src/share/vm/runtime/deoptimization.cpp

Fri, 03 Sep 2010 17:51:07 -0700

author
iveresov
date
Fri, 03 Sep 2010 17:51:07 -0700
changeset 2138
d5d065957597
parent 2047
d2ede61b7a12
child 2169
fd5d4527cdf5
permissions
-rw-r--r--

6953144: Tiered compilation
Summary: Infrastructure for tiered compilation support (interpreter + c1 + c2) for 32 and 64 bit. Simple tiered policy implementation.
Reviewed-by: kvn, never, phh, twisti

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_deoptimization.cpp.incl"
    28 bool DeoptimizationMarker::_is_active = false;
    30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    31                                          int  caller_adjustment,
    32                                          int  number_of_frames,
    33                                          intptr_t* frame_sizes,
    34                                          address* frame_pcs,
    35                                          BasicType return_type) {
    36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    37   _caller_adjustment         = caller_adjustment;
    38   _number_of_frames          = number_of_frames;
    39   _frame_sizes               = frame_sizes;
    40   _frame_pcs                 = frame_pcs;
    41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
    42   _return_type               = return_type;
    43   // PD (x86 only)
    44   _counter_temp              = 0;
    45   _initial_fp                = 0;
    46   _unpack_kind               = 0;
    47   _sender_sp_temp            = 0;
    49   _total_frame_sizes         = size_of_frames();
    50 }
    53 Deoptimization::UnrollBlock::~UnrollBlock() {
    54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
    55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
    56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
    57 }
    60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
    61   assert(register_number < RegisterMap::reg_count, "checking register number");
    62   return &_register_block[register_number * 2];
    63 }
    67 int Deoptimization::UnrollBlock::size_of_frames() const {
    68   // Acount first for the adjustment of the initial frame
    69   int result = _caller_adjustment;
    70   for (int index = 0; index < number_of_frames(); index++) {
    71     result += frame_sizes()[index];
    72   }
    73   return result;
    74 }
    77 void Deoptimization::UnrollBlock::print() {
    78   ttyLocker ttyl;
    79   tty->print_cr("UnrollBlock");
    80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
    81   tty->print(   "  frame_sizes: ");
    82   for (int index = 0; index < number_of_frames(); index++) {
    83     tty->print("%d ", frame_sizes()[index]);
    84   }
    85   tty->cr();
    86 }
    89 // In order to make fetch_unroll_info work properly with escape
    90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
    91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
    92 // of previously eliminated objects occurs in realloc_objects, which is
    93 // called from the method fetch_unroll_info_helper below.
    94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
    95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
    96   // but makes the entry a little slower. There is however a little dance we have to
    97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
    99   // fetch_unroll_info() is called at the beginning of the deoptimization
   100   // handler. Note this fact before we start generating temporary frames
   101   // that can confuse an asynchronous stack walker. This counter is
   102   // decremented at the end of unpack_frames().
   103   thread->inc_in_deopt_handler();
   105   return fetch_unroll_info_helper(thread);
   106 JRT_END
   109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   112   // Note: there is a safepoint safety issue here. No matter whether we enter
   113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   114   // the vframeArray is created.
   115   //
   117   // Allocate our special deoptimization ResourceMark
   118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   120   thread->set_deopt_mark(dmark);
   122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   123   RegisterMap map(thread, true);
   124   RegisterMap dummy_map(thread, false);
   125   // Now get the deoptee with a valid map
   126   frame deoptee = stub_frame.sender(&map);
   128   // Create a growable array of VFrames where each VFrame represents an inlined
   129   // Java frame.  This storage is allocated with the usual system arena.
   130   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   131   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   132   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   133   while (!vf->is_top()) {
   134     assert(vf->is_compiled_frame(), "Wrong frame type");
   135     chunk->push(compiledVFrame::cast(vf));
   136     vf = vf->sender();
   137   }
   138   assert(vf->is_compiled_frame(), "Wrong frame type");
   139   chunk->push(compiledVFrame::cast(vf));
   141 #ifdef COMPILER2
   142   // Reallocate the non-escaping objects and restore their fields. Then
   143   // relock objects if synchronization on them was eliminated.
   144   if (DoEscapeAnalysis) {
   145     if (EliminateAllocations) {
   146       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   147       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   149       // The flag return_oop() indicates call sites which return oop
   150       // in compiled code. Such sites include java method calls,
   151       // runtime calls (for example, used to allocate new objects/arrays
   152       // on slow code path) and any other calls generated in compiled code.
   153       // It is not guaranteed that we can get such information here only
   154       // by analyzing bytecode in deoptimized frames. This is why this flag
   155       // is set during method compilation (see Compile::Process_OopMap_Node()).
   156       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   157       Handle return_value;
   158       if (save_oop_result) {
   159         // Reallocation may trigger GC. If deoptimization happened on return from
   160         // call which returns oop we need to save it since it is not in oopmap.
   161         oop result = deoptee.saved_oop_result(&map);
   162         assert(result == NULL || result->is_oop(), "must be oop");
   163         return_value = Handle(thread, result);
   164         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   165         if (TraceDeoptimization) {
   166           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   167         }
   168       }
   169       bool reallocated = false;
   170       if (objects != NULL) {
   171         JRT_BLOCK
   172           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   173         JRT_END
   174       }
   175       if (reallocated) {
   176         reassign_fields(&deoptee, &map, objects);
   177 #ifndef PRODUCT
   178         if (TraceDeoptimization) {
   179           ttyLocker ttyl;
   180           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   181           print_objects(objects);
   182         }
   183 #endif
   184       }
   185       if (save_oop_result) {
   186         // Restore result.
   187         deoptee.set_saved_oop_result(&map, return_value());
   188       }
   189     }
   190     if (EliminateLocks) {
   191 #ifndef PRODUCT
   192       bool first = true;
   193 #endif
   194       for (int i = 0; i < chunk->length(); i++) {
   195         compiledVFrame* cvf = chunk->at(i);
   196         assert (cvf->scope() != NULL,"expect only compiled java frames");
   197         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   198         if (monitors->is_nonempty()) {
   199           relock_objects(monitors, thread);
   200 #ifndef PRODUCT
   201           if (TraceDeoptimization) {
   202             ttyLocker ttyl;
   203             for (int j = 0; j < monitors->length(); j++) {
   204               MonitorInfo* mi = monitors->at(j);
   205               if (mi->eliminated()) {
   206                 if (first) {
   207                   first = false;
   208                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   209                 }
   210                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   211               }
   212             }
   213           }
   214 #endif
   215         }
   216       }
   217     }
   218   }
   219 #endif // COMPILER2
   220   // Ensure that no safepoint is taken after pointers have been stored
   221   // in fields of rematerialized objects.  If a safepoint occurs from here on
   222   // out the java state residing in the vframeArray will be missed.
   223   No_Safepoint_Verifier no_safepoint;
   225   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   227   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   228   thread->set_vframe_array_head(array);
   230   // Now that the vframeArray has been created if we have any deferred local writes
   231   // added by jvmti then we can free up that structure as the data is now in the
   232   // vframeArray
   234   if (thread->deferred_locals() != NULL) {
   235     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   236     int i = 0;
   237     do {
   238       // Because of inlining we could have multiple vframes for a single frame
   239       // and several of the vframes could have deferred writes. Find them all.
   240       if (list->at(i)->id() == array->original().id()) {
   241         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   242         list->remove_at(i);
   243         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   244         delete dlv;
   245       } else {
   246         i++;
   247       }
   248     } while ( i < list->length() );
   249     if (list->length() == 0) {
   250       thread->set_deferred_locals(NULL);
   251       // free the list and elements back to C heap.
   252       delete list;
   253     }
   255   }
   257 #ifndef SHARK
   258   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   259   CodeBlob* cb = stub_frame.cb();
   260   // Verify we have the right vframeArray
   261   assert(cb->frame_size() >= 0, "Unexpected frame size");
   262   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   264   // If the deopt call site is a MethodHandle invoke call site we have
   265   // to adjust the unpack_sp.
   266   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   267   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   268     unpack_sp = deoptee.unextended_sp();
   270 #ifdef ASSERT
   271   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   272   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   273 #endif
   274 #else
   275   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   276 #endif // !SHARK
   278   // This is a guarantee instead of an assert because if vframe doesn't match
   279   // we will unpack the wrong deoptimized frame and wind up in strange places
   280   // where it will be very difficult to figure out what went wrong. Better
   281   // to die an early death here than some very obscure death later when the
   282   // trail is cold.
   283   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   284   // in that it will fail to detect a problem when there is one. This needs
   285   // more work in tiger timeframe.
   286   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   288   int number_of_frames = array->frames();
   290   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   291   // virtual activation, which is the reverse of the elements in the vframes array.
   292   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   293   // +1 because we always have an interpreter return address for the final slot.
   294   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   295   int callee_parameters = 0;
   296   int callee_locals = 0;
   297   int popframe_extra_args = 0;
   298   // Create an interpreter return address for the stub to use as its return
   299   // address so the skeletal frames are perfectly walkable
   300   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   302   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   303   // activation be put back on the expression stack of the caller for reexecution
   304   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   305     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   306   }
   308   //
   309   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   310   // frame_sizes/frame_pcs[1] next oldest frame (int)
   311   // frame_sizes/frame_pcs[n] youngest frame (int)
   312   //
   313   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   314   // owns the space for the return address to it's caller).  Confusing ain't it.
   315   //
   316   // The vframe array can address vframes with indices running from
   317   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   318   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   319   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   320   // so things look a little strange in this loop.
   321   //
   322   for (int index = 0; index < array->frames(); index++ ) {
   323     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   324     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   325     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   326     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   327                                                                                                     callee_locals,
   328                                                                                                     index == 0,
   329                                                                                                     popframe_extra_args);
   330     // This pc doesn't have to be perfect just good enough to identify the frame
   331     // as interpreted so the skeleton frame will be walkable
   332     // The correct pc will be set when the skeleton frame is completely filled out
   333     // The final pc we store in the loop is wrong and will be overwritten below
   334     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   336     callee_parameters = array->element(index)->method()->size_of_parameters();
   337     callee_locals = array->element(index)->method()->max_locals();
   338     popframe_extra_args = 0;
   339   }
   341   // Compute whether the root vframe returns a float or double value.
   342   BasicType return_type;
   343   {
   344     HandleMark hm;
   345     methodHandle method(thread, array->element(0)->method());
   346     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
   347     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
   348   }
   350   // Compute information for handling adapters and adjusting the frame size of the caller.
   351   int caller_adjustment = 0;
   353   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   354   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   355   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   356   //
   357   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   358   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   360   // Compute the amount the oldest interpreter frame will have to adjust
   361   // its caller's stack by. If the caller is a compiled frame then
   362   // we pretend that the callee has no parameters so that the
   363   // extension counts for the full amount of locals and not just
   364   // locals-parms. This is because without a c2i adapter the parm
   365   // area as created by the compiled frame will not be usable by
   366   // the interpreter. (Depending on the calling convention there
   367   // may not even be enough space).
   369   // QQQ I'd rather see this pushed down into last_frame_adjust
   370   // and have it take the sender (aka caller).
   372   if (deopt_sender.is_compiled_frame()) {
   373     caller_adjustment = last_frame_adjust(0, callee_locals);
   374   } else if (callee_locals > callee_parameters) {
   375     // The caller frame may need extending to accommodate
   376     // non-parameter locals of the first unpacked interpreted frame.
   377     // Compute that adjustment.
   378     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   379   }
   382   // If the sender is deoptimized the we must retrieve the address of the handler
   383   // since the frame will "magically" show the original pc before the deopt
   384   // and we'd undo the deopt.
   386   frame_pcs[0] = deopt_sender.raw_pc();
   388 #ifndef SHARK
   389   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   390 #endif // SHARK
   392   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   393                                       caller_adjustment * BytesPerWord,
   394                                       number_of_frames,
   395                                       frame_sizes,
   396                                       frame_pcs,
   397                                       return_type);
   398 #if defined(IA32) || defined(AMD64)
   399   // We need a way to pass fp to the unpacking code so the skeletal frames
   400   // come out correct. This is only needed for x86 because of c2 using ebp
   401   // as an allocatable register. So this update is useless (and harmless)
   402   // on the other platforms. It would be nice to do this in a different
   403   // way but even the old style deoptimization had a problem with deriving
   404   // this value. NEEDS_CLEANUP
   405   // Note: now that c1 is using c2's deopt blob we must do this on all
   406   // x86 based platforms
   407   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
   408   *fp_addr = array->sender().fp(); // was adapter_caller
   409 #endif /* IA32 || AMD64 */
   411   if (array->frames() > 1) {
   412     if (VerifyStack && TraceDeoptimization) {
   413       tty->print_cr("Deoptimizing method containing inlining");
   414     }
   415   }
   417   array->set_unroll_block(info);
   418   return info;
   419 }
   421 // Called to cleanup deoptimization data structures in normal case
   422 // after unpacking to stack and when stack overflow error occurs
   423 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   424                                         vframeArray *array) {
   426   // Get array if coming from exception
   427   if (array == NULL) {
   428     array = thread->vframe_array_head();
   429   }
   430   thread->set_vframe_array_head(NULL);
   432   // Free the previous UnrollBlock
   433   vframeArray* old_array = thread->vframe_array_last();
   434   thread->set_vframe_array_last(array);
   436   if (old_array != NULL) {
   437     UnrollBlock* old_info = old_array->unroll_block();
   438     old_array->set_unroll_block(NULL);
   439     delete old_info;
   440     delete old_array;
   441   }
   443   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   444   // inside the vframeArray (StackValueCollections)
   446   delete thread->deopt_mark();
   447   thread->set_deopt_mark(NULL);
   450   if (JvmtiExport::can_pop_frame()) {
   451 #ifndef CC_INTERP
   452     // Regardless of whether we entered this routine with the pending
   453     // popframe condition bit set, we should always clear it now
   454     thread->clear_popframe_condition();
   455 #else
   456     // C++ interpeter will clear has_pending_popframe when it enters
   457     // with method_resume. For deopt_resume2 we clear it now.
   458     if (thread->popframe_forcing_deopt_reexecution())
   459         thread->clear_popframe_condition();
   460 #endif /* CC_INTERP */
   461   }
   463   // unpack_frames() is called at the end of the deoptimization handler
   464   // and (in C2) at the end of the uncommon trap handler. Note this fact
   465   // so that an asynchronous stack walker can work again. This counter is
   466   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   467   // the beginning of uncommon_trap().
   468   thread->dec_in_deopt_handler();
   469 }
   472 // Return BasicType of value being returned
   473 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   475   // We are already active int he special DeoptResourceMark any ResourceObj's we
   476   // allocate will be freed at the end of the routine.
   478   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   479   // but makes the entry a little slower. There is however a little dance we have to
   480   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   481   ResetNoHandleMark rnhm; // No-op in release/product versions
   482   HandleMark hm;
   484   frame stub_frame = thread->last_frame();
   486   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   487   // must point to the vframeArray for the unpack frame.
   488   vframeArray* array = thread->vframe_array_head();
   490 #ifndef PRODUCT
   491   if (TraceDeoptimization) {
   492     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   493   }
   494 #endif
   496   UnrollBlock* info = array->unroll_block();
   498   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   499   array->unpack_to_stack(stub_frame, exec_mode);
   501   BasicType bt = info->return_type();
   503   // If we have an exception pending, claim that the return type is an oop
   504   // so the deopt_blob does not overwrite the exception_oop.
   506   if (exec_mode == Unpack_exception)
   507     bt = T_OBJECT;
   509   // Cleanup thread deopt data
   510   cleanup_deopt_info(thread, array);
   512 #ifndef PRODUCT
   513   if (VerifyStack) {
   514     ResourceMark res_mark;
   516     // Verify that the just-unpacked frames match the interpreter's
   517     // notions of expression stack and locals
   518     vframeArray* cur_array = thread->vframe_array_last();
   519     RegisterMap rm(thread, false);
   520     rm.set_include_argument_oops(false);
   521     bool is_top_frame = true;
   522     int callee_size_of_parameters = 0;
   523     int callee_max_locals = 0;
   524     for (int i = 0; i < cur_array->frames(); i++) {
   525       vframeArrayElement* el = cur_array->element(i);
   526       frame* iframe = el->iframe();
   527       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   529       // Get the oop map for this bci
   530       InterpreterOopMap mask;
   531       int cur_invoke_parameter_size = 0;
   532       bool try_next_mask = false;
   533       int next_mask_expression_stack_size = -1;
   534       int top_frame_expression_stack_adjustment = 0;
   535       methodHandle mh(thread, iframe->interpreter_frame_method());
   536       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   537       BytecodeStream str(mh);
   538       str.set_start(iframe->interpreter_frame_bci());
   539       int max_bci = mh->code_size();
   540       // Get to the next bytecode if possible
   541       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   542       // Check to see if we can grab the number of outgoing arguments
   543       // at an uncommon trap for an invoke (where the compiler
   544       // generates debug info before the invoke has executed)
   545       Bytecodes::Code cur_code = str.next();
   546       if (cur_code == Bytecodes::_invokevirtual ||
   547           cur_code == Bytecodes::_invokespecial ||
   548           cur_code == Bytecodes::_invokestatic  ||
   549           cur_code == Bytecodes::_invokeinterface) {
   550         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
   551         symbolHandle signature(thread, invoke->signature());
   552         ArgumentSizeComputer asc(signature);
   553         cur_invoke_parameter_size = asc.size();
   554         if (cur_code != Bytecodes::_invokestatic) {
   555           // Add in receiver
   556           ++cur_invoke_parameter_size;
   557         }
   558       }
   559       if (str.bci() < max_bci) {
   560         Bytecodes::Code bc = str.next();
   561         if (bc >= 0) {
   562           // The interpreter oop map generator reports results before
   563           // the current bytecode has executed except in the case of
   564           // calls. It seems to be hard to tell whether the compiler
   565           // has emitted debug information matching the "state before"
   566           // a given bytecode or the state after, so we try both
   567           switch (cur_code) {
   568             case Bytecodes::_invokevirtual:
   569             case Bytecodes::_invokespecial:
   570             case Bytecodes::_invokestatic:
   571             case Bytecodes::_invokeinterface:
   572             case Bytecodes::_athrow:
   573               break;
   574             default: {
   575               InterpreterOopMap next_mask;
   576               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   577               next_mask_expression_stack_size = next_mask.expression_stack_size();
   578               // Need to subtract off the size of the result type of
   579               // the bytecode because this is not described in the
   580               // debug info but returned to the interpreter in the TOS
   581               // caching register
   582               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   583               if (bytecode_result_type != T_ILLEGAL) {
   584                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   585               }
   586               assert(top_frame_expression_stack_adjustment >= 0, "");
   587               try_next_mask = true;
   588               break;
   589             }
   590           }
   591         }
   592       }
   594       // Verify stack depth and oops in frame
   595       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   596       if (!(
   597             /* SPARC */
   598             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   599             /* x86 */
   600             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   601             (try_next_mask &&
   602              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   603                                                                     top_frame_expression_stack_adjustment))) ||
   604             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   605             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   606              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   607             )) {
   608         ttyLocker ttyl;
   610         // Print out some information that will help us debug the problem
   611         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   612         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   613         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   614                       iframe->interpreter_frame_expression_stack_size());
   615         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   616         tty->print_cr("  try_next_mask = %d", try_next_mask);
   617         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   618         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   619         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   620         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   621         tty->print_cr("  exec_mode = %d", exec_mode);
   622         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   623         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   624         tty->print_cr("  Interpreted frames:");
   625         for (int k = 0; k < cur_array->frames(); k++) {
   626           vframeArrayElement* el = cur_array->element(k);
   627           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   628         }
   629         cur_array->print_on_2(tty);
   630         guarantee(false, "wrong number of expression stack elements during deopt");
   631       }
   632       VerifyOopClosure verify;
   633       iframe->oops_interpreted_do(&verify, &rm, false);
   634       callee_size_of_parameters = mh->size_of_parameters();
   635       callee_max_locals = mh->max_locals();
   636       is_top_frame = false;
   637     }
   638   }
   639 #endif /* !PRODUCT */
   642   return bt;
   643 JRT_END
   646 int Deoptimization::deoptimize_dependents() {
   647   Threads::deoptimized_wrt_marked_nmethods();
   648   return 0;
   649 }
   652 #ifdef COMPILER2
   653 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   654   Handle pending_exception(thread->pending_exception());
   655   const char* exception_file = thread->exception_file();
   656   int exception_line = thread->exception_line();
   657   thread->clear_pending_exception();
   659   for (int i = 0; i < objects->length(); i++) {
   660     assert(objects->at(i)->is_object(), "invalid debug information");
   661     ObjectValue* sv = (ObjectValue*) objects->at(i);
   663     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   664     oop obj = NULL;
   666     if (k->oop_is_instance()) {
   667       instanceKlass* ik = instanceKlass::cast(k());
   668       obj = ik->allocate_instance(CHECK_(false));
   669     } else if (k->oop_is_typeArray()) {
   670       typeArrayKlass* ak = typeArrayKlass::cast(k());
   671       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   672       int len = sv->field_size() / type2size[ak->element_type()];
   673       obj = ak->allocate(len, CHECK_(false));
   674     } else if (k->oop_is_objArray()) {
   675       objArrayKlass* ak = objArrayKlass::cast(k());
   676       obj = ak->allocate(sv->field_size(), CHECK_(false));
   677     }
   679     assert(obj != NULL, "allocation failed");
   680     assert(sv->value().is_null(), "redundant reallocation");
   681     sv->set_value(obj);
   682   }
   684   if (pending_exception.not_null()) {
   685     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   686   }
   688   return true;
   689 }
   691 // This assumes that the fields are stored in ObjectValue in the same order
   692 // they are yielded by do_nonstatic_fields.
   693 class FieldReassigner: public FieldClosure {
   694   frame* _fr;
   695   RegisterMap* _reg_map;
   696   ObjectValue* _sv;
   697   instanceKlass* _ik;
   698   oop _obj;
   700   int _i;
   701 public:
   702   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   703     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   705   int i() const { return _i; }
   708   void do_field(fieldDescriptor* fd) {
   709     intptr_t val;
   710     StackValue* value =
   711       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   712     int offset = fd->offset();
   713     switch (fd->field_type()) {
   714     case T_OBJECT: case T_ARRAY:
   715       assert(value->type() == T_OBJECT, "Agreement.");
   716       _obj->obj_field_put(offset, value->get_obj()());
   717       break;
   719     case T_LONG: case T_DOUBLE: {
   720       assert(value->type() == T_INT, "Agreement.");
   721       StackValue* low =
   722         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   723 #ifdef _LP64
   724       jlong res = (jlong)low->get_int();
   725 #else
   726 #ifdef SPARC
   727       // For SPARC we have to swap high and low words.
   728       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   729 #else
   730       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   731 #endif //SPARC
   732 #endif
   733       _obj->long_field_put(offset, res);
   734       break;
   735     }
   736     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   737     case T_INT: case T_FLOAT: // 4 bytes.
   738       assert(value->type() == T_INT, "Agreement.");
   739       val = value->get_int();
   740       _obj->int_field_put(offset, (jint)*((jint*)&val));
   741       break;
   743     case T_SHORT: case T_CHAR: // 2 bytes
   744       assert(value->type() == T_INT, "Agreement.");
   745       val = value->get_int();
   746       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   747       break;
   749     case T_BOOLEAN: case T_BYTE: // 1 byte
   750       assert(value->type() == T_INT, "Agreement.");
   751       val = value->get_int();
   752       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   753       break;
   755     default:
   756       ShouldNotReachHere();
   757     }
   758     _i++;
   759   }
   760 };
   762 // restore elements of an eliminated type array
   763 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   764   int index = 0;
   765   intptr_t val;
   767   for (int i = 0; i < sv->field_size(); i++) {
   768     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   769     switch(type) {
   770     case T_LONG: case T_DOUBLE: {
   771       assert(value->type() == T_INT, "Agreement.");
   772       StackValue* low =
   773         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   774 #ifdef _LP64
   775       jlong res = (jlong)low->get_int();
   776 #else
   777 #ifdef SPARC
   778       // For SPARC we have to swap high and low words.
   779       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   780 #else
   781       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   782 #endif //SPARC
   783 #endif
   784       obj->long_at_put(index, res);
   785       break;
   786     }
   788     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   789     case T_INT: case T_FLOAT: // 4 bytes.
   790       assert(value->type() == T_INT, "Agreement.");
   791       val = value->get_int();
   792       obj->int_at_put(index, (jint)*((jint*)&val));
   793       break;
   795     case T_SHORT: case T_CHAR: // 2 bytes
   796       assert(value->type() == T_INT, "Agreement.");
   797       val = value->get_int();
   798       obj->short_at_put(index, (jshort)*((jint*)&val));
   799       break;
   801     case T_BOOLEAN: case T_BYTE: // 1 byte
   802       assert(value->type() == T_INT, "Agreement.");
   803       val = value->get_int();
   804       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   805       break;
   807       default:
   808         ShouldNotReachHere();
   809     }
   810     index++;
   811   }
   812 }
   815 // restore fields of an eliminated object array
   816 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   817   for (int i = 0; i < sv->field_size(); i++) {
   818     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   819     assert(value->type() == T_OBJECT, "object element expected");
   820     obj->obj_at_put(i, value->get_obj()());
   821   }
   822 }
   825 // restore fields of all eliminated objects and arrays
   826 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   827   for (int i = 0; i < objects->length(); i++) {
   828     ObjectValue* sv = (ObjectValue*) objects->at(i);
   829     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   830     Handle obj = sv->value();
   831     assert(obj.not_null(), "reallocation was missed");
   833     if (k->oop_is_instance()) {
   834       instanceKlass* ik = instanceKlass::cast(k());
   835       FieldReassigner reassign(fr, reg_map, sv, obj());
   836       ik->do_nonstatic_fields(&reassign);
   837     } else if (k->oop_is_typeArray()) {
   838       typeArrayKlass* ak = typeArrayKlass::cast(k());
   839       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   840     } else if (k->oop_is_objArray()) {
   841       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   842     }
   843   }
   844 }
   847 // relock objects for which synchronization was eliminated
   848 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   849   for (int i = 0; i < monitors->length(); i++) {
   850     MonitorInfo* mon_info = monitors->at(i);
   851     if (mon_info->eliminated()) {
   852       assert(mon_info->owner() != NULL, "reallocation was missed");
   853       Handle obj = Handle(mon_info->owner());
   854       markOop mark = obj->mark();
   855       if (UseBiasedLocking && mark->has_bias_pattern()) {
   856         // New allocated objects may have the mark set to anonymously biased.
   857         // Also the deoptimized method may called methods with synchronization
   858         // where the thread-local object is bias locked to the current thread.
   859         assert(mark->is_biased_anonymously() ||
   860                mark->biased_locker() == thread, "should be locked to current thread");
   861         // Reset mark word to unbiased prototype.
   862         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   863         obj->set_mark(unbiased_prototype);
   864       }
   865       BasicLock* lock = mon_info->lock();
   866       ObjectSynchronizer::slow_enter(obj, lock, thread);
   867     }
   868     assert(mon_info->owner()->is_locked(), "object must be locked now");
   869   }
   870 }
   873 #ifndef PRODUCT
   874 // print information about reallocated objects
   875 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   876   fieldDescriptor fd;
   878   for (int i = 0; i < objects->length(); i++) {
   879     ObjectValue* sv = (ObjectValue*) objects->at(i);
   880     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   881     Handle obj = sv->value();
   883     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   884     k->as_klassOop()->print_value();
   885     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   886     tty->cr();
   888     if (Verbose) {
   889       k->oop_print_on(obj(), tty);
   890     }
   891   }
   892 }
   893 #endif
   894 #endif // COMPILER2
   896 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   898 #ifndef PRODUCT
   899   if (TraceDeoptimization) {
   900     ttyLocker ttyl;
   901     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   902     fr.print_on(tty);
   903     tty->print_cr("     Virtual frames (innermost first):");
   904     for (int index = 0; index < chunk->length(); index++) {
   905       compiledVFrame* vf = chunk->at(index);
   906       tty->print("       %2d - ", index);
   907       vf->print_value();
   908       int bci = chunk->at(index)->raw_bci();
   909       const char* code_name;
   910       if (bci == SynchronizationEntryBCI) {
   911         code_name = "sync entry";
   912       } else {
   913         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
   914         code_name = Bytecodes::name(code);
   915       }
   916       tty->print(" - %s", code_name);
   917       tty->print_cr(" @ bci %d ", bci);
   918       if (Verbose) {
   919         vf->print();
   920         tty->cr();
   921       }
   922     }
   923   }
   924 #endif
   926   // Register map for next frame (used for stack crawl).  We capture
   927   // the state of the deopt'ing frame's caller.  Thus if we need to
   928   // stuff a C2I adapter we can properly fill in the callee-save
   929   // register locations.
   930   frame caller = fr.sender(reg_map);
   931   int frame_size = caller.sp() - fr.sp();
   933   frame sender = caller;
   935   // Since the Java thread being deoptimized will eventually adjust it's own stack,
   936   // the vframeArray containing the unpacking information is allocated in the C heap.
   937   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
   938   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
   940   // Compare the vframeArray to the collected vframes
   941   assert(array->structural_compare(thread, chunk), "just checking");
   942   Events::log("# vframes = %d", (intptr_t)chunk->length());
   944 #ifndef PRODUCT
   945   if (TraceDeoptimization) {
   946     ttyLocker ttyl;
   947     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
   948   }
   949 #endif // PRODUCT
   951   return array;
   952 }
   955 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
   956   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   957   for (int i = 0; i < monitors->length(); i++) {
   958     MonitorInfo* mon_info = monitors->at(i);
   959     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
   960       objects_to_revoke->append(Handle(mon_info->owner()));
   961     }
   962   }
   963 }
   966 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
   967   if (!UseBiasedLocking) {
   968     return;
   969   }
   971   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
   973   // Unfortunately we don't have a RegisterMap available in most of
   974   // the places we want to call this routine so we need to walk the
   975   // stack again to update the register map.
   976   if (map == NULL || !map->update_map()) {
   977     StackFrameStream sfs(thread, true);
   978     bool found = false;
   979     while (!found && !sfs.is_done()) {
   980       frame* cur = sfs.current();
   981       sfs.next();
   982       found = cur->id() == fr.id();
   983     }
   984     assert(found, "frame to be deoptimized not found on target thread's stack");
   985     map = sfs.register_map();
   986   }
   988   vframe* vf = vframe::new_vframe(&fr, map, thread);
   989   compiledVFrame* cvf = compiledVFrame::cast(vf);
   990   // Revoke monitors' biases in all scopes
   991   while (!cvf->is_top()) {
   992     collect_monitors(cvf, objects_to_revoke);
   993     cvf = compiledVFrame::cast(cvf->sender());
   994   }
   995   collect_monitors(cvf, objects_to_revoke);
   997   if (SafepointSynchronize::is_at_safepoint()) {
   998     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
   999   } else {
  1000     BiasedLocking::revoke(objects_to_revoke);
  1005 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1006   if (!UseBiasedLocking) {
  1007     return;
  1010   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1011   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1012   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1013     if (jt->has_last_Java_frame()) {
  1014       StackFrameStream sfs(jt, true);
  1015       while (!sfs.is_done()) {
  1016         frame* cur = sfs.current();
  1017         if (cb->contains(cur->pc())) {
  1018           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1019           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1020           // Revoke monitors' biases in all scopes
  1021           while (!cvf->is_top()) {
  1022             collect_monitors(cvf, objects_to_revoke);
  1023             cvf = compiledVFrame::cast(cvf->sender());
  1025           collect_monitors(cvf, objects_to_revoke);
  1027         sfs.next();
  1031   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1035 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1036   assert(fr.can_be_deoptimized(), "checking frame type");
  1038   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1040   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1042   // Patch the nmethod so that when execution returns to it we will
  1043   // deopt the execution state and return to the interpreter.
  1044   fr.deoptimize(thread);
  1047 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1048   // Deoptimize only if the frame comes from compile code.
  1049   // Do not deoptimize the frame which is already patched
  1050   // during the execution of the loops below.
  1051   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1052     return;
  1054   ResourceMark rm;
  1055   DeoptimizationMarker dm;
  1056   if (UseBiasedLocking) {
  1057     revoke_biases_of_monitors(thread, fr, map);
  1059   deoptimize_single_frame(thread, fr);
  1064 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1065   // Compute frame and register map based on thread and sp.
  1066   RegisterMap reg_map(thread, UseBiasedLocking);
  1067   frame fr = thread->last_frame();
  1068   while (fr.id() != id) {
  1069     fr = fr.sender(&reg_map);
  1071   deoptimize(thread, fr, &reg_map);
  1075 // JVMTI PopFrame support
  1076 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1078   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1080 JRT_END
  1083 #if defined(COMPILER2) || defined(SHARK)
  1084 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1085   // in case of an unresolved klass entry, load the class.
  1086   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1087     klassOop tk = constant_pool->klass_at(index, CHECK);
  1088     return;
  1091   if (!constant_pool->tag_at(index).is_symbol()) return;
  1093   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1094   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
  1096   // class name?
  1097   if (symbol->byte_at(0) != '(') {
  1098     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1099     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1100     return;
  1103   // then it must be a signature!
  1104   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1105     if (ss.is_object()) {
  1106       symbolOop s = ss.as_symbol(CHECK);
  1107       symbolHandle class_name (THREAD, s);
  1108       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1109       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1115 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1116   EXCEPTION_MARK;
  1117   load_class_by_index(constant_pool, index, THREAD);
  1118   if (HAS_PENDING_EXCEPTION) {
  1119     // Exception happened during classloading. We ignore the exception here, since it
  1120     // is going to be rethrown since the current activation is going to be deoptimzied and
  1121     // the interpreter will re-execute the bytecode.
  1122     CLEAR_PENDING_EXCEPTION;
  1126 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1127   HandleMark hm;
  1129   // uncommon_trap() is called at the beginning of the uncommon trap
  1130   // handler. Note this fact before we start generating temporary frames
  1131   // that can confuse an asynchronous stack walker. This counter is
  1132   // decremented at the end of unpack_frames().
  1133   thread->inc_in_deopt_handler();
  1135   // We need to update the map if we have biased locking.
  1136   RegisterMap reg_map(thread, UseBiasedLocking);
  1137   frame stub_frame = thread->last_frame();
  1138   frame fr = stub_frame.sender(&reg_map);
  1139   // Make sure the calling nmethod is not getting deoptimized and removed
  1140   // before we are done with it.
  1141   nmethodLocker nl(fr.pc());
  1144     ResourceMark rm;
  1146     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1147     revoke_biases_of_monitors(thread, fr, &reg_map);
  1149     DeoptReason reason = trap_request_reason(trap_request);
  1150     DeoptAction action = trap_request_action(trap_request);
  1151     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1153     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1154     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1155     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1157     nmethod* nm = cvf->code();
  1159     ScopeDesc*      trap_scope  = cvf->scope();
  1160     methodHandle    trap_method = trap_scope->method();
  1161     int             trap_bci    = trap_scope->bci();
  1162     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
  1164     // Record this event in the histogram.
  1165     gather_statistics(reason, action, trap_bc);
  1167     // Ensure that we can record deopt. history:
  1168     bool create_if_missing = ProfileTraps;
  1170     methodDataHandle trap_mdo
  1171       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1173     // Print a bunch of diagnostics, if requested.
  1174     if (TraceDeoptimization || LogCompilation) {
  1175       ResourceMark rm;
  1176       ttyLocker ttyl;
  1177       char buf[100];
  1178       if (xtty != NULL) {
  1179         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1180                          os::current_thread_id(),
  1181                          format_trap_request(buf, sizeof(buf), trap_request));
  1182         nm->log_identity(xtty);
  1184       symbolHandle class_name;
  1185       bool unresolved = false;
  1186       if (unloaded_class_index >= 0) {
  1187         constantPoolHandle constants (THREAD, trap_method->constants());
  1188         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1189           class_name = symbolHandle(THREAD,
  1190             constants->klass_name_at(unloaded_class_index));
  1191           unresolved = true;
  1192           if (xtty != NULL)
  1193             xtty->print(" unresolved='1'");
  1194         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1195           class_name = symbolHandle(THREAD,
  1196             constants->symbol_at(unloaded_class_index));
  1198         if (xtty != NULL)
  1199           xtty->name(class_name);
  1201       if (xtty != NULL && trap_mdo.not_null()) {
  1202         // Dump the relevant MDO state.
  1203         // This is the deopt count for the current reason, any previous
  1204         // reasons or recompiles seen at this point.
  1205         int dcnt = trap_mdo->trap_count(reason);
  1206         if (dcnt != 0)
  1207           xtty->print(" count='%d'", dcnt);
  1208         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1209         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1210         if (dos != 0) {
  1211           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1212           if (trap_state_is_recompiled(dos)) {
  1213             int recnt2 = trap_mdo->overflow_recompile_count();
  1214             if (recnt2 != 0)
  1215               xtty->print(" recompiles2='%d'", recnt2);
  1219       if (xtty != NULL) {
  1220         xtty->stamp();
  1221         xtty->end_head();
  1223       if (TraceDeoptimization) {  // make noise on the tty
  1224         tty->print("Uncommon trap occurred in");
  1225         nm->method()->print_short_name(tty);
  1226         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1227                    fr.pc(),
  1228                    (int) os::current_thread_id(),
  1229                    trap_reason_name(reason),
  1230                    trap_action_name(action),
  1231                    unloaded_class_index);
  1232         if (class_name.not_null()) {
  1233           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1234           class_name->print_symbol_on(tty);
  1236         tty->cr();
  1238       if (xtty != NULL) {
  1239         // Log the precise location of the trap.
  1240         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1241           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1242           xtty->method(sd->method());
  1243           xtty->end_elem();
  1244           if (sd->is_top())  break;
  1246         xtty->tail("uncommon_trap");
  1249     // (End diagnostic printout.)
  1251     // Load class if necessary
  1252     if (unloaded_class_index >= 0) {
  1253       constantPoolHandle constants(THREAD, trap_method->constants());
  1254       load_class_by_index(constants, unloaded_class_index);
  1257     // Flush the nmethod if necessary and desirable.
  1258     //
  1259     // We need to avoid situations where we are re-flushing the nmethod
  1260     // because of a hot deoptimization site.  Repeated flushes at the same
  1261     // point need to be detected by the compiler and avoided.  If the compiler
  1262     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1263     // module must take measures to avoid an infinite cycle of recompilation
  1264     // and deoptimization.  There are several such measures:
  1265     //
  1266     //   1. If a recompilation is ordered a second time at some site X
  1267     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1268     //   to give the interpreter time to exercise the method more thoroughly.
  1269     //   If this happens, the method's overflow_recompile_count is incremented.
  1270     //
  1271     //   2. If the compiler fails to reduce the deoptimization rate, then
  1272     //   the method's overflow_recompile_count will begin to exceed the set
  1273     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1274     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1275     //   to the interpreter.  This is a performance hit for hot methods,
  1276     //   but is better than a disastrous infinite cycle of recompilations.
  1277     //   (Actually, only the method containing the site X is abandoned.)
  1278     //
  1279     //   3. In parallel with the previous measures, if the total number of
  1280     //   recompilations of a method exceeds the much larger set limit
  1281     //   PerMethodRecompilationCutoff, the method is abandoned.
  1282     //   This should only happen if the method is very large and has
  1283     //   many "lukewarm" deoptimizations.  The code which enforces this
  1284     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1285     //
  1286     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1287     // to recompile at each bytecode independently of the per-BCI cutoff.
  1288     //
  1289     // The decision to update code is up to the compiler, and is encoded
  1290     // in the Action_xxx code.  If the compiler requests Action_none
  1291     // no trap state is changed, no compiled code is changed, and the
  1292     // computation suffers along in the interpreter.
  1293     //
  1294     // The other action codes specify various tactics for decompilation
  1295     // and recompilation.  Action_maybe_recompile is the loosest, and
  1296     // allows the compiled code to stay around until enough traps are seen,
  1297     // and until the compiler gets around to recompiling the trapping method.
  1298     //
  1299     // The other actions cause immediate removal of the present code.
  1301     bool update_trap_state = true;
  1302     bool make_not_entrant = false;
  1303     bool make_not_compilable = false;
  1304     bool reprofile = false;
  1305     switch (action) {
  1306     case Action_none:
  1307       // Keep the old code.
  1308       update_trap_state = false;
  1309       break;
  1310     case Action_maybe_recompile:
  1311       // Do not need to invalidate the present code, but we can
  1312       // initiate another
  1313       // Start compiler without (necessarily) invalidating the nmethod.
  1314       // The system will tolerate the old code, but new code should be
  1315       // generated when possible.
  1316       break;
  1317     case Action_reinterpret:
  1318       // Go back into the interpreter for a while, and then consider
  1319       // recompiling form scratch.
  1320       make_not_entrant = true;
  1321       // Reset invocation counter for outer most method.
  1322       // This will allow the interpreter to exercise the bytecodes
  1323       // for a while before recompiling.
  1324       // By contrast, Action_make_not_entrant is immediate.
  1325       //
  1326       // Note that the compiler will track null_check, null_assert,
  1327       // range_check, and class_check events and log them as if they
  1328       // had been traps taken from compiled code.  This will update
  1329       // the MDO trap history so that the next compilation will
  1330       // properly detect hot trap sites.
  1331       reprofile = true;
  1332       break;
  1333     case Action_make_not_entrant:
  1334       // Request immediate recompilation, and get rid of the old code.
  1335       // Make them not entrant, so next time they are called they get
  1336       // recompiled.  Unloaded classes are loaded now so recompile before next
  1337       // time they are called.  Same for uninitialized.  The interpreter will
  1338       // link the missing class, if any.
  1339       make_not_entrant = true;
  1340       break;
  1341     case Action_make_not_compilable:
  1342       // Give up on compiling this method at all.
  1343       make_not_entrant = true;
  1344       make_not_compilable = true;
  1345       break;
  1346     default:
  1347       ShouldNotReachHere();
  1350     // Setting +ProfileTraps fixes the following, on all platforms:
  1351     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1352     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1353     // recompile relies on a methodDataOop to record heroic opt failures.
  1355     // Whether the interpreter is producing MDO data or not, we also need
  1356     // to use the MDO to detect hot deoptimization points and control
  1357     // aggressive optimization.
  1358     bool inc_recompile_count = false;
  1359     ProfileData* pdata = NULL;
  1360     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1361       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1362       uint this_trap_count = 0;
  1363       bool maybe_prior_trap = false;
  1364       bool maybe_prior_recompile = false;
  1365       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1366                                    //outputs:
  1367                                    this_trap_count,
  1368                                    maybe_prior_trap,
  1369                                    maybe_prior_recompile);
  1370       // Because the interpreter also counts null, div0, range, and class
  1371       // checks, these traps from compiled code are double-counted.
  1372       // This is harmless; it just means that the PerXTrapLimit values
  1373       // are in effect a little smaller than they look.
  1375       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1376       if (per_bc_reason != Reason_none) {
  1377         // Now take action based on the partially known per-BCI history.
  1378         if (maybe_prior_trap
  1379             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1380           // If there are too many traps at this BCI, force a recompile.
  1381           // This will allow the compiler to see the limit overflow, and
  1382           // take corrective action, if possible.  The compiler generally
  1383           // does not use the exact PerBytecodeTrapLimit value, but instead
  1384           // changes its tactics if it sees any traps at all.  This provides
  1385           // a little hysteresis, delaying a recompile until a trap happens
  1386           // several times.
  1387           //
  1388           // Actually, since there is only one bit of counter per BCI,
  1389           // the possible per-BCI counts are {0,1,(per-method count)}.
  1390           // This produces accurate results if in fact there is only
  1391           // one hot trap site, but begins to get fuzzy if there are
  1392           // many sites.  For example, if there are ten sites each
  1393           // trapping two or more times, they each get the blame for
  1394           // all of their traps.
  1395           make_not_entrant = true;
  1398         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1399         if (make_not_entrant && maybe_prior_recompile) {
  1400           // More than one recompile at this point.
  1401           inc_recompile_count = maybe_prior_trap;
  1403       } else {
  1404         // For reasons which are not recorded per-bytecode, we simply
  1405         // force recompiles unconditionally.
  1406         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1407         make_not_entrant = true;
  1410       // Go back to the compiler if there are too many traps in this method.
  1411       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1412         // If there are too many traps in this method, force a recompile.
  1413         // This will allow the compiler to see the limit overflow, and
  1414         // take corrective action, if possible.
  1415         // (This condition is an unlikely backstop only, because the
  1416         // PerBytecodeTrapLimit is more likely to take effect first,
  1417         // if it is applicable.)
  1418         make_not_entrant = true;
  1421       // Here's more hysteresis:  If there has been a recompile at
  1422       // this trap point already, run the method in the interpreter
  1423       // for a while to exercise it more thoroughly.
  1424       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1425         reprofile = true;
  1430     // Take requested actions on the method:
  1432     // Recompile
  1433     if (make_not_entrant) {
  1434       if (!nm->make_not_entrant()) {
  1435         return; // the call did not change nmethod's state
  1438       if (pdata != NULL) {
  1439         // Record the recompilation event, if any.
  1440         int tstate0 = pdata->trap_state();
  1441         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1442         if (tstate1 != tstate0)
  1443           pdata->set_trap_state(tstate1);
  1447     if (inc_recompile_count) {
  1448       trap_mdo->inc_overflow_recompile_count();
  1449       if ((uint)trap_mdo->overflow_recompile_count() >
  1450           (uint)PerBytecodeRecompilationCutoff) {
  1451         // Give up on the method containing the bad BCI.
  1452         if (trap_method() == nm->method()) {
  1453           make_not_compilable = true;
  1454         } else {
  1455           trap_method->set_not_compilable(CompLevel_full_optimization);
  1456           // But give grace to the enclosing nm->method().
  1461     // Reprofile
  1462     if (reprofile) {
  1463       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1466     // Give up compiling
  1467     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1468       assert(make_not_entrant, "consistent");
  1469       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1472   } // Free marked resources
  1475 JRT_END
  1477 methodDataOop
  1478 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1479                                 bool create_if_missing) {
  1480   Thread* THREAD = thread;
  1481   methodDataOop mdo = m()->method_data();
  1482   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1483     // Build an MDO.  Ignore errors like OutOfMemory;
  1484     // that simply means we won't have an MDO to update.
  1485     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1486     if (HAS_PENDING_EXCEPTION) {
  1487       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1488       CLEAR_PENDING_EXCEPTION;
  1490     mdo = m()->method_data();
  1492   return mdo;
  1495 ProfileData*
  1496 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1497                                          int trap_bci,
  1498                                          Deoptimization::DeoptReason reason,
  1499                                          //outputs:
  1500                                          uint& ret_this_trap_count,
  1501                                          bool& ret_maybe_prior_trap,
  1502                                          bool& ret_maybe_prior_recompile) {
  1503   uint prior_trap_count = trap_mdo->trap_count(reason);
  1504   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1506   // If the runtime cannot find a place to store trap history,
  1507   // it is estimated based on the general condition of the method.
  1508   // If the method has ever been recompiled, or has ever incurred
  1509   // a trap with the present reason , then this BCI is assumed
  1510   // (pessimistically) to be the culprit.
  1511   bool maybe_prior_trap      = (prior_trap_count != 0);
  1512   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1513   ProfileData* pdata = NULL;
  1516   // For reasons which are recorded per bytecode, we check per-BCI data.
  1517   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1518   if (per_bc_reason != Reason_none) {
  1519     // Find the profile data for this BCI.  If there isn't one,
  1520     // try to allocate one from the MDO's set of spares.
  1521     // This will let us detect a repeated trap at this point.
  1522     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1524     if (pdata != NULL) {
  1525       // Query the trap state of this profile datum.
  1526       int tstate0 = pdata->trap_state();
  1527       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1528         maybe_prior_trap = false;
  1529       if (!trap_state_is_recompiled(tstate0))
  1530         maybe_prior_recompile = false;
  1532       // Update the trap state of this profile datum.
  1533       int tstate1 = tstate0;
  1534       // Record the reason.
  1535       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1536       // Store the updated state on the MDO, for next time.
  1537       if (tstate1 != tstate0)
  1538         pdata->set_trap_state(tstate1);
  1539     } else {
  1540       if (LogCompilation && xtty != NULL) {
  1541         ttyLocker ttyl;
  1542         // Missing MDP?  Leave a small complaint in the log.
  1543         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1548   // Return results:
  1549   ret_this_trap_count = this_trap_count;
  1550   ret_maybe_prior_trap = maybe_prior_trap;
  1551   ret_maybe_prior_recompile = maybe_prior_recompile;
  1552   return pdata;
  1555 void
  1556 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1557   ResourceMark rm;
  1558   // Ignored outputs:
  1559   uint ignore_this_trap_count;
  1560   bool ignore_maybe_prior_trap;
  1561   bool ignore_maybe_prior_recompile;
  1562   query_update_method_data(trap_mdo, trap_bci,
  1563                            (DeoptReason)reason,
  1564                            ignore_this_trap_count,
  1565                            ignore_maybe_prior_trap,
  1566                            ignore_maybe_prior_recompile);
  1569 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1571   // Still in Java no safepoints
  1573     // This enters VM and may safepoint
  1574     uncommon_trap_inner(thread, trap_request);
  1576   return fetch_unroll_info_helper(thread);
  1579 // Local derived constants.
  1580 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1581 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1582 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1584 //---------------------------trap_state_reason---------------------------------
  1585 Deoptimization::DeoptReason
  1586 Deoptimization::trap_state_reason(int trap_state) {
  1587   // This assert provides the link between the width of DataLayout::trap_bits
  1588   // and the encoding of "recorded" reasons.  It ensures there are enough
  1589   // bits to store all needed reasons in the per-BCI MDO profile.
  1590   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1591   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1592   trap_state -= recompile_bit;
  1593   if (trap_state == DS_REASON_MASK) {
  1594     return Reason_many;
  1595   } else {
  1596     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1597     return (DeoptReason)trap_state;
  1600 //-------------------------trap_state_has_reason-------------------------------
  1601 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1602   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1603   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1604   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1605   trap_state -= recompile_bit;
  1606   if (trap_state == DS_REASON_MASK) {
  1607     return -1;  // true, unspecifically (bottom of state lattice)
  1608   } else if (trap_state == reason) {
  1609     return 1;   // true, definitely
  1610   } else if (trap_state == 0) {
  1611     return 0;   // false, definitely (top of state lattice)
  1612   } else {
  1613     return 0;   // false, definitely
  1616 //-------------------------trap_state_add_reason-------------------------------
  1617 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1618   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1619   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1620   trap_state -= recompile_bit;
  1621   if (trap_state == DS_REASON_MASK) {
  1622     return trap_state + recompile_bit;     // already at state lattice bottom
  1623   } else if (trap_state == reason) {
  1624     return trap_state + recompile_bit;     // the condition is already true
  1625   } else if (trap_state == 0) {
  1626     return reason + recompile_bit;          // no condition has yet been true
  1627   } else {
  1628     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1631 //-----------------------trap_state_is_recompiled------------------------------
  1632 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1633   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1635 //-----------------------trap_state_set_recompiled-----------------------------
  1636 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1637   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1638   else    return trap_state & ~DS_RECOMPILE_BIT;
  1640 //---------------------------format_trap_state---------------------------------
  1641 // This is used for debugging and diagnostics, including hotspot.log output.
  1642 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1643                                               int trap_state) {
  1644   DeoptReason reason      = trap_state_reason(trap_state);
  1645   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1646   // Re-encode the state from its decoded components.
  1647   int decoded_state = 0;
  1648   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1649     decoded_state = trap_state_add_reason(decoded_state, reason);
  1650   if (recomp_flag)
  1651     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1652   // If the state re-encodes properly, format it symbolically.
  1653   // Because this routine is used for debugging and diagnostics,
  1654   // be robust even if the state is a strange value.
  1655   size_t len;
  1656   if (decoded_state != trap_state) {
  1657     // Random buggy state that doesn't decode??
  1658     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1659   } else {
  1660     len = jio_snprintf(buf, buflen, "%s%s",
  1661                        trap_reason_name(reason),
  1662                        recomp_flag ? " recompiled" : "");
  1664   if (len >= buflen)
  1665     buf[buflen-1] = '\0';
  1666   return buf;
  1670 //--------------------------------statics--------------------------------------
  1671 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1672   = Deoptimization::Action_reinterpret;
  1673 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1674   // Note:  Keep this in sync. with enum DeoptReason.
  1675   "none",
  1676   "null_check",
  1677   "null_assert",
  1678   "range_check",
  1679   "class_check",
  1680   "array_check",
  1681   "intrinsic",
  1682   "bimorphic",
  1683   "unloaded",
  1684   "uninitialized",
  1685   "unreached",
  1686   "unhandled",
  1687   "constraint",
  1688   "div0_check",
  1689   "age",
  1690   "predicate"
  1691 };
  1692 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1693   // Note:  Keep this in sync. with enum DeoptAction.
  1694   "none",
  1695   "maybe_recompile",
  1696   "reinterpret",
  1697   "make_not_entrant",
  1698   "make_not_compilable"
  1699 };
  1701 const char* Deoptimization::trap_reason_name(int reason) {
  1702   if (reason == Reason_many)  return "many";
  1703   if ((uint)reason < Reason_LIMIT)
  1704     return _trap_reason_name[reason];
  1705   static char buf[20];
  1706   sprintf(buf, "reason%d", reason);
  1707   return buf;
  1709 const char* Deoptimization::trap_action_name(int action) {
  1710   if ((uint)action < Action_LIMIT)
  1711     return _trap_action_name[action];
  1712   static char buf[20];
  1713   sprintf(buf, "action%d", action);
  1714   return buf;
  1717 // This is used for debugging and diagnostics, including hotspot.log output.
  1718 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1719                                                 int trap_request) {
  1720   jint unloaded_class_index = trap_request_index(trap_request);
  1721   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1722   const char* action = trap_action_name(trap_request_action(trap_request));
  1723   size_t len;
  1724   if (unloaded_class_index < 0) {
  1725     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1726                        reason, action);
  1727   } else {
  1728     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1729                        reason, action, unloaded_class_index);
  1731   if (len >= buflen)
  1732     buf[buflen-1] = '\0';
  1733   return buf;
  1736 juint Deoptimization::_deoptimization_hist
  1737         [Deoptimization::Reason_LIMIT]
  1738     [1 + Deoptimization::Action_LIMIT]
  1739         [Deoptimization::BC_CASE_LIMIT]
  1740   = {0};
  1742 enum {
  1743   LSB_BITS = 8,
  1744   LSB_MASK = right_n_bits(LSB_BITS)
  1745 };
  1747 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1748                                        Bytecodes::Code bc) {
  1749   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1750   assert(action >= 0 && action < Action_LIMIT, "oob");
  1751   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1752   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1753   juint* cases = _deoptimization_hist[reason][1+action];
  1754   juint* bc_counter_addr = NULL;
  1755   juint  bc_counter      = 0;
  1756   // Look for an unused counter, or an exact match to this BC.
  1757   if (bc != Bytecodes::_illegal) {
  1758     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1759       juint* counter_addr = &cases[bc_case];
  1760       juint  counter = *counter_addr;
  1761       if ((counter == 0 && bc_counter_addr == NULL)
  1762           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1763         // this counter is either free or is already devoted to this BC
  1764         bc_counter_addr = counter_addr;
  1765         bc_counter = counter | bc;
  1769   if (bc_counter_addr == NULL) {
  1770     // Overflow, or no given bytecode.
  1771     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1772     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1774   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1777 jint Deoptimization::total_deoptimization_count() {
  1778   return _deoptimization_hist[Reason_none][0][0];
  1781 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1782   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1783   return _deoptimization_hist[reason][0][0];
  1786 void Deoptimization::print_statistics() {
  1787   juint total = total_deoptimization_count();
  1788   juint account = total;
  1789   if (total != 0) {
  1790     ttyLocker ttyl;
  1791     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1792     tty->print_cr("Deoptimization traps recorded:");
  1793     #define PRINT_STAT_LINE(name, r) \
  1794       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1795     PRINT_STAT_LINE("total", total);
  1796     // For each non-zero entry in the histogram, print the reason,
  1797     // the action, and (if specifically known) the type of bytecode.
  1798     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1799       for (int action = 0; action < Action_LIMIT; action++) {
  1800         juint* cases = _deoptimization_hist[reason][1+action];
  1801         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1802           juint counter = cases[bc_case];
  1803           if (counter != 0) {
  1804             char name[1*K];
  1805             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1806             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1807               bc = Bytecodes::_illegal;
  1808             sprintf(name, "%s/%s/%s",
  1809                     trap_reason_name(reason),
  1810                     trap_action_name(action),
  1811                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1812             juint r = counter >> LSB_BITS;
  1813             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1814             account -= r;
  1819     if (account != 0) {
  1820       PRINT_STAT_LINE("unaccounted", account);
  1822     #undef PRINT_STAT_LINE
  1823     if (xtty != NULL)  xtty->tail("statistics");
  1826 #else // COMPILER2 || SHARK
  1829 // Stubs for C1 only system.
  1830 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1831   return false;
  1834 const char* Deoptimization::trap_reason_name(int reason) {
  1835   return "unknown";
  1838 void Deoptimization::print_statistics() {
  1839   // no output
  1842 void
  1843 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1844   // no udpate
  1847 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1848   return 0;
  1851 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1852                                        Bytecodes::Code bc) {
  1853   // no update
  1856 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1857                                               int trap_state) {
  1858   jio_snprintf(buf, buflen, "#%d", trap_state);
  1859   return buf;
  1862 #endif // COMPILER2 || SHARK

mercurial