src/os/linux/vm/os_linux.cpp

Wed, 14 Oct 2020 17:44:48 +0800

author
aoqi
date
Wed, 14 Oct 2020 17:44:48 +0800
changeset 9931
fd44df5e3bc3
parent 9756
2be326848943
parent 9877
4937bafbb2f8
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "osContainer_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/interfaceSupport.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/orderAccess.inline.hpp"
    54 #include "runtime/osThread.hpp"
    55 #include "runtime/perfMemory.hpp"
    56 #include "runtime/sharedRuntime.hpp"
    57 #include "runtime/statSampler.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/memTracker.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/elfFile.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 // put OS-includes here
    73 # include <sys/types.h>
    74 # include <sys/mman.h>
    75 # include <sys/stat.h>
    76 # include <sys/select.h>
    77 # include <pthread.h>
    78 # include <signal.h>
    79 # include <errno.h>
    80 # include <dlfcn.h>
    81 # include <stdio.h>
    82 # include <unistd.h>
    83 # include <sys/resource.h>
    84 # include <pthread.h>
    85 # include <sys/stat.h>
    86 # include <sys/time.h>
    87 # include <sys/times.h>
    88 # include <sys/utsname.h>
    89 # include <sys/socket.h>
    90 # include <sys/wait.h>
    91 # include <pwd.h>
    92 # include <poll.h>
    93 # include <semaphore.h>
    94 # include <fcntl.h>
    95 # include <string.h>
    96 # include <syscall.h>
    97 # include <sys/sysinfo.h>
    98 # include <gnu/libc-version.h>
    99 # include <sys/ipc.h>
   100 # include <sys/shm.h>
   101 # include <link.h>
   102 # include <stdint.h>
   103 # include <inttypes.h>
   104 # include <sys/ioctl.h>
   106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   108 #ifndef _GNU_SOURCE
   109   #define _GNU_SOURCE
   110   #include <sched.h>
   111   #undef _GNU_SOURCE
   112 #else
   113   #include <sched.h>
   114 #endif
   116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   117 // getrusage() is prepared to handle the associated failure.
   118 #ifndef RUSAGE_THREAD
   119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   120 #endif
   122 #define MAX_PATH    (2 * K)
   124 #define MAX_SECS 100000000
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #define LARGEPAGES_BIT (1 << 6)
   130 ////////////////////////////////////////////////////////////////////////////////
   131 // global variables
   132 julong os::Linux::_physical_memory = 0;
   134 address   os::Linux::_initial_thread_stack_bottom = NULL;
   135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   139 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
   140 Mutex* os::Linux::_createThread_lock = NULL;
   141 pthread_t os::Linux::_main_thread;
   142 int os::Linux::_page_size = -1;
   143 const int os::Linux::_vm_default_page_size = (8 * K);
   144 bool os::Linux::_is_floating_stack = false;
   145 bool os::Linux::_is_NPTL = false;
   146 bool os::Linux::_supports_fast_thread_cpu_time = false;
   147 const char * os::Linux::_glibc_version = NULL;
   148 const char * os::Linux::_libpthread_version = NULL;
   149 pthread_condattr_t os::Linux::_condattr[1];
   151 static jlong initial_time_count=0;
   153 static int clock_tics_per_sec = 100;
   155 // For diagnostics to print a message once. see run_periodic_checks
   156 static sigset_t check_signal_done;
   157 static bool check_signals = true;
   159 static pid_t _initial_pid = 0;
   161 /* Signal number used to suspend/resume a thread */
   163 /* do not use any signal number less than SIGSEGV, see 4355769 */
   164 static int SR_signum = SIGUSR2;
   165 sigset_t SR_sigset;
   167 /* Used to protect dlsym() calls */
   168 static pthread_mutex_t dl_mutex;
   170 // Declarations
   171 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   173 // utility functions
   175 static int SR_initialize();
   177 julong os::available_memory() {
   178   return Linux::available_memory();
   179 }
   181 julong os::Linux::available_memory() {
   182   // values in struct sysinfo are "unsigned long"
   183   struct sysinfo si;
   184   julong avail_mem;
   186   if (OSContainer::is_containerized()) {
   187     jlong mem_limit, mem_usage;
   188     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
   189       if (PrintContainerInfo) {
   190         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   191                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   192       }
   193     }
   195     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
   196       if (PrintContainerInfo) {
   197         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
   198       }
   199     }
   201     if (mem_limit > 0 && mem_usage > 0 ) {
   202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
   203       if (PrintContainerInfo) {
   204         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
   205       }
   206       return avail_mem;
   207     }
   208   }
   210   sysinfo(&si);
   211   avail_mem = (julong)si.freeram * si.mem_unit;
   212   if (Verbose) {
   213     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
   214   }
   215   return avail_mem;
   216 }
   218 julong os::physical_memory() {
   219   jlong phys_mem = 0;
   220   if (OSContainer::is_containerized()) {
   221     jlong mem_limit;
   222     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
   223       if (PrintContainerInfo) {
   224         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
   225       }
   226       return mem_limit;
   227     }
   229     if (PrintContainerInfo) {
   230       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   231                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   232     }
   233   }
   235   phys_mem = Linux::physical_memory();
   236   if (Verbose) {
   237     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
   238   }
   239   return phys_mem;
   240 }
   242 ////////////////////////////////////////////////////////////////////////////////
   243 // environment support
   245 bool os::getenv(const char* name, char* buf, int len) {
   246   const char* val = ::getenv(name);
   247   if (val != NULL && strlen(val) < (size_t)len) {
   248     strcpy(buf, val);
   249     return true;
   250   }
   251   if (len > 0) buf[0] = 0;  // return a null string
   252   return false;
   253 }
   256 // Return true if user is running as root.
   258 bool os::have_special_privileges() {
   259   static bool init = false;
   260   static bool privileges = false;
   261   if (!init) {
   262     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   263     init = true;
   264   }
   265   return privileges;
   266 }
   269 #ifndef SYS_gettid
   270 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   271   #ifdef __ia64__
   272     #define SYS_gettid 1105
   273   #else
   274     #ifdef __i386__
   275       #define SYS_gettid 224
   276     #else
   277       #ifdef __amd64__
   278         #define SYS_gettid 186
   279       #else
   280         #ifdef __sparc__
   281           #define SYS_gettid 143
   282         #else
   283           #error define gettid for the arch
   284         #endif
   285       #endif
   286     #endif
   287   #endif
   288 #endif
   290 // Cpu architecture string
   291 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   293 // pid_t gettid()
   294 //
   295 // Returns the kernel thread id of the currently running thread. Kernel
   296 // thread id is used to access /proc.
   297 //
   298 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   299 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   300 //
   301 pid_t os::Linux::gettid() {
   302   int rslt = syscall(SYS_gettid);
   303   if (rslt == -1) {
   304      // old kernel, no NPTL support
   305      return getpid();
   306   } else {
   307      return (pid_t)rslt;
   308   }
   309 }
   311 // Most versions of linux have a bug where the number of processors are
   312 // determined by looking at the /proc file system.  In a chroot environment,
   313 // the system call returns 1.  This causes the VM to act as if it is
   314 // a single processor and elide locking (see is_MP() call).
   315 static bool unsafe_chroot_detected = false;
   316 static const char *unstable_chroot_error = "/proc file system not found.\n"
   317                      "Java may be unstable running multithreaded in a chroot "
   318                      "environment on Linux when /proc filesystem is not mounted.";
   320 void os::Linux::initialize_system_info() {
   321   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   322   if (processor_count() == 1) {
   323     pid_t pid = os::Linux::gettid();
   324     char fname[32];
   325     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   326     FILE *fp = fopen(fname, "r");
   327     if (fp == NULL) {
   328       unsafe_chroot_detected = true;
   329     } else {
   330       fclose(fp);
   331     }
   332   }
   333   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   334   assert(processor_count() > 0, "linux error");
   335 }
   337 void os::init_system_properties_values() {
   338   // The next steps are taken in the product version:
   339   //
   340   // Obtain the JAVA_HOME value from the location of libjvm.so.
   341   // This library should be located at:
   342   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   343   //
   344   // If "/jre/lib/" appears at the right place in the path, then we
   345   // assume libjvm.so is installed in a JDK and we use this path.
   346   //
   347   // Otherwise exit with message: "Could not create the Java virtual machine."
   348   //
   349   // The following extra steps are taken in the debugging version:
   350   //
   351   // If "/jre/lib/" does NOT appear at the right place in the path
   352   // instead of exit check for $JAVA_HOME environment variable.
   353   //
   354   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   355   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   356   // it looks like libjvm.so is installed there
   357   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   358   //
   359   // Otherwise exit.
   360   //
   361   // Important note: if the location of libjvm.so changes this
   362   // code needs to be changed accordingly.
   364 // See ld(1):
   365 //      The linker uses the following search paths to locate required
   366 //      shared libraries:
   367 //        1: ...
   368 //        ...
   369 //        7: The default directories, normally /lib and /usr/lib.
   370 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   371 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   372 #else
   373 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   374 #endif
   376 // Base path of extensions installed on the system.
   377 #define SYS_EXT_DIR     "/usr/java/packages"
   378 #define EXTENSIONS_DIR  "/lib/ext"
   379 #define ENDORSED_DIR    "/lib/endorsed"
   381   // Buffer that fits several sprintfs.
   382   // Note that the space for the colon and the trailing null are provided
   383   // by the nulls included by the sizeof operator.
   384   const size_t bufsize =
   385     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   386          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   387          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   388   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   390   // sysclasspath, java_home, dll_dir
   391   {
   392     char *pslash;
   393     os::jvm_path(buf, bufsize);
   395     // Found the full path to libjvm.so.
   396     // Now cut the path to <java_home>/jre if we can.
   397     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   398     pslash = strrchr(buf, '/');
   399     if (pslash != NULL) {
   400       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   401     }
   402     Arguments::set_dll_dir(buf);
   404     if (pslash != NULL) {
   405       pslash = strrchr(buf, '/');
   406       if (pslash != NULL) {
   407         *pslash = '\0';          // Get rid of /<arch>.
   408         pslash = strrchr(buf, '/');
   409         if (pslash != NULL) {
   410           *pslash = '\0';        // Get rid of /lib.
   411         }
   412       }
   413     }
   414     Arguments::set_java_home(buf);
   415     set_boot_path('/', ':');
   416   }
   418   // Where to look for native libraries.
   419   //
   420   // Note: Due to a legacy implementation, most of the library path
   421   // is set in the launcher. This was to accomodate linking restrictions
   422   // on legacy Linux implementations (which are no longer supported).
   423   // Eventually, all the library path setting will be done here.
   424   //
   425   // However, to prevent the proliferation of improperly built native
   426   // libraries, the new path component /usr/java/packages is added here.
   427   // Eventually, all the library path setting will be done here.
   428   {
   429     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   430     // should always exist (until the legacy problem cited above is
   431     // addressed).
   432     const char *v = ::getenv("LD_LIBRARY_PATH");
   433     const char *v_colon = ":";
   434     if (v == NULL) { v = ""; v_colon = ""; }
   435     // That's +1 for the colon and +1 for the trailing '\0'.
   436     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   437                                                      strlen(v) + 1 +
   438                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   439                                                      mtInternal);
   440     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   441     Arguments::set_library_path(ld_library_path);
   442     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   443   }
   445   // Extensions directories.
   446   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   447   Arguments::set_ext_dirs(buf);
   449   // Endorsed standards default directory.
   450   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   451   Arguments::set_endorsed_dirs(buf);
   453   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   455 #undef DEFAULT_LIBPATH
   456 #undef SYS_EXT_DIR
   457 #undef EXTENSIONS_DIR
   458 #undef ENDORSED_DIR
   459 }
   461 ////////////////////////////////////////////////////////////////////////////////
   462 // breakpoint support
   464 void os::breakpoint() {
   465   BREAKPOINT;
   466 }
   468 extern "C" void breakpoint() {
   469   // use debugger to set breakpoint here
   470 }
   472 ////////////////////////////////////////////////////////////////////////////////
   473 // signal support
   475 debug_only(static bool signal_sets_initialized = false);
   476 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   478 bool os::Linux::is_sig_ignored(int sig) {
   479       struct sigaction oact;
   480       sigaction(sig, (struct sigaction*)NULL, &oact);
   481       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   482                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   483       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   484            return true;
   485       else
   486            return false;
   487 }
   489 void os::Linux::signal_sets_init() {
   490   // Should also have an assertion stating we are still single-threaded.
   491   assert(!signal_sets_initialized, "Already initialized");
   492   // Fill in signals that are necessarily unblocked for all threads in
   493   // the VM. Currently, we unblock the following signals:
   494   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   495   //                         by -Xrs (=ReduceSignalUsage));
   496   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   497   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   498   // the dispositions or masks wrt these signals.
   499   // Programs embedding the VM that want to use the above signals for their
   500   // own purposes must, at this time, use the "-Xrs" option to prevent
   501   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   502   // (See bug 4345157, and other related bugs).
   503   // In reality, though, unblocking these signals is really a nop, since
   504   // these signals are not blocked by default.
   505   sigemptyset(&unblocked_sigs);
   506   sigemptyset(&allowdebug_blocked_sigs);
   507   sigaddset(&unblocked_sigs, SIGILL);
   508   sigaddset(&unblocked_sigs, SIGSEGV);
   509   sigaddset(&unblocked_sigs, SIGBUS);
   510   sigaddset(&unblocked_sigs, SIGFPE);
   511 #if defined(PPC64)
   512   sigaddset(&unblocked_sigs, SIGTRAP);
   513 #endif
   514   sigaddset(&unblocked_sigs, SR_signum);
   516   if (!ReduceSignalUsage) {
   517    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   518       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   519       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   520    }
   521    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   522       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   523       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   524    }
   525    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   526       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   527       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   528    }
   529   }
   530   // Fill in signals that are blocked by all but the VM thread.
   531   sigemptyset(&vm_sigs);
   532   if (!ReduceSignalUsage)
   533     sigaddset(&vm_sigs, BREAK_SIGNAL);
   534   debug_only(signal_sets_initialized = true);
   536 }
   538 // These are signals that are unblocked while a thread is running Java.
   539 // (For some reason, they get blocked by default.)
   540 sigset_t* os::Linux::unblocked_signals() {
   541   assert(signal_sets_initialized, "Not initialized");
   542   return &unblocked_sigs;
   543 }
   545 // These are the signals that are blocked while a (non-VM) thread is
   546 // running Java. Only the VM thread handles these signals.
   547 sigset_t* os::Linux::vm_signals() {
   548   assert(signal_sets_initialized, "Not initialized");
   549   return &vm_sigs;
   550 }
   552 // These are signals that are blocked during cond_wait to allow debugger in
   553 sigset_t* os::Linux::allowdebug_blocked_signals() {
   554   assert(signal_sets_initialized, "Not initialized");
   555   return &allowdebug_blocked_sigs;
   556 }
   558 void os::Linux::hotspot_sigmask(Thread* thread) {
   560   //Save caller's signal mask before setting VM signal mask
   561   sigset_t caller_sigmask;
   562   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   564   OSThread* osthread = thread->osthread();
   565   osthread->set_caller_sigmask(caller_sigmask);
   567   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   569   if (!ReduceSignalUsage) {
   570     if (thread->is_VM_thread()) {
   571       // Only the VM thread handles BREAK_SIGNAL ...
   572       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   573     } else {
   574       // ... all other threads block BREAK_SIGNAL
   575       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   576     }
   577   }
   578 }
   580 //////////////////////////////////////////////////////////////////////////////
   581 // detecting pthread library
   583 void os::Linux::libpthread_init() {
   584   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   585   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   586   // generic name for earlier versions.
   587   // Define macros here so we can build HotSpot on old systems.
   588 # ifndef _CS_GNU_LIBC_VERSION
   589 # define _CS_GNU_LIBC_VERSION 2
   590 # endif
   591 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   592 # define _CS_GNU_LIBPTHREAD_VERSION 3
   593 # endif
   595   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   596   if (n > 0) {
   597      char *str = (char *)malloc(n, mtInternal);
   598      confstr(_CS_GNU_LIBC_VERSION, str, n);
   599      os::Linux::set_glibc_version(str);
   600   } else {
   601      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   602      static char _gnu_libc_version[32];
   603      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   604               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   605      os::Linux::set_glibc_version(_gnu_libc_version);
   606   }
   608   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   609   if (n > 0) {
   610      char *str = (char *)malloc(n, mtInternal);
   611      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   612      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   613      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   614      // is the case. LinuxThreads has a hard limit on max number of threads.
   615      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   616      // On the other hand, NPTL does not have such a limit, sysconf()
   617      // will return -1 and errno is not changed. Check if it is really NPTL.
   618      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   619          strstr(str, "NPTL") &&
   620          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   621        free(str);
   622        os::Linux::set_libpthread_version("linuxthreads");
   623      } else {
   624        os::Linux::set_libpthread_version(str);
   625      }
   626   } else {
   627     // glibc before 2.3.2 only has LinuxThreads.
   628     os::Linux::set_libpthread_version("linuxthreads");
   629   }
   631   if (strstr(libpthread_version(), "NPTL")) {
   632      os::Linux::set_is_NPTL();
   633   } else {
   634      os::Linux::set_is_LinuxThreads();
   635   }
   637   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   638   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   639   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   640      os::Linux::set_is_floating_stack();
   641   }
   642 }
   644 /////////////////////////////////////////////////////////////////////////////
   645 // thread stack
   647 // Force Linux kernel to expand current thread stack. If "bottom" is close
   648 // to the stack guard, caller should block all signals.
   649 //
   650 // MAP_GROWSDOWN:
   651 //   A special mmap() flag that is used to implement thread stacks. It tells
   652 //   kernel that the memory region should extend downwards when needed. This
   653 //   allows early versions of LinuxThreads to only mmap the first few pages
   654 //   when creating a new thread. Linux kernel will automatically expand thread
   655 //   stack as needed (on page faults).
   656 //
   657 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   658 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   659 //   region, it's hard to tell if the fault is due to a legitimate stack
   660 //   access or because of reading/writing non-exist memory (e.g. buffer
   661 //   overrun). As a rule, if the fault happens below current stack pointer,
   662 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   663 //   application (see Linux kernel fault.c).
   664 //
   665 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   666 //   stack overflow detection.
   667 //
   668 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   669 //   not use this flag. However, the stack of initial thread is not created
   670 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   671 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   672 //   and then attach the thread to JVM.
   673 //
   674 // To get around the problem and allow stack banging on Linux, we need to
   675 // manually expand thread stack after receiving the SIGSEGV.
   676 //
   677 // There are two ways to expand thread stack to address "bottom", we used
   678 // both of them in JVM before 1.5:
   679 //   1. adjust stack pointer first so that it is below "bottom", and then
   680 //      touch "bottom"
   681 //   2. mmap() the page in question
   682 //
   683 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   684 // if current sp is already near the lower end of page 101, and we need to
   685 // call mmap() to map page 100, it is possible that part of the mmap() frame
   686 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   687 // That will destroy the mmap() frame and cause VM to crash.
   688 //
   689 // The following code works by adjusting sp first, then accessing the "bottom"
   690 // page to force a page fault. Linux kernel will then automatically expand the
   691 // stack mapping.
   692 //
   693 // _expand_stack_to() assumes its frame size is less than page size, which
   694 // should always be true if the function is not inlined.
   696 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   697 #define NOINLINE
   698 #else
   699 #define NOINLINE __attribute__ ((noinline))
   700 #endif
   702 static void _expand_stack_to(address bottom) NOINLINE;
   704 static void _expand_stack_to(address bottom) {
   705   address sp;
   706   size_t size;
   707   volatile char *p;
   709   // Adjust bottom to point to the largest address within the same page, it
   710   // gives us a one-page buffer if alloca() allocates slightly more memory.
   711   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   712   bottom += os::Linux::page_size() - 1;
   714   // sp might be slightly above current stack pointer; if that's the case, we
   715   // will alloca() a little more space than necessary, which is OK. Don't use
   716   // os::current_stack_pointer(), as its result can be slightly below current
   717   // stack pointer, causing us to not alloca enough to reach "bottom".
   718   sp = (address)&sp;
   720   if (sp > bottom) {
   721     size = sp - bottom;
   722     p = (volatile char *)alloca(size);
   723     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   724     p[0] = '\0';
   725   }
   726 }
   728 void os::Linux::expand_stack_to(address bottom) {
   729   _expand_stack_to(bottom);
   730 }
   732 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   733   assert(t!=NULL, "just checking");
   734   assert(t->osthread()->expanding_stack(), "expand should be set");
   735   assert(t->stack_base() != NULL, "stack_base was not initialized");
   737   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   738     sigset_t mask_all, old_sigset;
   739     sigfillset(&mask_all);
   740     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   741     _expand_stack_to(addr);
   742     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   743     return true;
   744   }
   745   return false;
   746 }
   748 //////////////////////////////////////////////////////////////////////////////
   749 // create new thread
   751 static address highest_vm_reserved_address();
   753 // check if it's safe to start a new thread
   754 static bool _thread_safety_check(Thread* thread) {
   755   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   756     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   757     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   758     //   allocated (MAP_FIXED) from high address space. Every thread stack
   759     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   760     //   it to other values if they rebuild LinuxThreads).
   761     //
   762     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   763     // the memory region has already been mmap'ed. That means if we have too
   764     // many threads and/or very large heap, eventually thread stack will
   765     // collide with heap.
   766     //
   767     // Here we try to prevent heap/stack collision by comparing current
   768     // stack bottom with the highest address that has been mmap'ed by JVM
   769     // plus a safety margin for memory maps created by native code.
   770     //
   771     // This feature can be disabled by setting ThreadSafetyMargin to 0
   772     //
   773     if (ThreadSafetyMargin > 0) {
   774       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   776       // not safe if our stack extends below the safety margin
   777       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   778     } else {
   779       return true;
   780     }
   781   } else {
   782     // Floating stack LinuxThreads or NPTL:
   783     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   784     //   there's not enough space left, pthread_create() will fail. If we come
   785     //   here, that means enough space has been reserved for stack.
   786     return true;
   787   }
   788 }
   790 // Thread start routine for all newly created threads
   791 static void *java_start(Thread *thread) {
   792   // Try to randomize the cache line index of hot stack frames.
   793   // This helps when threads of the same stack traces evict each other's
   794   // cache lines. The threads can be either from the same JVM instance, or
   795   // from different JVM instances. The benefit is especially true for
   796   // processors with hyperthreading technology.
   797   static int counter = 0;
   798   int pid = os::current_process_id();
   799   alloca(((pid ^ counter++) & 7) * 128);
   801   ThreadLocalStorage::set_thread(thread);
   803   OSThread* osthread = thread->osthread();
   804   Monitor* sync = osthread->startThread_lock();
   806   // non floating stack LinuxThreads needs extra check, see above
   807   if (!_thread_safety_check(thread)) {
   808     // notify parent thread
   809     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   810     osthread->set_state(ZOMBIE);
   811     sync->notify_all();
   812     return NULL;
   813   }
   815   // thread_id is kernel thread id (similar to Solaris LWP id)
   816   osthread->set_thread_id(os::Linux::gettid());
   818   if (UseNUMA) {
   819     int lgrp_id = os::numa_get_group_id();
   820     if (lgrp_id != -1) {
   821       thread->set_lgrp_id(lgrp_id);
   822     }
   823   }
   824   // initialize signal mask for this thread
   825   os::Linux::hotspot_sigmask(thread);
   827   // initialize floating point control register
   828   os::Linux::init_thread_fpu_state();
   830   // handshaking with parent thread
   831   {
   832     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   834     // notify parent thread
   835     osthread->set_state(INITIALIZED);
   836     sync->notify_all();
   838     // wait until os::start_thread()
   839     while (osthread->get_state() == INITIALIZED) {
   840       sync->wait(Mutex::_no_safepoint_check_flag);
   841     }
   842   }
   844   // call one more level start routine
   845   thread->run();
   847   return 0;
   848 }
   850 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   851   assert(thread->osthread() == NULL, "caller responsible");
   853   // Allocate the OSThread object
   854   OSThread* osthread = new OSThread(NULL, NULL);
   855   if (osthread == NULL) {
   856     return false;
   857   }
   859   // set the correct thread state
   860   osthread->set_thread_type(thr_type);
   862   // Initial state is ALLOCATED but not INITIALIZED
   863   osthread->set_state(ALLOCATED);
   865   thread->set_osthread(osthread);
   867   // init thread attributes
   868   pthread_attr_t attr;
   869   pthread_attr_init(&attr);
   870   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   872   // stack size
   873   if (os::Linux::supports_variable_stack_size()) {
   874     // calculate stack size if it's not specified by caller
   875     if (stack_size == 0) {
   876       stack_size = os::Linux::default_stack_size(thr_type);
   878       switch (thr_type) {
   879       case os::java_thread:
   880         // Java threads use ThreadStackSize which default value can be
   881         // changed with the flag -Xss
   882         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   883         stack_size = JavaThread::stack_size_at_create();
   884         break;
   885       case os::compiler_thread:
   886         if (CompilerThreadStackSize > 0) {
   887           stack_size = (size_t)(CompilerThreadStackSize * K);
   888           break;
   889         } // else fall through:
   890           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   891       case os::vm_thread:
   892       case os::pgc_thread:
   893       case os::cgc_thread:
   894       case os::watcher_thread:
   895         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   896         break;
   897       }
   898     }
   900     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   901     pthread_attr_setstacksize(&attr, stack_size);
   902   } else {
   903     // let pthread_create() pick the default value.
   904   }
   906   // glibc guard page
   907   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   909   ThreadState state;
   911   {
   912     // Serialize thread creation if we are running with fixed stack LinuxThreads
   913     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   914     if (lock) {
   915       os::Linux::createThread_lock()->lock_without_safepoint_check();
   916     }
   918     pthread_t tid;
   919     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   921     pthread_attr_destroy(&attr);
   923     if (ret != 0) {
   924       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   925         perror("pthread_create()");
   926       }
   927       // Need to clean up stuff we've allocated so far
   928       thread->set_osthread(NULL);
   929       delete osthread;
   930       if (lock) os::Linux::createThread_lock()->unlock();
   931       return false;
   932     }
   934     // Store pthread info into the OSThread
   935     osthread->set_pthread_id(tid);
   937     // Wait until child thread is either initialized or aborted
   938     {
   939       Monitor* sync_with_child = osthread->startThread_lock();
   940       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   941       while ((state = osthread->get_state()) == ALLOCATED) {
   942         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   943       }
   944     }
   946     if (lock) {
   947       os::Linux::createThread_lock()->unlock();
   948     }
   949   }
   951   // Aborted due to thread limit being reached
   952   if (state == ZOMBIE) {
   953       thread->set_osthread(NULL);
   954       delete osthread;
   955       return false;
   956   }
   958   // The thread is returned suspended (in state INITIALIZED),
   959   // and is started higher up in the call chain
   960   assert(state == INITIALIZED, "race condition");
   961   return true;
   962 }
   964 /////////////////////////////////////////////////////////////////////////////
   965 // attach existing thread
   967 // bootstrap the main thread
   968 bool os::create_main_thread(JavaThread* thread) {
   969   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   970   return create_attached_thread(thread);
   971 }
   973 bool os::create_attached_thread(JavaThread* thread) {
   974 #ifdef ASSERT
   975     thread->verify_not_published();
   976 #endif
   978   // Allocate the OSThread object
   979   OSThread* osthread = new OSThread(NULL, NULL);
   981   if (osthread == NULL) {
   982     return false;
   983   }
   985   // Store pthread info into the OSThread
   986   osthread->set_thread_id(os::Linux::gettid());
   987   osthread->set_pthread_id(::pthread_self());
   989   // initialize floating point control register
   990   os::Linux::init_thread_fpu_state();
   992   // Initial thread state is RUNNABLE
   993   osthread->set_state(RUNNABLE);
   995   thread->set_osthread(osthread);
   997   if (UseNUMA) {
   998     int lgrp_id = os::numa_get_group_id();
   999     if (lgrp_id != -1) {
  1000       thread->set_lgrp_id(lgrp_id);
  1004   if (os::is_primordial_thread()) {
  1005     // If current thread is primordial thread, its stack is mapped on demand,
  1006     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1007     // the entire stack region to avoid SEGV in stack banging.
  1008     // It is also useful to get around the heap-stack-gap problem on SuSE
  1009     // kernel (see 4821821 for details). We first expand stack to the top
  1010     // of yellow zone, then enable stack yellow zone (order is significant,
  1011     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1012     // is no gap between the last two virtual memory regions.
  1014     JavaThread *jt = (JavaThread *)thread;
  1015     address addr = jt->stack_yellow_zone_base();
  1016     assert(addr != NULL, "initialization problem?");
  1017     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1019     osthread->set_expanding_stack();
  1020     os::Linux::manually_expand_stack(jt, addr);
  1021     osthread->clear_expanding_stack();
  1024   // initialize signal mask for this thread
  1025   // and save the caller's signal mask
  1026   os::Linux::hotspot_sigmask(thread);
  1028   return true;
  1031 void os::pd_start_thread(Thread* thread) {
  1032   OSThread * osthread = thread->osthread();
  1033   assert(osthread->get_state() != INITIALIZED, "just checking");
  1034   Monitor* sync_with_child = osthread->startThread_lock();
  1035   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1036   sync_with_child->notify();
  1038 #if defined MIPS && !defined ZERO
  1039   //To be accessed in NativeGeneralJump::patch_verified_entry()
  1040   if (thread->is_Java_thread())
  1042     ((JavaThread*)thread)->set_handle_wrong_method_stub(SharedRuntime::get_handle_wrong_method_stub());
  1044 #endif
  1047 // Free Linux resources related to the OSThread
  1048 void os::free_thread(OSThread* osthread) {
  1049   assert(osthread != NULL, "osthread not set");
  1051   if (Thread::current()->osthread() == osthread) {
  1052     // Restore caller's signal mask
  1053     sigset_t sigmask = osthread->caller_sigmask();
  1054     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1057   delete osthread;
  1060 //////////////////////////////////////////////////////////////////////////////
  1061 // thread local storage
  1063 // Restore the thread pointer if the destructor is called. This is in case
  1064 // someone from JNI code sets up a destructor with pthread_key_create to run
  1065 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1066 // will hang or crash. When detachCurrentThread is called the key will be set
  1067 // to null and we will not be called again. If detachCurrentThread is never
  1068 // called we could loop forever depending on the pthread implementation.
  1069 static void restore_thread_pointer(void* p) {
  1070   Thread* thread = (Thread*) p;
  1071   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1074 int os::allocate_thread_local_storage() {
  1075   pthread_key_t key;
  1076   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1077   assert(rslt == 0, "cannot allocate thread local storage");
  1078   return (int)key;
  1081 // Note: This is currently not used by VM, as we don't destroy TLS key
  1082 // on VM exit.
  1083 void os::free_thread_local_storage(int index) {
  1084   int rslt = pthread_key_delete((pthread_key_t)index);
  1085   assert(rslt == 0, "invalid index");
  1088 void os::thread_local_storage_at_put(int index, void* value) {
  1089   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1090   assert(rslt == 0, "pthread_setspecific failed");
  1093 extern "C" Thread* get_thread() {
  1094   return ThreadLocalStorage::thread();
  1097 //////////////////////////////////////////////////////////////////////////////
  1098 // primordial thread
  1100 // Check if current thread is the primordial thread, similar to Solaris thr_main.
  1101 bool os::is_primordial_thread(void) {
  1102   char dummy;
  1103   // If called before init complete, thread stack bottom will be null.
  1104   // Can be called if fatal error occurs before initialization.
  1105   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
  1106   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
  1107          os::Linux::initial_thread_stack_size()   != 0,
  1108          "os::init did not locate primordial thread's stack region");
  1109   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
  1110       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
  1111                         os::Linux::initial_thread_stack_size()) {
  1112        return true;
  1113   } else {
  1114        return false;
  1118 // Find the virtual memory area that contains addr
  1119 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1120   FILE *fp = fopen("/proc/self/maps", "r");
  1121   if (fp) {
  1122     address low, high;
  1123     while (!feof(fp)) {
  1124       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1125         if (low <= addr && addr < high) {
  1126            if (vma_low)  *vma_low  = low;
  1127            if (vma_high) *vma_high = high;
  1128            fclose (fp);
  1129            return true;
  1132       for (;;) {
  1133         int ch = fgetc(fp);
  1134         if (ch == EOF || ch == (int)'\n') break;
  1137     fclose(fp);
  1139   return false;
  1142 // Locate primordial thread stack. This special handling of primordial thread stack
  1143 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1144 // bogus value for the primordial process thread. While the launcher has created
  1145 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1146 // JNI invocation API from a primordial thread.
  1147 void os::Linux::capture_initial_stack(size_t max_size) {
  1149   // max_size is either 0 (which means accept OS default for thread stacks) or
  1150   // a user-specified value known to be at least the minimum needed. If we
  1151   // are actually on the primordial thread we can make it appear that we have a
  1152   // smaller max_size stack by inserting the guard pages at that location. But we
  1153   // cannot do anything to emulate a larger stack than what has been provided by
  1154   // the OS or threading library. In fact if we try to use a stack greater than
  1155   // what is set by rlimit then we will crash the hosting process.
  1157   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1158   // If this is "unlimited" then it will be a huge value.
  1159   struct rlimit rlim;
  1160   getrlimit(RLIMIT_STACK, &rlim);
  1161   size_t stack_size = rlim.rlim_cur;
  1163   // 6308388: a bug in ld.so will relocate its own .data section to the
  1164   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1165   //   so we won't install guard page on ld.so's data section.
  1166   //   But ensure we don't underflow the stack size - allow 1 page spare
  1167   if (stack_size >= (size_t)(3 * page_size())) {
  1168     stack_size -= 2 * page_size();
  1171   // Try to figure out where the stack base (top) is. This is harder.
  1172   //
  1173   // When an application is started, glibc saves the initial stack pointer in
  1174   // a global variable "__libc_stack_end", which is then used by system
  1175   // libraries. __libc_stack_end should be pretty close to stack top. The
  1176   // variable is available since the very early days. However, because it is
  1177   // a private interface, it could disappear in the future.
  1178   //
  1179   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1180   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1181   // stack top. Note that /proc may not exist if VM is running as a chroot
  1182   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1183   // /proc/<pid>/stat could change in the future (though unlikely).
  1184   //
  1185   // We try __libc_stack_end first. If that doesn't work, look for
  1186   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1187   // as a hint, which should work well in most cases.
  1189   uintptr_t stack_start;
  1191   // try __libc_stack_end first
  1192   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1193   if (p && *p) {
  1194     stack_start = *p;
  1195   } else {
  1196     // see if we can get the start_stack field from /proc/self/stat
  1197     FILE *fp;
  1198     int pid;
  1199     char state;
  1200     int ppid;
  1201     int pgrp;
  1202     int session;
  1203     int nr;
  1204     int tpgrp;
  1205     unsigned long flags;
  1206     unsigned long minflt;
  1207     unsigned long cminflt;
  1208     unsigned long majflt;
  1209     unsigned long cmajflt;
  1210     unsigned long utime;
  1211     unsigned long stime;
  1212     long cutime;
  1213     long cstime;
  1214     long prio;
  1215     long nice;
  1216     long junk;
  1217     long it_real;
  1218     uintptr_t start;
  1219     uintptr_t vsize;
  1220     intptr_t rss;
  1221     uintptr_t rsslim;
  1222     uintptr_t scodes;
  1223     uintptr_t ecode;
  1224     int i;
  1226     // Figure what the primordial thread stack base is. Code is inspired
  1227     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1228     // followed by command name surrounded by parentheses, state, etc.
  1229     char stat[2048];
  1230     int statlen;
  1232     fp = fopen("/proc/self/stat", "r");
  1233     if (fp) {
  1234       statlen = fread(stat, 1, 2047, fp);
  1235       stat[statlen] = '\0';
  1236       fclose(fp);
  1238       // Skip pid and the command string. Note that we could be dealing with
  1239       // weird command names, e.g. user could decide to rename java launcher
  1240       // to "java 1.4.2 :)", then the stat file would look like
  1241       //                1234 (java 1.4.2 :)) R ... ...
  1242       // We don't really need to know the command string, just find the last
  1243       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1244       char * s = strrchr(stat, ')');
  1246       i = 0;
  1247       if (s) {
  1248         // Skip blank chars
  1249         do s++; while (isspace(*s));
  1251 #define _UFM UINTX_FORMAT
  1252 #define _DFM INTX_FORMAT
  1254         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1255         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1256         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1257              &state,          /* 3  %c  */
  1258              &ppid,           /* 4  %d  */
  1259              &pgrp,           /* 5  %d  */
  1260              &session,        /* 6  %d  */
  1261              &nr,             /* 7  %d  */
  1262              &tpgrp,          /* 8  %d  */
  1263              &flags,          /* 9  %lu  */
  1264              &minflt,         /* 10 %lu  */
  1265              &cminflt,        /* 11 %lu  */
  1266              &majflt,         /* 12 %lu  */
  1267              &cmajflt,        /* 13 %lu  */
  1268              &utime,          /* 14 %lu  */
  1269              &stime,          /* 15 %lu  */
  1270              &cutime,         /* 16 %ld  */
  1271              &cstime,         /* 17 %ld  */
  1272              &prio,           /* 18 %ld  */
  1273              &nice,           /* 19 %ld  */
  1274              &junk,           /* 20 %ld  */
  1275              &it_real,        /* 21 %ld  */
  1276              &start,          /* 22 UINTX_FORMAT */
  1277              &vsize,          /* 23 UINTX_FORMAT */
  1278              &rss,            /* 24 INTX_FORMAT  */
  1279              &rsslim,         /* 25 UINTX_FORMAT */
  1280              &scodes,         /* 26 UINTX_FORMAT */
  1281              &ecode,          /* 27 UINTX_FORMAT */
  1282              &stack_start);   /* 28 UINTX_FORMAT */
  1285 #undef _UFM
  1286 #undef _DFM
  1288       if (i != 28 - 2) {
  1289          assert(false, "Bad conversion from /proc/self/stat");
  1290          // product mode - assume we are the primordial thread, good luck in the
  1291          // embedded case.
  1292          warning("Can't detect primordial thread stack location - bad conversion");
  1293          stack_start = (uintptr_t) &rlim;
  1295     } else {
  1296       // For some reason we can't open /proc/self/stat (for example, running on
  1297       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1298       // most cases, so don't abort:
  1299       warning("Can't detect primordial thread stack location - no /proc/self/stat");
  1300       stack_start = (uintptr_t) &rlim;
  1304   // Now we have a pointer (stack_start) very close to the stack top, the
  1305   // next thing to do is to figure out the exact location of stack top. We
  1306   // can find out the virtual memory area that contains stack_start by
  1307   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1308   // and its upper limit is the real stack top. (again, this would fail if
  1309   // running inside chroot, because /proc may not exist.)
  1311   uintptr_t stack_top;
  1312   address low, high;
  1313   if (find_vma((address)stack_start, &low, &high)) {
  1314     // success, "high" is the true stack top. (ignore "low", because initial
  1315     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1316     stack_top = (uintptr_t)high;
  1317   } else {
  1318     // failed, likely because /proc/self/maps does not exist
  1319     warning("Can't detect primordial thread stack location - find_vma failed");
  1320     // best effort: stack_start is normally within a few pages below the real
  1321     // stack top, use it as stack top, and reduce stack size so we won't put
  1322     // guard page outside stack.
  1323     stack_top = stack_start;
  1324     stack_size -= 16 * page_size();
  1327   // stack_top could be partially down the page so align it
  1328   stack_top = align_size_up(stack_top, page_size());
  1330   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1331   if (max_size > 0) {
  1332     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1333   } else {
  1334     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1335     // clamp it at 8MB as we do on Solaris
  1336     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1339   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1340   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1341   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1344 ////////////////////////////////////////////////////////////////////////////////
  1345 // time support
  1347 // Time since start-up in seconds to a fine granularity.
  1348 // Used by VMSelfDestructTimer and the MemProfiler.
  1349 double os::elapsedTime() {
  1351   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1354 jlong os::elapsed_counter() {
  1355   return javaTimeNanos() - initial_time_count;
  1358 jlong os::elapsed_frequency() {
  1359   return NANOSECS_PER_SEC; // nanosecond resolution
  1362 bool os::supports_vtime() { return true; }
  1363 bool os::enable_vtime()   { return false; }
  1364 bool os::vtime_enabled()  { return false; }
  1366 double os::elapsedVTime() {
  1367   struct rusage usage;
  1368   int retval = getrusage(RUSAGE_THREAD, &usage);
  1369   if (retval == 0) {
  1370     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1371   } else {
  1372     // better than nothing, but not much
  1373     return elapsedTime();
  1377 jlong os::javaTimeMillis() {
  1378   timeval time;
  1379   int status = gettimeofday(&time, NULL);
  1380   assert(status != -1, "linux error");
  1381   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1384 #ifndef CLOCK_MONOTONIC
  1385 #define CLOCK_MONOTONIC (1)
  1386 #endif
  1388 void os::Linux::clock_init() {
  1389   // we do dlopen's in this particular order due to bug in linux
  1390   // dynamical loader (see 6348968) leading to crash on exit
  1391   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1392   if (handle == NULL) {
  1393     handle = dlopen("librt.so", RTLD_LAZY);
  1396   if (handle) {
  1397     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1398            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1399     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1400            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1401     if (clock_getres_func && clock_gettime_func) {
  1402       // See if monotonic clock is supported by the kernel. Note that some
  1403       // early implementations simply return kernel jiffies (updated every
  1404       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1405       // for nano time (though the monotonic property is still nice to have).
  1406       // It's fixed in newer kernels, however clock_getres() still returns
  1407       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1408       // resolution for now. Hopefully as people move to new kernels, this
  1409       // won't be a problem.
  1410       struct timespec res;
  1411       struct timespec tp;
  1412       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1413           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1414         // yes, monotonic clock is supported
  1415         _clock_gettime = clock_gettime_func;
  1416         return;
  1417       } else {
  1418         // close librt if there is no monotonic clock
  1419         dlclose(handle);
  1423   warning("No monotonic clock was available - timed services may " \
  1424           "be adversely affected if the time-of-day clock changes");
  1427 #ifndef SYS_clock_getres
  1429 #if defined(IA32) || defined(AMD64)
  1430 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1431 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1432 #else
  1433 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1434 #define sys_clock_getres(x,y)  -1
  1435 #endif
  1437 #else
  1438 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1439 #endif
  1441 void os::Linux::fast_thread_clock_init() {
  1442   if (!UseLinuxPosixThreadCPUClocks) {
  1443     return;
  1445   clockid_t clockid;
  1446   struct timespec tp;
  1447   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1448       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1450   // Switch to using fast clocks for thread cpu time if
  1451   // the sys_clock_getres() returns 0 error code.
  1452   // Note, that some kernels may support the current thread
  1453   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1454   // returned by the pthread_getcpuclockid().
  1455   // If the fast Posix clocks are supported then the sys_clock_getres()
  1456   // must return at least tp.tv_sec == 0 which means a resolution
  1457   // better than 1 sec. This is extra check for reliability.
  1459   if(pthread_getcpuclockid_func &&
  1460      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1461      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1463     _supports_fast_thread_cpu_time = true;
  1464     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1468 jlong os::javaTimeNanos() {
  1469   if (Linux::supports_monotonic_clock()) {
  1470     struct timespec tp;
  1471     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1472     assert(status == 0, "gettime error");
  1473     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1474     return result;
  1475   } else {
  1476     timeval time;
  1477     int status = gettimeofday(&time, NULL);
  1478     assert(status != -1, "linux error");
  1479     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1480     return 1000 * usecs;
  1484 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1485   if (Linux::supports_monotonic_clock()) {
  1486     info_ptr->max_value = ALL_64_BITS;
  1488     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1489     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1490     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1491   } else {
  1492     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1493     info_ptr->max_value = ALL_64_BITS;
  1495     // gettimeofday is a real time clock so it skips
  1496     info_ptr->may_skip_backward = true;
  1497     info_ptr->may_skip_forward = true;
  1500   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1503 // Return the real, user, and system times in seconds from an
  1504 // arbitrary fixed point in the past.
  1505 bool os::getTimesSecs(double* process_real_time,
  1506                       double* process_user_time,
  1507                       double* process_system_time) {
  1508   struct tms ticks;
  1509   clock_t real_ticks = times(&ticks);
  1511   if (real_ticks == (clock_t) (-1)) {
  1512     return false;
  1513   } else {
  1514     double ticks_per_second = (double) clock_tics_per_sec;
  1515     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1516     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1517     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1519     return true;
  1524 char * os::local_time_string(char *buf, size_t buflen) {
  1525   struct tm t;
  1526   time_t long_time;
  1527   time(&long_time);
  1528   localtime_r(&long_time, &t);
  1529   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1530                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1531                t.tm_hour, t.tm_min, t.tm_sec);
  1532   return buf;
  1535 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1536   return localtime_r(clock, res);
  1539 ////////////////////////////////////////////////////////////////////////////////
  1540 // runtime exit support
  1542 // Note: os::shutdown() might be called very early during initialization, or
  1543 // called from signal handler. Before adding something to os::shutdown(), make
  1544 // sure it is async-safe and can handle partially initialized VM.
  1545 void os::shutdown() {
  1547   // allow PerfMemory to attempt cleanup of any persistent resources
  1548   perfMemory_exit();
  1550   // needs to remove object in file system
  1551   AttachListener::abort();
  1553   // flush buffered output, finish log files
  1554   ostream_abort();
  1556   // Check for abort hook
  1557   abort_hook_t abort_hook = Arguments::abort_hook();
  1558   if (abort_hook != NULL) {
  1559     abort_hook();
  1564 // Note: os::abort() might be called very early during initialization, or
  1565 // called from signal handler. Before adding something to os::abort(), make
  1566 // sure it is async-safe and can handle partially initialized VM.
  1567 void os::abort(bool dump_core) {
  1568   os::shutdown();
  1569   if (dump_core) {
  1570 #ifndef PRODUCT
  1571     fdStream out(defaultStream::output_fd());
  1572     out.print_raw("Current thread is ");
  1573     char buf[16];
  1574     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1575     out.print_raw_cr(buf);
  1576     out.print_raw_cr("Dumping core ...");
  1577 #endif
  1578     ::abort(); // dump core
  1581   ::exit(1);
  1584 // Die immediately, no exit hook, no abort hook, no cleanup.
  1585 void os::die() {
  1586   // _exit() on LinuxThreads only kills current thread
  1587   ::abort();
  1591 // This method is a copy of JDK's sysGetLastErrorString
  1592 // from src/solaris/hpi/src/system_md.c
  1594 size_t os::lasterror(char *buf, size_t len) {
  1596   if (errno == 0)  return 0;
  1598   const char *s = ::strerror(errno);
  1599   size_t n = ::strlen(s);
  1600   if (n >= len) {
  1601     n = len - 1;
  1603   ::strncpy(buf, s, n);
  1604   buf[n] = '\0';
  1605   return n;
  1608 intx os::current_thread_id() { return (intx)pthread_self(); }
  1609 int os::current_process_id() {
  1611   // Under the old linux thread library, linux gives each thread
  1612   // its own process id. Because of this each thread will return
  1613   // a different pid if this method were to return the result
  1614   // of getpid(2). Linux provides no api that returns the pid
  1615   // of the launcher thread for the vm. This implementation
  1616   // returns a unique pid, the pid of the launcher thread
  1617   // that starts the vm 'process'.
  1619   // Under the NPTL, getpid() returns the same pid as the
  1620   // launcher thread rather than a unique pid per thread.
  1621   // Use gettid() if you want the old pre NPTL behaviour.
  1623   // if you are looking for the result of a call to getpid() that
  1624   // returns a unique pid for the calling thread, then look at the
  1625   // OSThread::thread_id() method in osThread_linux.hpp file
  1627   return (int)(_initial_pid ? _initial_pid : getpid());
  1630 // DLL functions
  1632 const char* os::dll_file_extension() { return ".so"; }
  1634 // This must be hard coded because it's the system's temporary
  1635 // directory not the java application's temp directory, ala java.io.tmpdir.
  1636 const char* os::get_temp_directory() { return "/tmp"; }
  1638 static bool file_exists(const char* filename) {
  1639   struct stat statbuf;
  1640   if (filename == NULL || strlen(filename) == 0) {
  1641     return false;
  1643   return os::stat(filename, &statbuf) == 0;
  1646 bool os::dll_build_name(char* buffer, size_t buflen,
  1647                         const char* pname, const char* fname) {
  1648   bool retval = false;
  1649   // Copied from libhpi
  1650   const size_t pnamelen = pname ? strlen(pname) : 0;
  1652   // Return error on buffer overflow.
  1653   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1654     return retval;
  1657   if (pnamelen == 0) {
  1658     snprintf(buffer, buflen, "lib%s.so", fname);
  1659     retval = true;
  1660   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1661     int n;
  1662     char** pelements = split_path(pname, &n);
  1663     if (pelements == NULL) {
  1664       return false;
  1666     for (int i = 0 ; i < n ; i++) {
  1667       // Really shouldn't be NULL, but check can't hurt
  1668       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1669         continue; // skip the empty path values
  1671       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1672       if (file_exists(buffer)) {
  1673         retval = true;
  1674         break;
  1677     // release the storage
  1678     for (int i = 0 ; i < n ; i++) {
  1679       if (pelements[i] != NULL) {
  1680         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1683     if (pelements != NULL) {
  1684       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1686   } else {
  1687     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1688     retval = true;
  1690   return retval;
  1693 // check if addr is inside libjvm.so
  1694 bool os::address_is_in_vm(address addr) {
  1695   static address libjvm_base_addr;
  1696   Dl_info dlinfo;
  1698   if (libjvm_base_addr == NULL) {
  1699     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1700       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1702     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1705   if (dladdr((void *)addr, &dlinfo) != 0) {
  1706     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1709   return false;
  1712 bool os::dll_address_to_function_name(address addr, char *buf,
  1713                                       int buflen, int *offset) {
  1714   // buf is not optional, but offset is optional
  1715   assert(buf != NULL, "sanity check");
  1717   Dl_info dlinfo;
  1719   if (dladdr((void*)addr, &dlinfo) != 0) {
  1720     // see if we have a matching symbol
  1721     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1722       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1723         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1725       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1726       return true;
  1728     // no matching symbol so try for just file info
  1729     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1730       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1731                           buf, buflen, offset, dlinfo.dli_fname)) {
  1732         return true;
  1737   buf[0] = '\0';
  1738   if (offset != NULL) *offset = -1;
  1739   return false;
  1742 struct _address_to_library_name {
  1743   address addr;          // input : memory address
  1744   size_t  buflen;        //         size of fname
  1745   char*   fname;         // output: library name
  1746   address base;          //         library base addr
  1747 };
  1749 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1750                                             size_t size, void *data) {
  1751   int i;
  1752   bool found = false;
  1753   address libbase = NULL;
  1754   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1756   // iterate through all loadable segments
  1757   for (i = 0; i < info->dlpi_phnum; i++) {
  1758     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1759     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1760       // base address of a library is the lowest address of its loaded
  1761       // segments.
  1762       if (libbase == NULL || libbase > segbase) {
  1763         libbase = segbase;
  1765       // see if 'addr' is within current segment
  1766       if (segbase <= d->addr &&
  1767           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1768         found = true;
  1773   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1774   // so dll_address_to_library_name() can fall through to use dladdr() which
  1775   // can figure out executable name from argv[0].
  1776   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1777     d->base = libbase;
  1778     if (d->fname) {
  1779       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1781     return 1;
  1783   return 0;
  1786 bool os::dll_address_to_library_name(address addr, char* buf,
  1787                                      int buflen, int* offset) {
  1788   // buf is not optional, but offset is optional
  1789   assert(buf != NULL, "sanity check");
  1791   Dl_info dlinfo;
  1792   struct _address_to_library_name data;
  1794   // There is a bug in old glibc dladdr() implementation that it could resolve
  1795   // to wrong library name if the .so file has a base address != NULL. Here
  1796   // we iterate through the program headers of all loaded libraries to find
  1797   // out which library 'addr' really belongs to. This workaround can be
  1798   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1799   data.addr = addr;
  1800   data.fname = buf;
  1801   data.buflen = buflen;
  1802   data.base = NULL;
  1803   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1805   if (rslt) {
  1806      // buf already contains library name
  1807      if (offset) *offset = addr - data.base;
  1808      return true;
  1810   if (dladdr((void*)addr, &dlinfo) != 0) {
  1811     if (dlinfo.dli_fname != NULL) {
  1812       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1814     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1815       *offset = addr - (address)dlinfo.dli_fbase;
  1817     return true;
  1820   buf[0] = '\0';
  1821   if (offset) *offset = -1;
  1822   return false;
  1825   // Loads .dll/.so and
  1826   // in case of error it checks if .dll/.so was built for the
  1827   // same architecture as Hotspot is running on
  1830 // Remember the stack's state. The Linux dynamic linker will change
  1831 // the stack to 'executable' at most once, so we must safepoint only once.
  1832 bool os::Linux::_stack_is_executable = false;
  1834 // VM operation that loads a library.  This is necessary if stack protection
  1835 // of the Java stacks can be lost during loading the library.  If we
  1836 // do not stop the Java threads, they can stack overflow before the stacks
  1837 // are protected again.
  1838 class VM_LinuxDllLoad: public VM_Operation {
  1839  private:
  1840   const char *_filename;
  1841   char *_ebuf;
  1842   int _ebuflen;
  1843   void *_lib;
  1844  public:
  1845   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1846     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1847   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1848   void doit() {
  1849     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1850     os::Linux::_stack_is_executable = true;
  1852   void* loaded_library() { return _lib; }
  1853 };
  1855 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1857   void * result = NULL;
  1858   bool load_attempted = false;
  1860   // Check whether the library to load might change execution rights
  1861   // of the stack. If they are changed, the protection of the stack
  1862   // guard pages will be lost. We need a safepoint to fix this.
  1863   //
  1864   // See Linux man page execstack(8) for more info.
  1865   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1866     ElfFile ef(filename);
  1867     if (!ef.specifies_noexecstack()) {
  1868       if (!is_init_completed()) {
  1869         os::Linux::_stack_is_executable = true;
  1870         // This is OK - No Java threads have been created yet, and hence no
  1871         // stack guard pages to fix.
  1872         //
  1873         // This should happen only when you are building JDK7 using a very
  1874         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1875         //
  1876         // Dynamic loader will make all stacks executable after
  1877         // this function returns, and will not do that again.
  1878         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1879       } else {
  1880         warning("You have loaded library %s which might have disabled stack guard. "
  1881                 "The VM will try to fix the stack guard now.\n"
  1882                 "It's highly recommended that you fix the library with "
  1883                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1884                 filename);
  1886         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1887         JavaThread *jt = JavaThread::current();
  1888         if (jt->thread_state() != _thread_in_native) {
  1889           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1890           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1891           warning("Unable to fix stack guard. Giving up.");
  1892         } else {
  1893           if (!LoadExecStackDllInVMThread) {
  1894             // This is for the case where the DLL has an static
  1895             // constructor function that executes JNI code. We cannot
  1896             // load such DLLs in the VMThread.
  1897             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1900           ThreadInVMfromNative tiv(jt);
  1901           debug_only(VMNativeEntryWrapper vew;)
  1903           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1904           VMThread::execute(&op);
  1905           if (LoadExecStackDllInVMThread) {
  1906             result = op.loaded_library();
  1908           load_attempted = true;
  1914   if (!load_attempted) {
  1915     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1918   if (result != NULL) {
  1919     // Successful loading
  1920     return result;
  1923   Elf32_Ehdr elf_head;
  1924   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1925   char* diag_msg_buf=ebuf+strlen(ebuf);
  1927   if (diag_msg_max_length==0) {
  1928     // No more space in ebuf for additional diagnostics message
  1929     return NULL;
  1933   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1935   if (file_descriptor < 0) {
  1936     // Can't open library, report dlerror() message
  1937     return NULL;
  1940   bool failed_to_read_elf_head=
  1941     (sizeof(elf_head)!=
  1942         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1944   ::close(file_descriptor);
  1945   if (failed_to_read_elf_head) {
  1946     // file i/o error - report dlerror() msg
  1947     return NULL;
  1950   typedef struct {
  1951     Elf32_Half  code;         // Actual value as defined in elf.h
  1952     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1953     char        elf_class;    // 32 or 64 bit
  1954     char        endianess;    // MSB or LSB
  1955     char*       name;         // String representation
  1956   } arch_t;
  1958   #ifndef EM_486
  1959   #define EM_486          6               /* Intel 80486 */
  1960   #endif
  1962   static const arch_t arch_array[]={
  1963     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1964     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1965     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1966     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1967     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1968     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1969     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1970     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1971 #if defined(VM_LITTLE_ENDIAN)
  1972     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
  1973 #else
  1974     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1975 #endif
  1976     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1977     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1978     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1979     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1980     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1981     {EM_MIPS,        EM_MIPS,    ELFCLASS64, ELFDATA2LSB, (char*)"MIPS64 LE"},
  1982     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1983     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1984   };
  1986   #if  (defined IA32)
  1987     static  Elf32_Half running_arch_code=EM_386;
  1988   #elif   (defined AMD64)
  1989     static  Elf32_Half running_arch_code=EM_X86_64;
  1990   #elif  (defined IA64)
  1991     static  Elf32_Half running_arch_code=EM_IA_64;
  1992   #elif  (defined __sparc) && (defined _LP64)
  1993     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1994   #elif  (defined __sparc) && (!defined _LP64)
  1995     static  Elf32_Half running_arch_code=EM_SPARC;
  1996   #elif  (defined MIPS64)
  1997     static  Elf32_Half running_arch_code=EM_MIPS;
  1998   #elif  (defined __powerpc64__)
  1999     static  Elf32_Half running_arch_code=EM_PPC64;
  2000   #elif  (defined __powerpc__)
  2001     static  Elf32_Half running_arch_code=EM_PPC;
  2002   #elif  (defined ARM)
  2003     static  Elf32_Half running_arch_code=EM_ARM;
  2004   #elif  (defined S390)
  2005     static  Elf32_Half running_arch_code=EM_S390;
  2006   #elif  (defined ALPHA)
  2007     static  Elf32_Half running_arch_code=EM_ALPHA;
  2008   #elif  (defined MIPSEL)
  2009     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  2010   #elif  (defined PARISC)
  2011     static  Elf32_Half running_arch_code=EM_PARISC;
  2012   #elif  (defined MIPS)
  2013     static  Elf32_Half running_arch_code=EM_MIPS;
  2014   #elif  (defined M68K)
  2015     static  Elf32_Half running_arch_code=EM_68K;
  2016   #else
  2017     #error Method os::dll_load requires that one of following is defined:\
  2018          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, __mips64, PARISC, M68K
  2019   #endif
  2021   // Identify compatability class for VM's architecture and library's architecture
  2022   // Obtain string descriptions for architectures
  2024   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2025   int running_arch_index=-1;
  2027   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2028     if (running_arch_code == arch_array[i].code) {
  2029       running_arch_index    = i;
  2031     if (lib_arch.code == arch_array[i].code) {
  2032       lib_arch.compat_class = arch_array[i].compat_class;
  2033       lib_arch.name         = arch_array[i].name;
  2037   assert(running_arch_index != -1,
  2038     "Didn't find running architecture code (running_arch_code) in arch_array");
  2039   if (running_arch_index == -1) {
  2040     // Even though running architecture detection failed
  2041     // we may still continue with reporting dlerror() message
  2042     return NULL;
  2045   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2046     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2047     return NULL;
  2050 #ifndef S390
  2051   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2052     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2053     return NULL;
  2055 #endif // !S390
  2057   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2058     if ( lib_arch.name!=NULL ) {
  2059       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2060         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2061         lib_arch.name, arch_array[running_arch_index].name);
  2062     } else {
  2063       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2064       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2065         lib_arch.code,
  2066         arch_array[running_arch_index].name);
  2070   return NULL;
  2073 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2074   void * result = ::dlopen(filename, RTLD_LAZY);
  2075   if (result == NULL) {
  2076     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2077     ebuf[ebuflen-1] = '\0';
  2079   return result;
  2082 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2083   void * result = NULL;
  2084   if (LoadExecStackDllInVMThread) {
  2085     result = dlopen_helper(filename, ebuf, ebuflen);
  2088   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2089   // library that requires an executable stack, or which does not have this
  2090   // stack attribute set, dlopen changes the stack attribute to executable. The
  2091   // read protection of the guard pages gets lost.
  2092   //
  2093   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2094   // may have been queued at the same time.
  2096   if (!_stack_is_executable) {
  2097     JavaThread *jt = Threads::first();
  2099     while (jt) {
  2100       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2101           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2102         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2103                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2104           warning("Attempt to reguard stack yellow zone failed.");
  2107       jt = jt->next();
  2111   return result;
  2114 /*
  2115  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2116  * chances are you might want to run the generated bits against glibc-2.0
  2117  * libdl.so, so always use locking for any version of glibc.
  2118  */
  2119 void* os::dll_lookup(void* handle, const char* name) {
  2120   pthread_mutex_lock(&dl_mutex);
  2121   void* res = dlsym(handle, name);
  2122   pthread_mutex_unlock(&dl_mutex);
  2123   return res;
  2126 void* os::get_default_process_handle() {
  2127   return (void*)::dlopen(NULL, RTLD_LAZY);
  2130 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2131   int fd = ::open(filename, O_RDONLY);
  2132   if (fd == -1) {
  2133      return false;
  2136   char buf[32];
  2137   int bytes;
  2138   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2139     st->print_raw(buf, bytes);
  2142   ::close(fd);
  2144   return true;
  2147 void os::print_dll_info(outputStream *st) {
  2148    st->print_cr("Dynamic libraries:");
  2150    char fname[32];
  2151    pid_t pid = os::Linux::gettid();
  2153    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2155    if (!_print_ascii_file(fname, st)) {
  2156      st->print("Can not get library information for pid = %d\n", pid);
  2160 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
  2161   FILE *procmapsFile = NULL;
  2163   // Open the procfs maps file for the current process
  2164   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
  2165     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
  2166     char line[PATH_MAX + 100];
  2168     // Read line by line from 'file'
  2169     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
  2170       u8 base, top, offset, inode;
  2171       char permissions[5];
  2172       char device[6];
  2173       char name[PATH_MAX + 1];
  2175       // Parse fields from line
  2176       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s",
  2177              &base, &top, permissions, &offset, device, &inode, name);
  2179       // Filter by device id '00:00' so that we only get file system mapped files.
  2180       if (strcmp(device, "00:00") != 0) {
  2182         // Call callback with the fields of interest
  2183         if(callback(name, (address)base, (address)top, param)) {
  2184           // Oops abort, callback aborted
  2185           fclose(procmapsFile);
  2186           return 1;
  2190     fclose(procmapsFile);
  2192   return 0;
  2195 void os::print_os_info_brief(outputStream* st) {
  2196   os::Linux::print_distro_info(st);
  2198   os::Posix::print_uname_info(st);
  2200   os::Linux::print_libversion_info(st);
  2204 void os::print_os_info(outputStream* st) {
  2205   st->print("OS:");
  2207   os::Linux::print_distro_info(st);
  2209   os::Posix::print_uname_info(st);
  2211   // Print warning if unsafe chroot environment detected
  2212   if (unsafe_chroot_detected) {
  2213     st->print("WARNING!! ");
  2214     st->print_cr("%s", unstable_chroot_error);
  2217   os::Linux::print_libversion_info(st);
  2219   os::Posix::print_rlimit_info(st);
  2221   os::Posix::print_load_average(st);
  2223   os::Linux::print_full_memory_info(st);
  2225   os::Linux::print_container_info(st);
  2228 // Try to identify popular distros.
  2229 // Most Linux distributions have a /etc/XXX-release file, which contains
  2230 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2231 // file that also contains the OS version string. Some have more than one
  2232 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2233 // /etc/redhat-release.), so the order is important.
  2234 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2235 // their own specific XXX-release file as well as a redhat-release file.
  2236 // Because of this the XXX-release file needs to be searched for before the
  2237 // redhat-release file.
  2238 // Since Red Hat has a lsb-release file that is not very descriptive the
  2239 // search for redhat-release needs to be before lsb-release.
  2240 // Since the lsb-release file is the new standard it needs to be searched
  2241 // before the older style release files.
  2242 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2243 // next to last resort.  The os-release file is a new standard that contains
  2244 // distribution information and the system-release file seems to be an old
  2245 // standard that has been replaced by the lsb-release and os-release files.
  2246 // Searching for the debian_version file is the last resort.  It contains
  2247 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2248 // "Debian " is printed before the contents of the debian_version file.
  2249 void os::Linux::print_distro_info(outputStream* st) {
  2250    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2251        !_print_ascii_file("/etc/mandriva-release", st) &&
  2252        !_print_ascii_file("/etc/mandrake-release", st) &&
  2253        !_print_ascii_file("/etc/sun-release", st) &&
  2254        !_print_ascii_file("/etc/redhat-release", st) &&
  2255        !_print_ascii_file("/etc/lsb-release", st) &&
  2256        !_print_ascii_file("/etc/SuSE-release", st) &&
  2257        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2258        !_print_ascii_file("/etc/gentoo-release", st) &&
  2259        !_print_ascii_file("/etc/ltib-release", st) &&
  2260        !_print_ascii_file("/etc/angstrom-version", st) &&
  2261        !_print_ascii_file("/etc/system-release", st) &&
  2262        !_print_ascii_file("/etc/os-release", st)) {
  2264        if (file_exists("/etc/debian_version")) {
  2265          st->print("Debian ");
  2266          _print_ascii_file("/etc/debian_version", st);
  2267        } else {
  2268          st->print("Linux");
  2271    st->cr();
  2274 void os::Linux::print_libversion_info(outputStream* st) {
  2275   // libc, pthread
  2276   st->print("libc:");
  2277   st->print("%s ", os::Linux::glibc_version());
  2278   st->print("%s ", os::Linux::libpthread_version());
  2279   if (os::Linux::is_LinuxThreads()) {
  2280      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2282   st->cr();
  2285 void os::Linux::print_full_memory_info(outputStream* st) {
  2286    st->print("\n/proc/meminfo:\n");
  2287    _print_ascii_file("/proc/meminfo", st);
  2288    st->cr();
  2291 void os::Linux::print_container_info(outputStream* st) {
  2292 if (!OSContainer::is_containerized()) {
  2293     return;
  2296   st->print("container (cgroup) information:\n");
  2298   const char *p_ct = OSContainer::container_type();
  2299   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
  2301   char *p = OSContainer::cpu_cpuset_cpus();
  2302   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
  2303   free(p);
  2305   p = OSContainer::cpu_cpuset_memory_nodes();
  2306   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
  2307   free(p);
  2309   int i = OSContainer::active_processor_count();
  2310   if (i > 0) {
  2311     st->print("active_processor_count: %d\n", i);
  2312   } else {
  2313     st->print("active_processor_count: failed\n");
  2316   i = OSContainer::cpu_quota();
  2317   st->print("cpu_quota: %d\n", i);
  2319   i = OSContainer::cpu_period();
  2320   st->print("cpu_period: %d\n", i);
  2322   i = OSContainer::cpu_shares();
  2323   st->print("cpu_shares: %d\n", i);
  2325   jlong j = OSContainer::memory_limit_in_bytes();
  2326   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2328   j = OSContainer::memory_and_swap_limit_in_bytes();
  2329   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2331   j = OSContainer::memory_soft_limit_in_bytes();
  2332   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2334   j = OSContainer::OSContainer::memory_usage_in_bytes();
  2335   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2337   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
  2338   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2339   st->cr();
  2342 void os::print_memory_info(outputStream* st) {
  2344   st->print("Memory:");
  2345   st->print(" %dk page", os::vm_page_size()>>10);
  2347   // values in struct sysinfo are "unsigned long"
  2348   struct sysinfo si;
  2349   sysinfo(&si);
  2351   st->print(", physical " UINT64_FORMAT "k",
  2352             os::physical_memory() >> 10);
  2353   st->print("(" UINT64_FORMAT "k free)",
  2354             os::available_memory() >> 10);
  2355   st->print(", swap " UINT64_FORMAT "k",
  2356             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2357   st->print("(" UINT64_FORMAT "k free)",
  2358             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2359   st->cr();
  2362 void os::pd_print_cpu_info(outputStream* st) {
  2363   st->print("\n/proc/cpuinfo:\n");
  2364   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2365     st->print("  <Not Available>");
  2367   st->cr();
  2370 void os::print_siginfo(outputStream* st, void* siginfo) {
  2371   const siginfo_t* si = (const siginfo_t*)siginfo;
  2373   os::Posix::print_siginfo_brief(st, si);
  2374 #if INCLUDE_CDS
  2375   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2376       UseSharedSpaces) {
  2377     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2378     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2379       st->print("\n\nError accessing class data sharing archive."   \
  2380                 " Mapped file inaccessible during execution, "      \
  2381                 " possible disk/network problem.");
  2384 #endif
  2385   st->cr();
  2389 static void print_signal_handler(outputStream* st, int sig,
  2390                                  char* buf, size_t buflen);
  2392 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2393   st->print_cr("Signal Handlers:");
  2394   print_signal_handler(st, SIGSEGV, buf, buflen);
  2395   print_signal_handler(st, SIGBUS , buf, buflen);
  2396   print_signal_handler(st, SIGFPE , buf, buflen);
  2397   print_signal_handler(st, SIGPIPE, buf, buflen);
  2398   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2399   print_signal_handler(st, SIGILL , buf, buflen);
  2400   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2401   print_signal_handler(st, SR_signum, buf, buflen);
  2402   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2403   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2404   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2405   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2406 #if defined(PPC64)
  2407   print_signal_handler(st, SIGTRAP, buf, buflen);
  2408 #endif
  2411 static char saved_jvm_path[MAXPATHLEN] = {0};
  2413 // Find the full path to the current module, libjvm.so
  2414 void os::jvm_path(char *buf, jint buflen) {
  2415   // Error checking.
  2416   if (buflen < MAXPATHLEN) {
  2417     assert(false, "must use a large-enough buffer");
  2418     buf[0] = '\0';
  2419     return;
  2421   // Lazy resolve the path to current module.
  2422   if (saved_jvm_path[0] != 0) {
  2423     strcpy(buf, saved_jvm_path);
  2424     return;
  2427   char dli_fname[MAXPATHLEN];
  2428   bool ret = dll_address_to_library_name(
  2429                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2430                 dli_fname, sizeof(dli_fname), NULL);
  2431   assert(ret, "cannot locate libjvm");
  2432   char *rp = NULL;
  2433   if (ret && dli_fname[0] != '\0') {
  2434     rp = realpath(dli_fname, buf);
  2436   if (rp == NULL)
  2437     return;
  2439   if (Arguments::created_by_gamma_launcher()) {
  2440     // Support for the gamma launcher.  Typical value for buf is
  2441     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2442     // the right place in the string, then assume we are installed in a JDK and
  2443     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2444     // up the path so it looks like libjvm.so is installed there (append a
  2445     // fake suffix hotspot/libjvm.so).
  2446     const char *p = buf + strlen(buf) - 1;
  2447     for (int count = 0; p > buf && count < 5; ++count) {
  2448       for (--p; p > buf && *p != '/'; --p)
  2449         /* empty */ ;
  2452     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2453       // Look for JAVA_HOME in the environment.
  2454       char* java_home_var = ::getenv("JAVA_HOME");
  2455       if (java_home_var != NULL && java_home_var[0] != 0) {
  2456         char* jrelib_p;
  2457         int len;
  2459         // Check the current module name "libjvm.so".
  2460         p = strrchr(buf, '/');
  2461         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2463         rp = realpath(java_home_var, buf);
  2464         if (rp == NULL)
  2465           return;
  2467         // determine if this is a legacy image or modules image
  2468         // modules image doesn't have "jre" subdirectory
  2469         len = strlen(buf);
  2470         assert(len < buflen, "Ran out of buffer room");
  2471         jrelib_p = buf + len;
  2472         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2473         if (0 != access(buf, F_OK)) {
  2474           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2477         if (0 == access(buf, F_OK)) {
  2478           // Use current module name "libjvm.so"
  2479           len = strlen(buf);
  2480           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2481         } else {
  2482           // Go back to path of .so
  2483           rp = realpath(dli_fname, buf);
  2484           if (rp == NULL)
  2485             return;
  2491   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2494 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2495   // no prefix required, not even "_"
  2498 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2499   // no suffix required
  2502 ////////////////////////////////////////////////////////////////////////////////
  2503 // sun.misc.Signal support
  2505 static volatile jint sigint_count = 0;
  2507 static void
  2508 UserHandler(int sig, void *siginfo, void *context) {
  2509   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2510   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2511   // don't want to flood the manager thread with sem_post requests.
  2512   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2513       return;
  2515   // Ctrl-C is pressed during error reporting, likely because the error
  2516   // handler fails to abort. Let VM die immediately.
  2517   if (sig == SIGINT && is_error_reported()) {
  2518      os::die();
  2521   os::signal_notify(sig);
  2524 void* os::user_handler() {
  2525   return CAST_FROM_FN_PTR(void*, UserHandler);
  2528 class Semaphore : public StackObj {
  2529   public:
  2530     Semaphore();
  2531     ~Semaphore();
  2532     void signal();
  2533     void wait();
  2534     bool trywait();
  2535     bool timedwait(unsigned int sec, int nsec);
  2536   private:
  2537     sem_t _semaphore;
  2538 };
  2540 Semaphore::Semaphore() {
  2541   sem_init(&_semaphore, 0, 0);
  2544 Semaphore::~Semaphore() {
  2545   sem_destroy(&_semaphore);
  2548 void Semaphore::signal() {
  2549   sem_post(&_semaphore);
  2552 void Semaphore::wait() {
  2553   sem_wait(&_semaphore);
  2556 bool Semaphore::trywait() {
  2557   return sem_trywait(&_semaphore) == 0;
  2560 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2562   struct timespec ts;
  2563   // Semaphore's are always associated with CLOCK_REALTIME
  2564   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2565   // see unpackTime for discussion on overflow checking
  2566   if (sec >= MAX_SECS) {
  2567     ts.tv_sec += MAX_SECS;
  2568     ts.tv_nsec = 0;
  2569   } else {
  2570     ts.tv_sec += sec;
  2571     ts.tv_nsec += nsec;
  2572     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2573       ts.tv_nsec -= NANOSECS_PER_SEC;
  2574       ++ts.tv_sec; // note: this must be <= max_secs
  2578   while (1) {
  2579     int result = sem_timedwait(&_semaphore, &ts);
  2580     if (result == 0) {
  2581       return true;
  2582     } else if (errno == EINTR) {
  2583       continue;
  2584     } else if (errno == ETIMEDOUT) {
  2585       return false;
  2586     } else {
  2587       return false;
  2592 extern "C" {
  2593   typedef void (*sa_handler_t)(int);
  2594   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2597 void* os::signal(int signal_number, void* handler) {
  2598   struct sigaction sigAct, oldSigAct;
  2600   sigfillset(&(sigAct.sa_mask));
  2601   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2602   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2604   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2605     // -1 means registration failed
  2606     return (void *)-1;
  2609   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2612 void os::signal_raise(int signal_number) {
  2613   ::raise(signal_number);
  2616 /*
  2617  * The following code is moved from os.cpp for making this
  2618  * code platform specific, which it is by its very nature.
  2619  */
  2621 // Will be modified when max signal is changed to be dynamic
  2622 int os::sigexitnum_pd() {
  2623   return NSIG;
  2626 // a counter for each possible signal value
  2627 static volatile jint pending_signals[NSIG+1] = { 0 };
  2629 // Linux(POSIX) specific hand shaking semaphore.
  2630 static sem_t sig_sem;
  2631 static Semaphore sr_semaphore;
  2633 void os::signal_init_pd() {
  2634   // Initialize signal structures
  2635   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2637   // Initialize signal semaphore
  2638   ::sem_init(&sig_sem, 0, 0);
  2641 void os::signal_notify(int sig) {
  2642   Atomic::inc(&pending_signals[sig]);
  2643   ::sem_post(&sig_sem);
  2646 static int check_pending_signals(bool wait) {
  2647   Atomic::store(0, &sigint_count);
  2648   for (;;) {
  2649     for (int i = 0; i < NSIG + 1; i++) {
  2650       jint n = pending_signals[i];
  2651       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2652         return i;
  2655     if (!wait) {
  2656       return -1;
  2658     JavaThread *thread = JavaThread::current();
  2659     ThreadBlockInVM tbivm(thread);
  2661     bool threadIsSuspended;
  2662     do {
  2663       thread->set_suspend_equivalent();
  2664       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2665       ::sem_wait(&sig_sem);
  2667       // were we externally suspended while we were waiting?
  2668       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2669       if (threadIsSuspended) {
  2670         //
  2671         // The semaphore has been incremented, but while we were waiting
  2672         // another thread suspended us. We don't want to continue running
  2673         // while suspended because that would surprise the thread that
  2674         // suspended us.
  2675         //
  2676         ::sem_post(&sig_sem);
  2678         thread->java_suspend_self();
  2680     } while (threadIsSuspended);
  2684 int os::signal_lookup() {
  2685   return check_pending_signals(false);
  2688 int os::signal_wait() {
  2689   return check_pending_signals(true);
  2692 ////////////////////////////////////////////////////////////////////////////////
  2693 // Virtual Memory
  2695 int os::vm_page_size() {
  2696   // Seems redundant as all get out
  2697   assert(os::Linux::page_size() != -1, "must call os::init");
  2698   return os::Linux::page_size();
  2701 // Solaris allocates memory by pages.
  2702 int os::vm_allocation_granularity() {
  2703   assert(os::Linux::page_size() != -1, "must call os::init");
  2704   return os::Linux::page_size();
  2707 // Rationale behind this function:
  2708 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2709 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2710 //  samples for JITted code. Here we create private executable mapping over the code cache
  2711 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2712 //  info for the reporting script by storing timestamp and location of symbol
  2713 void linux_wrap_code(char* base, size_t size) {
  2714   static volatile jint cnt = 0;
  2716   if (!UseOprofile) {
  2717     return;
  2720   char buf[PATH_MAX+1];
  2721   int num = Atomic::add(1, &cnt);
  2723   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2724            os::get_temp_directory(), os::current_process_id(), num);
  2725   unlink(buf);
  2727   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2729   if (fd != -1) {
  2730     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2731     if (rv != (off_t)-1) {
  2732       if (::write(fd, "", 1) == 1) {
  2733         mmap(base, size,
  2734              PROT_READ|PROT_WRITE|PROT_EXEC,
  2735              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2738     ::close(fd);
  2739     unlink(buf);
  2743 static bool recoverable_mmap_error(int err) {
  2744   // See if the error is one we can let the caller handle. This
  2745   // list of errno values comes from JBS-6843484. I can't find a
  2746   // Linux man page that documents this specific set of errno
  2747   // values so while this list currently matches Solaris, it may
  2748   // change as we gain experience with this failure mode.
  2749   switch (err) {
  2750   case EBADF:
  2751   case EINVAL:
  2752   case ENOTSUP:
  2753     // let the caller deal with these errors
  2754     return true;
  2756   default:
  2757     // Any remaining errors on this OS can cause our reserved mapping
  2758     // to be lost. That can cause confusion where different data
  2759     // structures think they have the same memory mapped. The worst
  2760     // scenario is if both the VM and a library think they have the
  2761     // same memory mapped.
  2762     return false;
  2766 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2767                                     int err) {
  2768   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2769           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2770           strerror(err), err);
  2773 static void warn_fail_commit_memory(char* addr, size_t size,
  2774                                     size_t alignment_hint, bool exec,
  2775                                     int err) {
  2776   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2777           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2778           alignment_hint, exec, strerror(err), err);
  2781 // NOTE: Linux kernel does not really reserve the pages for us.
  2782 //       All it does is to check if there are enough free pages
  2783 //       left at the time of mmap(). This could be a potential
  2784 //       problem.
  2785 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2786   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2787   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2788                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2789   if (res != (uintptr_t) MAP_FAILED) {
  2790     if (UseNUMAInterleaving) {
  2791       numa_make_global(addr, size);
  2793     return 0;
  2796   int err = errno;  // save errno from mmap() call above
  2798   if (!recoverable_mmap_error(err)) {
  2799     warn_fail_commit_memory(addr, size, exec, err);
  2800     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2803   return err;
  2806 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2807   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2810 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2811                                   const char* mesg) {
  2812   assert(mesg != NULL, "mesg must be specified");
  2813   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2814   if (err != 0) {
  2815     // the caller wants all commit errors to exit with the specified mesg:
  2816     warn_fail_commit_memory(addr, size, exec, err);
  2817     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2821 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2822 #ifndef MAP_HUGETLB
  2823 #define MAP_HUGETLB 0x40000
  2824 #endif
  2826 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2827 #ifndef MADV_HUGEPAGE
  2828 #define MADV_HUGEPAGE 14
  2829 #endif
  2831 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2832                                   size_t alignment_hint, bool exec) {
  2833   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2834   if (err == 0) {
  2835     realign_memory(addr, size, alignment_hint);
  2837   return err;
  2840 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2841                           bool exec) {
  2842   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2845 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2846                                   size_t alignment_hint, bool exec,
  2847                                   const char* mesg) {
  2848   assert(mesg != NULL, "mesg must be specified");
  2849   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2850   if (err != 0) {
  2851     // the caller wants all commit errors to exit with the specified mesg:
  2852     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2853     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2857 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2858   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2859     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2860     // be supported or the memory may already be backed by huge pages.
  2861     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2865 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2866   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2867   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2868   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2869   // small pages on top of the SHM segment. This method always works for small pages, so we
  2870   // allow that in any case.
  2871   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2872     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2876 void os::numa_make_global(char *addr, size_t bytes) {
  2877   Linux::numa_interleave_memory(addr, bytes);
  2880 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2881 // bind policy to MPOL_PREFERRED for the current thread.
  2882 #define USE_MPOL_PREFERRED 0
  2884 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2885   // To make NUMA and large pages more robust when both enabled, we need to ease
  2886   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2887   // default policy and it will force memory to be allocated on the specified
  2888   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2889   // the specified node, but will not force it. Using this policy will prevent
  2890   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2891   // free large pages.
  2892   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2893   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2896 bool os::numa_topology_changed()   { return false; }
  2898 size_t os::numa_get_groups_num() {
  2899   // Return just the number of nodes in which it's possible to allocate memory
  2900   // (in numa terminology, configured nodes).
  2901   return Linux::numa_num_configured_nodes();
  2904 int os::numa_get_group_id() {
  2905   int cpu_id = Linux::sched_getcpu();
  2906   if (cpu_id != -1) {
  2907     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2908     if (lgrp_id != -1) {
  2909       return lgrp_id;
  2912   return 0;
  2915 int os::Linux::get_existing_num_nodes() {
  2916   size_t node;
  2917   size_t highest_node_number = Linux::numa_max_node();
  2918   int num_nodes = 0;
  2920   // Get the total number of nodes in the system including nodes without memory.
  2921   for (node = 0; node <= highest_node_number; node++) {
  2922     if (isnode_in_existing_nodes(node)) {
  2923       num_nodes++;
  2926   return num_nodes;
  2929 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2930   size_t highest_node_number = Linux::numa_max_node();
  2931   size_t i = 0;
  2933   // Map all node ids in which is possible to allocate memory. Also nodes are
  2934   // not always consecutively available, i.e. available from 0 to the highest
  2935   // node number.
  2936   for (size_t node = 0; node <= highest_node_number; node++) {
  2937     if (Linux::isnode_in_configured_nodes(node)) {
  2938       ids[i++] = node;
  2941   return i;
  2944 bool os::get_page_info(char *start, page_info* info) {
  2945   return false;
  2948 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2949   return end;
  2953 int os::Linux::sched_getcpu_syscall(void) {
  2954   unsigned int cpu = 0;
  2955   int retval = -1;
  2957 #if defined(IA32)
  2958 # ifndef SYS_getcpu
  2959 # define SYS_getcpu 318
  2960 # endif
  2961   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2962 #elif defined(AMD64)
  2963 // Unfortunately we have to bring all these macros here from vsyscall.h
  2964 // to be able to compile on old linuxes.
  2965 # define __NR_vgetcpu 2
  2966 # define VSYSCALL_START (-10UL << 20)
  2967 # define VSYSCALL_SIZE 1024
  2968 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2969   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2970   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2971   retval = vgetcpu(&cpu, NULL, NULL);
  2972 #endif
  2974   return (retval == -1) ? retval : cpu;
  2977 // Something to do with the numa-aware allocator needs these symbols
  2978 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2979 extern "C" JNIEXPORT void numa_error(char *where) { }
  2980 extern "C" JNIEXPORT int fork1() { return fork(); }
  2982 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
  2983 // load symbol from base version instead.
  2984 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2985   void *f = dlvsym(handle, name, "libnuma_1.1");
  2986   if (f == NULL) {
  2987     f = dlsym(handle, name);
  2989   return f;
  2992 // Handle request to load libnuma symbol version 1.2 (API v2) only.
  2993 // Return NULL if the symbol is not defined in this particular version.
  2994 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
  2995   return dlvsym(handle, name, "libnuma_1.2");
  2998 bool os::Linux::libnuma_init() {
  2999   // sched_getcpu() should be in libc.
  3000   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  3001                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  3003   // If it's not, try a direct syscall.
  3004   if (sched_getcpu() == -1)
  3005     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  3007   if (sched_getcpu() != -1) { // Does it work?
  3008     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  3009     if (handle != NULL) {
  3010       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  3011                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  3012       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  3013                                        libnuma_dlsym(handle, "numa_max_node")));
  3014       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
  3015                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
  3016       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  3017                                         libnuma_dlsym(handle, "numa_available")));
  3018       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  3019                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  3020       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  3021                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
  3022       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
  3023                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
  3024       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  3025                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
  3026       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
  3027                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
  3028       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
  3029                                        libnuma_dlsym(handle, "numa_distance")));
  3031       if (numa_available() != -1) {
  3032         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  3033         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
  3034         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
  3035         // Create an index -> node mapping, since nodes are not always consecutive
  3036         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  3037         rebuild_nindex_to_node_map();
  3038         // Create a cpu -> node mapping
  3039         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  3040         rebuild_cpu_to_node_map();
  3041         return true;
  3045   return false;
  3048 void os::Linux::rebuild_nindex_to_node_map() {
  3049   int highest_node_number = Linux::numa_max_node();
  3051   nindex_to_node()->clear();
  3052   for (int node = 0; node <= highest_node_number; node++) {
  3053     if (Linux::isnode_in_existing_nodes(node)) {
  3054       nindex_to_node()->append(node);
  3059 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  3060 // The table is later used in get_node_by_cpu().
  3061 void os::Linux::rebuild_cpu_to_node_map() {
  3062   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  3063                               // in libnuma (possible values are starting from 16,
  3064                               // and continuing up with every other power of 2, but less
  3065                               // than the maximum number of CPUs supported by kernel), and
  3066                               // is a subject to change (in libnuma version 2 the requirements
  3067                               // are more reasonable) we'll just hardcode the number they use
  3068                               // in the library.
  3069   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  3071   size_t cpu_num = processor_count();
  3072   size_t cpu_map_size = NCPUS / BitsPerCLong;
  3073   size_t cpu_map_valid_size =
  3074     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  3076   cpu_to_node()->clear();
  3077   cpu_to_node()->at_grow(cpu_num - 1);
  3079   size_t node_num = get_existing_num_nodes();
  3081   int distance = 0;
  3082   int closest_distance = INT_MAX;
  3083   int closest_node = 0;
  3084   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  3085   for (size_t i = 0; i < node_num; i++) {
  3086     // Check if node is configured (not a memory-less node). If it is not, find
  3087     // the closest configured node.
  3088     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
  3089       closest_distance = INT_MAX;
  3090       // Check distance from all remaining nodes in the system. Ignore distance
  3091       // from itself and from another non-configured node.
  3092       for (size_t m = 0; m < node_num; m++) {
  3093         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
  3094           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
  3095           // If a closest node is found, update. There is always at least one
  3096           // configured node in the system so there is always at least one node
  3097           // close.
  3098           if (distance != 0 && distance < closest_distance) {
  3099             closest_distance = distance;
  3100             closest_node = nindex_to_node()->at(m);
  3104      } else {
  3105        // Current node is already a configured node.
  3106        closest_node = nindex_to_node()->at(i);
  3109     // Get cpus from the original node and map them to the closest node. If node
  3110     // is a configured node (not a memory-less node), then original node and
  3111     // closest node are the same.
  3112     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  3113       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  3114         if (cpu_map[j] != 0) {
  3115           for (size_t k = 0; k < BitsPerCLong; k++) {
  3116             if (cpu_map[j] & (1UL << k)) {
  3117               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
  3124   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  3127 int os::Linux::get_node_by_cpu(int cpu_id) {
  3128   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  3129     return cpu_to_node()->at(cpu_id);
  3131   return -1;
  3134 GrowableArray<int>* os::Linux::_cpu_to_node;
  3135 GrowableArray<int>* os::Linux::_nindex_to_node;
  3136 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  3137 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  3138 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  3139 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
  3140 os::Linux::numa_available_func_t os::Linux::_numa_available;
  3141 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  3142 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  3143 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
  3144 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  3145 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
  3146 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
  3147 unsigned long* os::Linux::_numa_all_nodes;
  3148 struct bitmask* os::Linux::_numa_all_nodes_ptr;
  3149 struct bitmask* os::Linux::_numa_nodes_ptr;
  3151 bool os::pd_uncommit_memory(char* addr, size_t size) {
  3152   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  3153                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  3154   return res  != (uintptr_t) MAP_FAILED;
  3157 static
  3158 address get_stack_commited_bottom(address bottom, size_t size) {
  3159   address nbot = bottom;
  3160   address ntop = bottom + size;
  3162   size_t page_sz = os::vm_page_size();
  3163   unsigned pages = size / page_sz;
  3165   unsigned char vec[1];
  3166   unsigned imin = 1, imax = pages + 1, imid;
  3167   int mincore_return_value = 0;
  3169   assert(imin <= imax, "Unexpected page size");
  3171   while (imin < imax) {
  3172     imid = (imax + imin) / 2;
  3173     nbot = ntop - (imid * page_sz);
  3175     // Use a trick with mincore to check whether the page is mapped or not.
  3176     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3177     // is swapped output but if page we are asking for is unmapped
  3178     // it returns -1,ENOMEM
  3179     mincore_return_value = mincore(nbot, page_sz, vec);
  3181     if (mincore_return_value == -1) {
  3182       // Page is not mapped go up
  3183       // to find first mapped page
  3184       if (errno != EAGAIN) {
  3185         assert(errno == ENOMEM, "Unexpected mincore errno");
  3186         imax = imid;
  3188     } else {
  3189       // Page is mapped go down
  3190       // to find first not mapped page
  3191       imin = imid + 1;
  3195   nbot = nbot + page_sz;
  3197   // Adjust stack bottom one page up if last checked page is not mapped
  3198   if (mincore_return_value == -1) {
  3199     nbot = nbot + page_sz;
  3202   return nbot;
  3206 // Linux uses a growable mapping for the stack, and if the mapping for
  3207 // the stack guard pages is not removed when we detach a thread the
  3208 // stack cannot grow beyond the pages where the stack guard was
  3209 // mapped.  If at some point later in the process the stack expands to
  3210 // that point, the Linux kernel cannot expand the stack any further
  3211 // because the guard pages are in the way, and a segfault occurs.
  3212 //
  3213 // However, it's essential not to split the stack region by unmapping
  3214 // a region (leaving a hole) that's already part of the stack mapping,
  3215 // so if the stack mapping has already grown beyond the guard pages at
  3216 // the time we create them, we have to truncate the stack mapping.
  3217 // So, we need to know the extent of the stack mapping when
  3218 // create_stack_guard_pages() is called.
  3220 // We only need this for stacks that are growable: at the time of
  3221 // writing thread stacks don't use growable mappings (i.e. those
  3222 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3223 // only applies to the main thread.
  3225 // If the (growable) stack mapping already extends beyond the point
  3226 // where we're going to put our guard pages, truncate the mapping at
  3227 // that point by munmap()ping it.  This ensures that when we later
  3228 // munmap() the guard pages we don't leave a hole in the stack
  3229 // mapping. This only affects the main/primordial thread
  3231 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3233   if (os::is_primordial_thread()) {
  3234     // As we manually grow stack up to bottom inside create_attached_thread(),
  3235     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3236     // we don't need to do anything special.
  3237     // Check it first, before calling heavy function.
  3238     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3239     unsigned char vec[1];
  3241     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3242       // Fallback to slow path on all errors, including EAGAIN
  3243       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3244                                     os::Linux::initial_thread_stack_bottom(),
  3245                                     (size_t)addr - stack_extent);
  3248     if (stack_extent < (uintptr_t)addr) {
  3249       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3253   return os::commit_memory(addr, size, !ExecMem);
  3256 // If this is a growable mapping, remove the guard pages entirely by
  3257 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3258 // affects the main/primordial thread, but guard against future OS changes.
  3259 // It's safe to always unmap guard pages for primordial thread because we
  3260 // always place it right after end of the mapped region.
  3262 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3263   uintptr_t stack_extent, stack_base;
  3265   if (os::is_primordial_thread()) {
  3266     return ::munmap(addr, size) == 0;
  3269   return os::uncommit_memory(addr, size);
  3272 static address _highest_vm_reserved_address = NULL;
  3274 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3275 // at 'requested_addr'. If there are existing memory mappings at the same
  3276 // location, however, they will be overwritten. If 'fixed' is false,
  3277 // 'requested_addr' is only treated as a hint, the return value may or
  3278 // may not start from the requested address. Unlike Linux mmap(), this
  3279 // function returns NULL to indicate failure.
  3280 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3281   char * addr;
  3282   int flags;
  3284   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3285   if (fixed) {
  3286     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3287     flags |= MAP_FIXED;
  3290   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3291   // touch an uncommitted page. Otherwise, the read/write might
  3292   // succeed if we have enough swap space to back the physical page.
  3293   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3294                        flags, -1, 0);
  3296   if (addr != MAP_FAILED) {
  3297     // anon_mmap() should only get called during VM initialization,
  3298     // don't need lock (actually we can skip locking even it can be called
  3299     // from multiple threads, because _highest_vm_reserved_address is just a
  3300     // hint about the upper limit of non-stack memory regions.)
  3301     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3302       _highest_vm_reserved_address = (address)addr + bytes;
  3306   return addr == MAP_FAILED ? NULL : addr;
  3309 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3310 //   (req_addr != NULL) or with a given alignment.
  3311 //  - bytes shall be a multiple of alignment.
  3312 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3313 //  - alignment sets the alignment at which memory shall be allocated.
  3314 //     It must be a multiple of allocation granularity.
  3315 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3316 //  req_addr or NULL.
  3317 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3319   size_t extra_size = bytes;
  3320   if (req_addr == NULL && alignment > 0) {
  3321     extra_size += alignment;
  3324   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3325     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3326     -1, 0);
  3327   if (start == MAP_FAILED) {
  3328     start = NULL;
  3329   } else {
  3330     if (req_addr != NULL) {
  3331       if (start != req_addr) {
  3332         ::munmap(start, extra_size);
  3333         start = NULL;
  3335     } else {
  3336       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3337       char* const end_aligned = start_aligned + bytes;
  3338       char* const end = start + extra_size;
  3339       if (start_aligned > start) {
  3340         ::munmap(start, start_aligned - start);
  3342       if (end_aligned < end) {
  3343         ::munmap(end_aligned, end - end_aligned);
  3345       start = start_aligned;
  3348   return start;
  3351 // Don't update _highest_vm_reserved_address, because there might be memory
  3352 // regions above addr + size. If so, releasing a memory region only creates
  3353 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3354 //
  3355 static int anon_munmap(char * addr, size_t size) {
  3356   return ::munmap(addr, size) == 0;
  3359 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3360                          size_t alignment_hint) {
  3361   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3364 bool os::pd_release_memory(char* addr, size_t size) {
  3365   return anon_munmap(addr, size);
  3368 static address highest_vm_reserved_address() {
  3369   return _highest_vm_reserved_address;
  3372 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3373   // Linux wants the mprotect address argument to be page aligned.
  3374   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3376   // According to SUSv3, mprotect() should only be used with mappings
  3377   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3378   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3379   // protection of malloc'ed or statically allocated memory). Check the
  3380   // caller if you hit this assert.
  3381   assert(addr == bottom, "sanity check");
  3383   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3384   return ::mprotect(bottom, size, prot) == 0;
  3387 // Set protections specified
  3388 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3389                         bool is_committed) {
  3390   unsigned int p = 0;
  3391   switch (prot) {
  3392   case MEM_PROT_NONE: p = PROT_NONE; break;
  3393   case MEM_PROT_READ: p = PROT_READ; break;
  3394   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3395   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3396   default:
  3397     ShouldNotReachHere();
  3399   // is_committed is unused.
  3400   return linux_mprotect(addr, bytes, p);
  3403 bool os::guard_memory(char* addr, size_t size) {
  3404   return linux_mprotect(addr, size, PROT_NONE);
  3407 bool os::unguard_memory(char* addr, size_t size) {
  3408   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3411 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3412   bool result = false;
  3413   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3414                  MAP_ANONYMOUS|MAP_PRIVATE,
  3415                  -1, 0);
  3416   if (p != MAP_FAILED) {
  3417     void *aligned_p = align_ptr_up(p, page_size);
  3419     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3421     munmap(p, page_size * 2);
  3424   if (warn && !result) {
  3425     warning("TransparentHugePages is not supported by the operating system.");
  3428   return result;
  3431 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3432   bool result = false;
  3433   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3434                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3435                  -1, 0);
  3437   if (p != MAP_FAILED) {
  3438     // We don't know if this really is a huge page or not.
  3439     FILE *fp = fopen("/proc/self/maps", "r");
  3440     if (fp) {
  3441       while (!feof(fp)) {
  3442         char chars[257];
  3443         long x = 0;
  3444         if (fgets(chars, sizeof(chars), fp)) {
  3445           if (sscanf(chars, "%lx-%*x", &x) == 1
  3446               && x == (long)p) {
  3447             if (strstr (chars, "hugepage")) {
  3448               result = true;
  3449               break;
  3454       fclose(fp);
  3456     munmap(p, page_size);
  3459   if (warn && !result) {
  3460     warning("HugeTLBFS is not supported by the operating system.");
  3463   return result;
  3466 /*
  3467 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3469 * From the coredump_filter documentation:
  3471 * - (bit 0) anonymous private memory
  3472 * - (bit 1) anonymous shared memory
  3473 * - (bit 2) file-backed private memory
  3474 * - (bit 3) file-backed shared memory
  3475 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3476 *           effective only if the bit 2 is cleared)
  3477 * - (bit 5) hugetlb private memory
  3478 * - (bit 6) hugetlb shared memory
  3479 */
  3480 static void set_coredump_filter(void) {
  3481   FILE *f;
  3482   long cdm;
  3484   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3485     return;
  3488   if (fscanf(f, "%lx", &cdm) != 1) {
  3489     fclose(f);
  3490     return;
  3493   rewind(f);
  3495   if ((cdm & LARGEPAGES_BIT) == 0) {
  3496     cdm |= LARGEPAGES_BIT;
  3497     fprintf(f, "%#lx", cdm);
  3500   fclose(f);
  3503 // Large page support
  3505 static size_t _large_page_size = 0;
  3507 size_t os::Linux::find_large_page_size() {
  3508   size_t large_page_size = 0;
  3510   // large_page_size on Linux is used to round up heap size. x86 uses either
  3511   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3512   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3513   // page as large as 256M.
  3514   //
  3515   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3516   // for a line with the following format:
  3517   //    Hugepagesize:     2048 kB
  3518   //
  3519   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3520   // format has been changed), we'll use the largest page size supported by
  3521   // the processor.
  3523 #ifndef ZERO
  3524   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3525                      ARM_ONLY(2 * M) PPC_ONLY(4 * M) MIPS64_ONLY(4 * M); //In MIPS _large_page_size is seted 4*M.
  3526 #endif // ZERO
  3528   FILE *fp = fopen("/proc/meminfo", "r");
  3529   if (fp) {
  3530     while (!feof(fp)) {
  3531       int x = 0;
  3532       char buf[16];
  3533       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3534         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3535           large_page_size = x * K;
  3536           break;
  3538       } else {
  3539         // skip to next line
  3540         for (;;) {
  3541           int ch = fgetc(fp);
  3542           if (ch == EOF || ch == (int)'\n') break;
  3546     fclose(fp);
  3549   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3550     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3551         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3552         proper_unit_for_byte_size(large_page_size));
  3555   return large_page_size;
  3558 size_t os::Linux::setup_large_page_size() {
  3559   _large_page_size = Linux::find_large_page_size();
  3560   const size_t default_page_size = (size_t)Linux::page_size();
  3561   if (_large_page_size > default_page_size) {
  3562     _page_sizes[0] = _large_page_size;
  3563     _page_sizes[1] = default_page_size;
  3564     _page_sizes[2] = 0;
  3567   return _large_page_size;
  3570 bool os::Linux::setup_large_page_type(size_t page_size) {
  3571   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3572       FLAG_IS_DEFAULT(UseSHM) &&
  3573       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3575     // The type of large pages has not been specified by the user.
  3577     // Try UseHugeTLBFS and then UseSHM.
  3578     UseHugeTLBFS = UseSHM = true;
  3580     // Don't try UseTransparentHugePages since there are known
  3581     // performance issues with it turned on. This might change in the future.
  3582     UseTransparentHugePages = false;
  3585   if (UseTransparentHugePages) {
  3586     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3587     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3588       UseHugeTLBFS = false;
  3589       UseSHM = false;
  3590       return true;
  3592     UseTransparentHugePages = false;
  3595   if (UseHugeTLBFS) {
  3596     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3597     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3598       UseSHM = false;
  3599       return true;
  3601     UseHugeTLBFS = false;
  3604   return UseSHM;
  3607 void os::large_page_init() {
  3608   if (!UseLargePages &&
  3609       !UseTransparentHugePages &&
  3610       !UseHugeTLBFS &&
  3611       !UseSHM) {
  3612     // Not using large pages.
  3613     return;
  3616   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3617     // The user explicitly turned off large pages.
  3618     // Ignore the rest of the large pages flags.
  3619     UseTransparentHugePages = false;
  3620     UseHugeTLBFS = false;
  3621     UseSHM = false;
  3622     return;
  3625   size_t large_page_size = Linux::setup_large_page_size();
  3626   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3628   set_coredump_filter();
  3631 #ifndef SHM_HUGETLB
  3632 #define SHM_HUGETLB 04000
  3633 #endif
  3635 #define shm_warning_format(format, ...)              \
  3636   do {                                               \
  3637     if (UseLargePages &&                             \
  3638         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3639          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3640          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3641       warning(format, __VA_ARGS__);                  \
  3642     }                                                \
  3643   } while (0)
  3645 #define shm_warning(str) shm_warning_format("%s", str)
  3647 #define shm_warning_with_errno(str)                \
  3648   do {                                             \
  3649     int err = errno;                               \
  3650     shm_warning_format(str " (error = %d)", err);  \
  3651   } while (0)
  3653 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3654   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3656   if (!is_size_aligned(alignment, SHMLBA)) {
  3657     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3658     return NULL;
  3661   // To ensure that we get 'alignment' aligned memory from shmat,
  3662   // we pre-reserve aligned virtual memory and then attach to that.
  3664   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3665   if (pre_reserved_addr == NULL) {
  3666     // Couldn't pre-reserve aligned memory.
  3667     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3668     return NULL;
  3671   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3672   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3674   if ((intptr_t)addr == -1) {
  3675     int err = errno;
  3676     shm_warning_with_errno("Failed to attach shared memory.");
  3678     assert(err != EACCES, "Unexpected error");
  3679     assert(err != EIDRM,  "Unexpected error");
  3680     assert(err != EINVAL, "Unexpected error");
  3682     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3683     // we can't unmap it, since that would potentially unmap memory that was
  3684     // mapped from other threads.
  3685     return NULL;
  3688   return addr;
  3691 static char* shmat_at_address(int shmid, char* req_addr) {
  3692   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3693     assert(false, "Requested address needs to be SHMLBA aligned");
  3694     return NULL;
  3697   char* addr = (char*)shmat(shmid, req_addr, 0);
  3699   if ((intptr_t)addr == -1) {
  3700     shm_warning_with_errno("Failed to attach shared memory.");
  3701     return NULL;
  3704   return addr;
  3707 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3708   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3709   if (req_addr != NULL) {
  3710     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3711     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3712     return shmat_at_address(shmid, req_addr);
  3715   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3716   // return large page size aligned memory addresses when req_addr == NULL.
  3717   // However, if the alignment is larger than the large page size, we have
  3718   // to manually ensure that the memory returned is 'alignment' aligned.
  3719   if (alignment > os::large_page_size()) {
  3720     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3721     return shmat_with_alignment(shmid, bytes, alignment);
  3722   } else {
  3723     return shmat_at_address(shmid, NULL);
  3727 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3728   // "exec" is passed in but not used.  Creating the shared image for
  3729   // the code cache doesn't have an SHM_X executable permission to check.
  3730   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3731   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3732   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3734   if (!is_size_aligned(bytes, os::large_page_size())) {
  3735     return NULL; // Fallback to small pages.
  3738   // Create a large shared memory region to attach to based on size.
  3739   // Currently, size is the total size of the heap.
  3740   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3741   if (shmid == -1) {
  3742     // Possible reasons for shmget failure:
  3743     // 1. shmmax is too small for Java heap.
  3744     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3745     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3746     // 2. not enough large page memory.
  3747     //    > check available large pages: cat /proc/meminfo
  3748     //    > increase amount of large pages:
  3749     //          echo new_value > /proc/sys/vm/nr_hugepages
  3750     //      Note 1: different Linux may use different name for this property,
  3751     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3752     //      Note 2: it's possible there's enough physical memory available but
  3753     //            they are so fragmented after a long run that they can't
  3754     //            coalesce into large pages. Try to reserve large pages when
  3755     //            the system is still "fresh".
  3756     shm_warning_with_errno("Failed to reserve shared memory.");
  3757     return NULL;
  3760   // Attach to the region.
  3761   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3763   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3764   // will be deleted when it's detached by shmdt() or when the process
  3765   // terminates. If shmat() is not successful this will remove the shared
  3766   // segment immediately.
  3767   shmctl(shmid, IPC_RMID, NULL);
  3769   return addr;
  3772 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3773   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3775   bool warn_on_failure = UseLargePages &&
  3776       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3777        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3778        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3780   if (warn_on_failure) {
  3781     char msg[128];
  3782     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3783         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3784     warning("%s", msg);
  3788 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3789   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3790   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3791   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3793   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3794   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3795                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3796                              -1, 0);
  3798   if (addr == MAP_FAILED) {
  3799     warn_on_large_pages_failure(req_addr, bytes, errno);
  3800     return NULL;
  3803   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3805   return addr;
  3808 // Reserve memory using mmap(MAP_HUGETLB).
  3809 //  - bytes shall be a multiple of alignment.
  3810 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3811 //  - alignment sets the alignment at which memory shall be allocated.
  3812 //     It must be a multiple of allocation granularity.
  3813 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3814 //  req_addr or NULL.
  3815 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3816   size_t large_page_size = os::large_page_size();
  3817   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3819   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3820   assert(is_size_aligned(bytes, alignment), "Must be");
  3822   // First reserve - but not commit - the address range in small pages.
  3823   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3825   if (start == NULL) {
  3826     return NULL;
  3829   assert(is_ptr_aligned(start, alignment), "Must be");
  3831   char* end = start + bytes;
  3833   // Find the regions of the allocated chunk that can be promoted to large pages.
  3834   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3835   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3837   size_t lp_bytes = lp_end - lp_start;
  3839   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3841   if (lp_bytes == 0) {
  3842     // The mapped region doesn't even span the start and the end of a large page.
  3843     // Fall back to allocate a non-special area.
  3844     ::munmap(start, end - start);
  3845     return NULL;
  3848   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3850   void* result;
  3852   // Commit small-paged leading area.
  3853   if (start != lp_start) {
  3854     result = ::mmap(start, lp_start - start, prot,
  3855                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3856                     -1, 0);
  3857     if (result == MAP_FAILED) {
  3858       ::munmap(lp_start, end - lp_start);
  3859       return NULL;
  3863   // Commit large-paged area.
  3864   result = ::mmap(lp_start, lp_bytes, prot,
  3865                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3866                   -1, 0);
  3867   if (result == MAP_FAILED) {
  3868     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3869     // If the mmap above fails, the large pages region will be unmapped and we
  3870     // have regions before and after with small pages. Release these regions.
  3871     //
  3872     // |  mapped  |  unmapped  |  mapped  |
  3873     // ^          ^            ^          ^
  3874     // start      lp_start     lp_end     end
  3875     //
  3876     ::munmap(start, lp_start - start);
  3877     ::munmap(lp_end, end - lp_end);
  3878     return NULL;
  3881   // Commit small-paged trailing area.
  3882   if (lp_end != end) {
  3883       result = ::mmap(lp_end, end - lp_end, prot,
  3884                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3885                       -1, 0);
  3886     if (result == MAP_FAILED) {
  3887       ::munmap(start, lp_end - start);
  3888       return NULL;
  3892   return start;
  3895 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3896   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3897   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3898   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3899   assert(is_power_of_2(os::large_page_size()), "Must be");
  3900   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3902   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3903     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3904   } else {
  3905     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3909 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3910   assert(UseLargePages, "only for large pages");
  3912   char* addr;
  3913   if (UseSHM) {
  3914     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3915   } else {
  3916     assert(UseHugeTLBFS, "must be");
  3917     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3920   if (addr != NULL) {
  3921     if (UseNUMAInterleaving) {
  3922       numa_make_global(addr, bytes);
  3925     // The memory is committed
  3926     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3929   return addr;
  3932 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3933   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3934   return shmdt(base) == 0;
  3937 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3938   return pd_release_memory(base, bytes);
  3941 bool os::release_memory_special(char* base, size_t bytes) {
  3942   bool res;
  3943   if (MemTracker::tracking_level() > NMT_minimal) {
  3944     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3945     res = os::Linux::release_memory_special_impl(base, bytes);
  3946     if (res) {
  3947       tkr.record((address)base, bytes);
  3950   } else {
  3951     res = os::Linux::release_memory_special_impl(base, bytes);
  3953   return res;
  3956 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3957   assert(UseLargePages, "only for large pages");
  3958   bool res;
  3960   if (UseSHM) {
  3961     res = os::Linux::release_memory_special_shm(base, bytes);
  3962   } else {
  3963     assert(UseHugeTLBFS, "must be");
  3964     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3966   return res;
  3969 size_t os::large_page_size() {
  3970   return _large_page_size;
  3973 // With SysV SHM the entire memory region must be allocated as shared
  3974 // memory.
  3975 // HugeTLBFS allows application to commit large page memory on demand.
  3976 // However, when committing memory with HugeTLBFS fails, the region
  3977 // that was supposed to be committed will lose the old reservation
  3978 // and allow other threads to steal that memory region. Because of this
  3979 // behavior we can't commit HugeTLBFS memory.
  3980 bool os::can_commit_large_page_memory() {
  3981   return UseTransparentHugePages;
  3984 bool os::can_execute_large_page_memory() {
  3985   return UseTransparentHugePages || UseHugeTLBFS;
  3988 // Reserve memory at an arbitrary address, only if that area is
  3989 // available (and not reserved for something else).
  3991 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3992   const int max_tries = 10;
  3993   char* base[max_tries];
  3994   size_t size[max_tries];
  3995   const size_t gap = 0x000000;
  3997   // Assert only that the size is a multiple of the page size, since
  3998   // that's all that mmap requires, and since that's all we really know
  3999   // about at this low abstraction level.  If we need higher alignment,
  4000   // we can either pass an alignment to this method or verify alignment
  4001   // in one of the methods further up the call chain.  See bug 5044738.
  4002   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  4004   // Repeatedly allocate blocks until the block is allocated at the
  4005   // right spot. Give up after max_tries. Note that reserve_memory() will
  4006   // automatically update _highest_vm_reserved_address if the call is
  4007   // successful. The variable tracks the highest memory address every reserved
  4008   // by JVM. It is used to detect heap-stack collision if running with
  4009   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  4010   // space than needed, it could confuse the collision detecting code. To
  4011   // solve the problem, save current _highest_vm_reserved_address and
  4012   // calculate the correct value before return.
  4013   address old_highest = _highest_vm_reserved_address;
  4015   // Linux mmap allows caller to pass an address as hint; give it a try first,
  4016   // if kernel honors the hint then we can return immediately.
  4017   char * addr = anon_mmap(requested_addr, bytes, false);
  4018   if (addr == requested_addr) {
  4019      return requested_addr;
  4022   if (addr != NULL) {
  4023      // mmap() is successful but it fails to reserve at the requested address
  4024      anon_munmap(addr, bytes);
  4027   int i;
  4028   for (i = 0; i < max_tries; ++i) {
  4029     base[i] = reserve_memory(bytes);
  4031     if (base[i] != NULL) {
  4032       // Is this the block we wanted?
  4033       if (base[i] == requested_addr) {
  4034         size[i] = bytes;
  4035         break;
  4038       // Does this overlap the block we wanted? Give back the overlapped
  4039       // parts and try again.
  4041       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  4042       if (top_overlap >= 0 && top_overlap < bytes) {
  4043         unmap_memory(base[i], top_overlap);
  4044         base[i] += top_overlap;
  4045         size[i] = bytes - top_overlap;
  4046       } else {
  4047         size_t bottom_overlap = base[i] + bytes - requested_addr;
  4048         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  4049           unmap_memory(requested_addr, bottom_overlap);
  4050           size[i] = bytes - bottom_overlap;
  4051         } else {
  4052           size[i] = bytes;
  4058   // Give back the unused reserved pieces.
  4060   for (int j = 0; j < i; ++j) {
  4061     if (base[j] != NULL) {
  4062       unmap_memory(base[j], size[j]);
  4066   if (i < max_tries) {
  4067     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  4068     return requested_addr;
  4069   } else {
  4070     _highest_vm_reserved_address = old_highest;
  4071     return NULL;
  4075 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  4076   return ::read(fd, buf, nBytes);
  4079 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
  4080   return ::pread(fd, buf, nBytes, offset);
  4083 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  4084 // Solaris uses poll(), linux uses park().
  4085 // Poll() is likely a better choice, assuming that Thread.interrupt()
  4086 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  4087 // SIGSEGV, see 4355769.
  4089 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  4090   assert(thread == Thread::current(),  "thread consistency check");
  4092   ParkEvent * const slp = thread->_SleepEvent ;
  4093   slp->reset() ;
  4094   OrderAccess::fence() ;
  4096   if (interruptible) {
  4097     jlong prevtime = javaTimeNanos();
  4099     for (;;) {
  4100       if (os::is_interrupted(thread, true)) {
  4101         return OS_INTRPT;
  4104       jlong newtime = javaTimeNanos();
  4106       if (newtime - prevtime < 0) {
  4107         // time moving backwards, should only happen if no monotonic clock
  4108         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4109         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4110       } else {
  4111         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4114       if(millis <= 0) {
  4115         return OS_OK;
  4118       prevtime = newtime;
  4121         assert(thread->is_Java_thread(), "sanity check");
  4122         JavaThread *jt = (JavaThread *) thread;
  4123         ThreadBlockInVM tbivm(jt);
  4124         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  4126         jt->set_suspend_equivalent();
  4127         // cleared by handle_special_suspend_equivalent_condition() or
  4128         // java_suspend_self() via check_and_wait_while_suspended()
  4130         slp->park(millis);
  4132         // were we externally suspended while we were waiting?
  4133         jt->check_and_wait_while_suspended();
  4136   } else {
  4137     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4138     jlong prevtime = javaTimeNanos();
  4140     for (;;) {
  4141       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  4142       // the 1st iteration ...
  4143       jlong newtime = javaTimeNanos();
  4145       if (newtime - prevtime < 0) {
  4146         // time moving backwards, should only happen if no monotonic clock
  4147         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4148         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4149       } else {
  4150         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4153       if(millis <= 0) break ;
  4155       prevtime = newtime;
  4156       slp->park(millis);
  4158     return OS_OK ;
  4162 //
  4163 // Short sleep, direct OS call.
  4164 //
  4165 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  4166 // sched_yield(2) will actually give up the CPU:
  4167 //
  4168 //   * Alone on this pariticular CPU, keeps running.
  4169 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  4170 //     (pre 2.6.39).
  4171 //
  4172 // So calling this with 0 is an alternative.
  4173 //
  4174 void os::naked_short_sleep(jlong ms) {
  4175   struct timespec req;
  4177   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  4178   req.tv_sec = 0;
  4179   if (ms > 0) {
  4180     req.tv_nsec = (ms % 1000) * 1000000;
  4182   else {
  4183     req.tv_nsec = 1;
  4186   nanosleep(&req, NULL);
  4188   return;
  4191 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  4192 void os::infinite_sleep() {
  4193   while (true) {    // sleep forever ...
  4194     ::sleep(100);   // ... 100 seconds at a time
  4198 // Used to convert frequent JVM_Yield() to nops
  4199 bool os::dont_yield() {
  4200   return DontYieldALot;
  4203 void os::yield() {
  4204   sched_yield();
  4207 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  4209 void os::yield_all(int attempts) {
  4210   // Yields to all threads, including threads with lower priorities
  4211   // Threads on Linux are all with same priority. The Solaris style
  4212   // os::yield_all() with nanosleep(1ms) is not necessary.
  4213   sched_yield();
  4216 // Called from the tight loops to possibly influence time-sharing heuristics
  4217 void os::loop_breaker(int attempts) {
  4218   os::yield_all(attempts);
  4221 ////////////////////////////////////////////////////////////////////////////////
  4222 // thread priority support
  4224 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  4225 // only supports dynamic priority, static priority must be zero. For real-time
  4226 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  4227 // However, for large multi-threaded applications, SCHED_RR is not only slower
  4228 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  4229 // of 5 runs - Sep 2005).
  4230 //
  4231 // The following code actually changes the niceness of kernel-thread/LWP. It
  4232 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  4233 // not the entire user process, and user level threads are 1:1 mapped to kernel
  4234 // threads. It has always been the case, but could change in the future. For
  4235 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  4236 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  4238 int os::java_to_os_priority[CriticalPriority + 1] = {
  4239   19,              // 0 Entry should never be used
  4241    4,              // 1 MinPriority
  4242    3,              // 2
  4243    2,              // 3
  4245    1,              // 4
  4246    0,              // 5 NormPriority
  4247   -1,              // 6
  4249   -2,              // 7
  4250   -3,              // 8
  4251   -4,              // 9 NearMaxPriority
  4253   -5,              // 10 MaxPriority
  4255   -5               // 11 CriticalPriority
  4256 };
  4258 static int prio_init() {
  4259   if (ThreadPriorityPolicy == 1) {
  4260     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4261     // if effective uid is not root. Perhaps, a more elegant way of doing
  4262     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4263     if (geteuid() != 0) {
  4264       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4265         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4267       ThreadPriorityPolicy = 0;
  4270   if (UseCriticalJavaThreadPriority) {
  4271     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4273   return 0;
  4276 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4277   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4279   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4280   return (ret == 0) ? OS_OK : OS_ERR;
  4283 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4284   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4285     *priority_ptr = java_to_os_priority[NormPriority];
  4286     return OS_OK;
  4289   errno = 0;
  4290   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4291   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4294 // Hint to the underlying OS that a task switch would not be good.
  4295 // Void return because it's a hint and can fail.
  4296 void os::hint_no_preempt() {}
  4298 ////////////////////////////////////////////////////////////////////////////////
  4299 // suspend/resume support
  4301 //  the low-level signal-based suspend/resume support is a remnant from the
  4302 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4303 //  within hotspot. Now there is a single use-case for this:
  4304 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4305 //      that runs in the watcher thread.
  4306 //  The remaining code is greatly simplified from the more general suspension
  4307 //  code that used to be used.
  4308 //
  4309 //  The protocol is quite simple:
  4310 //  - suspend:
  4311 //      - sends a signal to the target thread
  4312 //      - polls the suspend state of the osthread using a yield loop
  4313 //      - target thread signal handler (SR_handler) sets suspend state
  4314 //        and blocks in sigsuspend until continued
  4315 //  - resume:
  4316 //      - sets target osthread state to continue
  4317 //      - sends signal to end the sigsuspend loop in the SR_handler
  4318 //
  4319 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4320 //
  4322 static void resume_clear_context(OSThread *osthread) {
  4323   osthread->set_ucontext(NULL);
  4324   osthread->set_siginfo(NULL);
  4327 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4328   osthread->set_ucontext(context);
  4329   osthread->set_siginfo(siginfo);
  4332 //
  4333 // Handler function invoked when a thread's execution is suspended or
  4334 // resumed. We have to be careful that only async-safe functions are
  4335 // called here (Note: most pthread functions are not async safe and
  4336 // should be avoided.)
  4337 //
  4338 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4339 // interface point of view, but sigwait() prevents the signal hander
  4340 // from being run. libpthread would get very confused by not having
  4341 // its signal handlers run and prevents sigwait()'s use with the
  4342 // mutex granting granting signal.
  4343 //
  4344 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4345 //
  4346 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4347   // Save and restore errno to avoid confusing native code with EINTR
  4348   // after sigsuspend.
  4349   int old_errno = errno;
  4351   Thread* thread = Thread::current();
  4352   OSThread* osthread = thread->osthread();
  4353   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4355   os::SuspendResume::State current = osthread->sr.state();
  4356   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4357     suspend_save_context(osthread, siginfo, context);
  4359     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4360     os::SuspendResume::State state = osthread->sr.suspended();
  4361     if (state == os::SuspendResume::SR_SUSPENDED) {
  4362       sigset_t suspend_set;  // signals for sigsuspend()
  4364       // get current set of blocked signals and unblock resume signal
  4365       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4366       sigdelset(&suspend_set, SR_signum);
  4368       sr_semaphore.signal();
  4369       // wait here until we are resumed
  4370       while (1) {
  4371         sigsuspend(&suspend_set);
  4373         os::SuspendResume::State result = osthread->sr.running();
  4374         if (result == os::SuspendResume::SR_RUNNING) {
  4375           sr_semaphore.signal();
  4376           break;
  4380     } else if (state == os::SuspendResume::SR_RUNNING) {
  4381       // request was cancelled, continue
  4382     } else {
  4383       ShouldNotReachHere();
  4386     resume_clear_context(osthread);
  4387   } else if (current == os::SuspendResume::SR_RUNNING) {
  4388     // request was cancelled, continue
  4389   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4390     // ignore
  4391   } else {
  4392     // ignore
  4395   errno = old_errno;
  4399 static int SR_initialize() {
  4400   struct sigaction act;
  4401   char *s;
  4402   /* Get signal number to use for suspend/resume */
  4403   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4404     int sig = ::strtol(s, 0, 10);
  4405     if (sig > 0 || sig < _NSIG) {
  4406         SR_signum = sig;
  4410   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4411         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4413   sigemptyset(&SR_sigset);
  4414   sigaddset(&SR_sigset, SR_signum);
  4416   /* Set up signal handler for suspend/resume */
  4417   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4418   act.sa_handler = (void (*)(int)) SR_handler;
  4420   // SR_signum is blocked by default.
  4421   // 4528190 - We also need to block pthread restart signal (32 on all
  4422   // supported Linux platforms). Note that LinuxThreads need to block
  4423   // this signal for all threads to work properly. So we don't have
  4424   // to use hard-coded signal number when setting up the mask.
  4425   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4427   if (sigaction(SR_signum, &act, 0) == -1) {
  4428     return -1;
  4431   // Save signal flag
  4432   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4433   return 0;
  4436 static int sr_notify(OSThread* osthread) {
  4437   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4438   assert_status(status == 0, status, "pthread_kill");
  4439   return status;
  4442 // "Randomly" selected value for how long we want to spin
  4443 // before bailing out on suspending a thread, also how often
  4444 // we send a signal to a thread we want to resume
  4445 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4446 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4448 // returns true on success and false on error - really an error is fatal
  4449 // but this seems the normal response to library errors
  4450 static bool do_suspend(OSThread* osthread) {
  4451   assert(osthread->sr.is_running(), "thread should be running");
  4452   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4454   // mark as suspended and send signal
  4455   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4456     // failed to switch, state wasn't running?
  4457     ShouldNotReachHere();
  4458     return false;
  4461   if (sr_notify(osthread) != 0) {
  4462     ShouldNotReachHere();
  4465   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4466   while (true) {
  4467     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4468       break;
  4469     } else {
  4470       // timeout
  4471       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4472       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4473         return false;
  4474       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4475         // make sure that we consume the signal on the semaphore as well
  4476         sr_semaphore.wait();
  4477         break;
  4478       } else {
  4479         ShouldNotReachHere();
  4480         return false;
  4485   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4486   return true;
  4489 static void do_resume(OSThread* osthread) {
  4490   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4491   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4493   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4494     // failed to switch to WAKEUP_REQUEST
  4495     ShouldNotReachHere();
  4496     return;
  4499   while (true) {
  4500     if (sr_notify(osthread) == 0) {
  4501       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4502         if (osthread->sr.is_running()) {
  4503           return;
  4506     } else {
  4507       ShouldNotReachHere();
  4511   guarantee(osthread->sr.is_running(), "Must be running!");
  4514 ////////////////////////////////////////////////////////////////////////////////
  4515 // interrupt support
  4517 void os::interrupt(Thread* thread) {
  4518   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4519     "possibility of dangling Thread pointer");
  4521   OSThread* osthread = thread->osthread();
  4523   if (!osthread->interrupted()) {
  4524     osthread->set_interrupted(true);
  4525     // More than one thread can get here with the same value of osthread,
  4526     // resulting in multiple notifications.  We do, however, want the store
  4527     // to interrupted() to be visible to other threads before we execute unpark().
  4528     OrderAccess::fence();
  4529     ParkEvent * const slp = thread->_SleepEvent ;
  4530     if (slp != NULL) slp->unpark() ;
  4533   // For JSR166. Unpark even if interrupt status already was set
  4534   if (thread->is_Java_thread())
  4535     ((JavaThread*)thread)->parker()->unpark();
  4537   ParkEvent * ev = thread->_ParkEvent ;
  4538   if (ev != NULL) ev->unpark() ;
  4542 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4543   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4544     "possibility of dangling Thread pointer");
  4546   OSThread* osthread = thread->osthread();
  4548   bool interrupted = osthread->interrupted();
  4550   if (interrupted && clear_interrupted) {
  4551     osthread->set_interrupted(false);
  4552     // consider thread->_SleepEvent->reset() ... optional optimization
  4555   return interrupted;
  4558 ///////////////////////////////////////////////////////////////////////////////////
  4559 // signal handling (except suspend/resume)
  4561 // This routine may be used by user applications as a "hook" to catch signals.
  4562 // The user-defined signal handler must pass unrecognized signals to this
  4563 // routine, and if it returns true (non-zero), then the signal handler must
  4564 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4565 // routine will never retun false (zero), but instead will execute a VM panic
  4566 // routine kill the process.
  4567 //
  4568 // If this routine returns false, it is OK to call it again.  This allows
  4569 // the user-defined signal handler to perform checks either before or after
  4570 // the VM performs its own checks.  Naturally, the user code would be making
  4571 // a serious error if it tried to handle an exception (such as a null check
  4572 // or breakpoint) that the VM was generating for its own correct operation.
  4573 //
  4574 // This routine may recognize any of the following kinds of signals:
  4575 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4576 // It should be consulted by handlers for any of those signals.
  4577 //
  4578 // The caller of this routine must pass in the three arguments supplied
  4579 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4580 // field of the structure passed to sigaction().  This routine assumes that
  4581 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4582 //
  4583 // Note that the VM will print warnings if it detects conflicting signal
  4584 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4585 //
  4586 extern "C" JNIEXPORT int
  4587 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4588                         void* ucontext, int abort_if_unrecognized);
  4590 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4591   assert(info != NULL && uc != NULL, "it must be old kernel");
  4592   int orig_errno = errno;  // Preserve errno value over signal handler.
  4593   JVM_handle_linux_signal(sig, info, uc, true);
  4594   errno = orig_errno;
  4598 // This boolean allows users to forward their own non-matching signals
  4599 // to JVM_handle_linux_signal, harmlessly.
  4600 bool os::Linux::signal_handlers_are_installed = false;
  4602 // For signal-chaining
  4603 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4604 unsigned int os::Linux::sigs = 0;
  4605 bool os::Linux::libjsig_is_loaded = false;
  4606 typedef struct sigaction *(*get_signal_t)(int);
  4607 get_signal_t os::Linux::get_signal_action = NULL;
  4609 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4610   struct sigaction *actp = NULL;
  4612   if (libjsig_is_loaded) {
  4613     // Retrieve the old signal handler from libjsig
  4614     actp = (*get_signal_action)(sig);
  4616   if (actp == NULL) {
  4617     // Retrieve the preinstalled signal handler from jvm
  4618     actp = get_preinstalled_handler(sig);
  4621   return actp;
  4624 static bool call_chained_handler(struct sigaction *actp, int sig,
  4625                                  siginfo_t *siginfo, void *context) {
  4626   // Call the old signal handler
  4627   if (actp->sa_handler == SIG_DFL) {
  4628     // It's more reasonable to let jvm treat it as an unexpected exception
  4629     // instead of taking the default action.
  4630     return false;
  4631   } else if (actp->sa_handler != SIG_IGN) {
  4632     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4633       // automaticlly block the signal
  4634       sigaddset(&(actp->sa_mask), sig);
  4637     sa_handler_t hand = NULL;
  4638     sa_sigaction_t sa = NULL;
  4639     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4640     // retrieve the chained handler
  4641     if (siginfo_flag_set) {
  4642       sa = actp->sa_sigaction;
  4643     } else {
  4644       hand = actp->sa_handler;
  4647     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4648       actp->sa_handler = SIG_DFL;
  4651     // try to honor the signal mask
  4652     sigset_t oset;
  4653     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4655     // call into the chained handler
  4656     if (siginfo_flag_set) {
  4657       (*sa)(sig, siginfo, context);
  4658     } else {
  4659       (*hand)(sig);
  4662     // restore the signal mask
  4663     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4665   // Tell jvm's signal handler the signal is taken care of.
  4666   return true;
  4669 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4670   bool chained = false;
  4671   // signal-chaining
  4672   if (UseSignalChaining) {
  4673     struct sigaction *actp = get_chained_signal_action(sig);
  4674     if (actp != NULL) {
  4675       chained = call_chained_handler(actp, sig, siginfo, context);
  4678   return chained;
  4681 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4682   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4683     return &sigact[sig];
  4685   return NULL;
  4688 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4689   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4690   sigact[sig] = oldAct;
  4691   sigs |= (unsigned int)1 << sig;
  4694 // for diagnostic
  4695 int os::Linux::sigflags[MAXSIGNUM];
  4697 int os::Linux::get_our_sigflags(int sig) {
  4698   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4699   return sigflags[sig];
  4702 void os::Linux::set_our_sigflags(int sig, int flags) {
  4703   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4704   sigflags[sig] = flags;
  4707 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4708   // Check for overwrite.
  4709   struct sigaction oldAct;
  4710   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4712   void* oldhand = oldAct.sa_sigaction
  4713                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4714                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4715   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4716       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4717       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4718     if (AllowUserSignalHandlers || !set_installed) {
  4719       // Do not overwrite; user takes responsibility to forward to us.
  4720       return;
  4721     } else if (UseSignalChaining) {
  4722       // save the old handler in jvm
  4723       save_preinstalled_handler(sig, oldAct);
  4724       // libjsig also interposes the sigaction() call below and saves the
  4725       // old sigaction on it own.
  4726     } else {
  4727       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4728                     "%#lx for signal %d.", (long)oldhand, sig));
  4732   struct sigaction sigAct;
  4733   sigfillset(&(sigAct.sa_mask));
  4734   sigAct.sa_handler = SIG_DFL;
  4735   if (!set_installed) {
  4736     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4737   } else {
  4738     sigAct.sa_sigaction = signalHandler;
  4739     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4741   // Save flags, which are set by ours
  4742   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4743   sigflags[sig] = sigAct.sa_flags;
  4745   int ret = sigaction(sig, &sigAct, &oldAct);
  4746   assert(ret == 0, "check");
  4748   void* oldhand2  = oldAct.sa_sigaction
  4749                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4750                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4751   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4754 // install signal handlers for signals that HotSpot needs to
  4755 // handle in order to support Java-level exception handling.
  4757 void os::Linux::install_signal_handlers() {
  4758   if (!signal_handlers_are_installed) {
  4759     signal_handlers_are_installed = true;
  4761     // signal-chaining
  4762     typedef void (*signal_setting_t)();
  4763     signal_setting_t begin_signal_setting = NULL;
  4764     signal_setting_t end_signal_setting = NULL;
  4765     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4766                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4767     if (begin_signal_setting != NULL) {
  4768       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4769                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4770       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4771                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4772       libjsig_is_loaded = true;
  4773       assert(UseSignalChaining, "should enable signal-chaining");
  4775     if (libjsig_is_loaded) {
  4776       // Tell libjsig jvm is setting signal handlers
  4777       (*begin_signal_setting)();
  4780     set_signal_handler(SIGSEGV, true);
  4781     set_signal_handler(SIGPIPE, true);
  4782     set_signal_handler(SIGBUS, true);
  4783     set_signal_handler(SIGILL, true);
  4784     set_signal_handler(SIGFPE, true);
  4785 #if defined(PPC64)
  4786     set_signal_handler(SIGTRAP, true);
  4787 #endif
  4788     set_signal_handler(SIGXFSZ, true);
  4790     if (libjsig_is_loaded) {
  4791       // Tell libjsig jvm finishes setting signal handlers
  4792       (*end_signal_setting)();
  4795     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4796     // and if UserSignalHandler is installed all bets are off.
  4797     // Log that signal checking is off only if -verbose:jni is specified.
  4798     if (CheckJNICalls) {
  4799       if (libjsig_is_loaded) {
  4800         if (PrintJNIResolving) {
  4801           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4803         check_signals = false;
  4805       if (AllowUserSignalHandlers) {
  4806         if (PrintJNIResolving) {
  4807           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4809         check_signals = false;
  4815 // This is the fastest way to get thread cpu time on Linux.
  4816 // Returns cpu time (user+sys) for any thread, not only for current.
  4817 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4818 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4819 // For reference, please, see IEEE Std 1003.1-2004:
  4820 //   http://www.unix.org/single_unix_specification
  4822 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4823   struct timespec tp;
  4824   int rc = os::Linux::clock_gettime(clockid, &tp);
  4825   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4827   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4830 /////
  4831 // glibc on Linux platform uses non-documented flag
  4832 // to indicate, that some special sort of signal
  4833 // trampoline is used.
  4834 // We will never set this flag, and we should
  4835 // ignore this flag in our diagnostic
  4836 #ifdef SIGNIFICANT_SIGNAL_MASK
  4837 #undef SIGNIFICANT_SIGNAL_MASK
  4838 #endif
  4839 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4841 static const char* get_signal_handler_name(address handler,
  4842                                            char* buf, int buflen) {
  4843   int offset = 0;
  4844   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4845   if (found) {
  4846     // skip directory names
  4847     const char *p1, *p2;
  4848     p1 = buf;
  4849     size_t len = strlen(os::file_separator());
  4850     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4851     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4852   } else {
  4853     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4855   return buf;
  4858 static void print_signal_handler(outputStream* st, int sig,
  4859                                  char* buf, size_t buflen) {
  4860   struct sigaction sa;
  4862   sigaction(sig, NULL, &sa);
  4864   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4865   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4867   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4869   address handler = (sa.sa_flags & SA_SIGINFO)
  4870     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4871     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4873   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4874     st->print("SIG_DFL");
  4875   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4876     st->print("SIG_IGN");
  4877   } else {
  4878     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4881   st->print(", sa_mask[0]=");
  4882   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4884   address rh = VMError::get_resetted_sighandler(sig);
  4885   // May be, handler was resetted by VMError?
  4886   if(rh != NULL) {
  4887     handler = rh;
  4888     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4891   st->print(", sa_flags=");
  4892   os::Posix::print_sa_flags(st, sa.sa_flags);
  4894   // Check: is it our handler?
  4895   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4896      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4897     // It is our signal handler
  4898     // check for flags, reset system-used one!
  4899     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4900       st->print(
  4901                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4902                 os::Linux::get_our_sigflags(sig));
  4905   st->cr();
  4909 #define DO_SIGNAL_CHECK(sig) \
  4910   if (!sigismember(&check_signal_done, sig)) \
  4911     os::Linux::check_signal_handler(sig)
  4913 // This method is a periodic task to check for misbehaving JNI applications
  4914 // under CheckJNI, we can add any periodic checks here
  4916 void os::run_periodic_checks() {
  4918   if (check_signals == false) return;
  4920   // SEGV and BUS if overridden could potentially prevent
  4921   // generation of hs*.log in the event of a crash, debugging
  4922   // such a case can be very challenging, so we absolutely
  4923   // check the following for a good measure:
  4924   DO_SIGNAL_CHECK(SIGSEGV);
  4925   DO_SIGNAL_CHECK(SIGILL);
  4926   DO_SIGNAL_CHECK(SIGFPE);
  4927   DO_SIGNAL_CHECK(SIGBUS);
  4928   DO_SIGNAL_CHECK(SIGPIPE);
  4929   DO_SIGNAL_CHECK(SIGXFSZ);
  4930 #if defined(PPC64)
  4931   DO_SIGNAL_CHECK(SIGTRAP);
  4932 #endif
  4934   // ReduceSignalUsage allows the user to override these handlers
  4935   // see comments at the very top and jvm_solaris.h
  4936   if (!ReduceSignalUsage) {
  4937     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4938     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4939     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4940     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4943   DO_SIGNAL_CHECK(SR_signum);
  4944   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4947 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4949 static os_sigaction_t os_sigaction = NULL;
  4951 void os::Linux::check_signal_handler(int sig) {
  4952   char buf[O_BUFLEN];
  4953   address jvmHandler = NULL;
  4956   struct sigaction act;
  4957   if (os_sigaction == NULL) {
  4958     // only trust the default sigaction, in case it has been interposed
  4959     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4960     if (os_sigaction == NULL) return;
  4963   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4966   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4968   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4969     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4970     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4973   switch(sig) {
  4974   case SIGSEGV:
  4975   case SIGBUS:
  4976   case SIGFPE:
  4977   case SIGPIPE:
  4978   case SIGILL:
  4979   case SIGXFSZ:
  4980     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4981     break;
  4983   case SHUTDOWN1_SIGNAL:
  4984   case SHUTDOWN2_SIGNAL:
  4985   case SHUTDOWN3_SIGNAL:
  4986   case BREAK_SIGNAL:
  4987     jvmHandler = (address)user_handler();
  4988     break;
  4990   case INTERRUPT_SIGNAL:
  4991     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4992     break;
  4994   default:
  4995     if (sig == SR_signum) {
  4996       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4997     } else {
  4998       return;
  5000     break;
  5003   if (thisHandler != jvmHandler) {
  5004     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  5005     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  5006     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  5007     // No need to check this sig any longer
  5008     sigaddset(&check_signal_done, sig);
  5009     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  5010     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  5011       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  5012                     exception_name(sig, buf, O_BUFLEN));
  5014   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  5015     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  5016     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  5017     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  5018     // No need to check this sig any longer
  5019     sigaddset(&check_signal_done, sig);
  5022   // Dump all the signal
  5023   if (sigismember(&check_signal_done, sig)) {
  5024     print_signal_handlers(tty, buf, O_BUFLEN);
  5028 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  5030 extern bool signal_name(int signo, char* buf, size_t len);
  5032 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  5033   if (0 < exception_code && exception_code <= SIGRTMAX) {
  5034     // signal
  5035     if (!signal_name(exception_code, buf, size)) {
  5036       jio_snprintf(buf, size, "SIG%d", exception_code);
  5038     return buf;
  5039   } else {
  5040     return NULL;
  5044 // this is called _before_ most of the global arguments have been parsed
  5045 void os::init(void) {
  5046   char dummy;   /* used to get a guess on initial stack address */
  5048   // With LinuxThreads the JavaMain thread pid (primordial thread)
  5049   // is different than the pid of the java launcher thread.
  5050   // So, on Linux, the launcher thread pid is passed to the VM
  5051   // via the sun.java.launcher.pid property.
  5052   // Use this property instead of getpid() if it was correctly passed.
  5053   // See bug 6351349.
  5054   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  5056   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  5058   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  5060   init_random(1234567);
  5062   ThreadCritical::initialize();
  5064   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  5065   if (Linux::page_size() == -1) {
  5066     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  5067                   strerror(errno)));
  5069   init_page_sizes((size_t) Linux::page_size());
  5071   Linux::initialize_system_info();
  5073   // _main_thread points to the thread that created/loaded the JVM.
  5074   Linux::_main_thread = pthread_self();
  5076   Linux::clock_init();
  5077   initial_time_count = javaTimeNanos();
  5079   // pthread_condattr initialization for monotonic clock
  5080   int status;
  5081   pthread_condattr_t* _condattr = os::Linux::condAttr();
  5082   if ((status = pthread_condattr_init(_condattr)) != 0) {
  5083     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  5085   // Only set the clock if CLOCK_MONOTONIC is available
  5086   if (Linux::supports_monotonic_clock()) {
  5087     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  5088       if (status == EINVAL) {
  5089         warning("Unable to use monotonic clock with relative timed-waits" \
  5090                 " - changes to the time-of-day clock may have adverse affects");
  5091       } else {
  5092         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  5096   // else it defaults to CLOCK_REALTIME
  5098   pthread_mutex_init(&dl_mutex, NULL);
  5100   // If the pagesize of the VM is greater than 8K determine the appropriate
  5101   // number of initial guard pages.  The user can change this with the
  5102   // command line arguments, if needed.
  5103   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  5104     StackYellowPages = 1;
  5105     StackRedPages = 1;
  5106     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  5109   // retrieve entry point for pthread_setname_np
  5110   Linux::_pthread_setname_np =
  5111     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
  5115 // To install functions for atexit system call
  5116 extern "C" {
  5117   static void perfMemory_exit_helper() {
  5118     perfMemory_exit();
  5122 void os::pd_init_container_support() {
  5123   OSContainer::init();
  5126 // this is called _after_ the global arguments have been parsed
  5127 jint os::init_2(void)
  5129   Linux::fast_thread_clock_init();
  5131   // Allocate a single page and mark it as readable for safepoint polling
  5132 #ifdef OPT_SAFEPOINT
  5133   void * p = (void *)(0x10000);
  5134   address polling_page = (address) ::mmap(p, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5135 #else
  5136   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5137 #endif
  5138   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  5140   os::set_polling_page( polling_page );
  5142 #ifndef PRODUCT
  5143   if(Verbose && PrintMiscellaneous)
  5144     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5145 #endif
  5147   if (!UseMembar) {
  5148     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5149     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  5150     os::set_memory_serialize_page( mem_serialize_page );
  5152 #ifndef PRODUCT
  5153     if(Verbose && PrintMiscellaneous)
  5154       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5155 #endif
  5158   // initialize suspend/resume support - must do this before signal_sets_init()
  5159   if (SR_initialize() != 0) {
  5160     perror("SR_initialize failed");
  5161     return JNI_ERR;
  5164   Linux::signal_sets_init();
  5165   Linux::install_signal_handlers();
  5167   // Check minimum allowable stack size for thread creation and to initialize
  5168   // the java system classes, including StackOverflowError - depends on page
  5169   // size.  Add a page for compiler2 recursion in main thread.
  5170   // Add in 2*BytesPerWord times page size to account for VM stack during
  5171   // class initialization depending on 32 or 64 bit VM.
  5173   /* 2014/1/2 Liao: JDK8 requires larger -Xss option.
  5174    *   TongWeb cannot run with -Xss192K.
  5175    *   We are not sure whether this causes errors, so simply print a warning. */
  5176   size_t min_stack_allowed_jdk6 = os::Linux::min_stack_allowed;
  5177   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  5178             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  5179                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  5181   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5182   if (threadStackSizeInBytes != 0 &&
  5183       threadStackSizeInBytes < min_stack_allowed_jdk6) {
  5184         tty->print_cr("\nThe stack size specified is too small, "
  5185                       "Specify at least %dk",
  5186                       os::Linux::min_stack_allowed/ K);
  5187         return JNI_ERR;
  5190   // Make the stack size a multiple of the page size so that
  5191   // the yellow/red zones can be guarded.
  5192   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5193         vm_page_size()));
  5195   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  5197 #if defined(IA32)
  5198   workaround_expand_exec_shield_cs_limit();
  5199 #endif
  5201   Linux::libpthread_init();
  5202   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  5203      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  5204           Linux::glibc_version(), Linux::libpthread_version(),
  5205           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  5208   if (UseNUMA) {
  5209     if (!Linux::libnuma_init()) {
  5210       UseNUMA = false;
  5211     } else {
  5212       if ((Linux::numa_max_node() < 1)) {
  5213         // There's only one node(they start from 0), disable NUMA.
  5214         UseNUMA = false;
  5217     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  5218     // we can make the adaptive lgrp chunk resizing work. If the user specified
  5219     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  5220     // disable adaptive resizing.
  5221     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  5222       if (FLAG_IS_DEFAULT(UseNUMA)) {
  5223         UseNUMA = false;
  5224       } else {
  5225         if (FLAG_IS_DEFAULT(UseLargePages) &&
  5226             FLAG_IS_DEFAULT(UseSHM) &&
  5227             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  5228           UseLargePages = false;
  5229         } else {
  5230           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  5231           UseAdaptiveSizePolicy = false;
  5232           UseAdaptiveNUMAChunkSizing = false;
  5236     if (!UseNUMA && ForceNUMA) {
  5237       UseNUMA = true;
  5241   if (MaxFDLimit) {
  5242     // set the number of file descriptors to max. print out error
  5243     // if getrlimit/setrlimit fails but continue regardless.
  5244     struct rlimit nbr_files;
  5245     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5246     if (status != 0) {
  5247       if (PrintMiscellaneous && (Verbose || WizardMode))
  5248         perror("os::init_2 getrlimit failed");
  5249     } else {
  5250       nbr_files.rlim_cur = nbr_files.rlim_max;
  5251       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5252       if (status != 0) {
  5253         if (PrintMiscellaneous && (Verbose || WizardMode))
  5254           perror("os::init_2 setrlimit failed");
  5259   // Initialize lock used to serialize thread creation (see os::create_thread)
  5260   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  5262   // at-exit methods are called in the reverse order of their registration.
  5263   // atexit functions are called on return from main or as a result of a
  5264   // call to exit(3C). There can be only 32 of these functions registered
  5265   // and atexit() does not set errno.
  5267   if (PerfAllowAtExitRegistration) {
  5268     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5269     // atexit functions can be delayed until process exit time, which
  5270     // can be problematic for embedded VM situations. Embedded VMs should
  5271     // call DestroyJavaVM() to assure that VM resources are released.
  5273     // note: perfMemory_exit_helper atexit function may be removed in
  5274     // the future if the appropriate cleanup code can be added to the
  5275     // VM_Exit VMOperation's doit method.
  5276     if (atexit(perfMemory_exit_helper) != 0) {
  5277       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5281   // initialize thread priority policy
  5282   prio_init();
  5284   return JNI_OK;
  5287 // Mark the polling page as unreadable
  5288 void os::make_polling_page_unreadable(void) {
  5289   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5290     fatal("Could not disable polling page");
  5291 };
  5293 // Mark the polling page as readable
  5294 void os::make_polling_page_readable(void) {
  5295   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5296     fatal("Could not enable polling page");
  5298 };
  5300 static int os_cpu_count(const cpu_set_t* cpus) {
  5301   int count = 0;
  5302   // only look up to the number of configured processors
  5303   for (int i = 0; i < os::processor_count(); i++) {
  5304     if (CPU_ISSET(i, cpus)) {
  5305       count++;
  5308   return count;
  5311 // Get the current number of available processors for this process.
  5312 // This value can change at any time during a process's lifetime.
  5313 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5314 // If anything goes wrong we fallback to returning the number of online
  5315 // processors - which can be greater than the number available to the process.
  5316 int os::Linux::active_processor_count() {
  5317   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5318   int cpus_size = sizeof(cpu_set_t);
  5319   int cpu_count = 0;
  5321   // pid 0 means the current thread - which we have to assume represents the process
  5322   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5323     cpu_count = os_cpu_count(&cpus);
  5324     if (PrintActiveCpus) {
  5325       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5328   else {
  5329     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5330     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5331             "which may exceed available processors", strerror(errno), cpu_count);
  5334   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
  5335   return cpu_count;
  5338 // Determine the active processor count from one of
  5339 // three different sources:
  5340 //
  5341 // 1. User option -XX:ActiveProcessorCount
  5342 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
  5343 // 3. extracted from cgroup cpu subsystem (shares and quotas)
  5344 //
  5345 // Option 1, if specified, will always override.
  5346 // If the cgroup subsystem is active and configured, we
  5347 // will return the min of the cgroup and option 2 results.
  5348 // This is required since tools, such as numactl, that
  5349 // alter cpu affinity do not update cgroup subsystem
  5350 // cpuset configuration files.
  5351 int os::active_processor_count() {
  5352   // User has overridden the number of active processors
  5353   if (ActiveProcessorCount > 0) {
  5354     if (PrintActiveCpus) {
  5355       tty->print_cr("active_processor_count: "
  5356                     "active processor count set by user : %d",
  5357                     ActiveProcessorCount);
  5359     return ActiveProcessorCount;
  5362   int active_cpus;
  5363   if (OSContainer::is_containerized()) {
  5364     active_cpus = OSContainer::active_processor_count();
  5365     if (PrintActiveCpus) {
  5366       tty->print_cr("active_processor_count: determined by OSContainer: %d",
  5367                      active_cpus);
  5369   } else {
  5370     active_cpus = os::Linux::active_processor_count();
  5373   return active_cpus;
  5376 void os::set_native_thread_name(const char *name) {
  5377   if (Linux::_pthread_setname_np) {
  5378     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
  5379     snprintf(buf, sizeof(buf), "%s", name);
  5380     buf[sizeof(buf) - 1] = '\0';
  5381     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
  5382     // ERANGE should not happen; all other errors should just be ignored.
  5383     assert(rc != ERANGE, "pthread_setname_np failed");
  5387 bool os::distribute_processes(uint length, uint* distribution) {
  5388   // Not yet implemented.
  5389   return false;
  5392 bool os::bind_to_processor(uint processor_id) {
  5393   // Not yet implemented.
  5394   return false;
  5397 ///
  5399 void os::SuspendedThreadTask::internal_do_task() {
  5400   if (do_suspend(_thread->osthread())) {
  5401     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5402     do_task(context);
  5403     do_resume(_thread->osthread());
  5407 class PcFetcher : public os::SuspendedThreadTask {
  5408 public:
  5409   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5410   ExtendedPC result();
  5411 protected:
  5412   void do_task(const os::SuspendedThreadTaskContext& context);
  5413 private:
  5414   ExtendedPC _epc;
  5415 };
  5417 ExtendedPC PcFetcher::result() {
  5418   guarantee(is_done(), "task is not done yet.");
  5419   return _epc;
  5422 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5423   Thread* thread = context.thread();
  5424   OSThread* osthread = thread->osthread();
  5425   if (osthread->ucontext() != NULL) {
  5426     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5427   } else {
  5428     // NULL context is unexpected, double-check this is the VMThread
  5429     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5433 // Suspends the target using the signal mechanism and then grabs the PC before
  5434 // resuming the target. Used by the flat-profiler only
  5435 ExtendedPC os::get_thread_pc(Thread* thread) {
  5436   // Make sure that it is called by the watcher for the VMThread
  5437   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5438   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5440   PcFetcher fetcher(thread);
  5441   fetcher.run();
  5442   return fetcher.result();
  5445 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5447    if (is_NPTL()) {
  5448       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5449    } else {
  5450       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5451       // word back to default 64bit precision if condvar is signaled. Java
  5452       // wants 53bit precision.  Save and restore current value.
  5453       int fpu = get_fpu_control_word();
  5454       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5455       set_fpu_control_word(fpu);
  5456       return status;
  5460 ////////////////////////////////////////////////////////////////////////////////
  5461 // debug support
  5463 bool os::find(address addr, outputStream* st) {
  5464   Dl_info dlinfo;
  5465   memset(&dlinfo, 0, sizeof(dlinfo));
  5466   if (dladdr(addr, &dlinfo) != 0) {
  5467     st->print(PTR_FORMAT ": ", addr);
  5468     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5469       st->print("%s+%#x", dlinfo.dli_sname,
  5470                  addr - (intptr_t)dlinfo.dli_saddr);
  5471     } else if (dlinfo.dli_fbase != NULL) {
  5472       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5473     } else {
  5474       st->print("<absolute address>");
  5476     if (dlinfo.dli_fname != NULL) {
  5477       st->print(" in %s", dlinfo.dli_fname);
  5479     if (dlinfo.dli_fbase != NULL) {
  5480       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5482     st->cr();
  5484     if (Verbose) {
  5485       // decode some bytes around the PC
  5486       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5487       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5488       address       lowest = (address) dlinfo.dli_sname;
  5489       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5490       if (begin < lowest)  begin = lowest;
  5491       Dl_info dlinfo2;
  5492       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5493           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5494         end = (address) dlinfo2.dli_saddr;
  5495       Disassembler::decode(begin, end, st);
  5497     return true;
  5499   return false;
  5502 ////////////////////////////////////////////////////////////////////////////////
  5503 // misc
  5505 // This does not do anything on Linux. This is basically a hook for being
  5506 // able to use structured exception handling (thread-local exception filters)
  5507 // on, e.g., Win32.
  5508 void
  5509 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5510                          JavaCallArguments* args, Thread* thread) {
  5511   f(value, method, args, thread);
  5514 void os::print_statistics() {
  5517 int os::message_box(const char* title, const char* message) {
  5518   int i;
  5519   fdStream err(defaultStream::error_fd());
  5520   for (i = 0; i < 78; i++) err.print_raw("=");
  5521   err.cr();
  5522   err.print_raw_cr(title);
  5523   for (i = 0; i < 78; i++) err.print_raw("-");
  5524   err.cr();
  5525   err.print_raw_cr(message);
  5526   for (i = 0; i < 78; i++) err.print_raw("=");
  5527   err.cr();
  5529   char buf[16];
  5530   // Prevent process from exiting upon "read error" without consuming all CPU
  5531   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5533   return buf[0] == 'y' || buf[0] == 'Y';
  5536 int os::stat(const char *path, struct stat *sbuf) {
  5537   char pathbuf[MAX_PATH];
  5538   if (strlen(path) > MAX_PATH - 1) {
  5539     errno = ENAMETOOLONG;
  5540     return -1;
  5542   os::native_path(strcpy(pathbuf, path));
  5543   return ::stat(pathbuf, sbuf);
  5546 bool os::check_heap(bool force) {
  5547   return true;
  5550 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5551   return ::vsnprintf(buf, count, format, args);
  5554 // Is a (classpath) directory empty?
  5555 bool os::dir_is_empty(const char* path) {
  5556   DIR *dir = NULL;
  5557   struct dirent *ptr;
  5559   dir = opendir(path);
  5560   if (dir == NULL) return true;
  5562   /* Scan the directory */
  5563   bool result = true;
  5564   while (result && (ptr = readdir(dir)) != NULL) {
  5565     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5566       result = false;
  5569   closedir(dir);
  5570   return result;
  5573 // This code originates from JDK's sysOpen and open64_w
  5574 // from src/solaris/hpi/src/system_md.c
  5576 #ifndef O_DELETE
  5577 #define O_DELETE 0x10000
  5578 #endif
  5580 // Open a file. Unlink the file immediately after open returns
  5581 // if the specified oflag has the O_DELETE flag set.
  5582 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5584 int os::open(const char *path, int oflag, int mode) {
  5586   if (strlen(path) > MAX_PATH - 1) {
  5587     errno = ENAMETOOLONG;
  5588     return -1;
  5590   int fd;
  5591   int o_delete = (oflag & O_DELETE);
  5592   oflag = oflag & ~O_DELETE;
  5594   fd = ::open64(path, oflag, mode);
  5595   if (fd == -1) return -1;
  5597   //If the open succeeded, the file might still be a directory
  5599     struct stat64 buf64;
  5600     int ret = ::fstat64(fd, &buf64);
  5601     int st_mode = buf64.st_mode;
  5603     if (ret != -1) {
  5604       if ((st_mode & S_IFMT) == S_IFDIR) {
  5605         errno = EISDIR;
  5606         ::close(fd);
  5607         return -1;
  5609     } else {
  5610       ::close(fd);
  5611       return -1;
  5615     /*
  5616      * All file descriptors that are opened in the JVM and not
  5617      * specifically destined for a subprocess should have the
  5618      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5619      * party native code might fork and exec without closing all
  5620      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5621      * UNIXProcess.c), and this in turn might:
  5623      * - cause end-of-file to fail to be detected on some file
  5624      *   descriptors, resulting in mysterious hangs, or
  5626      * - might cause an fopen in the subprocess to fail on a system
  5627      *   suffering from bug 1085341.
  5629      * (Yes, the default setting of the close-on-exec flag is a Unix
  5630      * design flaw)
  5632      * See:
  5633      * 1085341: 32-bit stdio routines should support file descriptors >255
  5634      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5635      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5636      */
  5637 #ifdef FD_CLOEXEC
  5639         int flags = ::fcntl(fd, F_GETFD);
  5640         if (flags != -1)
  5641             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5643 #endif
  5645   if (o_delete != 0) {
  5646     ::unlink(path);
  5648   return fd;
  5652 // create binary file, rewriting existing file if required
  5653 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5654   int oflags = O_WRONLY | O_CREAT;
  5655   if (!rewrite_existing) {
  5656     oflags |= O_EXCL;
  5658   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5661 // return current position of file pointer
  5662 jlong os::current_file_offset(int fd) {
  5663   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5666 // move file pointer to the specified offset
  5667 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5668   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5671 // This code originates from JDK's sysAvailable
  5672 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5674 int os::available(int fd, jlong *bytes) {
  5675   jlong cur, end;
  5676   int mode;
  5677   struct stat64 buf64;
  5679   if (::fstat64(fd, &buf64) >= 0) {
  5680     mode = buf64.st_mode;
  5681     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5682       /*
  5683       * XXX: is the following call interruptible? If so, this might
  5684       * need to go through the INTERRUPT_IO() wrapper as for other
  5685       * blocking, interruptible calls in this file.
  5686       */
  5687       int n;
  5688       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5689         *bytes = n;
  5690         return 1;
  5694   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5695     return 0;
  5696   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5697     return 0;
  5698   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5699     return 0;
  5701   *bytes = end - cur;
  5702   return 1;
  5705 int os::socket_available(int fd, jint *pbytes) {
  5706   // Linux doc says EINTR not returned, unlike Solaris
  5707   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5709   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5710   // is expected to return 0 on failure and 1 on success to the jdk.
  5711   return (ret < 0) ? 0 : 1;
  5714 // Map a block of memory.
  5715 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5716                      char *addr, size_t bytes, bool read_only,
  5717                      bool allow_exec) {
  5718   int prot;
  5719   int flags = MAP_PRIVATE;
  5721   if (read_only) {
  5722     prot = PROT_READ;
  5723   } else {
  5724     prot = PROT_READ | PROT_WRITE;
  5727   if (allow_exec) {
  5728     prot |= PROT_EXEC;
  5731   if (addr != NULL) {
  5732     flags |= MAP_FIXED;
  5735   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5736                                      fd, file_offset);
  5737   if (mapped_address == MAP_FAILED) {
  5738     return NULL;
  5740   return mapped_address;
  5744 // Remap a block of memory.
  5745 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5746                        char *addr, size_t bytes, bool read_only,
  5747                        bool allow_exec) {
  5748   // same as map_memory() on this OS
  5749   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5750                         allow_exec);
  5754 // Unmap a block of memory.
  5755 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5756   return munmap(addr, bytes) == 0;
  5759 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5761 static clockid_t thread_cpu_clockid(Thread* thread) {
  5762   pthread_t tid = thread->osthread()->pthread_id();
  5763   clockid_t clockid;
  5765   // Get thread clockid
  5766   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5767   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5768   return clockid;
  5771 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5772 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5773 // of a thread.
  5774 //
  5775 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5776 // the fast estimate available on the platform.
  5778 jlong os::current_thread_cpu_time() {
  5779   if (os::Linux::supports_fast_thread_cpu_time()) {
  5780     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5781   } else {
  5782     // return user + sys since the cost is the same
  5783     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5787 jlong os::thread_cpu_time(Thread* thread) {
  5788   // consistent with what current_thread_cpu_time() returns
  5789   if (os::Linux::supports_fast_thread_cpu_time()) {
  5790     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5791   } else {
  5792     return slow_thread_cpu_time(thread, true /* user + sys */);
  5796 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5797   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5798     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5799   } else {
  5800     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5804 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5805   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5806     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5807   } else {
  5808     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5812 //
  5813 //  -1 on error.
  5814 //
  5816 PRAGMA_DIAG_PUSH
  5817 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5818 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5819   static bool proc_task_unchecked = true;
  5820   static const char *proc_stat_path = "/proc/%d/stat";
  5821   pid_t  tid = thread->osthread()->thread_id();
  5822   char *s;
  5823   char stat[2048];
  5824   int statlen;
  5825   char proc_name[64];
  5826   int count;
  5827   long sys_time, user_time;
  5828   char cdummy;
  5829   int idummy;
  5830   long ldummy;
  5831   FILE *fp;
  5833   // The /proc/<tid>/stat aggregates per-process usage on
  5834   // new Linux kernels 2.6+ where NPTL is supported.
  5835   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5836   // See bug 6328462.
  5837   // There possibly can be cases where there is no directory
  5838   // /proc/self/task, so we check its availability.
  5839   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5840     // This is executed only once
  5841     proc_task_unchecked = false;
  5842     fp = fopen("/proc/self/task", "r");
  5843     if (fp != NULL) {
  5844       proc_stat_path = "/proc/self/task/%d/stat";
  5845       fclose(fp);
  5849   sprintf(proc_name, proc_stat_path, tid);
  5850   fp = fopen(proc_name, "r");
  5851   if ( fp == NULL ) return -1;
  5852   statlen = fread(stat, 1, 2047, fp);
  5853   stat[statlen] = '\0';
  5854   fclose(fp);
  5856   // Skip pid and the command string. Note that we could be dealing with
  5857   // weird command names, e.g. user could decide to rename java launcher
  5858   // to "java 1.4.2 :)", then the stat file would look like
  5859   //                1234 (java 1.4.2 :)) R ... ...
  5860   // We don't really need to know the command string, just find the last
  5861   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5862   s = strrchr(stat, ')');
  5863   if (s == NULL ) return -1;
  5865   // Skip blank chars
  5866   do s++; while (isspace(*s));
  5868   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5869                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5870                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5871                  &user_time, &sys_time);
  5872   if ( count != 13 ) return -1;
  5873   if (user_sys_cpu_time) {
  5874     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5875   } else {
  5876     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5879 PRAGMA_DIAG_POP
  5881 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5882   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5883   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5884   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5885   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5888 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5889   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5890   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5891   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5892   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5895 bool os::is_thread_cpu_time_supported() {
  5896   return true;
  5899 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5900 // Linux doesn't yet have a (official) notion of processor sets,
  5901 // so just return the system wide load average.
  5902 int os::loadavg(double loadavg[], int nelem) {
  5903   return ::getloadavg(loadavg, nelem);
  5906 void os::pause() {
  5907   char filename[MAX_PATH];
  5908   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5909     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5910   } else {
  5911     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5914   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5915   if (fd != -1) {
  5916     struct stat buf;
  5917     ::close(fd);
  5918     while (::stat(filename, &buf) == 0) {
  5919       (void)::poll(NULL, 0, 100);
  5921   } else {
  5922     jio_fprintf(stderr,
  5923       "Could not open pause file '%s', continuing immediately.\n", filename);
  5928 // Refer to the comments in os_solaris.cpp park-unpark.
  5929 //
  5930 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5931 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5932 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5933 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5934 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5935 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5936 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5937 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5938 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5939 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5940 // of libpthread avoids the problem, but isn't practical.
  5941 //
  5942 // Possible remedies:
  5943 //
  5944 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5945 //      This is palliative and probabilistic, however.  If the thread is preempted
  5946 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5947 //      than the minimum period may have passed, and the abstime may be stale (in the
  5948 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5949 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5950 //
  5951 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5952 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5953 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5954 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5955 //      thread.
  5956 //
  5957 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5958 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5959 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5960 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5961 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5962 //      timers in a graceful fashion.
  5963 //
  5964 // 4.   When the abstime value is in the past it appears that control returns
  5965 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5966 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5967 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5968 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5969 //      It may be possible to avoid reinitialization by checking the return
  5970 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5971 //      condvar we must establish the invariant that cond_signal() is only called
  5972 //      within critical sections protected by the adjunct mutex.  This prevents
  5973 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5974 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5975 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5976 //
  5977 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5978 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5979 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5980 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5981 //
  5982 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5983 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5984 // and only enabling the work-around for vulnerable environments.
  5986 // utility to compute the abstime argument to timedwait:
  5987 // millis is the relative timeout time
  5988 // abstime will be the absolute timeout time
  5989 // TODO: replace compute_abstime() with unpackTime()
  5991 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5992   if (millis < 0)  millis = 0;
  5994   jlong seconds = millis / 1000;
  5995   millis %= 1000;
  5996   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5997     seconds = 50000000;
  6000   if (os::Linux::supports_monotonic_clock()) {
  6001     struct timespec now;
  6002     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6003     assert_status(status == 0, status, "clock_gettime");
  6004     abstime->tv_sec = now.tv_sec  + seconds;
  6005     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  6006     if (nanos >= NANOSECS_PER_SEC) {
  6007       abstime->tv_sec += 1;
  6008       nanos -= NANOSECS_PER_SEC;
  6010     abstime->tv_nsec = nanos;
  6011   } else {
  6012     struct timeval now;
  6013     int status = gettimeofday(&now, NULL);
  6014     assert(status == 0, "gettimeofday");
  6015     abstime->tv_sec = now.tv_sec  + seconds;
  6016     long usec = now.tv_usec + millis * 1000;
  6017     if (usec >= 1000000) {
  6018       abstime->tv_sec += 1;
  6019       usec -= 1000000;
  6021     abstime->tv_nsec = usec * 1000;
  6023   return abstime;
  6027 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  6028 // Conceptually TryPark() should be equivalent to park(0).
  6030 int os::PlatformEvent::TryPark() {
  6031   for (;;) {
  6032     const int v = _Event ;
  6033     guarantee ((v == 0) || (v == 1), "invariant") ;
  6034     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  6038 void os::PlatformEvent::park() {       // AKA "down()"
  6039   // Invariant: Only the thread associated with the Event/PlatformEvent
  6040   // may call park().
  6041   // TODO: assert that _Assoc != NULL or _Assoc == Self
  6042   int v ;
  6043   for (;;) {
  6044       v = _Event ;
  6045       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6047   guarantee (v >= 0, "invariant") ;
  6048   if (v == 0) {
  6049      // Do this the hard way by blocking ...
  6050      int status = pthread_mutex_lock(_mutex);
  6051      assert_status(status == 0, status, "mutex_lock");
  6052      guarantee (_nParked == 0, "invariant") ;
  6053      ++ _nParked ;
  6054      while (_Event < 0) {
  6055         status = pthread_cond_wait(_cond, _mutex);
  6056         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  6057         // Treat this the same as if the wait was interrupted
  6058         if (status == ETIME) { status = EINTR; }
  6059         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  6061      -- _nParked ;
  6063     _Event = 0 ;
  6064      status = pthread_mutex_unlock(_mutex);
  6065      assert_status(status == 0, status, "mutex_unlock");
  6066     // Paranoia to ensure our locked and lock-free paths interact
  6067     // correctly with each other.
  6068     OrderAccess::fence();
  6070   guarantee (_Event >= 0, "invariant") ;
  6073 int os::PlatformEvent::park(jlong millis) {
  6074   guarantee (_nParked == 0, "invariant") ;
  6076   int v ;
  6077   for (;;) {
  6078       v = _Event ;
  6079       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6081   guarantee (v >= 0, "invariant") ;
  6082   if (v != 0) return OS_OK ;
  6084   // We do this the hard way, by blocking the thread.
  6085   // Consider enforcing a minimum timeout value.
  6086   struct timespec abst;
  6087   compute_abstime(&abst, millis);
  6089   int ret = OS_TIMEOUT;
  6090   int status = pthread_mutex_lock(_mutex);
  6091   assert_status(status == 0, status, "mutex_lock");
  6092   guarantee (_nParked == 0, "invariant") ;
  6093   ++_nParked ;
  6095   // Object.wait(timo) will return because of
  6096   // (a) notification
  6097   // (b) timeout
  6098   // (c) thread.interrupt
  6099   //
  6100   // Thread.interrupt and object.notify{All} both call Event::set.
  6101   // That is, we treat thread.interrupt as a special case of notification.
  6102   // The underlying Solaris implementation, cond_timedwait, admits
  6103   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  6104   // JVM from making those visible to Java code.  As such, we must
  6105   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  6106   //
  6107   // TODO: properly differentiate simultaneous notify+interrupt.
  6108   // In that case, we should propagate the notify to another waiter.
  6110   while (_Event < 0) {
  6111     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  6112     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6113       pthread_cond_destroy (_cond);
  6114       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  6116     assert_status(status == 0 || status == EINTR ||
  6117                   status == ETIME || status == ETIMEDOUT,
  6118                   status, "cond_timedwait");
  6119     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  6120     if (status == ETIME || status == ETIMEDOUT) break ;
  6121     // We consume and ignore EINTR and spurious wakeups.
  6123   --_nParked ;
  6124   if (_Event >= 0) {
  6125      ret = OS_OK;
  6127   _Event = 0 ;
  6128   status = pthread_mutex_unlock(_mutex);
  6129   assert_status(status == 0, status, "mutex_unlock");
  6130   assert (_nParked == 0, "invariant") ;
  6131   // Paranoia to ensure our locked and lock-free paths interact
  6132   // correctly with each other.
  6133   OrderAccess::fence();
  6134   return ret;
  6137 void os::PlatformEvent::unpark() {
  6138   // Transitions for _Event:
  6139   //    0 :=> 1
  6140   //    1 :=> 1
  6141   //   -1 :=> either 0 or 1; must signal target thread
  6142   //          That is, we can safely transition _Event from -1 to either
  6143   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6144   //          unpark() calls.
  6145   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6146   //
  6147   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6148   // that it will take two back-to-back park() calls for the owning
  6149   // thread to block. This has the benefit of forcing a spurious return
  6150   // from the first park() call after an unpark() call which will help
  6151   // shake out uses of park() and unpark() without condition variables.
  6153   if (Atomic::xchg(1, &_Event) >= 0) return;
  6155   // Wait for the thread associated with the event to vacate
  6156   int status = pthread_mutex_lock(_mutex);
  6157   assert_status(status == 0, status, "mutex_lock");
  6158   int AnyWaiters = _nParked;
  6159   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6160   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  6161     AnyWaiters = 0;
  6162     pthread_cond_signal(_cond);
  6164   status = pthread_mutex_unlock(_mutex);
  6165   assert_status(status == 0, status, "mutex_unlock");
  6166   if (AnyWaiters != 0) {
  6167     status = pthread_cond_signal(_cond);
  6168     assert_status(status == 0, status, "cond_signal");
  6171   // Note that we signal() _after dropping the lock for "immortal" Events.
  6172   // This is safe and avoids a common class of  futile wakeups.  In rare
  6173   // circumstances this can cause a thread to return prematurely from
  6174   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  6175   // simply re-test the condition and re-park itself.
  6179 // JSR166
  6180 // -------------------------------------------------------
  6182 /*
  6183  * The solaris and linux implementations of park/unpark are fairly
  6184  * conservative for now, but can be improved. They currently use a
  6185  * mutex/condvar pair, plus a a count.
  6186  * Park decrements count if > 0, else does a condvar wait.  Unpark
  6187  * sets count to 1 and signals condvar.  Only one thread ever waits
  6188  * on the condvar. Contention seen when trying to park implies that someone
  6189  * is unparking you, so don't wait. And spurious returns are fine, so there
  6190  * is no need to track notifications.
  6191  */
  6193 /*
  6194  * This code is common to linux and solaris and will be moved to a
  6195  * common place in dolphin.
  6197  * The passed in time value is either a relative time in nanoseconds
  6198  * or an absolute time in milliseconds. Either way it has to be unpacked
  6199  * into suitable seconds and nanoseconds components and stored in the
  6200  * given timespec structure.
  6201  * Given time is a 64-bit value and the time_t used in the timespec is only
  6202  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6203  * overflow if times way in the future are given. Further on Solaris versions
  6204  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6205  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6206  * As it will be 28 years before "now + 100000000" will overflow we can
  6207  * ignore overflow and just impose a hard-limit on seconds using the value
  6208  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6209  * years from "now".
  6210  */
  6212 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6213   assert (time > 0, "convertTime");
  6214   time_t max_secs = 0;
  6216   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  6217     struct timeval now;
  6218     int status = gettimeofday(&now, NULL);
  6219     assert(status == 0, "gettimeofday");
  6221     max_secs = now.tv_sec + MAX_SECS;
  6223     if (isAbsolute) {
  6224       jlong secs = time / 1000;
  6225       if (secs > max_secs) {
  6226         absTime->tv_sec = max_secs;
  6227       } else {
  6228         absTime->tv_sec = secs;
  6230       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6231     } else {
  6232       jlong secs = time / NANOSECS_PER_SEC;
  6233       if (secs >= MAX_SECS) {
  6234         absTime->tv_sec = max_secs;
  6235         absTime->tv_nsec = 0;
  6236       } else {
  6237         absTime->tv_sec = now.tv_sec + secs;
  6238         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6239         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6240           absTime->tv_nsec -= NANOSECS_PER_SEC;
  6241           ++absTime->tv_sec; // note: this must be <= max_secs
  6245   } else {
  6246     // must be relative using monotonic clock
  6247     struct timespec now;
  6248     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6249     assert_status(status == 0, status, "clock_gettime");
  6250     max_secs = now.tv_sec + MAX_SECS;
  6251     jlong secs = time / NANOSECS_PER_SEC;
  6252     if (secs >= MAX_SECS) {
  6253       absTime->tv_sec = max_secs;
  6254       absTime->tv_nsec = 0;
  6255     } else {
  6256       absTime->tv_sec = now.tv_sec + secs;
  6257       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  6258       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6259         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6260         ++absTime->tv_sec; // note: this must be <= max_secs
  6264   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6265   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6266   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6267   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6270 void Parker::park(bool isAbsolute, jlong time) {
  6271   // Ideally we'd do something useful while spinning, such
  6272   // as calling unpackTime().
  6274   // Optional fast-path check:
  6275   // Return immediately if a permit is available.
  6276   // We depend on Atomic::xchg() having full barrier semantics
  6277   // since we are doing a lock-free update to _counter.
  6278   if (Atomic::xchg(0, &_counter) > 0) return;
  6280   Thread* thread = Thread::current();
  6281   assert(thread->is_Java_thread(), "Must be JavaThread");
  6282   JavaThread *jt = (JavaThread *)thread;
  6284   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  6285   // Check interrupt before trying to wait
  6286   if (Thread::is_interrupted(thread, false)) {
  6287     return;
  6290   // Next, demultiplex/decode time arguments
  6291   timespec absTime;
  6292   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6293     return;
  6295   if (time > 0) {
  6296     unpackTime(&absTime, isAbsolute, time);
  6300   // Enter safepoint region
  6301   // Beware of deadlocks such as 6317397.
  6302   // The per-thread Parker:: mutex is a classic leaf-lock.
  6303   // In particular a thread must never block on the Threads_lock while
  6304   // holding the Parker:: mutex.  If safepoints are pending both the
  6305   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6306   ThreadBlockInVM tbivm(jt);
  6308   // Don't wait if cannot get lock since interference arises from
  6309   // unblocking.  Also. check interrupt before trying wait
  6310   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6311     return;
  6314   int status ;
  6315   if (_counter > 0)  { // no wait needed
  6316     _counter = 0;
  6317     status = pthread_mutex_unlock(_mutex);
  6318     assert (status == 0, "invariant") ;
  6319     // Paranoia to ensure our locked and lock-free paths interact
  6320     // correctly with each other and Java-level accesses.
  6321     OrderAccess::fence();
  6322     return;
  6325 #ifdef ASSERT
  6326   // Don't catch signals while blocked; let the running threads have the signals.
  6327   // (This allows a debugger to break into the running thread.)
  6328   sigset_t oldsigs;
  6329   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6330   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6331 #endif
  6333   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6334   jt->set_suspend_equivalent();
  6335   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6337   assert(_cur_index == -1, "invariant");
  6338   if (time == 0) {
  6339     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6340     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6341   } else {
  6342     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6343     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6344     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6345       pthread_cond_destroy (&_cond[_cur_index]) ;
  6346       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6349   _cur_index = -1;
  6350   assert_status(status == 0 || status == EINTR ||
  6351                 status == ETIME || status == ETIMEDOUT,
  6352                 status, "cond_timedwait");
  6354 #ifdef ASSERT
  6355   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6356 #endif
  6358   _counter = 0 ;
  6359   status = pthread_mutex_unlock(_mutex) ;
  6360   assert_status(status == 0, status, "invariant") ;
  6361   // Paranoia to ensure our locked and lock-free paths interact
  6362   // correctly with each other and Java-level accesses.
  6363   OrderAccess::fence();
  6365   // If externally suspended while waiting, re-suspend
  6366   if (jt->handle_special_suspend_equivalent_condition()) {
  6367     jt->java_suspend_self();
  6371 void Parker::unpark() {
  6372   int s, status ;
  6373   status = pthread_mutex_lock(_mutex);
  6374   assert (status == 0, "invariant") ;
  6375   s = _counter;
  6376   _counter = 1;
  6377   if (s < 1) {
  6378     // thread might be parked
  6379     if (_cur_index != -1) {
  6380       // thread is definitely parked
  6381       if (WorkAroundNPTLTimedWaitHang) {
  6382         status = pthread_cond_signal (&_cond[_cur_index]);
  6383         assert (status == 0, "invariant");
  6384         status = pthread_mutex_unlock(_mutex);
  6385         assert (status == 0, "invariant");
  6386       } else {
  6387         // must capture correct index before unlocking
  6388         int index = _cur_index;
  6389         status = pthread_mutex_unlock(_mutex);
  6390         assert (status == 0, "invariant");
  6391         status = pthread_cond_signal (&_cond[index]);
  6392         assert (status == 0, "invariant");
  6394     } else {
  6395       pthread_mutex_unlock(_mutex);
  6396       assert (status == 0, "invariant") ;
  6398   } else {
  6399     pthread_mutex_unlock(_mutex);
  6400     assert (status == 0, "invariant") ;
  6405 extern char** environ;
  6407 // Run the specified command in a separate process. Return its exit value,
  6408 // or -1 on failure (e.g. can't fork a new process).
  6409 // Unlike system(), this function can be called from signal handler. It
  6410 // doesn't block SIGINT et al.
  6411 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
  6412   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6414   pid_t pid ;
  6416   if (use_vfork_if_available) {
  6417     pid = vfork();
  6418   } else {
  6419     pid = fork();
  6422   if (pid < 0) {
  6423     // fork failed
  6424     return -1;
  6426   } else if (pid == 0) {
  6427     // child process
  6429     execve("/bin/sh", (char* const*)argv, environ);
  6431     // execve failed
  6432     _exit(-1);
  6434   } else  {
  6435     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6436     // care about the actual exit code, for now.
  6438     int status;
  6440     // Wait for the child process to exit.  This returns immediately if
  6441     // the child has already exited. */
  6442     while (waitpid(pid, &status, 0) < 0) {
  6443         switch (errno) {
  6444         case ECHILD: return 0;
  6445         case EINTR: break;
  6446         default: return -1;
  6450     if (WIFEXITED(status)) {
  6451        // The child exited normally; get its exit code.
  6452        return WEXITSTATUS(status);
  6453     } else if (WIFSIGNALED(status)) {
  6454        // The child exited because of a signal
  6455        // The best value to return is 0x80 + signal number,
  6456        // because that is what all Unix shells do, and because
  6457        // it allows callers to distinguish between process exit and
  6458        // process death by signal.
  6459        return 0x80 + WTERMSIG(status);
  6460     } else {
  6461        // Unknown exit code; pass it through
  6462        return status;
  6467 // is_headless_jre()
  6468 //
  6469 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6470 // in order to report if we are running in a headless jre
  6471 //
  6472 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6473 // as libawt.so, and renamed libawt_xawt.so
  6474 //
  6475 bool os::is_headless_jre() {
  6476     struct stat statbuf;
  6477     char buf[MAXPATHLEN];
  6478     char libmawtpath[MAXPATHLEN];
  6479     const char *xawtstr  = "/xawt/libmawt.so";
  6480     const char *new_xawtstr = "/libawt_xawt.so";
  6481     char *p;
  6483     // Get path to libjvm.so
  6484     os::jvm_path(buf, sizeof(buf));
  6486     // Get rid of libjvm.so
  6487     p = strrchr(buf, '/');
  6488     if (p == NULL) return false;
  6489     else *p = '\0';
  6491     // Get rid of client or server
  6492     p = strrchr(buf, '/');
  6493     if (p == NULL) return false;
  6494     else *p = '\0';
  6496     // check xawt/libmawt.so
  6497     strcpy(libmawtpath, buf);
  6498     strcat(libmawtpath, xawtstr);
  6499     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6501     // check libawt_xawt.so
  6502     strcpy(libmawtpath, buf);
  6503     strcat(libmawtpath, new_xawtstr);
  6504     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6506     return true;
  6509 // Get the default path to the core file
  6510 // Returns the length of the string
  6511 int os::get_core_path(char* buffer, size_t bufferSize) {
  6512   const char* p = get_current_directory(buffer, bufferSize);
  6514   if (p == NULL) {
  6515     assert(p != NULL, "failed to get current directory");
  6516     return 0;
  6519   return strlen(buffer);
  6522 /////////////// Unit tests ///////////////
  6524 #ifndef PRODUCT
  6526 #define test_log(...) \
  6527   do {\
  6528     if (VerboseInternalVMTests) { \
  6529       tty->print_cr(__VA_ARGS__); \
  6530       tty->flush(); \
  6531     }\
  6532   } while (false)
  6534 class TestReserveMemorySpecial : AllStatic {
  6535  public:
  6536   static void small_page_write(void* addr, size_t size) {
  6537     size_t page_size = os::vm_page_size();
  6539     char* end = (char*)addr + size;
  6540     for (char* p = (char*)addr; p < end; p += page_size) {
  6541       *p = 1;
  6545   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6546     if (!UseHugeTLBFS) {
  6547       return;
  6550     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6552     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6554     if (addr != NULL) {
  6555       small_page_write(addr, size);
  6557       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6561   static void test_reserve_memory_special_huge_tlbfs_only() {
  6562     if (!UseHugeTLBFS) {
  6563       return;
  6566     size_t lp = os::large_page_size();
  6568     for (size_t size = lp; size <= lp * 10; size += lp) {
  6569       test_reserve_memory_special_huge_tlbfs_only(size);
  6573   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6574     size_t lp = os::large_page_size();
  6575     size_t ag = os::vm_allocation_granularity();
  6577     // sizes to test
  6578     const size_t sizes[] = {
  6579       lp, lp + ag, lp + lp / 2, lp * 2,
  6580       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6581       lp * 10, lp * 10 + lp / 2
  6582     };
  6583     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6585     // For each size/alignment combination, we test three scenarios:
  6586     // 1) with req_addr == NULL
  6587     // 2) with a non-null req_addr at which we expect to successfully allocate
  6588     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6589     //    expect the allocation to either fail or to ignore req_addr
  6591     // Pre-allocate two areas; they shall be as large as the largest allocation
  6592     //  and aligned to the largest alignment we will be testing.
  6593     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6594     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6595       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6596       -1, 0);
  6597     assert(mapping1 != MAP_FAILED, "should work");
  6599     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6600       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6601       -1, 0);
  6602     assert(mapping2 != MAP_FAILED, "should work");
  6604     // Unmap the first mapping, but leave the second mapping intact: the first
  6605     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6606     // mapping, still intact, as "bad" req_addr (case 3).
  6607     ::munmap(mapping1, mapping_size);
  6609     // Case 1
  6610     test_log("%s, req_addr NULL:", __FUNCTION__);
  6611     test_log("size            align           result");
  6613     for (int i = 0; i < num_sizes; i++) {
  6614       const size_t size = sizes[i];
  6615       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6616         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6617         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6618             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6619         if (p != NULL) {
  6620           assert(is_ptr_aligned(p, alignment), "must be");
  6621           small_page_write(p, size);
  6622           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6627     // Case 2
  6628     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6629     test_log("size            align           req_addr         result");
  6631     for (int i = 0; i < num_sizes; i++) {
  6632       const size_t size = sizes[i];
  6633       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6634         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6635         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6636         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6637             size, alignment, req_addr, p,
  6638             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6639         if (p != NULL) {
  6640           assert(p == req_addr, "must be");
  6641           small_page_write(p, size);
  6642           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6647     // Case 3
  6648     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6649     test_log("size            align           req_addr         result");
  6651     for (int i = 0; i < num_sizes; i++) {
  6652       const size_t size = sizes[i];
  6653       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6654         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6655         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6656         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6657             size, alignment, req_addr, p,
  6658             ((p != NULL ? "" : "(failed)")));
  6659         // as the area around req_addr contains already existing mappings, the API should always
  6660         // return NULL (as per contract, it cannot return another address)
  6661         assert(p == NULL, "must be");
  6665     ::munmap(mapping2, mapping_size);
  6669   static void test_reserve_memory_special_huge_tlbfs() {
  6670     if (!UseHugeTLBFS) {
  6671       return;
  6674     test_reserve_memory_special_huge_tlbfs_only();
  6675     test_reserve_memory_special_huge_tlbfs_mixed();
  6678   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6679     if (!UseSHM) {
  6680       return;
  6683     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6685     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6687     if (addr != NULL) {
  6688       assert(is_ptr_aligned(addr, alignment), "Check");
  6689       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6691       small_page_write(addr, size);
  6693       os::Linux::release_memory_special_shm(addr, size);
  6697   static void test_reserve_memory_special_shm() {
  6698     size_t lp = os::large_page_size();
  6699     size_t ag = os::vm_allocation_granularity();
  6701     for (size_t size = ag; size < lp * 3; size += ag) {
  6702       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6703         test_reserve_memory_special_shm(size, alignment);
  6708   static void test() {
  6709     test_reserve_memory_special_huge_tlbfs();
  6710     test_reserve_memory_special_shm();
  6712 };
  6714 void TestReserveMemorySpecial_test() {
  6715   TestReserveMemorySpecial::test();
  6718 #endif

mercurial