src/share/classes/com/sun/tools/javac/jvm/Gen.java

Sat, 14 Sep 2013 19:04:47 +0100

author
vromero
date
Sat, 14 Sep 2013 19:04:47 +0100
changeset 2027
4932bb04c4b8
parent 2009
7c7b4aea6d50
child 2103
b1b4a6dcc282
permissions
-rw-r--r--

7047734: javac, the LVT is not generated correctly in several scenarios
Reviewed-by: jjg, mcimadamore

duke@1 1 /*
jjg@1521 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.jvm;
vromero@2027 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.util.*;
duke@1 31 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33 import com.sun.tools.javac.code.*;
jjg@1755 34 import com.sun.tools.javac.code.Attribute.TypeCompound;
jjg@1755 35 import com.sun.tools.javac.code.Symbol.VarSymbol;
duke@1 36 import com.sun.tools.javac.comp.*;
duke@1 37 import com.sun.tools.javac.tree.*;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
duke@1 40 import com.sun.tools.javac.code.Type.*;
duke@1 41 import com.sun.tools.javac.jvm.Code.*;
duke@1 42 import com.sun.tools.javac.jvm.Items.*;
jjg@1280 43 import com.sun.tools.javac.tree.EndPosTable;
duke@1 44 import com.sun.tools.javac.tree.JCTree.*;
duke@1 45
duke@1 46 import static com.sun.tools.javac.code.Flags.*;
duke@1 47 import static com.sun.tools.javac.code.Kinds.*;
jjg@1374 48 import static com.sun.tools.javac.code.TypeTag.*;
duke@1 49 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 50 import static com.sun.tools.javac.jvm.CRTFlags.*;
jjg@1157 51 import static com.sun.tools.javac.main.Option.*;
jjg@1127 52 import static com.sun.tools.javac.tree.JCTree.Tag.*;
duke@1 53
duke@1 54 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
duke@1 55 *
jjg@581 56 * <p><b>This is NOT part of any supported API.
jjg@581 57 * If you write code that depends on this, you do so at your own risk.
duke@1 58 * This code and its internal interfaces are subject to change or
duke@1 59 * deletion without notice.</b>
duke@1 60 */
duke@1 61 public class Gen extends JCTree.Visitor {
duke@1 62 protected static final Context.Key<Gen> genKey =
duke@1 63 new Context.Key<Gen>();
duke@1 64
duke@1 65 private final Log log;
duke@1 66 private final Symtab syms;
duke@1 67 private final Check chk;
duke@1 68 private final Resolve rs;
duke@1 69 private final TreeMaker make;
jjg@113 70 private final Names names;
duke@1 71 private final Target target;
duke@1 72 private final Type stringBufferType;
duke@1 73 private final Map<Type,Symbol> stringBufferAppend;
duke@1 74 private Name accessDollar;
duke@1 75 private final Types types;
vromero@1432 76 private final Lower lower;
duke@1 77
duke@1 78 /** Switch: GJ mode?
duke@1 79 */
duke@1 80 private final boolean allowGenerics;
duke@1 81
duke@1 82 /** Set when Miranda method stubs are to be generated. */
duke@1 83 private final boolean generateIproxies;
duke@1 84
duke@1 85 /** Format of stackmap tables to be generated. */
duke@1 86 private final Code.StackMapFormat stackMap;
duke@1 87
duke@1 88 /** A type that serves as the expected type for all method expressions.
duke@1 89 */
duke@1 90 private final Type methodType;
duke@1 91
duke@1 92 public static Gen instance(Context context) {
duke@1 93 Gen instance = context.get(genKey);
duke@1 94 if (instance == null)
duke@1 95 instance = new Gen(context);
duke@1 96 return instance;
duke@1 97 }
duke@1 98
vromero@2027 99 /** Constant pool, reset by genClass.
vromero@1452 100 */
vromero@1452 101 private Pool pool;
vromero@1452 102
vromero@2027 103 /** LVTRanges info.
vromero@2027 104 */
vromero@2027 105 private LVTRanges lvtRanges;
vromero@2027 106
duke@1 107 protected Gen(Context context) {
duke@1 108 context.put(genKey, this);
duke@1 109
jjg@113 110 names = Names.instance(context);
duke@1 111 log = Log.instance(context);
duke@1 112 syms = Symtab.instance(context);
duke@1 113 chk = Check.instance(context);
duke@1 114 rs = Resolve.instance(context);
duke@1 115 make = TreeMaker.instance(context);
duke@1 116 target = Target.instance(context);
duke@1 117 types = Types.instance(context);
duke@1 118 methodType = new MethodType(null, null, null, syms.methodClass);
duke@1 119 allowGenerics = Source.instance(context).allowGenerics();
duke@1 120 stringBufferType = target.useStringBuilder()
duke@1 121 ? syms.stringBuilderType
duke@1 122 : syms.stringBufferType;
duke@1 123 stringBufferAppend = new HashMap<Type,Symbol>();
duke@1 124 accessDollar = names.
duke@1 125 fromString("access" + target.syntheticNameChar());
vromero@1432 126 lower = Lower.instance(context);
duke@1 127
duke@1 128 Options options = Options.instance(context);
duke@1 129 lineDebugInfo =
jjg@700 130 options.isUnset(G_CUSTOM) ||
jjg@700 131 options.isSet(G_CUSTOM, "lines");
duke@1 132 varDebugInfo =
jjg@700 133 options.isUnset(G_CUSTOM)
jjg@700 134 ? options.isSet(G)
jjg@700 135 : options.isSet(G_CUSTOM, "vars");
vromero@2027 136 if (varDebugInfo) {
vromero@2027 137 lvtRanges = LVTRanges.instance(context);
vromero@2027 138 }
jjg@700 139 genCrt = options.isSet(XJCOV);
jjg@700 140 debugCode = options.isSet("debugcode");
jjg@700 141 allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
vromero@1452 142 pool = new Pool(types);
duke@1 143
duke@1 144 generateIproxies =
duke@1 145 target.requiresIproxy() ||
jjg@700 146 options.isSet("miranda");
duke@1 147
duke@1 148 if (target.generateStackMapTable()) {
duke@1 149 // ignore cldc because we cannot have both stackmap formats
duke@1 150 this.stackMap = StackMapFormat.JSR202;
duke@1 151 } else {
duke@1 152 if (target.generateCLDCStackmap()) {
duke@1 153 this.stackMap = StackMapFormat.CLDC;
duke@1 154 } else {
duke@1 155 this.stackMap = StackMapFormat.NONE;
duke@1 156 }
duke@1 157 }
duke@1 158
duke@1 159 // by default, avoid jsr's for simple finalizers
duke@1 160 int setjsrlimit = 50;
duke@1 161 String jsrlimitString = options.get("jsrlimit");
duke@1 162 if (jsrlimitString != null) {
duke@1 163 try {
duke@1 164 setjsrlimit = Integer.parseInt(jsrlimitString);
duke@1 165 } catch (NumberFormatException ex) {
duke@1 166 // ignore ill-formed numbers for jsrlimit
duke@1 167 }
duke@1 168 }
duke@1 169 this.jsrlimit = setjsrlimit;
duke@1 170 this.useJsrLocally = false; // reset in visitTry
duke@1 171 }
duke@1 172
duke@1 173 /** Switches
duke@1 174 */
duke@1 175 private final boolean lineDebugInfo;
duke@1 176 private final boolean varDebugInfo;
duke@1 177 private final boolean genCrt;
duke@1 178 private final boolean debugCode;
jrose@267 179 private final boolean allowInvokedynamic;
duke@1 180
duke@1 181 /** Default limit of (approximate) size of finalizer to inline.
duke@1 182 * Zero means always use jsr. 100 or greater means never use
duke@1 183 * jsr.
duke@1 184 */
duke@1 185 private final int jsrlimit;
duke@1 186
duke@1 187 /** True if jsr is used.
duke@1 188 */
duke@1 189 private boolean useJsrLocally;
duke@1 190
duke@1 191 /** Code buffer, set by genMethod.
duke@1 192 */
duke@1 193 private Code code;
duke@1 194
duke@1 195 /** Items structure, set by genMethod.
duke@1 196 */
duke@1 197 private Items items;
duke@1 198
duke@1 199 /** Environment for symbol lookup, set by genClass
duke@1 200 */
duke@1 201 private Env<AttrContext> attrEnv;
duke@1 202
duke@1 203 /** The top level tree.
duke@1 204 */
duke@1 205 private JCCompilationUnit toplevel;
duke@1 206
duke@1 207 /** The number of code-gen errors in this class.
duke@1 208 */
duke@1 209 private int nerrs = 0;
duke@1 210
ksrini@1138 211 /** An object containing mappings of syntax trees to their
ksrini@1138 212 * ending source positions.
duke@1 213 */
ksrini@1138 214 EndPosTable endPosTable;
duke@1 215
duke@1 216 /** Generate code to load an integer constant.
duke@1 217 * @param n The integer to be loaded.
duke@1 218 */
duke@1 219 void loadIntConst(int n) {
duke@1 220 items.makeImmediateItem(syms.intType, n).load();
duke@1 221 }
duke@1 222
duke@1 223 /** The opcode that loads a zero constant of a given type code.
duke@1 224 * @param tc The given type code (@see ByteCode).
duke@1 225 */
duke@1 226 public static int zero(int tc) {
duke@1 227 switch(tc) {
duke@1 228 case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
duke@1 229 return iconst_0;
duke@1 230 case LONGcode:
duke@1 231 return lconst_0;
duke@1 232 case FLOATcode:
duke@1 233 return fconst_0;
duke@1 234 case DOUBLEcode:
duke@1 235 return dconst_0;
duke@1 236 default:
duke@1 237 throw new AssertionError("zero");
duke@1 238 }
duke@1 239 }
duke@1 240
duke@1 241 /** The opcode that loads a one constant of a given type code.
duke@1 242 * @param tc The given type code (@see ByteCode).
duke@1 243 */
duke@1 244 public static int one(int tc) {
duke@1 245 return zero(tc) + 1;
duke@1 246 }
duke@1 247
duke@1 248 /** Generate code to load -1 of the given type code (either int or long).
duke@1 249 * @param tc The given type code (@see ByteCode).
duke@1 250 */
duke@1 251 void emitMinusOne(int tc) {
duke@1 252 if (tc == LONGcode) {
duke@1 253 items.makeImmediateItem(syms.longType, new Long(-1)).load();
duke@1 254 } else {
duke@1 255 code.emitop0(iconst_m1);
duke@1 256 }
duke@1 257 }
duke@1 258
duke@1 259 /** Construct a symbol to reflect the qualifying type that should
duke@1 260 * appear in the byte code as per JLS 13.1.
duke@1 261 *
jjg@1326 262 * For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
duke@1 263 * for those cases where we need to work around VM bugs).
duke@1 264 *
jjg@1326 265 * For {@literal target <= 1.1}: If qualified variable or method is defined in a
duke@1 266 * non-accessible class, clone it with the qualifier class as owner.
duke@1 267 *
duke@1 268 * @param sym The accessed symbol
duke@1 269 * @param site The qualifier's type.
duke@1 270 */
duke@1 271 Symbol binaryQualifier(Symbol sym, Type site) {
duke@1 272
jjg@1374 273 if (site.hasTag(ARRAY)) {
duke@1 274 if (sym == syms.lengthVar ||
duke@1 275 sym.owner != syms.arrayClass)
duke@1 276 return sym;
duke@1 277 // array clone can be qualified by the array type in later targets
duke@1 278 Symbol qualifier = target.arrayBinaryCompatibility()
duke@1 279 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
duke@1 280 site, syms.noSymbol)
duke@1 281 : syms.objectType.tsym;
duke@1 282 return sym.clone(qualifier);
duke@1 283 }
duke@1 284
duke@1 285 if (sym.owner == site.tsym ||
duke@1 286 (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
duke@1 287 return sym;
duke@1 288 }
duke@1 289 if (!target.obeyBinaryCompatibility())
duke@1 290 return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
duke@1 291 ? sym
duke@1 292 : sym.clone(site.tsym);
duke@1 293
duke@1 294 if (!target.interfaceFieldsBinaryCompatibility()) {
duke@1 295 if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
duke@1 296 return sym;
duke@1 297 }
duke@1 298
duke@1 299 // leave alone methods inherited from Object
jjh@972 300 // JLS 13.1.
duke@1 301 if (sym.owner == syms.objectType.tsym)
duke@1 302 return sym;
duke@1 303
duke@1 304 if (!target.interfaceObjectOverridesBinaryCompatibility()) {
duke@1 305 if ((sym.owner.flags() & INTERFACE) != 0 &&
duke@1 306 syms.objectType.tsym.members().lookup(sym.name).scope != null)
duke@1 307 return sym;
duke@1 308 }
duke@1 309
duke@1 310 return sym.clone(site.tsym);
duke@1 311 }
duke@1 312
duke@1 313 /** Insert a reference to given type in the constant pool,
duke@1 314 * checking for an array with too many dimensions;
duke@1 315 * return the reference's index.
duke@1 316 * @param type The type for which a reference is inserted.
duke@1 317 */
duke@1 318 int makeRef(DiagnosticPosition pos, Type type) {
duke@1 319 checkDimension(pos, type);
jjg@1755 320 if (type.isAnnotated()) {
jjg@1755 321 // Treat annotated types separately - we don't want
jjg@1755 322 // to collapse all of them - at least for annotated
jjg@1755 323 // exceptions.
jjg@1755 324 // TODO: review this.
jjg@1755 325 return pool.put((Object)type);
jjg@1755 326 } else {
jjg@1755 327 return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
jjg@1755 328 }
duke@1 329 }
duke@1 330
duke@1 331 /** Check if the given type is an array with too many dimensions.
duke@1 332 */
duke@1 333 private void checkDimension(DiagnosticPosition pos, Type t) {
jjg@1374 334 switch (t.getTag()) {
duke@1 335 case METHOD:
duke@1 336 checkDimension(pos, t.getReturnType());
duke@1 337 for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
duke@1 338 checkDimension(pos, args.head);
duke@1 339 break;
duke@1 340 case ARRAY:
duke@1 341 if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
duke@1 342 log.error(pos, "limit.dimensions");
duke@1 343 nerrs++;
duke@1 344 }
duke@1 345 break;
duke@1 346 default:
duke@1 347 break;
duke@1 348 }
duke@1 349 }
duke@1 350
duke@1 351 /** Create a tempory variable.
duke@1 352 * @param type The variable's type.
duke@1 353 */
duke@1 354 LocalItem makeTemp(Type type) {
duke@1 355 VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
duke@1 356 names.empty,
duke@1 357 type,
duke@1 358 env.enclMethod.sym);
duke@1 359 code.newLocal(v);
duke@1 360 return items.makeLocalItem(v);
duke@1 361 }
duke@1 362
duke@1 363 /** Generate code to call a non-private method or constructor.
duke@1 364 * @param pos Position to be used for error reporting.
duke@1 365 * @param site The type of which the method is a member.
duke@1 366 * @param name The method's name.
duke@1 367 * @param argtypes The method's argument types.
duke@1 368 * @param isStatic A flag that indicates whether we call a
duke@1 369 * static or instance method.
duke@1 370 */
duke@1 371 void callMethod(DiagnosticPosition pos,
duke@1 372 Type site, Name name, List<Type> argtypes,
duke@1 373 boolean isStatic) {
duke@1 374 Symbol msym = rs.
duke@1 375 resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
duke@1 376 if (isStatic) items.makeStaticItem(msym).invoke();
duke@1 377 else items.makeMemberItem(msym, name == names.init).invoke();
duke@1 378 }
duke@1 379
duke@1 380 /** Is the given method definition an access method
duke@1 381 * resulting from a qualified super? This is signified by an odd
duke@1 382 * access code.
duke@1 383 */
duke@1 384 private boolean isAccessSuper(JCMethodDecl enclMethod) {
duke@1 385 return
duke@1 386 (enclMethod.mods.flags & SYNTHETIC) != 0 &&
duke@1 387 isOddAccessName(enclMethod.name);
duke@1 388 }
duke@1 389
duke@1 390 /** Does given name start with "access$" and end in an odd digit?
duke@1 391 */
duke@1 392 private boolean isOddAccessName(Name name) {
duke@1 393 return
duke@1 394 name.startsWith(accessDollar) &&
jjg@113 395 (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
duke@1 396 }
duke@1 397
duke@1 398 /* ************************************************************************
duke@1 399 * Non-local exits
duke@1 400 *************************************************************************/
duke@1 401
duke@1 402 /** Generate code to invoke the finalizer associated with given
duke@1 403 * environment.
duke@1 404 * Any calls to finalizers are appended to the environments `cont' chain.
duke@1 405 * Mark beginning of gap in catch all range for finalizer.
duke@1 406 */
duke@1 407 void genFinalizer(Env<GenContext> env) {
duke@1 408 if (code.isAlive() && env.info.finalize != null)
duke@1 409 env.info.finalize.gen();
duke@1 410 }
duke@1 411
duke@1 412 /** Generate code to call all finalizers of structures aborted by
duke@1 413 * a non-local
duke@1 414 * exit. Return target environment of the non-local exit.
duke@1 415 * @param target The tree representing the structure that's aborted
duke@1 416 * @param env The environment current at the non-local exit.
duke@1 417 */
duke@1 418 Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
duke@1 419 Env<GenContext> env1 = env;
duke@1 420 while (true) {
duke@1 421 genFinalizer(env1);
duke@1 422 if (env1.tree == target) break;
duke@1 423 env1 = env1.next;
duke@1 424 }
duke@1 425 return env1;
duke@1 426 }
duke@1 427
duke@1 428 /** Mark end of gap in catch-all range for finalizer.
duke@1 429 * @param env the environment which might contain the finalizer
duke@1 430 * (if it does, env.info.gaps != null).
duke@1 431 */
duke@1 432 void endFinalizerGap(Env<GenContext> env) {
duke@1 433 if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
vromero@2027 434 env.info.gaps.append(code.curCP());
duke@1 435 }
duke@1 436
duke@1 437 /** Mark end of all gaps in catch-all ranges for finalizers of environments
duke@1 438 * lying between, and including to two environments.
duke@1 439 * @param from the most deeply nested environment to mark
duke@1 440 * @param to the least deeply nested environment to mark
duke@1 441 */
duke@1 442 void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
duke@1 443 Env<GenContext> last = null;
duke@1 444 while (last != to) {
duke@1 445 endFinalizerGap(from);
duke@1 446 last = from;
duke@1 447 from = from.next;
duke@1 448 }
duke@1 449 }
duke@1 450
duke@1 451 /** Do any of the structures aborted by a non-local exit have
duke@1 452 * finalizers that require an empty stack?
duke@1 453 * @param target The tree representing the structure that's aborted
duke@1 454 * @param env The environment current at the non-local exit.
duke@1 455 */
duke@1 456 boolean hasFinally(JCTree target, Env<GenContext> env) {
duke@1 457 while (env.tree != target) {
jjg@1127 458 if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
duke@1 459 return true;
duke@1 460 env = env.next;
duke@1 461 }
duke@1 462 return false;
duke@1 463 }
duke@1 464
duke@1 465 /* ************************************************************************
duke@1 466 * Normalizing class-members.
duke@1 467 *************************************************************************/
duke@1 468
jjg@1358 469 /** Distribute member initializer code into constructors and {@code <clinit>}
duke@1 470 * method.
duke@1 471 * @param defs The list of class member declarations.
duke@1 472 * @param c The enclosing class.
duke@1 473 */
duke@1 474 List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
duke@1 475 ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
jjg@1755 476 ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<Attribute.TypeCompound>();
duke@1 477 ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
jjg@1755 478 ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<Attribute.TypeCompound>();
duke@1 479 ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
duke@1 480 // Sort definitions into three listbuffers:
duke@1 481 // - initCode for instance initializers
duke@1 482 // - clinitCode for class initializers
duke@1 483 // - methodDefs for method definitions
duke@1 484 for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
duke@1 485 JCTree def = l.head;
duke@1 486 switch (def.getTag()) {
jjg@1127 487 case BLOCK:
duke@1 488 JCBlock block = (JCBlock)def;
duke@1 489 if ((block.flags & STATIC) != 0)
duke@1 490 clinitCode.append(block);
duke@1 491 else
duke@1 492 initCode.append(block);
duke@1 493 break;
jjg@1127 494 case METHODDEF:
duke@1 495 methodDefs.append(def);
duke@1 496 break;
jjg@1127 497 case VARDEF:
duke@1 498 JCVariableDecl vdef = (JCVariableDecl) def;
duke@1 499 VarSymbol sym = vdef.sym;
duke@1 500 checkDimension(vdef.pos(), sym.type);
duke@1 501 if (vdef.init != null) {
duke@1 502 if ((sym.flags() & STATIC) == 0) {
duke@1 503 // Always initialize instance variables.
duke@1 504 JCStatement init = make.at(vdef.pos()).
duke@1 505 Assignment(sym, vdef.init);
duke@1 506 initCode.append(init);
ksrini@1138 507 endPosTable.replaceTree(vdef, init);
jjg@1755 508 initTAs.addAll(getAndRemoveNonFieldTAs(sym));
duke@1 509 } else if (sym.getConstValue() == null) {
duke@1 510 // Initialize class (static) variables only if
duke@1 511 // they are not compile-time constants.
duke@1 512 JCStatement init = make.at(vdef.pos).
duke@1 513 Assignment(sym, vdef.init);
duke@1 514 clinitCode.append(init);
ksrini@1138 515 endPosTable.replaceTree(vdef, init);
jjg@1755 516 clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
duke@1 517 } else {
duke@1 518 checkStringConstant(vdef.init.pos(), sym.getConstValue());
duke@1 519 }
duke@1 520 }
duke@1 521 break;
duke@1 522 default:
jjg@816 523 Assert.error();
duke@1 524 }
duke@1 525 }
duke@1 526 // Insert any instance initializers into all constructors.
duke@1 527 if (initCode.length() != 0) {
duke@1 528 List<JCStatement> inits = initCode.toList();
jjg@1802 529 initTAs.addAll(c.getInitTypeAttributes());
jjg@1755 530 List<Attribute.TypeCompound> initTAlist = initTAs.toList();
duke@1 531 for (JCTree t : methodDefs) {
jjg@1755 532 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
duke@1 533 }
duke@1 534 }
duke@1 535 // If there are class initializers, create a <clinit> method
duke@1 536 // that contains them as its body.
duke@1 537 if (clinitCode.length() != 0) {
duke@1 538 MethodSymbol clinit = new MethodSymbol(
vromero@1555 539 STATIC | (c.flags() & STRICTFP),
vromero@1555 540 names.clinit,
duke@1 541 new MethodType(
duke@1 542 List.<Type>nil(), syms.voidType,
duke@1 543 List.<Type>nil(), syms.methodClass),
duke@1 544 c);
duke@1 545 c.members().enter(clinit);
duke@1 546 List<JCStatement> clinitStats = clinitCode.toList();
duke@1 547 JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
duke@1 548 block.endpos = TreeInfo.endPos(clinitStats.last());
duke@1 549 methodDefs.append(make.MethodDef(clinit, block));
jjg@1755 550
jjg@1755 551 if (!clinitTAs.isEmpty())
jjg@1802 552 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
jjg@1802 553 if (!c.getClassInitTypeAttributes().isEmpty())
jjg@1802 554 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
duke@1 555 }
duke@1 556 // Return all method definitions.
duke@1 557 return methodDefs.toList();
duke@1 558 }
duke@1 559
jjg@1755 560 private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
jjg@1755 561 List<TypeCompound> tas = sym.getRawTypeAttributes();
jjg@1755 562 ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<Attribute.TypeCompound>();
jjg@1755 563 ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<Attribute.TypeCompound>();
jjg@1755 564 for (TypeCompound ta : tas) {
jjg@1755 565 if (ta.position.type == TargetType.FIELD) {
jjg@1755 566 fieldTAs.add(ta);
jjg@1755 567 } else {
jjg@1755 568 nonfieldTAs.add(ta);
jjg@1755 569 }
jjg@1755 570 }
jjg@1802 571 sym.setTypeAttributes(fieldTAs.toList());
jjg@1755 572 return nonfieldTAs.toList();
jjg@1755 573 }
jjg@1755 574
duke@1 575 /** Check a constant value and report if it is a string that is
duke@1 576 * too large.
duke@1 577 */
duke@1 578 private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
duke@1 579 if (nerrs != 0 || // only complain about a long string once
duke@1 580 constValue == null ||
duke@1 581 !(constValue instanceof String) ||
duke@1 582 ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
duke@1 583 return;
duke@1 584 log.error(pos, "limit.string");
duke@1 585 nerrs++;
duke@1 586 }
duke@1 587
duke@1 588 /** Insert instance initializer code into initial constructor.
duke@1 589 * @param md The tree potentially representing a
duke@1 590 * constructor's definition.
duke@1 591 * @param initCode The list of instance initializer statements.
jjg@1755 592 * @param initTAs Type annotations from the initializer expression.
duke@1 593 */
jjg@1755 594 void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
duke@1 595 if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
duke@1 596 // We are seeing a constructor that does not call another
duke@1 597 // constructor of the same class.
duke@1 598 List<JCStatement> stats = md.body.stats;
duke@1 599 ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
duke@1 600
duke@1 601 if (stats.nonEmpty()) {
duke@1 602 // Copy initializers of synthetic variables generated in
duke@1 603 // the translation of inner classes.
duke@1 604 while (TreeInfo.isSyntheticInit(stats.head)) {
duke@1 605 newstats.append(stats.head);
duke@1 606 stats = stats.tail;
duke@1 607 }
duke@1 608 // Copy superclass constructor call
duke@1 609 newstats.append(stats.head);
duke@1 610 stats = stats.tail;
duke@1 611 // Copy remaining synthetic initializers.
duke@1 612 while (stats.nonEmpty() &&
duke@1 613 TreeInfo.isSyntheticInit(stats.head)) {
duke@1 614 newstats.append(stats.head);
duke@1 615 stats = stats.tail;
duke@1 616 }
duke@1 617 // Now insert the initializer code.
duke@1 618 newstats.appendList(initCode);
duke@1 619 // And copy all remaining statements.
duke@1 620 while (stats.nonEmpty()) {
duke@1 621 newstats.append(stats.head);
duke@1 622 stats = stats.tail;
duke@1 623 }
duke@1 624 }
duke@1 625 md.body.stats = newstats.toList();
duke@1 626 if (md.body.endpos == Position.NOPOS)
duke@1 627 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
jjg@1755 628
jjg@1802 629 md.sym.appendUniqueTypeAttributes(initTAs);
duke@1 630 }
duke@1 631 }
duke@1 632
duke@1 633 /* ********************************************************************
duke@1 634 * Adding miranda methods
duke@1 635 *********************************************************************/
duke@1 636
duke@1 637 /** Add abstract methods for all methods defined in one of
duke@1 638 * the interfaces of a given class,
duke@1 639 * provided they are not already implemented in the class.
duke@1 640 *
duke@1 641 * @param c The class whose interfaces are searched for methods
duke@1 642 * for which Miranda methods should be added.
duke@1 643 */
duke@1 644 void implementInterfaceMethods(ClassSymbol c) {
duke@1 645 implementInterfaceMethods(c, c);
duke@1 646 }
duke@1 647
duke@1 648 /** Add abstract methods for all methods defined in one of
duke@1 649 * the interfaces of a given class,
duke@1 650 * provided they are not already implemented in the class.
duke@1 651 *
duke@1 652 * @param c The class whose interfaces are searched for methods
duke@1 653 * for which Miranda methods should be added.
duke@1 654 * @param site The class in which a definition may be needed.
duke@1 655 */
duke@1 656 void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
duke@1 657 for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
duke@1 658 ClassSymbol i = (ClassSymbol)l.head.tsym;
duke@1 659 for (Scope.Entry e = i.members().elems;
duke@1 660 e != null;
duke@1 661 e = e.sibling)
duke@1 662 {
duke@1 663 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
duke@1 664 {
duke@1 665 MethodSymbol absMeth = (MethodSymbol)e.sym;
duke@1 666 MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
duke@1 667 if (implMeth == null)
duke@1 668 addAbstractMethod(site, absMeth);
duke@1 669 else if ((implMeth.flags() & IPROXY) != 0)
duke@1 670 adjustAbstractMethod(site, implMeth, absMeth);
duke@1 671 }
duke@1 672 }
duke@1 673 implementInterfaceMethods(i, site);
duke@1 674 }
duke@1 675 }
duke@1 676
duke@1 677 /** Add an abstract methods to a class
duke@1 678 * which implicitly implements a method defined in some interface
duke@1 679 * implemented by the class. These methods are called "Miranda methods".
duke@1 680 * Enter the newly created method into its enclosing class scope.
duke@1 681 * Note that it is not entered into the class tree, as the emitter
duke@1 682 * doesn't need to see it there to emit an abstract method.
duke@1 683 *
duke@1 684 * @param c The class to which the Miranda method is added.
duke@1 685 * @param m The interface method symbol for which a Miranda method
duke@1 686 * is added.
duke@1 687 */
duke@1 688 private void addAbstractMethod(ClassSymbol c,
duke@1 689 MethodSymbol m) {
duke@1 690 MethodSymbol absMeth = new MethodSymbol(
duke@1 691 m.flags() | IPROXY | SYNTHETIC, m.name,
duke@1 692 m.type, // was c.type.memberType(m), but now only !generics supported
duke@1 693 c);
duke@1 694 c.members().enter(absMeth); // add to symbol table
duke@1 695 }
duke@1 696
duke@1 697 private void adjustAbstractMethod(ClassSymbol c,
duke@1 698 MethodSymbol pm,
duke@1 699 MethodSymbol im) {
duke@1 700 MethodType pmt = (MethodType)pm.type;
duke@1 701 Type imt = types.memberType(c.type, im);
duke@1 702 pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
duke@1 703 }
duke@1 704
duke@1 705 /* ************************************************************************
duke@1 706 * Traversal methods
duke@1 707 *************************************************************************/
duke@1 708
duke@1 709 /** Visitor argument: The current environment.
duke@1 710 */
duke@1 711 Env<GenContext> env;
duke@1 712
duke@1 713 /** Visitor argument: The expected type (prototype).
duke@1 714 */
duke@1 715 Type pt;
duke@1 716
duke@1 717 /** Visitor result: The item representing the computed value.
duke@1 718 */
duke@1 719 Item result;
duke@1 720
duke@1 721 /** Visitor method: generate code for a definition, catching and reporting
duke@1 722 * any completion failures.
duke@1 723 * @param tree The definition to be visited.
duke@1 724 * @param env The environment current at the definition.
duke@1 725 */
duke@1 726 public void genDef(JCTree tree, Env<GenContext> env) {
duke@1 727 Env<GenContext> prevEnv = this.env;
duke@1 728 try {
duke@1 729 this.env = env;
duke@1 730 tree.accept(this);
duke@1 731 } catch (CompletionFailure ex) {
duke@1 732 chk.completionError(tree.pos(), ex);
duke@1 733 } finally {
duke@1 734 this.env = prevEnv;
duke@1 735 }
duke@1 736 }
duke@1 737
duke@1 738 /** Derived visitor method: check whether CharacterRangeTable
duke@1 739 * should be emitted, if so, put a new entry into CRTable
duke@1 740 * and call method to generate bytecode.
duke@1 741 * If not, just call method to generate bytecode.
jjg@1358 742 * @see #genStat(JCTree, Env)
duke@1 743 *
duke@1 744 * @param tree The tree to be visited.
duke@1 745 * @param env The environment to use.
duke@1 746 * @param crtFlags The CharacterRangeTable flags
duke@1 747 * indicating type of the entry.
duke@1 748 */
duke@1 749 public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
duke@1 750 if (!genCrt) {
duke@1 751 genStat(tree, env);
duke@1 752 return;
duke@1 753 }
vromero@2027 754 int startpc = code.curCP();
duke@1 755 genStat(tree, env);
vromero@1452 756 if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
vromero@2027 757 code.crt.put(tree, crtFlags, startpc, code.curCP());
duke@1 758 }
duke@1 759
duke@1 760 /** Derived visitor method: generate code for a statement.
duke@1 761 */
duke@1 762 public void genStat(JCTree tree, Env<GenContext> env) {
duke@1 763 if (code.isAlive()) {
duke@1 764 code.statBegin(tree.pos);
duke@1 765 genDef(tree, env);
jjg@1127 766 } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
duke@1 767 // variables whose declarations are in a switch
duke@1 768 // can be used even if the decl is unreachable.
duke@1 769 code.newLocal(((JCVariableDecl) tree).sym);
duke@1 770 }
duke@1 771 }
duke@1 772
duke@1 773 /** Derived visitor method: check whether CharacterRangeTable
duke@1 774 * should be emitted, if so, put a new entry into CRTable
duke@1 775 * and call method to generate bytecode.
duke@1 776 * If not, just call method to generate bytecode.
duke@1 777 * @see #genStats(List, Env)
duke@1 778 *
duke@1 779 * @param trees The list of trees to be visited.
duke@1 780 * @param env The environment to use.
duke@1 781 * @param crtFlags The CharacterRangeTable flags
duke@1 782 * indicating type of the entry.
duke@1 783 */
duke@1 784 public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
duke@1 785 if (!genCrt) {
duke@1 786 genStats(trees, env);
duke@1 787 return;
duke@1 788 }
duke@1 789 if (trees.length() == 1) { // mark one statement with the flags
duke@1 790 genStat(trees.head, env, crtFlags | CRT_STATEMENT);
duke@1 791 } else {
vromero@2027 792 int startpc = code.curCP();
duke@1 793 genStats(trees, env);
vromero@2027 794 code.crt.put(trees, crtFlags, startpc, code.curCP());
duke@1 795 }
duke@1 796 }
duke@1 797
duke@1 798 /** Derived visitor method: generate code for a list of statements.
duke@1 799 */
duke@1 800 public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
duke@1 801 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
duke@1 802 genStat(l.head, env, CRT_STATEMENT);
duke@1 803 }
duke@1 804
duke@1 805 /** Derived visitor method: check whether CharacterRangeTable
duke@1 806 * should be emitted, if so, put a new entry into CRTable
duke@1 807 * and call method to generate bytecode.
duke@1 808 * If not, just call method to generate bytecode.
jjg@1358 809 * @see #genCond(JCTree,boolean)
duke@1 810 *
duke@1 811 * @param tree The tree to be visited.
duke@1 812 * @param crtFlags The CharacterRangeTable flags
duke@1 813 * indicating type of the entry.
duke@1 814 */
duke@1 815 public CondItem genCond(JCTree tree, int crtFlags) {
duke@1 816 if (!genCrt) return genCond(tree, false);
vromero@2027 817 int startpc = code.curCP();
duke@1 818 CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
vromero@2027 819 code.crt.put(tree, crtFlags, startpc, code.curCP());
duke@1 820 return item;
duke@1 821 }
duke@1 822
duke@1 823 /** Derived visitor method: generate code for a boolean
duke@1 824 * expression in a control-flow context.
duke@1 825 * @param _tree The expression to be visited.
duke@1 826 * @param markBranches The flag to indicate that the condition is
duke@1 827 * a flow controller so produced conditions
duke@1 828 * should contain a proper tree to generate
duke@1 829 * CharacterRangeTable branches for them.
duke@1 830 */
duke@1 831 public CondItem genCond(JCTree _tree, boolean markBranches) {
duke@1 832 JCTree inner_tree = TreeInfo.skipParens(_tree);
jjg@1127 833 if (inner_tree.hasTag(CONDEXPR)) {
duke@1 834 JCConditional tree = (JCConditional)inner_tree;
duke@1 835 CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
duke@1 836 if (cond.isTrue()) {
duke@1 837 code.resolve(cond.trueJumps);
duke@1 838 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
duke@1 839 if (markBranches) result.tree = tree.truepart;
duke@1 840 return result;
duke@1 841 }
duke@1 842 if (cond.isFalse()) {
duke@1 843 code.resolve(cond.falseJumps);
duke@1 844 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
duke@1 845 if (markBranches) result.tree = tree.falsepart;
duke@1 846 return result;
duke@1 847 }
duke@1 848 Chain secondJumps = cond.jumpFalse();
duke@1 849 code.resolve(cond.trueJumps);
duke@1 850 CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
duke@1 851 if (markBranches) first.tree = tree.truepart;
duke@1 852 Chain falseJumps = first.jumpFalse();
duke@1 853 code.resolve(first.trueJumps);
duke@1 854 Chain trueJumps = code.branch(goto_);
duke@1 855 code.resolve(secondJumps);
duke@1 856 CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
duke@1 857 CondItem result = items.makeCondItem(second.opcode,
jjg@507 858 Code.mergeChains(trueJumps, second.trueJumps),
jjg@507 859 Code.mergeChains(falseJumps, second.falseJumps));
duke@1 860 if (markBranches) result.tree = tree.falsepart;
duke@1 861 return result;
duke@1 862 } else {
duke@1 863 CondItem result = genExpr(_tree, syms.booleanType).mkCond();
duke@1 864 if (markBranches) result.tree = _tree;
duke@1 865 return result;
duke@1 866 }
duke@1 867 }
duke@1 868
vromero@1432 869 /** Visitor class for expressions which might be constant expressions.
vromero@1432 870 * This class is a subset of TreeScanner. Intended to visit trees pruned by
vromero@1432 871 * Lower as long as constant expressions looking for references to any
vromero@1432 872 * ClassSymbol. Any such reference will be added to the constant pool so
vromero@1432 873 * automated tools can detect class dependencies better.
vromero@1432 874 */
vromero@1432 875 class ClassReferenceVisitor extends JCTree.Visitor {
vromero@1432 876
vromero@1432 877 @Override
vromero@1432 878 public void visitTree(JCTree tree) {}
vromero@1432 879
vromero@1432 880 @Override
vromero@1432 881 public void visitBinary(JCBinary tree) {
vromero@1432 882 tree.lhs.accept(this);
vromero@1432 883 tree.rhs.accept(this);
vromero@1432 884 }
vromero@1432 885
vromero@1432 886 @Override
vromero@1432 887 public void visitSelect(JCFieldAccess tree) {
vromero@1432 888 if (tree.selected.type.hasTag(CLASS)) {
vromero@1432 889 makeRef(tree.selected.pos(), tree.selected.type);
vromero@1432 890 }
vromero@1432 891 }
vromero@1432 892
vromero@1432 893 @Override
vromero@1432 894 public void visitIdent(JCIdent tree) {
vromero@1432 895 if (tree.sym.owner instanceof ClassSymbol) {
vromero@1432 896 pool.put(tree.sym.owner);
vromero@1432 897 }
vromero@1432 898 }
vromero@1432 899
vromero@1432 900 @Override
vromero@1432 901 public void visitConditional(JCConditional tree) {
vromero@1432 902 tree.cond.accept(this);
vromero@1432 903 tree.truepart.accept(this);
vromero@1432 904 tree.falsepart.accept(this);
vromero@1432 905 }
vromero@1432 906
vromero@1432 907 @Override
vromero@1432 908 public void visitUnary(JCUnary tree) {
vromero@1432 909 tree.arg.accept(this);
vromero@1432 910 }
vromero@1432 911
vromero@1432 912 @Override
vromero@1432 913 public void visitParens(JCParens tree) {
vromero@1432 914 tree.expr.accept(this);
vromero@1432 915 }
vromero@1432 916
vromero@1432 917 @Override
vromero@1432 918 public void visitTypeCast(JCTypeCast tree) {
vromero@1432 919 tree.expr.accept(this);
vromero@1432 920 }
vromero@1432 921 }
vromero@1432 922
vromero@1432 923 private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
vromero@1432 924
duke@1 925 /** Visitor method: generate code for an expression, catching and reporting
duke@1 926 * any completion failures.
duke@1 927 * @param tree The expression to be visited.
duke@1 928 * @param pt The expression's expected type (proto-type).
duke@1 929 */
duke@1 930 public Item genExpr(JCTree tree, Type pt) {
duke@1 931 Type prevPt = this.pt;
duke@1 932 try {
duke@1 933 if (tree.type.constValue() != null) {
duke@1 934 // Short circuit any expressions which are constants
vromero@1432 935 tree.accept(classReferenceVisitor);
duke@1 936 checkStringConstant(tree.pos(), tree.type.constValue());
duke@1 937 result = items.makeImmediateItem(tree.type, tree.type.constValue());
duke@1 938 } else {
duke@1 939 this.pt = pt;
duke@1 940 tree.accept(this);
duke@1 941 }
duke@1 942 return result.coerce(pt);
duke@1 943 } catch (CompletionFailure ex) {
duke@1 944 chk.completionError(tree.pos(), ex);
duke@1 945 code.state.stacksize = 1;
duke@1 946 return items.makeStackItem(pt);
duke@1 947 } finally {
duke@1 948 this.pt = prevPt;
duke@1 949 }
duke@1 950 }
duke@1 951
duke@1 952 /** Derived visitor method: generate code for a list of method arguments.
duke@1 953 * @param trees The argument expressions to be visited.
duke@1 954 * @param pts The expression's expected types (i.e. the formal parameter
duke@1 955 * types of the invoked method).
duke@1 956 */
duke@1 957 public void genArgs(List<JCExpression> trees, List<Type> pts) {
duke@1 958 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
duke@1 959 genExpr(l.head, pts.head).load();
duke@1 960 pts = pts.tail;
duke@1 961 }
duke@1 962 // require lists be of same length
jjg@816 963 Assert.check(pts.isEmpty());
duke@1 964 }
duke@1 965
duke@1 966 /* ************************************************************************
duke@1 967 * Visitor methods for statements and definitions
duke@1 968 *************************************************************************/
duke@1 969
duke@1 970 /** Thrown when the byte code size exceeds limit.
duke@1 971 */
duke@1 972 public static class CodeSizeOverflow extends RuntimeException {
duke@1 973 private static final long serialVersionUID = 0;
duke@1 974 public CodeSizeOverflow() {}
duke@1 975 }
duke@1 976
duke@1 977 public void visitMethodDef(JCMethodDecl tree) {
duke@1 978 // Create a new local environment that points pack at method
duke@1 979 // definition.
duke@1 980 Env<GenContext> localEnv = env.dup(tree);
duke@1 981 localEnv.enclMethod = tree;
duke@1 982 // The expected type of every return statement in this method
duke@1 983 // is the method's return type.
duke@1 984 this.pt = tree.sym.erasure(types).getReturnType();
duke@1 985
duke@1 986 checkDimension(tree.pos(), tree.sym.erasure(types));
duke@1 987 genMethod(tree, localEnv, false);
duke@1 988 }
duke@1 989 //where
duke@1 990 /** Generate code for a method.
duke@1 991 * @param tree The tree representing the method definition.
duke@1 992 * @param env The environment current for the method body.
duke@1 993 * @param fatcode A flag that indicates whether all jumps are
duke@1 994 * within 32K. We first invoke this method under
duke@1 995 * the assumption that fatcode == false, i.e. all
duke@1 996 * jumps are within 32K. If this fails, fatcode
duke@1 997 * is set to true and we try again.
duke@1 998 */
duke@1 999 void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
duke@1 1000 MethodSymbol meth = tree.sym;
emc@1860 1001 int extras = 0;
emc@1860 1002 // Count up extra parameters
emc@1860 1003 if (meth.isConstructor()) {
emc@1860 1004 extras++;
emc@1860 1005 if (meth.enclClass().isInner() &&
emc@1860 1006 !meth.enclClass().isStatic()) {
emc@1860 1007 extras++;
emc@1860 1008 }
emc@1860 1009 } else if ((tree.mods.flags & STATIC) == 0) {
emc@1860 1010 extras++;
emc@1860 1011 }
emc@1860 1012 // System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
emc@1860 1013 if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
duke@1 1014 ClassFile.MAX_PARAMETERS) {
duke@1 1015 log.error(tree.pos(), "limit.parameters");
duke@1 1016 nerrs++;
duke@1 1017 }
duke@1 1018
duke@1 1019 else if (tree.body != null) {
duke@1 1020 // Create a new code structure and initialize it.
duke@1 1021 int startpcCrt = initCode(tree, env, fatcode);
duke@1 1022
duke@1 1023 try {
duke@1 1024 genStat(tree.body, env);
duke@1 1025 } catch (CodeSizeOverflow e) {
duke@1 1026 // Failed due to code limit, try again with jsr/ret
duke@1 1027 startpcCrt = initCode(tree, env, fatcode);
duke@1 1028 genStat(tree.body, env);
duke@1 1029 }
duke@1 1030
duke@1 1031 if (code.state.stacksize != 0) {
duke@1 1032 log.error(tree.body.pos(), "stack.sim.error", tree);
duke@1 1033 throw new AssertionError();
duke@1 1034 }
duke@1 1035
duke@1 1036 // If last statement could complete normally, insert a
duke@1 1037 // return at the end.
duke@1 1038 if (code.isAlive()) {
duke@1 1039 code.statBegin(TreeInfo.endPos(tree.body));
duke@1 1040 if (env.enclMethod == null ||
jjg@1374 1041 env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
duke@1 1042 code.emitop0(return_);
duke@1 1043 } else {
duke@1 1044 // sometime dead code seems alive (4415991);
duke@1 1045 // generate a small loop instead
duke@1 1046 int startpc = code.entryPoint();
duke@1 1047 CondItem c = items.makeCondItem(goto_);
duke@1 1048 code.resolve(c.jumpTrue(), startpc);
duke@1 1049 }
duke@1 1050 }
duke@1 1051 if (genCrt)
duke@1 1052 code.crt.put(tree.body,
duke@1 1053 CRT_BLOCK,
duke@1 1054 startpcCrt,
vromero@2027 1055 code.curCP());
duke@1 1056
duke@1 1057 code.endScopes(0);
duke@1 1058
duke@1 1059 // If we exceeded limits, panic
duke@1 1060 if (code.checkLimits(tree.pos(), log)) {
duke@1 1061 nerrs++;
duke@1 1062 return;
duke@1 1063 }
duke@1 1064
duke@1 1065 // If we generated short code but got a long jump, do it again
duke@1 1066 // with fatCode = true.
duke@1 1067 if (!fatcode && code.fatcode) genMethod(tree, env, true);
duke@1 1068
duke@1 1069 // Clean up
duke@1 1070 if(stackMap == StackMapFormat.JSR202) {
duke@1 1071 code.lastFrame = null;
duke@1 1072 code.frameBeforeLast = null;
duke@1 1073 }
mcimadamore@1109 1074
jjg@1521 1075 // Compress exception table
mcimadamore@1109 1076 code.compressCatchTable();
jjg@1521 1077
jjg@1521 1078 // Fill in type annotation positions for exception parameters
jjg@1521 1079 code.fillExceptionParameterPositions();
duke@1 1080 }
duke@1 1081 }
duke@1 1082
duke@1 1083 private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
duke@1 1084 MethodSymbol meth = tree.sym;
duke@1 1085
duke@1 1086 // Create a new code structure.
duke@1 1087 meth.code = code = new Code(meth,
duke@1 1088 fatcode,
duke@1 1089 lineDebugInfo ? toplevel.lineMap : null,
duke@1 1090 varDebugInfo,
duke@1 1091 stackMap,
duke@1 1092 debugCode,
duke@1 1093 genCrt ? new CRTable(tree, env.toplevel.endPositions)
duke@1 1094 : null,
duke@1 1095 syms,
duke@1 1096 types,
vromero@2027 1097 pool,
vromero@2027 1098 varDebugInfo ? lvtRanges : null);
duke@1 1099 items = new Items(pool, code, syms, types);
vromero@2027 1100 if (code.debugCode) {
duke@1 1101 System.err.println(meth + " for body " + tree);
vromero@2027 1102 }
duke@1 1103
duke@1 1104 // If method is not static, create a new local variable address
duke@1 1105 // for `this'.
duke@1 1106 if ((tree.mods.flags & STATIC) == 0) {
duke@1 1107 Type selfType = meth.owner.type;
duke@1 1108 if (meth.isConstructor() && selfType != syms.objectType)
duke@1 1109 selfType = UninitializedType.uninitializedThis(selfType);
duke@1 1110 code.setDefined(
duke@1 1111 code.newLocal(
duke@1 1112 new VarSymbol(FINAL, names._this, selfType, meth.owner)));
duke@1 1113 }
duke@1 1114
duke@1 1115 // Mark all parameters as defined from the beginning of
duke@1 1116 // the method.
duke@1 1117 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 1118 checkDimension(l.head.pos(), l.head.sym.type);
duke@1 1119 code.setDefined(code.newLocal(l.head.sym));
duke@1 1120 }
duke@1 1121
duke@1 1122 // Get ready to generate code for method body.
vromero@2027 1123 int startpcCrt = genCrt ? code.curCP() : 0;
duke@1 1124 code.entryPoint();
duke@1 1125
duke@1 1126 // Suppress initial stackmap
duke@1 1127 code.pendingStackMap = false;
duke@1 1128
duke@1 1129 return startpcCrt;
duke@1 1130 }
duke@1 1131
duke@1 1132 public void visitVarDef(JCVariableDecl tree) {
duke@1 1133 VarSymbol v = tree.sym;
duke@1 1134 code.newLocal(v);
duke@1 1135 if (tree.init != null) {
duke@1 1136 checkStringConstant(tree.init.pos(), v.getConstValue());
duke@1 1137 if (v.getConstValue() == null || varDebugInfo) {
duke@1 1138 genExpr(tree.init, v.erasure(types)).load();
duke@1 1139 items.makeLocalItem(v).store();
duke@1 1140 }
duke@1 1141 }
duke@1 1142 checkDimension(tree.pos(), v.type);
duke@1 1143 }
duke@1 1144
duke@1 1145 public void visitSkip(JCSkip tree) {
duke@1 1146 }
duke@1 1147
duke@1 1148 public void visitBlock(JCBlock tree) {
duke@1 1149 int limit = code.nextreg;
duke@1 1150 Env<GenContext> localEnv = env.dup(tree, new GenContext());
duke@1 1151 genStats(tree.stats, localEnv);
duke@1 1152 // End the scope of all block-local variables in variable info.
jjg@1127 1153 if (!env.tree.hasTag(METHODDEF)) {
duke@1 1154 code.statBegin(tree.endpos);
duke@1 1155 code.endScopes(limit);
duke@1 1156 code.pendingStatPos = Position.NOPOS;
duke@1 1157 }
duke@1 1158 }
duke@1 1159
duke@1 1160 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 1161 genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
duke@1 1162 }
duke@1 1163
duke@1 1164 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 1165 genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
duke@1 1166 }
duke@1 1167
duke@1 1168 public void visitForLoop(JCForLoop tree) {
duke@1 1169 int limit = code.nextreg;
duke@1 1170 genStats(tree.init, env);
duke@1 1171 genLoop(tree, tree.body, tree.cond, tree.step, true);
duke@1 1172 code.endScopes(limit);
duke@1 1173 }
duke@1 1174 //where
duke@1 1175 /** Generate code for a loop.
duke@1 1176 * @param loop The tree representing the loop.
duke@1 1177 * @param body The loop's body.
duke@1 1178 * @param cond The loop's controling condition.
duke@1 1179 * @param step "Step" statements to be inserted at end of
duke@1 1180 * each iteration.
duke@1 1181 * @param testFirst True if the loop test belongs before the body.
duke@1 1182 */
duke@1 1183 private void genLoop(JCStatement loop,
duke@1 1184 JCStatement body,
duke@1 1185 JCExpression cond,
duke@1 1186 List<JCExpressionStatement> step,
duke@1 1187 boolean testFirst) {
duke@1 1188 Env<GenContext> loopEnv = env.dup(loop, new GenContext());
duke@1 1189 int startpc = code.entryPoint();
duke@1 1190 if (testFirst) {
duke@1 1191 CondItem c;
duke@1 1192 if (cond != null) {
duke@1 1193 code.statBegin(cond.pos);
duke@1 1194 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
duke@1 1195 } else {
duke@1 1196 c = items.makeCondItem(goto_);
duke@1 1197 }
duke@1 1198 Chain loopDone = c.jumpFalse();
duke@1 1199 code.resolve(c.trueJumps);
duke@1 1200 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
vromero@2027 1201 if (varDebugInfo) {
vromero@2027 1202 checkLoopLocalVarRangeEnding(loop, body,
vromero@2027 1203 LoopLocalVarRangeEndingPoint.BEFORE_STEPS);
vromero@2027 1204 }
duke@1 1205 code.resolve(loopEnv.info.cont);
duke@1 1206 genStats(step, loopEnv);
vromero@2027 1207 if (varDebugInfo) {
vromero@2027 1208 checkLoopLocalVarRangeEnding(loop, body,
vromero@2027 1209 LoopLocalVarRangeEndingPoint.AFTER_STEPS);
vromero@2027 1210 }
duke@1 1211 code.resolve(code.branch(goto_), startpc);
duke@1 1212 code.resolve(loopDone);
duke@1 1213 } else {
duke@1 1214 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
vromero@2027 1215 if (varDebugInfo) {
vromero@2027 1216 checkLoopLocalVarRangeEnding(loop, body,
vromero@2027 1217 LoopLocalVarRangeEndingPoint.BEFORE_STEPS);
vromero@2027 1218 }
duke@1 1219 code.resolve(loopEnv.info.cont);
duke@1 1220 genStats(step, loopEnv);
vromero@2027 1221 if (varDebugInfo) {
vromero@2027 1222 checkLoopLocalVarRangeEnding(loop, body,
vromero@2027 1223 LoopLocalVarRangeEndingPoint.AFTER_STEPS);
vromero@2027 1224 }
duke@1 1225 CondItem c;
duke@1 1226 if (cond != null) {
duke@1 1227 code.statBegin(cond.pos);
duke@1 1228 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
duke@1 1229 } else {
duke@1 1230 c = items.makeCondItem(goto_);
duke@1 1231 }
duke@1 1232 code.resolve(c.jumpTrue(), startpc);
duke@1 1233 code.resolve(c.falseJumps);
duke@1 1234 }
duke@1 1235 code.resolve(loopEnv.info.exit);
duke@1 1236 }
duke@1 1237
vromero@2027 1238 private enum LoopLocalVarRangeEndingPoint {
vromero@2027 1239 BEFORE_STEPS,
vromero@2027 1240 AFTER_STEPS,
vromero@2027 1241 }
vromero@2027 1242
vromero@2027 1243 /**
vromero@2027 1244 * Checks whether we have reached an alive range ending point for local
vromero@2027 1245 * variables after a loop.
vromero@2027 1246 *
vromero@2027 1247 * Local variables alive range ending point for loops varies depending
vromero@2027 1248 * on the loop type. The range can be closed before or after the code
vromero@2027 1249 * for the steps sentences has been generated.
vromero@2027 1250 *
vromero@2027 1251 * - While loops has no steps so in that case the range is closed just
vromero@2027 1252 * after the body of the loop.
vromero@2027 1253 *
vromero@2027 1254 * - For-like loops may have steps so as long as the steps sentences
vromero@2027 1255 * can possibly contain non-synthetic local variables, the alive range
vromero@2027 1256 * for local variables must be closed after the steps in this case.
vromero@2027 1257 */
vromero@2027 1258 private void checkLoopLocalVarRangeEnding(JCTree loop, JCTree body,
vromero@2027 1259 LoopLocalVarRangeEndingPoint endingPoint) {
vromero@2027 1260 if (varDebugInfo && lvtRanges.containsKey(code.meth, body)) {
vromero@2027 1261 switch (endingPoint) {
vromero@2027 1262 case BEFORE_STEPS:
vromero@2027 1263 if (!loop.hasTag(FORLOOP)) {
vromero@2027 1264 code.closeAliveRanges(body);
vromero@2027 1265 }
vromero@2027 1266 break;
vromero@2027 1267 case AFTER_STEPS:
vromero@2027 1268 if (loop.hasTag(FORLOOP)) {
vromero@2027 1269 code.closeAliveRanges(body);
vromero@2027 1270 }
vromero@2027 1271 break;
vromero@2027 1272 }
vromero@2027 1273 }
vromero@2027 1274 }
vromero@2027 1275
duke@1 1276 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 1277 throw new AssertionError(); // should have been removed by Lower.
duke@1 1278 }
duke@1 1279
duke@1 1280 public void visitLabelled(JCLabeledStatement tree) {
duke@1 1281 Env<GenContext> localEnv = env.dup(tree, new GenContext());
duke@1 1282 genStat(tree.body, localEnv, CRT_STATEMENT);
duke@1 1283 code.resolve(localEnv.info.exit);
duke@1 1284 }
duke@1 1285
duke@1 1286 public void visitSwitch(JCSwitch tree) {
duke@1 1287 int limit = code.nextreg;
jjg@1374 1288 Assert.check(!tree.selector.type.hasTag(CLASS));
vromero@2027 1289 int startpcCrt = genCrt ? code.curCP() : 0;
duke@1 1290 Item sel = genExpr(tree.selector, syms.intType);
duke@1 1291 List<JCCase> cases = tree.cases;
duke@1 1292 if (cases.isEmpty()) {
duke@1 1293 // We are seeing: switch <sel> {}
duke@1 1294 sel.load().drop();
duke@1 1295 if (genCrt)
duke@1 1296 code.crt.put(TreeInfo.skipParens(tree.selector),
vromero@2027 1297 CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
duke@1 1298 } else {
duke@1 1299 // We are seeing a nonempty switch.
duke@1 1300 sel.load();
duke@1 1301 if (genCrt)
duke@1 1302 code.crt.put(TreeInfo.skipParens(tree.selector),
vromero@2027 1303 CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
duke@1 1304 Env<GenContext> switchEnv = env.dup(tree, new GenContext());
duke@1 1305 switchEnv.info.isSwitch = true;
duke@1 1306
duke@1 1307 // Compute number of labels and minimum and maximum label values.
duke@1 1308 // For each case, store its label in an array.
duke@1 1309 int lo = Integer.MAX_VALUE; // minimum label.
duke@1 1310 int hi = Integer.MIN_VALUE; // maximum label.
duke@1 1311 int nlabels = 0; // number of labels.
duke@1 1312
duke@1 1313 int[] labels = new int[cases.length()]; // the label array.
duke@1 1314 int defaultIndex = -1; // the index of the default clause.
duke@1 1315
duke@1 1316 List<JCCase> l = cases;
duke@1 1317 for (int i = 0; i < labels.length; i++) {
duke@1 1318 if (l.head.pat != null) {
duke@1 1319 int val = ((Number)l.head.pat.type.constValue()).intValue();
duke@1 1320 labels[i] = val;
duke@1 1321 if (val < lo) lo = val;
duke@1 1322 if (hi < val) hi = val;
duke@1 1323 nlabels++;
duke@1 1324 } else {
jjg@816 1325 Assert.check(defaultIndex == -1);
duke@1 1326 defaultIndex = i;
duke@1 1327 }
duke@1 1328 l = l.tail;
duke@1 1329 }
duke@1 1330
duke@1 1331 // Determine whether to issue a tableswitch or a lookupswitch
duke@1 1332 // instruction.
duke@1 1333 long table_space_cost = 4 + ((long) hi - lo + 1); // words
duke@1 1334 long table_time_cost = 3; // comparisons
duke@1 1335 long lookup_space_cost = 3 + 2 * (long) nlabels;
duke@1 1336 long lookup_time_cost = nlabels;
duke@1 1337 int opcode =
duke@1 1338 nlabels > 0 &&
duke@1 1339 table_space_cost + 3 * table_time_cost <=
duke@1 1340 lookup_space_cost + 3 * lookup_time_cost
duke@1 1341 ?
duke@1 1342 tableswitch : lookupswitch;
duke@1 1343
vromero@2027 1344 int startpc = code.curCP(); // the position of the selector operation
duke@1 1345 code.emitop0(opcode);
duke@1 1346 code.align(4);
vromero@2027 1347 int tableBase = code.curCP(); // the start of the jump table
duke@1 1348 int[] offsets = null; // a table of offsets for a lookupswitch
duke@1 1349 code.emit4(-1); // leave space for default offset
duke@1 1350 if (opcode == tableswitch) {
duke@1 1351 code.emit4(lo); // minimum label
duke@1 1352 code.emit4(hi); // maximum label
duke@1 1353 for (long i = lo; i <= hi; i++) { // leave space for jump table
duke@1 1354 code.emit4(-1);
duke@1 1355 }
duke@1 1356 } else {
duke@1 1357 code.emit4(nlabels); // number of labels
duke@1 1358 for (int i = 0; i < nlabels; i++) {
duke@1 1359 code.emit4(-1); code.emit4(-1); // leave space for lookup table
duke@1 1360 }
duke@1 1361 offsets = new int[labels.length];
duke@1 1362 }
duke@1 1363 Code.State stateSwitch = code.state.dup();
duke@1 1364 code.markDead();
duke@1 1365
duke@1 1366 // For each case do:
duke@1 1367 l = cases;
duke@1 1368 for (int i = 0; i < labels.length; i++) {
duke@1 1369 JCCase c = l.head;
duke@1 1370 l = l.tail;
duke@1 1371
duke@1 1372 int pc = code.entryPoint(stateSwitch);
duke@1 1373 // Insert offset directly into code or else into the
duke@1 1374 // offsets table.
duke@1 1375 if (i != defaultIndex) {
duke@1 1376 if (opcode == tableswitch) {
duke@1 1377 code.put4(
duke@1 1378 tableBase + 4 * (labels[i] - lo + 3),
duke@1 1379 pc - startpc);
duke@1 1380 } else {
duke@1 1381 offsets[i] = pc - startpc;
duke@1 1382 }
duke@1 1383 } else {
duke@1 1384 code.put4(tableBase, pc - startpc);
duke@1 1385 }
duke@1 1386
duke@1 1387 // Generate code for the statements in this case.
duke@1 1388 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
vromero@2027 1389 if (varDebugInfo && lvtRanges.containsKey(code.meth, c.stats.last())) {
vromero@2027 1390 code.closeAliveRanges(c.stats.last());
vromero@2027 1391 }
duke@1 1392 }
duke@1 1393
duke@1 1394 // Resolve all breaks.
duke@1 1395 code.resolve(switchEnv.info.exit);
duke@1 1396
duke@1 1397 // If we have not set the default offset, we do so now.
duke@1 1398 if (code.get4(tableBase) == -1) {
duke@1 1399 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
duke@1 1400 }
duke@1 1401
duke@1 1402 if (opcode == tableswitch) {
duke@1 1403 // Let any unfilled slots point to the default case.
duke@1 1404 int defaultOffset = code.get4(tableBase);
duke@1 1405 for (long i = lo; i <= hi; i++) {
duke@1 1406 int t = (int)(tableBase + 4 * (i - lo + 3));
duke@1 1407 if (code.get4(t) == -1)
duke@1 1408 code.put4(t, defaultOffset);
duke@1 1409 }
duke@1 1410 } else {
duke@1 1411 // Sort non-default offsets and copy into lookup table.
duke@1 1412 if (defaultIndex >= 0)
duke@1 1413 for (int i = defaultIndex; i < labels.length - 1; i++) {
duke@1 1414 labels[i] = labels[i+1];
duke@1 1415 offsets[i] = offsets[i+1];
duke@1 1416 }
duke@1 1417 if (nlabels > 0)
duke@1 1418 qsort2(labels, offsets, 0, nlabels - 1);
duke@1 1419 for (int i = 0; i < nlabels; i++) {
duke@1 1420 int caseidx = tableBase + 8 * (i + 1);
duke@1 1421 code.put4(caseidx, labels[i]);
duke@1 1422 code.put4(caseidx + 4, offsets[i]);
duke@1 1423 }
duke@1 1424 }
duke@1 1425 }
duke@1 1426 code.endScopes(limit);
duke@1 1427 }
duke@1 1428 //where
duke@1 1429 /** Sort (int) arrays of keys and values
duke@1 1430 */
duke@1 1431 static void qsort2(int[] keys, int[] values, int lo, int hi) {
duke@1 1432 int i = lo;
duke@1 1433 int j = hi;
duke@1 1434 int pivot = keys[(i+j)/2];
duke@1 1435 do {
duke@1 1436 while (keys[i] < pivot) i++;
duke@1 1437 while (pivot < keys[j]) j--;
duke@1 1438 if (i <= j) {
duke@1 1439 int temp1 = keys[i];
duke@1 1440 keys[i] = keys[j];
duke@1 1441 keys[j] = temp1;
duke@1 1442 int temp2 = values[i];
duke@1 1443 values[i] = values[j];
duke@1 1444 values[j] = temp2;
duke@1 1445 i++;
duke@1 1446 j--;
duke@1 1447 }
duke@1 1448 } while (i <= j);
duke@1 1449 if (lo < j) qsort2(keys, values, lo, j);
duke@1 1450 if (i < hi) qsort2(keys, values, i, hi);
duke@1 1451 }
duke@1 1452
duke@1 1453 public void visitSynchronized(JCSynchronized tree) {
duke@1 1454 int limit = code.nextreg;
duke@1 1455 // Generate code to evaluate lock and save in temporary variable.
duke@1 1456 final LocalItem lockVar = makeTemp(syms.objectType);
duke@1 1457 genExpr(tree.lock, tree.lock.type).load().duplicate();
duke@1 1458 lockVar.store();
duke@1 1459
duke@1 1460 // Generate code to enter monitor.
duke@1 1461 code.emitop0(monitorenter);
duke@1 1462 code.state.lock(lockVar.reg);
duke@1 1463
duke@1 1464 // Generate code for a try statement with given body, no catch clauses
duke@1 1465 // in a new environment with the "exit-monitor" operation as finalizer.
duke@1 1466 final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
duke@1 1467 syncEnv.info.finalize = new GenFinalizer() {
duke@1 1468 void gen() {
duke@1 1469 genLast();
jjg@816 1470 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
vromero@2027 1471 syncEnv.info.gaps.append(code.curCP());
duke@1 1472 }
duke@1 1473 void genLast() {
duke@1 1474 if (code.isAlive()) {
duke@1 1475 lockVar.load();
duke@1 1476 code.emitop0(monitorexit);
duke@1 1477 code.state.unlock(lockVar.reg);
duke@1 1478 }
duke@1 1479 }
duke@1 1480 };
duke@1 1481 syncEnv.info.gaps = new ListBuffer<Integer>();
duke@1 1482 genTry(tree.body, List.<JCCatch>nil(), syncEnv);
duke@1 1483 code.endScopes(limit);
duke@1 1484 }
duke@1 1485
duke@1 1486 public void visitTry(final JCTry tree) {
duke@1 1487 // Generate code for a try statement with given body and catch clauses,
duke@1 1488 // in a new environment which calls the finally block if there is one.
duke@1 1489 final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
duke@1 1490 final Env<GenContext> oldEnv = env;
duke@1 1491 if (!useJsrLocally) {
duke@1 1492 useJsrLocally =
duke@1 1493 (stackMap == StackMapFormat.NONE) &&
duke@1 1494 (jsrlimit <= 0 ||
duke@1 1495 jsrlimit < 100 &&
duke@1 1496 estimateCodeComplexity(tree.finalizer)>jsrlimit);
duke@1 1497 }
duke@1 1498 tryEnv.info.finalize = new GenFinalizer() {
duke@1 1499 void gen() {
duke@1 1500 if (useJsrLocally) {
duke@1 1501 if (tree.finalizer != null) {
duke@1 1502 Code.State jsrState = code.state.dup();
jjg@507 1503 jsrState.push(Code.jsrReturnValue);
duke@1 1504 tryEnv.info.cont =
duke@1 1505 new Chain(code.emitJump(jsr),
duke@1 1506 tryEnv.info.cont,
duke@1 1507 jsrState);
duke@1 1508 }
jjg@816 1509 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
vromero@2027 1510 tryEnv.info.gaps.append(code.curCP());
duke@1 1511 } else {
jjg@816 1512 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
vromero@2027 1513 tryEnv.info.gaps.append(code.curCP());
duke@1 1514 genLast();
duke@1 1515 }
duke@1 1516 }
duke@1 1517 void genLast() {
duke@1 1518 if (tree.finalizer != null)
duke@1 1519 genStat(tree.finalizer, oldEnv, CRT_BLOCK);
duke@1 1520 }
duke@1 1521 boolean hasFinalizer() {
duke@1 1522 return tree.finalizer != null;
duke@1 1523 }
duke@1 1524 };
duke@1 1525 tryEnv.info.gaps = new ListBuffer<Integer>();
duke@1 1526 genTry(tree.body, tree.catchers, tryEnv);
duke@1 1527 }
duke@1 1528 //where
duke@1 1529 /** Generate code for a try or synchronized statement
duke@1 1530 * @param body The body of the try or synchronized statement.
duke@1 1531 * @param catchers The lis of catch clauses.
duke@1 1532 * @param env the environment current for the body.
duke@1 1533 */
duke@1 1534 void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
duke@1 1535 int limit = code.nextreg;
vromero@2027 1536 int startpc = code.curCP();
duke@1 1537 Code.State stateTry = code.state.dup();
duke@1 1538 genStat(body, env, CRT_BLOCK);
vromero@2027 1539 int endpc = code.curCP();
duke@1 1540 boolean hasFinalizer =
duke@1 1541 env.info.finalize != null &&
duke@1 1542 env.info.finalize.hasFinalizer();
duke@1 1543 List<Integer> gaps = env.info.gaps.toList();
duke@1 1544 code.statBegin(TreeInfo.endPos(body));
duke@1 1545 genFinalizer(env);
duke@1 1546 code.statBegin(TreeInfo.endPos(env.tree));
vromero@2009 1547 Chain exitChain = code.branch(goto_);
vromero@2027 1548 if (varDebugInfo && lvtRanges.containsKey(code.meth, body)) {
vromero@2027 1549 code.closeAliveRanges(body);
vromero@2027 1550 }
vromero@2009 1551 endFinalizerGap(env);
vromero@2009 1552 if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
vromero@2009 1553 // start off with exception on stack
vromero@2009 1554 code.entryPoint(stateTry, l.head.param.sym.type);
vromero@2009 1555 genCatch(l.head, env, startpc, endpc, gaps);
vromero@2009 1556 genFinalizer(env);
vromero@2009 1557 if (hasFinalizer || l.tail.nonEmpty()) {
vromero@2009 1558 code.statBegin(TreeInfo.endPos(env.tree));
vromero@2009 1559 exitChain = Code.mergeChains(exitChain,
vromero@2009 1560 code.branch(goto_));
vromero@2009 1561 }
vromero@2009 1562 endFinalizerGap(env);
vromero@1929 1563 }
vromero@2009 1564 if (hasFinalizer) {
vromero@2009 1565 // Create a new register segement to avoid allocating
vromero@2009 1566 // the same variables in finalizers and other statements.
vromero@2009 1567 code.newRegSegment();
vromero@2009 1568
vromero@2009 1569 // Add a catch-all clause.
vromero@2009 1570
vromero@2009 1571 // start off with exception on stack
vromero@2009 1572 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
vromero@2009 1573
vromero@2009 1574 // Register all exception ranges for catch all clause.
vromero@2009 1575 // The range of the catch all clause is from the beginning
vromero@2009 1576 // of the try or synchronized block until the present
vromero@2009 1577 // code pointer excluding all gaps in the current
vromero@2009 1578 // environment's GenContext.
vromero@2009 1579 int startseg = startpc;
vromero@2009 1580 while (env.info.gaps.nonEmpty()) {
vromero@2009 1581 int endseg = env.info.gaps.next().intValue();
vromero@2009 1582 registerCatch(body.pos(), startseg, endseg,
vromero@2009 1583 catchallpc, 0);
vromero@2009 1584 startseg = env.info.gaps.next().intValue();
duke@1 1585 }
vromero@2009 1586 code.statBegin(TreeInfo.finalizerPos(env.tree));
vromero@2009 1587 code.markStatBegin();
duke@1 1588
vromero@2009 1589 Item excVar = makeTemp(syms.throwableType);
vromero@2009 1590 excVar.store();
vromero@2009 1591 genFinalizer(env);
vromero@2009 1592 excVar.load();
vromero@2009 1593 registerCatch(body.pos(), startseg,
vromero@2009 1594 env.info.gaps.next().intValue(),
vromero@2009 1595 catchallpc, 0);
vromero@2009 1596 code.emitop0(athrow);
vromero@2009 1597 code.markDead();
duke@1 1598
vromero@2009 1599 // If there are jsr's to this finalizer, ...
vromero@2009 1600 if (env.info.cont != null) {
vromero@2009 1601 // Resolve all jsr's.
vromero@2009 1602 code.resolve(env.info.cont);
duke@1 1603
vromero@2009 1604 // Mark statement line number
duke@1 1605 code.statBegin(TreeInfo.finalizerPos(env.tree));
duke@1 1606 code.markStatBegin();
duke@1 1607
vromero@2009 1608 // Save return address.
vromero@2009 1609 LocalItem retVar = makeTemp(syms.throwableType);
vromero@2009 1610 retVar.store();
vromero@2009 1611
vromero@2009 1612 // Generate finalizer code.
vromero@2009 1613 env.info.finalize.genLast();
vromero@2009 1614
vromero@2009 1615 // Return.
vromero@2009 1616 code.emitop1w(ret, retVar.reg);
vromero@1929 1617 code.markDead();
duke@1 1618 }
duke@1 1619 }
duke@1 1620 // Resolve all breaks.
duke@1 1621 code.resolve(exitChain);
duke@1 1622
duke@1 1623 code.endScopes(limit);
duke@1 1624 }
duke@1 1625
duke@1 1626 /** Generate code for a catch clause.
duke@1 1627 * @param tree The catch clause.
duke@1 1628 * @param env The environment current in the enclosing try.
duke@1 1629 * @param startpc Start pc of try-block.
duke@1 1630 * @param endpc End pc of try-block.
duke@1 1631 */
duke@1 1632 void genCatch(JCCatch tree,
duke@1 1633 Env<GenContext> env,
duke@1 1634 int startpc, int endpc,
duke@1 1635 List<Integer> gaps) {
duke@1 1636 if (startpc != endpc) {
mcimadamore@550 1637 List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
darcy@969 1638 ((JCTypeUnion)tree.param.vartype).alternatives :
mcimadamore@641 1639 List.of(tree.param.vartype);
mcimadamore@641 1640 while (gaps.nonEmpty()) {
mcimadamore@641 1641 for (JCExpression subCatch : subClauses) {
mcimadamore@641 1642 int catchType = makeRef(tree.pos(), subCatch.type);
mcimadamore@641 1643 int end = gaps.head.intValue();
mcimadamore@550 1644 registerCatch(tree.pos(),
vromero@2027 1645 startpc, end, code.curCP(),
mcimadamore@550 1646 catchType);
jjg@1755 1647 if (subCatch.type.isAnnotated()) {
jjg@1755 1648 // All compounds share the same position, simply update the
jjg@1755 1649 // first one.
jjg@1755 1650 subCatch.type.getAnnotationMirrors().head.position.type_index = catchType;
jjg@1755 1651 }
mcimadamore@550 1652 }
mcimadamore@641 1653 gaps = gaps.tail;
mcimadamore@641 1654 startpc = gaps.head.intValue();
mcimadamore@641 1655 gaps = gaps.tail;
mcimadamore@641 1656 }
mcimadamore@641 1657 if (startpc < endpc) {
mcimadamore@641 1658 for (JCExpression subCatch : subClauses) {
mcimadamore@641 1659 int catchType = makeRef(tree.pos(), subCatch.type);
mcimadamore@550 1660 registerCatch(tree.pos(),
vromero@2027 1661 startpc, endpc, code.curCP(),
mcimadamore@550 1662 catchType);
jjg@1755 1663 if (subCatch.type.isAnnotated()) {
jjg@1755 1664 // All compounds share the same position, simply update the
jjg@1755 1665 // first one.
jjg@1755 1666 subCatch.type.getAnnotationMirrors().head.position.type_index = catchType;
jjg@1755 1667 }
mcimadamore@641 1668 }
duke@1 1669 }
duke@1 1670 VarSymbol exparam = tree.param.sym;
duke@1 1671 code.statBegin(tree.pos);
duke@1 1672 code.markStatBegin();
duke@1 1673 int limit = code.nextreg;
duke@1 1674 int exlocal = code.newLocal(exparam);
duke@1 1675 items.makeLocalItem(exparam).store();
duke@1 1676 code.statBegin(TreeInfo.firstStatPos(tree.body));
duke@1 1677 genStat(tree.body, env, CRT_BLOCK);
duke@1 1678 code.endScopes(limit);
duke@1 1679 code.statBegin(TreeInfo.endPos(tree.body));
duke@1 1680 }
duke@1 1681 }
duke@1 1682
duke@1 1683 /** Register a catch clause in the "Exceptions" code-attribute.
duke@1 1684 */
duke@1 1685 void registerCatch(DiagnosticPosition pos,
duke@1 1686 int startpc, int endpc,
duke@1 1687 int handler_pc, int catch_type) {
mcimadamore@1109 1688 char startpc1 = (char)startpc;
mcimadamore@1109 1689 char endpc1 = (char)endpc;
mcimadamore@1109 1690 char handler_pc1 = (char)handler_pc;
mcimadamore@1109 1691 if (startpc1 == startpc &&
mcimadamore@1109 1692 endpc1 == endpc &&
mcimadamore@1109 1693 handler_pc1 == handler_pc) {
mcimadamore@1109 1694 code.addCatch(startpc1, endpc1, handler_pc1,
mcimadamore@1109 1695 (char)catch_type);
mcimadamore@1109 1696 } else {
mcimadamore@1109 1697 if (!useJsrLocally && !target.generateStackMapTable()) {
mcimadamore@1109 1698 useJsrLocally = true;
mcimadamore@1109 1699 throw new CodeSizeOverflow();
duke@1 1700 } else {
mcimadamore@1109 1701 log.error(pos, "limit.code.too.large.for.try.stmt");
mcimadamore@1109 1702 nerrs++;
duke@1 1703 }
duke@1 1704 }
duke@1 1705 }
duke@1 1706
duke@1 1707 /** Very roughly estimate the number of instructions needed for
duke@1 1708 * the given tree.
duke@1 1709 */
duke@1 1710 int estimateCodeComplexity(JCTree tree) {
duke@1 1711 if (tree == null) return 0;
duke@1 1712 class ComplexityScanner extends TreeScanner {
duke@1 1713 int complexity = 0;
duke@1 1714 public void scan(JCTree tree) {
duke@1 1715 if (complexity > jsrlimit) return;
duke@1 1716 super.scan(tree);
duke@1 1717 }
duke@1 1718 public void visitClassDef(JCClassDecl tree) {}
duke@1 1719 public void visitDoLoop(JCDoWhileLoop tree)
duke@1 1720 { super.visitDoLoop(tree); complexity++; }
duke@1 1721 public void visitWhileLoop(JCWhileLoop tree)
duke@1 1722 { super.visitWhileLoop(tree); complexity++; }
duke@1 1723 public void visitForLoop(JCForLoop tree)
duke@1 1724 { super.visitForLoop(tree); complexity++; }
duke@1 1725 public void visitSwitch(JCSwitch tree)
duke@1 1726 { super.visitSwitch(tree); complexity+=5; }
duke@1 1727 public void visitCase(JCCase tree)
duke@1 1728 { super.visitCase(tree); complexity++; }
duke@1 1729 public void visitSynchronized(JCSynchronized tree)
duke@1 1730 { super.visitSynchronized(tree); complexity+=6; }
duke@1 1731 public void visitTry(JCTry tree)
duke@1 1732 { super.visitTry(tree);
duke@1 1733 if (tree.finalizer != null) complexity+=6; }
duke@1 1734 public void visitCatch(JCCatch tree)
duke@1 1735 { super.visitCatch(tree); complexity+=2; }
duke@1 1736 public void visitConditional(JCConditional tree)
duke@1 1737 { super.visitConditional(tree); complexity+=2; }
duke@1 1738 public void visitIf(JCIf tree)
duke@1 1739 { super.visitIf(tree); complexity+=2; }
duke@1 1740 // note: for break, continue, and return we don't take unwind() into account.
duke@1 1741 public void visitBreak(JCBreak tree)
duke@1 1742 { super.visitBreak(tree); complexity+=1; }
duke@1 1743 public void visitContinue(JCContinue tree)
duke@1 1744 { super.visitContinue(tree); complexity+=1; }
duke@1 1745 public void visitReturn(JCReturn tree)
duke@1 1746 { super.visitReturn(tree); complexity+=1; }
duke@1 1747 public void visitThrow(JCThrow tree)
duke@1 1748 { super.visitThrow(tree); complexity+=1; }
duke@1 1749 public void visitAssert(JCAssert tree)
duke@1 1750 { super.visitAssert(tree); complexity+=5; }
duke@1 1751 public void visitApply(JCMethodInvocation tree)
duke@1 1752 { super.visitApply(tree); complexity+=2; }
duke@1 1753 public void visitNewClass(JCNewClass tree)
duke@1 1754 { scan(tree.encl); scan(tree.args); complexity+=2; }
duke@1 1755 public void visitNewArray(JCNewArray tree)
duke@1 1756 { super.visitNewArray(tree); complexity+=5; }
duke@1 1757 public void visitAssign(JCAssign tree)
duke@1 1758 { super.visitAssign(tree); complexity+=1; }
duke@1 1759 public void visitAssignop(JCAssignOp tree)
duke@1 1760 { super.visitAssignop(tree); complexity+=2; }
duke@1 1761 public void visitUnary(JCUnary tree)
duke@1 1762 { complexity+=1;
duke@1 1763 if (tree.type.constValue() == null) super.visitUnary(tree); }
duke@1 1764 public void visitBinary(JCBinary tree)
duke@1 1765 { complexity+=1;
duke@1 1766 if (tree.type.constValue() == null) super.visitBinary(tree); }
duke@1 1767 public void visitTypeTest(JCInstanceOf tree)
duke@1 1768 { super.visitTypeTest(tree); complexity+=1; }
duke@1 1769 public void visitIndexed(JCArrayAccess tree)
duke@1 1770 { super.visitIndexed(tree); complexity+=1; }
duke@1 1771 public void visitSelect(JCFieldAccess tree)
duke@1 1772 { super.visitSelect(tree);
duke@1 1773 if (tree.sym.kind == VAR) complexity+=1; }
duke@1 1774 public void visitIdent(JCIdent tree) {
duke@1 1775 if (tree.sym.kind == VAR) {
duke@1 1776 complexity+=1;
duke@1 1777 if (tree.type.constValue() == null &&
duke@1 1778 tree.sym.owner.kind == TYP)
duke@1 1779 complexity+=1;
duke@1 1780 }
duke@1 1781 }
duke@1 1782 public void visitLiteral(JCLiteral tree)
duke@1 1783 { complexity+=1; }
duke@1 1784 public void visitTree(JCTree tree) {}
duke@1 1785 public void visitWildcard(JCWildcard tree) {
duke@1 1786 throw new AssertionError(this.getClass().getName());
duke@1 1787 }
duke@1 1788 }
duke@1 1789 ComplexityScanner scanner = new ComplexityScanner();
duke@1 1790 tree.accept(scanner);
duke@1 1791 return scanner.complexity;
duke@1 1792 }
duke@1 1793
duke@1 1794 public void visitIf(JCIf tree) {
duke@1 1795 int limit = code.nextreg;
duke@1 1796 Chain thenExit = null;
duke@1 1797 CondItem c = genCond(TreeInfo.skipParens(tree.cond),
duke@1 1798 CRT_FLOW_CONTROLLER);
duke@1 1799 Chain elseChain = c.jumpFalse();
duke@1 1800 if (!c.isFalse()) {
duke@1 1801 code.resolve(c.trueJumps);
duke@1 1802 genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1803 thenExit = code.branch(goto_);
vromero@2027 1804 if (varDebugInfo && lvtRanges.containsKey(code.meth, tree.thenpart)) {
vromero@2027 1805 code.closeAliveRanges(tree.thenpart,
vromero@2027 1806 thenExit != null && tree.elsepart == null ? thenExit.pc : code.cp);
vromero@2027 1807 }
duke@1 1808 }
duke@1 1809 if (elseChain != null) {
duke@1 1810 code.resolve(elseChain);
vromero@2027 1811 if (tree.elsepart != null) {
duke@1 1812 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
vromero@2027 1813 if (varDebugInfo && lvtRanges.containsKey(code.meth, tree.elsepart)) {
vromero@2027 1814 code.closeAliveRanges(tree.elsepart);
vromero@2027 1815 }
vromero@2027 1816 }
duke@1 1817 }
duke@1 1818 code.resolve(thenExit);
duke@1 1819 code.endScopes(limit);
duke@1 1820 }
duke@1 1821
duke@1 1822 public void visitExec(JCExpressionStatement tree) {
duke@1 1823 // Optimize x++ to ++x and x-- to --x.
duke@1 1824 JCExpression e = tree.expr;
duke@1 1825 switch (e.getTag()) {
jjg@1127 1826 case POSTINC:
jjg@1127 1827 ((JCUnary) e).setTag(PREINC);
duke@1 1828 break;
jjg@1127 1829 case POSTDEC:
jjg@1127 1830 ((JCUnary) e).setTag(PREDEC);
duke@1 1831 break;
duke@1 1832 }
duke@1 1833 genExpr(tree.expr, tree.expr.type).drop();
duke@1 1834 }
duke@1 1835
duke@1 1836 public void visitBreak(JCBreak tree) {
duke@1 1837 Env<GenContext> targetEnv = unwind(tree.target, env);
jjg@816 1838 Assert.check(code.state.stacksize == 0);
duke@1 1839 targetEnv.info.addExit(code.branch(goto_));
duke@1 1840 endFinalizerGaps(env, targetEnv);
duke@1 1841 }
duke@1 1842
duke@1 1843 public void visitContinue(JCContinue tree) {
duke@1 1844 Env<GenContext> targetEnv = unwind(tree.target, env);
jjg@816 1845 Assert.check(code.state.stacksize == 0);
duke@1 1846 targetEnv.info.addCont(code.branch(goto_));
duke@1 1847 endFinalizerGaps(env, targetEnv);
duke@1 1848 }
duke@1 1849
duke@1 1850 public void visitReturn(JCReturn tree) {
duke@1 1851 int limit = code.nextreg;
duke@1 1852 final Env<GenContext> targetEnv;
duke@1 1853 if (tree.expr != null) {
duke@1 1854 Item r = genExpr(tree.expr, pt).load();
duke@1 1855 if (hasFinally(env.enclMethod, env)) {
duke@1 1856 r = makeTemp(pt);
duke@1 1857 r.store();
duke@1 1858 }
duke@1 1859 targetEnv = unwind(env.enclMethod, env);
duke@1 1860 r.load();
duke@1 1861 code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
duke@1 1862 } else {
vromero@1865 1863 /* If we have a statement like:
vromero@1865 1864 *
vromero@1865 1865 * return;
vromero@1865 1866 *
vromero@1865 1867 * we need to store the code.pendingStatPos value before generating
vromero@1865 1868 * the finalizer.
vromero@1865 1869 */
vromero@1865 1870 int tmpPos = code.pendingStatPos;
duke@1 1871 targetEnv = unwind(env.enclMethod, env);
vromero@1865 1872 code.pendingStatPos = tmpPos;
duke@1 1873 code.emitop0(return_);
duke@1 1874 }
duke@1 1875 endFinalizerGaps(env, targetEnv);
duke@1 1876 code.endScopes(limit);
duke@1 1877 }
duke@1 1878
duke@1 1879 public void visitThrow(JCThrow tree) {
duke@1 1880 genExpr(tree.expr, tree.expr.type).load();
duke@1 1881 code.emitop0(athrow);
duke@1 1882 }
duke@1 1883
duke@1 1884 /* ************************************************************************
duke@1 1885 * Visitor methods for expressions
duke@1 1886 *************************************************************************/
duke@1 1887
duke@1 1888 public void visitApply(JCMethodInvocation tree) {
jjg@1521 1889 setTypeAnnotationPositions(tree.pos);
duke@1 1890 // Generate code for method.
duke@1 1891 Item m = genExpr(tree.meth, methodType);
duke@1 1892 // Generate code for all arguments, where the expected types are
duke@1 1893 // the parameters of the method's external type (that is, any implicit
duke@1 1894 // outer instance of a super(...) call appears as first parameter).
mcimadamore@1676 1895 MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
duke@1 1896 genArgs(tree.args,
mcimadamore@1676 1897 msym.externalType(types).getParameterTypes());
mcimadamore@1676 1898 if (!msym.isDynamic()) {
mcimadamore@1676 1899 code.statBegin(tree.pos);
mcimadamore@1676 1900 }
duke@1 1901 result = m.invoke();
duke@1 1902 }
duke@1 1903
duke@1 1904 public void visitConditional(JCConditional tree) {
duke@1 1905 Chain thenExit = null;
duke@1 1906 CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
duke@1 1907 Chain elseChain = c.jumpFalse();
duke@1 1908 if (!c.isFalse()) {
duke@1 1909 code.resolve(c.trueJumps);
vromero@2027 1910 int startpc = genCrt ? code.curCP() : 0;
duke@1 1911 genExpr(tree.truepart, pt).load();
duke@1 1912 code.state.forceStackTop(tree.type);
duke@1 1913 if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
vromero@2027 1914 startpc, code.curCP());
duke@1 1915 thenExit = code.branch(goto_);
duke@1 1916 }
duke@1 1917 if (elseChain != null) {
duke@1 1918 code.resolve(elseChain);
vromero@2027 1919 int startpc = genCrt ? code.curCP() : 0;
duke@1 1920 genExpr(tree.falsepart, pt).load();
duke@1 1921 code.state.forceStackTop(tree.type);
duke@1 1922 if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
vromero@2027 1923 startpc, code.curCP());
duke@1 1924 }
duke@1 1925 code.resolve(thenExit);
duke@1 1926 result = items.makeStackItem(pt);
duke@1 1927 }
duke@1 1928
jjg@1755 1929 private void setTypeAnnotationPositions(int treePos) {
jjg@1755 1930 MethodSymbol meth = code.meth;
jjg@1755 1931 boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
jjg@1755 1932 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
jjg@1521 1933
jjg@1755 1934 for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
jjg@1755 1935 if (ta.hasUnknownPosition())
jjg@1755 1936 ta.tryFixPosition();
jjg@1521 1937
jjg@1755 1938 if (ta.position.matchesPos(treePos))
jjg@1755 1939 ta.position.updatePosOffset(code.cp);
jjg@1755 1940 }
jjg@1521 1941
jjg@1755 1942 if (!initOrClinit)
jjg@1755 1943 return;
jjg@1521 1944
jjg@1755 1945 for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
jjg@1755 1946 if (ta.hasUnknownPosition())
jjg@1755 1947 ta.tryFixPosition();
jjg@1755 1948
jjg@1755 1949 if (ta.position.matchesPos(treePos))
jjg@1755 1950 ta.position.updatePosOffset(code.cp);
jjg@1755 1951 }
jjg@1755 1952
jjg@1755 1953 ClassSymbol clazz = meth.enclClass();
jjg@1755 1954 for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
jjg@1755 1955 if (!s.getKind().isField())
jjg@1755 1956 continue;
jjg@1755 1957
jjg@1755 1958 for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
jjg@1755 1959 if (ta.hasUnknownPosition())
jjg@1755 1960 ta.tryFixPosition();
jjg@1755 1961
jjg@1755 1962 if (ta.position.matchesPos(treePos))
jjg@1755 1963 ta.position.updatePosOffset(code.cp);
jjg@1755 1964 }
jjg@1755 1965 }
jjg@1755 1966 }
jjg@1521 1967
duke@1 1968 public void visitNewClass(JCNewClass tree) {
duke@1 1969 // Enclosing instances or anonymous classes should have been eliminated
duke@1 1970 // by now.
jjg@816 1971 Assert.check(tree.encl == null && tree.def == null);
jjg@1521 1972 setTypeAnnotationPositions(tree.pos);
duke@1 1973
duke@1 1974 code.emitop2(new_, makeRef(tree.pos(), tree.type));
duke@1 1975 code.emitop0(dup);
duke@1 1976
duke@1 1977 // Generate code for all arguments, where the expected types are
duke@1 1978 // the parameters of the constructor's external type (that is,
duke@1 1979 // any implicit outer instance appears as first parameter).
duke@1 1980 genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
duke@1 1981
duke@1 1982 items.makeMemberItem(tree.constructor, true).invoke();
duke@1 1983 result = items.makeStackItem(tree.type);
duke@1 1984 }
duke@1 1985
duke@1 1986 public void visitNewArray(JCNewArray tree) {
jjg@1521 1987 setTypeAnnotationPositions(tree.pos);
jjg@308 1988
duke@1 1989 if (tree.elems != null) {
duke@1 1990 Type elemtype = types.elemtype(tree.type);
duke@1 1991 loadIntConst(tree.elems.length());
duke@1 1992 Item arr = makeNewArray(tree.pos(), tree.type, 1);
duke@1 1993 int i = 0;
duke@1 1994 for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
duke@1 1995 arr.duplicate();
duke@1 1996 loadIntConst(i);
duke@1 1997 i++;
duke@1 1998 genExpr(l.head, elemtype).load();
duke@1 1999 items.makeIndexedItem(elemtype).store();
duke@1 2000 }
duke@1 2001 result = arr;
duke@1 2002 } else {
duke@1 2003 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 2004 genExpr(l.head, syms.intType).load();
duke@1 2005 }
duke@1 2006 result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
duke@1 2007 }
duke@1 2008 }
duke@1 2009 //where
duke@1 2010 /** Generate code to create an array with given element type and number
duke@1 2011 * of dimensions.
duke@1 2012 */
duke@1 2013 Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
duke@1 2014 Type elemtype = types.elemtype(type);
jjg@782 2015 if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
duke@1 2016 log.error(pos, "limit.dimensions");
duke@1 2017 nerrs++;
duke@1 2018 }
duke@1 2019 int elemcode = Code.arraycode(elemtype);
duke@1 2020 if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
duke@1 2021 code.emitAnewarray(makeRef(pos, elemtype), type);
duke@1 2022 } else if (elemcode == 1) {
duke@1 2023 code.emitMultianewarray(ndims, makeRef(pos, type), type);
duke@1 2024 } else {
duke@1 2025 code.emitNewarray(elemcode, type);
duke@1 2026 }
duke@1 2027 return items.makeStackItem(type);
duke@1 2028 }
duke@1 2029
duke@1 2030 public void visitParens(JCParens tree) {
duke@1 2031 result = genExpr(tree.expr, tree.expr.type);
duke@1 2032 }
duke@1 2033
duke@1 2034 public void visitAssign(JCAssign tree) {
duke@1 2035 Item l = genExpr(tree.lhs, tree.lhs.type);
duke@1 2036 genExpr(tree.rhs, tree.lhs.type).load();
duke@1 2037 result = items.makeAssignItem(l);
duke@1 2038 }
duke@1 2039
duke@1 2040 public void visitAssignop(JCAssignOp tree) {
duke@1 2041 OperatorSymbol operator = (OperatorSymbol) tree.operator;
duke@1 2042 Item l;
duke@1 2043 if (operator.opcode == string_add) {
duke@1 2044 // Generate code to make a string buffer
duke@1 2045 makeStringBuffer(tree.pos());
duke@1 2046
duke@1 2047 // Generate code for first string, possibly save one
duke@1 2048 // copy under buffer
duke@1 2049 l = genExpr(tree.lhs, tree.lhs.type);
duke@1 2050 if (l.width() > 0) {
duke@1 2051 code.emitop0(dup_x1 + 3 * (l.width() - 1));
duke@1 2052 }
duke@1 2053
duke@1 2054 // Load first string and append to buffer.
duke@1 2055 l.load();
duke@1 2056 appendString(tree.lhs);
duke@1 2057
duke@1 2058 // Append all other strings to buffer.
duke@1 2059 appendStrings(tree.rhs);
duke@1 2060
duke@1 2061 // Convert buffer to string.
duke@1 2062 bufferToString(tree.pos());
duke@1 2063 } else {
duke@1 2064 // Generate code for first expression
duke@1 2065 l = genExpr(tree.lhs, tree.lhs.type);
duke@1 2066
duke@1 2067 // If we have an increment of -32768 to +32767 of a local
duke@1 2068 // int variable we can use an incr instruction instead of
duke@1 2069 // proceeding further.
jjg@1127 2070 if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
duke@1 2071 l instanceof LocalItem &&
jjg@1374 2072 tree.lhs.type.getTag().isSubRangeOf(INT) &&
jjg@1374 2073 tree.rhs.type.getTag().isSubRangeOf(INT) &&
duke@1 2074 tree.rhs.type.constValue() != null) {
duke@1 2075 int ival = ((Number) tree.rhs.type.constValue()).intValue();
jjg@1127 2076 if (tree.hasTag(MINUS_ASG)) ival = -ival;
duke@1 2077 ((LocalItem)l).incr(ival);
duke@1 2078 result = l;
duke@1 2079 return;
duke@1 2080 }
duke@1 2081 // Otherwise, duplicate expression, load one copy
duke@1 2082 // and complete binary operation.
duke@1 2083 l.duplicate();
duke@1 2084 l.coerce(operator.type.getParameterTypes().head).load();
duke@1 2085 completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
duke@1 2086 }
duke@1 2087 result = items.makeAssignItem(l);
duke@1 2088 }
duke@1 2089
duke@1 2090 public void visitUnary(JCUnary tree) {
duke@1 2091 OperatorSymbol operator = (OperatorSymbol)tree.operator;
jjg@1127 2092 if (tree.hasTag(NOT)) {
duke@1 2093 CondItem od = genCond(tree.arg, false);
duke@1 2094 result = od.negate();
duke@1 2095 } else {
duke@1 2096 Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
duke@1 2097 switch (tree.getTag()) {
jjg@1127 2098 case POS:
duke@1 2099 result = od.load();
duke@1 2100 break;
jjg@1127 2101 case NEG:
duke@1 2102 result = od.load();
duke@1 2103 code.emitop0(operator.opcode);
duke@1 2104 break;
jjg@1127 2105 case COMPL:
duke@1 2106 result = od.load();
duke@1 2107 emitMinusOne(od.typecode);
duke@1 2108 code.emitop0(operator.opcode);
duke@1 2109 break;
jjg@1127 2110 case PREINC: case PREDEC:
duke@1 2111 od.duplicate();
duke@1 2112 if (od instanceof LocalItem &&
duke@1 2113 (operator.opcode == iadd || operator.opcode == isub)) {
jjg@1127 2114 ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
duke@1 2115 result = od;
duke@1 2116 } else {
duke@1 2117 od.load();
duke@1 2118 code.emitop0(one(od.typecode));
duke@1 2119 code.emitop0(operator.opcode);
duke@1 2120 // Perform narrowing primitive conversion if byte,
duke@1 2121 // char, or short. Fix for 4304655.
duke@1 2122 if (od.typecode != INTcode &&
duke@1 2123 Code.truncate(od.typecode) == INTcode)
duke@1 2124 code.emitop0(int2byte + od.typecode - BYTEcode);
duke@1 2125 result = items.makeAssignItem(od);
duke@1 2126 }
duke@1 2127 break;
jjg@1127 2128 case POSTINC: case POSTDEC:
duke@1 2129 od.duplicate();
duke@1 2130 if (od instanceof LocalItem &&
duke@1 2131 (operator.opcode == iadd || operator.opcode == isub)) {
duke@1 2132 Item res = od.load();
jjg@1127 2133 ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
duke@1 2134 result = res;
duke@1 2135 } else {
duke@1 2136 Item res = od.load();
duke@1 2137 od.stash(od.typecode);
duke@1 2138 code.emitop0(one(od.typecode));
duke@1 2139 code.emitop0(operator.opcode);
duke@1 2140 // Perform narrowing primitive conversion if byte,
duke@1 2141 // char, or short. Fix for 4304655.
duke@1 2142 if (od.typecode != INTcode &&
duke@1 2143 Code.truncate(od.typecode) == INTcode)
duke@1 2144 code.emitop0(int2byte + od.typecode - BYTEcode);
duke@1 2145 od.store();
duke@1 2146 result = res;
duke@1 2147 }
duke@1 2148 break;
jjg@1127 2149 case NULLCHK:
duke@1 2150 result = od.load();
duke@1 2151 code.emitop0(dup);
duke@1 2152 genNullCheck(tree.pos());
duke@1 2153 break;
duke@1 2154 default:
jjg@816 2155 Assert.error();
duke@1 2156 }
duke@1 2157 }
duke@1 2158 }
duke@1 2159
duke@1 2160 /** Generate a null check from the object value at stack top. */
duke@1 2161 private void genNullCheck(DiagnosticPosition pos) {
duke@1 2162 callMethod(pos, syms.objectType, names.getClass,
duke@1 2163 List.<Type>nil(), false);
duke@1 2164 code.emitop0(pop);
duke@1 2165 }
duke@1 2166
duke@1 2167 public void visitBinary(JCBinary tree) {
duke@1 2168 OperatorSymbol operator = (OperatorSymbol)tree.operator;
duke@1 2169 if (operator.opcode == string_add) {
duke@1 2170 // Create a string buffer.
duke@1 2171 makeStringBuffer(tree.pos());
duke@1 2172 // Append all strings to buffer.
duke@1 2173 appendStrings(tree);
duke@1 2174 // Convert buffer to string.
duke@1 2175 bufferToString(tree.pos());
duke@1 2176 result = items.makeStackItem(syms.stringType);
jjg@1127 2177 } else if (tree.hasTag(AND)) {
duke@1 2178 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
duke@1 2179 if (!lcond.isFalse()) {
duke@1 2180 Chain falseJumps = lcond.jumpFalse();
duke@1 2181 code.resolve(lcond.trueJumps);
duke@1 2182 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
duke@1 2183 result = items.
duke@1 2184 makeCondItem(rcond.opcode,
duke@1 2185 rcond.trueJumps,
jjg@507 2186 Code.mergeChains(falseJumps,
duke@1 2187 rcond.falseJumps));
duke@1 2188 } else {
duke@1 2189 result = lcond;
duke@1 2190 }
jjg@1127 2191 } else if (tree.hasTag(OR)) {
duke@1 2192 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
duke@1 2193 if (!lcond.isTrue()) {
duke@1 2194 Chain trueJumps = lcond.jumpTrue();
duke@1 2195 code.resolve(lcond.falseJumps);
duke@1 2196 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
duke@1 2197 result = items.
duke@1 2198 makeCondItem(rcond.opcode,
jjg@507 2199 Code.mergeChains(trueJumps, rcond.trueJumps),
duke@1 2200 rcond.falseJumps);
duke@1 2201 } else {
duke@1 2202 result = lcond;
duke@1 2203 }
duke@1 2204 } else {
duke@1 2205 Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
duke@1 2206 od.load();
duke@1 2207 result = completeBinop(tree.lhs, tree.rhs, operator);
duke@1 2208 }
duke@1 2209 }
duke@1 2210 //where
duke@1 2211 /** Make a new string buffer.
duke@1 2212 */
duke@1 2213 void makeStringBuffer(DiagnosticPosition pos) {
duke@1 2214 code.emitop2(new_, makeRef(pos, stringBufferType));
duke@1 2215 code.emitop0(dup);
duke@1 2216 callMethod(
duke@1 2217 pos, stringBufferType, names.init, List.<Type>nil(), false);
duke@1 2218 }
duke@1 2219
duke@1 2220 /** Append value (on tos) to string buffer (on tos - 1).
duke@1 2221 */
duke@1 2222 void appendString(JCTree tree) {
duke@1 2223 Type t = tree.type.baseType();
jjg@1374 2224 if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
duke@1 2225 t = syms.objectType;
duke@1 2226 }
duke@1 2227 items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
duke@1 2228 }
duke@1 2229 Symbol getStringBufferAppend(JCTree tree, Type t) {
jjg@816 2230 Assert.checkNull(t.constValue());
duke@1 2231 Symbol method = stringBufferAppend.get(t);
duke@1 2232 if (method == null) {
duke@1 2233 method = rs.resolveInternalMethod(tree.pos(),
duke@1 2234 attrEnv,
duke@1 2235 stringBufferType,
duke@1 2236 names.append,
duke@1 2237 List.of(t),
duke@1 2238 null);
duke@1 2239 stringBufferAppend.put(t, method);
duke@1 2240 }
duke@1 2241 return method;
duke@1 2242 }
duke@1 2243
duke@1 2244 /** Add all strings in tree to string buffer.
duke@1 2245 */
duke@1 2246 void appendStrings(JCTree tree) {
duke@1 2247 tree = TreeInfo.skipParens(tree);
jjg@1127 2248 if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
duke@1 2249 JCBinary op = (JCBinary) tree;
duke@1 2250 if (op.operator.kind == MTH &&
duke@1 2251 ((OperatorSymbol) op.operator).opcode == string_add) {
duke@1 2252 appendStrings(op.lhs);
duke@1 2253 appendStrings(op.rhs);
duke@1 2254 return;
duke@1 2255 }
duke@1 2256 }
duke@1 2257 genExpr(tree, tree.type).load();
duke@1 2258 appendString(tree);
duke@1 2259 }
duke@1 2260
duke@1 2261 /** Convert string buffer on tos to string.
duke@1 2262 */
duke@1 2263 void bufferToString(DiagnosticPosition pos) {
duke@1 2264 callMethod(
duke@1 2265 pos,
duke@1 2266 stringBufferType,
duke@1 2267 names.toString,
duke@1 2268 List.<Type>nil(),
duke@1 2269 false);
duke@1 2270 }
duke@1 2271
duke@1 2272 /** Complete generating code for operation, with left operand
duke@1 2273 * already on stack.
duke@1 2274 * @param lhs The tree representing the left operand.
duke@1 2275 * @param rhs The tree representing the right operand.
duke@1 2276 * @param operator The operator symbol.
duke@1 2277 */
duke@1 2278 Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
duke@1 2279 MethodType optype = (MethodType)operator.type;
duke@1 2280 int opcode = operator.opcode;
duke@1 2281 if (opcode >= if_icmpeq && opcode <= if_icmple &&
duke@1 2282 rhs.type.constValue() instanceof Number &&
duke@1 2283 ((Number) rhs.type.constValue()).intValue() == 0) {
duke@1 2284 opcode = opcode + (ifeq - if_icmpeq);
duke@1 2285 } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
duke@1 2286 TreeInfo.isNull(rhs)) {
duke@1 2287 opcode = opcode + (if_acmp_null - if_acmpeq);
duke@1 2288 } else {
duke@1 2289 // The expected type of the right operand is
duke@1 2290 // the second parameter type of the operator, except for
duke@1 2291 // shifts with long shiftcount, where we convert the opcode
duke@1 2292 // to a short shift and the expected type to int.
duke@1 2293 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
duke@1 2294 if (opcode >= ishll && opcode <= lushrl) {
duke@1 2295 opcode = opcode + (ishl - ishll);
duke@1 2296 rtype = syms.intType;
duke@1 2297 }
duke@1 2298 // Generate code for right operand and load.
duke@1 2299 genExpr(rhs, rtype).load();
duke@1 2300 // If there are two consecutive opcode instructions,
duke@1 2301 // emit the first now.
duke@1 2302 if (opcode >= (1 << preShift)) {
duke@1 2303 code.emitop0(opcode >> preShift);
duke@1 2304 opcode = opcode & 0xFF;
duke@1 2305 }
duke@1 2306 }
duke@1 2307 if (opcode >= ifeq && opcode <= if_acmpne ||
duke@1 2308 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
duke@1 2309 return items.makeCondItem(opcode);
duke@1 2310 } else {
duke@1 2311 code.emitop0(opcode);
duke@1 2312 return items.makeStackItem(optype.restype);
duke@1 2313 }
duke@1 2314 }
duke@1 2315
duke@1 2316 public void visitTypeCast(JCTypeCast tree) {
jjg@1521 2317 setTypeAnnotationPositions(tree.pos);
duke@1 2318 result = genExpr(tree.expr, tree.clazz.type).load();
duke@1 2319 // Additional code is only needed if we cast to a reference type
duke@1 2320 // which is not statically a supertype of the expression's type.
duke@1 2321 // For basic types, the coerce(...) in genExpr(...) will do
duke@1 2322 // the conversion.
jjg@1374 2323 if (!tree.clazz.type.isPrimitive() &&
duke@1 2324 types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
duke@1 2325 code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
duke@1 2326 }
duke@1 2327 }
duke@1 2328
duke@1 2329 public void visitWildcard(JCWildcard tree) {
duke@1 2330 throw new AssertionError(this.getClass().getName());
duke@1 2331 }
duke@1 2332
duke@1 2333 public void visitTypeTest(JCInstanceOf tree) {
jjg@1521 2334 setTypeAnnotationPositions(tree.pos);
duke@1 2335 genExpr(tree.expr, tree.expr.type).load();
duke@1 2336 code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
duke@1 2337 result = items.makeStackItem(syms.booleanType);
duke@1 2338 }
duke@1 2339
duke@1 2340 public void visitIndexed(JCArrayAccess tree) {
duke@1 2341 genExpr(tree.indexed, tree.indexed.type).load();
duke@1 2342 genExpr(tree.index, syms.intType).load();
duke@1 2343 result = items.makeIndexedItem(tree.type);
duke@1 2344 }
duke@1 2345
duke@1 2346 public void visitIdent(JCIdent tree) {
duke@1 2347 Symbol sym = tree.sym;
duke@1 2348 if (tree.name == names._this || tree.name == names._super) {
duke@1 2349 Item res = tree.name == names._this
duke@1 2350 ? items.makeThisItem()
duke@1 2351 : items.makeSuperItem();
duke@1 2352 if (sym.kind == MTH) {
duke@1 2353 // Generate code to address the constructor.
duke@1 2354 res.load();
duke@1 2355 res = items.makeMemberItem(sym, true);
duke@1 2356 }
duke@1 2357 result = res;
duke@1 2358 } else if (sym.kind == VAR && sym.owner.kind == MTH) {
duke@1 2359 result = items.makeLocalItem((VarSymbol)sym);
mcimadamore@1336 2360 } else if (isInvokeDynamic(sym)) {
mcimadamore@1336 2361 result = items.makeDynamicItem(sym);
duke@1 2362 } else if ((sym.flags() & STATIC) != 0) {
duke@1 2363 if (!isAccessSuper(env.enclMethod))
duke@1 2364 sym = binaryQualifier(sym, env.enclClass.type);
duke@1 2365 result = items.makeStaticItem(sym);
duke@1 2366 } else {
duke@1 2367 items.makeThisItem().load();
duke@1 2368 sym = binaryQualifier(sym, env.enclClass.type);
duke@1 2369 result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
duke@1 2370 }
duke@1 2371 }
duke@1 2372
duke@1 2373 public void visitSelect(JCFieldAccess tree) {
duke@1 2374 Symbol sym = tree.sym;
duke@1 2375
duke@1 2376 if (tree.name == names._class) {
jjg@816 2377 Assert.check(target.hasClassLiterals());
vromero@1670 2378 code.emitLdc(makeRef(tree.pos(), tree.selected.type));
duke@1 2379 result = items.makeStackItem(pt);
duke@1 2380 return;
jjg@1521 2381 }
duke@1 2382
duke@1 2383 Symbol ssym = TreeInfo.symbol(tree.selected);
duke@1 2384
duke@1 2385 // Are we selecting via super?
duke@1 2386 boolean selectSuper =
duke@1 2387 ssym != null && (ssym.kind == TYP || ssym.name == names._super);
duke@1 2388
duke@1 2389 // Are we accessing a member of the superclass in an access method
duke@1 2390 // resulting from a qualified super?
duke@1 2391 boolean accessSuper = isAccessSuper(env.enclMethod);
duke@1 2392
duke@1 2393 Item base = (selectSuper)
duke@1 2394 ? items.makeSuperItem()
duke@1 2395 : genExpr(tree.selected, tree.selected.type);
duke@1 2396
duke@1 2397 if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
duke@1 2398 // We are seeing a variable that is constant but its selecting
duke@1 2399 // expression is not.
duke@1 2400 if ((sym.flags() & STATIC) != 0) {
duke@1 2401 if (!selectSuper && (ssym == null || ssym.kind != TYP))
duke@1 2402 base = base.load();
duke@1 2403 base.drop();
duke@1 2404 } else {
duke@1 2405 base.load();
duke@1 2406 genNullCheck(tree.selected.pos());
duke@1 2407 }
duke@1 2408 result = items.
duke@1 2409 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
duke@1 2410 } else {
mcimadamore@1336 2411 if (isInvokeDynamic(sym)) {
mcimadamore@1336 2412 result = items.makeDynamicItem(sym);
mcimadamore@1336 2413 return;
mcimadamore@1336 2414 } else if (!accessSuper) {
duke@1 2415 sym = binaryQualifier(sym, tree.selected.type);
mcimadamore@1336 2416 }
duke@1 2417 if ((sym.flags() & STATIC) != 0) {
duke@1 2418 if (!selectSuper && (ssym == null || ssym.kind != TYP))
duke@1 2419 base = base.load();
duke@1 2420 base.drop();
duke@1 2421 result = items.makeStaticItem(sym);
duke@1 2422 } else {
duke@1 2423 base.load();
duke@1 2424 if (sym == syms.lengthVar) {
duke@1 2425 code.emitop0(arraylength);
duke@1 2426 result = items.makeStackItem(syms.intType);
duke@1 2427 } else {
duke@1 2428 result = items.
duke@1 2429 makeMemberItem(sym,
duke@1 2430 (sym.flags() & PRIVATE) != 0 ||
duke@1 2431 selectSuper || accessSuper);
duke@1 2432 }
duke@1 2433 }
duke@1 2434 }
duke@1 2435 }
duke@1 2436
mcimadamore@1336 2437 public boolean isInvokeDynamic(Symbol sym) {
mcimadamore@1336 2438 return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
mcimadamore@1336 2439 }
mcimadamore@1336 2440
duke@1 2441 public void visitLiteral(JCLiteral tree) {
jjg@1374 2442 if (tree.type.hasTag(BOT)) {
duke@1 2443 code.emitop0(aconst_null);
duke@1 2444 if (types.dimensions(pt) > 1) {
duke@1 2445 code.emitop2(checkcast, makeRef(tree.pos(), pt));
duke@1 2446 result = items.makeStackItem(pt);
duke@1 2447 } else {
duke@1 2448 result = items.makeStackItem(tree.type);
duke@1 2449 }
duke@1 2450 }
duke@1 2451 else
duke@1 2452 result = items.makeImmediateItem(tree.type, tree.value);
duke@1 2453 }
duke@1 2454
duke@1 2455 public void visitLetExpr(LetExpr tree) {
duke@1 2456 int limit = code.nextreg;
duke@1 2457 genStats(tree.defs, env);
duke@1 2458 result = genExpr(tree.expr, tree.expr.type).load();
duke@1 2459 code.endScopes(limit);
duke@1 2460 }
duke@1 2461
vromero@1432 2462 private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
vromero@1432 2463 List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
vromero@1432 2464 if (prunedInfo != null) {
vromero@1432 2465 for (JCTree prunedTree: prunedInfo) {
vromero@1432 2466 prunedTree.accept(classReferenceVisitor);
vromero@1432 2467 }
vromero@1432 2468 }
vromero@1432 2469 }
vromero@1432 2470
duke@1 2471 /* ************************************************************************
duke@1 2472 * main method
duke@1 2473 *************************************************************************/
duke@1 2474
duke@1 2475 /** Generate code for a class definition.
duke@1 2476 * @param env The attribution environment that belongs to the
duke@1 2477 * outermost class containing this class definition.
duke@1 2478 * We need this for resolving some additional symbols.
duke@1 2479 * @param cdef The tree representing the class definition.
duke@1 2480 * @return True if code is generated with no errors.
duke@1 2481 */
duke@1 2482 public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
duke@1 2483 try {
duke@1 2484 attrEnv = env;
duke@1 2485 ClassSymbol c = cdef.sym;
duke@1 2486 this.toplevel = env.toplevel;
ksrini@1138 2487 this.endPosTable = toplevel.endPositions;
duke@1 2488 // If this is a class definition requiring Miranda methods,
duke@1 2489 // add them.
duke@1 2490 if (generateIproxies &&
duke@1 2491 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
duke@1 2492 && !allowGenerics // no Miranda methods available with generics
duke@1 2493 )
duke@1 2494 implementInterfaceMethods(c);
duke@1 2495 cdef.defs = normalizeDefs(cdef.defs, c);
duke@1 2496 c.pool = pool;
duke@1 2497 pool.reset();
vromero@1432 2498 generateReferencesToPrunedTree(c, pool);
duke@1 2499 Env<GenContext> localEnv =
duke@1 2500 new Env<GenContext>(cdef, new GenContext());
duke@1 2501 localEnv.toplevel = env.toplevel;
duke@1 2502 localEnv.enclClass = cdef;
vromero@2027 2503
vromero@2027 2504 /* We must not analyze synthetic methods
vromero@2027 2505 */
vromero@2027 2506 if (varDebugInfo && (cdef.sym.flags() & SYNTHETIC) == 0) {
vromero@2027 2507 try {
vromero@2027 2508 LVTAssignAnalyzer lvtAssignAnalyzer = LVTAssignAnalyzer.make(
vromero@2027 2509 lvtRanges, syms, names);
vromero@2027 2510 lvtAssignAnalyzer.analyzeTree(localEnv);
vromero@2027 2511 } catch (Throwable e) {
vromero@2027 2512 throw e;
vromero@2027 2513 }
vromero@2027 2514 }
vromero@2027 2515
duke@1 2516 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
duke@1 2517 genDef(l.head, localEnv);
duke@1 2518 }
duke@1 2519 if (pool.numEntries() > Pool.MAX_ENTRIES) {
duke@1 2520 log.error(cdef.pos(), "limit.pool");
duke@1 2521 nerrs++;
duke@1 2522 }
duke@1 2523 if (nerrs != 0) {
duke@1 2524 // if errors, discard code
duke@1 2525 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
jjg@1127 2526 if (l.head.hasTag(METHODDEF))
duke@1 2527 ((JCMethodDecl) l.head).sym.code = null;
duke@1 2528 }
duke@1 2529 }
duke@1 2530 cdef.defs = List.nil(); // discard trees
duke@1 2531 return nerrs == 0;
duke@1 2532 } finally {
duke@1 2533 // note: this method does NOT support recursion.
duke@1 2534 attrEnv = null;
duke@1 2535 this.env = null;
duke@1 2536 toplevel = null;
ksrini@1138 2537 endPosTable = null;
duke@1 2538 nerrs = 0;
duke@1 2539 }
duke@1 2540 }
duke@1 2541
duke@1 2542 /* ************************************************************************
duke@1 2543 * Auxiliary classes
duke@1 2544 *************************************************************************/
duke@1 2545
duke@1 2546 /** An abstract class for finalizer generation.
duke@1 2547 */
duke@1 2548 abstract class GenFinalizer {
duke@1 2549 /** Generate code to clean up when unwinding. */
duke@1 2550 abstract void gen();
duke@1 2551
duke@1 2552 /** Generate code to clean up at last. */
duke@1 2553 abstract void genLast();
duke@1 2554
duke@1 2555 /** Does this finalizer have some nontrivial cleanup to perform? */
duke@1 2556 boolean hasFinalizer() { return true; }
duke@1 2557 }
duke@1 2558
duke@1 2559 /** code generation contexts,
duke@1 2560 * to be used as type parameter for environments.
duke@1 2561 */
duke@1 2562 static class GenContext {
duke@1 2563
duke@1 2564 /** A chain for all unresolved jumps that exit the current environment.
duke@1 2565 */
duke@1 2566 Chain exit = null;
duke@1 2567
duke@1 2568 /** A chain for all unresolved jumps that continue in the
duke@1 2569 * current environment.
duke@1 2570 */
duke@1 2571 Chain cont = null;
duke@1 2572
duke@1 2573 /** A closure that generates the finalizer of the current environment.
duke@1 2574 * Only set for Synchronized and Try contexts.
duke@1 2575 */
duke@1 2576 GenFinalizer finalize = null;
duke@1 2577
duke@1 2578 /** Is this a switch statement? If so, allocate registers
duke@1 2579 * even when the variable declaration is unreachable.
duke@1 2580 */
duke@1 2581 boolean isSwitch = false;
duke@1 2582
duke@1 2583 /** A list buffer containing all gaps in the finalizer range,
duke@1 2584 * where a catch all exception should not apply.
duke@1 2585 */
duke@1 2586 ListBuffer<Integer> gaps = null;
duke@1 2587
duke@1 2588 /** Add given chain to exit chain.
duke@1 2589 */
duke@1 2590 void addExit(Chain c) {
duke@1 2591 exit = Code.mergeChains(c, exit);
duke@1 2592 }
duke@1 2593
duke@1 2594 /** Add given chain to cont chain.
duke@1 2595 */
duke@1 2596 void addCont(Chain c) {
duke@1 2597 cont = Code.mergeChains(c, cont);
duke@1 2598 }
duke@1 2599 }
vromero@2027 2600
vromero@2027 2601 static class LVTAssignAnalyzer
vromero@2027 2602 extends Flow.AbstractAssignAnalyzer<LVTAssignAnalyzer.LVTAssignPendingExit> {
vromero@2027 2603
vromero@2027 2604 final LVTBits lvtInits;
vromero@2027 2605 final LVTRanges lvtRanges;
vromero@2027 2606
vromero@2027 2607 /* This class is anchored to a context dependent tree. The tree can
vromero@2027 2608 * vary inside the same instruction for example in the switch instruction
vromero@2027 2609 * the same FlowBits instance can be anchored to the whole tree, or
vromero@2027 2610 * to a given case. The aim is to always anchor the bits to the tree
vromero@2027 2611 * capable of closing a DA range.
vromero@2027 2612 */
vromero@2027 2613 static class LVTBits extends Bits {
vromero@2027 2614
vromero@2027 2615 enum BitsOpKind {
vromero@2027 2616 INIT,
vromero@2027 2617 CLEAR,
vromero@2027 2618 INCL_BIT,
vromero@2027 2619 EXCL_BIT,
vromero@2027 2620 ASSIGN,
vromero@2027 2621 AND_SET,
vromero@2027 2622 OR_SET,
vromero@2027 2623 DIFF_SET,
vromero@2027 2624 XOR_SET,
vromero@2027 2625 INCL_RANGE,
vromero@2027 2626 EXCL_RANGE,
vromero@2027 2627 }
vromero@2027 2628
vromero@2027 2629 JCTree currentTree;
vromero@2027 2630 LVTAssignAnalyzer analyzer;
vromero@2027 2631 private int[] oldBits = null;
vromero@2027 2632 BitsState stateBeforeOp;
vromero@2027 2633
vromero@2027 2634 LVTBits() {
vromero@2027 2635 super(false);
vromero@2027 2636 }
vromero@2027 2637
vromero@2027 2638 LVTBits(int[] bits, BitsState initState) {
vromero@2027 2639 super(bits, initState);
vromero@2027 2640 }
vromero@2027 2641
vromero@2027 2642 @Override
vromero@2027 2643 public void clear() {
vromero@2027 2644 generalOp(null, -1, BitsOpKind.CLEAR);
vromero@2027 2645 }
vromero@2027 2646
vromero@2027 2647 @Override
vromero@2027 2648 protected void internalReset() {
vromero@2027 2649 super.internalReset();
vromero@2027 2650 oldBits = null;
vromero@2027 2651 }
vromero@2027 2652
vromero@2027 2653 @Override
vromero@2027 2654 public Bits assign(Bits someBits) {
vromero@2027 2655 // bits can be null
vromero@2027 2656 oldBits = bits;
vromero@2027 2657 stateBeforeOp = currentState;
vromero@2027 2658 super.assign(someBits);
vromero@2027 2659 changed();
vromero@2027 2660 return this;
vromero@2027 2661 }
vromero@2027 2662
vromero@2027 2663 @Override
vromero@2027 2664 public void excludeFrom(int start) {
vromero@2027 2665 generalOp(null, start, BitsOpKind.EXCL_RANGE);
vromero@2027 2666 }
vromero@2027 2667
vromero@2027 2668 @Override
vromero@2027 2669 public void excl(int x) {
vromero@2027 2670 Assert.check(x >= 0);
vromero@2027 2671 generalOp(null, x, BitsOpKind.EXCL_BIT);
vromero@2027 2672 }
vromero@2027 2673
vromero@2027 2674 @Override
vromero@2027 2675 public Bits andSet(Bits xs) {
vromero@2027 2676 return generalOp(xs, -1, BitsOpKind.AND_SET);
vromero@2027 2677 }
vromero@2027 2678
vromero@2027 2679 @Override
vromero@2027 2680 public Bits orSet(Bits xs) {
vromero@2027 2681 return generalOp(xs, -1, BitsOpKind.OR_SET);
vromero@2027 2682 }
vromero@2027 2683
vromero@2027 2684 @Override
vromero@2027 2685 public Bits diffSet(Bits xs) {
vromero@2027 2686 return generalOp(xs, -1, BitsOpKind.DIFF_SET);
vromero@2027 2687 }
vromero@2027 2688
vromero@2027 2689 @Override
vromero@2027 2690 public Bits xorSet(Bits xs) {
vromero@2027 2691 return generalOp(xs, -1, BitsOpKind.XOR_SET);
vromero@2027 2692 }
vromero@2027 2693
vromero@2027 2694 private Bits generalOp(Bits xs, int i, BitsOpKind opKind) {
vromero@2027 2695 Assert.check(currentState != BitsState.UNKNOWN);
vromero@2027 2696 oldBits = dupBits();
vromero@2027 2697 stateBeforeOp = currentState;
vromero@2027 2698 switch (opKind) {
vromero@2027 2699 case AND_SET:
vromero@2027 2700 super.andSet(xs);
vromero@2027 2701 break;
vromero@2027 2702 case OR_SET:
vromero@2027 2703 super.orSet(xs);
vromero@2027 2704 break;
vromero@2027 2705 case XOR_SET:
vromero@2027 2706 super.xorSet(xs);
vromero@2027 2707 break;
vromero@2027 2708 case DIFF_SET:
vromero@2027 2709 super.diffSet(xs);
vromero@2027 2710 break;
vromero@2027 2711 case CLEAR:
vromero@2027 2712 super.clear();
vromero@2027 2713 break;
vromero@2027 2714 case EXCL_BIT:
vromero@2027 2715 super.excl(i);
vromero@2027 2716 break;
vromero@2027 2717 case EXCL_RANGE:
vromero@2027 2718 super.excludeFrom(i);
vromero@2027 2719 break;
vromero@2027 2720 }
vromero@2027 2721 changed();
vromero@2027 2722 return this;
vromero@2027 2723 }
vromero@2027 2724
vromero@2027 2725 /* The tree we need to anchor the bits instance to.
vromero@2027 2726 */
vromero@2027 2727 LVTBits at(JCTree tree) {
vromero@2027 2728 this.currentTree = tree;
vromero@2027 2729 return this;
vromero@2027 2730 }
vromero@2027 2731
vromero@2027 2732 /* If the instance should be changed but the tree is not a closing
vromero@2027 2733 * tree then a reset is needed or the former tree can mistakingly be
vromero@2027 2734 * used.
vromero@2027 2735 */
vromero@2027 2736 LVTBits resetTree() {
vromero@2027 2737 this.currentTree = null;
vromero@2027 2738 return this;
vromero@2027 2739 }
vromero@2027 2740
vromero@2027 2741 /** This method will be called after any operation that causes a change to
vromero@2027 2742 * the bits. Subclasses can thus override it in order to extract information
vromero@2027 2743 * from the changes produced to the bits by the given operation.
vromero@2027 2744 */
vromero@2027 2745 public void changed() {
vromero@2027 2746 if (currentTree != null &&
vromero@2027 2747 stateBeforeOp != BitsState.UNKNOWN &&
vromero@2027 2748 trackTree(currentTree)) {
vromero@2027 2749 List<VarSymbol> locals =
vromero@2027 2750 analyzer.lvtRanges
vromero@2027 2751 .getVars(analyzer.currentMethod, currentTree);
vromero@2027 2752 locals = locals != null ?
vromero@2027 2753 locals : List.<VarSymbol>nil();
vromero@2027 2754 for (JCVariableDecl vardecl : analyzer.vardecls) {
vromero@2027 2755 //once the first is null, the rest will be so.
vromero@2027 2756 if (vardecl == null) {
vromero@2027 2757 break;
vromero@2027 2758 }
vromero@2027 2759 if (trackVar(vardecl.sym) && bitChanged(vardecl.sym.adr)) {
vromero@2027 2760 locals = locals.prepend(vardecl.sym);
vromero@2027 2761 }
vromero@2027 2762 }
vromero@2027 2763 if (!locals.isEmpty()) {
vromero@2027 2764 analyzer.lvtRanges.setEntry(analyzer.currentMethod,
vromero@2027 2765 currentTree, locals);
vromero@2027 2766 }
vromero@2027 2767 }
vromero@2027 2768 }
vromero@2027 2769
vromero@2027 2770 boolean bitChanged(int x) {
vromero@2027 2771 boolean isMemberOfBits = isMember(x);
vromero@2027 2772 int[] tmp = bits;
vromero@2027 2773 bits = oldBits;
vromero@2027 2774 boolean isMemberOfOldBits = isMember(x);
vromero@2027 2775 bits = tmp;
vromero@2027 2776 return (!isMemberOfBits && isMemberOfOldBits);
vromero@2027 2777 }
vromero@2027 2778
vromero@2027 2779 boolean trackVar(VarSymbol var) {
vromero@2027 2780 return (var.owner.kind == MTH &&
vromero@2027 2781 (var.flags() & (PARAMETER | HASINIT)) == 0 &&
vromero@2027 2782 analyzer.trackable(var));
vromero@2027 2783 }
vromero@2027 2784
vromero@2027 2785 boolean trackTree(JCTree tree) {
vromero@2027 2786 switch (tree.getTag()) {
vromero@2027 2787 // of course a method closes the alive range of a local variable.
vromero@2027 2788 case METHODDEF:
vromero@2027 2789 // for while loops we want only the body
vromero@2027 2790 case WHILELOOP:
vromero@2027 2791 return false;
vromero@2027 2792 }
vromero@2027 2793 return true;
vromero@2027 2794 }
vromero@2027 2795
vromero@2027 2796 }
vromero@2027 2797
vromero@2027 2798 public class LVTAssignPendingExit extends Flow.AssignAnalyzer.AssignPendingExit {
vromero@2027 2799
vromero@2027 2800 LVTAssignPendingExit(JCTree tree, final Bits inits, final Bits uninits) {
vromero@2027 2801 super(tree, inits, uninits);
vromero@2027 2802 }
vromero@2027 2803
vromero@2027 2804 @Override
vromero@2027 2805 public void resolveJump(JCTree tree) {
vromero@2027 2806 lvtInits.at(tree);
vromero@2027 2807 super.resolveJump(tree);
vromero@2027 2808 }
vromero@2027 2809 }
vromero@2027 2810
vromero@2027 2811 private LVTAssignAnalyzer(LVTRanges lvtRanges, Symtab syms, Names names) {
vromero@2027 2812 super(new LVTBits(), syms, names);
vromero@2027 2813 lvtInits = (LVTBits)inits;
vromero@2027 2814 this.lvtRanges = lvtRanges;
vromero@2027 2815 }
vromero@2027 2816
vromero@2027 2817 public static LVTAssignAnalyzer make(LVTRanges lvtRanges, Symtab syms, Names names) {
vromero@2027 2818 LVTAssignAnalyzer result = new LVTAssignAnalyzer(lvtRanges, syms, names);
vromero@2027 2819 result.lvtInits.analyzer = result;
vromero@2027 2820 return result;
vromero@2027 2821 }
vromero@2027 2822
vromero@2027 2823 @Override
vromero@2027 2824 protected void markDead(JCTree tree) {
vromero@2027 2825 lvtInits.at(tree).inclRange(returnadr, nextadr);
vromero@2027 2826 super.markDead(tree);
vromero@2027 2827 }
vromero@2027 2828
vromero@2027 2829 @Override
vromero@2027 2830 protected void merge(JCTree tree) {
vromero@2027 2831 lvtInits.at(tree);
vromero@2027 2832 super.merge(tree);
vromero@2027 2833 }
vromero@2027 2834
vromero@2027 2835 boolean isSyntheticOrMandated(Symbol sym) {
vromero@2027 2836 return (sym.flags() & (SYNTHETIC | MANDATED)) != 0;
vromero@2027 2837 }
vromero@2027 2838
vromero@2027 2839 @Override
vromero@2027 2840 protected boolean trackable(VarSymbol sym) {
vromero@2027 2841 if (isSyntheticOrMandated(sym)) {
vromero@2027 2842 //fast check to avoid tracking synthetic or mandated variables
vromero@2027 2843 return false;
vromero@2027 2844 }
vromero@2027 2845 return super.trackable(sym);
vromero@2027 2846 }
vromero@2027 2847
vromero@2027 2848 @Override
vromero@2027 2849 protected void initParam(JCVariableDecl def) {
vromero@2027 2850 if (!isSyntheticOrMandated(def.sym)) {
vromero@2027 2851 super.initParam(def);
vromero@2027 2852 }
vromero@2027 2853 }
vromero@2027 2854
vromero@2027 2855 @Override
vromero@2027 2856 protected void assignToInits(JCTree tree, Bits bits) {
vromero@2027 2857 lvtInits.at(tree);
vromero@2027 2858 lvtInits.assign(bits);
vromero@2027 2859 }
vromero@2027 2860
vromero@2027 2861 @Override
vromero@2027 2862 protected void andSetInits(JCTree tree, Bits bits) {
vromero@2027 2863 lvtInits.at(tree);
vromero@2027 2864 lvtInits.andSet(bits);
vromero@2027 2865 }
vromero@2027 2866
vromero@2027 2867 @Override
vromero@2027 2868 protected void orSetInits(JCTree tree, Bits bits) {
vromero@2027 2869 lvtInits.at(tree);
vromero@2027 2870 lvtInits.orSet(bits);
vromero@2027 2871 }
vromero@2027 2872
vromero@2027 2873 @Override
vromero@2027 2874 protected void exclVarFromInits(JCTree tree, int adr) {
vromero@2027 2875 lvtInits.at(tree);
vromero@2027 2876 lvtInits.excl(adr);
vromero@2027 2877 }
vromero@2027 2878
vromero@2027 2879 @Override
vromero@2027 2880 protected LVTAssignPendingExit createNewPendingExit(JCTree tree, Bits inits, Bits uninits) {
vromero@2027 2881 return new LVTAssignPendingExit(tree, inits, uninits);
vromero@2027 2882 }
vromero@2027 2883
vromero@2027 2884 MethodSymbol currentMethod;
vromero@2027 2885
vromero@2027 2886 @Override
vromero@2027 2887 public void visitMethodDef(JCMethodDecl tree) {
vromero@2027 2888 if ((tree.sym.flags() & (SYNTHETIC | GENERATEDCONSTR)) != 0) {
vromero@2027 2889 return;
vromero@2027 2890 }
vromero@2027 2891 if (tree.name.equals(names.clinit)) {
vromero@2027 2892 return;
vromero@2027 2893 }
vromero@2027 2894 boolean enumClass = (tree.sym.owner.flags() & ENUM) != 0;
vromero@2027 2895 if (enumClass &&
vromero@2027 2896 (tree.name.equals(names.valueOf) ||
vromero@2027 2897 tree.name.equals(names.values) ||
vromero@2027 2898 tree.name.equals(names.init))) {
vromero@2027 2899 return;
vromero@2027 2900 }
vromero@2027 2901 currentMethod = tree.sym;
vromero@2027 2902 super.visitMethodDef(tree);
vromero@2027 2903 }
vromero@2027 2904
vromero@2027 2905 }
vromero@2027 2906
duke@1 2907 }

mercurial