src/share/classes/com/sun/tools/javac/jvm/Gen.java

Thu, 02 Oct 2008 19:58:40 -0700

author
xdono
date
Thu, 02 Oct 2008 19:58:40 -0700
changeset 117
24a47c3062fe
parent 113
eff38cc97183
child 267
e2722bd43f3a
permissions
-rw-r--r--

6754988: Update copyright year
Summary: Update for files that have been modified starting July 2008
Reviewed-by: ohair, tbell

duke@1 1 /*
xdono@117 2 * Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.jvm;
duke@1 27 import java.util.*;
duke@1 28
duke@1 29 import com.sun.tools.javac.util.*;
duke@1 30 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 31 import com.sun.tools.javac.util.List;
duke@1 32 import com.sun.tools.javac.code.*;
duke@1 33 import com.sun.tools.javac.comp.*;
duke@1 34 import com.sun.tools.javac.tree.*;
duke@1 35
duke@1 36 import com.sun.tools.javac.code.Symbol.*;
duke@1 37 import com.sun.tools.javac.code.Type.*;
duke@1 38 import com.sun.tools.javac.jvm.Code.*;
duke@1 39 import com.sun.tools.javac.jvm.Items.*;
duke@1 40 import com.sun.tools.javac.tree.JCTree.*;
duke@1 41
duke@1 42 import static com.sun.tools.javac.code.Flags.*;
duke@1 43 import static com.sun.tools.javac.code.Kinds.*;
duke@1 44 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 45 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 46 import static com.sun.tools.javac.jvm.CRTFlags.*;
duke@1 47
duke@1 48 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Gen extends JCTree.Visitor {
duke@1 56 protected static final Context.Key<Gen> genKey =
duke@1 57 new Context.Key<Gen>();
duke@1 58
duke@1 59 private final Log log;
duke@1 60 private final Symtab syms;
duke@1 61 private final Check chk;
duke@1 62 private final Resolve rs;
duke@1 63 private final TreeMaker make;
jjg@113 64 private final Names names;
duke@1 65 private final Target target;
duke@1 66 private final Type stringBufferType;
duke@1 67 private final Map<Type,Symbol> stringBufferAppend;
duke@1 68 private Name accessDollar;
duke@1 69 private final Types types;
duke@1 70
duke@1 71 /** Switch: GJ mode?
duke@1 72 */
duke@1 73 private final boolean allowGenerics;
duke@1 74
duke@1 75 /** Set when Miranda method stubs are to be generated. */
duke@1 76 private final boolean generateIproxies;
duke@1 77
duke@1 78 /** Format of stackmap tables to be generated. */
duke@1 79 private final Code.StackMapFormat stackMap;
duke@1 80
duke@1 81 /** A type that serves as the expected type for all method expressions.
duke@1 82 */
duke@1 83 private final Type methodType;
duke@1 84
duke@1 85 public static Gen instance(Context context) {
duke@1 86 Gen instance = context.get(genKey);
duke@1 87 if (instance == null)
duke@1 88 instance = new Gen(context);
duke@1 89 return instance;
duke@1 90 }
duke@1 91
duke@1 92 protected Gen(Context context) {
duke@1 93 context.put(genKey, this);
duke@1 94
jjg@113 95 names = Names.instance(context);
duke@1 96 log = Log.instance(context);
duke@1 97 syms = Symtab.instance(context);
duke@1 98 chk = Check.instance(context);
duke@1 99 rs = Resolve.instance(context);
duke@1 100 make = TreeMaker.instance(context);
duke@1 101 target = Target.instance(context);
duke@1 102 types = Types.instance(context);
duke@1 103 methodType = new MethodType(null, null, null, syms.methodClass);
duke@1 104 allowGenerics = Source.instance(context).allowGenerics();
duke@1 105 stringBufferType = target.useStringBuilder()
duke@1 106 ? syms.stringBuilderType
duke@1 107 : syms.stringBufferType;
duke@1 108 stringBufferAppend = new HashMap<Type,Symbol>();
duke@1 109 accessDollar = names.
duke@1 110 fromString("access" + target.syntheticNameChar());
duke@1 111
duke@1 112 Options options = Options.instance(context);
duke@1 113 lineDebugInfo =
duke@1 114 options.get("-g:") == null ||
duke@1 115 options.get("-g:lines") != null;
duke@1 116 varDebugInfo =
duke@1 117 options.get("-g:") == null
duke@1 118 ? options.get("-g") != null
duke@1 119 : options.get("-g:vars") != null;
duke@1 120 genCrt = options.get("-Xjcov") != null;
duke@1 121 debugCode = options.get("debugcode") != null;
duke@1 122
duke@1 123 generateIproxies =
duke@1 124 target.requiresIproxy() ||
duke@1 125 options.get("miranda") != null;
duke@1 126
duke@1 127 if (target.generateStackMapTable()) {
duke@1 128 // ignore cldc because we cannot have both stackmap formats
duke@1 129 this.stackMap = StackMapFormat.JSR202;
duke@1 130 } else {
duke@1 131 if (target.generateCLDCStackmap()) {
duke@1 132 this.stackMap = StackMapFormat.CLDC;
duke@1 133 } else {
duke@1 134 this.stackMap = StackMapFormat.NONE;
duke@1 135 }
duke@1 136 }
duke@1 137
duke@1 138 // by default, avoid jsr's for simple finalizers
duke@1 139 int setjsrlimit = 50;
duke@1 140 String jsrlimitString = options.get("jsrlimit");
duke@1 141 if (jsrlimitString != null) {
duke@1 142 try {
duke@1 143 setjsrlimit = Integer.parseInt(jsrlimitString);
duke@1 144 } catch (NumberFormatException ex) {
duke@1 145 // ignore ill-formed numbers for jsrlimit
duke@1 146 }
duke@1 147 }
duke@1 148 this.jsrlimit = setjsrlimit;
duke@1 149 this.useJsrLocally = false; // reset in visitTry
duke@1 150 }
duke@1 151
duke@1 152 /** Switches
duke@1 153 */
duke@1 154 private final boolean lineDebugInfo;
duke@1 155 private final boolean varDebugInfo;
duke@1 156 private final boolean genCrt;
duke@1 157 private final boolean debugCode;
duke@1 158
duke@1 159 /** Default limit of (approximate) size of finalizer to inline.
duke@1 160 * Zero means always use jsr. 100 or greater means never use
duke@1 161 * jsr.
duke@1 162 */
duke@1 163 private final int jsrlimit;
duke@1 164
duke@1 165 /** True if jsr is used.
duke@1 166 */
duke@1 167 private boolean useJsrLocally;
duke@1 168
duke@1 169 /* Constant pool, reset by genClass.
duke@1 170 */
duke@1 171 private Pool pool = new Pool();
duke@1 172
duke@1 173 /** Code buffer, set by genMethod.
duke@1 174 */
duke@1 175 private Code code;
duke@1 176
duke@1 177 /** Items structure, set by genMethod.
duke@1 178 */
duke@1 179 private Items items;
duke@1 180
duke@1 181 /** Environment for symbol lookup, set by genClass
duke@1 182 */
duke@1 183 private Env<AttrContext> attrEnv;
duke@1 184
duke@1 185 /** The top level tree.
duke@1 186 */
duke@1 187 private JCCompilationUnit toplevel;
duke@1 188
duke@1 189 /** The number of code-gen errors in this class.
duke@1 190 */
duke@1 191 private int nerrs = 0;
duke@1 192
duke@1 193 /** A hash table mapping syntax trees to their ending source positions.
duke@1 194 */
duke@1 195 private Map<JCTree, Integer> endPositions;
duke@1 196
duke@1 197 /** Generate code to load an integer constant.
duke@1 198 * @param n The integer to be loaded.
duke@1 199 */
duke@1 200 void loadIntConst(int n) {
duke@1 201 items.makeImmediateItem(syms.intType, n).load();
duke@1 202 }
duke@1 203
duke@1 204 /** The opcode that loads a zero constant of a given type code.
duke@1 205 * @param tc The given type code (@see ByteCode).
duke@1 206 */
duke@1 207 public static int zero(int tc) {
duke@1 208 switch(tc) {
duke@1 209 case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
duke@1 210 return iconst_0;
duke@1 211 case LONGcode:
duke@1 212 return lconst_0;
duke@1 213 case FLOATcode:
duke@1 214 return fconst_0;
duke@1 215 case DOUBLEcode:
duke@1 216 return dconst_0;
duke@1 217 default:
duke@1 218 throw new AssertionError("zero");
duke@1 219 }
duke@1 220 }
duke@1 221
duke@1 222 /** The opcode that loads a one constant of a given type code.
duke@1 223 * @param tc The given type code (@see ByteCode).
duke@1 224 */
duke@1 225 public static int one(int tc) {
duke@1 226 return zero(tc) + 1;
duke@1 227 }
duke@1 228
duke@1 229 /** Generate code to load -1 of the given type code (either int or long).
duke@1 230 * @param tc The given type code (@see ByteCode).
duke@1 231 */
duke@1 232 void emitMinusOne(int tc) {
duke@1 233 if (tc == LONGcode) {
duke@1 234 items.makeImmediateItem(syms.longType, new Long(-1)).load();
duke@1 235 } else {
duke@1 236 code.emitop0(iconst_m1);
duke@1 237 }
duke@1 238 }
duke@1 239
duke@1 240 /** Construct a symbol to reflect the qualifying type that should
duke@1 241 * appear in the byte code as per JLS 13.1.
duke@1 242 *
duke@1 243 * For target >= 1.2: Clone a method with the qualifier as owner (except
duke@1 244 * for those cases where we need to work around VM bugs).
duke@1 245 *
duke@1 246 * For target <= 1.1: If qualified variable or method is defined in a
duke@1 247 * non-accessible class, clone it with the qualifier class as owner.
duke@1 248 *
duke@1 249 * @param sym The accessed symbol
duke@1 250 * @param site The qualifier's type.
duke@1 251 */
duke@1 252 Symbol binaryQualifier(Symbol sym, Type site) {
duke@1 253
duke@1 254 if (site.tag == ARRAY) {
duke@1 255 if (sym == syms.lengthVar ||
duke@1 256 sym.owner != syms.arrayClass)
duke@1 257 return sym;
duke@1 258 // array clone can be qualified by the array type in later targets
duke@1 259 Symbol qualifier = target.arrayBinaryCompatibility()
duke@1 260 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
duke@1 261 site, syms.noSymbol)
duke@1 262 : syms.objectType.tsym;
duke@1 263 return sym.clone(qualifier);
duke@1 264 }
duke@1 265
duke@1 266 if (sym.owner == site.tsym ||
duke@1 267 (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
duke@1 268 return sym;
duke@1 269 }
duke@1 270 if (!target.obeyBinaryCompatibility())
duke@1 271 return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
duke@1 272 ? sym
duke@1 273 : sym.clone(site.tsym);
duke@1 274
duke@1 275 if (!target.interfaceFieldsBinaryCompatibility()) {
duke@1 276 if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
duke@1 277 return sym;
duke@1 278 }
duke@1 279
duke@1 280 // leave alone methods inherited from Object
duke@1 281 // JLS2 13.1.
duke@1 282 if (sym.owner == syms.objectType.tsym)
duke@1 283 return sym;
duke@1 284
duke@1 285 if (!target.interfaceObjectOverridesBinaryCompatibility()) {
duke@1 286 if ((sym.owner.flags() & INTERFACE) != 0 &&
duke@1 287 syms.objectType.tsym.members().lookup(sym.name).scope != null)
duke@1 288 return sym;
duke@1 289 }
duke@1 290
duke@1 291 return sym.clone(site.tsym);
duke@1 292 }
duke@1 293
duke@1 294 /** Insert a reference to given type in the constant pool,
duke@1 295 * checking for an array with too many dimensions;
duke@1 296 * return the reference's index.
duke@1 297 * @param type The type for which a reference is inserted.
duke@1 298 */
duke@1 299 int makeRef(DiagnosticPosition pos, Type type) {
duke@1 300 checkDimension(pos, type);
duke@1 301 return pool.put(type.tag == CLASS ? (Object)type.tsym : (Object)type);
duke@1 302 }
duke@1 303
duke@1 304 /** Check if the given type is an array with too many dimensions.
duke@1 305 */
duke@1 306 private void checkDimension(DiagnosticPosition pos, Type t) {
duke@1 307 switch (t.tag) {
duke@1 308 case METHOD:
duke@1 309 checkDimension(pos, t.getReturnType());
duke@1 310 for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
duke@1 311 checkDimension(pos, args.head);
duke@1 312 break;
duke@1 313 case ARRAY:
duke@1 314 if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
duke@1 315 log.error(pos, "limit.dimensions");
duke@1 316 nerrs++;
duke@1 317 }
duke@1 318 break;
duke@1 319 default:
duke@1 320 break;
duke@1 321 }
duke@1 322 }
duke@1 323
duke@1 324 /** Create a tempory variable.
duke@1 325 * @param type The variable's type.
duke@1 326 */
duke@1 327 LocalItem makeTemp(Type type) {
duke@1 328 VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
duke@1 329 names.empty,
duke@1 330 type,
duke@1 331 env.enclMethod.sym);
duke@1 332 code.newLocal(v);
duke@1 333 return items.makeLocalItem(v);
duke@1 334 }
duke@1 335
duke@1 336 /** Generate code to call a non-private method or constructor.
duke@1 337 * @param pos Position to be used for error reporting.
duke@1 338 * @param site The type of which the method is a member.
duke@1 339 * @param name The method's name.
duke@1 340 * @param argtypes The method's argument types.
duke@1 341 * @param isStatic A flag that indicates whether we call a
duke@1 342 * static or instance method.
duke@1 343 */
duke@1 344 void callMethod(DiagnosticPosition pos,
duke@1 345 Type site, Name name, List<Type> argtypes,
duke@1 346 boolean isStatic) {
duke@1 347 Symbol msym = rs.
duke@1 348 resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
duke@1 349 if (isStatic) items.makeStaticItem(msym).invoke();
duke@1 350 else items.makeMemberItem(msym, name == names.init).invoke();
duke@1 351 }
duke@1 352
duke@1 353 /** Is the given method definition an access method
duke@1 354 * resulting from a qualified super? This is signified by an odd
duke@1 355 * access code.
duke@1 356 */
duke@1 357 private boolean isAccessSuper(JCMethodDecl enclMethod) {
duke@1 358 return
duke@1 359 (enclMethod.mods.flags & SYNTHETIC) != 0 &&
duke@1 360 isOddAccessName(enclMethod.name);
duke@1 361 }
duke@1 362
duke@1 363 /** Does given name start with "access$" and end in an odd digit?
duke@1 364 */
duke@1 365 private boolean isOddAccessName(Name name) {
duke@1 366 return
duke@1 367 name.startsWith(accessDollar) &&
jjg@113 368 (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
duke@1 369 }
duke@1 370
duke@1 371 /* ************************************************************************
duke@1 372 * Non-local exits
duke@1 373 *************************************************************************/
duke@1 374
duke@1 375 /** Generate code to invoke the finalizer associated with given
duke@1 376 * environment.
duke@1 377 * Any calls to finalizers are appended to the environments `cont' chain.
duke@1 378 * Mark beginning of gap in catch all range for finalizer.
duke@1 379 */
duke@1 380 void genFinalizer(Env<GenContext> env) {
duke@1 381 if (code.isAlive() && env.info.finalize != null)
duke@1 382 env.info.finalize.gen();
duke@1 383 }
duke@1 384
duke@1 385 /** Generate code to call all finalizers of structures aborted by
duke@1 386 * a non-local
duke@1 387 * exit. Return target environment of the non-local exit.
duke@1 388 * @param target The tree representing the structure that's aborted
duke@1 389 * @param env The environment current at the non-local exit.
duke@1 390 */
duke@1 391 Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
duke@1 392 Env<GenContext> env1 = env;
duke@1 393 while (true) {
duke@1 394 genFinalizer(env1);
duke@1 395 if (env1.tree == target) break;
duke@1 396 env1 = env1.next;
duke@1 397 }
duke@1 398 return env1;
duke@1 399 }
duke@1 400
duke@1 401 /** Mark end of gap in catch-all range for finalizer.
duke@1 402 * @param env the environment which might contain the finalizer
duke@1 403 * (if it does, env.info.gaps != null).
duke@1 404 */
duke@1 405 void endFinalizerGap(Env<GenContext> env) {
duke@1 406 if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
duke@1 407 env.info.gaps.append(code.curPc());
duke@1 408 }
duke@1 409
duke@1 410 /** Mark end of all gaps in catch-all ranges for finalizers of environments
duke@1 411 * lying between, and including to two environments.
duke@1 412 * @param from the most deeply nested environment to mark
duke@1 413 * @param to the least deeply nested environment to mark
duke@1 414 */
duke@1 415 void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
duke@1 416 Env<GenContext> last = null;
duke@1 417 while (last != to) {
duke@1 418 endFinalizerGap(from);
duke@1 419 last = from;
duke@1 420 from = from.next;
duke@1 421 }
duke@1 422 }
duke@1 423
duke@1 424 /** Do any of the structures aborted by a non-local exit have
duke@1 425 * finalizers that require an empty stack?
duke@1 426 * @param target The tree representing the structure that's aborted
duke@1 427 * @param env The environment current at the non-local exit.
duke@1 428 */
duke@1 429 boolean hasFinally(JCTree target, Env<GenContext> env) {
duke@1 430 while (env.tree != target) {
duke@1 431 if (env.tree.getTag() == JCTree.TRY && env.info.finalize.hasFinalizer())
duke@1 432 return true;
duke@1 433 env = env.next;
duke@1 434 }
duke@1 435 return false;
duke@1 436 }
duke@1 437
duke@1 438 /* ************************************************************************
duke@1 439 * Normalizing class-members.
duke@1 440 *************************************************************************/
duke@1 441
duke@1 442 /** Distribute member initializer code into constructors and <clinit>
duke@1 443 * method.
duke@1 444 * @param defs The list of class member declarations.
duke@1 445 * @param c The enclosing class.
duke@1 446 */
duke@1 447 List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
duke@1 448 ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
duke@1 449 ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
duke@1 450 ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
duke@1 451 // Sort definitions into three listbuffers:
duke@1 452 // - initCode for instance initializers
duke@1 453 // - clinitCode for class initializers
duke@1 454 // - methodDefs for method definitions
duke@1 455 for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
duke@1 456 JCTree def = l.head;
duke@1 457 switch (def.getTag()) {
duke@1 458 case JCTree.BLOCK:
duke@1 459 JCBlock block = (JCBlock)def;
duke@1 460 if ((block.flags & STATIC) != 0)
duke@1 461 clinitCode.append(block);
duke@1 462 else
duke@1 463 initCode.append(block);
duke@1 464 break;
duke@1 465 case JCTree.METHODDEF:
duke@1 466 methodDefs.append(def);
duke@1 467 break;
duke@1 468 case JCTree.VARDEF:
duke@1 469 JCVariableDecl vdef = (JCVariableDecl) def;
duke@1 470 VarSymbol sym = vdef.sym;
duke@1 471 checkDimension(vdef.pos(), sym.type);
duke@1 472 if (vdef.init != null) {
duke@1 473 if ((sym.flags() & STATIC) == 0) {
duke@1 474 // Always initialize instance variables.
duke@1 475 JCStatement init = make.at(vdef.pos()).
duke@1 476 Assignment(sym, vdef.init);
duke@1 477 initCode.append(init);
duke@1 478 if (endPositions != null) {
duke@1 479 Integer endPos = endPositions.remove(vdef);
duke@1 480 if (endPos != null) endPositions.put(init, endPos);
duke@1 481 }
duke@1 482 } else if (sym.getConstValue() == null) {
duke@1 483 // Initialize class (static) variables only if
duke@1 484 // they are not compile-time constants.
duke@1 485 JCStatement init = make.at(vdef.pos).
duke@1 486 Assignment(sym, vdef.init);
duke@1 487 clinitCode.append(init);
duke@1 488 if (endPositions != null) {
duke@1 489 Integer endPos = endPositions.remove(vdef);
duke@1 490 if (endPos != null) endPositions.put(init, endPos);
duke@1 491 }
duke@1 492 } else {
duke@1 493 checkStringConstant(vdef.init.pos(), sym.getConstValue());
duke@1 494 }
duke@1 495 }
duke@1 496 break;
duke@1 497 default:
duke@1 498 assert false;
duke@1 499 }
duke@1 500 }
duke@1 501 // Insert any instance initializers into all constructors.
duke@1 502 if (initCode.length() != 0) {
duke@1 503 List<JCStatement> inits = initCode.toList();
duke@1 504 for (JCTree t : methodDefs) {
duke@1 505 normalizeMethod((JCMethodDecl)t, inits);
duke@1 506 }
duke@1 507 }
duke@1 508 // If there are class initializers, create a <clinit> method
duke@1 509 // that contains them as its body.
duke@1 510 if (clinitCode.length() != 0) {
duke@1 511 MethodSymbol clinit = new MethodSymbol(
duke@1 512 STATIC, names.clinit,
duke@1 513 new MethodType(
duke@1 514 List.<Type>nil(), syms.voidType,
duke@1 515 List.<Type>nil(), syms.methodClass),
duke@1 516 c);
duke@1 517 c.members().enter(clinit);
duke@1 518 List<JCStatement> clinitStats = clinitCode.toList();
duke@1 519 JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
duke@1 520 block.endpos = TreeInfo.endPos(clinitStats.last());
duke@1 521 methodDefs.append(make.MethodDef(clinit, block));
duke@1 522 }
duke@1 523 // Return all method definitions.
duke@1 524 return methodDefs.toList();
duke@1 525 }
duke@1 526
duke@1 527 /** Check a constant value and report if it is a string that is
duke@1 528 * too large.
duke@1 529 */
duke@1 530 private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
duke@1 531 if (nerrs != 0 || // only complain about a long string once
duke@1 532 constValue == null ||
duke@1 533 !(constValue instanceof String) ||
duke@1 534 ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
duke@1 535 return;
duke@1 536 log.error(pos, "limit.string");
duke@1 537 nerrs++;
duke@1 538 }
duke@1 539
duke@1 540 /** Insert instance initializer code into initial constructor.
duke@1 541 * @param md The tree potentially representing a
duke@1 542 * constructor's definition.
duke@1 543 * @param initCode The list of instance initializer statements.
duke@1 544 */
duke@1 545 void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode) {
duke@1 546 if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
duke@1 547 // We are seeing a constructor that does not call another
duke@1 548 // constructor of the same class.
duke@1 549 List<JCStatement> stats = md.body.stats;
duke@1 550 ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
duke@1 551
duke@1 552 if (stats.nonEmpty()) {
duke@1 553 // Copy initializers of synthetic variables generated in
duke@1 554 // the translation of inner classes.
duke@1 555 while (TreeInfo.isSyntheticInit(stats.head)) {
duke@1 556 newstats.append(stats.head);
duke@1 557 stats = stats.tail;
duke@1 558 }
duke@1 559 // Copy superclass constructor call
duke@1 560 newstats.append(stats.head);
duke@1 561 stats = stats.tail;
duke@1 562 // Copy remaining synthetic initializers.
duke@1 563 while (stats.nonEmpty() &&
duke@1 564 TreeInfo.isSyntheticInit(stats.head)) {
duke@1 565 newstats.append(stats.head);
duke@1 566 stats = stats.tail;
duke@1 567 }
duke@1 568 // Now insert the initializer code.
duke@1 569 newstats.appendList(initCode);
duke@1 570 // And copy all remaining statements.
duke@1 571 while (stats.nonEmpty()) {
duke@1 572 newstats.append(stats.head);
duke@1 573 stats = stats.tail;
duke@1 574 }
duke@1 575 }
duke@1 576 md.body.stats = newstats.toList();
duke@1 577 if (md.body.endpos == Position.NOPOS)
duke@1 578 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
duke@1 579 }
duke@1 580 }
duke@1 581
duke@1 582 /* ********************************************************************
duke@1 583 * Adding miranda methods
duke@1 584 *********************************************************************/
duke@1 585
duke@1 586 /** Add abstract methods for all methods defined in one of
duke@1 587 * the interfaces of a given class,
duke@1 588 * provided they are not already implemented in the class.
duke@1 589 *
duke@1 590 * @param c The class whose interfaces are searched for methods
duke@1 591 * for which Miranda methods should be added.
duke@1 592 */
duke@1 593 void implementInterfaceMethods(ClassSymbol c) {
duke@1 594 implementInterfaceMethods(c, c);
duke@1 595 }
duke@1 596
duke@1 597 /** Add abstract methods for all methods defined in one of
duke@1 598 * the interfaces of a given class,
duke@1 599 * provided they are not already implemented in the class.
duke@1 600 *
duke@1 601 * @param c The class whose interfaces are searched for methods
duke@1 602 * for which Miranda methods should be added.
duke@1 603 * @param site The class in which a definition may be needed.
duke@1 604 */
duke@1 605 void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
duke@1 606 for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
duke@1 607 ClassSymbol i = (ClassSymbol)l.head.tsym;
duke@1 608 for (Scope.Entry e = i.members().elems;
duke@1 609 e != null;
duke@1 610 e = e.sibling)
duke@1 611 {
duke@1 612 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
duke@1 613 {
duke@1 614 MethodSymbol absMeth = (MethodSymbol)e.sym;
duke@1 615 MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
duke@1 616 if (implMeth == null)
duke@1 617 addAbstractMethod(site, absMeth);
duke@1 618 else if ((implMeth.flags() & IPROXY) != 0)
duke@1 619 adjustAbstractMethod(site, implMeth, absMeth);
duke@1 620 }
duke@1 621 }
duke@1 622 implementInterfaceMethods(i, site);
duke@1 623 }
duke@1 624 }
duke@1 625
duke@1 626 /** Add an abstract methods to a class
duke@1 627 * which implicitly implements a method defined in some interface
duke@1 628 * implemented by the class. These methods are called "Miranda methods".
duke@1 629 * Enter the newly created method into its enclosing class scope.
duke@1 630 * Note that it is not entered into the class tree, as the emitter
duke@1 631 * doesn't need to see it there to emit an abstract method.
duke@1 632 *
duke@1 633 * @param c The class to which the Miranda method is added.
duke@1 634 * @param m The interface method symbol for which a Miranda method
duke@1 635 * is added.
duke@1 636 */
duke@1 637 private void addAbstractMethod(ClassSymbol c,
duke@1 638 MethodSymbol m) {
duke@1 639 MethodSymbol absMeth = new MethodSymbol(
duke@1 640 m.flags() | IPROXY | SYNTHETIC, m.name,
duke@1 641 m.type, // was c.type.memberType(m), but now only !generics supported
duke@1 642 c);
duke@1 643 c.members().enter(absMeth); // add to symbol table
duke@1 644 }
duke@1 645
duke@1 646 private void adjustAbstractMethod(ClassSymbol c,
duke@1 647 MethodSymbol pm,
duke@1 648 MethodSymbol im) {
duke@1 649 MethodType pmt = (MethodType)pm.type;
duke@1 650 Type imt = types.memberType(c.type, im);
duke@1 651 pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
duke@1 652 }
duke@1 653
duke@1 654 /* ************************************************************************
duke@1 655 * Traversal methods
duke@1 656 *************************************************************************/
duke@1 657
duke@1 658 /** Visitor argument: The current environment.
duke@1 659 */
duke@1 660 Env<GenContext> env;
duke@1 661
duke@1 662 /** Visitor argument: The expected type (prototype).
duke@1 663 */
duke@1 664 Type pt;
duke@1 665
duke@1 666 /** Visitor result: The item representing the computed value.
duke@1 667 */
duke@1 668 Item result;
duke@1 669
duke@1 670 /** Visitor method: generate code for a definition, catching and reporting
duke@1 671 * any completion failures.
duke@1 672 * @param tree The definition to be visited.
duke@1 673 * @param env The environment current at the definition.
duke@1 674 */
duke@1 675 public void genDef(JCTree tree, Env<GenContext> env) {
duke@1 676 Env<GenContext> prevEnv = this.env;
duke@1 677 try {
duke@1 678 this.env = env;
duke@1 679 tree.accept(this);
duke@1 680 } catch (CompletionFailure ex) {
duke@1 681 chk.completionError(tree.pos(), ex);
duke@1 682 } finally {
duke@1 683 this.env = prevEnv;
duke@1 684 }
duke@1 685 }
duke@1 686
duke@1 687 /** Derived visitor method: check whether CharacterRangeTable
duke@1 688 * should be emitted, if so, put a new entry into CRTable
duke@1 689 * and call method to generate bytecode.
duke@1 690 * If not, just call method to generate bytecode.
duke@1 691 * @see #genStat(Tree, Env)
duke@1 692 *
duke@1 693 * @param tree The tree to be visited.
duke@1 694 * @param env The environment to use.
duke@1 695 * @param crtFlags The CharacterRangeTable flags
duke@1 696 * indicating type of the entry.
duke@1 697 */
duke@1 698 public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
duke@1 699 if (!genCrt) {
duke@1 700 genStat(tree, env);
duke@1 701 return;
duke@1 702 }
duke@1 703 int startpc = code.curPc();
duke@1 704 genStat(tree, env);
duke@1 705 if (tree.getTag() == JCTree.BLOCK) crtFlags |= CRT_BLOCK;
duke@1 706 code.crt.put(tree, crtFlags, startpc, code.curPc());
duke@1 707 }
duke@1 708
duke@1 709 /** Derived visitor method: generate code for a statement.
duke@1 710 */
duke@1 711 public void genStat(JCTree tree, Env<GenContext> env) {
duke@1 712 if (code.isAlive()) {
duke@1 713 code.statBegin(tree.pos);
duke@1 714 genDef(tree, env);
duke@1 715 } else if (env.info.isSwitch && tree.getTag() == JCTree.VARDEF) {
duke@1 716 // variables whose declarations are in a switch
duke@1 717 // can be used even if the decl is unreachable.
duke@1 718 code.newLocal(((JCVariableDecl) tree).sym);
duke@1 719 }
duke@1 720 }
duke@1 721
duke@1 722 /** Derived visitor method: check whether CharacterRangeTable
duke@1 723 * should be emitted, if so, put a new entry into CRTable
duke@1 724 * and call method to generate bytecode.
duke@1 725 * If not, just call method to generate bytecode.
duke@1 726 * @see #genStats(List, Env)
duke@1 727 *
duke@1 728 * @param trees The list of trees to be visited.
duke@1 729 * @param env The environment to use.
duke@1 730 * @param crtFlags The CharacterRangeTable flags
duke@1 731 * indicating type of the entry.
duke@1 732 */
duke@1 733 public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
duke@1 734 if (!genCrt) {
duke@1 735 genStats(trees, env);
duke@1 736 return;
duke@1 737 }
duke@1 738 if (trees.length() == 1) { // mark one statement with the flags
duke@1 739 genStat(trees.head, env, crtFlags | CRT_STATEMENT);
duke@1 740 } else {
duke@1 741 int startpc = code.curPc();
duke@1 742 genStats(trees, env);
duke@1 743 code.crt.put(trees, crtFlags, startpc, code.curPc());
duke@1 744 }
duke@1 745 }
duke@1 746
duke@1 747 /** Derived visitor method: generate code for a list of statements.
duke@1 748 */
duke@1 749 public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
duke@1 750 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
duke@1 751 genStat(l.head, env, CRT_STATEMENT);
duke@1 752 }
duke@1 753
duke@1 754 /** Derived visitor method: check whether CharacterRangeTable
duke@1 755 * should be emitted, if so, put a new entry into CRTable
duke@1 756 * and call method to generate bytecode.
duke@1 757 * If not, just call method to generate bytecode.
duke@1 758 * @see #genCond(Tree,boolean)
duke@1 759 *
duke@1 760 * @param tree The tree to be visited.
duke@1 761 * @param crtFlags The CharacterRangeTable flags
duke@1 762 * indicating type of the entry.
duke@1 763 */
duke@1 764 public CondItem genCond(JCTree tree, int crtFlags) {
duke@1 765 if (!genCrt) return genCond(tree, false);
duke@1 766 int startpc = code.curPc();
duke@1 767 CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
duke@1 768 code.crt.put(tree, crtFlags, startpc, code.curPc());
duke@1 769 return item;
duke@1 770 }
duke@1 771
duke@1 772 /** Derived visitor method: generate code for a boolean
duke@1 773 * expression in a control-flow context.
duke@1 774 * @param _tree The expression to be visited.
duke@1 775 * @param markBranches The flag to indicate that the condition is
duke@1 776 * a flow controller so produced conditions
duke@1 777 * should contain a proper tree to generate
duke@1 778 * CharacterRangeTable branches for them.
duke@1 779 */
duke@1 780 public CondItem genCond(JCTree _tree, boolean markBranches) {
duke@1 781 JCTree inner_tree = TreeInfo.skipParens(_tree);
duke@1 782 if (inner_tree.getTag() == JCTree.CONDEXPR) {
duke@1 783 JCConditional tree = (JCConditional)inner_tree;
duke@1 784 CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
duke@1 785 if (cond.isTrue()) {
duke@1 786 code.resolve(cond.trueJumps);
duke@1 787 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
duke@1 788 if (markBranches) result.tree = tree.truepart;
duke@1 789 return result;
duke@1 790 }
duke@1 791 if (cond.isFalse()) {
duke@1 792 code.resolve(cond.falseJumps);
duke@1 793 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
duke@1 794 if (markBranches) result.tree = tree.falsepart;
duke@1 795 return result;
duke@1 796 }
duke@1 797 Chain secondJumps = cond.jumpFalse();
duke@1 798 code.resolve(cond.trueJumps);
duke@1 799 CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
duke@1 800 if (markBranches) first.tree = tree.truepart;
duke@1 801 Chain falseJumps = first.jumpFalse();
duke@1 802 code.resolve(first.trueJumps);
duke@1 803 Chain trueJumps = code.branch(goto_);
duke@1 804 code.resolve(secondJumps);
duke@1 805 CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
duke@1 806 CondItem result = items.makeCondItem(second.opcode,
duke@1 807 code.mergeChains(trueJumps, second.trueJumps),
duke@1 808 code.mergeChains(falseJumps, second.falseJumps));
duke@1 809 if (markBranches) result.tree = tree.falsepart;
duke@1 810 return result;
duke@1 811 } else {
duke@1 812 CondItem result = genExpr(_tree, syms.booleanType).mkCond();
duke@1 813 if (markBranches) result.tree = _tree;
duke@1 814 return result;
duke@1 815 }
duke@1 816 }
duke@1 817
duke@1 818 /** Visitor method: generate code for an expression, catching and reporting
duke@1 819 * any completion failures.
duke@1 820 * @param tree The expression to be visited.
duke@1 821 * @param pt The expression's expected type (proto-type).
duke@1 822 */
duke@1 823 public Item genExpr(JCTree tree, Type pt) {
duke@1 824 Type prevPt = this.pt;
duke@1 825 try {
duke@1 826 if (tree.type.constValue() != null) {
duke@1 827 // Short circuit any expressions which are constants
duke@1 828 checkStringConstant(tree.pos(), tree.type.constValue());
duke@1 829 result = items.makeImmediateItem(tree.type, tree.type.constValue());
duke@1 830 } else {
duke@1 831 this.pt = pt;
duke@1 832 tree.accept(this);
duke@1 833 }
duke@1 834 return result.coerce(pt);
duke@1 835 } catch (CompletionFailure ex) {
duke@1 836 chk.completionError(tree.pos(), ex);
duke@1 837 code.state.stacksize = 1;
duke@1 838 return items.makeStackItem(pt);
duke@1 839 } finally {
duke@1 840 this.pt = prevPt;
duke@1 841 }
duke@1 842 }
duke@1 843
duke@1 844 /** Derived visitor method: generate code for a list of method arguments.
duke@1 845 * @param trees The argument expressions to be visited.
duke@1 846 * @param pts The expression's expected types (i.e. the formal parameter
duke@1 847 * types of the invoked method).
duke@1 848 */
duke@1 849 public void genArgs(List<JCExpression> trees, List<Type> pts) {
duke@1 850 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
duke@1 851 genExpr(l.head, pts.head).load();
duke@1 852 pts = pts.tail;
duke@1 853 }
duke@1 854 // require lists be of same length
duke@1 855 assert pts.isEmpty();
duke@1 856 }
duke@1 857
duke@1 858 /* ************************************************************************
duke@1 859 * Visitor methods for statements and definitions
duke@1 860 *************************************************************************/
duke@1 861
duke@1 862 /** Thrown when the byte code size exceeds limit.
duke@1 863 */
duke@1 864 public static class CodeSizeOverflow extends RuntimeException {
duke@1 865 private static final long serialVersionUID = 0;
duke@1 866 public CodeSizeOverflow() {}
duke@1 867 }
duke@1 868
duke@1 869 public void visitMethodDef(JCMethodDecl tree) {
duke@1 870 // Create a new local environment that points pack at method
duke@1 871 // definition.
duke@1 872 Env<GenContext> localEnv = env.dup(tree);
duke@1 873 localEnv.enclMethod = tree;
duke@1 874
duke@1 875 // The expected type of every return statement in this method
duke@1 876 // is the method's return type.
duke@1 877 this.pt = tree.sym.erasure(types).getReturnType();
duke@1 878
duke@1 879 checkDimension(tree.pos(), tree.sym.erasure(types));
duke@1 880 genMethod(tree, localEnv, false);
duke@1 881 }
duke@1 882 //where
duke@1 883 /** Generate code for a method.
duke@1 884 * @param tree The tree representing the method definition.
duke@1 885 * @param env The environment current for the method body.
duke@1 886 * @param fatcode A flag that indicates whether all jumps are
duke@1 887 * within 32K. We first invoke this method under
duke@1 888 * the assumption that fatcode == false, i.e. all
duke@1 889 * jumps are within 32K. If this fails, fatcode
duke@1 890 * is set to true and we try again.
duke@1 891 */
duke@1 892 void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
duke@1 893 MethodSymbol meth = tree.sym;
duke@1 894 // System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
duke@1 895 if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) +
duke@1 896 (((tree.mods.flags & STATIC) == 0 || meth.isConstructor()) ? 1 : 0) >
duke@1 897 ClassFile.MAX_PARAMETERS) {
duke@1 898 log.error(tree.pos(), "limit.parameters");
duke@1 899 nerrs++;
duke@1 900 }
duke@1 901
duke@1 902 else if (tree.body != null) {
duke@1 903 // Create a new code structure and initialize it.
duke@1 904 int startpcCrt = initCode(tree, env, fatcode);
duke@1 905
duke@1 906 try {
duke@1 907 genStat(tree.body, env);
duke@1 908 } catch (CodeSizeOverflow e) {
duke@1 909 // Failed due to code limit, try again with jsr/ret
duke@1 910 startpcCrt = initCode(tree, env, fatcode);
duke@1 911 genStat(tree.body, env);
duke@1 912 }
duke@1 913
duke@1 914 if (code.state.stacksize != 0) {
duke@1 915 log.error(tree.body.pos(), "stack.sim.error", tree);
duke@1 916 throw new AssertionError();
duke@1 917 }
duke@1 918
duke@1 919 // If last statement could complete normally, insert a
duke@1 920 // return at the end.
duke@1 921 if (code.isAlive()) {
duke@1 922 code.statBegin(TreeInfo.endPos(tree.body));
duke@1 923 if (env.enclMethod == null ||
duke@1 924 env.enclMethod.sym.type.getReturnType().tag == VOID) {
duke@1 925 code.emitop0(return_);
duke@1 926 } else {
duke@1 927 // sometime dead code seems alive (4415991);
duke@1 928 // generate a small loop instead
duke@1 929 int startpc = code.entryPoint();
duke@1 930 CondItem c = items.makeCondItem(goto_);
duke@1 931 code.resolve(c.jumpTrue(), startpc);
duke@1 932 }
duke@1 933 }
duke@1 934 if (genCrt)
duke@1 935 code.crt.put(tree.body,
duke@1 936 CRT_BLOCK,
duke@1 937 startpcCrt,
duke@1 938 code.curPc());
duke@1 939
duke@1 940 // End the scope of all local variables in variable info.
duke@1 941 code.endScopes(0);
duke@1 942
duke@1 943 // If we exceeded limits, panic
duke@1 944 if (code.checkLimits(tree.pos(), log)) {
duke@1 945 nerrs++;
duke@1 946 return;
duke@1 947 }
duke@1 948
duke@1 949 // If we generated short code but got a long jump, do it again
duke@1 950 // with fatCode = true.
duke@1 951 if (!fatcode && code.fatcode) genMethod(tree, env, true);
duke@1 952
duke@1 953 // Clean up
duke@1 954 if(stackMap == StackMapFormat.JSR202) {
duke@1 955 code.lastFrame = null;
duke@1 956 code.frameBeforeLast = null;
duke@1 957 }
duke@1 958 }
duke@1 959 }
duke@1 960
duke@1 961 private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
duke@1 962 MethodSymbol meth = tree.sym;
duke@1 963
duke@1 964 // Create a new code structure.
duke@1 965 meth.code = code = new Code(meth,
duke@1 966 fatcode,
duke@1 967 lineDebugInfo ? toplevel.lineMap : null,
duke@1 968 varDebugInfo,
duke@1 969 stackMap,
duke@1 970 debugCode,
duke@1 971 genCrt ? new CRTable(tree, env.toplevel.endPositions)
duke@1 972 : null,
duke@1 973 syms,
duke@1 974 types,
duke@1 975 pool);
duke@1 976 items = new Items(pool, code, syms, types);
duke@1 977 if (code.debugCode)
duke@1 978 System.err.println(meth + " for body " + tree);
duke@1 979
duke@1 980 // If method is not static, create a new local variable address
duke@1 981 // for `this'.
duke@1 982 if ((tree.mods.flags & STATIC) == 0) {
duke@1 983 Type selfType = meth.owner.type;
duke@1 984 if (meth.isConstructor() && selfType != syms.objectType)
duke@1 985 selfType = UninitializedType.uninitializedThis(selfType);
duke@1 986 code.setDefined(
duke@1 987 code.newLocal(
duke@1 988 new VarSymbol(FINAL, names._this, selfType, meth.owner)));
duke@1 989 }
duke@1 990
duke@1 991 // Mark all parameters as defined from the beginning of
duke@1 992 // the method.
duke@1 993 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 994 checkDimension(l.head.pos(), l.head.sym.type);
duke@1 995 code.setDefined(code.newLocal(l.head.sym));
duke@1 996 }
duke@1 997
duke@1 998 // Get ready to generate code for method body.
duke@1 999 int startpcCrt = genCrt ? code.curPc() : 0;
duke@1 1000 code.entryPoint();
duke@1 1001
duke@1 1002 // Suppress initial stackmap
duke@1 1003 code.pendingStackMap = false;
duke@1 1004
duke@1 1005 return startpcCrt;
duke@1 1006 }
duke@1 1007
duke@1 1008 public void visitVarDef(JCVariableDecl tree) {
duke@1 1009 VarSymbol v = tree.sym;
duke@1 1010 code.newLocal(v);
duke@1 1011 if (tree.init != null) {
duke@1 1012 checkStringConstant(tree.init.pos(), v.getConstValue());
duke@1 1013 if (v.getConstValue() == null || varDebugInfo) {
duke@1 1014 genExpr(tree.init, v.erasure(types)).load();
duke@1 1015 items.makeLocalItem(v).store();
duke@1 1016 }
duke@1 1017 }
duke@1 1018 checkDimension(tree.pos(), v.type);
duke@1 1019 }
duke@1 1020
duke@1 1021 public void visitSkip(JCSkip tree) {
duke@1 1022 }
duke@1 1023
duke@1 1024 public void visitBlock(JCBlock tree) {
duke@1 1025 int limit = code.nextreg;
duke@1 1026 Env<GenContext> localEnv = env.dup(tree, new GenContext());
duke@1 1027 genStats(tree.stats, localEnv);
duke@1 1028 // End the scope of all block-local variables in variable info.
duke@1 1029 if (env.tree.getTag() != JCTree.METHODDEF) {
duke@1 1030 code.statBegin(tree.endpos);
duke@1 1031 code.endScopes(limit);
duke@1 1032 code.pendingStatPos = Position.NOPOS;
duke@1 1033 }
duke@1 1034 }
duke@1 1035
duke@1 1036 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 1037 genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
duke@1 1038 }
duke@1 1039
duke@1 1040 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 1041 genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
duke@1 1042 }
duke@1 1043
duke@1 1044 public void visitForLoop(JCForLoop tree) {
duke@1 1045 int limit = code.nextreg;
duke@1 1046 genStats(tree.init, env);
duke@1 1047 genLoop(tree, tree.body, tree.cond, tree.step, true);
duke@1 1048 code.endScopes(limit);
duke@1 1049 }
duke@1 1050 //where
duke@1 1051 /** Generate code for a loop.
duke@1 1052 * @param loop The tree representing the loop.
duke@1 1053 * @param body The loop's body.
duke@1 1054 * @param cond The loop's controling condition.
duke@1 1055 * @param step "Step" statements to be inserted at end of
duke@1 1056 * each iteration.
duke@1 1057 * @param testFirst True if the loop test belongs before the body.
duke@1 1058 */
duke@1 1059 private void genLoop(JCStatement loop,
duke@1 1060 JCStatement body,
duke@1 1061 JCExpression cond,
duke@1 1062 List<JCExpressionStatement> step,
duke@1 1063 boolean testFirst) {
duke@1 1064 Env<GenContext> loopEnv = env.dup(loop, new GenContext());
duke@1 1065 int startpc = code.entryPoint();
duke@1 1066 if (testFirst) {
duke@1 1067 CondItem c;
duke@1 1068 if (cond != null) {
duke@1 1069 code.statBegin(cond.pos);
duke@1 1070 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
duke@1 1071 } else {
duke@1 1072 c = items.makeCondItem(goto_);
duke@1 1073 }
duke@1 1074 Chain loopDone = c.jumpFalse();
duke@1 1075 code.resolve(c.trueJumps);
duke@1 1076 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1077 code.resolve(loopEnv.info.cont);
duke@1 1078 genStats(step, loopEnv);
duke@1 1079 code.resolve(code.branch(goto_), startpc);
duke@1 1080 code.resolve(loopDone);
duke@1 1081 } else {
duke@1 1082 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1083 code.resolve(loopEnv.info.cont);
duke@1 1084 genStats(step, loopEnv);
duke@1 1085 CondItem c;
duke@1 1086 if (cond != null) {
duke@1 1087 code.statBegin(cond.pos);
duke@1 1088 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
duke@1 1089 } else {
duke@1 1090 c = items.makeCondItem(goto_);
duke@1 1091 }
duke@1 1092 code.resolve(c.jumpTrue(), startpc);
duke@1 1093 code.resolve(c.falseJumps);
duke@1 1094 }
duke@1 1095 code.resolve(loopEnv.info.exit);
duke@1 1096 }
duke@1 1097
duke@1 1098 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 1099 throw new AssertionError(); // should have been removed by Lower.
duke@1 1100 }
duke@1 1101
duke@1 1102 public void visitLabelled(JCLabeledStatement tree) {
duke@1 1103 Env<GenContext> localEnv = env.dup(tree, new GenContext());
duke@1 1104 genStat(tree.body, localEnv, CRT_STATEMENT);
duke@1 1105 code.resolve(localEnv.info.exit);
duke@1 1106 }
duke@1 1107
duke@1 1108 public void visitSwitch(JCSwitch tree) {
duke@1 1109 int limit = code.nextreg;
duke@1 1110 assert tree.selector.type.tag != CLASS;
duke@1 1111 int startpcCrt = genCrt ? code.curPc() : 0;
duke@1 1112 Item sel = genExpr(tree.selector, syms.intType);
duke@1 1113 List<JCCase> cases = tree.cases;
duke@1 1114 if (cases.isEmpty()) {
duke@1 1115 // We are seeing: switch <sel> {}
duke@1 1116 sel.load().drop();
duke@1 1117 if (genCrt)
duke@1 1118 code.crt.put(TreeInfo.skipParens(tree.selector),
duke@1 1119 CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
duke@1 1120 } else {
duke@1 1121 // We are seeing a nonempty switch.
duke@1 1122 sel.load();
duke@1 1123 if (genCrt)
duke@1 1124 code.crt.put(TreeInfo.skipParens(tree.selector),
duke@1 1125 CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
duke@1 1126 Env<GenContext> switchEnv = env.dup(tree, new GenContext());
duke@1 1127 switchEnv.info.isSwitch = true;
duke@1 1128
duke@1 1129 // Compute number of labels and minimum and maximum label values.
duke@1 1130 // For each case, store its label in an array.
duke@1 1131 int lo = Integer.MAX_VALUE; // minimum label.
duke@1 1132 int hi = Integer.MIN_VALUE; // maximum label.
duke@1 1133 int nlabels = 0; // number of labels.
duke@1 1134
duke@1 1135 int[] labels = new int[cases.length()]; // the label array.
duke@1 1136 int defaultIndex = -1; // the index of the default clause.
duke@1 1137
duke@1 1138 List<JCCase> l = cases;
duke@1 1139 for (int i = 0; i < labels.length; i++) {
duke@1 1140 if (l.head.pat != null) {
duke@1 1141 int val = ((Number)l.head.pat.type.constValue()).intValue();
duke@1 1142 labels[i] = val;
duke@1 1143 if (val < lo) lo = val;
duke@1 1144 if (hi < val) hi = val;
duke@1 1145 nlabels++;
duke@1 1146 } else {
duke@1 1147 assert defaultIndex == -1;
duke@1 1148 defaultIndex = i;
duke@1 1149 }
duke@1 1150 l = l.tail;
duke@1 1151 }
duke@1 1152
duke@1 1153 // Determine whether to issue a tableswitch or a lookupswitch
duke@1 1154 // instruction.
duke@1 1155 long table_space_cost = 4 + ((long) hi - lo + 1); // words
duke@1 1156 long table_time_cost = 3; // comparisons
duke@1 1157 long lookup_space_cost = 3 + 2 * (long) nlabels;
duke@1 1158 long lookup_time_cost = nlabels;
duke@1 1159 int opcode =
duke@1 1160 nlabels > 0 &&
duke@1 1161 table_space_cost + 3 * table_time_cost <=
duke@1 1162 lookup_space_cost + 3 * lookup_time_cost
duke@1 1163 ?
duke@1 1164 tableswitch : lookupswitch;
duke@1 1165
duke@1 1166 int startpc = code.curPc(); // the position of the selector operation
duke@1 1167 code.emitop0(opcode);
duke@1 1168 code.align(4);
duke@1 1169 int tableBase = code.curPc(); // the start of the jump table
duke@1 1170 int[] offsets = null; // a table of offsets for a lookupswitch
duke@1 1171 code.emit4(-1); // leave space for default offset
duke@1 1172 if (opcode == tableswitch) {
duke@1 1173 code.emit4(lo); // minimum label
duke@1 1174 code.emit4(hi); // maximum label
duke@1 1175 for (long i = lo; i <= hi; i++) { // leave space for jump table
duke@1 1176 code.emit4(-1);
duke@1 1177 }
duke@1 1178 } else {
duke@1 1179 code.emit4(nlabels); // number of labels
duke@1 1180 for (int i = 0; i < nlabels; i++) {
duke@1 1181 code.emit4(-1); code.emit4(-1); // leave space for lookup table
duke@1 1182 }
duke@1 1183 offsets = new int[labels.length];
duke@1 1184 }
duke@1 1185 Code.State stateSwitch = code.state.dup();
duke@1 1186 code.markDead();
duke@1 1187
duke@1 1188 // For each case do:
duke@1 1189 l = cases;
duke@1 1190 for (int i = 0; i < labels.length; i++) {
duke@1 1191 JCCase c = l.head;
duke@1 1192 l = l.tail;
duke@1 1193
duke@1 1194 int pc = code.entryPoint(stateSwitch);
duke@1 1195 // Insert offset directly into code or else into the
duke@1 1196 // offsets table.
duke@1 1197 if (i != defaultIndex) {
duke@1 1198 if (opcode == tableswitch) {
duke@1 1199 code.put4(
duke@1 1200 tableBase + 4 * (labels[i] - lo + 3),
duke@1 1201 pc - startpc);
duke@1 1202 } else {
duke@1 1203 offsets[i] = pc - startpc;
duke@1 1204 }
duke@1 1205 } else {
duke@1 1206 code.put4(tableBase, pc - startpc);
duke@1 1207 }
duke@1 1208
duke@1 1209 // Generate code for the statements in this case.
duke@1 1210 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
duke@1 1211 }
duke@1 1212
duke@1 1213 // Resolve all breaks.
duke@1 1214 code.resolve(switchEnv.info.exit);
duke@1 1215
duke@1 1216 // If we have not set the default offset, we do so now.
duke@1 1217 if (code.get4(tableBase) == -1) {
duke@1 1218 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
duke@1 1219 }
duke@1 1220
duke@1 1221 if (opcode == tableswitch) {
duke@1 1222 // Let any unfilled slots point to the default case.
duke@1 1223 int defaultOffset = code.get4(tableBase);
duke@1 1224 for (long i = lo; i <= hi; i++) {
duke@1 1225 int t = (int)(tableBase + 4 * (i - lo + 3));
duke@1 1226 if (code.get4(t) == -1)
duke@1 1227 code.put4(t, defaultOffset);
duke@1 1228 }
duke@1 1229 } else {
duke@1 1230 // Sort non-default offsets and copy into lookup table.
duke@1 1231 if (defaultIndex >= 0)
duke@1 1232 for (int i = defaultIndex; i < labels.length - 1; i++) {
duke@1 1233 labels[i] = labels[i+1];
duke@1 1234 offsets[i] = offsets[i+1];
duke@1 1235 }
duke@1 1236 if (nlabels > 0)
duke@1 1237 qsort2(labels, offsets, 0, nlabels - 1);
duke@1 1238 for (int i = 0; i < nlabels; i++) {
duke@1 1239 int caseidx = tableBase + 8 * (i + 1);
duke@1 1240 code.put4(caseidx, labels[i]);
duke@1 1241 code.put4(caseidx + 4, offsets[i]);
duke@1 1242 }
duke@1 1243 }
duke@1 1244 }
duke@1 1245 code.endScopes(limit);
duke@1 1246 }
duke@1 1247 //where
duke@1 1248 /** Sort (int) arrays of keys and values
duke@1 1249 */
duke@1 1250 static void qsort2(int[] keys, int[] values, int lo, int hi) {
duke@1 1251 int i = lo;
duke@1 1252 int j = hi;
duke@1 1253 int pivot = keys[(i+j)/2];
duke@1 1254 do {
duke@1 1255 while (keys[i] < pivot) i++;
duke@1 1256 while (pivot < keys[j]) j--;
duke@1 1257 if (i <= j) {
duke@1 1258 int temp1 = keys[i];
duke@1 1259 keys[i] = keys[j];
duke@1 1260 keys[j] = temp1;
duke@1 1261 int temp2 = values[i];
duke@1 1262 values[i] = values[j];
duke@1 1263 values[j] = temp2;
duke@1 1264 i++;
duke@1 1265 j--;
duke@1 1266 }
duke@1 1267 } while (i <= j);
duke@1 1268 if (lo < j) qsort2(keys, values, lo, j);
duke@1 1269 if (i < hi) qsort2(keys, values, i, hi);
duke@1 1270 }
duke@1 1271
duke@1 1272 public void visitSynchronized(JCSynchronized tree) {
duke@1 1273 int limit = code.nextreg;
duke@1 1274 // Generate code to evaluate lock and save in temporary variable.
duke@1 1275 final LocalItem lockVar = makeTemp(syms.objectType);
duke@1 1276 genExpr(tree.lock, tree.lock.type).load().duplicate();
duke@1 1277 lockVar.store();
duke@1 1278
duke@1 1279 // Generate code to enter monitor.
duke@1 1280 code.emitop0(monitorenter);
duke@1 1281 code.state.lock(lockVar.reg);
duke@1 1282
duke@1 1283 // Generate code for a try statement with given body, no catch clauses
duke@1 1284 // in a new environment with the "exit-monitor" operation as finalizer.
duke@1 1285 final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
duke@1 1286 syncEnv.info.finalize = new GenFinalizer() {
duke@1 1287 void gen() {
duke@1 1288 genLast();
duke@1 1289 assert syncEnv.info.gaps.length() % 2 == 0;
duke@1 1290 syncEnv.info.gaps.append(code.curPc());
duke@1 1291 }
duke@1 1292 void genLast() {
duke@1 1293 if (code.isAlive()) {
duke@1 1294 lockVar.load();
duke@1 1295 code.emitop0(monitorexit);
duke@1 1296 code.state.unlock(lockVar.reg);
duke@1 1297 }
duke@1 1298 }
duke@1 1299 };
duke@1 1300 syncEnv.info.gaps = new ListBuffer<Integer>();
duke@1 1301 genTry(tree.body, List.<JCCatch>nil(), syncEnv);
duke@1 1302 code.endScopes(limit);
duke@1 1303 }
duke@1 1304
duke@1 1305 public void visitTry(final JCTry tree) {
duke@1 1306 // Generate code for a try statement with given body and catch clauses,
duke@1 1307 // in a new environment which calls the finally block if there is one.
duke@1 1308 final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
duke@1 1309 final Env<GenContext> oldEnv = env;
duke@1 1310 if (!useJsrLocally) {
duke@1 1311 useJsrLocally =
duke@1 1312 (stackMap == StackMapFormat.NONE) &&
duke@1 1313 (jsrlimit <= 0 ||
duke@1 1314 jsrlimit < 100 &&
duke@1 1315 estimateCodeComplexity(tree.finalizer)>jsrlimit);
duke@1 1316 }
duke@1 1317 tryEnv.info.finalize = new GenFinalizer() {
duke@1 1318 void gen() {
duke@1 1319 if (useJsrLocally) {
duke@1 1320 if (tree.finalizer != null) {
duke@1 1321 Code.State jsrState = code.state.dup();
duke@1 1322 jsrState.push(code.jsrReturnValue);
duke@1 1323 tryEnv.info.cont =
duke@1 1324 new Chain(code.emitJump(jsr),
duke@1 1325 tryEnv.info.cont,
duke@1 1326 jsrState);
duke@1 1327 }
duke@1 1328 assert tryEnv.info.gaps.length() % 2 == 0;
duke@1 1329 tryEnv.info.gaps.append(code.curPc());
duke@1 1330 } else {
duke@1 1331 assert tryEnv.info.gaps.length() % 2 == 0;
duke@1 1332 tryEnv.info.gaps.append(code.curPc());
duke@1 1333 genLast();
duke@1 1334 }
duke@1 1335 }
duke@1 1336 void genLast() {
duke@1 1337 if (tree.finalizer != null)
duke@1 1338 genStat(tree.finalizer, oldEnv, CRT_BLOCK);
duke@1 1339 }
duke@1 1340 boolean hasFinalizer() {
duke@1 1341 return tree.finalizer != null;
duke@1 1342 }
duke@1 1343 };
duke@1 1344 tryEnv.info.gaps = new ListBuffer<Integer>();
duke@1 1345 genTry(tree.body, tree.catchers, tryEnv);
duke@1 1346 }
duke@1 1347 //where
duke@1 1348 /** Generate code for a try or synchronized statement
duke@1 1349 * @param body The body of the try or synchronized statement.
duke@1 1350 * @param catchers The lis of catch clauses.
duke@1 1351 * @param env the environment current for the body.
duke@1 1352 */
duke@1 1353 void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
duke@1 1354 int limit = code.nextreg;
duke@1 1355 int startpc = code.curPc();
duke@1 1356 Code.State stateTry = code.state.dup();
duke@1 1357 genStat(body, env, CRT_BLOCK);
duke@1 1358 int endpc = code.curPc();
duke@1 1359 boolean hasFinalizer =
duke@1 1360 env.info.finalize != null &&
duke@1 1361 env.info.finalize.hasFinalizer();
duke@1 1362 List<Integer> gaps = env.info.gaps.toList();
duke@1 1363 code.statBegin(TreeInfo.endPos(body));
duke@1 1364 genFinalizer(env);
duke@1 1365 code.statBegin(TreeInfo.endPos(env.tree));
duke@1 1366 Chain exitChain = code.branch(goto_);
duke@1 1367 endFinalizerGap(env);
duke@1 1368 if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
duke@1 1369 // start off with exception on stack
duke@1 1370 code.entryPoint(stateTry, l.head.param.sym.type);
duke@1 1371 genCatch(l.head, env, startpc, endpc, gaps);
duke@1 1372 genFinalizer(env);
duke@1 1373 if (hasFinalizer || l.tail.nonEmpty()) {
duke@1 1374 code.statBegin(TreeInfo.endPos(env.tree));
duke@1 1375 exitChain = code.mergeChains(exitChain,
duke@1 1376 code.branch(goto_));
duke@1 1377 }
duke@1 1378 endFinalizerGap(env);
duke@1 1379 }
duke@1 1380 if (hasFinalizer) {
duke@1 1381 // Create a new register segement to avoid allocating
duke@1 1382 // the same variables in finalizers and other statements.
duke@1 1383 code.newRegSegment();
duke@1 1384
duke@1 1385 // Add a catch-all clause.
duke@1 1386
duke@1 1387 // start off with exception on stack
duke@1 1388 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
duke@1 1389
duke@1 1390 // Register all exception ranges for catch all clause.
duke@1 1391 // The range of the catch all clause is from the beginning
duke@1 1392 // of the try or synchronized block until the present
duke@1 1393 // code pointer excluding all gaps in the current
duke@1 1394 // environment's GenContext.
duke@1 1395 int startseg = startpc;
duke@1 1396 while (env.info.gaps.nonEmpty()) {
duke@1 1397 int endseg = env.info.gaps.next().intValue();
duke@1 1398 registerCatch(body.pos(), startseg, endseg,
duke@1 1399 catchallpc, 0);
duke@1 1400 startseg = env.info.gaps.next().intValue();
duke@1 1401 }
duke@1 1402 code.statBegin(TreeInfo.finalizerPos(env.tree));
duke@1 1403 code.markStatBegin();
duke@1 1404
duke@1 1405 Item excVar = makeTemp(syms.throwableType);
duke@1 1406 excVar.store();
duke@1 1407 genFinalizer(env);
duke@1 1408 excVar.load();
duke@1 1409 registerCatch(body.pos(), startseg,
duke@1 1410 env.info.gaps.next().intValue(),
duke@1 1411 catchallpc, 0);
duke@1 1412 code.emitop0(athrow);
duke@1 1413 code.markDead();
duke@1 1414
duke@1 1415 // If there are jsr's to this finalizer, ...
duke@1 1416 if (env.info.cont != null) {
duke@1 1417 // Resolve all jsr's.
duke@1 1418 code.resolve(env.info.cont);
duke@1 1419
duke@1 1420 // Mark statement line number
duke@1 1421 code.statBegin(TreeInfo.finalizerPos(env.tree));
duke@1 1422 code.markStatBegin();
duke@1 1423
duke@1 1424 // Save return address.
duke@1 1425 LocalItem retVar = makeTemp(syms.throwableType);
duke@1 1426 retVar.store();
duke@1 1427
duke@1 1428 // Generate finalizer code.
duke@1 1429 env.info.finalize.genLast();
duke@1 1430
duke@1 1431 // Return.
duke@1 1432 code.emitop1w(ret, retVar.reg);
duke@1 1433 code.markDead();
duke@1 1434 }
duke@1 1435 }
duke@1 1436
duke@1 1437 // Resolve all breaks.
duke@1 1438 code.resolve(exitChain);
duke@1 1439
duke@1 1440 // End the scopes of all try-local variables in variable info.
duke@1 1441 code.endScopes(limit);
duke@1 1442 }
duke@1 1443
duke@1 1444 /** Generate code for a catch clause.
duke@1 1445 * @param tree The catch clause.
duke@1 1446 * @param env The environment current in the enclosing try.
duke@1 1447 * @param startpc Start pc of try-block.
duke@1 1448 * @param endpc End pc of try-block.
duke@1 1449 */
duke@1 1450 void genCatch(JCCatch tree,
duke@1 1451 Env<GenContext> env,
duke@1 1452 int startpc, int endpc,
duke@1 1453 List<Integer> gaps) {
duke@1 1454 if (startpc != endpc) {
duke@1 1455 int catchType = makeRef(tree.pos(), tree.param.type);
duke@1 1456 while (gaps.nonEmpty()) {
duke@1 1457 int end = gaps.head.intValue();
duke@1 1458 registerCatch(tree.pos(),
duke@1 1459 startpc, end, code.curPc(),
duke@1 1460 catchType);
duke@1 1461 gaps = gaps.tail;
duke@1 1462 startpc = gaps.head.intValue();
duke@1 1463 gaps = gaps.tail;
duke@1 1464 }
duke@1 1465 if (startpc < endpc)
duke@1 1466 registerCatch(tree.pos(),
duke@1 1467 startpc, endpc, code.curPc(),
duke@1 1468 catchType);
duke@1 1469 VarSymbol exparam = tree.param.sym;
duke@1 1470 code.statBegin(tree.pos);
duke@1 1471 code.markStatBegin();
duke@1 1472 int limit = code.nextreg;
duke@1 1473 int exlocal = code.newLocal(exparam);
duke@1 1474 items.makeLocalItem(exparam).store();
duke@1 1475 code.statBegin(TreeInfo.firstStatPos(tree.body));
duke@1 1476 genStat(tree.body, env, CRT_BLOCK);
duke@1 1477 code.endScopes(limit);
duke@1 1478 code.statBegin(TreeInfo.endPos(tree.body));
duke@1 1479 }
duke@1 1480 }
duke@1 1481
duke@1 1482 /** Register a catch clause in the "Exceptions" code-attribute.
duke@1 1483 */
duke@1 1484 void registerCatch(DiagnosticPosition pos,
duke@1 1485 int startpc, int endpc,
duke@1 1486 int handler_pc, int catch_type) {
duke@1 1487 if (startpc != endpc) {
duke@1 1488 char startpc1 = (char)startpc;
duke@1 1489 char endpc1 = (char)endpc;
duke@1 1490 char handler_pc1 = (char)handler_pc;
duke@1 1491 if (startpc1 == startpc &&
duke@1 1492 endpc1 == endpc &&
duke@1 1493 handler_pc1 == handler_pc) {
duke@1 1494 code.addCatch(startpc1, endpc1, handler_pc1,
duke@1 1495 (char)catch_type);
duke@1 1496 } else {
duke@1 1497 if (!useJsrLocally && !target.generateStackMapTable()) {
duke@1 1498 useJsrLocally = true;
duke@1 1499 throw new CodeSizeOverflow();
duke@1 1500 } else {
duke@1 1501 log.error(pos, "limit.code.too.large.for.try.stmt");
duke@1 1502 nerrs++;
duke@1 1503 }
duke@1 1504 }
duke@1 1505 }
duke@1 1506 }
duke@1 1507
duke@1 1508 /** Very roughly estimate the number of instructions needed for
duke@1 1509 * the given tree.
duke@1 1510 */
duke@1 1511 int estimateCodeComplexity(JCTree tree) {
duke@1 1512 if (tree == null) return 0;
duke@1 1513 class ComplexityScanner extends TreeScanner {
duke@1 1514 int complexity = 0;
duke@1 1515 public void scan(JCTree tree) {
duke@1 1516 if (complexity > jsrlimit) return;
duke@1 1517 super.scan(tree);
duke@1 1518 }
duke@1 1519 public void visitClassDef(JCClassDecl tree) {}
duke@1 1520 public void visitDoLoop(JCDoWhileLoop tree)
duke@1 1521 { super.visitDoLoop(tree); complexity++; }
duke@1 1522 public void visitWhileLoop(JCWhileLoop tree)
duke@1 1523 { super.visitWhileLoop(tree); complexity++; }
duke@1 1524 public void visitForLoop(JCForLoop tree)
duke@1 1525 { super.visitForLoop(tree); complexity++; }
duke@1 1526 public void visitSwitch(JCSwitch tree)
duke@1 1527 { super.visitSwitch(tree); complexity+=5; }
duke@1 1528 public void visitCase(JCCase tree)
duke@1 1529 { super.visitCase(tree); complexity++; }
duke@1 1530 public void visitSynchronized(JCSynchronized tree)
duke@1 1531 { super.visitSynchronized(tree); complexity+=6; }
duke@1 1532 public void visitTry(JCTry tree)
duke@1 1533 { super.visitTry(tree);
duke@1 1534 if (tree.finalizer != null) complexity+=6; }
duke@1 1535 public void visitCatch(JCCatch tree)
duke@1 1536 { super.visitCatch(tree); complexity+=2; }
duke@1 1537 public void visitConditional(JCConditional tree)
duke@1 1538 { super.visitConditional(tree); complexity+=2; }
duke@1 1539 public void visitIf(JCIf tree)
duke@1 1540 { super.visitIf(tree); complexity+=2; }
duke@1 1541 // note: for break, continue, and return we don't take unwind() into account.
duke@1 1542 public void visitBreak(JCBreak tree)
duke@1 1543 { super.visitBreak(tree); complexity+=1; }
duke@1 1544 public void visitContinue(JCContinue tree)
duke@1 1545 { super.visitContinue(tree); complexity+=1; }
duke@1 1546 public void visitReturn(JCReturn tree)
duke@1 1547 { super.visitReturn(tree); complexity+=1; }
duke@1 1548 public void visitThrow(JCThrow tree)
duke@1 1549 { super.visitThrow(tree); complexity+=1; }
duke@1 1550 public void visitAssert(JCAssert tree)
duke@1 1551 { super.visitAssert(tree); complexity+=5; }
duke@1 1552 public void visitApply(JCMethodInvocation tree)
duke@1 1553 { super.visitApply(tree); complexity+=2; }
duke@1 1554 public void visitNewClass(JCNewClass tree)
duke@1 1555 { scan(tree.encl); scan(tree.args); complexity+=2; }
duke@1 1556 public void visitNewArray(JCNewArray tree)
duke@1 1557 { super.visitNewArray(tree); complexity+=5; }
duke@1 1558 public void visitAssign(JCAssign tree)
duke@1 1559 { super.visitAssign(tree); complexity+=1; }
duke@1 1560 public void visitAssignop(JCAssignOp tree)
duke@1 1561 { super.visitAssignop(tree); complexity+=2; }
duke@1 1562 public void visitUnary(JCUnary tree)
duke@1 1563 { complexity+=1;
duke@1 1564 if (tree.type.constValue() == null) super.visitUnary(tree); }
duke@1 1565 public void visitBinary(JCBinary tree)
duke@1 1566 { complexity+=1;
duke@1 1567 if (tree.type.constValue() == null) super.visitBinary(tree); }
duke@1 1568 public void visitTypeTest(JCInstanceOf tree)
duke@1 1569 { super.visitTypeTest(tree); complexity+=1; }
duke@1 1570 public void visitIndexed(JCArrayAccess tree)
duke@1 1571 { super.visitIndexed(tree); complexity+=1; }
duke@1 1572 public void visitSelect(JCFieldAccess tree)
duke@1 1573 { super.visitSelect(tree);
duke@1 1574 if (tree.sym.kind == VAR) complexity+=1; }
duke@1 1575 public void visitIdent(JCIdent tree) {
duke@1 1576 if (tree.sym.kind == VAR) {
duke@1 1577 complexity+=1;
duke@1 1578 if (tree.type.constValue() == null &&
duke@1 1579 tree.sym.owner.kind == TYP)
duke@1 1580 complexity+=1;
duke@1 1581 }
duke@1 1582 }
duke@1 1583 public void visitLiteral(JCLiteral tree)
duke@1 1584 { complexity+=1; }
duke@1 1585 public void visitTree(JCTree tree) {}
duke@1 1586 public void visitWildcard(JCWildcard tree) {
duke@1 1587 throw new AssertionError(this.getClass().getName());
duke@1 1588 }
duke@1 1589 }
duke@1 1590 ComplexityScanner scanner = new ComplexityScanner();
duke@1 1591 tree.accept(scanner);
duke@1 1592 return scanner.complexity;
duke@1 1593 }
duke@1 1594
duke@1 1595 public void visitIf(JCIf tree) {
duke@1 1596 int limit = code.nextreg;
duke@1 1597 Chain thenExit = null;
duke@1 1598 CondItem c = genCond(TreeInfo.skipParens(tree.cond),
duke@1 1599 CRT_FLOW_CONTROLLER);
duke@1 1600 Chain elseChain = c.jumpFalse();
duke@1 1601 if (!c.isFalse()) {
duke@1 1602 code.resolve(c.trueJumps);
duke@1 1603 genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1604 thenExit = code.branch(goto_);
duke@1 1605 }
duke@1 1606 if (elseChain != null) {
duke@1 1607 code.resolve(elseChain);
duke@1 1608 if (tree.elsepart != null)
duke@1 1609 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
duke@1 1610 }
duke@1 1611 code.resolve(thenExit);
duke@1 1612 code.endScopes(limit);
duke@1 1613 }
duke@1 1614
duke@1 1615 public void visitExec(JCExpressionStatement tree) {
duke@1 1616 // Optimize x++ to ++x and x-- to --x.
duke@1 1617 JCExpression e = tree.expr;
duke@1 1618 switch (e.getTag()) {
duke@1 1619 case JCTree.POSTINC:
duke@1 1620 ((JCUnary) e).setTag(JCTree.PREINC);
duke@1 1621 break;
duke@1 1622 case JCTree.POSTDEC:
duke@1 1623 ((JCUnary) e).setTag(JCTree.PREDEC);
duke@1 1624 break;
duke@1 1625 }
duke@1 1626 genExpr(tree.expr, tree.expr.type).drop();
duke@1 1627 }
duke@1 1628
duke@1 1629 public void visitBreak(JCBreak tree) {
duke@1 1630 Env<GenContext> targetEnv = unwind(tree.target, env);
duke@1 1631 assert code.state.stacksize == 0;
duke@1 1632 targetEnv.info.addExit(code.branch(goto_));
duke@1 1633 endFinalizerGaps(env, targetEnv);
duke@1 1634 }
duke@1 1635
duke@1 1636 public void visitContinue(JCContinue tree) {
duke@1 1637 Env<GenContext> targetEnv = unwind(tree.target, env);
duke@1 1638 assert code.state.stacksize == 0;
duke@1 1639 targetEnv.info.addCont(code.branch(goto_));
duke@1 1640 endFinalizerGaps(env, targetEnv);
duke@1 1641 }
duke@1 1642
duke@1 1643 public void visitReturn(JCReturn tree) {
duke@1 1644 int limit = code.nextreg;
duke@1 1645 final Env<GenContext> targetEnv;
duke@1 1646 if (tree.expr != null) {
duke@1 1647 Item r = genExpr(tree.expr, pt).load();
duke@1 1648 if (hasFinally(env.enclMethod, env)) {
duke@1 1649 r = makeTemp(pt);
duke@1 1650 r.store();
duke@1 1651 }
duke@1 1652 targetEnv = unwind(env.enclMethod, env);
duke@1 1653 r.load();
duke@1 1654 code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
duke@1 1655 } else {
duke@1 1656 targetEnv = unwind(env.enclMethod, env);
duke@1 1657 code.emitop0(return_);
duke@1 1658 }
duke@1 1659 endFinalizerGaps(env, targetEnv);
duke@1 1660 code.endScopes(limit);
duke@1 1661 }
duke@1 1662
duke@1 1663 public void visitThrow(JCThrow tree) {
duke@1 1664 genExpr(tree.expr, tree.expr.type).load();
duke@1 1665 code.emitop0(athrow);
duke@1 1666 }
duke@1 1667
duke@1 1668 /* ************************************************************************
duke@1 1669 * Visitor methods for expressions
duke@1 1670 *************************************************************************/
duke@1 1671
duke@1 1672 public void visitApply(JCMethodInvocation tree) {
duke@1 1673 // Generate code for method.
duke@1 1674 Item m = genExpr(tree.meth, methodType);
duke@1 1675 // Generate code for all arguments, where the expected types are
duke@1 1676 // the parameters of the method's external type (that is, any implicit
duke@1 1677 // outer instance of a super(...) call appears as first parameter).
duke@1 1678 genArgs(tree.args,
duke@1 1679 TreeInfo.symbol(tree.meth).externalType(types).getParameterTypes());
duke@1 1680 result = m.invoke();
duke@1 1681 }
duke@1 1682
duke@1 1683 public void visitConditional(JCConditional tree) {
duke@1 1684 Chain thenExit = null;
duke@1 1685 CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
duke@1 1686 Chain elseChain = c.jumpFalse();
duke@1 1687 if (!c.isFalse()) {
duke@1 1688 code.resolve(c.trueJumps);
duke@1 1689 int startpc = genCrt ? code.curPc() : 0;
duke@1 1690 genExpr(tree.truepart, pt).load();
duke@1 1691 code.state.forceStackTop(tree.type);
duke@1 1692 if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
duke@1 1693 startpc, code.curPc());
duke@1 1694 thenExit = code.branch(goto_);
duke@1 1695 }
duke@1 1696 if (elseChain != null) {
duke@1 1697 code.resolve(elseChain);
duke@1 1698 int startpc = genCrt ? code.curPc() : 0;
duke@1 1699 genExpr(tree.falsepart, pt).load();
duke@1 1700 code.state.forceStackTop(tree.type);
duke@1 1701 if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
duke@1 1702 startpc, code.curPc());
duke@1 1703 }
duke@1 1704 code.resolve(thenExit);
duke@1 1705 result = items.makeStackItem(pt);
duke@1 1706 }
duke@1 1707
duke@1 1708 public void visitNewClass(JCNewClass tree) {
duke@1 1709 // Enclosing instances or anonymous classes should have been eliminated
duke@1 1710 // by now.
duke@1 1711 assert tree.encl == null && tree.def == null;
duke@1 1712
duke@1 1713 code.emitop2(new_, makeRef(tree.pos(), tree.type));
duke@1 1714 code.emitop0(dup);
duke@1 1715
duke@1 1716 // Generate code for all arguments, where the expected types are
duke@1 1717 // the parameters of the constructor's external type (that is,
duke@1 1718 // any implicit outer instance appears as first parameter).
duke@1 1719 genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
duke@1 1720
duke@1 1721 items.makeMemberItem(tree.constructor, true).invoke();
duke@1 1722 result = items.makeStackItem(tree.type);
duke@1 1723 }
duke@1 1724
duke@1 1725 public void visitNewArray(JCNewArray tree) {
duke@1 1726 if (tree.elems != null) {
duke@1 1727 Type elemtype = types.elemtype(tree.type);
duke@1 1728 loadIntConst(tree.elems.length());
duke@1 1729 Item arr = makeNewArray(tree.pos(), tree.type, 1);
duke@1 1730 int i = 0;
duke@1 1731 for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
duke@1 1732 arr.duplicate();
duke@1 1733 loadIntConst(i);
duke@1 1734 i++;
duke@1 1735 genExpr(l.head, elemtype).load();
duke@1 1736 items.makeIndexedItem(elemtype).store();
duke@1 1737 }
duke@1 1738 result = arr;
duke@1 1739 } else {
duke@1 1740 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1741 genExpr(l.head, syms.intType).load();
duke@1 1742 }
duke@1 1743 result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
duke@1 1744 }
duke@1 1745 }
duke@1 1746 //where
duke@1 1747 /** Generate code to create an array with given element type and number
duke@1 1748 * of dimensions.
duke@1 1749 */
duke@1 1750 Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
duke@1 1751 Type elemtype = types.elemtype(type);
duke@1 1752 if (types.dimensions(elemtype) + ndims > ClassFile.MAX_DIMENSIONS) {
duke@1 1753 log.error(pos, "limit.dimensions");
duke@1 1754 nerrs++;
duke@1 1755 }
duke@1 1756 int elemcode = Code.arraycode(elemtype);
duke@1 1757 if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
duke@1 1758 code.emitAnewarray(makeRef(pos, elemtype), type);
duke@1 1759 } else if (elemcode == 1) {
duke@1 1760 code.emitMultianewarray(ndims, makeRef(pos, type), type);
duke@1 1761 } else {
duke@1 1762 code.emitNewarray(elemcode, type);
duke@1 1763 }
duke@1 1764 return items.makeStackItem(type);
duke@1 1765 }
duke@1 1766
duke@1 1767 public void visitParens(JCParens tree) {
duke@1 1768 result = genExpr(tree.expr, tree.expr.type);
duke@1 1769 }
duke@1 1770
duke@1 1771 public void visitAssign(JCAssign tree) {
duke@1 1772 Item l = genExpr(tree.lhs, tree.lhs.type);
duke@1 1773 genExpr(tree.rhs, tree.lhs.type).load();
duke@1 1774 result = items.makeAssignItem(l);
duke@1 1775 }
duke@1 1776
duke@1 1777 public void visitAssignop(JCAssignOp tree) {
duke@1 1778 OperatorSymbol operator = (OperatorSymbol) tree.operator;
duke@1 1779 Item l;
duke@1 1780 if (operator.opcode == string_add) {
duke@1 1781 // Generate code to make a string buffer
duke@1 1782 makeStringBuffer(tree.pos());
duke@1 1783
duke@1 1784 // Generate code for first string, possibly save one
duke@1 1785 // copy under buffer
duke@1 1786 l = genExpr(tree.lhs, tree.lhs.type);
duke@1 1787 if (l.width() > 0) {
duke@1 1788 code.emitop0(dup_x1 + 3 * (l.width() - 1));
duke@1 1789 }
duke@1 1790
duke@1 1791 // Load first string and append to buffer.
duke@1 1792 l.load();
duke@1 1793 appendString(tree.lhs);
duke@1 1794
duke@1 1795 // Append all other strings to buffer.
duke@1 1796 appendStrings(tree.rhs);
duke@1 1797
duke@1 1798 // Convert buffer to string.
duke@1 1799 bufferToString(tree.pos());
duke@1 1800 } else {
duke@1 1801 // Generate code for first expression
duke@1 1802 l = genExpr(tree.lhs, tree.lhs.type);
duke@1 1803
duke@1 1804 // If we have an increment of -32768 to +32767 of a local
duke@1 1805 // int variable we can use an incr instruction instead of
duke@1 1806 // proceeding further.
duke@1 1807 if ((tree.getTag() == JCTree.PLUS_ASG || tree.getTag() == JCTree.MINUS_ASG) &&
duke@1 1808 l instanceof LocalItem &&
duke@1 1809 tree.lhs.type.tag <= INT &&
duke@1 1810 tree.rhs.type.tag <= INT &&
duke@1 1811 tree.rhs.type.constValue() != null) {
duke@1 1812 int ival = ((Number) tree.rhs.type.constValue()).intValue();
duke@1 1813 if (tree.getTag() == JCTree.MINUS_ASG) ival = -ival;
duke@1 1814 ((LocalItem)l).incr(ival);
duke@1 1815 result = l;
duke@1 1816 return;
duke@1 1817 }
duke@1 1818 // Otherwise, duplicate expression, load one copy
duke@1 1819 // and complete binary operation.
duke@1 1820 l.duplicate();
duke@1 1821 l.coerce(operator.type.getParameterTypes().head).load();
duke@1 1822 completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
duke@1 1823 }
duke@1 1824 result = items.makeAssignItem(l);
duke@1 1825 }
duke@1 1826
duke@1 1827 public void visitUnary(JCUnary tree) {
duke@1 1828 OperatorSymbol operator = (OperatorSymbol)tree.operator;
duke@1 1829 if (tree.getTag() == JCTree.NOT) {
duke@1 1830 CondItem od = genCond(tree.arg, false);
duke@1 1831 result = od.negate();
duke@1 1832 } else {
duke@1 1833 Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
duke@1 1834 switch (tree.getTag()) {
duke@1 1835 case JCTree.POS:
duke@1 1836 result = od.load();
duke@1 1837 break;
duke@1 1838 case JCTree.NEG:
duke@1 1839 result = od.load();
duke@1 1840 code.emitop0(operator.opcode);
duke@1 1841 break;
duke@1 1842 case JCTree.COMPL:
duke@1 1843 result = od.load();
duke@1 1844 emitMinusOne(od.typecode);
duke@1 1845 code.emitop0(operator.opcode);
duke@1 1846 break;
duke@1 1847 case JCTree.PREINC: case JCTree.PREDEC:
duke@1 1848 od.duplicate();
duke@1 1849 if (od instanceof LocalItem &&
duke@1 1850 (operator.opcode == iadd || operator.opcode == isub)) {
duke@1 1851 ((LocalItem)od).incr(tree.getTag() == JCTree.PREINC ? 1 : -1);
duke@1 1852 result = od;
duke@1 1853 } else {
duke@1 1854 od.load();
duke@1 1855 code.emitop0(one(od.typecode));
duke@1 1856 code.emitop0(operator.opcode);
duke@1 1857 // Perform narrowing primitive conversion if byte,
duke@1 1858 // char, or short. Fix for 4304655.
duke@1 1859 if (od.typecode != INTcode &&
duke@1 1860 Code.truncate(od.typecode) == INTcode)
duke@1 1861 code.emitop0(int2byte + od.typecode - BYTEcode);
duke@1 1862 result = items.makeAssignItem(od);
duke@1 1863 }
duke@1 1864 break;
duke@1 1865 case JCTree.POSTINC: case JCTree.POSTDEC:
duke@1 1866 od.duplicate();
duke@1 1867 if (od instanceof LocalItem &&
duke@1 1868 (operator.opcode == iadd || operator.opcode == isub)) {
duke@1 1869 Item res = od.load();
duke@1 1870 ((LocalItem)od).incr(tree.getTag() == JCTree.POSTINC ? 1 : -1);
duke@1 1871 result = res;
duke@1 1872 } else {
duke@1 1873 Item res = od.load();
duke@1 1874 od.stash(od.typecode);
duke@1 1875 code.emitop0(one(od.typecode));
duke@1 1876 code.emitop0(operator.opcode);
duke@1 1877 // Perform narrowing primitive conversion if byte,
duke@1 1878 // char, or short. Fix for 4304655.
duke@1 1879 if (od.typecode != INTcode &&
duke@1 1880 Code.truncate(od.typecode) == INTcode)
duke@1 1881 code.emitop0(int2byte + od.typecode - BYTEcode);
duke@1 1882 od.store();
duke@1 1883 result = res;
duke@1 1884 }
duke@1 1885 break;
duke@1 1886 case JCTree.NULLCHK:
duke@1 1887 result = od.load();
duke@1 1888 code.emitop0(dup);
duke@1 1889 genNullCheck(tree.pos());
duke@1 1890 break;
duke@1 1891 default:
duke@1 1892 assert false;
duke@1 1893 }
duke@1 1894 }
duke@1 1895 }
duke@1 1896
duke@1 1897 /** Generate a null check from the object value at stack top. */
duke@1 1898 private void genNullCheck(DiagnosticPosition pos) {
duke@1 1899 callMethod(pos, syms.objectType, names.getClass,
duke@1 1900 List.<Type>nil(), false);
duke@1 1901 code.emitop0(pop);
duke@1 1902 }
duke@1 1903
duke@1 1904 public void visitBinary(JCBinary tree) {
duke@1 1905 OperatorSymbol operator = (OperatorSymbol)tree.operator;
duke@1 1906 if (operator.opcode == string_add) {
duke@1 1907 // Create a string buffer.
duke@1 1908 makeStringBuffer(tree.pos());
duke@1 1909 // Append all strings to buffer.
duke@1 1910 appendStrings(tree);
duke@1 1911 // Convert buffer to string.
duke@1 1912 bufferToString(tree.pos());
duke@1 1913 result = items.makeStackItem(syms.stringType);
duke@1 1914 } else if (tree.getTag() == JCTree.AND) {
duke@1 1915 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
duke@1 1916 if (!lcond.isFalse()) {
duke@1 1917 Chain falseJumps = lcond.jumpFalse();
duke@1 1918 code.resolve(lcond.trueJumps);
duke@1 1919 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
duke@1 1920 result = items.
duke@1 1921 makeCondItem(rcond.opcode,
duke@1 1922 rcond.trueJumps,
duke@1 1923 code.mergeChains(falseJumps,
duke@1 1924 rcond.falseJumps));
duke@1 1925 } else {
duke@1 1926 result = lcond;
duke@1 1927 }
duke@1 1928 } else if (tree.getTag() == JCTree.OR) {
duke@1 1929 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
duke@1 1930 if (!lcond.isTrue()) {
duke@1 1931 Chain trueJumps = lcond.jumpTrue();
duke@1 1932 code.resolve(lcond.falseJumps);
duke@1 1933 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
duke@1 1934 result = items.
duke@1 1935 makeCondItem(rcond.opcode,
duke@1 1936 code.mergeChains(trueJumps, rcond.trueJumps),
duke@1 1937 rcond.falseJumps);
duke@1 1938 } else {
duke@1 1939 result = lcond;
duke@1 1940 }
duke@1 1941 } else {
duke@1 1942 Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
duke@1 1943 od.load();
duke@1 1944 result = completeBinop(tree.lhs, tree.rhs, operator);
duke@1 1945 }
duke@1 1946 }
duke@1 1947 //where
duke@1 1948 /** Make a new string buffer.
duke@1 1949 */
duke@1 1950 void makeStringBuffer(DiagnosticPosition pos) {
duke@1 1951 code.emitop2(new_, makeRef(pos, stringBufferType));
duke@1 1952 code.emitop0(dup);
duke@1 1953 callMethod(
duke@1 1954 pos, stringBufferType, names.init, List.<Type>nil(), false);
duke@1 1955 }
duke@1 1956
duke@1 1957 /** Append value (on tos) to string buffer (on tos - 1).
duke@1 1958 */
duke@1 1959 void appendString(JCTree tree) {
duke@1 1960 Type t = tree.type.baseType();
duke@1 1961 if (t.tag > lastBaseTag && t.tsym != syms.stringType.tsym) {
duke@1 1962 t = syms.objectType;
duke@1 1963 }
duke@1 1964 items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
duke@1 1965 }
duke@1 1966 Symbol getStringBufferAppend(JCTree tree, Type t) {
duke@1 1967 assert t.constValue() == null;
duke@1 1968 Symbol method = stringBufferAppend.get(t);
duke@1 1969 if (method == null) {
duke@1 1970 method = rs.resolveInternalMethod(tree.pos(),
duke@1 1971 attrEnv,
duke@1 1972 stringBufferType,
duke@1 1973 names.append,
duke@1 1974 List.of(t),
duke@1 1975 null);
duke@1 1976 stringBufferAppend.put(t, method);
duke@1 1977 }
duke@1 1978 return method;
duke@1 1979 }
duke@1 1980
duke@1 1981 /** Add all strings in tree to string buffer.
duke@1 1982 */
duke@1 1983 void appendStrings(JCTree tree) {
duke@1 1984 tree = TreeInfo.skipParens(tree);
duke@1 1985 if (tree.getTag() == JCTree.PLUS && tree.type.constValue() == null) {
duke@1 1986 JCBinary op = (JCBinary) tree;
duke@1 1987 if (op.operator.kind == MTH &&
duke@1 1988 ((OperatorSymbol) op.operator).opcode == string_add) {
duke@1 1989 appendStrings(op.lhs);
duke@1 1990 appendStrings(op.rhs);
duke@1 1991 return;
duke@1 1992 }
duke@1 1993 }
duke@1 1994 genExpr(tree, tree.type).load();
duke@1 1995 appendString(tree);
duke@1 1996 }
duke@1 1997
duke@1 1998 /** Convert string buffer on tos to string.
duke@1 1999 */
duke@1 2000 void bufferToString(DiagnosticPosition pos) {
duke@1 2001 callMethod(
duke@1 2002 pos,
duke@1 2003 stringBufferType,
duke@1 2004 names.toString,
duke@1 2005 List.<Type>nil(),
duke@1 2006 false);
duke@1 2007 }
duke@1 2008
duke@1 2009 /** Complete generating code for operation, with left operand
duke@1 2010 * already on stack.
duke@1 2011 * @param lhs The tree representing the left operand.
duke@1 2012 * @param rhs The tree representing the right operand.
duke@1 2013 * @param operator The operator symbol.
duke@1 2014 */
duke@1 2015 Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
duke@1 2016 MethodType optype = (MethodType)operator.type;
duke@1 2017 int opcode = operator.opcode;
duke@1 2018 if (opcode >= if_icmpeq && opcode <= if_icmple &&
duke@1 2019 rhs.type.constValue() instanceof Number &&
duke@1 2020 ((Number) rhs.type.constValue()).intValue() == 0) {
duke@1 2021 opcode = opcode + (ifeq - if_icmpeq);
duke@1 2022 } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
duke@1 2023 TreeInfo.isNull(rhs)) {
duke@1 2024 opcode = opcode + (if_acmp_null - if_acmpeq);
duke@1 2025 } else {
duke@1 2026 // The expected type of the right operand is
duke@1 2027 // the second parameter type of the operator, except for
duke@1 2028 // shifts with long shiftcount, where we convert the opcode
duke@1 2029 // to a short shift and the expected type to int.
duke@1 2030 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
duke@1 2031 if (opcode >= ishll && opcode <= lushrl) {
duke@1 2032 opcode = opcode + (ishl - ishll);
duke@1 2033 rtype = syms.intType;
duke@1 2034 }
duke@1 2035 // Generate code for right operand and load.
duke@1 2036 genExpr(rhs, rtype).load();
duke@1 2037 // If there are two consecutive opcode instructions,
duke@1 2038 // emit the first now.
duke@1 2039 if (opcode >= (1 << preShift)) {
duke@1 2040 code.emitop0(opcode >> preShift);
duke@1 2041 opcode = opcode & 0xFF;
duke@1 2042 }
duke@1 2043 }
duke@1 2044 if (opcode >= ifeq && opcode <= if_acmpne ||
duke@1 2045 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
duke@1 2046 return items.makeCondItem(opcode);
duke@1 2047 } else {
duke@1 2048 code.emitop0(opcode);
duke@1 2049 return items.makeStackItem(optype.restype);
duke@1 2050 }
duke@1 2051 }
duke@1 2052
duke@1 2053 public void visitTypeCast(JCTypeCast tree) {
duke@1 2054 result = genExpr(tree.expr, tree.clazz.type).load();
duke@1 2055 // Additional code is only needed if we cast to a reference type
duke@1 2056 // which is not statically a supertype of the expression's type.
duke@1 2057 // For basic types, the coerce(...) in genExpr(...) will do
duke@1 2058 // the conversion.
duke@1 2059 if (tree.clazz.type.tag > lastBaseTag &&
duke@1 2060 types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
duke@1 2061 code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
duke@1 2062 }
duke@1 2063 }
duke@1 2064
duke@1 2065 public void visitWildcard(JCWildcard tree) {
duke@1 2066 throw new AssertionError(this.getClass().getName());
duke@1 2067 }
duke@1 2068
duke@1 2069 public void visitTypeTest(JCInstanceOf tree) {
duke@1 2070 genExpr(tree.expr, tree.expr.type).load();
duke@1 2071 code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
duke@1 2072 result = items.makeStackItem(syms.booleanType);
duke@1 2073 }
duke@1 2074
duke@1 2075 public void visitIndexed(JCArrayAccess tree) {
duke@1 2076 genExpr(tree.indexed, tree.indexed.type).load();
duke@1 2077 genExpr(tree.index, syms.intType).load();
duke@1 2078 result = items.makeIndexedItem(tree.type);
duke@1 2079 }
duke@1 2080
duke@1 2081 public void visitIdent(JCIdent tree) {
duke@1 2082 Symbol sym = tree.sym;
duke@1 2083 if (tree.name == names._this || tree.name == names._super) {
duke@1 2084 Item res = tree.name == names._this
duke@1 2085 ? items.makeThisItem()
duke@1 2086 : items.makeSuperItem();
duke@1 2087 if (sym.kind == MTH) {
duke@1 2088 // Generate code to address the constructor.
duke@1 2089 res.load();
duke@1 2090 res = items.makeMemberItem(sym, true);
duke@1 2091 }
duke@1 2092 result = res;
duke@1 2093 } else if (sym.kind == VAR && sym.owner.kind == MTH) {
duke@1 2094 result = items.makeLocalItem((VarSymbol)sym);
duke@1 2095 } else if ((sym.flags() & STATIC) != 0) {
duke@1 2096 if (!isAccessSuper(env.enclMethod))
duke@1 2097 sym = binaryQualifier(sym, env.enclClass.type);
duke@1 2098 result = items.makeStaticItem(sym);
duke@1 2099 } else {
duke@1 2100 items.makeThisItem().load();
duke@1 2101 sym = binaryQualifier(sym, env.enclClass.type);
duke@1 2102 result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
duke@1 2103 }
duke@1 2104 }
duke@1 2105
duke@1 2106 public void visitSelect(JCFieldAccess tree) {
duke@1 2107 Symbol sym = tree.sym;
duke@1 2108
duke@1 2109 if (tree.name == names._class) {
duke@1 2110 assert target.hasClassLiterals();
duke@1 2111 code.emitop2(ldc2, makeRef(tree.pos(), tree.selected.type));
duke@1 2112 result = items.makeStackItem(pt);
duke@1 2113 return;
duke@1 2114 }
duke@1 2115
duke@1 2116 Symbol ssym = TreeInfo.symbol(tree.selected);
duke@1 2117
duke@1 2118 // Are we selecting via super?
duke@1 2119 boolean selectSuper =
duke@1 2120 ssym != null && (ssym.kind == TYP || ssym.name == names._super);
duke@1 2121
duke@1 2122 // Are we accessing a member of the superclass in an access method
duke@1 2123 // resulting from a qualified super?
duke@1 2124 boolean accessSuper = isAccessSuper(env.enclMethod);
duke@1 2125
duke@1 2126 Item base = (selectSuper)
duke@1 2127 ? items.makeSuperItem()
duke@1 2128 : genExpr(tree.selected, tree.selected.type);
duke@1 2129
duke@1 2130 if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
duke@1 2131 // We are seeing a variable that is constant but its selecting
duke@1 2132 // expression is not.
duke@1 2133 if ((sym.flags() & STATIC) != 0) {
duke@1 2134 if (!selectSuper && (ssym == null || ssym.kind != TYP))
duke@1 2135 base = base.load();
duke@1 2136 base.drop();
duke@1 2137 } else {
duke@1 2138 base.load();
duke@1 2139 genNullCheck(tree.selected.pos());
duke@1 2140 }
duke@1 2141 result = items.
duke@1 2142 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
duke@1 2143 } else {
duke@1 2144 if (!accessSuper)
duke@1 2145 sym = binaryQualifier(sym, tree.selected.type);
duke@1 2146 if ((sym.flags() & STATIC) != 0) {
duke@1 2147 if (!selectSuper && (ssym == null || ssym.kind != TYP))
duke@1 2148 base = base.load();
duke@1 2149 base.drop();
duke@1 2150 result = items.makeStaticItem(sym);
duke@1 2151 } else {
duke@1 2152 base.load();
duke@1 2153 if (sym == syms.lengthVar) {
duke@1 2154 code.emitop0(arraylength);
duke@1 2155 result = items.makeStackItem(syms.intType);
duke@1 2156 } else {
duke@1 2157 result = items.
duke@1 2158 makeMemberItem(sym,
duke@1 2159 (sym.flags() & PRIVATE) != 0 ||
duke@1 2160 selectSuper || accessSuper);
duke@1 2161 }
duke@1 2162 }
duke@1 2163 }
duke@1 2164 }
duke@1 2165
duke@1 2166 public void visitLiteral(JCLiteral tree) {
duke@1 2167 if (tree.type.tag == TypeTags.BOT) {
duke@1 2168 code.emitop0(aconst_null);
duke@1 2169 if (types.dimensions(pt) > 1) {
duke@1 2170 code.emitop2(checkcast, makeRef(tree.pos(), pt));
duke@1 2171 result = items.makeStackItem(pt);
duke@1 2172 } else {
duke@1 2173 result = items.makeStackItem(tree.type);
duke@1 2174 }
duke@1 2175 }
duke@1 2176 else
duke@1 2177 result = items.makeImmediateItem(tree.type, tree.value);
duke@1 2178 }
duke@1 2179
duke@1 2180 public void visitLetExpr(LetExpr tree) {
duke@1 2181 int limit = code.nextreg;
duke@1 2182 genStats(tree.defs, env);
duke@1 2183 result = genExpr(tree.expr, tree.expr.type).load();
duke@1 2184 code.endScopes(limit);
duke@1 2185 }
duke@1 2186
duke@1 2187 /* ************************************************************************
duke@1 2188 * main method
duke@1 2189 *************************************************************************/
duke@1 2190
duke@1 2191 /** Generate code for a class definition.
duke@1 2192 * @param env The attribution environment that belongs to the
duke@1 2193 * outermost class containing this class definition.
duke@1 2194 * We need this for resolving some additional symbols.
duke@1 2195 * @param cdef The tree representing the class definition.
duke@1 2196 * @return True if code is generated with no errors.
duke@1 2197 */
duke@1 2198 public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
duke@1 2199 try {
duke@1 2200 attrEnv = env;
duke@1 2201 ClassSymbol c = cdef.sym;
duke@1 2202 this.toplevel = env.toplevel;
duke@1 2203 this.endPositions = toplevel.endPositions;
duke@1 2204 // If this is a class definition requiring Miranda methods,
duke@1 2205 // add them.
duke@1 2206 if (generateIproxies &&
duke@1 2207 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
duke@1 2208 && !allowGenerics // no Miranda methods available with generics
duke@1 2209 )
duke@1 2210 implementInterfaceMethods(c);
duke@1 2211 cdef.defs = normalizeDefs(cdef.defs, c);
duke@1 2212 c.pool = pool;
duke@1 2213 pool.reset();
duke@1 2214 Env<GenContext> localEnv =
duke@1 2215 new Env<GenContext>(cdef, new GenContext());
duke@1 2216 localEnv.toplevel = env.toplevel;
duke@1 2217 localEnv.enclClass = cdef;
duke@1 2218 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
duke@1 2219 genDef(l.head, localEnv);
duke@1 2220 }
duke@1 2221 if (pool.numEntries() > Pool.MAX_ENTRIES) {
duke@1 2222 log.error(cdef.pos(), "limit.pool");
duke@1 2223 nerrs++;
duke@1 2224 }
duke@1 2225 if (nerrs != 0) {
duke@1 2226 // if errors, discard code
duke@1 2227 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
duke@1 2228 if (l.head.getTag() == JCTree.METHODDEF)
duke@1 2229 ((JCMethodDecl) l.head).sym.code = null;
duke@1 2230 }
duke@1 2231 }
duke@1 2232 cdef.defs = List.nil(); // discard trees
duke@1 2233 return nerrs == 0;
duke@1 2234 } finally {
duke@1 2235 // note: this method does NOT support recursion.
duke@1 2236 attrEnv = null;
duke@1 2237 this.env = null;
duke@1 2238 toplevel = null;
duke@1 2239 endPositions = null;
duke@1 2240 nerrs = 0;
duke@1 2241 }
duke@1 2242 }
duke@1 2243
duke@1 2244 /* ************************************************************************
duke@1 2245 * Auxiliary classes
duke@1 2246 *************************************************************************/
duke@1 2247
duke@1 2248 /** An abstract class for finalizer generation.
duke@1 2249 */
duke@1 2250 abstract class GenFinalizer {
duke@1 2251 /** Generate code to clean up when unwinding. */
duke@1 2252 abstract void gen();
duke@1 2253
duke@1 2254 /** Generate code to clean up at last. */
duke@1 2255 abstract void genLast();
duke@1 2256
duke@1 2257 /** Does this finalizer have some nontrivial cleanup to perform? */
duke@1 2258 boolean hasFinalizer() { return true; }
duke@1 2259 }
duke@1 2260
duke@1 2261 /** code generation contexts,
duke@1 2262 * to be used as type parameter for environments.
duke@1 2263 */
duke@1 2264 static class GenContext {
duke@1 2265
duke@1 2266 /** A chain for all unresolved jumps that exit the current environment.
duke@1 2267 */
duke@1 2268 Chain exit = null;
duke@1 2269
duke@1 2270 /** A chain for all unresolved jumps that continue in the
duke@1 2271 * current environment.
duke@1 2272 */
duke@1 2273 Chain cont = null;
duke@1 2274
duke@1 2275 /** A closure that generates the finalizer of the current environment.
duke@1 2276 * Only set for Synchronized and Try contexts.
duke@1 2277 */
duke@1 2278 GenFinalizer finalize = null;
duke@1 2279
duke@1 2280 /** Is this a switch statement? If so, allocate registers
duke@1 2281 * even when the variable declaration is unreachable.
duke@1 2282 */
duke@1 2283 boolean isSwitch = false;
duke@1 2284
duke@1 2285 /** A list buffer containing all gaps in the finalizer range,
duke@1 2286 * where a catch all exception should not apply.
duke@1 2287 */
duke@1 2288 ListBuffer<Integer> gaps = null;
duke@1 2289
duke@1 2290 /** Add given chain to exit chain.
duke@1 2291 */
duke@1 2292 void addExit(Chain c) {
duke@1 2293 exit = Code.mergeChains(c, exit);
duke@1 2294 }
duke@1 2295
duke@1 2296 /** Add given chain to cont chain.
duke@1 2297 */
duke@1 2298 void addCont(Chain c) {
duke@1 2299 cont = Code.mergeChains(c, cont);
duke@1 2300 }
duke@1 2301 }
duke@1 2302 }

mercurial