1 3031 } else {
duke@1 3032 result = tree;
duke@1 3033 }
duke@1 3034 }
duke@1 3035
duke@1 3036 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3037 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3038 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3039 make_at(tree.pos());
duke@1 3040 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3041 names.ordinal,
duke@1 3042 tree.selector.type,
duke@1 3043 List.<Type>nil());
duke@1 3044 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3045 make.App(make.Select(tree.selector,
duke@1 3046 ordinalMethod)));
duke@1 3047 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3048 for (JCCase c : tree.cases) {
duke@1 3049 if (c.pat != null) {
duke@1 3050 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3051 JCLiteral pat = map.forConstant(label);
duke@1 3052 cases.append(make.Case(pat, c.stats));
duke@1 3053 } else {
duke@1 3054 cases.append(c);
duke@1 3055 }
duke@1 3056 }
duke@1 3057 return make.Switch(selector, cases.toList());
duke@1 3058 }
duke@1 3059
duke@1 3060 public void visitNewArray(JCNewArray tree) {
duke@1 3061 tree.elemtype = translate(tree.elemtype);
duke@1 3062 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3063 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3064 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3065 result = tree;
duke@1 3066 }
duke@1 3067
duke@1 3068 public void visitSelect(JCFieldAccess tree) {
duke@1 3069 // need to special case-access of the form C.super.x
duke@1 3070 // these will always need an access method.
duke@1 3071 boolean qualifiedSuperAccess =
duke@1 3072 tree.selected.getTag() == JCTree.SELECT &&
duke@1 3073 TreeInfo.name(tree.selected) == names._super;
duke@1 3074 tree.selected = translate(tree.selected);
duke@1 3075 if (tree.name == names._class)
duke@1 3076 result = classOf(tree.selected);
duke@1 3077 else if (tree.name == names._this || tree.name == names._super)
duke@1 3078 result = makeThis(tree.pos(), tree.selected.type.tsym);
duke@1 3079 else
duke@1 3080 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3081 }
duke@1 3082
duke@1 3083 public void visitLetExpr(LetExpr tree) {
duke@1 3084 tree.defs = translateVarDefs(tree.defs);
duke@1 3085 tree.expr = translate(tree.expr, tree.type);
duke@1 3086 result = tree;
duke@1 3087 }
duke@1 3088
duke@1 3089 // There ought to be nothing to rewrite here;
duke@1 3090 // we don't generate code.
duke@1 3091 public void visitAnnotation(JCAnnotation tree) {
duke@1 3092 result = tree;
duke@1 3093 }
duke@1 3094
duke@1 3095 /**************************************************************************
duke@1 3096 * main method
duke@1 3097 *************************************************************************/
duke@1 3098
duke@1 3099 /** Translate a toplevel class and return a list consisting of
duke@1 3100 * the translated class and translated versions of all inner classes.
duke@1 3101 * @param env The attribution environment current at the class definition.
duke@1 3102 * We need this for resolving some additional symbols.
duke@1 3103 * @param cdef The tree representing the class definition.
duke@1 3104 */
duke@1 3105 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3106 ListBuffer<JCTree> translated = null;
duke@1 3107 try {
duke@1 3108 attrEnv = env;
duke@1 3109 this.make = make;
duke@1 3110 endPositions = env.toplevel.endPositions;
duke@1 3111 currentClass = null;
duke@1 3112 currentMethodDef = null;
duke@1 3113 outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
duke@1 3114 outermostMemberDef = null;
duke@1 3115 this.translated = new ListBuffer<JCTree>();
duke@1 3116 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3117 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3118 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3119 proxies = new Scope(syms.noSymbol);
duke@1 3120 outerThisStack = List.nil();
duke@1 3121 accessNums = new HashMap<Symbol,Integer>();
duke@1 3122 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3123 accessConstrs = new HashMap<Symbol,MethodSymbol>();
duke@1 3124 accessed = new ListBuffer<Symbol>();
duke@1 3125 translate(cdef, (JCExpression)null);
duke@1 3126 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3127 makeAccessible(l.head);
duke@1 3128 for (EnumMapping map : enumSwitchMap.values())
duke@1 3129 map.translate();
duke@1 3130 translated = this.translated;
duke@1 3131 } finally {
duke@1 3132 // note that recursive invocations of this method fail hard
duke@1 3133 attrEnv = null;
duke@1 3134 this.make = null;
duke@1 3135 endPositions = null;
duke@1 3136 currentClass = null;
duke@1 3137 currentMethodDef = null;
duke@1 3138 outermostClassDef = null;
duke@1 3139 outermostMemberDef = null;
duke@1 3140 this.translated = null;
duke@1 3141 classdefs = null;
duke@1 3142 actualSymbols = null;
duke@1 3143 freevarCache = null;
duke@1 3144 proxies = null;
duke@1 3145 outerThisStack = null;
duke@1 3146 accessNums = null;
duke@1 3147 accessSyms = null;
duke@1 3148 accessConstrs = null;
duke@1 3149 accessed = null;
duke@1 3150 enumSwitchMap.clear();
duke@1 3151 }
duke@1 3152 return translated.toList();
duke@1 3153 }
duke@1 3154
duke@1 3155 //////////////////////////////////////////////////////////////
duke@1 3156 // The following contributed by Borland for bootstrapping purposes
duke@1 3157 //////////////////////////////////////////////////////////////
duke@1 3158 private void addEnumCompatibleMembers(JCClassDecl cdef) {
duke@1 3159 make_at(null);
duke@1 3160
duke@1 3161 // Add the special enum fields
duke@1 3162 VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
duke@1 3163 VarSymbol nameFieldSym = addEnumNameField(cdef);
duke@1 3164
duke@1 3165 // Add the accessor methods for name and ordinal
duke@1 3166 MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
duke@1 3167 MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
duke@1 3168
duke@1 3169 // Add the toString method
duke@1 3170 addEnumToString(cdef, nameFieldSym);
duke@1 3171
duke@1 3172 // Add the compareTo method
duke@1 3173 addEnumCompareTo(cdef, ordinalFieldSym);
duke@1 3174 }
duke@1 3175
duke@1 3176 private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
duke@1 3177 VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3178 names.fromString("$ordinal"),
duke@1 3179 syms.intType,
duke@1 3180 cdef.sym);
duke@1 3181 cdef.sym.members().enter(ordinal);
duke@1 3182 cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
duke@1 3183 return ordinal;
duke@1 3184 }
duke@1 3185
duke@1 3186 private VarSymbol addEnumNameField(JCClassDecl cdef) {
duke@1 3187 VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3188 names.fromString("$name"),
duke@1 3189 syms.stringType,
duke@1 3190 cdef.sym);
duke@1 3191 cdef.sym.members().enter(name);
duke@1 3192 cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
duke@1 3193 return name;
duke@1 3194 }
duke@1 3195
duke@1 3196 private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3197 // Add the accessor methods for ordinal
duke@1 3198 Symbol ordinalSym = lookupMethod(cdef.pos(),
duke@1 3199 names.ordinal,
duke@1 3200 cdef.type,
duke@1 3201 List.<Type>nil());
duke@1 3202
duke@1 3203 assert(ordinalSym != null);
duke@1 3204 assert(ordinalSym instanceof MethodSymbol);
duke@1 3205
duke@1 3206 JCStatement ret = make.Return(make.Ident(ordinalSymbol));
duke@1 3207 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
duke@1 3208 make.Block(0L, List.of(ret))));
duke@1 3209
duke@1 3210 return (MethodSymbol)ordinalSym;
duke@1 3211 }
duke@1 3212
duke@1 3213 private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
duke@1 3214 // Add the accessor methods for name
duke@1 3215 Symbol nameSym = lookupMethod(cdef.pos(),
duke@1 3216 names._name,
duke@1 3217 cdef.type,
duke@1 3218 List.<Type>nil());
duke@1 3219
duke@1 3220 assert(nameSym != null);
duke@1 3221 assert(nameSym instanceof MethodSymbol);
duke@1 3222
duke@1 3223 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3224
duke@1 3225 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
duke@1 3226 make.Block(0L, List.of(ret))));
duke@1 3227
duke@1 3228 return (MethodSymbol)nameSym;
duke@1 3229 }
duke@1 3230
duke@1 3231 private MethodSymbol addEnumToString(JCClassDecl cdef,
duke@1 3232 VarSymbol nameSymbol) {
duke@1 3233 Symbol toStringSym = lookupMethod(cdef.pos(),
duke@1 3234 names.toString,
duke@1 3235 cdef.type,
duke@1 3236 List.<Type>nil());
duke@1 3237
duke@1 3238 JCTree toStringDecl = null;
duke@1 3239 if (toStringSym != null)
duke@1 3240 toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
duke@1 3241
duke@1 3242 if (toStringDecl != null)
duke@1 3243 return (MethodSymbol)toStringSym;
duke@1 3244
duke@1 3245 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3246
duke@1 3247 JCTree resTypeTree = make.Type(syms.stringType);
duke@1 3248
duke@1 3249 MethodType toStringType = new MethodType(List.<Type>nil(),
duke@1 3250 syms.stringType,
duke@1 3251 List.<Type>nil(),
duke@1 3252 cdef.sym);
duke@1 3253 toStringSym = new MethodSymbol(PUBLIC,
duke@1 3254 names.toString,
duke@1 3255 toStringType,
duke@1 3256 cdef.type.tsym);
duke@1 3257 toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
duke@1 3258 make.Block(0L, List.of(ret)));
duke@1 3259
duke@1 3260 cdef.defs = cdef.defs.prepend(toStringDecl);
duke@1 3261 cdef.sym.members().enter(toStringSym);
duke@1 3262
duke@1 3263 return (MethodSymbol)toStringSym;
duke@1 3264 }
duke@1 3265
duke@1 3266 private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3267 Symbol compareToSym = lookupMethod(cdef.pos(),
duke@1 3268 names.compareTo,
duke@1 3269 cdef.type,
duke@1 3270 List.of(cdef.sym.type));
duke@1 3271
duke@1 3272 assert(compareToSym != null);
duke@1 3273 assert(compareToSym instanceof MethodSymbol);
duke@1 3274
duke@1 3275 JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
duke@1 3276
duke@1 3277 ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
duke@1 3278
duke@1 3279 JCModifiers mod1 = make.Modifiers(0L);
duke@1 3280 Name oName = Name.fromString(names, "o");
duke@1 3281 JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
duke@1 3282
duke@1 3283 JCIdent paramId1 = make.Ident(names.java_lang_Object);
duke@1 3284 paramId1.type = cdef.type;
duke@1 3285 paramId1.sym = par1.sym;
duke@1 3286
duke@1 3287 ((MethodSymbol)compareToSym).params = List.of(par1.sym);
duke@1 3288
duke@1 3289 JCIdent par1UsageId = make.Ident(par1.sym);
duke@1 3290 JCIdent castTargetIdent = make.Ident(cdef.sym);
duke@1 3291 JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
duke@1 3292 cast.setType(castTargetIdent.type);
duke@1 3293
duke@1 3294 Name otherName = Name.fromString(names, "other");
duke@1 3295
duke@1 3296 VarSymbol otherVarSym = new VarSymbol(mod1.flags,
duke@1 3297 otherName,
duke@1 3298 cdef.type,
duke@1 3299 compareToSym);
duke@1 3300 JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
duke@1 3301 blockStatements.append(otherVar);
duke@1 3302
duke@1 3303 JCIdent id1 = make.Ident(ordinalSymbol);
duke@1 3304
duke@1 3305 JCIdent fLocUsageId = make.Ident(otherVarSym);
duke@1 3306 JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
duke@1 3307 JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
duke@1 3308 JCReturn ret = make.Return(bin);
duke@1 3309 blockStatements.append(ret);
duke@1 3310 JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
duke@1 3311 make.Block(0L,
duke@1 3312 blockStatements.toList()));
duke@1 3313 compareToMethod.params = List.of(par1);
duke@1 3314 cdef.defs = cdef.defs.append(compareToMethod);
duke@1 3315
duke@1 3316 return (MethodSymbol)compareToSym;
duke@1 3317 }
duke@1 3318 //////////////////////////////////////////////////////////////
duke@1 3319 // The above contributed by Borland for bootstrapping purposes
duke@1 3320 //////////////////////////////////////////////////////////////
duke@1 3321 }

mercurial