src/share/classes/com/sun/tools/javac/comp/Flow.java

Thu, 02 Oct 2008 19:58:40 -0700

author
xdono
date
Thu, 02 Oct 2008 19:58:40 -0700
changeset 117
24a47c3062fe
parent 113
eff38cc97183
child 186
09eb1acc9610
permissions
-rw-r--r--

6754988: Update copyright year
Summary: Update for files that have been modified starting July 2008
Reviewed-by: ohair, tbell

duke@1 1 /*
xdono@117 2 * Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 //todo: one might eliminate uninits.andSets when monotonic
duke@1 27
duke@1 28 package com.sun.tools.javac.comp;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
duke@1 31 import com.sun.tools.javac.tree.*;
duke@1 32 import com.sun.tools.javac.util.*;
duke@1 33 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 34
duke@1 35 import com.sun.tools.javac.code.Symbol.*;
duke@1 36 import com.sun.tools.javac.tree.JCTree.*;
duke@1 37
duke@1 38 import static com.sun.tools.javac.code.Flags.*;
duke@1 39 import static com.sun.tools.javac.code.Kinds.*;
duke@1 40 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 41
duke@1 42 /** This pass implements dataflow analysis for Java programs.
duke@1 43 * Liveness analysis checks that every statement is reachable.
duke@1 44 * Exception analysis ensures that every checked exception that is
duke@1 45 * thrown is declared or caught. Definite assignment analysis
duke@1 46 * ensures that each variable is assigned when used. Definite
duke@1 47 * unassignment analysis ensures that no final variable is assigned
duke@1 48 * more than once.
duke@1 49 *
duke@1 50 * <p>The second edition of the JLS has a number of problems in the
duke@1 51 * specification of these flow analysis problems. This implementation
duke@1 52 * attempts to address those issues.
duke@1 53 *
duke@1 54 * <p>First, there is no accommodation for a finally clause that cannot
duke@1 55 * complete normally. For liveness analysis, an intervening finally
duke@1 56 * clause can cause a break, continue, or return not to reach its
duke@1 57 * target. For exception analysis, an intervening finally clause can
duke@1 58 * cause any exception to be "caught". For DA/DU analysis, the finally
duke@1 59 * clause can prevent a transfer of control from propagating DA/DU
duke@1 60 * state to the target. In addition, code in the finally clause can
duke@1 61 * affect the DA/DU status of variables.
duke@1 62 *
duke@1 63 * <p>For try statements, we introduce the idea of a variable being
duke@1 64 * definitely unassigned "everywhere" in a block. A variable V is
duke@1 65 * "unassigned everywhere" in a block iff it is unassigned at the
duke@1 66 * beginning of the block and there is no reachable assignment to V
duke@1 67 * in the block. An assignment V=e is reachable iff V is not DA
duke@1 68 * after e. Then we can say that V is DU at the beginning of the
duke@1 69 * catch block iff V is DU everywhere in the try block. Similarly, V
duke@1 70 * is DU at the beginning of the finally block iff V is DU everywhere
duke@1 71 * in the try block and in every catch block. Specifically, the
duke@1 72 * following bullet is added to 16.2.2
duke@1 73 * <pre>
duke@1 74 * V is <em>unassigned everywhere</em> in a block if it is
duke@1 75 * unassigned before the block and there is no reachable
duke@1 76 * assignment to V within the block.
duke@1 77 * </pre>
duke@1 78 * <p>In 16.2.15, the third bullet (and all of its sub-bullets) for all
duke@1 79 * try blocks is changed to
duke@1 80 * <pre>
duke@1 81 * V is definitely unassigned before a catch block iff V is
duke@1 82 * definitely unassigned everywhere in the try block.
duke@1 83 * </pre>
duke@1 84 * <p>The last bullet (and all of its sub-bullets) for try blocks that
duke@1 85 * have a finally block is changed to
duke@1 86 * <pre>
duke@1 87 * V is definitely unassigned before the finally block iff
duke@1 88 * V is definitely unassigned everywhere in the try block
duke@1 89 * and everywhere in each catch block of the try statement.
duke@1 90 * </pre>
duke@1 91 * <p>In addition,
duke@1 92 * <pre>
duke@1 93 * V is definitely assigned at the end of a constructor iff
duke@1 94 * V is definitely assigned after the block that is the body
duke@1 95 * of the constructor and V is definitely assigned at every
duke@1 96 * return that can return from the constructor.
duke@1 97 * </pre>
duke@1 98 * <p>In addition, each continue statement with the loop as its target
duke@1 99 * is treated as a jump to the end of the loop body, and "intervening"
duke@1 100 * finally clauses are treated as follows: V is DA "due to the
duke@1 101 * continue" iff V is DA before the continue statement or V is DA at
duke@1 102 * the end of any intervening finally block. V is DU "due to the
duke@1 103 * continue" iff any intervening finally cannot complete normally or V
duke@1 104 * is DU at the end of every intervening finally block. This "due to
duke@1 105 * the continue" concept is then used in the spec for the loops.
duke@1 106 *
duke@1 107 * <p>Similarly, break statements must consider intervening finally
duke@1 108 * blocks. For liveness analysis, a break statement for which any
duke@1 109 * intervening finally cannot complete normally is not considered to
duke@1 110 * cause the target statement to be able to complete normally. Then
duke@1 111 * we say V is DA "due to the break" iff V is DA before the break or
duke@1 112 * V is DA at the end of any intervening finally block. V is DU "due
duke@1 113 * to the break" iff any intervening finally cannot complete normally
duke@1 114 * or V is DU at the break and at the end of every intervening
duke@1 115 * finally block. (I suspect this latter condition can be
duke@1 116 * simplified.) This "due to the break" is then used in the spec for
duke@1 117 * all statements that can be "broken".
duke@1 118 *
duke@1 119 * <p>The return statement is treated similarly. V is DA "due to a
duke@1 120 * return statement" iff V is DA before the return statement or V is
duke@1 121 * DA at the end of any intervening finally block. Note that we
duke@1 122 * don't have to worry about the return expression because this
duke@1 123 * concept is only used for construcrors.
duke@1 124 *
duke@1 125 * <p>There is no spec in JLS2 for when a variable is definitely
duke@1 126 * assigned at the end of a constructor, which is needed for final
duke@1 127 * fields (8.3.1.2). We implement the rule that V is DA at the end
duke@1 128 * of the constructor iff it is DA and the end of the body of the
duke@1 129 * constructor and V is DA "due to" every return of the constructor.
duke@1 130 *
duke@1 131 * <p>Intervening finally blocks similarly affect exception analysis. An
duke@1 132 * intervening finally that cannot complete normally allows us to ignore
duke@1 133 * an otherwise uncaught exception.
duke@1 134 *
duke@1 135 * <p>To implement the semantics of intervening finally clauses, all
duke@1 136 * nonlocal transfers (break, continue, return, throw, method call that
duke@1 137 * can throw a checked exception, and a constructor invocation that can
duke@1 138 * thrown a checked exception) are recorded in a queue, and removed
duke@1 139 * from the queue when we complete processing the target of the
duke@1 140 * nonlocal transfer. This allows us to modify the queue in accordance
duke@1 141 * with the above rules when we encounter a finally clause. The only
duke@1 142 * exception to this [no pun intended] is that checked exceptions that
duke@1 143 * are known to be caught or declared to be caught in the enclosing
duke@1 144 * method are not recorded in the queue, but instead are recorded in a
duke@1 145 * global variable "Set<Type> thrown" that records the type of all
duke@1 146 * exceptions that can be thrown.
duke@1 147 *
duke@1 148 * <p>Other minor issues the treatment of members of other classes
duke@1 149 * (always considered DA except that within an anonymous class
duke@1 150 * constructor, where DA status from the enclosing scope is
duke@1 151 * preserved), treatment of the case expression (V is DA before the
duke@1 152 * case expression iff V is DA after the switch expression),
duke@1 153 * treatment of variables declared in a switch block (the implied
duke@1 154 * DA/DU status after the switch expression is DU and not DA for
duke@1 155 * variables defined in a switch block), the treatment of boolean ?:
duke@1 156 * expressions (The JLS rules only handle b and c non-boolean; the
duke@1 157 * new rule is that if b and c are boolean valued, then V is
duke@1 158 * (un)assigned after a?b:c when true/false iff V is (un)assigned
duke@1 159 * after b when true/false and V is (un)assigned after c when
duke@1 160 * true/false).
duke@1 161 *
duke@1 162 * <p>There is the remaining question of what syntactic forms constitute a
duke@1 163 * reference to a variable. It is conventional to allow this.x on the
duke@1 164 * left-hand-side to initialize a final instance field named x, yet
duke@1 165 * this.x isn't considered a "use" when appearing on a right-hand-side
duke@1 166 * in most implementations. Should parentheses affect what is
duke@1 167 * considered a variable reference? The simplest rule would be to
duke@1 168 * allow unqualified forms only, parentheses optional, and phase out
duke@1 169 * support for assigning to a final field via this.x.
duke@1 170 *
duke@1 171 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 172 * you write code that depends on this, you do so at your own risk.
duke@1 173 * This code and its internal interfaces are subject to change or
duke@1 174 * deletion without notice.</b>
duke@1 175 */
duke@1 176 public class Flow extends TreeScanner {
duke@1 177 protected static final Context.Key<Flow> flowKey =
duke@1 178 new Context.Key<Flow>();
duke@1 179
jjg@113 180 private final Names names;
duke@1 181 private final Log log;
duke@1 182 private final Symtab syms;
duke@1 183 private final Types types;
duke@1 184 private final Check chk;
duke@1 185 private TreeMaker make;
duke@1 186 private Lint lint;
duke@1 187
duke@1 188 public static Flow instance(Context context) {
duke@1 189 Flow instance = context.get(flowKey);
duke@1 190 if (instance == null)
duke@1 191 instance = new Flow(context);
duke@1 192 return instance;
duke@1 193 }
duke@1 194
duke@1 195 protected Flow(Context context) {
duke@1 196 context.put(flowKey, this);
duke@1 197
jjg@113 198 names = Names.instance(context);
duke@1 199 log = Log.instance(context);
duke@1 200 syms = Symtab.instance(context);
duke@1 201 types = Types.instance(context);
duke@1 202 chk = Check.instance(context);
duke@1 203 lint = Lint.instance(context);
duke@1 204 }
duke@1 205
duke@1 206 /** A flag that indicates whether the last statement could
duke@1 207 * complete normally.
duke@1 208 */
duke@1 209 private boolean alive;
duke@1 210
duke@1 211 /** The set of definitely assigned variables.
duke@1 212 */
duke@1 213 Bits inits;
duke@1 214
duke@1 215 /** The set of definitely unassigned variables.
duke@1 216 */
duke@1 217 Bits uninits;
duke@1 218
duke@1 219 /** The set of variables that are definitely unassigned everywhere
duke@1 220 * in current try block. This variable is maintained lazily; it is
duke@1 221 * updated only when something gets removed from uninits,
duke@1 222 * typically by being assigned in reachable code. To obtain the
duke@1 223 * correct set of variables which are definitely unassigned
duke@1 224 * anywhere in current try block, intersect uninitsTry and
duke@1 225 * uninits.
duke@1 226 */
duke@1 227 Bits uninitsTry;
duke@1 228
duke@1 229 /** When analyzing a condition, inits and uninits are null.
duke@1 230 * Instead we have:
duke@1 231 */
duke@1 232 Bits initsWhenTrue;
duke@1 233 Bits initsWhenFalse;
duke@1 234 Bits uninitsWhenTrue;
duke@1 235 Bits uninitsWhenFalse;
duke@1 236
duke@1 237 /** A mapping from addresses to variable symbols.
duke@1 238 */
duke@1 239 VarSymbol[] vars;
duke@1 240
duke@1 241 /** The current class being defined.
duke@1 242 */
duke@1 243 JCClassDecl classDef;
duke@1 244
duke@1 245 /** The first variable sequence number in this class definition.
duke@1 246 */
duke@1 247 int firstadr;
duke@1 248
duke@1 249 /** The next available variable sequence number.
duke@1 250 */
duke@1 251 int nextadr;
duke@1 252
duke@1 253 /** The list of possibly thrown declarable exceptions.
duke@1 254 */
duke@1 255 List<Type> thrown;
duke@1 256
duke@1 257 /** The list of exceptions that are either caught or declared to be
duke@1 258 * thrown.
duke@1 259 */
duke@1 260 List<Type> caught;
duke@1 261
duke@1 262 /** Set when processing a loop body the second time for DU analysis. */
duke@1 263 boolean loopPassTwo = false;
duke@1 264
duke@1 265 /*-------------------- Environments ----------------------*/
duke@1 266
duke@1 267 /** A pending exit. These are the statements return, break, and
duke@1 268 * continue. In addition, exception-throwing expressions or
duke@1 269 * statements are put here when not known to be caught. This
duke@1 270 * will typically result in an error unless it is within a
duke@1 271 * try-finally whose finally block cannot complete normally.
duke@1 272 */
duke@1 273 static class PendingExit {
duke@1 274 JCTree tree;
duke@1 275 Bits inits;
duke@1 276 Bits uninits;
duke@1 277 Type thrown;
duke@1 278 PendingExit(JCTree tree, Bits inits, Bits uninits) {
duke@1 279 this.tree = tree;
duke@1 280 this.inits = inits.dup();
duke@1 281 this.uninits = uninits.dup();
duke@1 282 }
duke@1 283 PendingExit(JCTree tree, Type thrown) {
duke@1 284 this.tree = tree;
duke@1 285 this.thrown = thrown;
duke@1 286 }
duke@1 287 }
duke@1 288
duke@1 289 /** The currently pending exits that go from current inner blocks
duke@1 290 * to an enclosing block, in source order.
duke@1 291 */
duke@1 292 ListBuffer<PendingExit> pendingExits;
duke@1 293
duke@1 294 /*-------------------- Exceptions ----------------------*/
duke@1 295
duke@1 296 /** Complain that pending exceptions are not caught.
duke@1 297 */
duke@1 298 void errorUncaught() {
duke@1 299 for (PendingExit exit = pendingExits.next();
duke@1 300 exit != null;
duke@1 301 exit = pendingExits.next()) {
duke@1 302 boolean synthetic = classDef != null &&
duke@1 303 classDef.pos == exit.tree.pos;
duke@1 304 log.error(exit.tree.pos(),
duke@1 305 synthetic
duke@1 306 ? "unreported.exception.default.constructor"
duke@1 307 : "unreported.exception.need.to.catch.or.throw",
duke@1 308 exit.thrown);
duke@1 309 }
duke@1 310 }
duke@1 311
duke@1 312 /** Record that exception is potentially thrown and check that it
duke@1 313 * is caught.
duke@1 314 */
duke@1 315 void markThrown(JCTree tree, Type exc) {
duke@1 316 if (!chk.isUnchecked(tree.pos(), exc)) {
duke@1 317 if (!chk.isHandled(exc, caught))
duke@1 318 pendingExits.append(new PendingExit(tree, exc));
duke@1 319 thrown = chk.incl(exc, thrown);
duke@1 320 }
duke@1 321 }
duke@1 322
duke@1 323 /*-------------- Processing variables ----------------------*/
duke@1 324
duke@1 325 /** Do we need to track init/uninit state of this symbol?
duke@1 326 * I.e. is symbol either a local or a blank final variable?
duke@1 327 */
duke@1 328 boolean trackable(VarSymbol sym) {
duke@1 329 return
duke@1 330 (sym.owner.kind == MTH ||
duke@1 331 ((sym.flags() & (FINAL | HASINIT | PARAMETER)) == FINAL &&
duke@1 332 classDef.sym.isEnclosedBy((ClassSymbol)sym.owner)));
duke@1 333 }
duke@1 334
duke@1 335 /** Initialize new trackable variable by setting its address field
duke@1 336 * to the next available sequence number and entering it under that
duke@1 337 * index into the vars array.
duke@1 338 */
duke@1 339 void newVar(VarSymbol sym) {
duke@1 340 if (nextadr == vars.length) {
duke@1 341 VarSymbol[] newvars = new VarSymbol[nextadr * 2];
duke@1 342 System.arraycopy(vars, 0, newvars, 0, nextadr);
duke@1 343 vars = newvars;
duke@1 344 }
duke@1 345 sym.adr = nextadr;
duke@1 346 vars[nextadr] = sym;
duke@1 347 inits.excl(nextadr);
duke@1 348 uninits.incl(nextadr);
duke@1 349 nextadr++;
duke@1 350 }
duke@1 351
duke@1 352 /** Record an initialization of a trackable variable.
duke@1 353 */
duke@1 354 void letInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 355 if (sym.adr >= firstadr && trackable(sym)) {
duke@1 356 if ((sym.flags() & FINAL) != 0) {
duke@1 357 if ((sym.flags() & PARAMETER) != 0) {
duke@1 358 log.error(pos, "final.parameter.may.not.be.assigned",
duke@1 359 sym);
duke@1 360 } else if (!uninits.isMember(sym.adr)) {
duke@1 361 log.error(pos,
duke@1 362 loopPassTwo
duke@1 363 ? "var.might.be.assigned.in.loop"
duke@1 364 : "var.might.already.be.assigned",
duke@1 365 sym);
duke@1 366 } else if (!inits.isMember(sym.adr)) {
duke@1 367 // reachable assignment
duke@1 368 uninits.excl(sym.adr);
duke@1 369 uninitsTry.excl(sym.adr);
duke@1 370 } else {
duke@1 371 //log.rawWarning(pos, "unreachable assignment");//DEBUG
duke@1 372 uninits.excl(sym.adr);
duke@1 373 }
duke@1 374 }
duke@1 375 inits.incl(sym.adr);
duke@1 376 } else if ((sym.flags() & FINAL) != 0) {
duke@1 377 log.error(pos, "var.might.already.be.assigned", sym);
duke@1 378 }
duke@1 379 }
duke@1 380
duke@1 381 /** If tree is either a simple name or of the form this.name or
duke@1 382 * C.this.name, and tree represents a trackable variable,
duke@1 383 * record an initialization of the variable.
duke@1 384 */
duke@1 385 void letInit(JCTree tree) {
duke@1 386 tree = TreeInfo.skipParens(tree);
duke@1 387 if (tree.getTag() == JCTree.IDENT || tree.getTag() == JCTree.SELECT) {
duke@1 388 Symbol sym = TreeInfo.symbol(tree);
duke@1 389 letInit(tree.pos(), (VarSymbol)sym);
duke@1 390 }
duke@1 391 }
duke@1 392
duke@1 393 /** Check that trackable variable is initialized.
duke@1 394 */
duke@1 395 void checkInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 396 if ((sym.adr >= firstadr || sym.owner.kind != TYP) &&
duke@1 397 trackable(sym) &&
duke@1 398 !inits.isMember(sym.adr)) {
duke@1 399 log.error(pos, "var.might.not.have.been.initialized",
duke@1 400 sym);
duke@1 401 inits.incl(sym.adr);
duke@1 402 }
duke@1 403 }
duke@1 404
duke@1 405 /*-------------------- Handling jumps ----------------------*/
duke@1 406
duke@1 407 /** Record an outward transfer of control. */
duke@1 408 void recordExit(JCTree tree) {
duke@1 409 pendingExits.append(new PendingExit(tree, inits, uninits));
duke@1 410 markDead();
duke@1 411 }
duke@1 412
duke@1 413 /** Resolve all breaks of this statement. */
duke@1 414 boolean resolveBreaks(JCTree tree,
duke@1 415 ListBuffer<PendingExit> oldPendingExits) {
duke@1 416 boolean result = false;
duke@1 417 List<PendingExit> exits = pendingExits.toList();
duke@1 418 pendingExits = oldPendingExits;
duke@1 419 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 420 PendingExit exit = exits.head;
duke@1 421 if (exit.tree.getTag() == JCTree.BREAK &&
duke@1 422 ((JCBreak) exit.tree).target == tree) {
duke@1 423 inits.andSet(exit.inits);
duke@1 424 uninits.andSet(exit.uninits);
duke@1 425 result = true;
duke@1 426 } else {
duke@1 427 pendingExits.append(exit);
duke@1 428 }
duke@1 429 }
duke@1 430 return result;
duke@1 431 }
duke@1 432
duke@1 433 /** Resolve all continues of this statement. */
duke@1 434 boolean resolveContinues(JCTree tree) {
duke@1 435 boolean result = false;
duke@1 436 List<PendingExit> exits = pendingExits.toList();
duke@1 437 pendingExits = new ListBuffer<PendingExit>();
duke@1 438 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 439 PendingExit exit = exits.head;
duke@1 440 if (exit.tree.getTag() == JCTree.CONTINUE &&
duke@1 441 ((JCContinue) exit.tree).target == tree) {
duke@1 442 inits.andSet(exit.inits);
duke@1 443 uninits.andSet(exit.uninits);
duke@1 444 result = true;
duke@1 445 } else {
duke@1 446 pendingExits.append(exit);
duke@1 447 }
duke@1 448 }
duke@1 449 return result;
duke@1 450 }
duke@1 451
duke@1 452 /** Record that statement is unreachable.
duke@1 453 */
duke@1 454 void markDead() {
duke@1 455 inits.inclRange(firstadr, nextadr);
duke@1 456 uninits.inclRange(firstadr, nextadr);
duke@1 457 alive = false;
duke@1 458 }
duke@1 459
duke@1 460 /** Split (duplicate) inits/uninits into WhenTrue/WhenFalse sets
duke@1 461 */
duke@1 462 void split() {
duke@1 463 initsWhenFalse = inits.dup();
duke@1 464 uninitsWhenFalse = uninits.dup();
duke@1 465 initsWhenTrue = inits;
duke@1 466 uninitsWhenTrue = uninits;
duke@1 467 inits = uninits = null;
duke@1 468 }
duke@1 469
duke@1 470 /** Merge (intersect) inits/uninits from WhenTrue/WhenFalse sets.
duke@1 471 */
duke@1 472 void merge() {
duke@1 473 inits = initsWhenFalse.andSet(initsWhenTrue);
duke@1 474 uninits = uninitsWhenFalse.andSet(uninitsWhenTrue);
duke@1 475 }
duke@1 476
duke@1 477 /* ************************************************************************
duke@1 478 * Visitor methods for statements and definitions
duke@1 479 *************************************************************************/
duke@1 480
duke@1 481 /** Analyze a definition.
duke@1 482 */
duke@1 483 void scanDef(JCTree tree) {
duke@1 484 scanStat(tree);
duke@1 485 if (tree != null && tree.getTag() == JCTree.BLOCK && !alive) {
duke@1 486 log.error(tree.pos(),
duke@1 487 "initializer.must.be.able.to.complete.normally");
duke@1 488 }
duke@1 489 }
duke@1 490
duke@1 491 /** Analyze a statement. Check that statement is reachable.
duke@1 492 */
duke@1 493 void scanStat(JCTree tree) {
duke@1 494 if (!alive && tree != null) {
duke@1 495 log.error(tree.pos(), "unreachable.stmt");
duke@1 496 if (tree.getTag() != JCTree.SKIP) alive = true;
duke@1 497 }
duke@1 498 scan(tree);
duke@1 499 }
duke@1 500
duke@1 501 /** Analyze list of statements.
duke@1 502 */
duke@1 503 void scanStats(List<? extends JCStatement> trees) {
duke@1 504 if (trees != null)
duke@1 505 for (List<? extends JCStatement> l = trees; l.nonEmpty(); l = l.tail)
duke@1 506 scanStat(l.head);
duke@1 507 }
duke@1 508
duke@1 509 /** Analyze an expression. Make sure to set (un)inits rather than
duke@1 510 * (un)initsWhenTrue(WhenFalse) on exit.
duke@1 511 */
duke@1 512 void scanExpr(JCTree tree) {
duke@1 513 if (tree != null) {
duke@1 514 scan(tree);
duke@1 515 if (inits == null) merge();
duke@1 516 }
duke@1 517 }
duke@1 518
duke@1 519 /** Analyze a list of expressions.
duke@1 520 */
duke@1 521 void scanExprs(List<? extends JCExpression> trees) {
duke@1 522 if (trees != null)
duke@1 523 for (List<? extends JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 524 scanExpr(l.head);
duke@1 525 }
duke@1 526
duke@1 527 /** Analyze a condition. Make sure to set (un)initsWhenTrue(WhenFalse)
duke@1 528 * rather than (un)inits on exit.
duke@1 529 */
duke@1 530 void scanCond(JCTree tree) {
duke@1 531 if (tree.type.isFalse()) {
duke@1 532 if (inits == null) merge();
duke@1 533 initsWhenTrue = inits.dup();
duke@1 534 initsWhenTrue.inclRange(firstadr, nextadr);
duke@1 535 uninitsWhenTrue = uninits.dup();
duke@1 536 uninitsWhenTrue.inclRange(firstadr, nextadr);
duke@1 537 initsWhenFalse = inits;
duke@1 538 uninitsWhenFalse = uninits;
duke@1 539 } else if (tree.type.isTrue()) {
duke@1 540 if (inits == null) merge();
duke@1 541 initsWhenFalse = inits.dup();
duke@1 542 initsWhenFalse.inclRange(firstadr, nextadr);
duke@1 543 uninitsWhenFalse = uninits.dup();
duke@1 544 uninitsWhenFalse.inclRange(firstadr, nextadr);
duke@1 545 initsWhenTrue = inits;
duke@1 546 uninitsWhenTrue = uninits;
duke@1 547 } else {
duke@1 548 scan(tree);
duke@1 549 if (inits != null) split();
duke@1 550 }
duke@1 551 inits = uninits = null;
duke@1 552 }
duke@1 553
duke@1 554 /* ------------ Visitor methods for various sorts of trees -------------*/
duke@1 555
duke@1 556 public void visitClassDef(JCClassDecl tree) {
duke@1 557 if (tree.sym == null) return;
duke@1 558
duke@1 559 JCClassDecl classDefPrev = classDef;
duke@1 560 List<Type> thrownPrev = thrown;
duke@1 561 List<Type> caughtPrev = caught;
duke@1 562 boolean alivePrev = alive;
duke@1 563 int firstadrPrev = firstadr;
duke@1 564 int nextadrPrev = nextadr;
duke@1 565 ListBuffer<PendingExit> pendingExitsPrev = pendingExits;
duke@1 566 Lint lintPrev = lint;
duke@1 567
duke@1 568 pendingExits = new ListBuffer<PendingExit>();
duke@1 569 if (tree.name != names.empty) {
duke@1 570 caught = List.nil();
duke@1 571 firstadr = nextadr;
duke@1 572 }
duke@1 573 classDef = tree;
duke@1 574 thrown = List.nil();
duke@1 575 lint = lint.augment(tree.sym.attributes_field);
duke@1 576
duke@1 577 try {
duke@1 578 // define all the static fields
duke@1 579 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 580 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 581 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 582 if ((def.mods.flags & STATIC) != 0) {
duke@1 583 VarSymbol sym = def.sym;
duke@1 584 if (trackable(sym))
duke@1 585 newVar(sym);
duke@1 586 }
duke@1 587 }
duke@1 588 }
duke@1 589
duke@1 590 // process all the static initializers
duke@1 591 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 592 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 593 (TreeInfo.flags(l.head) & STATIC) != 0) {
duke@1 594 scanDef(l.head);
duke@1 595 errorUncaught();
duke@1 596 }
duke@1 597 }
duke@1 598
duke@1 599 // add intersection of all thrown clauses of initial constructors
duke@1 600 // to set of caught exceptions, unless class is anonymous.
duke@1 601 if (tree.name != names.empty) {
duke@1 602 boolean firstConstructor = true;
duke@1 603 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 604 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 605 List<Type> mthrown =
duke@1 606 ((JCMethodDecl) l.head).sym.type.getThrownTypes();
duke@1 607 if (firstConstructor) {
duke@1 608 caught = mthrown;
duke@1 609 firstConstructor = false;
duke@1 610 } else {
duke@1 611 caught = chk.intersect(mthrown, caught);
duke@1 612 }
duke@1 613 }
duke@1 614 }
duke@1 615 }
duke@1 616
duke@1 617 // define all the instance fields
duke@1 618 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 619 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 620 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 621 if ((def.mods.flags & STATIC) == 0) {
duke@1 622 VarSymbol sym = def.sym;
duke@1 623 if (trackable(sym))
duke@1 624 newVar(sym);
duke@1 625 }
duke@1 626 }
duke@1 627 }
duke@1 628
duke@1 629 // process all the instance initializers
duke@1 630 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 631 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 632 (TreeInfo.flags(l.head) & STATIC) == 0) {
duke@1 633 scanDef(l.head);
duke@1 634 errorUncaught();
duke@1 635 }
duke@1 636 }
duke@1 637
duke@1 638 // in an anonymous class, add the set of thrown exceptions to
duke@1 639 // the throws clause of the synthetic constructor and propagate
duke@1 640 // outwards.
duke@1 641 if (tree.name == names.empty) {
duke@1 642 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 643 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 644 JCMethodDecl mdef = (JCMethodDecl)l.head;
duke@1 645 mdef.thrown = make.Types(thrown);
duke@1 646 mdef.sym.type.setThrown(thrown);
duke@1 647 }
duke@1 648 }
duke@1 649 thrownPrev = chk.union(thrown, thrownPrev);
duke@1 650 }
duke@1 651
duke@1 652 // process all the methods
duke@1 653 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 654 if (l.head.getTag() == JCTree.METHODDEF) {
duke@1 655 scan(l.head);
duke@1 656 errorUncaught();
duke@1 657 }
duke@1 658 }
duke@1 659
duke@1 660 thrown = thrownPrev;
duke@1 661 } finally {
duke@1 662 pendingExits = pendingExitsPrev;
duke@1 663 alive = alivePrev;
duke@1 664 nextadr = nextadrPrev;
duke@1 665 firstadr = firstadrPrev;
duke@1 666 caught = caughtPrev;
duke@1 667 classDef = classDefPrev;
duke@1 668 lint = lintPrev;
duke@1 669 }
duke@1 670 }
duke@1 671
duke@1 672 public void visitMethodDef(JCMethodDecl tree) {
duke@1 673 if (tree.body == null) return;
duke@1 674
duke@1 675 List<Type> caughtPrev = caught;
duke@1 676 List<Type> mthrown = tree.sym.type.getThrownTypes();
duke@1 677 Bits initsPrev = inits.dup();
duke@1 678 Bits uninitsPrev = uninits.dup();
duke@1 679 int nextadrPrev = nextadr;
duke@1 680 int firstadrPrev = firstadr;
duke@1 681 Lint lintPrev = lint;
duke@1 682
duke@1 683 lint = lint.augment(tree.sym.attributes_field);
duke@1 684
duke@1 685 assert pendingExits.isEmpty();
duke@1 686
duke@1 687 try {
duke@1 688 boolean isInitialConstructor =
duke@1 689 TreeInfo.isInitialConstructor(tree);
duke@1 690
duke@1 691 if (!isInitialConstructor)
duke@1 692 firstadr = nextadr;
duke@1 693 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 694 JCVariableDecl def = l.head;
duke@1 695 scan(def);
duke@1 696 inits.incl(def.sym.adr);
duke@1 697 uninits.excl(def.sym.adr);
duke@1 698 }
duke@1 699 if (isInitialConstructor)
duke@1 700 caught = chk.union(caught, mthrown);
duke@1 701 else if ((tree.sym.flags() & (BLOCK | STATIC)) != BLOCK)
duke@1 702 caught = mthrown;
duke@1 703 // else we are in an instance initializer block;
duke@1 704 // leave caught unchanged.
duke@1 705
duke@1 706 alive = true;
duke@1 707 scanStat(tree.body);
duke@1 708
duke@1 709 if (alive && tree.sym.type.getReturnType().tag != VOID)
duke@1 710 log.error(TreeInfo.diagEndPos(tree.body), "missing.ret.stmt");
duke@1 711
duke@1 712 if (isInitialConstructor) {
duke@1 713 for (int i = firstadr; i < nextadr; i++)
duke@1 714 if (vars[i].owner == classDef.sym)
duke@1 715 checkInit(TreeInfo.diagEndPos(tree.body), vars[i]);
duke@1 716 }
duke@1 717 List<PendingExit> exits = pendingExits.toList();
duke@1 718 pendingExits = new ListBuffer<PendingExit>();
duke@1 719 while (exits.nonEmpty()) {
duke@1 720 PendingExit exit = exits.head;
duke@1 721 exits = exits.tail;
duke@1 722 if (exit.thrown == null) {
duke@1 723 assert exit.tree.getTag() == JCTree.RETURN;
duke@1 724 if (isInitialConstructor) {
duke@1 725 inits = exit.inits;
duke@1 726 for (int i = firstadr; i < nextadr; i++)
duke@1 727 checkInit(exit.tree.pos(), vars[i]);
duke@1 728 }
duke@1 729 } else {
duke@1 730 // uncaught throws will be reported later
duke@1 731 pendingExits.append(exit);
duke@1 732 }
duke@1 733 }
duke@1 734 } finally {
duke@1 735 inits = initsPrev;
duke@1 736 uninits = uninitsPrev;
duke@1 737 nextadr = nextadrPrev;
duke@1 738 firstadr = firstadrPrev;
duke@1 739 caught = caughtPrev;
duke@1 740 lint = lintPrev;
duke@1 741 }
duke@1 742 }
duke@1 743
duke@1 744 public void visitVarDef(JCVariableDecl tree) {
duke@1 745 boolean track = trackable(tree.sym);
duke@1 746 if (track && tree.sym.owner.kind == MTH) newVar(tree.sym);
duke@1 747 if (tree.init != null) {
duke@1 748 Lint lintPrev = lint;
duke@1 749 lint = lint.augment(tree.sym.attributes_field);
duke@1 750 try{
duke@1 751 scanExpr(tree.init);
duke@1 752 if (track) letInit(tree.pos(), tree.sym);
duke@1 753 } finally {
duke@1 754 lint = lintPrev;
duke@1 755 }
duke@1 756 }
duke@1 757 }
duke@1 758
duke@1 759 public void visitBlock(JCBlock tree) {
duke@1 760 int nextadrPrev = nextadr;
duke@1 761 scanStats(tree.stats);
duke@1 762 nextadr = nextadrPrev;
duke@1 763 }
duke@1 764
duke@1 765 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 766 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 767 boolean prevLoopPassTwo = loopPassTwo;
duke@1 768 pendingExits = new ListBuffer<PendingExit>();
duke@1 769 do {
duke@1 770 Bits uninitsEntry = uninits.dup();
duke@1 771 scanStat(tree.body);
duke@1 772 alive |= resolveContinues(tree);
duke@1 773 scanCond(tree.cond);
duke@1 774 if (log.nerrors != 0 ||
duke@1 775 loopPassTwo ||
duke@1 776 uninitsEntry.diffSet(uninitsWhenTrue).nextBit(firstadr)==-1)
duke@1 777 break;
duke@1 778 inits = initsWhenTrue;
duke@1 779 uninits = uninitsEntry.andSet(uninitsWhenTrue);
duke@1 780 loopPassTwo = true;
duke@1 781 alive = true;
duke@1 782 } while (true);
duke@1 783 loopPassTwo = prevLoopPassTwo;
duke@1 784 inits = initsWhenFalse;
duke@1 785 uninits = uninitsWhenFalse;
duke@1 786 alive = alive && !tree.cond.type.isTrue();
duke@1 787 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 788 }
duke@1 789
duke@1 790 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 791 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 792 boolean prevLoopPassTwo = loopPassTwo;
duke@1 793 Bits initsCond;
duke@1 794 Bits uninitsCond;
duke@1 795 pendingExits = new ListBuffer<PendingExit>();
duke@1 796 do {
duke@1 797 Bits uninitsEntry = uninits.dup();
duke@1 798 scanCond(tree.cond);
duke@1 799 initsCond = initsWhenFalse;
duke@1 800 uninitsCond = uninitsWhenFalse;
duke@1 801 inits = initsWhenTrue;
duke@1 802 uninits = uninitsWhenTrue;
duke@1 803 alive = !tree.cond.type.isFalse();
duke@1 804 scanStat(tree.body);
duke@1 805 alive |= resolveContinues(tree);
duke@1 806 if (log.nerrors != 0 ||
duke@1 807 loopPassTwo ||
duke@1 808 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 809 break;
duke@1 810 uninits = uninitsEntry.andSet(uninits);
duke@1 811 loopPassTwo = true;
duke@1 812 alive = true;
duke@1 813 } while (true);
duke@1 814 loopPassTwo = prevLoopPassTwo;
duke@1 815 inits = initsCond;
duke@1 816 uninits = uninitsCond;
duke@1 817 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 818 !tree.cond.type.isTrue();
duke@1 819 }
duke@1 820
duke@1 821 public void visitForLoop(JCForLoop tree) {
duke@1 822 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 823 boolean prevLoopPassTwo = loopPassTwo;
duke@1 824 int nextadrPrev = nextadr;
duke@1 825 scanStats(tree.init);
duke@1 826 Bits initsCond;
duke@1 827 Bits uninitsCond;
duke@1 828 pendingExits = new ListBuffer<PendingExit>();
duke@1 829 do {
duke@1 830 Bits uninitsEntry = uninits.dup();
duke@1 831 if (tree.cond != null) {
duke@1 832 scanCond(tree.cond);
duke@1 833 initsCond = initsWhenFalse;
duke@1 834 uninitsCond = uninitsWhenFalse;
duke@1 835 inits = initsWhenTrue;
duke@1 836 uninits = uninitsWhenTrue;
duke@1 837 alive = !tree.cond.type.isFalse();
duke@1 838 } else {
duke@1 839 initsCond = inits.dup();
duke@1 840 initsCond.inclRange(firstadr, nextadr);
duke@1 841 uninitsCond = uninits.dup();
duke@1 842 uninitsCond.inclRange(firstadr, nextadr);
duke@1 843 alive = true;
duke@1 844 }
duke@1 845 scanStat(tree.body);
duke@1 846 alive |= resolveContinues(tree);
duke@1 847 scan(tree.step);
duke@1 848 if (log.nerrors != 0 ||
duke@1 849 loopPassTwo ||
duke@1 850 uninitsEntry.dup().diffSet(uninits).nextBit(firstadr) == -1)
duke@1 851 break;
duke@1 852 uninits = uninitsEntry.andSet(uninits);
duke@1 853 loopPassTwo = true;
duke@1 854 alive = true;
duke@1 855 } while (true);
duke@1 856 loopPassTwo = prevLoopPassTwo;
duke@1 857 inits = initsCond;
duke@1 858 uninits = uninitsCond;
duke@1 859 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 860 tree.cond != null && !tree.cond.type.isTrue();
duke@1 861 nextadr = nextadrPrev;
duke@1 862 }
duke@1 863
duke@1 864 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 865 visitVarDef(tree.var);
duke@1 866
duke@1 867 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 868 boolean prevLoopPassTwo = loopPassTwo;
duke@1 869 int nextadrPrev = nextadr;
duke@1 870 scan(tree.expr);
duke@1 871 Bits initsStart = inits.dup();
duke@1 872 Bits uninitsStart = uninits.dup();
duke@1 873
duke@1 874 letInit(tree.pos(), tree.var.sym);
duke@1 875 pendingExits = new ListBuffer<PendingExit>();
duke@1 876 do {
duke@1 877 Bits uninitsEntry = uninits.dup();
duke@1 878 scanStat(tree.body);
duke@1 879 alive |= resolveContinues(tree);
duke@1 880 if (log.nerrors != 0 ||
duke@1 881 loopPassTwo ||
duke@1 882 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 883 break;
duke@1 884 uninits = uninitsEntry.andSet(uninits);
duke@1 885 loopPassTwo = true;
duke@1 886 alive = true;
duke@1 887 } while (true);
duke@1 888 loopPassTwo = prevLoopPassTwo;
duke@1 889 inits = initsStart;
duke@1 890 uninits = uninitsStart.andSet(uninits);
duke@1 891 resolveBreaks(tree, prevPendingExits);
duke@1 892 alive = true;
duke@1 893 nextadr = nextadrPrev;
duke@1 894 }
duke@1 895
duke@1 896 public void visitLabelled(JCLabeledStatement tree) {
duke@1 897 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 898 pendingExits = new ListBuffer<PendingExit>();
duke@1 899 scanStat(tree.body);
duke@1 900 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 901 }
duke@1 902
duke@1 903 public void visitSwitch(JCSwitch tree) {
duke@1 904 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 905 pendingExits = new ListBuffer<PendingExit>();
duke@1 906 int nextadrPrev = nextadr;
duke@1 907 scanExpr(tree.selector);
duke@1 908 Bits initsSwitch = inits;
duke@1 909 Bits uninitsSwitch = uninits.dup();
duke@1 910 boolean hasDefault = false;
duke@1 911 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 912 alive = true;
duke@1 913 inits = initsSwitch.dup();
duke@1 914 uninits = uninits.andSet(uninitsSwitch);
duke@1 915 JCCase c = l.head;
duke@1 916 if (c.pat == null)
duke@1 917 hasDefault = true;
duke@1 918 else
duke@1 919 scanExpr(c.pat);
duke@1 920 scanStats(c.stats);
duke@1 921 addVars(c.stats, initsSwitch, uninitsSwitch);
duke@1 922 // Warn about fall-through if lint switch fallthrough enabled.
duke@1 923 if (!loopPassTwo &&
duke@1 924 alive &&
duke@1 925 lint.isEnabled(Lint.LintCategory.FALLTHROUGH) &&
duke@1 926 c.stats.nonEmpty() && l.tail.nonEmpty())
duke@1 927 log.warning(l.tail.head.pos(),
duke@1 928 "possible.fall-through.into.case");
duke@1 929 }
duke@1 930 if (!hasDefault) {
duke@1 931 inits.andSet(initsSwitch);
duke@1 932 alive = true;
duke@1 933 }
duke@1 934 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 935 nextadr = nextadrPrev;
duke@1 936 }
duke@1 937 // where
duke@1 938 /** Add any variables defined in stats to inits and uninits. */
duke@1 939 private static void addVars(List<JCStatement> stats, Bits inits,
duke@1 940 Bits uninits) {
duke@1 941 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 942 JCTree stat = stats.head;
duke@1 943 if (stat.getTag() == JCTree.VARDEF) {
duke@1 944 int adr = ((JCVariableDecl) stat).sym.adr;
duke@1 945 inits.excl(adr);
duke@1 946 uninits.incl(adr);
duke@1 947 }
duke@1 948 }
duke@1 949 }
duke@1 950
duke@1 951 public void visitTry(JCTry tree) {
duke@1 952 List<Type> caughtPrev = caught;
duke@1 953 List<Type> thrownPrev = thrown;
duke@1 954 thrown = List.nil();
duke@1 955 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail)
duke@1 956 caught = chk.incl(l.head.param.type, caught);
duke@1 957 Bits uninitsTryPrev = uninitsTry;
duke@1 958 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 959 pendingExits = new ListBuffer<PendingExit>();
duke@1 960 Bits initsTry = inits.dup();
duke@1 961 uninitsTry = uninits.dup();
duke@1 962 scanStat(tree.body);
duke@1 963 List<Type> thrownInTry = thrown;
duke@1 964 thrown = thrownPrev;
duke@1 965 caught = caughtPrev;
duke@1 966 boolean aliveEnd = alive;
duke@1 967 uninitsTry.andSet(uninits);
duke@1 968 Bits initsEnd = inits;
duke@1 969 Bits uninitsEnd = uninits;
duke@1 970 int nextadrCatch = nextadr;
duke@1 971
duke@1 972 List<Type> caughtInTry = List.nil();
duke@1 973 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 974 alive = true;
duke@1 975 JCVariableDecl param = l.head.param;
duke@1 976 Type exc = param.type;
duke@1 977 if (chk.subset(exc, caughtInTry)) {
duke@1 978 log.error(l.head.pos(),
duke@1 979 "except.already.caught", exc);
duke@1 980 } else if (!chk.isUnchecked(l.head.pos(), exc) &&
duke@1 981 exc.tsym != syms.throwableType.tsym &&
duke@1 982 exc.tsym != syms.exceptionType.tsym &&
duke@1 983 !chk.intersects(exc, thrownInTry)) {
duke@1 984 log.error(l.head.pos(),
duke@1 985 "except.never.thrown.in.try", exc);
duke@1 986 }
duke@1 987 caughtInTry = chk.incl(exc, caughtInTry);
duke@1 988 inits = initsTry.dup();
duke@1 989 uninits = uninitsTry.dup();
duke@1 990 scan(param);
duke@1 991 inits.incl(param.sym.adr);
duke@1 992 uninits.excl(param.sym.adr);
duke@1 993 scanStat(l.head.body);
duke@1 994 initsEnd.andSet(inits);
duke@1 995 uninitsEnd.andSet(uninits);
duke@1 996 nextadr = nextadrCatch;
duke@1 997 aliveEnd |= alive;
duke@1 998 }
duke@1 999 if (tree.finalizer != null) {
duke@1 1000 List<Type> savedThrown = thrown;
duke@1 1001 thrown = List.nil();
duke@1 1002 inits = initsTry.dup();
duke@1 1003 uninits = uninitsTry.dup();
duke@1 1004 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1005 pendingExits = prevPendingExits;
duke@1 1006 alive = true;
duke@1 1007 scanStat(tree.finalizer);
duke@1 1008 if (!alive) {
duke@1 1009 // discard exits and exceptions from try and finally
duke@1 1010 thrown = chk.union(thrown, thrownPrev);
duke@1 1011 if (!loopPassTwo &&
duke@1 1012 lint.isEnabled(Lint.LintCategory.FINALLY)) {
duke@1 1013 log.warning(TreeInfo.diagEndPos(tree.finalizer),
duke@1 1014 "finally.cannot.complete");
duke@1 1015 }
duke@1 1016 } else {
duke@1 1017 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1018 thrown = chk.union(thrown, savedThrown);
duke@1 1019 uninits.andSet(uninitsEnd);
duke@1 1020 // FIX: this doesn't preserve source order of exits in catch
duke@1 1021 // versus finally!
duke@1 1022 while (exits.nonEmpty()) {
duke@1 1023 PendingExit exit = exits.next();
duke@1 1024 if (exit.inits != null) {
duke@1 1025 exit.inits.orSet(inits);
duke@1 1026 exit.uninits.andSet(uninits);
duke@1 1027 }
duke@1 1028 pendingExits.append(exit);
duke@1 1029 }
duke@1 1030 inits.orSet(initsEnd);
duke@1 1031 alive = aliveEnd;
duke@1 1032 }
duke@1 1033 } else {
duke@1 1034 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1035 inits = initsEnd;
duke@1 1036 uninits = uninitsEnd;
duke@1 1037 alive = aliveEnd;
duke@1 1038 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1039 pendingExits = prevPendingExits;
duke@1 1040 while (exits.nonEmpty()) pendingExits.append(exits.next());
duke@1 1041 }
duke@1 1042 uninitsTry.andSet(uninitsTryPrev).andSet(uninits);
duke@1 1043 }
duke@1 1044
duke@1 1045 public void visitConditional(JCConditional tree) {
duke@1 1046 scanCond(tree.cond);
duke@1 1047 Bits initsBeforeElse = initsWhenFalse;
duke@1 1048 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1049 inits = initsWhenTrue;
duke@1 1050 uninits = uninitsWhenTrue;
duke@1 1051 if (tree.truepart.type.tag == BOOLEAN &&
duke@1 1052 tree.falsepart.type.tag == BOOLEAN) {
duke@1 1053 // if b and c are boolean valued, then
duke@1 1054 // v is (un)assigned after a?b:c when true iff
duke@1 1055 // v is (un)assigned after b when true and
duke@1 1056 // v is (un)assigned after c when true
duke@1 1057 scanCond(tree.truepart);
duke@1 1058 Bits initsAfterThenWhenTrue = initsWhenTrue.dup();
duke@1 1059 Bits initsAfterThenWhenFalse = initsWhenFalse.dup();
duke@1 1060 Bits uninitsAfterThenWhenTrue = uninitsWhenTrue.dup();
duke@1 1061 Bits uninitsAfterThenWhenFalse = uninitsWhenFalse.dup();
duke@1 1062 inits = initsBeforeElse;
duke@1 1063 uninits = uninitsBeforeElse;
duke@1 1064 scanCond(tree.falsepart);
duke@1 1065 initsWhenTrue.andSet(initsAfterThenWhenTrue);
duke@1 1066 initsWhenFalse.andSet(initsAfterThenWhenFalse);
duke@1 1067 uninitsWhenTrue.andSet(uninitsAfterThenWhenTrue);
duke@1 1068 uninitsWhenFalse.andSet(uninitsAfterThenWhenFalse);
duke@1 1069 } else {
duke@1 1070 scanExpr(tree.truepart);
duke@1 1071 Bits initsAfterThen = inits.dup();
duke@1 1072 Bits uninitsAfterThen = uninits.dup();
duke@1 1073 inits = initsBeforeElse;
duke@1 1074 uninits = uninitsBeforeElse;
duke@1 1075 scanExpr(tree.falsepart);
duke@1 1076 inits.andSet(initsAfterThen);
duke@1 1077 uninits.andSet(uninitsAfterThen);
duke@1 1078 }
duke@1 1079 }
duke@1 1080
duke@1 1081 public void visitIf(JCIf tree) {
duke@1 1082 scanCond(tree.cond);
duke@1 1083 Bits initsBeforeElse = initsWhenFalse;
duke@1 1084 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1085 inits = initsWhenTrue;
duke@1 1086 uninits = uninitsWhenTrue;
duke@1 1087 scanStat(tree.thenpart);
duke@1 1088 if (tree.elsepart != null) {
duke@1 1089 boolean aliveAfterThen = alive;
duke@1 1090 alive = true;
duke@1 1091 Bits initsAfterThen = inits.dup();
duke@1 1092 Bits uninitsAfterThen = uninits.dup();
duke@1 1093 inits = initsBeforeElse;
duke@1 1094 uninits = uninitsBeforeElse;
duke@1 1095 scanStat(tree.elsepart);
duke@1 1096 inits.andSet(initsAfterThen);
duke@1 1097 uninits.andSet(uninitsAfterThen);
duke@1 1098 alive = alive | aliveAfterThen;
duke@1 1099 } else {
duke@1 1100 inits.andSet(initsBeforeElse);
duke@1 1101 uninits.andSet(uninitsBeforeElse);
duke@1 1102 alive = true;
duke@1 1103 }
duke@1 1104 }
duke@1 1105
duke@1 1106
duke@1 1107
duke@1 1108 public void visitBreak(JCBreak tree) {
duke@1 1109 recordExit(tree);
duke@1 1110 }
duke@1 1111
duke@1 1112 public void visitContinue(JCContinue tree) {
duke@1 1113 recordExit(tree);
duke@1 1114 }
duke@1 1115
duke@1 1116 public void visitReturn(JCReturn tree) {
duke@1 1117 scanExpr(tree.expr);
duke@1 1118 // if not initial constructor, should markDead instead of recordExit
duke@1 1119 recordExit(tree);
duke@1 1120 }
duke@1 1121
duke@1 1122 public void visitThrow(JCThrow tree) {
duke@1 1123 scanExpr(tree.expr);
duke@1 1124 markThrown(tree, tree.expr.type);
duke@1 1125 markDead();
duke@1 1126 }
duke@1 1127
duke@1 1128 public void visitApply(JCMethodInvocation tree) {
duke@1 1129 scanExpr(tree.meth);
duke@1 1130 scanExprs(tree.args);
duke@1 1131 for (List<Type> l = tree.meth.type.getThrownTypes(); l.nonEmpty(); l = l.tail)
duke@1 1132 markThrown(tree, l.head);
duke@1 1133 }
duke@1 1134
duke@1 1135 public void visitNewClass(JCNewClass tree) {
duke@1 1136 scanExpr(tree.encl);
duke@1 1137 scanExprs(tree.args);
duke@1 1138 // scan(tree.def);
duke@1 1139 for (List<Type> l = tree.constructor.type.getThrownTypes();
duke@1 1140 l.nonEmpty();
duke@1 1141 l = l.tail)
duke@1 1142 markThrown(tree, l.head);
duke@1 1143 scan(tree.def);
duke@1 1144 }
duke@1 1145
duke@1 1146 public void visitNewArray(JCNewArray tree) {
duke@1 1147 scanExprs(tree.dims);
duke@1 1148 scanExprs(tree.elems);
duke@1 1149 }
duke@1 1150
duke@1 1151 public void visitAssert(JCAssert tree) {
duke@1 1152 Bits initsExit = inits.dup();
duke@1 1153 Bits uninitsExit = uninits.dup();
duke@1 1154 scanCond(tree.cond);
duke@1 1155 uninitsExit.andSet(uninitsWhenTrue);
duke@1 1156 if (tree.detail != null) {
duke@1 1157 inits = initsWhenFalse;
duke@1 1158 uninits = uninitsWhenFalse;
duke@1 1159 scanExpr(tree.detail);
duke@1 1160 }
duke@1 1161 inits = initsExit;
duke@1 1162 uninits = uninitsExit;
duke@1 1163 }
duke@1 1164
duke@1 1165 public void visitAssign(JCAssign tree) {
duke@1 1166 JCTree lhs = TreeInfo.skipParens(tree.lhs);
duke@1 1167 if (!(lhs instanceof JCIdent)) scanExpr(lhs);
duke@1 1168 scanExpr(tree.rhs);
duke@1 1169 letInit(lhs);
duke@1 1170 }
duke@1 1171
duke@1 1172 public void visitAssignop(JCAssignOp tree) {
duke@1 1173 scanExpr(tree.lhs);
duke@1 1174 scanExpr(tree.rhs);
duke@1 1175 letInit(tree.lhs);
duke@1 1176 }
duke@1 1177
duke@1 1178 public void visitUnary(JCUnary tree) {
duke@1 1179 switch (tree.getTag()) {
duke@1 1180 case JCTree.NOT:
duke@1 1181 scanCond(tree.arg);
duke@1 1182 Bits t = initsWhenFalse;
duke@1 1183 initsWhenFalse = initsWhenTrue;
duke@1 1184 initsWhenTrue = t;
duke@1 1185 t = uninitsWhenFalse;
duke@1 1186 uninitsWhenFalse = uninitsWhenTrue;
duke@1 1187 uninitsWhenTrue = t;
duke@1 1188 break;
duke@1 1189 case JCTree.PREINC: case JCTree.POSTINC:
duke@1 1190 case JCTree.PREDEC: case JCTree.POSTDEC:
duke@1 1191 scanExpr(tree.arg);
duke@1 1192 letInit(tree.arg);
duke@1 1193 break;
duke@1 1194 default:
duke@1 1195 scanExpr(tree.arg);
duke@1 1196 }
duke@1 1197 }
duke@1 1198
duke@1 1199 public void visitBinary(JCBinary tree) {
duke@1 1200 switch (tree.getTag()) {
duke@1 1201 case JCTree.AND:
duke@1 1202 scanCond(tree.lhs);
duke@1 1203 Bits initsWhenFalseLeft = initsWhenFalse;
duke@1 1204 Bits uninitsWhenFalseLeft = uninitsWhenFalse;
duke@1 1205 inits = initsWhenTrue;
duke@1 1206 uninits = uninitsWhenTrue;
duke@1 1207 scanCond(tree.rhs);
duke@1 1208 initsWhenFalse.andSet(initsWhenFalseLeft);
duke@1 1209 uninitsWhenFalse.andSet(uninitsWhenFalseLeft);
duke@1 1210 break;
duke@1 1211 case JCTree.OR:
duke@1 1212 scanCond(tree.lhs);
duke@1 1213 Bits initsWhenTrueLeft = initsWhenTrue;
duke@1 1214 Bits uninitsWhenTrueLeft = uninitsWhenTrue;
duke@1 1215 inits = initsWhenFalse;
duke@1 1216 uninits = uninitsWhenFalse;
duke@1 1217 scanCond(tree.rhs);
duke@1 1218 initsWhenTrue.andSet(initsWhenTrueLeft);
duke@1 1219 uninitsWhenTrue.andSet(uninitsWhenTrueLeft);
duke@1 1220 break;
duke@1 1221 default:
duke@1 1222 scanExpr(tree.lhs);
duke@1 1223 scanExpr(tree.rhs);
duke@1 1224 }
duke@1 1225 }
duke@1 1226
duke@1 1227 public void visitIdent(JCIdent tree) {
duke@1 1228 if (tree.sym.kind == VAR)
duke@1 1229 checkInit(tree.pos(), (VarSymbol)tree.sym);
duke@1 1230 }
duke@1 1231
duke@1 1232 public void visitTypeCast(JCTypeCast tree) {
duke@1 1233 super.visitTypeCast(tree);
duke@1 1234 if (!tree.type.isErroneous()
duke@1 1235 && lint.isEnabled(Lint.LintCategory.CAST)
duke@1 1236 && types.isSameType(tree.expr.type, tree.clazz.type)) {
duke@1 1237 log.warning(tree.pos(), "redundant.cast", tree.expr.type);
duke@1 1238 }
duke@1 1239 }
duke@1 1240
duke@1 1241 public void visitTopLevel(JCCompilationUnit tree) {
duke@1 1242 // Do nothing for TopLevel since each class is visited individually
duke@1 1243 }
duke@1 1244
duke@1 1245 /**************************************************************************
duke@1 1246 * main method
duke@1 1247 *************************************************************************/
duke@1 1248
duke@1 1249 /** Perform definite assignment/unassignment analysis on a tree.
duke@1 1250 */
duke@1 1251 public void analyzeTree(JCTree tree, TreeMaker make) {
duke@1 1252 try {
duke@1 1253 this.make = make;
duke@1 1254 inits = new Bits();
duke@1 1255 uninits = new Bits();
duke@1 1256 uninitsTry = new Bits();
duke@1 1257 initsWhenTrue = initsWhenFalse =
duke@1 1258 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1259 if (vars == null)
duke@1 1260 vars = new VarSymbol[32];
duke@1 1261 else
duke@1 1262 for (int i=0; i<vars.length; i++)
duke@1 1263 vars[i] = null;
duke@1 1264 firstadr = 0;
duke@1 1265 nextadr = 0;
duke@1 1266 pendingExits = new ListBuffer<PendingExit>();
duke@1 1267 alive = true;
duke@1 1268 this.thrown = this.caught = null;
duke@1 1269 this.classDef = null;
duke@1 1270 scan(tree);
duke@1 1271 } finally {
duke@1 1272 // note that recursive invocations of this method fail hard
duke@1 1273 inits = uninits = uninitsTry = null;
duke@1 1274 initsWhenTrue = initsWhenFalse =
duke@1 1275 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1276 if (vars != null) for (int i=0; i<vars.length; i++)
duke@1 1277 vars[i] = null;
duke@1 1278 firstadr = 0;
duke@1 1279 nextadr = 0;
duke@1 1280 pendingExits = null;
duke@1 1281 this.make = null;
duke@1 1282 this.thrown = this.caught = null;
duke@1 1283 this.classDef = null;
duke@1 1284 }
duke@1 1285 }
duke@1 1286 }

mercurial