src/share/vm/runtime/deoptimization.cpp

Tue, 21 Sep 2010 13:38:35 -0700

author
iveresov
date
Tue, 21 Sep 2010 13:38:35 -0700
changeset 2169
fd5d4527cdf5
parent 2138
d5d065957597
child 2260
ce6848d0666d
permissions
-rw-r--r--

6986270: guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception) fails
Summary: Propagate the compiler type of the deopting method to vframeArrayElement::unpack_on_stack()
Reviewed-by: jrose, never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_deoptimization.cpp.incl"
    28 bool DeoptimizationMarker::_is_active = false;
    30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    31                                          int  caller_adjustment,
    32                                          int  number_of_frames,
    33                                          intptr_t* frame_sizes,
    34                                          address* frame_pcs,
    35                                          BasicType return_type) {
    36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    37   _caller_adjustment         = caller_adjustment;
    38   _number_of_frames          = number_of_frames;
    39   _frame_sizes               = frame_sizes;
    40   _frame_pcs                 = frame_pcs;
    41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
    42   _return_type               = return_type;
    43   // PD (x86 only)
    44   _counter_temp              = 0;
    45   _initial_fp                = 0;
    46   _unpack_kind               = 0;
    47   _sender_sp_temp            = 0;
    49   _total_frame_sizes         = size_of_frames();
    50 }
    53 Deoptimization::UnrollBlock::~UnrollBlock() {
    54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
    55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
    56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
    57 }
    60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
    61   assert(register_number < RegisterMap::reg_count, "checking register number");
    62   return &_register_block[register_number * 2];
    63 }
    67 int Deoptimization::UnrollBlock::size_of_frames() const {
    68   // Acount first for the adjustment of the initial frame
    69   int result = _caller_adjustment;
    70   for (int index = 0; index < number_of_frames(); index++) {
    71     result += frame_sizes()[index];
    72   }
    73   return result;
    74 }
    77 void Deoptimization::UnrollBlock::print() {
    78   ttyLocker ttyl;
    79   tty->print_cr("UnrollBlock");
    80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
    81   tty->print(   "  frame_sizes: ");
    82   for (int index = 0; index < number_of_frames(); index++) {
    83     tty->print("%d ", frame_sizes()[index]);
    84   }
    85   tty->cr();
    86 }
    89 // In order to make fetch_unroll_info work properly with escape
    90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
    91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
    92 // of previously eliminated objects occurs in realloc_objects, which is
    93 // called from the method fetch_unroll_info_helper below.
    94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
    95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
    96   // but makes the entry a little slower. There is however a little dance we have to
    97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
    99   // fetch_unroll_info() is called at the beginning of the deoptimization
   100   // handler. Note this fact before we start generating temporary frames
   101   // that can confuse an asynchronous stack walker. This counter is
   102   // decremented at the end of unpack_frames().
   103   thread->inc_in_deopt_handler();
   105   return fetch_unroll_info_helper(thread);
   106 JRT_END
   109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   112   // Note: there is a safepoint safety issue here. No matter whether we enter
   113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   114   // the vframeArray is created.
   115   //
   117   // Allocate our special deoptimization ResourceMark
   118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   120   thread->set_deopt_mark(dmark);
   122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   123   RegisterMap map(thread, true);
   124   RegisterMap dummy_map(thread, false);
   125   // Now get the deoptee with a valid map
   126   frame deoptee = stub_frame.sender(&map);
   127   // Set the deoptee nmethod
   128   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   129   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   131   // Create a growable array of VFrames where each VFrame represents an inlined
   132   // Java frame.  This storage is allocated with the usual system arena.
   133   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   134   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   135   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   136   while (!vf->is_top()) {
   137     assert(vf->is_compiled_frame(), "Wrong frame type");
   138     chunk->push(compiledVFrame::cast(vf));
   139     vf = vf->sender();
   140   }
   141   assert(vf->is_compiled_frame(), "Wrong frame type");
   142   chunk->push(compiledVFrame::cast(vf));
   144 #ifdef COMPILER2
   145   // Reallocate the non-escaping objects and restore their fields. Then
   146   // relock objects if synchronization on them was eliminated.
   147   if (DoEscapeAnalysis) {
   148     if (EliminateAllocations) {
   149       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   150       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   152       // The flag return_oop() indicates call sites which return oop
   153       // in compiled code. Such sites include java method calls,
   154       // runtime calls (for example, used to allocate new objects/arrays
   155       // on slow code path) and any other calls generated in compiled code.
   156       // It is not guaranteed that we can get such information here only
   157       // by analyzing bytecode in deoptimized frames. This is why this flag
   158       // is set during method compilation (see Compile::Process_OopMap_Node()).
   159       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   160       Handle return_value;
   161       if (save_oop_result) {
   162         // Reallocation may trigger GC. If deoptimization happened on return from
   163         // call which returns oop we need to save it since it is not in oopmap.
   164         oop result = deoptee.saved_oop_result(&map);
   165         assert(result == NULL || result->is_oop(), "must be oop");
   166         return_value = Handle(thread, result);
   167         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   168         if (TraceDeoptimization) {
   169           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   170         }
   171       }
   172       bool reallocated = false;
   173       if (objects != NULL) {
   174         JRT_BLOCK
   175           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   176         JRT_END
   177       }
   178       if (reallocated) {
   179         reassign_fields(&deoptee, &map, objects);
   180 #ifndef PRODUCT
   181         if (TraceDeoptimization) {
   182           ttyLocker ttyl;
   183           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   184           print_objects(objects);
   185         }
   186 #endif
   187       }
   188       if (save_oop_result) {
   189         // Restore result.
   190         deoptee.set_saved_oop_result(&map, return_value());
   191       }
   192     }
   193     if (EliminateLocks) {
   194 #ifndef PRODUCT
   195       bool first = true;
   196 #endif
   197       for (int i = 0; i < chunk->length(); i++) {
   198         compiledVFrame* cvf = chunk->at(i);
   199         assert (cvf->scope() != NULL,"expect only compiled java frames");
   200         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   201         if (monitors->is_nonempty()) {
   202           relock_objects(monitors, thread);
   203 #ifndef PRODUCT
   204           if (TraceDeoptimization) {
   205             ttyLocker ttyl;
   206             for (int j = 0; j < monitors->length(); j++) {
   207               MonitorInfo* mi = monitors->at(j);
   208               if (mi->eliminated()) {
   209                 if (first) {
   210                   first = false;
   211                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   212                 }
   213                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   214               }
   215             }
   216           }
   217 #endif
   218         }
   219       }
   220     }
   221   }
   222 #endif // COMPILER2
   223   // Ensure that no safepoint is taken after pointers have been stored
   224   // in fields of rematerialized objects.  If a safepoint occurs from here on
   225   // out the java state residing in the vframeArray will be missed.
   226   No_Safepoint_Verifier no_safepoint;
   228   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   230   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   231   thread->set_vframe_array_head(array);
   233   // Now that the vframeArray has been created if we have any deferred local writes
   234   // added by jvmti then we can free up that structure as the data is now in the
   235   // vframeArray
   237   if (thread->deferred_locals() != NULL) {
   238     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   239     int i = 0;
   240     do {
   241       // Because of inlining we could have multiple vframes for a single frame
   242       // and several of the vframes could have deferred writes. Find them all.
   243       if (list->at(i)->id() == array->original().id()) {
   244         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   245         list->remove_at(i);
   246         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   247         delete dlv;
   248       } else {
   249         i++;
   250       }
   251     } while ( i < list->length() );
   252     if (list->length() == 0) {
   253       thread->set_deferred_locals(NULL);
   254       // free the list and elements back to C heap.
   255       delete list;
   256     }
   258   }
   260 #ifndef SHARK
   261   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   262   CodeBlob* cb = stub_frame.cb();
   263   // Verify we have the right vframeArray
   264   assert(cb->frame_size() >= 0, "Unexpected frame size");
   265   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   267   // If the deopt call site is a MethodHandle invoke call site we have
   268   // to adjust the unpack_sp.
   269   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   270   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   271     unpack_sp = deoptee.unextended_sp();
   273 #ifdef ASSERT
   274   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   275   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   276 #endif
   277 #else
   278   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   279 #endif // !SHARK
   281   // This is a guarantee instead of an assert because if vframe doesn't match
   282   // we will unpack the wrong deoptimized frame and wind up in strange places
   283   // where it will be very difficult to figure out what went wrong. Better
   284   // to die an early death here than some very obscure death later when the
   285   // trail is cold.
   286   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   287   // in that it will fail to detect a problem when there is one. This needs
   288   // more work in tiger timeframe.
   289   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   291   int number_of_frames = array->frames();
   293   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   294   // virtual activation, which is the reverse of the elements in the vframes array.
   295   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   296   // +1 because we always have an interpreter return address for the final slot.
   297   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   298   int callee_parameters = 0;
   299   int callee_locals = 0;
   300   int popframe_extra_args = 0;
   301   // Create an interpreter return address for the stub to use as its return
   302   // address so the skeletal frames are perfectly walkable
   303   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   305   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   306   // activation be put back on the expression stack of the caller for reexecution
   307   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   308     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   309   }
   311   //
   312   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   313   // frame_sizes/frame_pcs[1] next oldest frame (int)
   314   // frame_sizes/frame_pcs[n] youngest frame (int)
   315   //
   316   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   317   // owns the space for the return address to it's caller).  Confusing ain't it.
   318   //
   319   // The vframe array can address vframes with indices running from
   320   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   321   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   322   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   323   // so things look a little strange in this loop.
   324   //
   325   for (int index = 0; index < array->frames(); index++ ) {
   326     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   327     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   328     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   329     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   330                                                                                                     callee_locals,
   331                                                                                                     index == 0,
   332                                                                                                     popframe_extra_args);
   333     // This pc doesn't have to be perfect just good enough to identify the frame
   334     // as interpreted so the skeleton frame will be walkable
   335     // The correct pc will be set when the skeleton frame is completely filled out
   336     // The final pc we store in the loop is wrong and will be overwritten below
   337     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   339     callee_parameters = array->element(index)->method()->size_of_parameters();
   340     callee_locals = array->element(index)->method()->max_locals();
   341     popframe_extra_args = 0;
   342   }
   344   // Compute whether the root vframe returns a float or double value.
   345   BasicType return_type;
   346   {
   347     HandleMark hm;
   348     methodHandle method(thread, array->element(0)->method());
   349     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
   350     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
   351   }
   353   // Compute information for handling adapters and adjusting the frame size of the caller.
   354   int caller_adjustment = 0;
   356   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   357   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   358   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   359   //
   360   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   361   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   363   // Compute the amount the oldest interpreter frame will have to adjust
   364   // its caller's stack by. If the caller is a compiled frame then
   365   // we pretend that the callee has no parameters so that the
   366   // extension counts for the full amount of locals and not just
   367   // locals-parms. This is because without a c2i adapter the parm
   368   // area as created by the compiled frame will not be usable by
   369   // the interpreter. (Depending on the calling convention there
   370   // may not even be enough space).
   372   // QQQ I'd rather see this pushed down into last_frame_adjust
   373   // and have it take the sender (aka caller).
   375   if (deopt_sender.is_compiled_frame()) {
   376     caller_adjustment = last_frame_adjust(0, callee_locals);
   377   } else if (callee_locals > callee_parameters) {
   378     // The caller frame may need extending to accommodate
   379     // non-parameter locals of the first unpacked interpreted frame.
   380     // Compute that adjustment.
   381     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   382   }
   385   // If the sender is deoptimized the we must retrieve the address of the handler
   386   // since the frame will "magically" show the original pc before the deopt
   387   // and we'd undo the deopt.
   389   frame_pcs[0] = deopt_sender.raw_pc();
   391 #ifndef SHARK
   392   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   393 #endif // SHARK
   395   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   396                                       caller_adjustment * BytesPerWord,
   397                                       number_of_frames,
   398                                       frame_sizes,
   399                                       frame_pcs,
   400                                       return_type);
   401 #if defined(IA32) || defined(AMD64)
   402   // We need a way to pass fp to the unpacking code so the skeletal frames
   403   // come out correct. This is only needed for x86 because of c2 using ebp
   404   // as an allocatable register. So this update is useless (and harmless)
   405   // on the other platforms. It would be nice to do this in a different
   406   // way but even the old style deoptimization had a problem with deriving
   407   // this value. NEEDS_CLEANUP
   408   // Note: now that c1 is using c2's deopt blob we must do this on all
   409   // x86 based platforms
   410   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
   411   *fp_addr = array->sender().fp(); // was adapter_caller
   412 #endif /* IA32 || AMD64 */
   414   if (array->frames() > 1) {
   415     if (VerifyStack && TraceDeoptimization) {
   416       tty->print_cr("Deoptimizing method containing inlining");
   417     }
   418   }
   420   array->set_unroll_block(info);
   421   return info;
   422 }
   424 // Called to cleanup deoptimization data structures in normal case
   425 // after unpacking to stack and when stack overflow error occurs
   426 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   427                                         vframeArray *array) {
   429   // Get array if coming from exception
   430   if (array == NULL) {
   431     array = thread->vframe_array_head();
   432   }
   433   thread->set_vframe_array_head(NULL);
   435   // Free the previous UnrollBlock
   436   vframeArray* old_array = thread->vframe_array_last();
   437   thread->set_vframe_array_last(array);
   439   if (old_array != NULL) {
   440     UnrollBlock* old_info = old_array->unroll_block();
   441     old_array->set_unroll_block(NULL);
   442     delete old_info;
   443     delete old_array;
   444   }
   446   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   447   // inside the vframeArray (StackValueCollections)
   449   delete thread->deopt_mark();
   450   thread->set_deopt_mark(NULL);
   451   thread->set_deopt_nmethod(NULL);
   454   if (JvmtiExport::can_pop_frame()) {
   455 #ifndef CC_INTERP
   456     // Regardless of whether we entered this routine with the pending
   457     // popframe condition bit set, we should always clear it now
   458     thread->clear_popframe_condition();
   459 #else
   460     // C++ interpeter will clear has_pending_popframe when it enters
   461     // with method_resume. For deopt_resume2 we clear it now.
   462     if (thread->popframe_forcing_deopt_reexecution())
   463         thread->clear_popframe_condition();
   464 #endif /* CC_INTERP */
   465   }
   467   // unpack_frames() is called at the end of the deoptimization handler
   468   // and (in C2) at the end of the uncommon trap handler. Note this fact
   469   // so that an asynchronous stack walker can work again. This counter is
   470   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   471   // the beginning of uncommon_trap().
   472   thread->dec_in_deopt_handler();
   473 }
   476 // Return BasicType of value being returned
   477 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   479   // We are already active int he special DeoptResourceMark any ResourceObj's we
   480   // allocate will be freed at the end of the routine.
   482   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   483   // but makes the entry a little slower. There is however a little dance we have to
   484   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   485   ResetNoHandleMark rnhm; // No-op in release/product versions
   486   HandleMark hm;
   488   frame stub_frame = thread->last_frame();
   490   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   491   // must point to the vframeArray for the unpack frame.
   492   vframeArray* array = thread->vframe_array_head();
   494 #ifndef PRODUCT
   495   if (TraceDeoptimization) {
   496     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   497   }
   498 #endif
   500   UnrollBlock* info = array->unroll_block();
   502   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   503   array->unpack_to_stack(stub_frame, exec_mode);
   505   BasicType bt = info->return_type();
   507   // If we have an exception pending, claim that the return type is an oop
   508   // so the deopt_blob does not overwrite the exception_oop.
   510   if (exec_mode == Unpack_exception)
   511     bt = T_OBJECT;
   513   // Cleanup thread deopt data
   514   cleanup_deopt_info(thread, array);
   516 #ifndef PRODUCT
   517   if (VerifyStack) {
   518     ResourceMark res_mark;
   520     // Verify that the just-unpacked frames match the interpreter's
   521     // notions of expression stack and locals
   522     vframeArray* cur_array = thread->vframe_array_last();
   523     RegisterMap rm(thread, false);
   524     rm.set_include_argument_oops(false);
   525     bool is_top_frame = true;
   526     int callee_size_of_parameters = 0;
   527     int callee_max_locals = 0;
   528     for (int i = 0; i < cur_array->frames(); i++) {
   529       vframeArrayElement* el = cur_array->element(i);
   530       frame* iframe = el->iframe();
   531       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   533       // Get the oop map for this bci
   534       InterpreterOopMap mask;
   535       int cur_invoke_parameter_size = 0;
   536       bool try_next_mask = false;
   537       int next_mask_expression_stack_size = -1;
   538       int top_frame_expression_stack_adjustment = 0;
   539       methodHandle mh(thread, iframe->interpreter_frame_method());
   540       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   541       BytecodeStream str(mh);
   542       str.set_start(iframe->interpreter_frame_bci());
   543       int max_bci = mh->code_size();
   544       // Get to the next bytecode if possible
   545       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   546       // Check to see if we can grab the number of outgoing arguments
   547       // at an uncommon trap for an invoke (where the compiler
   548       // generates debug info before the invoke has executed)
   549       Bytecodes::Code cur_code = str.next();
   550       if (cur_code == Bytecodes::_invokevirtual ||
   551           cur_code == Bytecodes::_invokespecial ||
   552           cur_code == Bytecodes::_invokestatic  ||
   553           cur_code == Bytecodes::_invokeinterface) {
   554         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
   555         symbolHandle signature(thread, invoke->signature());
   556         ArgumentSizeComputer asc(signature);
   557         cur_invoke_parameter_size = asc.size();
   558         if (cur_code != Bytecodes::_invokestatic) {
   559           // Add in receiver
   560           ++cur_invoke_parameter_size;
   561         }
   562       }
   563       if (str.bci() < max_bci) {
   564         Bytecodes::Code bc = str.next();
   565         if (bc >= 0) {
   566           // The interpreter oop map generator reports results before
   567           // the current bytecode has executed except in the case of
   568           // calls. It seems to be hard to tell whether the compiler
   569           // has emitted debug information matching the "state before"
   570           // a given bytecode or the state after, so we try both
   571           switch (cur_code) {
   572             case Bytecodes::_invokevirtual:
   573             case Bytecodes::_invokespecial:
   574             case Bytecodes::_invokestatic:
   575             case Bytecodes::_invokeinterface:
   576             case Bytecodes::_athrow:
   577               break;
   578             default: {
   579               InterpreterOopMap next_mask;
   580               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   581               next_mask_expression_stack_size = next_mask.expression_stack_size();
   582               // Need to subtract off the size of the result type of
   583               // the bytecode because this is not described in the
   584               // debug info but returned to the interpreter in the TOS
   585               // caching register
   586               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   587               if (bytecode_result_type != T_ILLEGAL) {
   588                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   589               }
   590               assert(top_frame_expression_stack_adjustment >= 0, "");
   591               try_next_mask = true;
   592               break;
   593             }
   594           }
   595         }
   596       }
   598       // Verify stack depth and oops in frame
   599       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   600       if (!(
   601             /* SPARC */
   602             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   603             /* x86 */
   604             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   605             (try_next_mask &&
   606              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   607                                                                     top_frame_expression_stack_adjustment))) ||
   608             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   609             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   610              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   611             )) {
   612         ttyLocker ttyl;
   614         // Print out some information that will help us debug the problem
   615         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   616         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   617         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   618                       iframe->interpreter_frame_expression_stack_size());
   619         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   620         tty->print_cr("  try_next_mask = %d", try_next_mask);
   621         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   622         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   623         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   624         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   625         tty->print_cr("  exec_mode = %d", exec_mode);
   626         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   627         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   628         tty->print_cr("  Interpreted frames:");
   629         for (int k = 0; k < cur_array->frames(); k++) {
   630           vframeArrayElement* el = cur_array->element(k);
   631           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   632         }
   633         cur_array->print_on_2(tty);
   634         guarantee(false, "wrong number of expression stack elements during deopt");
   635       }
   636       VerifyOopClosure verify;
   637       iframe->oops_interpreted_do(&verify, &rm, false);
   638       callee_size_of_parameters = mh->size_of_parameters();
   639       callee_max_locals = mh->max_locals();
   640       is_top_frame = false;
   641     }
   642   }
   643 #endif /* !PRODUCT */
   646   return bt;
   647 JRT_END
   650 int Deoptimization::deoptimize_dependents() {
   651   Threads::deoptimized_wrt_marked_nmethods();
   652   return 0;
   653 }
   656 #ifdef COMPILER2
   657 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   658   Handle pending_exception(thread->pending_exception());
   659   const char* exception_file = thread->exception_file();
   660   int exception_line = thread->exception_line();
   661   thread->clear_pending_exception();
   663   for (int i = 0; i < objects->length(); i++) {
   664     assert(objects->at(i)->is_object(), "invalid debug information");
   665     ObjectValue* sv = (ObjectValue*) objects->at(i);
   667     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   668     oop obj = NULL;
   670     if (k->oop_is_instance()) {
   671       instanceKlass* ik = instanceKlass::cast(k());
   672       obj = ik->allocate_instance(CHECK_(false));
   673     } else if (k->oop_is_typeArray()) {
   674       typeArrayKlass* ak = typeArrayKlass::cast(k());
   675       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   676       int len = sv->field_size() / type2size[ak->element_type()];
   677       obj = ak->allocate(len, CHECK_(false));
   678     } else if (k->oop_is_objArray()) {
   679       objArrayKlass* ak = objArrayKlass::cast(k());
   680       obj = ak->allocate(sv->field_size(), CHECK_(false));
   681     }
   683     assert(obj != NULL, "allocation failed");
   684     assert(sv->value().is_null(), "redundant reallocation");
   685     sv->set_value(obj);
   686   }
   688   if (pending_exception.not_null()) {
   689     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   690   }
   692   return true;
   693 }
   695 // This assumes that the fields are stored in ObjectValue in the same order
   696 // they are yielded by do_nonstatic_fields.
   697 class FieldReassigner: public FieldClosure {
   698   frame* _fr;
   699   RegisterMap* _reg_map;
   700   ObjectValue* _sv;
   701   instanceKlass* _ik;
   702   oop _obj;
   704   int _i;
   705 public:
   706   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   707     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   709   int i() const { return _i; }
   712   void do_field(fieldDescriptor* fd) {
   713     intptr_t val;
   714     StackValue* value =
   715       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   716     int offset = fd->offset();
   717     switch (fd->field_type()) {
   718     case T_OBJECT: case T_ARRAY:
   719       assert(value->type() == T_OBJECT, "Agreement.");
   720       _obj->obj_field_put(offset, value->get_obj()());
   721       break;
   723     case T_LONG: case T_DOUBLE: {
   724       assert(value->type() == T_INT, "Agreement.");
   725       StackValue* low =
   726         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   727 #ifdef _LP64
   728       jlong res = (jlong)low->get_int();
   729 #else
   730 #ifdef SPARC
   731       // For SPARC we have to swap high and low words.
   732       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   733 #else
   734       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   735 #endif //SPARC
   736 #endif
   737       _obj->long_field_put(offset, res);
   738       break;
   739     }
   740     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   741     case T_INT: case T_FLOAT: // 4 bytes.
   742       assert(value->type() == T_INT, "Agreement.");
   743       val = value->get_int();
   744       _obj->int_field_put(offset, (jint)*((jint*)&val));
   745       break;
   747     case T_SHORT: case T_CHAR: // 2 bytes
   748       assert(value->type() == T_INT, "Agreement.");
   749       val = value->get_int();
   750       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   751       break;
   753     case T_BOOLEAN: case T_BYTE: // 1 byte
   754       assert(value->type() == T_INT, "Agreement.");
   755       val = value->get_int();
   756       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   757       break;
   759     default:
   760       ShouldNotReachHere();
   761     }
   762     _i++;
   763   }
   764 };
   766 // restore elements of an eliminated type array
   767 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   768   int index = 0;
   769   intptr_t val;
   771   for (int i = 0; i < sv->field_size(); i++) {
   772     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   773     switch(type) {
   774     case T_LONG: case T_DOUBLE: {
   775       assert(value->type() == T_INT, "Agreement.");
   776       StackValue* low =
   777         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   778 #ifdef _LP64
   779       jlong res = (jlong)low->get_int();
   780 #else
   781 #ifdef SPARC
   782       // For SPARC we have to swap high and low words.
   783       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   784 #else
   785       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   786 #endif //SPARC
   787 #endif
   788       obj->long_at_put(index, res);
   789       break;
   790     }
   792     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   793     case T_INT: case T_FLOAT: // 4 bytes.
   794       assert(value->type() == T_INT, "Agreement.");
   795       val = value->get_int();
   796       obj->int_at_put(index, (jint)*((jint*)&val));
   797       break;
   799     case T_SHORT: case T_CHAR: // 2 bytes
   800       assert(value->type() == T_INT, "Agreement.");
   801       val = value->get_int();
   802       obj->short_at_put(index, (jshort)*((jint*)&val));
   803       break;
   805     case T_BOOLEAN: case T_BYTE: // 1 byte
   806       assert(value->type() == T_INT, "Agreement.");
   807       val = value->get_int();
   808       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   809       break;
   811       default:
   812         ShouldNotReachHere();
   813     }
   814     index++;
   815   }
   816 }
   819 // restore fields of an eliminated object array
   820 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   821   for (int i = 0; i < sv->field_size(); i++) {
   822     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   823     assert(value->type() == T_OBJECT, "object element expected");
   824     obj->obj_at_put(i, value->get_obj()());
   825   }
   826 }
   829 // restore fields of all eliminated objects and arrays
   830 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   831   for (int i = 0; i < objects->length(); i++) {
   832     ObjectValue* sv = (ObjectValue*) objects->at(i);
   833     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   834     Handle obj = sv->value();
   835     assert(obj.not_null(), "reallocation was missed");
   837     if (k->oop_is_instance()) {
   838       instanceKlass* ik = instanceKlass::cast(k());
   839       FieldReassigner reassign(fr, reg_map, sv, obj());
   840       ik->do_nonstatic_fields(&reassign);
   841     } else if (k->oop_is_typeArray()) {
   842       typeArrayKlass* ak = typeArrayKlass::cast(k());
   843       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   844     } else if (k->oop_is_objArray()) {
   845       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   846     }
   847   }
   848 }
   851 // relock objects for which synchronization was eliminated
   852 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   853   for (int i = 0; i < monitors->length(); i++) {
   854     MonitorInfo* mon_info = monitors->at(i);
   855     if (mon_info->eliminated()) {
   856       assert(mon_info->owner() != NULL, "reallocation was missed");
   857       Handle obj = Handle(mon_info->owner());
   858       markOop mark = obj->mark();
   859       if (UseBiasedLocking && mark->has_bias_pattern()) {
   860         // New allocated objects may have the mark set to anonymously biased.
   861         // Also the deoptimized method may called methods with synchronization
   862         // where the thread-local object is bias locked to the current thread.
   863         assert(mark->is_biased_anonymously() ||
   864                mark->biased_locker() == thread, "should be locked to current thread");
   865         // Reset mark word to unbiased prototype.
   866         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   867         obj->set_mark(unbiased_prototype);
   868       }
   869       BasicLock* lock = mon_info->lock();
   870       ObjectSynchronizer::slow_enter(obj, lock, thread);
   871     }
   872     assert(mon_info->owner()->is_locked(), "object must be locked now");
   873   }
   874 }
   877 #ifndef PRODUCT
   878 // print information about reallocated objects
   879 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   880   fieldDescriptor fd;
   882   for (int i = 0; i < objects->length(); i++) {
   883     ObjectValue* sv = (ObjectValue*) objects->at(i);
   884     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   885     Handle obj = sv->value();
   887     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   888     k->as_klassOop()->print_value();
   889     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   890     tty->cr();
   892     if (Verbose) {
   893       k->oop_print_on(obj(), tty);
   894     }
   895   }
   896 }
   897 #endif
   898 #endif // COMPILER2
   900 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   902 #ifndef PRODUCT
   903   if (TraceDeoptimization) {
   904     ttyLocker ttyl;
   905     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   906     fr.print_on(tty);
   907     tty->print_cr("     Virtual frames (innermost first):");
   908     for (int index = 0; index < chunk->length(); index++) {
   909       compiledVFrame* vf = chunk->at(index);
   910       tty->print("       %2d - ", index);
   911       vf->print_value();
   912       int bci = chunk->at(index)->raw_bci();
   913       const char* code_name;
   914       if (bci == SynchronizationEntryBCI) {
   915         code_name = "sync entry";
   916       } else {
   917         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
   918         code_name = Bytecodes::name(code);
   919       }
   920       tty->print(" - %s", code_name);
   921       tty->print_cr(" @ bci %d ", bci);
   922       if (Verbose) {
   923         vf->print();
   924         tty->cr();
   925       }
   926     }
   927   }
   928 #endif
   930   // Register map for next frame (used for stack crawl).  We capture
   931   // the state of the deopt'ing frame's caller.  Thus if we need to
   932   // stuff a C2I adapter we can properly fill in the callee-save
   933   // register locations.
   934   frame caller = fr.sender(reg_map);
   935   int frame_size = caller.sp() - fr.sp();
   937   frame sender = caller;
   939   // Since the Java thread being deoptimized will eventually adjust it's own stack,
   940   // the vframeArray containing the unpacking information is allocated in the C heap.
   941   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
   942   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
   944   // Compare the vframeArray to the collected vframes
   945   assert(array->structural_compare(thread, chunk), "just checking");
   946   Events::log("# vframes = %d", (intptr_t)chunk->length());
   948 #ifndef PRODUCT
   949   if (TraceDeoptimization) {
   950     ttyLocker ttyl;
   951     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
   952   }
   953 #endif // PRODUCT
   955   return array;
   956 }
   959 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
   960   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   961   for (int i = 0; i < monitors->length(); i++) {
   962     MonitorInfo* mon_info = monitors->at(i);
   963     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
   964       objects_to_revoke->append(Handle(mon_info->owner()));
   965     }
   966   }
   967 }
   970 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
   971   if (!UseBiasedLocking) {
   972     return;
   973   }
   975   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
   977   // Unfortunately we don't have a RegisterMap available in most of
   978   // the places we want to call this routine so we need to walk the
   979   // stack again to update the register map.
   980   if (map == NULL || !map->update_map()) {
   981     StackFrameStream sfs(thread, true);
   982     bool found = false;
   983     while (!found && !sfs.is_done()) {
   984       frame* cur = sfs.current();
   985       sfs.next();
   986       found = cur->id() == fr.id();
   987     }
   988     assert(found, "frame to be deoptimized not found on target thread's stack");
   989     map = sfs.register_map();
   990   }
   992   vframe* vf = vframe::new_vframe(&fr, map, thread);
   993   compiledVFrame* cvf = compiledVFrame::cast(vf);
   994   // Revoke monitors' biases in all scopes
   995   while (!cvf->is_top()) {
   996     collect_monitors(cvf, objects_to_revoke);
   997     cvf = compiledVFrame::cast(cvf->sender());
   998   }
   999   collect_monitors(cvf, objects_to_revoke);
  1001   if (SafepointSynchronize::is_at_safepoint()) {
  1002     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1003   } else {
  1004     BiasedLocking::revoke(objects_to_revoke);
  1009 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1010   if (!UseBiasedLocking) {
  1011     return;
  1014   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1015   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1016   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1017     if (jt->has_last_Java_frame()) {
  1018       StackFrameStream sfs(jt, true);
  1019       while (!sfs.is_done()) {
  1020         frame* cur = sfs.current();
  1021         if (cb->contains(cur->pc())) {
  1022           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1023           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1024           // Revoke monitors' biases in all scopes
  1025           while (!cvf->is_top()) {
  1026             collect_monitors(cvf, objects_to_revoke);
  1027             cvf = compiledVFrame::cast(cvf->sender());
  1029           collect_monitors(cvf, objects_to_revoke);
  1031         sfs.next();
  1035   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1039 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1040   assert(fr.can_be_deoptimized(), "checking frame type");
  1042   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1044   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1046   // Patch the nmethod so that when execution returns to it we will
  1047   // deopt the execution state and return to the interpreter.
  1048   fr.deoptimize(thread);
  1051 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1052   // Deoptimize only if the frame comes from compile code.
  1053   // Do not deoptimize the frame which is already patched
  1054   // during the execution of the loops below.
  1055   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1056     return;
  1058   ResourceMark rm;
  1059   DeoptimizationMarker dm;
  1060   if (UseBiasedLocking) {
  1061     revoke_biases_of_monitors(thread, fr, map);
  1063   deoptimize_single_frame(thread, fr);
  1068 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1069   // Compute frame and register map based on thread and sp.
  1070   RegisterMap reg_map(thread, UseBiasedLocking);
  1071   frame fr = thread->last_frame();
  1072   while (fr.id() != id) {
  1073     fr = fr.sender(&reg_map);
  1075   deoptimize(thread, fr, &reg_map);
  1079 // JVMTI PopFrame support
  1080 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1082   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1084 JRT_END
  1087 #if defined(COMPILER2) || defined(SHARK)
  1088 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1089   // in case of an unresolved klass entry, load the class.
  1090   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1091     klassOop tk = constant_pool->klass_at(index, CHECK);
  1092     return;
  1095   if (!constant_pool->tag_at(index).is_symbol()) return;
  1097   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1098   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
  1100   // class name?
  1101   if (symbol->byte_at(0) != '(') {
  1102     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1103     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1104     return;
  1107   // then it must be a signature!
  1108   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1109     if (ss.is_object()) {
  1110       symbolOop s = ss.as_symbol(CHECK);
  1111       symbolHandle class_name (THREAD, s);
  1112       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1113       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1119 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1120   EXCEPTION_MARK;
  1121   load_class_by_index(constant_pool, index, THREAD);
  1122   if (HAS_PENDING_EXCEPTION) {
  1123     // Exception happened during classloading. We ignore the exception here, since it
  1124     // is going to be rethrown since the current activation is going to be deoptimzied and
  1125     // the interpreter will re-execute the bytecode.
  1126     CLEAR_PENDING_EXCEPTION;
  1130 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1131   HandleMark hm;
  1133   // uncommon_trap() is called at the beginning of the uncommon trap
  1134   // handler. Note this fact before we start generating temporary frames
  1135   // that can confuse an asynchronous stack walker. This counter is
  1136   // decremented at the end of unpack_frames().
  1137   thread->inc_in_deopt_handler();
  1139   // We need to update the map if we have biased locking.
  1140   RegisterMap reg_map(thread, UseBiasedLocking);
  1141   frame stub_frame = thread->last_frame();
  1142   frame fr = stub_frame.sender(&reg_map);
  1143   // Make sure the calling nmethod is not getting deoptimized and removed
  1144   // before we are done with it.
  1145   nmethodLocker nl(fr.pc());
  1148     ResourceMark rm;
  1150     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1151     revoke_biases_of_monitors(thread, fr, &reg_map);
  1153     DeoptReason reason = trap_request_reason(trap_request);
  1154     DeoptAction action = trap_request_action(trap_request);
  1155     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1157     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1158     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1159     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1161     nmethod* nm = cvf->code();
  1163     ScopeDesc*      trap_scope  = cvf->scope();
  1164     methodHandle    trap_method = trap_scope->method();
  1165     int             trap_bci    = trap_scope->bci();
  1166     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
  1168     // Record this event in the histogram.
  1169     gather_statistics(reason, action, trap_bc);
  1171     // Ensure that we can record deopt. history:
  1172     bool create_if_missing = ProfileTraps;
  1174     methodDataHandle trap_mdo
  1175       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1177     // Print a bunch of diagnostics, if requested.
  1178     if (TraceDeoptimization || LogCompilation) {
  1179       ResourceMark rm;
  1180       ttyLocker ttyl;
  1181       char buf[100];
  1182       if (xtty != NULL) {
  1183         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1184                          os::current_thread_id(),
  1185                          format_trap_request(buf, sizeof(buf), trap_request));
  1186         nm->log_identity(xtty);
  1188       symbolHandle class_name;
  1189       bool unresolved = false;
  1190       if (unloaded_class_index >= 0) {
  1191         constantPoolHandle constants (THREAD, trap_method->constants());
  1192         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1193           class_name = symbolHandle(THREAD,
  1194             constants->klass_name_at(unloaded_class_index));
  1195           unresolved = true;
  1196           if (xtty != NULL)
  1197             xtty->print(" unresolved='1'");
  1198         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1199           class_name = symbolHandle(THREAD,
  1200             constants->symbol_at(unloaded_class_index));
  1202         if (xtty != NULL)
  1203           xtty->name(class_name);
  1205       if (xtty != NULL && trap_mdo.not_null()) {
  1206         // Dump the relevant MDO state.
  1207         // This is the deopt count for the current reason, any previous
  1208         // reasons or recompiles seen at this point.
  1209         int dcnt = trap_mdo->trap_count(reason);
  1210         if (dcnt != 0)
  1211           xtty->print(" count='%d'", dcnt);
  1212         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1213         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1214         if (dos != 0) {
  1215           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1216           if (trap_state_is_recompiled(dos)) {
  1217             int recnt2 = trap_mdo->overflow_recompile_count();
  1218             if (recnt2 != 0)
  1219               xtty->print(" recompiles2='%d'", recnt2);
  1223       if (xtty != NULL) {
  1224         xtty->stamp();
  1225         xtty->end_head();
  1227       if (TraceDeoptimization) {  // make noise on the tty
  1228         tty->print("Uncommon trap occurred in");
  1229         nm->method()->print_short_name(tty);
  1230         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1231                    fr.pc(),
  1232                    (int) os::current_thread_id(),
  1233                    trap_reason_name(reason),
  1234                    trap_action_name(action),
  1235                    unloaded_class_index);
  1236         if (class_name.not_null()) {
  1237           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1238           class_name->print_symbol_on(tty);
  1240         tty->cr();
  1242       if (xtty != NULL) {
  1243         // Log the precise location of the trap.
  1244         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1245           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1246           xtty->method(sd->method());
  1247           xtty->end_elem();
  1248           if (sd->is_top())  break;
  1250         xtty->tail("uncommon_trap");
  1253     // (End diagnostic printout.)
  1255     // Load class if necessary
  1256     if (unloaded_class_index >= 0) {
  1257       constantPoolHandle constants(THREAD, trap_method->constants());
  1258       load_class_by_index(constants, unloaded_class_index);
  1261     // Flush the nmethod if necessary and desirable.
  1262     //
  1263     // We need to avoid situations where we are re-flushing the nmethod
  1264     // because of a hot deoptimization site.  Repeated flushes at the same
  1265     // point need to be detected by the compiler and avoided.  If the compiler
  1266     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1267     // module must take measures to avoid an infinite cycle of recompilation
  1268     // and deoptimization.  There are several such measures:
  1269     //
  1270     //   1. If a recompilation is ordered a second time at some site X
  1271     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1272     //   to give the interpreter time to exercise the method more thoroughly.
  1273     //   If this happens, the method's overflow_recompile_count is incremented.
  1274     //
  1275     //   2. If the compiler fails to reduce the deoptimization rate, then
  1276     //   the method's overflow_recompile_count will begin to exceed the set
  1277     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1278     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1279     //   to the interpreter.  This is a performance hit for hot methods,
  1280     //   but is better than a disastrous infinite cycle of recompilations.
  1281     //   (Actually, only the method containing the site X is abandoned.)
  1282     //
  1283     //   3. In parallel with the previous measures, if the total number of
  1284     //   recompilations of a method exceeds the much larger set limit
  1285     //   PerMethodRecompilationCutoff, the method is abandoned.
  1286     //   This should only happen if the method is very large and has
  1287     //   many "lukewarm" deoptimizations.  The code which enforces this
  1288     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1289     //
  1290     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1291     // to recompile at each bytecode independently of the per-BCI cutoff.
  1292     //
  1293     // The decision to update code is up to the compiler, and is encoded
  1294     // in the Action_xxx code.  If the compiler requests Action_none
  1295     // no trap state is changed, no compiled code is changed, and the
  1296     // computation suffers along in the interpreter.
  1297     //
  1298     // The other action codes specify various tactics for decompilation
  1299     // and recompilation.  Action_maybe_recompile is the loosest, and
  1300     // allows the compiled code to stay around until enough traps are seen,
  1301     // and until the compiler gets around to recompiling the trapping method.
  1302     //
  1303     // The other actions cause immediate removal of the present code.
  1305     bool update_trap_state = true;
  1306     bool make_not_entrant = false;
  1307     bool make_not_compilable = false;
  1308     bool reprofile = false;
  1309     switch (action) {
  1310     case Action_none:
  1311       // Keep the old code.
  1312       update_trap_state = false;
  1313       break;
  1314     case Action_maybe_recompile:
  1315       // Do not need to invalidate the present code, but we can
  1316       // initiate another
  1317       // Start compiler without (necessarily) invalidating the nmethod.
  1318       // The system will tolerate the old code, but new code should be
  1319       // generated when possible.
  1320       break;
  1321     case Action_reinterpret:
  1322       // Go back into the interpreter for a while, and then consider
  1323       // recompiling form scratch.
  1324       make_not_entrant = true;
  1325       // Reset invocation counter for outer most method.
  1326       // This will allow the interpreter to exercise the bytecodes
  1327       // for a while before recompiling.
  1328       // By contrast, Action_make_not_entrant is immediate.
  1329       //
  1330       // Note that the compiler will track null_check, null_assert,
  1331       // range_check, and class_check events and log them as if they
  1332       // had been traps taken from compiled code.  This will update
  1333       // the MDO trap history so that the next compilation will
  1334       // properly detect hot trap sites.
  1335       reprofile = true;
  1336       break;
  1337     case Action_make_not_entrant:
  1338       // Request immediate recompilation, and get rid of the old code.
  1339       // Make them not entrant, so next time they are called they get
  1340       // recompiled.  Unloaded classes are loaded now so recompile before next
  1341       // time they are called.  Same for uninitialized.  The interpreter will
  1342       // link the missing class, if any.
  1343       make_not_entrant = true;
  1344       break;
  1345     case Action_make_not_compilable:
  1346       // Give up on compiling this method at all.
  1347       make_not_entrant = true;
  1348       make_not_compilable = true;
  1349       break;
  1350     default:
  1351       ShouldNotReachHere();
  1354     // Setting +ProfileTraps fixes the following, on all platforms:
  1355     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1356     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1357     // recompile relies on a methodDataOop to record heroic opt failures.
  1359     // Whether the interpreter is producing MDO data or not, we also need
  1360     // to use the MDO to detect hot deoptimization points and control
  1361     // aggressive optimization.
  1362     bool inc_recompile_count = false;
  1363     ProfileData* pdata = NULL;
  1364     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1365       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1366       uint this_trap_count = 0;
  1367       bool maybe_prior_trap = false;
  1368       bool maybe_prior_recompile = false;
  1369       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1370                                    //outputs:
  1371                                    this_trap_count,
  1372                                    maybe_prior_trap,
  1373                                    maybe_prior_recompile);
  1374       // Because the interpreter also counts null, div0, range, and class
  1375       // checks, these traps from compiled code are double-counted.
  1376       // This is harmless; it just means that the PerXTrapLimit values
  1377       // are in effect a little smaller than they look.
  1379       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1380       if (per_bc_reason != Reason_none) {
  1381         // Now take action based on the partially known per-BCI history.
  1382         if (maybe_prior_trap
  1383             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1384           // If there are too many traps at this BCI, force a recompile.
  1385           // This will allow the compiler to see the limit overflow, and
  1386           // take corrective action, if possible.  The compiler generally
  1387           // does not use the exact PerBytecodeTrapLimit value, but instead
  1388           // changes its tactics if it sees any traps at all.  This provides
  1389           // a little hysteresis, delaying a recompile until a trap happens
  1390           // several times.
  1391           //
  1392           // Actually, since there is only one bit of counter per BCI,
  1393           // the possible per-BCI counts are {0,1,(per-method count)}.
  1394           // This produces accurate results if in fact there is only
  1395           // one hot trap site, but begins to get fuzzy if there are
  1396           // many sites.  For example, if there are ten sites each
  1397           // trapping two or more times, they each get the blame for
  1398           // all of their traps.
  1399           make_not_entrant = true;
  1402         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1403         if (make_not_entrant && maybe_prior_recompile) {
  1404           // More than one recompile at this point.
  1405           inc_recompile_count = maybe_prior_trap;
  1407       } else {
  1408         // For reasons which are not recorded per-bytecode, we simply
  1409         // force recompiles unconditionally.
  1410         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1411         make_not_entrant = true;
  1414       // Go back to the compiler if there are too many traps in this method.
  1415       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1416         // If there are too many traps in this method, force a recompile.
  1417         // This will allow the compiler to see the limit overflow, and
  1418         // take corrective action, if possible.
  1419         // (This condition is an unlikely backstop only, because the
  1420         // PerBytecodeTrapLimit is more likely to take effect first,
  1421         // if it is applicable.)
  1422         make_not_entrant = true;
  1425       // Here's more hysteresis:  If there has been a recompile at
  1426       // this trap point already, run the method in the interpreter
  1427       // for a while to exercise it more thoroughly.
  1428       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1429         reprofile = true;
  1434     // Take requested actions on the method:
  1436     // Recompile
  1437     if (make_not_entrant) {
  1438       if (!nm->make_not_entrant()) {
  1439         return; // the call did not change nmethod's state
  1442       if (pdata != NULL) {
  1443         // Record the recompilation event, if any.
  1444         int tstate0 = pdata->trap_state();
  1445         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1446         if (tstate1 != tstate0)
  1447           pdata->set_trap_state(tstate1);
  1451     if (inc_recompile_count) {
  1452       trap_mdo->inc_overflow_recompile_count();
  1453       if ((uint)trap_mdo->overflow_recompile_count() >
  1454           (uint)PerBytecodeRecompilationCutoff) {
  1455         // Give up on the method containing the bad BCI.
  1456         if (trap_method() == nm->method()) {
  1457           make_not_compilable = true;
  1458         } else {
  1459           trap_method->set_not_compilable(CompLevel_full_optimization);
  1460           // But give grace to the enclosing nm->method().
  1465     // Reprofile
  1466     if (reprofile) {
  1467       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1470     // Give up compiling
  1471     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1472       assert(make_not_entrant, "consistent");
  1473       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1476   } // Free marked resources
  1479 JRT_END
  1481 methodDataOop
  1482 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1483                                 bool create_if_missing) {
  1484   Thread* THREAD = thread;
  1485   methodDataOop mdo = m()->method_data();
  1486   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1487     // Build an MDO.  Ignore errors like OutOfMemory;
  1488     // that simply means we won't have an MDO to update.
  1489     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1490     if (HAS_PENDING_EXCEPTION) {
  1491       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1492       CLEAR_PENDING_EXCEPTION;
  1494     mdo = m()->method_data();
  1496   return mdo;
  1499 ProfileData*
  1500 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1501                                          int trap_bci,
  1502                                          Deoptimization::DeoptReason reason,
  1503                                          //outputs:
  1504                                          uint& ret_this_trap_count,
  1505                                          bool& ret_maybe_prior_trap,
  1506                                          bool& ret_maybe_prior_recompile) {
  1507   uint prior_trap_count = trap_mdo->trap_count(reason);
  1508   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1510   // If the runtime cannot find a place to store trap history,
  1511   // it is estimated based on the general condition of the method.
  1512   // If the method has ever been recompiled, or has ever incurred
  1513   // a trap with the present reason , then this BCI is assumed
  1514   // (pessimistically) to be the culprit.
  1515   bool maybe_prior_trap      = (prior_trap_count != 0);
  1516   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1517   ProfileData* pdata = NULL;
  1520   // For reasons which are recorded per bytecode, we check per-BCI data.
  1521   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1522   if (per_bc_reason != Reason_none) {
  1523     // Find the profile data for this BCI.  If there isn't one,
  1524     // try to allocate one from the MDO's set of spares.
  1525     // This will let us detect a repeated trap at this point.
  1526     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1528     if (pdata != NULL) {
  1529       // Query the trap state of this profile datum.
  1530       int tstate0 = pdata->trap_state();
  1531       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1532         maybe_prior_trap = false;
  1533       if (!trap_state_is_recompiled(tstate0))
  1534         maybe_prior_recompile = false;
  1536       // Update the trap state of this profile datum.
  1537       int tstate1 = tstate0;
  1538       // Record the reason.
  1539       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1540       // Store the updated state on the MDO, for next time.
  1541       if (tstate1 != tstate0)
  1542         pdata->set_trap_state(tstate1);
  1543     } else {
  1544       if (LogCompilation && xtty != NULL) {
  1545         ttyLocker ttyl;
  1546         // Missing MDP?  Leave a small complaint in the log.
  1547         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1552   // Return results:
  1553   ret_this_trap_count = this_trap_count;
  1554   ret_maybe_prior_trap = maybe_prior_trap;
  1555   ret_maybe_prior_recompile = maybe_prior_recompile;
  1556   return pdata;
  1559 void
  1560 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1561   ResourceMark rm;
  1562   // Ignored outputs:
  1563   uint ignore_this_trap_count;
  1564   bool ignore_maybe_prior_trap;
  1565   bool ignore_maybe_prior_recompile;
  1566   query_update_method_data(trap_mdo, trap_bci,
  1567                            (DeoptReason)reason,
  1568                            ignore_this_trap_count,
  1569                            ignore_maybe_prior_trap,
  1570                            ignore_maybe_prior_recompile);
  1573 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1575   // Still in Java no safepoints
  1577     // This enters VM and may safepoint
  1578     uncommon_trap_inner(thread, trap_request);
  1580   return fetch_unroll_info_helper(thread);
  1583 // Local derived constants.
  1584 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1585 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1586 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1588 //---------------------------trap_state_reason---------------------------------
  1589 Deoptimization::DeoptReason
  1590 Deoptimization::trap_state_reason(int trap_state) {
  1591   // This assert provides the link between the width of DataLayout::trap_bits
  1592   // and the encoding of "recorded" reasons.  It ensures there are enough
  1593   // bits to store all needed reasons in the per-BCI MDO profile.
  1594   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1595   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1596   trap_state -= recompile_bit;
  1597   if (trap_state == DS_REASON_MASK) {
  1598     return Reason_many;
  1599   } else {
  1600     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1601     return (DeoptReason)trap_state;
  1604 //-------------------------trap_state_has_reason-------------------------------
  1605 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1606   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1607   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1608   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1609   trap_state -= recompile_bit;
  1610   if (trap_state == DS_REASON_MASK) {
  1611     return -1;  // true, unspecifically (bottom of state lattice)
  1612   } else if (trap_state == reason) {
  1613     return 1;   // true, definitely
  1614   } else if (trap_state == 0) {
  1615     return 0;   // false, definitely (top of state lattice)
  1616   } else {
  1617     return 0;   // false, definitely
  1620 //-------------------------trap_state_add_reason-------------------------------
  1621 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1622   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1623   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1624   trap_state -= recompile_bit;
  1625   if (trap_state == DS_REASON_MASK) {
  1626     return trap_state + recompile_bit;     // already at state lattice bottom
  1627   } else if (trap_state == reason) {
  1628     return trap_state + recompile_bit;     // the condition is already true
  1629   } else if (trap_state == 0) {
  1630     return reason + recompile_bit;          // no condition has yet been true
  1631   } else {
  1632     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1635 //-----------------------trap_state_is_recompiled------------------------------
  1636 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1637   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1639 //-----------------------trap_state_set_recompiled-----------------------------
  1640 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1641   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1642   else    return trap_state & ~DS_RECOMPILE_BIT;
  1644 //---------------------------format_trap_state---------------------------------
  1645 // This is used for debugging and diagnostics, including hotspot.log output.
  1646 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1647                                               int trap_state) {
  1648   DeoptReason reason      = trap_state_reason(trap_state);
  1649   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1650   // Re-encode the state from its decoded components.
  1651   int decoded_state = 0;
  1652   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1653     decoded_state = trap_state_add_reason(decoded_state, reason);
  1654   if (recomp_flag)
  1655     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1656   // If the state re-encodes properly, format it symbolically.
  1657   // Because this routine is used for debugging and diagnostics,
  1658   // be robust even if the state is a strange value.
  1659   size_t len;
  1660   if (decoded_state != trap_state) {
  1661     // Random buggy state that doesn't decode??
  1662     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1663   } else {
  1664     len = jio_snprintf(buf, buflen, "%s%s",
  1665                        trap_reason_name(reason),
  1666                        recomp_flag ? " recompiled" : "");
  1668   if (len >= buflen)
  1669     buf[buflen-1] = '\0';
  1670   return buf;
  1674 //--------------------------------statics--------------------------------------
  1675 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1676   = Deoptimization::Action_reinterpret;
  1677 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1678   // Note:  Keep this in sync. with enum DeoptReason.
  1679   "none",
  1680   "null_check",
  1681   "null_assert",
  1682   "range_check",
  1683   "class_check",
  1684   "array_check",
  1685   "intrinsic",
  1686   "bimorphic",
  1687   "unloaded",
  1688   "uninitialized",
  1689   "unreached",
  1690   "unhandled",
  1691   "constraint",
  1692   "div0_check",
  1693   "age",
  1694   "predicate"
  1695 };
  1696 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1697   // Note:  Keep this in sync. with enum DeoptAction.
  1698   "none",
  1699   "maybe_recompile",
  1700   "reinterpret",
  1701   "make_not_entrant",
  1702   "make_not_compilable"
  1703 };
  1705 const char* Deoptimization::trap_reason_name(int reason) {
  1706   if (reason == Reason_many)  return "many";
  1707   if ((uint)reason < Reason_LIMIT)
  1708     return _trap_reason_name[reason];
  1709   static char buf[20];
  1710   sprintf(buf, "reason%d", reason);
  1711   return buf;
  1713 const char* Deoptimization::trap_action_name(int action) {
  1714   if ((uint)action < Action_LIMIT)
  1715     return _trap_action_name[action];
  1716   static char buf[20];
  1717   sprintf(buf, "action%d", action);
  1718   return buf;
  1721 // This is used for debugging and diagnostics, including hotspot.log output.
  1722 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1723                                                 int trap_request) {
  1724   jint unloaded_class_index = trap_request_index(trap_request);
  1725   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1726   const char* action = trap_action_name(trap_request_action(trap_request));
  1727   size_t len;
  1728   if (unloaded_class_index < 0) {
  1729     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1730                        reason, action);
  1731   } else {
  1732     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1733                        reason, action, unloaded_class_index);
  1735   if (len >= buflen)
  1736     buf[buflen-1] = '\0';
  1737   return buf;
  1740 juint Deoptimization::_deoptimization_hist
  1741         [Deoptimization::Reason_LIMIT]
  1742     [1 + Deoptimization::Action_LIMIT]
  1743         [Deoptimization::BC_CASE_LIMIT]
  1744   = {0};
  1746 enum {
  1747   LSB_BITS = 8,
  1748   LSB_MASK = right_n_bits(LSB_BITS)
  1749 };
  1751 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1752                                        Bytecodes::Code bc) {
  1753   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1754   assert(action >= 0 && action < Action_LIMIT, "oob");
  1755   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1756   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1757   juint* cases = _deoptimization_hist[reason][1+action];
  1758   juint* bc_counter_addr = NULL;
  1759   juint  bc_counter      = 0;
  1760   // Look for an unused counter, or an exact match to this BC.
  1761   if (bc != Bytecodes::_illegal) {
  1762     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1763       juint* counter_addr = &cases[bc_case];
  1764       juint  counter = *counter_addr;
  1765       if ((counter == 0 && bc_counter_addr == NULL)
  1766           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1767         // this counter is either free or is already devoted to this BC
  1768         bc_counter_addr = counter_addr;
  1769         bc_counter = counter | bc;
  1773   if (bc_counter_addr == NULL) {
  1774     // Overflow, or no given bytecode.
  1775     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1776     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1778   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1781 jint Deoptimization::total_deoptimization_count() {
  1782   return _deoptimization_hist[Reason_none][0][0];
  1785 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1786   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1787   return _deoptimization_hist[reason][0][0];
  1790 void Deoptimization::print_statistics() {
  1791   juint total = total_deoptimization_count();
  1792   juint account = total;
  1793   if (total != 0) {
  1794     ttyLocker ttyl;
  1795     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1796     tty->print_cr("Deoptimization traps recorded:");
  1797     #define PRINT_STAT_LINE(name, r) \
  1798       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1799     PRINT_STAT_LINE("total", total);
  1800     // For each non-zero entry in the histogram, print the reason,
  1801     // the action, and (if specifically known) the type of bytecode.
  1802     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1803       for (int action = 0; action < Action_LIMIT; action++) {
  1804         juint* cases = _deoptimization_hist[reason][1+action];
  1805         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1806           juint counter = cases[bc_case];
  1807           if (counter != 0) {
  1808             char name[1*K];
  1809             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1810             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1811               bc = Bytecodes::_illegal;
  1812             sprintf(name, "%s/%s/%s",
  1813                     trap_reason_name(reason),
  1814                     trap_action_name(action),
  1815                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1816             juint r = counter >> LSB_BITS;
  1817             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1818             account -= r;
  1823     if (account != 0) {
  1824       PRINT_STAT_LINE("unaccounted", account);
  1826     #undef PRINT_STAT_LINE
  1827     if (xtty != NULL)  xtty->tail("statistics");
  1830 #else // COMPILER2 || SHARK
  1833 // Stubs for C1 only system.
  1834 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1835   return false;
  1838 const char* Deoptimization::trap_reason_name(int reason) {
  1839   return "unknown";
  1842 void Deoptimization::print_statistics() {
  1843   // no output
  1846 void
  1847 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1848   // no udpate
  1851 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1852   return 0;
  1855 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1856                                        Bytecodes::Code bc) {
  1857   // no update
  1860 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1861                                               int trap_state) {
  1862   jio_snprintf(buf, buflen, "#%d", trap_state);
  1863   return buf;
  1866 #endif // COMPILER2 || SHARK

mercurial