src/os/linux/vm/os_linux.cpp

Sat, 09 Nov 2019 20:29:45 +0800

author
aoqi
date
Sat, 09 Nov 2019 20:29:45 +0800
changeset 9756
2be326848943
parent 9703
2fdf635bcf28
parent 9711
0f2fe7d37d8c
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "osContainer_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/interfaceSupport.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/orderAccess.inline.hpp"
    54 #include "runtime/osThread.hpp"
    55 #include "runtime/perfMemory.hpp"
    56 #include "runtime/sharedRuntime.hpp"
    57 #include "runtime/statSampler.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/memTracker.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/elfFile.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 // put OS-includes here
    73 # include <sys/types.h>
    74 # include <sys/mman.h>
    75 # include <sys/stat.h>
    76 # include <sys/select.h>
    77 # include <pthread.h>
    78 # include <signal.h>
    79 # include <errno.h>
    80 # include <dlfcn.h>
    81 # include <stdio.h>
    82 # include <unistd.h>
    83 # include <sys/resource.h>
    84 # include <pthread.h>
    85 # include <sys/stat.h>
    86 # include <sys/time.h>
    87 # include <sys/times.h>
    88 # include <sys/utsname.h>
    89 # include <sys/socket.h>
    90 # include <sys/wait.h>
    91 # include <pwd.h>
    92 # include <poll.h>
    93 # include <semaphore.h>
    94 # include <fcntl.h>
    95 # include <string.h>
    96 # include <syscall.h>
    97 # include <sys/sysinfo.h>
    98 # include <gnu/libc-version.h>
    99 # include <sys/ipc.h>
   100 # include <sys/shm.h>
   101 # include <link.h>
   102 # include <stdint.h>
   103 # include <inttypes.h>
   104 # include <sys/ioctl.h>
   106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   108 #ifndef _GNU_SOURCE
   109   #define _GNU_SOURCE
   110   #include <sched.h>
   111   #undef _GNU_SOURCE
   112 #else
   113   #include <sched.h>
   114 #endif
   116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   117 // getrusage() is prepared to handle the associated failure.
   118 #ifndef RUSAGE_THREAD
   119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   120 #endif
   122 #define MAX_PATH    (2 * K)
   124 #define MAX_SECS 100000000
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #define LARGEPAGES_BIT (1 << 6)
   130 ////////////////////////////////////////////////////////////////////////////////
   131 // global variables
   132 julong os::Linux::_physical_memory = 0;
   134 address   os::Linux::_initial_thread_stack_bottom = NULL;
   135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   139 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
   140 Mutex* os::Linux::_createThread_lock = NULL;
   141 pthread_t os::Linux::_main_thread;
   142 int os::Linux::_page_size = -1;
   143 const int os::Linux::_vm_default_page_size = (8 * K);
   144 bool os::Linux::_is_floating_stack = false;
   145 bool os::Linux::_is_NPTL = false;
   146 bool os::Linux::_supports_fast_thread_cpu_time = false;
   147 const char * os::Linux::_glibc_version = NULL;
   148 const char * os::Linux::_libpthread_version = NULL;
   149 pthread_condattr_t os::Linux::_condattr[1];
   151 static jlong initial_time_count=0;
   153 static int clock_tics_per_sec = 100;
   155 // For diagnostics to print a message once. see run_periodic_checks
   156 static sigset_t check_signal_done;
   157 static bool check_signals = true;
   159 static pid_t _initial_pid = 0;
   161 /* Signal number used to suspend/resume a thread */
   163 /* do not use any signal number less than SIGSEGV, see 4355769 */
   164 static int SR_signum = SIGUSR2;
   165 sigset_t SR_sigset;
   167 /* Used to protect dlsym() calls */
   168 static pthread_mutex_t dl_mutex;
   170 // Declarations
   171 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   173 // utility functions
   175 static int SR_initialize();
   177 julong os::available_memory() {
   178   return Linux::available_memory();
   179 }
   181 julong os::Linux::available_memory() {
   182   // values in struct sysinfo are "unsigned long"
   183   struct sysinfo si;
   184   julong avail_mem;
   186   if (OSContainer::is_containerized()) {
   187     jlong mem_limit, mem_usage;
   188     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
   189       if (PrintContainerInfo) {
   190         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   191                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   192       }
   193     }
   195     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
   196       if (PrintContainerInfo) {
   197         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
   198       }
   199     }
   201     if (mem_limit > 0 && mem_usage > 0 ) {
   202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
   203       if (PrintContainerInfo) {
   204         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
   205       }
   206       return avail_mem;
   207     }
   208   }
   210   sysinfo(&si);
   211   avail_mem = (julong)si.freeram * si.mem_unit;
   212   if (Verbose) {
   213     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
   214   }
   215   return avail_mem;
   216 }
   218 julong os::physical_memory() {
   219   jlong phys_mem = 0;
   220   if (OSContainer::is_containerized()) {
   221     jlong mem_limit;
   222     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
   223       if (PrintContainerInfo) {
   224         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
   225       }
   226       return mem_limit;
   227     }
   229     if (PrintContainerInfo) {
   230       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   231                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   232     }
   233   }
   235   phys_mem = Linux::physical_memory();
   236   if (Verbose) {
   237     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
   238   }
   239   return phys_mem;
   240 }
   242 ////////////////////////////////////////////////////////////////////////////////
   243 // environment support
   245 bool os::getenv(const char* name, char* buf, int len) {
   246   const char* val = ::getenv(name);
   247   if (val != NULL && strlen(val) < (size_t)len) {
   248     strcpy(buf, val);
   249     return true;
   250   }
   251   if (len > 0) buf[0] = 0;  // return a null string
   252   return false;
   253 }
   256 // Return true if user is running as root.
   258 bool os::have_special_privileges() {
   259   static bool init = false;
   260   static bool privileges = false;
   261   if (!init) {
   262     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   263     init = true;
   264   }
   265   return privileges;
   266 }
   269 #ifndef SYS_gettid
   270 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   271   #ifdef __ia64__
   272     #define SYS_gettid 1105
   273   #else
   274     #ifdef __i386__
   275       #define SYS_gettid 224
   276     #else
   277       #ifdef __amd64__
   278         #define SYS_gettid 186
   279       #else
   280         #ifdef __sparc__
   281           #define SYS_gettid 143
   282         #else
   283           #error define gettid for the arch
   284         #endif
   285       #endif
   286     #endif
   287   #endif
   288 #endif
   290 // Cpu architecture string
   291 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   293 // pid_t gettid()
   294 //
   295 // Returns the kernel thread id of the currently running thread. Kernel
   296 // thread id is used to access /proc.
   297 //
   298 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   299 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   300 //
   301 pid_t os::Linux::gettid() {
   302   int rslt = syscall(SYS_gettid);
   303   if (rslt == -1) {
   304      // old kernel, no NPTL support
   305      return getpid();
   306   } else {
   307      return (pid_t)rslt;
   308   }
   309 }
   311 // Most versions of linux have a bug where the number of processors are
   312 // determined by looking at the /proc file system.  In a chroot environment,
   313 // the system call returns 1.  This causes the VM to act as if it is
   314 // a single processor and elide locking (see is_MP() call).
   315 static bool unsafe_chroot_detected = false;
   316 static const char *unstable_chroot_error = "/proc file system not found.\n"
   317                      "Java may be unstable running multithreaded in a chroot "
   318                      "environment on Linux when /proc filesystem is not mounted.";
   320 void os::Linux::initialize_system_info() {
   321   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   322   if (processor_count() == 1) {
   323     pid_t pid = os::Linux::gettid();
   324     char fname[32];
   325     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   326     FILE *fp = fopen(fname, "r");
   327     if (fp == NULL) {
   328       unsafe_chroot_detected = true;
   329     } else {
   330       fclose(fp);
   331     }
   332   }
   333   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   334   assert(processor_count() > 0, "linux error");
   335 }
   337 void os::init_system_properties_values() {
   338   // The next steps are taken in the product version:
   339   //
   340   // Obtain the JAVA_HOME value from the location of libjvm.so.
   341   // This library should be located at:
   342   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   343   //
   344   // If "/jre/lib/" appears at the right place in the path, then we
   345   // assume libjvm.so is installed in a JDK and we use this path.
   346   //
   347   // Otherwise exit with message: "Could not create the Java virtual machine."
   348   //
   349   // The following extra steps are taken in the debugging version:
   350   //
   351   // If "/jre/lib/" does NOT appear at the right place in the path
   352   // instead of exit check for $JAVA_HOME environment variable.
   353   //
   354   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   355   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   356   // it looks like libjvm.so is installed there
   357   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   358   //
   359   // Otherwise exit.
   360   //
   361   // Important note: if the location of libjvm.so changes this
   362   // code needs to be changed accordingly.
   364 // See ld(1):
   365 //      The linker uses the following search paths to locate required
   366 //      shared libraries:
   367 //        1: ...
   368 //        ...
   369 //        7: The default directories, normally /lib and /usr/lib.
   370 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   371 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   372 #else
   373 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   374 #endif
   376 // Base path of extensions installed on the system.
   377 #define SYS_EXT_DIR     "/usr/java/packages"
   378 #define EXTENSIONS_DIR  "/lib/ext"
   379 #define ENDORSED_DIR    "/lib/endorsed"
   381   // Buffer that fits several sprintfs.
   382   // Note that the space for the colon and the trailing null are provided
   383   // by the nulls included by the sizeof operator.
   384   const size_t bufsize =
   385     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   386          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   387          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   388   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   390   // sysclasspath, java_home, dll_dir
   391   {
   392     char *pslash;
   393     os::jvm_path(buf, bufsize);
   395     // Found the full path to libjvm.so.
   396     // Now cut the path to <java_home>/jre if we can.
   397     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   398     pslash = strrchr(buf, '/');
   399     if (pslash != NULL) {
   400       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   401     }
   402     Arguments::set_dll_dir(buf);
   404     if (pslash != NULL) {
   405       pslash = strrchr(buf, '/');
   406       if (pslash != NULL) {
   407         *pslash = '\0';          // Get rid of /<arch>.
   408         pslash = strrchr(buf, '/');
   409         if (pslash != NULL) {
   410           *pslash = '\0';        // Get rid of /lib.
   411         }
   412       }
   413     }
   414     Arguments::set_java_home(buf);
   415     set_boot_path('/', ':');
   416   }
   418   // Where to look for native libraries.
   419   //
   420   // Note: Due to a legacy implementation, most of the library path
   421   // is set in the launcher. This was to accomodate linking restrictions
   422   // on legacy Linux implementations (which are no longer supported).
   423   // Eventually, all the library path setting will be done here.
   424   //
   425   // However, to prevent the proliferation of improperly built native
   426   // libraries, the new path component /usr/java/packages is added here.
   427   // Eventually, all the library path setting will be done here.
   428   {
   429     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   430     // should always exist (until the legacy problem cited above is
   431     // addressed).
   432     const char *v = ::getenv("LD_LIBRARY_PATH");
   433     const char *v_colon = ":";
   434     if (v == NULL) { v = ""; v_colon = ""; }
   435     // That's +1 for the colon and +1 for the trailing '\0'.
   436     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   437                                                      strlen(v) + 1 +
   438                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   439                                                      mtInternal);
   440     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   441     Arguments::set_library_path(ld_library_path);
   442     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   443   }
   445   // Extensions directories.
   446   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   447   Arguments::set_ext_dirs(buf);
   449   // Endorsed standards default directory.
   450   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   451   Arguments::set_endorsed_dirs(buf);
   453   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   455 #undef DEFAULT_LIBPATH
   456 #undef SYS_EXT_DIR
   457 #undef EXTENSIONS_DIR
   458 #undef ENDORSED_DIR
   459 }
   461 ////////////////////////////////////////////////////////////////////////////////
   462 // breakpoint support
   464 void os::breakpoint() {
   465   BREAKPOINT;
   466 }
   468 extern "C" void breakpoint() {
   469   // use debugger to set breakpoint here
   470 }
   472 ////////////////////////////////////////////////////////////////////////////////
   473 // signal support
   475 debug_only(static bool signal_sets_initialized = false);
   476 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   478 bool os::Linux::is_sig_ignored(int sig) {
   479       struct sigaction oact;
   480       sigaction(sig, (struct sigaction*)NULL, &oact);
   481       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   482                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   483       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   484            return true;
   485       else
   486            return false;
   487 }
   489 void os::Linux::signal_sets_init() {
   490   // Should also have an assertion stating we are still single-threaded.
   491   assert(!signal_sets_initialized, "Already initialized");
   492   // Fill in signals that are necessarily unblocked for all threads in
   493   // the VM. Currently, we unblock the following signals:
   494   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   495   //                         by -Xrs (=ReduceSignalUsage));
   496   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   497   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   498   // the dispositions or masks wrt these signals.
   499   // Programs embedding the VM that want to use the above signals for their
   500   // own purposes must, at this time, use the "-Xrs" option to prevent
   501   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   502   // (See bug 4345157, and other related bugs).
   503   // In reality, though, unblocking these signals is really a nop, since
   504   // these signals are not blocked by default.
   505   sigemptyset(&unblocked_sigs);
   506   sigemptyset(&allowdebug_blocked_sigs);
   507   sigaddset(&unblocked_sigs, SIGILL);
   508   sigaddset(&unblocked_sigs, SIGSEGV);
   509   sigaddset(&unblocked_sigs, SIGBUS);
   510   sigaddset(&unblocked_sigs, SIGFPE);
   511 #if defined(PPC64)
   512   sigaddset(&unblocked_sigs, SIGTRAP);
   513 #endif
   514   sigaddset(&unblocked_sigs, SR_signum);
   516   if (!ReduceSignalUsage) {
   517    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   518       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   519       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   520    }
   521    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   522       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   523       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   524    }
   525    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   526       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   527       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   528    }
   529   }
   530   // Fill in signals that are blocked by all but the VM thread.
   531   sigemptyset(&vm_sigs);
   532   if (!ReduceSignalUsage)
   533     sigaddset(&vm_sigs, BREAK_SIGNAL);
   534   debug_only(signal_sets_initialized = true);
   536 }
   538 // These are signals that are unblocked while a thread is running Java.
   539 // (For some reason, they get blocked by default.)
   540 sigset_t* os::Linux::unblocked_signals() {
   541   assert(signal_sets_initialized, "Not initialized");
   542   return &unblocked_sigs;
   543 }
   545 // These are the signals that are blocked while a (non-VM) thread is
   546 // running Java. Only the VM thread handles these signals.
   547 sigset_t* os::Linux::vm_signals() {
   548   assert(signal_sets_initialized, "Not initialized");
   549   return &vm_sigs;
   550 }
   552 // These are signals that are blocked during cond_wait to allow debugger in
   553 sigset_t* os::Linux::allowdebug_blocked_signals() {
   554   assert(signal_sets_initialized, "Not initialized");
   555   return &allowdebug_blocked_sigs;
   556 }
   558 void os::Linux::hotspot_sigmask(Thread* thread) {
   560   //Save caller's signal mask before setting VM signal mask
   561   sigset_t caller_sigmask;
   562   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   564   OSThread* osthread = thread->osthread();
   565   osthread->set_caller_sigmask(caller_sigmask);
   567   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   569   if (!ReduceSignalUsage) {
   570     if (thread->is_VM_thread()) {
   571       // Only the VM thread handles BREAK_SIGNAL ...
   572       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   573     } else {
   574       // ... all other threads block BREAK_SIGNAL
   575       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   576     }
   577   }
   578 }
   580 //////////////////////////////////////////////////////////////////////////////
   581 // detecting pthread library
   583 void os::Linux::libpthread_init() {
   584   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   585   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   586   // generic name for earlier versions.
   587   // Define macros here so we can build HotSpot on old systems.
   588 # ifndef _CS_GNU_LIBC_VERSION
   589 # define _CS_GNU_LIBC_VERSION 2
   590 # endif
   591 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   592 # define _CS_GNU_LIBPTHREAD_VERSION 3
   593 # endif
   595   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   596   if (n > 0) {
   597      char *str = (char *)malloc(n, mtInternal);
   598      confstr(_CS_GNU_LIBC_VERSION, str, n);
   599      os::Linux::set_glibc_version(str);
   600   } else {
   601      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   602      static char _gnu_libc_version[32];
   603      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   604               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   605      os::Linux::set_glibc_version(_gnu_libc_version);
   606   }
   608   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   609   if (n > 0) {
   610      char *str = (char *)malloc(n, mtInternal);
   611      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   612      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   613      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   614      // is the case. LinuxThreads has a hard limit on max number of threads.
   615      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   616      // On the other hand, NPTL does not have such a limit, sysconf()
   617      // will return -1 and errno is not changed. Check if it is really NPTL.
   618      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   619          strstr(str, "NPTL") &&
   620          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   621        free(str);
   622        os::Linux::set_libpthread_version("linuxthreads");
   623      } else {
   624        os::Linux::set_libpthread_version(str);
   625      }
   626   } else {
   627     // glibc before 2.3.2 only has LinuxThreads.
   628     os::Linux::set_libpthread_version("linuxthreads");
   629   }
   631   if (strstr(libpthread_version(), "NPTL")) {
   632      os::Linux::set_is_NPTL();
   633   } else {
   634      os::Linux::set_is_LinuxThreads();
   635   }
   637   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   638   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   639   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   640      os::Linux::set_is_floating_stack();
   641   }
   642 }
   644 /////////////////////////////////////////////////////////////////////////////
   645 // thread stack
   647 // Force Linux kernel to expand current thread stack. If "bottom" is close
   648 // to the stack guard, caller should block all signals.
   649 //
   650 // MAP_GROWSDOWN:
   651 //   A special mmap() flag that is used to implement thread stacks. It tells
   652 //   kernel that the memory region should extend downwards when needed. This
   653 //   allows early versions of LinuxThreads to only mmap the first few pages
   654 //   when creating a new thread. Linux kernel will automatically expand thread
   655 //   stack as needed (on page faults).
   656 //
   657 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   658 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   659 //   region, it's hard to tell if the fault is due to a legitimate stack
   660 //   access or because of reading/writing non-exist memory (e.g. buffer
   661 //   overrun). As a rule, if the fault happens below current stack pointer,
   662 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   663 //   application (see Linux kernel fault.c).
   664 //
   665 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   666 //   stack overflow detection.
   667 //
   668 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   669 //   not use this flag. However, the stack of initial thread is not created
   670 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   671 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   672 //   and then attach the thread to JVM.
   673 //
   674 // To get around the problem and allow stack banging on Linux, we need to
   675 // manually expand thread stack after receiving the SIGSEGV.
   676 //
   677 // There are two ways to expand thread stack to address "bottom", we used
   678 // both of them in JVM before 1.5:
   679 //   1. adjust stack pointer first so that it is below "bottom", and then
   680 //      touch "bottom"
   681 //   2. mmap() the page in question
   682 //
   683 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   684 // if current sp is already near the lower end of page 101, and we need to
   685 // call mmap() to map page 100, it is possible that part of the mmap() frame
   686 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   687 // That will destroy the mmap() frame and cause VM to crash.
   688 //
   689 // The following code works by adjusting sp first, then accessing the "bottom"
   690 // page to force a page fault. Linux kernel will then automatically expand the
   691 // stack mapping.
   692 //
   693 // _expand_stack_to() assumes its frame size is less than page size, which
   694 // should always be true if the function is not inlined.
   696 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   697 #define NOINLINE
   698 #else
   699 #define NOINLINE __attribute__ ((noinline))
   700 #endif
   702 static void _expand_stack_to(address bottom) NOINLINE;
   704 static void _expand_stack_to(address bottom) {
   705   address sp;
   706   size_t size;
   707   volatile char *p;
   709   // Adjust bottom to point to the largest address within the same page, it
   710   // gives us a one-page buffer if alloca() allocates slightly more memory.
   711   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   712   bottom += os::Linux::page_size() - 1;
   714   // sp might be slightly above current stack pointer; if that's the case, we
   715   // will alloca() a little more space than necessary, which is OK. Don't use
   716   // os::current_stack_pointer(), as its result can be slightly below current
   717   // stack pointer, causing us to not alloca enough to reach "bottom".
   718   sp = (address)&sp;
   720   if (sp > bottom) {
   721     size = sp - bottom;
   722     p = (volatile char *)alloca(size);
   723     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   724     p[0] = '\0';
   725   }
   726 }
   728 void os::Linux::expand_stack_to(address bottom) {
   729   _expand_stack_to(bottom);
   730 }
   732 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   733   assert(t!=NULL, "just checking");
   734   assert(t->osthread()->expanding_stack(), "expand should be set");
   735   assert(t->stack_base() != NULL, "stack_base was not initialized");
   737   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   738     sigset_t mask_all, old_sigset;
   739     sigfillset(&mask_all);
   740     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   741     _expand_stack_to(addr);
   742     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   743     return true;
   744   }
   745   return false;
   746 }
   748 //////////////////////////////////////////////////////////////////////////////
   749 // create new thread
   751 static address highest_vm_reserved_address();
   753 // check if it's safe to start a new thread
   754 static bool _thread_safety_check(Thread* thread) {
   755   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   756     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   757     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   758     //   allocated (MAP_FIXED) from high address space. Every thread stack
   759     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   760     //   it to other values if they rebuild LinuxThreads).
   761     //
   762     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   763     // the memory region has already been mmap'ed. That means if we have too
   764     // many threads and/or very large heap, eventually thread stack will
   765     // collide with heap.
   766     //
   767     // Here we try to prevent heap/stack collision by comparing current
   768     // stack bottom with the highest address that has been mmap'ed by JVM
   769     // plus a safety margin for memory maps created by native code.
   770     //
   771     // This feature can be disabled by setting ThreadSafetyMargin to 0
   772     //
   773     if (ThreadSafetyMargin > 0) {
   774       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   776       // not safe if our stack extends below the safety margin
   777       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   778     } else {
   779       return true;
   780     }
   781   } else {
   782     // Floating stack LinuxThreads or NPTL:
   783     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   784     //   there's not enough space left, pthread_create() will fail. If we come
   785     //   here, that means enough space has been reserved for stack.
   786     return true;
   787   }
   788 }
   790 // Thread start routine for all newly created threads
   791 static void *java_start(Thread *thread) {
   792   // Try to randomize the cache line index of hot stack frames.
   793   // This helps when threads of the same stack traces evict each other's
   794   // cache lines. The threads can be either from the same JVM instance, or
   795   // from different JVM instances. The benefit is especially true for
   796   // processors with hyperthreading technology.
   797   static int counter = 0;
   798   int pid = os::current_process_id();
   799   alloca(((pid ^ counter++) & 7) * 128);
   801   ThreadLocalStorage::set_thread(thread);
   803   OSThread* osthread = thread->osthread();
   804   Monitor* sync = osthread->startThread_lock();
   806   // non floating stack LinuxThreads needs extra check, see above
   807   if (!_thread_safety_check(thread)) {
   808     // notify parent thread
   809     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   810     osthread->set_state(ZOMBIE);
   811     sync->notify_all();
   812     return NULL;
   813   }
   815   // thread_id is kernel thread id (similar to Solaris LWP id)
   816   osthread->set_thread_id(os::Linux::gettid());
   818   if (UseNUMA) {
   819     int lgrp_id = os::numa_get_group_id();
   820     if (lgrp_id != -1) {
   821       thread->set_lgrp_id(lgrp_id);
   822     }
   823   }
   824   // initialize signal mask for this thread
   825   os::Linux::hotspot_sigmask(thread);
   827   // initialize floating point control register
   828   os::Linux::init_thread_fpu_state();
   830   // handshaking with parent thread
   831   {
   832     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   834     // notify parent thread
   835     osthread->set_state(INITIALIZED);
   836     sync->notify_all();
   838     // wait until os::start_thread()
   839     while (osthread->get_state() == INITIALIZED) {
   840       sync->wait(Mutex::_no_safepoint_check_flag);
   841     }
   842   }
   844   // call one more level start routine
   845   thread->run();
   847   return 0;
   848 }
   850 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   851   assert(thread->osthread() == NULL, "caller responsible");
   853   // Allocate the OSThread object
   854   OSThread* osthread = new OSThread(NULL, NULL);
   855   if (osthread == NULL) {
   856     return false;
   857   }
   859   // set the correct thread state
   860   osthread->set_thread_type(thr_type);
   862   // Initial state is ALLOCATED but not INITIALIZED
   863   osthread->set_state(ALLOCATED);
   865   thread->set_osthread(osthread);
   867   // init thread attributes
   868   pthread_attr_t attr;
   869   pthread_attr_init(&attr);
   870   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   872   // stack size
   873   if (os::Linux::supports_variable_stack_size()) {
   874     // calculate stack size if it's not specified by caller
   875     if (stack_size == 0) {
   876       stack_size = os::Linux::default_stack_size(thr_type);
   878       switch (thr_type) {
   879       case os::java_thread:
   880         // Java threads use ThreadStackSize which default value can be
   881         // changed with the flag -Xss
   882         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   883         stack_size = JavaThread::stack_size_at_create();
   884         break;
   885       case os::compiler_thread:
   886         if (CompilerThreadStackSize > 0) {
   887           stack_size = (size_t)(CompilerThreadStackSize * K);
   888           break;
   889         } // else fall through:
   890           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   891       case os::vm_thread:
   892       case os::pgc_thread:
   893       case os::cgc_thread:
   894       case os::watcher_thread:
   895         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   896         break;
   897       }
   898     }
   900     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   901     pthread_attr_setstacksize(&attr, stack_size);
   902   } else {
   903     // let pthread_create() pick the default value.
   904   }
   906   // glibc guard page
   907   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   909   ThreadState state;
   911   {
   912     // Serialize thread creation if we are running with fixed stack LinuxThreads
   913     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   914     if (lock) {
   915       os::Linux::createThread_lock()->lock_without_safepoint_check();
   916     }
   918     pthread_t tid;
   919     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   921     pthread_attr_destroy(&attr);
   923     if (ret != 0) {
   924       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   925         perror("pthread_create()");
   926       }
   927       // Need to clean up stuff we've allocated so far
   928       thread->set_osthread(NULL);
   929       delete osthread;
   930       if (lock) os::Linux::createThread_lock()->unlock();
   931       return false;
   932     }
   934     // Store pthread info into the OSThread
   935     osthread->set_pthread_id(tid);
   937     // Wait until child thread is either initialized or aborted
   938     {
   939       Monitor* sync_with_child = osthread->startThread_lock();
   940       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   941       while ((state = osthread->get_state()) == ALLOCATED) {
   942         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   943       }
   944     }
   946     if (lock) {
   947       os::Linux::createThread_lock()->unlock();
   948     }
   949   }
   951   // Aborted due to thread limit being reached
   952   if (state == ZOMBIE) {
   953       thread->set_osthread(NULL);
   954       delete osthread;
   955       return false;
   956   }
   958   // The thread is returned suspended (in state INITIALIZED),
   959   // and is started higher up in the call chain
   960   assert(state == INITIALIZED, "race condition");
   961   return true;
   962 }
   964 /////////////////////////////////////////////////////////////////////////////
   965 // attach existing thread
   967 // bootstrap the main thread
   968 bool os::create_main_thread(JavaThread* thread) {
   969   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   970   return create_attached_thread(thread);
   971 }
   973 bool os::create_attached_thread(JavaThread* thread) {
   974 #ifdef ASSERT
   975     thread->verify_not_published();
   976 #endif
   978   // Allocate the OSThread object
   979   OSThread* osthread = new OSThread(NULL, NULL);
   981   if (osthread == NULL) {
   982     return false;
   983   }
   985   // Store pthread info into the OSThread
   986   osthread->set_thread_id(os::Linux::gettid());
   987   osthread->set_pthread_id(::pthread_self());
   989   // initialize floating point control register
   990   os::Linux::init_thread_fpu_state();
   992   // Initial thread state is RUNNABLE
   993   osthread->set_state(RUNNABLE);
   995   thread->set_osthread(osthread);
   997   if (UseNUMA) {
   998     int lgrp_id = os::numa_get_group_id();
   999     if (lgrp_id != -1) {
  1000       thread->set_lgrp_id(lgrp_id);
  1004   if (os::is_primordial_thread()) {
  1005     // If current thread is primordial thread, its stack is mapped on demand,
  1006     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1007     // the entire stack region to avoid SEGV in stack banging.
  1008     // It is also useful to get around the heap-stack-gap problem on SuSE
  1009     // kernel (see 4821821 for details). We first expand stack to the top
  1010     // of yellow zone, then enable stack yellow zone (order is significant,
  1011     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1012     // is no gap between the last two virtual memory regions.
  1014     JavaThread *jt = (JavaThread *)thread;
  1015     address addr = jt->stack_yellow_zone_base();
  1016     assert(addr != NULL, "initialization problem?");
  1017     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1019     osthread->set_expanding_stack();
  1020     os::Linux::manually_expand_stack(jt, addr);
  1021     osthread->clear_expanding_stack();
  1024   // initialize signal mask for this thread
  1025   // and save the caller's signal mask
  1026   os::Linux::hotspot_sigmask(thread);
  1028   return true;
  1031 void os::pd_start_thread(Thread* thread) {
  1032   OSThread * osthread = thread->osthread();
  1033   assert(osthread->get_state() != INITIALIZED, "just checking");
  1034   Monitor* sync_with_child = osthread->startThread_lock();
  1035   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1036   sync_with_child->notify();
  1038 #if defined MIPS && !defined ZERO
  1039   //To be accessed in NativeGeneralJump::patch_verified_entry()
  1040   if (thread->is_Java_thread())
  1042     ((JavaThread*)thread)->set_handle_wrong_method_stub(SharedRuntime::get_handle_wrong_method_stub());
  1044 #endif
  1047 // Free Linux resources related to the OSThread
  1048 void os::free_thread(OSThread* osthread) {
  1049   assert(osthread != NULL, "osthread not set");
  1051   if (Thread::current()->osthread() == osthread) {
  1052     // Restore caller's signal mask
  1053     sigset_t sigmask = osthread->caller_sigmask();
  1054     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1057   delete osthread;
  1060 //////////////////////////////////////////////////////////////////////////////
  1061 // thread local storage
  1063 // Restore the thread pointer if the destructor is called. This is in case
  1064 // someone from JNI code sets up a destructor with pthread_key_create to run
  1065 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1066 // will hang or crash. When detachCurrentThread is called the key will be set
  1067 // to null and we will not be called again. If detachCurrentThread is never
  1068 // called we could loop forever depending on the pthread implementation.
  1069 static void restore_thread_pointer(void* p) {
  1070   Thread* thread = (Thread*) p;
  1071   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1074 int os::allocate_thread_local_storage() {
  1075   pthread_key_t key;
  1076   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1077   assert(rslt == 0, "cannot allocate thread local storage");
  1078   return (int)key;
  1081 // Note: This is currently not used by VM, as we don't destroy TLS key
  1082 // on VM exit.
  1083 void os::free_thread_local_storage(int index) {
  1084   int rslt = pthread_key_delete((pthread_key_t)index);
  1085   assert(rslt == 0, "invalid index");
  1088 void os::thread_local_storage_at_put(int index, void* value) {
  1089   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1090   assert(rslt == 0, "pthread_setspecific failed");
  1093 extern "C" Thread* get_thread() {
  1094   return ThreadLocalStorage::thread();
  1097 //////////////////////////////////////////////////////////////////////////////
  1098 // primordial thread
  1100 // Check if current thread is the primordial thread, similar to Solaris thr_main.
  1101 bool os::is_primordial_thread(void) {
  1102   char dummy;
  1103   // If called before init complete, thread stack bottom will be null.
  1104   // Can be called if fatal error occurs before initialization.
  1105   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
  1106   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
  1107          os::Linux::initial_thread_stack_size()   != 0,
  1108          "os::init did not locate primordial thread's stack region");
  1109   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
  1110       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
  1111                         os::Linux::initial_thread_stack_size()) {
  1112        return true;
  1113   } else {
  1114        return false;
  1118 // Find the virtual memory area that contains addr
  1119 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1120   FILE *fp = fopen("/proc/self/maps", "r");
  1121   if (fp) {
  1122     address low, high;
  1123     while (!feof(fp)) {
  1124       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1125         if (low <= addr && addr < high) {
  1126            if (vma_low)  *vma_low  = low;
  1127            if (vma_high) *vma_high = high;
  1128            fclose (fp);
  1129            return true;
  1132       for (;;) {
  1133         int ch = fgetc(fp);
  1134         if (ch == EOF || ch == (int)'\n') break;
  1137     fclose(fp);
  1139   return false;
  1142 // Locate primordial thread stack. This special handling of primordial thread stack
  1143 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1144 // bogus value for the primordial process thread. While the launcher has created
  1145 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1146 // JNI invocation API from a primordial thread.
  1147 void os::Linux::capture_initial_stack(size_t max_size) {
  1149   // max_size is either 0 (which means accept OS default for thread stacks) or
  1150   // a user-specified value known to be at least the minimum needed. If we
  1151   // are actually on the primordial thread we can make it appear that we have a
  1152   // smaller max_size stack by inserting the guard pages at that location. But we
  1153   // cannot do anything to emulate a larger stack than what has been provided by
  1154   // the OS or threading library. In fact if we try to use a stack greater than
  1155   // what is set by rlimit then we will crash the hosting process.
  1157   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1158   // If this is "unlimited" then it will be a huge value.
  1159   struct rlimit rlim;
  1160   getrlimit(RLIMIT_STACK, &rlim);
  1161   size_t stack_size = rlim.rlim_cur;
  1163   // 6308388: a bug in ld.so will relocate its own .data section to the
  1164   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1165   //   so we won't install guard page on ld.so's data section.
  1166   //   But ensure we don't underflow the stack size - allow 1 page spare
  1167   if (stack_size >= (size_t)(3 * page_size())) {
  1168     stack_size -= 2 * page_size();
  1171   // Try to figure out where the stack base (top) is. This is harder.
  1172   //
  1173   // When an application is started, glibc saves the initial stack pointer in
  1174   // a global variable "__libc_stack_end", which is then used by system
  1175   // libraries. __libc_stack_end should be pretty close to stack top. The
  1176   // variable is available since the very early days. However, because it is
  1177   // a private interface, it could disappear in the future.
  1178   //
  1179   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1180   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1181   // stack top. Note that /proc may not exist if VM is running as a chroot
  1182   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1183   // /proc/<pid>/stat could change in the future (though unlikely).
  1184   //
  1185   // We try __libc_stack_end first. If that doesn't work, look for
  1186   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1187   // as a hint, which should work well in most cases.
  1189   uintptr_t stack_start;
  1191   // try __libc_stack_end first
  1192   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1193   if (p && *p) {
  1194     stack_start = *p;
  1195   } else {
  1196     // see if we can get the start_stack field from /proc/self/stat
  1197     FILE *fp;
  1198     int pid;
  1199     char state;
  1200     int ppid;
  1201     int pgrp;
  1202     int session;
  1203     int nr;
  1204     int tpgrp;
  1205     unsigned long flags;
  1206     unsigned long minflt;
  1207     unsigned long cminflt;
  1208     unsigned long majflt;
  1209     unsigned long cmajflt;
  1210     unsigned long utime;
  1211     unsigned long stime;
  1212     long cutime;
  1213     long cstime;
  1214     long prio;
  1215     long nice;
  1216     long junk;
  1217     long it_real;
  1218     uintptr_t start;
  1219     uintptr_t vsize;
  1220     intptr_t rss;
  1221     uintptr_t rsslim;
  1222     uintptr_t scodes;
  1223     uintptr_t ecode;
  1224     int i;
  1226     // Figure what the primordial thread stack base is. Code is inspired
  1227     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1228     // followed by command name surrounded by parentheses, state, etc.
  1229     char stat[2048];
  1230     int statlen;
  1232     fp = fopen("/proc/self/stat", "r");
  1233     if (fp) {
  1234       statlen = fread(stat, 1, 2047, fp);
  1235       stat[statlen] = '\0';
  1236       fclose(fp);
  1238       // Skip pid and the command string. Note that we could be dealing with
  1239       // weird command names, e.g. user could decide to rename java launcher
  1240       // to "java 1.4.2 :)", then the stat file would look like
  1241       //                1234 (java 1.4.2 :)) R ... ...
  1242       // We don't really need to know the command string, just find the last
  1243       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1244       char * s = strrchr(stat, ')');
  1246       i = 0;
  1247       if (s) {
  1248         // Skip blank chars
  1249         do s++; while (isspace(*s));
  1251 #define _UFM UINTX_FORMAT
  1252 #define _DFM INTX_FORMAT
  1254         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1255         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1256         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1257              &state,          /* 3  %c  */
  1258              &ppid,           /* 4  %d  */
  1259              &pgrp,           /* 5  %d  */
  1260              &session,        /* 6  %d  */
  1261              &nr,             /* 7  %d  */
  1262              &tpgrp,          /* 8  %d  */
  1263              &flags,          /* 9  %lu  */
  1264              &minflt,         /* 10 %lu  */
  1265              &cminflt,        /* 11 %lu  */
  1266              &majflt,         /* 12 %lu  */
  1267              &cmajflt,        /* 13 %lu  */
  1268              &utime,          /* 14 %lu  */
  1269              &stime,          /* 15 %lu  */
  1270              &cutime,         /* 16 %ld  */
  1271              &cstime,         /* 17 %ld  */
  1272              &prio,           /* 18 %ld  */
  1273              &nice,           /* 19 %ld  */
  1274              &junk,           /* 20 %ld  */
  1275              &it_real,        /* 21 %ld  */
  1276              &start,          /* 22 UINTX_FORMAT */
  1277              &vsize,          /* 23 UINTX_FORMAT */
  1278              &rss,            /* 24 INTX_FORMAT  */
  1279              &rsslim,         /* 25 UINTX_FORMAT */
  1280              &scodes,         /* 26 UINTX_FORMAT */
  1281              &ecode,          /* 27 UINTX_FORMAT */
  1282              &stack_start);   /* 28 UINTX_FORMAT */
  1285 #undef _UFM
  1286 #undef _DFM
  1288       if (i != 28 - 2) {
  1289          assert(false, "Bad conversion from /proc/self/stat");
  1290          // product mode - assume we are the primordial thread, good luck in the
  1291          // embedded case.
  1292          warning("Can't detect primordial thread stack location - bad conversion");
  1293          stack_start = (uintptr_t) &rlim;
  1295     } else {
  1296       // For some reason we can't open /proc/self/stat (for example, running on
  1297       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1298       // most cases, so don't abort:
  1299       warning("Can't detect primordial thread stack location - no /proc/self/stat");
  1300       stack_start = (uintptr_t) &rlim;
  1304   // Now we have a pointer (stack_start) very close to the stack top, the
  1305   // next thing to do is to figure out the exact location of stack top. We
  1306   // can find out the virtual memory area that contains stack_start by
  1307   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1308   // and its upper limit is the real stack top. (again, this would fail if
  1309   // running inside chroot, because /proc may not exist.)
  1311   uintptr_t stack_top;
  1312   address low, high;
  1313   if (find_vma((address)stack_start, &low, &high)) {
  1314     // success, "high" is the true stack top. (ignore "low", because initial
  1315     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1316     stack_top = (uintptr_t)high;
  1317   } else {
  1318     // failed, likely because /proc/self/maps does not exist
  1319     warning("Can't detect primordial thread stack location - find_vma failed");
  1320     // best effort: stack_start is normally within a few pages below the real
  1321     // stack top, use it as stack top, and reduce stack size so we won't put
  1322     // guard page outside stack.
  1323     stack_top = stack_start;
  1324     stack_size -= 16 * page_size();
  1327   // stack_top could be partially down the page so align it
  1328   stack_top = align_size_up(stack_top, page_size());
  1330   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1331   if (max_size > 0) {
  1332     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1333   } else {
  1334     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1335     // clamp it at 8MB as we do on Solaris
  1336     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1339   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1340   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1341   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1344 ////////////////////////////////////////////////////////////////////////////////
  1345 // time support
  1347 // Time since start-up in seconds to a fine granularity.
  1348 // Used by VMSelfDestructTimer and the MemProfiler.
  1349 double os::elapsedTime() {
  1351   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1354 jlong os::elapsed_counter() {
  1355   return javaTimeNanos() - initial_time_count;
  1358 jlong os::elapsed_frequency() {
  1359   return NANOSECS_PER_SEC; // nanosecond resolution
  1362 bool os::supports_vtime() { return true; }
  1363 bool os::enable_vtime()   { return false; }
  1364 bool os::vtime_enabled()  { return false; }
  1366 double os::elapsedVTime() {
  1367   struct rusage usage;
  1368   int retval = getrusage(RUSAGE_THREAD, &usage);
  1369   if (retval == 0) {
  1370     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1371   } else {
  1372     // better than nothing, but not much
  1373     return elapsedTime();
  1377 jlong os::javaTimeMillis() {
  1378   timeval time;
  1379   int status = gettimeofday(&time, NULL);
  1380   assert(status != -1, "linux error");
  1381   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1384 #ifndef CLOCK_MONOTONIC
  1385 #define CLOCK_MONOTONIC (1)
  1386 #endif
  1388 void os::Linux::clock_init() {
  1389   // we do dlopen's in this particular order due to bug in linux
  1390   // dynamical loader (see 6348968) leading to crash on exit
  1391   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1392   if (handle == NULL) {
  1393     handle = dlopen("librt.so", RTLD_LAZY);
  1396   if (handle) {
  1397     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1398            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1399     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1400            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1401     if (clock_getres_func && clock_gettime_func) {
  1402       // See if monotonic clock is supported by the kernel. Note that some
  1403       // early implementations simply return kernel jiffies (updated every
  1404       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1405       // for nano time (though the monotonic property is still nice to have).
  1406       // It's fixed in newer kernels, however clock_getres() still returns
  1407       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1408       // resolution for now. Hopefully as people move to new kernels, this
  1409       // won't be a problem.
  1410       struct timespec res;
  1411       struct timespec tp;
  1412       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1413           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1414         // yes, monotonic clock is supported
  1415         _clock_gettime = clock_gettime_func;
  1416         return;
  1417       } else {
  1418         // close librt if there is no monotonic clock
  1419         dlclose(handle);
  1423   warning("No monotonic clock was available - timed services may " \
  1424           "be adversely affected if the time-of-day clock changes");
  1427 #ifndef SYS_clock_getres
  1429 #if defined(IA32) || defined(AMD64)
  1430 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1431 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1432 #else
  1433 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1434 #define sys_clock_getres(x,y)  -1
  1435 #endif
  1437 #else
  1438 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1439 #endif
  1441 void os::Linux::fast_thread_clock_init() {
  1442   if (!UseLinuxPosixThreadCPUClocks) {
  1443     return;
  1445   clockid_t clockid;
  1446   struct timespec tp;
  1447   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1448       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1450   // Switch to using fast clocks for thread cpu time if
  1451   // the sys_clock_getres() returns 0 error code.
  1452   // Note, that some kernels may support the current thread
  1453   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1454   // returned by the pthread_getcpuclockid().
  1455   // If the fast Posix clocks are supported then the sys_clock_getres()
  1456   // must return at least tp.tv_sec == 0 which means a resolution
  1457   // better than 1 sec. This is extra check for reliability.
  1459   if(pthread_getcpuclockid_func &&
  1460      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1461      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1463     _supports_fast_thread_cpu_time = true;
  1464     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1468 jlong os::javaTimeNanos() {
  1469   if (Linux::supports_monotonic_clock()) {
  1470     struct timespec tp;
  1471     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1472     assert(status == 0, "gettime error");
  1473     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1474     return result;
  1475   } else {
  1476     timeval time;
  1477     int status = gettimeofday(&time, NULL);
  1478     assert(status != -1, "linux error");
  1479     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1480     return 1000 * usecs;
  1484 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1485   if (Linux::supports_monotonic_clock()) {
  1486     info_ptr->max_value = ALL_64_BITS;
  1488     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1489     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1490     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1491   } else {
  1492     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1493     info_ptr->max_value = ALL_64_BITS;
  1495     // gettimeofday is a real time clock so it skips
  1496     info_ptr->may_skip_backward = true;
  1497     info_ptr->may_skip_forward = true;
  1500   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1503 // Return the real, user, and system times in seconds from an
  1504 // arbitrary fixed point in the past.
  1505 bool os::getTimesSecs(double* process_real_time,
  1506                       double* process_user_time,
  1507                       double* process_system_time) {
  1508   struct tms ticks;
  1509   clock_t real_ticks = times(&ticks);
  1511   if (real_ticks == (clock_t) (-1)) {
  1512     return false;
  1513   } else {
  1514     double ticks_per_second = (double) clock_tics_per_sec;
  1515     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1516     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1517     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1519     return true;
  1524 char * os::local_time_string(char *buf, size_t buflen) {
  1525   struct tm t;
  1526   time_t long_time;
  1527   time(&long_time);
  1528   localtime_r(&long_time, &t);
  1529   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1530                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1531                t.tm_hour, t.tm_min, t.tm_sec);
  1532   return buf;
  1535 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1536   return localtime_r(clock, res);
  1539 ////////////////////////////////////////////////////////////////////////////////
  1540 // runtime exit support
  1542 // Note: os::shutdown() might be called very early during initialization, or
  1543 // called from signal handler. Before adding something to os::shutdown(), make
  1544 // sure it is async-safe and can handle partially initialized VM.
  1545 void os::shutdown() {
  1547   // allow PerfMemory to attempt cleanup of any persistent resources
  1548   perfMemory_exit();
  1550   // needs to remove object in file system
  1551   AttachListener::abort();
  1553   // flush buffered output, finish log files
  1554   ostream_abort();
  1556   // Check for abort hook
  1557   abort_hook_t abort_hook = Arguments::abort_hook();
  1558   if (abort_hook != NULL) {
  1559     abort_hook();
  1564 // Note: os::abort() might be called very early during initialization, or
  1565 // called from signal handler. Before adding something to os::abort(), make
  1566 // sure it is async-safe and can handle partially initialized VM.
  1567 void os::abort(bool dump_core) {
  1568   os::shutdown();
  1569   if (dump_core) {
  1570 #ifndef PRODUCT
  1571     fdStream out(defaultStream::output_fd());
  1572     out.print_raw("Current thread is ");
  1573     char buf[16];
  1574     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1575     out.print_raw_cr(buf);
  1576     out.print_raw_cr("Dumping core ...");
  1577 #endif
  1578     ::abort(); // dump core
  1581   ::exit(1);
  1584 // Die immediately, no exit hook, no abort hook, no cleanup.
  1585 void os::die() {
  1586   // _exit() on LinuxThreads only kills current thread
  1587   ::abort();
  1591 // This method is a copy of JDK's sysGetLastErrorString
  1592 // from src/solaris/hpi/src/system_md.c
  1594 size_t os::lasterror(char *buf, size_t len) {
  1596   if (errno == 0)  return 0;
  1598   const char *s = ::strerror(errno);
  1599   size_t n = ::strlen(s);
  1600   if (n >= len) {
  1601     n = len - 1;
  1603   ::strncpy(buf, s, n);
  1604   buf[n] = '\0';
  1605   return n;
  1608 intx os::current_thread_id() { return (intx)pthread_self(); }
  1609 int os::current_process_id() {
  1611   // Under the old linux thread library, linux gives each thread
  1612   // its own process id. Because of this each thread will return
  1613   // a different pid if this method were to return the result
  1614   // of getpid(2). Linux provides no api that returns the pid
  1615   // of the launcher thread for the vm. This implementation
  1616   // returns a unique pid, the pid of the launcher thread
  1617   // that starts the vm 'process'.
  1619   // Under the NPTL, getpid() returns the same pid as the
  1620   // launcher thread rather than a unique pid per thread.
  1621   // Use gettid() if you want the old pre NPTL behaviour.
  1623   // if you are looking for the result of a call to getpid() that
  1624   // returns a unique pid for the calling thread, then look at the
  1625   // OSThread::thread_id() method in osThread_linux.hpp file
  1627   return (int)(_initial_pid ? _initial_pid : getpid());
  1630 // DLL functions
  1632 const char* os::dll_file_extension() { return ".so"; }
  1634 // This must be hard coded because it's the system's temporary
  1635 // directory not the java application's temp directory, ala java.io.tmpdir.
  1636 const char* os::get_temp_directory() { return "/tmp"; }
  1638 static bool file_exists(const char* filename) {
  1639   struct stat statbuf;
  1640   if (filename == NULL || strlen(filename) == 0) {
  1641     return false;
  1643   return os::stat(filename, &statbuf) == 0;
  1646 bool os::dll_build_name(char* buffer, size_t buflen,
  1647                         const char* pname, const char* fname) {
  1648   bool retval = false;
  1649   // Copied from libhpi
  1650   const size_t pnamelen = pname ? strlen(pname) : 0;
  1652   // Return error on buffer overflow.
  1653   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1654     return retval;
  1657   if (pnamelen == 0) {
  1658     snprintf(buffer, buflen, "lib%s.so", fname);
  1659     retval = true;
  1660   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1661     int n;
  1662     char** pelements = split_path(pname, &n);
  1663     if (pelements == NULL) {
  1664       return false;
  1666     for (int i = 0 ; i < n ; i++) {
  1667       // Really shouldn't be NULL, but check can't hurt
  1668       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1669         continue; // skip the empty path values
  1671       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1672       if (file_exists(buffer)) {
  1673         retval = true;
  1674         break;
  1677     // release the storage
  1678     for (int i = 0 ; i < n ; i++) {
  1679       if (pelements[i] != NULL) {
  1680         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1683     if (pelements != NULL) {
  1684       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1686   } else {
  1687     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1688     retval = true;
  1690   return retval;
  1693 // check if addr is inside libjvm.so
  1694 bool os::address_is_in_vm(address addr) {
  1695   static address libjvm_base_addr;
  1696   Dl_info dlinfo;
  1698   if (libjvm_base_addr == NULL) {
  1699     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1700       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1702     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1705   if (dladdr((void *)addr, &dlinfo) != 0) {
  1706     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1709   return false;
  1712 bool os::dll_address_to_function_name(address addr, char *buf,
  1713                                       int buflen, int *offset) {
  1714   // buf is not optional, but offset is optional
  1715   assert(buf != NULL, "sanity check");
  1717   Dl_info dlinfo;
  1719   if (dladdr((void*)addr, &dlinfo) != 0) {
  1720     // see if we have a matching symbol
  1721     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1722       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1723         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1725       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1726       return true;
  1728     // no matching symbol so try for just file info
  1729     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1730       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1731                           buf, buflen, offset, dlinfo.dli_fname)) {
  1732         return true;
  1737   buf[0] = '\0';
  1738   if (offset != NULL) *offset = -1;
  1739   return false;
  1742 struct _address_to_library_name {
  1743   address addr;          // input : memory address
  1744   size_t  buflen;        //         size of fname
  1745   char*   fname;         // output: library name
  1746   address base;          //         library base addr
  1747 };
  1749 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1750                                             size_t size, void *data) {
  1751   int i;
  1752   bool found = false;
  1753   address libbase = NULL;
  1754   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1756   // iterate through all loadable segments
  1757   for (i = 0; i < info->dlpi_phnum; i++) {
  1758     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1759     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1760       // base address of a library is the lowest address of its loaded
  1761       // segments.
  1762       if (libbase == NULL || libbase > segbase) {
  1763         libbase = segbase;
  1765       // see if 'addr' is within current segment
  1766       if (segbase <= d->addr &&
  1767           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1768         found = true;
  1773   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1774   // so dll_address_to_library_name() can fall through to use dladdr() which
  1775   // can figure out executable name from argv[0].
  1776   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1777     d->base = libbase;
  1778     if (d->fname) {
  1779       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1781     return 1;
  1783   return 0;
  1786 bool os::dll_address_to_library_name(address addr, char* buf,
  1787                                      int buflen, int* offset) {
  1788   // buf is not optional, but offset is optional
  1789   assert(buf != NULL, "sanity check");
  1791   Dl_info dlinfo;
  1792   struct _address_to_library_name data;
  1794   // There is a bug in old glibc dladdr() implementation that it could resolve
  1795   // to wrong library name if the .so file has a base address != NULL. Here
  1796   // we iterate through the program headers of all loaded libraries to find
  1797   // out which library 'addr' really belongs to. This workaround can be
  1798   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1799   data.addr = addr;
  1800   data.fname = buf;
  1801   data.buflen = buflen;
  1802   data.base = NULL;
  1803   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1805   if (rslt) {
  1806      // buf already contains library name
  1807      if (offset) *offset = addr - data.base;
  1808      return true;
  1810   if (dladdr((void*)addr, &dlinfo) != 0) {
  1811     if (dlinfo.dli_fname != NULL) {
  1812       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1814     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1815       *offset = addr - (address)dlinfo.dli_fbase;
  1817     return true;
  1820   buf[0] = '\0';
  1821   if (offset) *offset = -1;
  1822   return false;
  1825   // Loads .dll/.so and
  1826   // in case of error it checks if .dll/.so was built for the
  1827   // same architecture as Hotspot is running on
  1830 // Remember the stack's state. The Linux dynamic linker will change
  1831 // the stack to 'executable' at most once, so we must safepoint only once.
  1832 bool os::Linux::_stack_is_executable = false;
  1834 // VM operation that loads a library.  This is necessary if stack protection
  1835 // of the Java stacks can be lost during loading the library.  If we
  1836 // do not stop the Java threads, they can stack overflow before the stacks
  1837 // are protected again.
  1838 class VM_LinuxDllLoad: public VM_Operation {
  1839  private:
  1840   const char *_filename;
  1841   char *_ebuf;
  1842   int _ebuflen;
  1843   void *_lib;
  1844  public:
  1845   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1846     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1847   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1848   void doit() {
  1849     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1850     os::Linux::_stack_is_executable = true;
  1852   void* loaded_library() { return _lib; }
  1853 };
  1855 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1857   void * result = NULL;
  1858   bool load_attempted = false;
  1860   // Check whether the library to load might change execution rights
  1861   // of the stack. If they are changed, the protection of the stack
  1862   // guard pages will be lost. We need a safepoint to fix this.
  1863   //
  1864   // See Linux man page execstack(8) for more info.
  1865   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1866     ElfFile ef(filename);
  1867     if (!ef.specifies_noexecstack()) {
  1868       if (!is_init_completed()) {
  1869         os::Linux::_stack_is_executable = true;
  1870         // This is OK - No Java threads have been created yet, and hence no
  1871         // stack guard pages to fix.
  1872         //
  1873         // This should happen only when you are building JDK7 using a very
  1874         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1875         //
  1876         // Dynamic loader will make all stacks executable after
  1877         // this function returns, and will not do that again.
  1878         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1879       } else {
  1880         warning("You have loaded library %s which might have disabled stack guard. "
  1881                 "The VM will try to fix the stack guard now.\n"
  1882                 "It's highly recommended that you fix the library with "
  1883                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1884                 filename);
  1886         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1887         JavaThread *jt = JavaThread::current();
  1888         if (jt->thread_state() != _thread_in_native) {
  1889           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1890           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1891           warning("Unable to fix stack guard. Giving up.");
  1892         } else {
  1893           if (!LoadExecStackDllInVMThread) {
  1894             // This is for the case where the DLL has an static
  1895             // constructor function that executes JNI code. We cannot
  1896             // load such DLLs in the VMThread.
  1897             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1900           ThreadInVMfromNative tiv(jt);
  1901           debug_only(VMNativeEntryWrapper vew;)
  1903           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1904           VMThread::execute(&op);
  1905           if (LoadExecStackDllInVMThread) {
  1906             result = op.loaded_library();
  1908           load_attempted = true;
  1914   if (!load_attempted) {
  1915     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1918   if (result != NULL) {
  1919     // Successful loading
  1920     return result;
  1923   Elf32_Ehdr elf_head;
  1924   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1925   char* diag_msg_buf=ebuf+strlen(ebuf);
  1927   if (diag_msg_max_length==0) {
  1928     // No more space in ebuf for additional diagnostics message
  1929     return NULL;
  1933   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1935   if (file_descriptor < 0) {
  1936     // Can't open library, report dlerror() message
  1937     return NULL;
  1940   bool failed_to_read_elf_head=
  1941     (sizeof(elf_head)!=
  1942         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1944   ::close(file_descriptor);
  1945   if (failed_to_read_elf_head) {
  1946     // file i/o error - report dlerror() msg
  1947     return NULL;
  1950   typedef struct {
  1951     Elf32_Half  code;         // Actual value as defined in elf.h
  1952     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1953     char        elf_class;    // 32 or 64 bit
  1954     char        endianess;    // MSB or LSB
  1955     char*       name;         // String representation
  1956   } arch_t;
  1958   #ifndef EM_486
  1959   #define EM_486          6               /* Intel 80486 */
  1960   #endif
  1962   static const arch_t arch_array[]={
  1963     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1964     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1965     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1966     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1967     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1968     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1969     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1970     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1971 #if defined(VM_LITTLE_ENDIAN)
  1972     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
  1973 #else
  1974     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1975 #endif
  1976     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1977     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1978     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1979     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1980     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1981     {EM_MIPS,        EM_MIPS,    ELFCLASS64, ELFDATA2LSB, (char*)"MIPS64 LE"},
  1982     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1983     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1984   };
  1986   #if  (defined IA32)
  1987     static  Elf32_Half running_arch_code=EM_386;
  1988   #elif   (defined AMD64)
  1989     static  Elf32_Half running_arch_code=EM_X86_64;
  1990   #elif  (defined IA64)
  1991     static  Elf32_Half running_arch_code=EM_IA_64;
  1992   #elif  (defined __sparc) && (defined _LP64)
  1993     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1994   #elif  (defined __sparc) && (!defined _LP64)
  1995     static  Elf32_Half running_arch_code=EM_SPARC;
  1996   #elif  (defined MIPS64)
  1997     static  Elf32_Half running_arch_code=EM_MIPS;
  1998   #elif  (defined __powerpc64__)
  1999     static  Elf32_Half running_arch_code=EM_PPC64;
  2000   #elif  (defined __powerpc__)
  2001     static  Elf32_Half running_arch_code=EM_PPC;
  2002   #elif  (defined ARM)
  2003     static  Elf32_Half running_arch_code=EM_ARM;
  2004   #elif  (defined S390)
  2005     static  Elf32_Half running_arch_code=EM_S390;
  2006   #elif  (defined ALPHA)
  2007     static  Elf32_Half running_arch_code=EM_ALPHA;
  2008   #elif  (defined MIPSEL)
  2009     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  2010   #elif  (defined PARISC)
  2011     static  Elf32_Half running_arch_code=EM_PARISC;
  2012   #elif  (defined MIPS)
  2013     static  Elf32_Half running_arch_code=EM_MIPS;
  2014   #elif  (defined M68K)
  2015     static  Elf32_Half running_arch_code=EM_68K;
  2016   #else
  2017     #error Method os::dll_load requires that one of following is defined:\
  2018          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, __mips64, PARISC, M68K
  2019   #endif
  2021   // Identify compatability class for VM's architecture and library's architecture
  2022   // Obtain string descriptions for architectures
  2024   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2025   int running_arch_index=-1;
  2027   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2028     if (running_arch_code == arch_array[i].code) {
  2029       running_arch_index    = i;
  2031     if (lib_arch.code == arch_array[i].code) {
  2032       lib_arch.compat_class = arch_array[i].compat_class;
  2033       lib_arch.name         = arch_array[i].name;
  2037   assert(running_arch_index != -1,
  2038     "Didn't find running architecture code (running_arch_code) in arch_array");
  2039   if (running_arch_index == -1) {
  2040     // Even though running architecture detection failed
  2041     // we may still continue with reporting dlerror() message
  2042     return NULL;
  2045   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2046     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2047     return NULL;
  2050 #ifndef S390
  2051   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2052     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2053     return NULL;
  2055 #endif // !S390
  2057   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2058     if ( lib_arch.name!=NULL ) {
  2059       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2060         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2061         lib_arch.name, arch_array[running_arch_index].name);
  2062     } else {
  2063       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2064       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2065         lib_arch.code,
  2066         arch_array[running_arch_index].name);
  2070   return NULL;
  2073 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2074   void * result = ::dlopen(filename, RTLD_LAZY);
  2075   if (result == NULL) {
  2076     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2077     ebuf[ebuflen-1] = '\0';
  2079   return result;
  2082 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2083   void * result = NULL;
  2084   if (LoadExecStackDllInVMThread) {
  2085     result = dlopen_helper(filename, ebuf, ebuflen);
  2088   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2089   // library that requires an executable stack, or which does not have this
  2090   // stack attribute set, dlopen changes the stack attribute to executable. The
  2091   // read protection of the guard pages gets lost.
  2092   //
  2093   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2094   // may have been queued at the same time.
  2096   if (!_stack_is_executable) {
  2097     JavaThread *jt = Threads::first();
  2099     while (jt) {
  2100       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2101           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2102         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2103                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2104           warning("Attempt to reguard stack yellow zone failed.");
  2107       jt = jt->next();
  2111   return result;
  2114 /*
  2115  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2116  * chances are you might want to run the generated bits against glibc-2.0
  2117  * libdl.so, so always use locking for any version of glibc.
  2118  */
  2119 void* os::dll_lookup(void* handle, const char* name) {
  2120   pthread_mutex_lock(&dl_mutex);
  2121   void* res = dlsym(handle, name);
  2122   pthread_mutex_unlock(&dl_mutex);
  2123   return res;
  2126 void* os::get_default_process_handle() {
  2127   return (void*)::dlopen(NULL, RTLD_LAZY);
  2130 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2131   int fd = ::open(filename, O_RDONLY);
  2132   if (fd == -1) {
  2133      return false;
  2136   char buf[32];
  2137   int bytes;
  2138   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2139     st->print_raw(buf, bytes);
  2142   ::close(fd);
  2144   return true;
  2147 void os::print_dll_info(outputStream *st) {
  2148    st->print_cr("Dynamic libraries:");
  2150    char fname[32];
  2151    pid_t pid = os::Linux::gettid();
  2153    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2155    if (!_print_ascii_file(fname, st)) {
  2156      st->print("Can not get library information for pid = %d\n", pid);
  2160 void os::print_os_info_brief(outputStream* st) {
  2161   os::Linux::print_distro_info(st);
  2163   os::Posix::print_uname_info(st);
  2165   os::Linux::print_libversion_info(st);
  2169 void os::print_os_info(outputStream* st) {
  2170   st->print("OS:");
  2172   os::Linux::print_distro_info(st);
  2174   os::Posix::print_uname_info(st);
  2176   // Print warning if unsafe chroot environment detected
  2177   if (unsafe_chroot_detected) {
  2178     st->print("WARNING!! ");
  2179     st->print_cr("%s", unstable_chroot_error);
  2182   os::Linux::print_libversion_info(st);
  2184   os::Posix::print_rlimit_info(st);
  2186   os::Posix::print_load_average(st);
  2188   os::Linux::print_full_memory_info(st);
  2190   os::Linux::print_container_info(st);
  2193 // Try to identify popular distros.
  2194 // Most Linux distributions have a /etc/XXX-release file, which contains
  2195 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2196 // file that also contains the OS version string. Some have more than one
  2197 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2198 // /etc/redhat-release.), so the order is important.
  2199 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2200 // their own specific XXX-release file as well as a redhat-release file.
  2201 // Because of this the XXX-release file needs to be searched for before the
  2202 // redhat-release file.
  2203 // Since Red Hat has a lsb-release file that is not very descriptive the
  2204 // search for redhat-release needs to be before lsb-release.
  2205 // Since the lsb-release file is the new standard it needs to be searched
  2206 // before the older style release files.
  2207 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2208 // next to last resort.  The os-release file is a new standard that contains
  2209 // distribution information and the system-release file seems to be an old
  2210 // standard that has been replaced by the lsb-release and os-release files.
  2211 // Searching for the debian_version file is the last resort.  It contains
  2212 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2213 // "Debian " is printed before the contents of the debian_version file.
  2214 void os::Linux::print_distro_info(outputStream* st) {
  2215    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2216        !_print_ascii_file("/etc/mandriva-release", st) &&
  2217        !_print_ascii_file("/etc/mandrake-release", st) &&
  2218        !_print_ascii_file("/etc/sun-release", st) &&
  2219        !_print_ascii_file("/etc/redhat-release", st) &&
  2220        !_print_ascii_file("/etc/lsb-release", st) &&
  2221        !_print_ascii_file("/etc/SuSE-release", st) &&
  2222        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2223        !_print_ascii_file("/etc/gentoo-release", st) &&
  2224        !_print_ascii_file("/etc/ltib-release", st) &&
  2225        !_print_ascii_file("/etc/angstrom-version", st) &&
  2226        !_print_ascii_file("/etc/system-release", st) &&
  2227        !_print_ascii_file("/etc/os-release", st)) {
  2229        if (file_exists("/etc/debian_version")) {
  2230          st->print("Debian ");
  2231          _print_ascii_file("/etc/debian_version", st);
  2232        } else {
  2233          st->print("Linux");
  2236    st->cr();
  2239 void os::Linux::print_libversion_info(outputStream* st) {
  2240   // libc, pthread
  2241   st->print("libc:");
  2242   st->print("%s ", os::Linux::glibc_version());
  2243   st->print("%s ", os::Linux::libpthread_version());
  2244   if (os::Linux::is_LinuxThreads()) {
  2245      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2247   st->cr();
  2250 void os::Linux::print_full_memory_info(outputStream* st) {
  2251    st->print("\n/proc/meminfo:\n");
  2252    _print_ascii_file("/proc/meminfo", st);
  2253    st->cr();
  2256 void os::Linux::print_container_info(outputStream* st) {
  2257 if (!OSContainer::is_containerized()) {
  2258     return;
  2261   st->print("container (cgroup) information:\n");
  2263   const char *p_ct = OSContainer::container_type();
  2264   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
  2266   char *p = OSContainer::cpu_cpuset_cpus();
  2267   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
  2268   free(p);
  2270   p = OSContainer::cpu_cpuset_memory_nodes();
  2271   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
  2272   free(p);
  2274   int i = OSContainer::active_processor_count();
  2275   if (i > 0) {
  2276     st->print("active_processor_count: %d\n", i);
  2277   } else {
  2278     st->print("active_processor_count: failed\n");
  2281   i = OSContainer::cpu_quota();
  2282   st->print("cpu_quota: %d\n", i);
  2284   i = OSContainer::cpu_period();
  2285   st->print("cpu_period: %d\n", i);
  2287   i = OSContainer::cpu_shares();
  2288   st->print("cpu_shares: %d\n", i);
  2290   jlong j = OSContainer::memory_limit_in_bytes();
  2291   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2293   j = OSContainer::memory_and_swap_limit_in_bytes();
  2294   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2296   j = OSContainer::memory_soft_limit_in_bytes();
  2297   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2299   j = OSContainer::OSContainer::memory_usage_in_bytes();
  2300   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2302   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
  2303   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2304   st->cr();
  2307 void os::print_memory_info(outputStream* st) {
  2309   st->print("Memory:");
  2310   st->print(" %dk page", os::vm_page_size()>>10);
  2312   // values in struct sysinfo are "unsigned long"
  2313   struct sysinfo si;
  2314   sysinfo(&si);
  2316   st->print(", physical " UINT64_FORMAT "k",
  2317             os::physical_memory() >> 10);
  2318   st->print("(" UINT64_FORMAT "k free)",
  2319             os::available_memory() >> 10);
  2320   st->print(", swap " UINT64_FORMAT "k",
  2321             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2322   st->print("(" UINT64_FORMAT "k free)",
  2323             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2324   st->cr();
  2327 void os::pd_print_cpu_info(outputStream* st) {
  2328   st->print("\n/proc/cpuinfo:\n");
  2329   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2330     st->print("  <Not Available>");
  2332   st->cr();
  2335 void os::print_siginfo(outputStream* st, void* siginfo) {
  2336   const siginfo_t* si = (const siginfo_t*)siginfo;
  2338   os::Posix::print_siginfo_brief(st, si);
  2339 #if INCLUDE_CDS
  2340   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2341       UseSharedSpaces) {
  2342     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2343     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2344       st->print("\n\nError accessing class data sharing archive."   \
  2345                 " Mapped file inaccessible during execution, "      \
  2346                 " possible disk/network problem.");
  2349 #endif
  2350   st->cr();
  2354 static void print_signal_handler(outputStream* st, int sig,
  2355                                  char* buf, size_t buflen);
  2357 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2358   st->print_cr("Signal Handlers:");
  2359   print_signal_handler(st, SIGSEGV, buf, buflen);
  2360   print_signal_handler(st, SIGBUS , buf, buflen);
  2361   print_signal_handler(st, SIGFPE , buf, buflen);
  2362   print_signal_handler(st, SIGPIPE, buf, buflen);
  2363   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2364   print_signal_handler(st, SIGILL , buf, buflen);
  2365   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2366   print_signal_handler(st, SR_signum, buf, buflen);
  2367   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2368   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2369   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2370   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2371 #if defined(PPC64)
  2372   print_signal_handler(st, SIGTRAP, buf, buflen);
  2373 #endif
  2376 static char saved_jvm_path[MAXPATHLEN] = {0};
  2378 // Find the full path to the current module, libjvm.so
  2379 void os::jvm_path(char *buf, jint buflen) {
  2380   // Error checking.
  2381   if (buflen < MAXPATHLEN) {
  2382     assert(false, "must use a large-enough buffer");
  2383     buf[0] = '\0';
  2384     return;
  2386   // Lazy resolve the path to current module.
  2387   if (saved_jvm_path[0] != 0) {
  2388     strcpy(buf, saved_jvm_path);
  2389     return;
  2392   char dli_fname[MAXPATHLEN];
  2393   bool ret = dll_address_to_library_name(
  2394                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2395                 dli_fname, sizeof(dli_fname), NULL);
  2396   assert(ret, "cannot locate libjvm");
  2397   char *rp = NULL;
  2398   if (ret && dli_fname[0] != '\0') {
  2399     rp = realpath(dli_fname, buf);
  2401   if (rp == NULL)
  2402     return;
  2404   if (Arguments::created_by_gamma_launcher()) {
  2405     // Support for the gamma launcher.  Typical value for buf is
  2406     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2407     // the right place in the string, then assume we are installed in a JDK and
  2408     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2409     // up the path so it looks like libjvm.so is installed there (append a
  2410     // fake suffix hotspot/libjvm.so).
  2411     const char *p = buf + strlen(buf) - 1;
  2412     for (int count = 0; p > buf && count < 5; ++count) {
  2413       for (--p; p > buf && *p != '/'; --p)
  2414         /* empty */ ;
  2417     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2418       // Look for JAVA_HOME in the environment.
  2419       char* java_home_var = ::getenv("JAVA_HOME");
  2420       if (java_home_var != NULL && java_home_var[0] != 0) {
  2421         char* jrelib_p;
  2422         int len;
  2424         // Check the current module name "libjvm.so".
  2425         p = strrchr(buf, '/');
  2426         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2428         rp = realpath(java_home_var, buf);
  2429         if (rp == NULL)
  2430           return;
  2432         // determine if this is a legacy image or modules image
  2433         // modules image doesn't have "jre" subdirectory
  2434         len = strlen(buf);
  2435         assert(len < buflen, "Ran out of buffer room");
  2436         jrelib_p = buf + len;
  2437         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2438         if (0 != access(buf, F_OK)) {
  2439           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2442         if (0 == access(buf, F_OK)) {
  2443           // Use current module name "libjvm.so"
  2444           len = strlen(buf);
  2445           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2446         } else {
  2447           // Go back to path of .so
  2448           rp = realpath(dli_fname, buf);
  2449           if (rp == NULL)
  2450             return;
  2456   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2459 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2460   // no prefix required, not even "_"
  2463 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2464   // no suffix required
  2467 ////////////////////////////////////////////////////////////////////////////////
  2468 // sun.misc.Signal support
  2470 static volatile jint sigint_count = 0;
  2472 static void
  2473 UserHandler(int sig, void *siginfo, void *context) {
  2474   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2475   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2476   // don't want to flood the manager thread with sem_post requests.
  2477   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2478       return;
  2480   // Ctrl-C is pressed during error reporting, likely because the error
  2481   // handler fails to abort. Let VM die immediately.
  2482   if (sig == SIGINT && is_error_reported()) {
  2483      os::die();
  2486   os::signal_notify(sig);
  2489 void* os::user_handler() {
  2490   return CAST_FROM_FN_PTR(void*, UserHandler);
  2493 class Semaphore : public StackObj {
  2494   public:
  2495     Semaphore();
  2496     ~Semaphore();
  2497     void signal();
  2498     void wait();
  2499     bool trywait();
  2500     bool timedwait(unsigned int sec, int nsec);
  2501   private:
  2502     sem_t _semaphore;
  2503 };
  2505 Semaphore::Semaphore() {
  2506   sem_init(&_semaphore, 0, 0);
  2509 Semaphore::~Semaphore() {
  2510   sem_destroy(&_semaphore);
  2513 void Semaphore::signal() {
  2514   sem_post(&_semaphore);
  2517 void Semaphore::wait() {
  2518   sem_wait(&_semaphore);
  2521 bool Semaphore::trywait() {
  2522   return sem_trywait(&_semaphore) == 0;
  2525 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2527   struct timespec ts;
  2528   // Semaphore's are always associated with CLOCK_REALTIME
  2529   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2530   // see unpackTime for discussion on overflow checking
  2531   if (sec >= MAX_SECS) {
  2532     ts.tv_sec += MAX_SECS;
  2533     ts.tv_nsec = 0;
  2534   } else {
  2535     ts.tv_sec += sec;
  2536     ts.tv_nsec += nsec;
  2537     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2538       ts.tv_nsec -= NANOSECS_PER_SEC;
  2539       ++ts.tv_sec; // note: this must be <= max_secs
  2543   while (1) {
  2544     int result = sem_timedwait(&_semaphore, &ts);
  2545     if (result == 0) {
  2546       return true;
  2547     } else if (errno == EINTR) {
  2548       continue;
  2549     } else if (errno == ETIMEDOUT) {
  2550       return false;
  2551     } else {
  2552       return false;
  2557 extern "C" {
  2558   typedef void (*sa_handler_t)(int);
  2559   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2562 void* os::signal(int signal_number, void* handler) {
  2563   struct sigaction sigAct, oldSigAct;
  2565   sigfillset(&(sigAct.sa_mask));
  2566   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2567   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2569   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2570     // -1 means registration failed
  2571     return (void *)-1;
  2574   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2577 void os::signal_raise(int signal_number) {
  2578   ::raise(signal_number);
  2581 /*
  2582  * The following code is moved from os.cpp for making this
  2583  * code platform specific, which it is by its very nature.
  2584  */
  2586 // Will be modified when max signal is changed to be dynamic
  2587 int os::sigexitnum_pd() {
  2588   return NSIG;
  2591 // a counter for each possible signal value
  2592 static volatile jint pending_signals[NSIG+1] = { 0 };
  2594 // Linux(POSIX) specific hand shaking semaphore.
  2595 static sem_t sig_sem;
  2596 static Semaphore sr_semaphore;
  2598 void os::signal_init_pd() {
  2599   // Initialize signal structures
  2600   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2602   // Initialize signal semaphore
  2603   ::sem_init(&sig_sem, 0, 0);
  2606 void os::signal_notify(int sig) {
  2607   Atomic::inc(&pending_signals[sig]);
  2608   ::sem_post(&sig_sem);
  2611 static int check_pending_signals(bool wait) {
  2612   Atomic::store(0, &sigint_count);
  2613   for (;;) {
  2614     for (int i = 0; i < NSIG + 1; i++) {
  2615       jint n = pending_signals[i];
  2616       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2617         return i;
  2620     if (!wait) {
  2621       return -1;
  2623     JavaThread *thread = JavaThread::current();
  2624     ThreadBlockInVM tbivm(thread);
  2626     bool threadIsSuspended;
  2627     do {
  2628       thread->set_suspend_equivalent();
  2629       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2630       ::sem_wait(&sig_sem);
  2632       // were we externally suspended while we were waiting?
  2633       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2634       if (threadIsSuspended) {
  2635         //
  2636         // The semaphore has been incremented, but while we were waiting
  2637         // another thread suspended us. We don't want to continue running
  2638         // while suspended because that would surprise the thread that
  2639         // suspended us.
  2640         //
  2641         ::sem_post(&sig_sem);
  2643         thread->java_suspend_self();
  2645     } while (threadIsSuspended);
  2649 int os::signal_lookup() {
  2650   return check_pending_signals(false);
  2653 int os::signal_wait() {
  2654   return check_pending_signals(true);
  2657 ////////////////////////////////////////////////////////////////////////////////
  2658 // Virtual Memory
  2660 int os::vm_page_size() {
  2661   // Seems redundant as all get out
  2662   assert(os::Linux::page_size() != -1, "must call os::init");
  2663   return os::Linux::page_size();
  2666 // Solaris allocates memory by pages.
  2667 int os::vm_allocation_granularity() {
  2668   assert(os::Linux::page_size() != -1, "must call os::init");
  2669   return os::Linux::page_size();
  2672 // Rationale behind this function:
  2673 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2674 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2675 //  samples for JITted code. Here we create private executable mapping over the code cache
  2676 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2677 //  info for the reporting script by storing timestamp and location of symbol
  2678 void linux_wrap_code(char* base, size_t size) {
  2679   static volatile jint cnt = 0;
  2681   if (!UseOprofile) {
  2682     return;
  2685   char buf[PATH_MAX+1];
  2686   int num = Atomic::add(1, &cnt);
  2688   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2689            os::get_temp_directory(), os::current_process_id(), num);
  2690   unlink(buf);
  2692   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2694   if (fd != -1) {
  2695     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2696     if (rv != (off_t)-1) {
  2697       if (::write(fd, "", 1) == 1) {
  2698         mmap(base, size,
  2699              PROT_READ|PROT_WRITE|PROT_EXEC,
  2700              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2703     ::close(fd);
  2704     unlink(buf);
  2708 static bool recoverable_mmap_error(int err) {
  2709   // See if the error is one we can let the caller handle. This
  2710   // list of errno values comes from JBS-6843484. I can't find a
  2711   // Linux man page that documents this specific set of errno
  2712   // values so while this list currently matches Solaris, it may
  2713   // change as we gain experience with this failure mode.
  2714   switch (err) {
  2715   case EBADF:
  2716   case EINVAL:
  2717   case ENOTSUP:
  2718     // let the caller deal with these errors
  2719     return true;
  2721   default:
  2722     // Any remaining errors on this OS can cause our reserved mapping
  2723     // to be lost. That can cause confusion where different data
  2724     // structures think they have the same memory mapped. The worst
  2725     // scenario is if both the VM and a library think they have the
  2726     // same memory mapped.
  2727     return false;
  2731 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2732                                     int err) {
  2733   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2734           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2735           strerror(err), err);
  2738 static void warn_fail_commit_memory(char* addr, size_t size,
  2739                                     size_t alignment_hint, bool exec,
  2740                                     int err) {
  2741   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2742           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2743           alignment_hint, exec, strerror(err), err);
  2746 // NOTE: Linux kernel does not really reserve the pages for us.
  2747 //       All it does is to check if there are enough free pages
  2748 //       left at the time of mmap(). This could be a potential
  2749 //       problem.
  2750 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2751   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2752   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2753                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2754   if (res != (uintptr_t) MAP_FAILED) {
  2755     if (UseNUMAInterleaving) {
  2756       numa_make_global(addr, size);
  2758     return 0;
  2761   int err = errno;  // save errno from mmap() call above
  2763   if (!recoverable_mmap_error(err)) {
  2764     warn_fail_commit_memory(addr, size, exec, err);
  2765     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2768   return err;
  2771 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2772   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2775 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2776                                   const char* mesg) {
  2777   assert(mesg != NULL, "mesg must be specified");
  2778   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2779   if (err != 0) {
  2780     // the caller wants all commit errors to exit with the specified mesg:
  2781     warn_fail_commit_memory(addr, size, exec, err);
  2782     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2786 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2787 #ifndef MAP_HUGETLB
  2788 #define MAP_HUGETLB 0x40000
  2789 #endif
  2791 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2792 #ifndef MADV_HUGEPAGE
  2793 #define MADV_HUGEPAGE 14
  2794 #endif
  2796 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2797                                   size_t alignment_hint, bool exec) {
  2798   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2799   if (err == 0) {
  2800     realign_memory(addr, size, alignment_hint);
  2802   return err;
  2805 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2806                           bool exec) {
  2807   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2810 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2811                                   size_t alignment_hint, bool exec,
  2812                                   const char* mesg) {
  2813   assert(mesg != NULL, "mesg must be specified");
  2814   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2815   if (err != 0) {
  2816     // the caller wants all commit errors to exit with the specified mesg:
  2817     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2818     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2822 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2823   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2824     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2825     // be supported or the memory may already be backed by huge pages.
  2826     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2830 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2831   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2832   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2833   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2834   // small pages on top of the SHM segment. This method always works for small pages, so we
  2835   // allow that in any case.
  2836   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2837     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2841 void os::numa_make_global(char *addr, size_t bytes) {
  2842   Linux::numa_interleave_memory(addr, bytes);
  2845 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2846 // bind policy to MPOL_PREFERRED for the current thread.
  2847 #define USE_MPOL_PREFERRED 0
  2849 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2850   // To make NUMA and large pages more robust when both enabled, we need to ease
  2851   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2852   // default policy and it will force memory to be allocated on the specified
  2853   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2854   // the specified node, but will not force it. Using this policy will prevent
  2855   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2856   // free large pages.
  2857   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2858   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2861 bool os::numa_topology_changed()   { return false; }
  2863 size_t os::numa_get_groups_num() {
  2864   // Return just the number of nodes in which it's possible to allocate memory
  2865   // (in numa terminology, configured nodes).
  2866   return Linux::numa_num_configured_nodes();
  2869 int os::numa_get_group_id() {
  2870   int cpu_id = Linux::sched_getcpu();
  2871   if (cpu_id != -1) {
  2872     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2873     if (lgrp_id != -1) {
  2874       return lgrp_id;
  2877   return 0;
  2880 int os::Linux::get_existing_num_nodes() {
  2881   size_t node;
  2882   size_t highest_node_number = Linux::numa_max_node();
  2883   int num_nodes = 0;
  2885   // Get the total number of nodes in the system including nodes without memory.
  2886   for (node = 0; node <= highest_node_number; node++) {
  2887     if (isnode_in_existing_nodes(node)) {
  2888       num_nodes++;
  2891   return num_nodes;
  2894 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2895   size_t highest_node_number = Linux::numa_max_node();
  2896   size_t i = 0;
  2898   // Map all node ids in which is possible to allocate memory. Also nodes are
  2899   // not always consecutively available, i.e. available from 0 to the highest
  2900   // node number.
  2901   for (size_t node = 0; node <= highest_node_number; node++) {
  2902     if (Linux::isnode_in_configured_nodes(node)) {
  2903       ids[i++] = node;
  2906   return i;
  2909 bool os::get_page_info(char *start, page_info* info) {
  2910   return false;
  2913 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2914   return end;
  2918 int os::Linux::sched_getcpu_syscall(void) {
  2919   unsigned int cpu = 0;
  2920   int retval = -1;
  2922 #if defined(IA32)
  2923 # ifndef SYS_getcpu
  2924 # define SYS_getcpu 318
  2925 # endif
  2926   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2927 #elif defined(AMD64)
  2928 // Unfortunately we have to bring all these macros here from vsyscall.h
  2929 // to be able to compile on old linuxes.
  2930 # define __NR_vgetcpu 2
  2931 # define VSYSCALL_START (-10UL << 20)
  2932 # define VSYSCALL_SIZE 1024
  2933 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2934   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2935   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2936   retval = vgetcpu(&cpu, NULL, NULL);
  2937 #endif
  2939   return (retval == -1) ? retval : cpu;
  2942 // Something to do with the numa-aware allocator needs these symbols
  2943 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2944 extern "C" JNIEXPORT void numa_error(char *where) { }
  2945 extern "C" JNIEXPORT int fork1() { return fork(); }
  2947 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
  2948 // load symbol from base version instead.
  2949 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2950   void *f = dlvsym(handle, name, "libnuma_1.1");
  2951   if (f == NULL) {
  2952     f = dlsym(handle, name);
  2954   return f;
  2957 // Handle request to load libnuma symbol version 1.2 (API v2) only.
  2958 // Return NULL if the symbol is not defined in this particular version.
  2959 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
  2960   return dlvsym(handle, name, "libnuma_1.2");
  2963 bool os::Linux::libnuma_init() {
  2964   // sched_getcpu() should be in libc.
  2965   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2966                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2968   // If it's not, try a direct syscall.
  2969   if (sched_getcpu() == -1)
  2970     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2972   if (sched_getcpu() != -1) { // Does it work?
  2973     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2974     if (handle != NULL) {
  2975       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2976                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2977       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2978                                        libnuma_dlsym(handle, "numa_max_node")));
  2979       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
  2980                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
  2981       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2982                                         libnuma_dlsym(handle, "numa_available")));
  2983       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2984                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2985       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2986                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
  2987       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
  2988                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
  2989       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2990                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
  2991       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
  2992                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
  2993       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
  2994                                        libnuma_dlsym(handle, "numa_distance")));
  2996       if (numa_available() != -1) {
  2997         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2998         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
  2999         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
  3000         // Create an index -> node mapping, since nodes are not always consecutive
  3001         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  3002         rebuild_nindex_to_node_map();
  3003         // Create a cpu -> node mapping
  3004         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  3005         rebuild_cpu_to_node_map();
  3006         return true;
  3010   return false;
  3013 void os::Linux::rebuild_nindex_to_node_map() {
  3014   int highest_node_number = Linux::numa_max_node();
  3016   nindex_to_node()->clear();
  3017   for (int node = 0; node <= highest_node_number; node++) {
  3018     if (Linux::isnode_in_existing_nodes(node)) {
  3019       nindex_to_node()->append(node);
  3024 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  3025 // The table is later used in get_node_by_cpu().
  3026 void os::Linux::rebuild_cpu_to_node_map() {
  3027   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  3028                               // in libnuma (possible values are starting from 16,
  3029                               // and continuing up with every other power of 2, but less
  3030                               // than the maximum number of CPUs supported by kernel), and
  3031                               // is a subject to change (in libnuma version 2 the requirements
  3032                               // are more reasonable) we'll just hardcode the number they use
  3033                               // in the library.
  3034   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  3036   size_t cpu_num = processor_count();
  3037   size_t cpu_map_size = NCPUS / BitsPerCLong;
  3038   size_t cpu_map_valid_size =
  3039     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  3041   cpu_to_node()->clear();
  3042   cpu_to_node()->at_grow(cpu_num - 1);
  3044   size_t node_num = get_existing_num_nodes();
  3046   int distance = 0;
  3047   int closest_distance = INT_MAX;
  3048   int closest_node = 0;
  3049   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  3050   for (size_t i = 0; i < node_num; i++) {
  3051     // Check if node is configured (not a memory-less node). If it is not, find
  3052     // the closest configured node.
  3053     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
  3054       closest_distance = INT_MAX;
  3055       // Check distance from all remaining nodes in the system. Ignore distance
  3056       // from itself and from another non-configured node.
  3057       for (size_t m = 0; m < node_num; m++) {
  3058         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
  3059           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
  3060           // If a closest node is found, update. There is always at least one
  3061           // configured node in the system so there is always at least one node
  3062           // close.
  3063           if (distance != 0 && distance < closest_distance) {
  3064             closest_distance = distance;
  3065             closest_node = nindex_to_node()->at(m);
  3069      } else {
  3070        // Current node is already a configured node.
  3071        closest_node = nindex_to_node()->at(i);
  3074     // Get cpus from the original node and map them to the closest node. If node
  3075     // is a configured node (not a memory-less node), then original node and
  3076     // closest node are the same.
  3077     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  3078       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  3079         if (cpu_map[j] != 0) {
  3080           for (size_t k = 0; k < BitsPerCLong; k++) {
  3081             if (cpu_map[j] & (1UL << k)) {
  3082               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
  3089   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  3092 int os::Linux::get_node_by_cpu(int cpu_id) {
  3093   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  3094     return cpu_to_node()->at(cpu_id);
  3096   return -1;
  3099 GrowableArray<int>* os::Linux::_cpu_to_node;
  3100 GrowableArray<int>* os::Linux::_nindex_to_node;
  3101 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  3102 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  3103 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  3104 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
  3105 os::Linux::numa_available_func_t os::Linux::_numa_available;
  3106 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  3107 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  3108 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
  3109 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  3110 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
  3111 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
  3112 unsigned long* os::Linux::_numa_all_nodes;
  3113 struct bitmask* os::Linux::_numa_all_nodes_ptr;
  3114 struct bitmask* os::Linux::_numa_nodes_ptr;
  3116 bool os::pd_uncommit_memory(char* addr, size_t size) {
  3117   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  3118                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  3119   return res  != (uintptr_t) MAP_FAILED;
  3122 static
  3123 address get_stack_commited_bottom(address bottom, size_t size) {
  3124   address nbot = bottom;
  3125   address ntop = bottom + size;
  3127   size_t page_sz = os::vm_page_size();
  3128   unsigned pages = size / page_sz;
  3130   unsigned char vec[1];
  3131   unsigned imin = 1, imax = pages + 1, imid;
  3132   int mincore_return_value = 0;
  3134   assert(imin <= imax, "Unexpected page size");
  3136   while (imin < imax) {
  3137     imid = (imax + imin) / 2;
  3138     nbot = ntop - (imid * page_sz);
  3140     // Use a trick with mincore to check whether the page is mapped or not.
  3141     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3142     // is swapped output but if page we are asking for is unmapped
  3143     // it returns -1,ENOMEM
  3144     mincore_return_value = mincore(nbot, page_sz, vec);
  3146     if (mincore_return_value == -1) {
  3147       // Page is not mapped go up
  3148       // to find first mapped page
  3149       if (errno != EAGAIN) {
  3150         assert(errno == ENOMEM, "Unexpected mincore errno");
  3151         imax = imid;
  3153     } else {
  3154       // Page is mapped go down
  3155       // to find first not mapped page
  3156       imin = imid + 1;
  3160   nbot = nbot + page_sz;
  3162   // Adjust stack bottom one page up if last checked page is not mapped
  3163   if (mincore_return_value == -1) {
  3164     nbot = nbot + page_sz;
  3167   return nbot;
  3171 // Linux uses a growable mapping for the stack, and if the mapping for
  3172 // the stack guard pages is not removed when we detach a thread the
  3173 // stack cannot grow beyond the pages where the stack guard was
  3174 // mapped.  If at some point later in the process the stack expands to
  3175 // that point, the Linux kernel cannot expand the stack any further
  3176 // because the guard pages are in the way, and a segfault occurs.
  3177 //
  3178 // However, it's essential not to split the stack region by unmapping
  3179 // a region (leaving a hole) that's already part of the stack mapping,
  3180 // so if the stack mapping has already grown beyond the guard pages at
  3181 // the time we create them, we have to truncate the stack mapping.
  3182 // So, we need to know the extent of the stack mapping when
  3183 // create_stack_guard_pages() is called.
  3185 // We only need this for stacks that are growable: at the time of
  3186 // writing thread stacks don't use growable mappings (i.e. those
  3187 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3188 // only applies to the main thread.
  3190 // If the (growable) stack mapping already extends beyond the point
  3191 // where we're going to put our guard pages, truncate the mapping at
  3192 // that point by munmap()ping it.  This ensures that when we later
  3193 // munmap() the guard pages we don't leave a hole in the stack
  3194 // mapping. This only affects the main/primordial thread
  3196 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3198   if (os::is_primordial_thread()) {
  3199     // As we manually grow stack up to bottom inside create_attached_thread(),
  3200     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3201     // we don't need to do anything special.
  3202     // Check it first, before calling heavy function.
  3203     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3204     unsigned char vec[1];
  3206     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3207       // Fallback to slow path on all errors, including EAGAIN
  3208       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3209                                     os::Linux::initial_thread_stack_bottom(),
  3210                                     (size_t)addr - stack_extent);
  3213     if (stack_extent < (uintptr_t)addr) {
  3214       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3218   return os::commit_memory(addr, size, !ExecMem);
  3221 // If this is a growable mapping, remove the guard pages entirely by
  3222 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3223 // affects the main/primordial thread, but guard against future OS changes.
  3224 // It's safe to always unmap guard pages for primordial thread because we
  3225 // always place it right after end of the mapped region.
  3227 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3228   uintptr_t stack_extent, stack_base;
  3230   if (os::is_primordial_thread()) {
  3231     return ::munmap(addr, size) == 0;
  3234   return os::uncommit_memory(addr, size);
  3237 static address _highest_vm_reserved_address = NULL;
  3239 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3240 // at 'requested_addr'. If there are existing memory mappings at the same
  3241 // location, however, they will be overwritten. If 'fixed' is false,
  3242 // 'requested_addr' is only treated as a hint, the return value may or
  3243 // may not start from the requested address. Unlike Linux mmap(), this
  3244 // function returns NULL to indicate failure.
  3245 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3246   char * addr;
  3247   int flags;
  3249   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3250   if (fixed) {
  3251     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3252     flags |= MAP_FIXED;
  3255   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3256   // touch an uncommitted page. Otherwise, the read/write might
  3257   // succeed if we have enough swap space to back the physical page.
  3258   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3259                        flags, -1, 0);
  3261   if (addr != MAP_FAILED) {
  3262     // anon_mmap() should only get called during VM initialization,
  3263     // don't need lock (actually we can skip locking even it can be called
  3264     // from multiple threads, because _highest_vm_reserved_address is just a
  3265     // hint about the upper limit of non-stack memory regions.)
  3266     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3267       _highest_vm_reserved_address = (address)addr + bytes;
  3271   return addr == MAP_FAILED ? NULL : addr;
  3274 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3275 //   (req_addr != NULL) or with a given alignment.
  3276 //  - bytes shall be a multiple of alignment.
  3277 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3278 //  - alignment sets the alignment at which memory shall be allocated.
  3279 //     It must be a multiple of allocation granularity.
  3280 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3281 //  req_addr or NULL.
  3282 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3284   size_t extra_size = bytes;
  3285   if (req_addr == NULL && alignment > 0) {
  3286     extra_size += alignment;
  3289   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3290     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3291     -1, 0);
  3292   if (start == MAP_FAILED) {
  3293     start = NULL;
  3294   } else {
  3295     if (req_addr != NULL) {
  3296       if (start != req_addr) {
  3297         ::munmap(start, extra_size);
  3298         start = NULL;
  3300     } else {
  3301       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3302       char* const end_aligned = start_aligned + bytes;
  3303       char* const end = start + extra_size;
  3304       if (start_aligned > start) {
  3305         ::munmap(start, start_aligned - start);
  3307       if (end_aligned < end) {
  3308         ::munmap(end_aligned, end - end_aligned);
  3310       start = start_aligned;
  3313   return start;
  3316 // Don't update _highest_vm_reserved_address, because there might be memory
  3317 // regions above addr + size. If so, releasing a memory region only creates
  3318 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3319 //
  3320 static int anon_munmap(char * addr, size_t size) {
  3321   return ::munmap(addr, size) == 0;
  3324 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3325                          size_t alignment_hint) {
  3326   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3329 bool os::pd_release_memory(char* addr, size_t size) {
  3330   return anon_munmap(addr, size);
  3333 static address highest_vm_reserved_address() {
  3334   return _highest_vm_reserved_address;
  3337 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3338   // Linux wants the mprotect address argument to be page aligned.
  3339   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3341   // According to SUSv3, mprotect() should only be used with mappings
  3342   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3343   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3344   // protection of malloc'ed or statically allocated memory). Check the
  3345   // caller if you hit this assert.
  3346   assert(addr == bottom, "sanity check");
  3348   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3349   return ::mprotect(bottom, size, prot) == 0;
  3352 // Set protections specified
  3353 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3354                         bool is_committed) {
  3355   unsigned int p = 0;
  3356   switch (prot) {
  3357   case MEM_PROT_NONE: p = PROT_NONE; break;
  3358   case MEM_PROT_READ: p = PROT_READ; break;
  3359   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3360   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3361   default:
  3362     ShouldNotReachHere();
  3364   // is_committed is unused.
  3365   return linux_mprotect(addr, bytes, p);
  3368 bool os::guard_memory(char* addr, size_t size) {
  3369   return linux_mprotect(addr, size, PROT_NONE);
  3372 bool os::unguard_memory(char* addr, size_t size) {
  3373   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3376 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3377   bool result = false;
  3378   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3379                  MAP_ANONYMOUS|MAP_PRIVATE,
  3380                  -1, 0);
  3381   if (p != MAP_FAILED) {
  3382     void *aligned_p = align_ptr_up(p, page_size);
  3384     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3386     munmap(p, page_size * 2);
  3389   if (warn && !result) {
  3390     warning("TransparentHugePages is not supported by the operating system.");
  3393   return result;
  3396 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3397   bool result = false;
  3398   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3399                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3400                  -1, 0);
  3402   if (p != MAP_FAILED) {
  3403     // We don't know if this really is a huge page or not.
  3404     FILE *fp = fopen("/proc/self/maps", "r");
  3405     if (fp) {
  3406       while (!feof(fp)) {
  3407         char chars[257];
  3408         long x = 0;
  3409         if (fgets(chars, sizeof(chars), fp)) {
  3410           if (sscanf(chars, "%lx-%*x", &x) == 1
  3411               && x == (long)p) {
  3412             if (strstr (chars, "hugepage")) {
  3413               result = true;
  3414               break;
  3419       fclose(fp);
  3421     munmap(p, page_size);
  3424   if (warn && !result) {
  3425     warning("HugeTLBFS is not supported by the operating system.");
  3428   return result;
  3431 /*
  3432 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3434 * From the coredump_filter documentation:
  3436 * - (bit 0) anonymous private memory
  3437 * - (bit 1) anonymous shared memory
  3438 * - (bit 2) file-backed private memory
  3439 * - (bit 3) file-backed shared memory
  3440 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3441 *           effective only if the bit 2 is cleared)
  3442 * - (bit 5) hugetlb private memory
  3443 * - (bit 6) hugetlb shared memory
  3444 */
  3445 static void set_coredump_filter(void) {
  3446   FILE *f;
  3447   long cdm;
  3449   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3450     return;
  3453   if (fscanf(f, "%lx", &cdm) != 1) {
  3454     fclose(f);
  3455     return;
  3458   rewind(f);
  3460   if ((cdm & LARGEPAGES_BIT) == 0) {
  3461     cdm |= LARGEPAGES_BIT;
  3462     fprintf(f, "%#lx", cdm);
  3465   fclose(f);
  3468 // Large page support
  3470 static size_t _large_page_size = 0;
  3472 size_t os::Linux::find_large_page_size() {
  3473   size_t large_page_size = 0;
  3475   // large_page_size on Linux is used to round up heap size. x86 uses either
  3476   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3477   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3478   // page as large as 256M.
  3479   //
  3480   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3481   // for a line with the following format:
  3482   //    Hugepagesize:     2048 kB
  3483   //
  3484   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3485   // format has been changed), we'll use the largest page size supported by
  3486   // the processor.
  3488 #ifndef ZERO
  3489   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3490                      ARM_ONLY(2 * M) PPC_ONLY(4 * M) MIPS64_ONLY(4 * M); //In MIPS _large_page_size is seted 4*M.
  3491 #endif // ZERO
  3493   FILE *fp = fopen("/proc/meminfo", "r");
  3494   if (fp) {
  3495     while (!feof(fp)) {
  3496       int x = 0;
  3497       char buf[16];
  3498       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3499         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3500           large_page_size = x * K;
  3501           break;
  3503       } else {
  3504         // skip to next line
  3505         for (;;) {
  3506           int ch = fgetc(fp);
  3507           if (ch == EOF || ch == (int)'\n') break;
  3511     fclose(fp);
  3514   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3515     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3516         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3517         proper_unit_for_byte_size(large_page_size));
  3520   return large_page_size;
  3523 size_t os::Linux::setup_large_page_size() {
  3524   _large_page_size = Linux::find_large_page_size();
  3525   const size_t default_page_size = (size_t)Linux::page_size();
  3526   if (_large_page_size > default_page_size) {
  3527     _page_sizes[0] = _large_page_size;
  3528     _page_sizes[1] = default_page_size;
  3529     _page_sizes[2] = 0;
  3532   return _large_page_size;
  3535 bool os::Linux::setup_large_page_type(size_t page_size) {
  3536   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3537       FLAG_IS_DEFAULT(UseSHM) &&
  3538       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3540     // The type of large pages has not been specified by the user.
  3542     // Try UseHugeTLBFS and then UseSHM.
  3543     UseHugeTLBFS = UseSHM = true;
  3545     // Don't try UseTransparentHugePages since there are known
  3546     // performance issues with it turned on. This might change in the future.
  3547     UseTransparentHugePages = false;
  3550   if (UseTransparentHugePages) {
  3551     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3552     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3553       UseHugeTLBFS = false;
  3554       UseSHM = false;
  3555       return true;
  3557     UseTransparentHugePages = false;
  3560   if (UseHugeTLBFS) {
  3561     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3562     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3563       UseSHM = false;
  3564       return true;
  3566     UseHugeTLBFS = false;
  3569   return UseSHM;
  3572 void os::large_page_init() {
  3573   if (!UseLargePages &&
  3574       !UseTransparentHugePages &&
  3575       !UseHugeTLBFS &&
  3576       !UseSHM) {
  3577     // Not using large pages.
  3578     return;
  3581   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3582     // The user explicitly turned off large pages.
  3583     // Ignore the rest of the large pages flags.
  3584     UseTransparentHugePages = false;
  3585     UseHugeTLBFS = false;
  3586     UseSHM = false;
  3587     return;
  3590   size_t large_page_size = Linux::setup_large_page_size();
  3591   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3593   set_coredump_filter();
  3596 #ifndef SHM_HUGETLB
  3597 #define SHM_HUGETLB 04000
  3598 #endif
  3600 #define shm_warning_format(format, ...)              \
  3601   do {                                               \
  3602     if (UseLargePages &&                             \
  3603         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3604          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3605          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3606       warning(format, __VA_ARGS__);                  \
  3607     }                                                \
  3608   } while (0)
  3610 #define shm_warning(str) shm_warning_format("%s", str)
  3612 #define shm_warning_with_errno(str)                \
  3613   do {                                             \
  3614     int err = errno;                               \
  3615     shm_warning_format(str " (error = %d)", err);  \
  3616   } while (0)
  3618 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3619   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3621   if (!is_size_aligned(alignment, SHMLBA)) {
  3622     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3623     return NULL;
  3626   // To ensure that we get 'alignment' aligned memory from shmat,
  3627   // we pre-reserve aligned virtual memory and then attach to that.
  3629   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3630   if (pre_reserved_addr == NULL) {
  3631     // Couldn't pre-reserve aligned memory.
  3632     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3633     return NULL;
  3636   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3637   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3639   if ((intptr_t)addr == -1) {
  3640     int err = errno;
  3641     shm_warning_with_errno("Failed to attach shared memory.");
  3643     assert(err != EACCES, "Unexpected error");
  3644     assert(err != EIDRM,  "Unexpected error");
  3645     assert(err != EINVAL, "Unexpected error");
  3647     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3648     // we can't unmap it, since that would potentially unmap memory that was
  3649     // mapped from other threads.
  3650     return NULL;
  3653   return addr;
  3656 static char* shmat_at_address(int shmid, char* req_addr) {
  3657   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3658     assert(false, "Requested address needs to be SHMLBA aligned");
  3659     return NULL;
  3662   char* addr = (char*)shmat(shmid, req_addr, 0);
  3664   if ((intptr_t)addr == -1) {
  3665     shm_warning_with_errno("Failed to attach shared memory.");
  3666     return NULL;
  3669   return addr;
  3672 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3673   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3674   if (req_addr != NULL) {
  3675     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3676     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3677     return shmat_at_address(shmid, req_addr);
  3680   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3681   // return large page size aligned memory addresses when req_addr == NULL.
  3682   // However, if the alignment is larger than the large page size, we have
  3683   // to manually ensure that the memory returned is 'alignment' aligned.
  3684   if (alignment > os::large_page_size()) {
  3685     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3686     return shmat_with_alignment(shmid, bytes, alignment);
  3687   } else {
  3688     return shmat_at_address(shmid, NULL);
  3692 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3693   // "exec" is passed in but not used.  Creating the shared image for
  3694   // the code cache doesn't have an SHM_X executable permission to check.
  3695   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3696   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3697   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3699   if (!is_size_aligned(bytes, os::large_page_size())) {
  3700     return NULL; // Fallback to small pages.
  3703   // Create a large shared memory region to attach to based on size.
  3704   // Currently, size is the total size of the heap.
  3705   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3706   if (shmid == -1) {
  3707     // Possible reasons for shmget failure:
  3708     // 1. shmmax is too small for Java heap.
  3709     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3710     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3711     // 2. not enough large page memory.
  3712     //    > check available large pages: cat /proc/meminfo
  3713     //    > increase amount of large pages:
  3714     //          echo new_value > /proc/sys/vm/nr_hugepages
  3715     //      Note 1: different Linux may use different name for this property,
  3716     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3717     //      Note 2: it's possible there's enough physical memory available but
  3718     //            they are so fragmented after a long run that they can't
  3719     //            coalesce into large pages. Try to reserve large pages when
  3720     //            the system is still "fresh".
  3721     shm_warning_with_errno("Failed to reserve shared memory.");
  3722     return NULL;
  3725   // Attach to the region.
  3726   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3728   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3729   // will be deleted when it's detached by shmdt() or when the process
  3730   // terminates. If shmat() is not successful this will remove the shared
  3731   // segment immediately.
  3732   shmctl(shmid, IPC_RMID, NULL);
  3734   return addr;
  3737 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3738   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3740   bool warn_on_failure = UseLargePages &&
  3741       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3742        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3743        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3745   if (warn_on_failure) {
  3746     char msg[128];
  3747     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3748         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3749     warning("%s", msg);
  3753 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3754   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3755   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3756   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3758   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3759   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3760                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3761                              -1, 0);
  3763   if (addr == MAP_FAILED) {
  3764     warn_on_large_pages_failure(req_addr, bytes, errno);
  3765     return NULL;
  3768   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3770   return addr;
  3773 // Reserve memory using mmap(MAP_HUGETLB).
  3774 //  - bytes shall be a multiple of alignment.
  3775 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3776 //  - alignment sets the alignment at which memory shall be allocated.
  3777 //     It must be a multiple of allocation granularity.
  3778 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3779 //  req_addr or NULL.
  3780 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3781   size_t large_page_size = os::large_page_size();
  3782   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3784   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3785   assert(is_size_aligned(bytes, alignment), "Must be");
  3787   // First reserve - but not commit - the address range in small pages.
  3788   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3790   if (start == NULL) {
  3791     return NULL;
  3794   assert(is_ptr_aligned(start, alignment), "Must be");
  3796   char* end = start + bytes;
  3798   // Find the regions of the allocated chunk that can be promoted to large pages.
  3799   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3800   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3802   size_t lp_bytes = lp_end - lp_start;
  3804   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3806   if (lp_bytes == 0) {
  3807     // The mapped region doesn't even span the start and the end of a large page.
  3808     // Fall back to allocate a non-special area.
  3809     ::munmap(start, end - start);
  3810     return NULL;
  3813   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3815   void* result;
  3817   // Commit small-paged leading area.
  3818   if (start != lp_start) {
  3819     result = ::mmap(start, lp_start - start, prot,
  3820                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3821                     -1, 0);
  3822     if (result == MAP_FAILED) {
  3823       ::munmap(lp_start, end - lp_start);
  3824       return NULL;
  3828   // Commit large-paged area.
  3829   result = ::mmap(lp_start, lp_bytes, prot,
  3830                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3831                   -1, 0);
  3832   if (result == MAP_FAILED) {
  3833     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3834     // If the mmap above fails, the large pages region will be unmapped and we
  3835     // have regions before and after with small pages. Release these regions.
  3836     //
  3837     // |  mapped  |  unmapped  |  mapped  |
  3838     // ^          ^            ^          ^
  3839     // start      lp_start     lp_end     end
  3840     //
  3841     ::munmap(start, lp_start - start);
  3842     ::munmap(lp_end, end - lp_end);
  3843     return NULL;
  3846   // Commit small-paged trailing area.
  3847   if (lp_end != end) {
  3848       result = ::mmap(lp_end, end - lp_end, prot,
  3849                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3850                       -1, 0);
  3851     if (result == MAP_FAILED) {
  3852       ::munmap(start, lp_end - start);
  3853       return NULL;
  3857   return start;
  3860 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3861   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3862   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3863   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3864   assert(is_power_of_2(os::large_page_size()), "Must be");
  3865   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3867   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3868     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3869   } else {
  3870     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3874 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3875   assert(UseLargePages, "only for large pages");
  3877   char* addr;
  3878   if (UseSHM) {
  3879     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3880   } else {
  3881     assert(UseHugeTLBFS, "must be");
  3882     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3885   if (addr != NULL) {
  3886     if (UseNUMAInterleaving) {
  3887       numa_make_global(addr, bytes);
  3890     // The memory is committed
  3891     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3894   return addr;
  3897 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3898   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3899   return shmdt(base) == 0;
  3902 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3903   return pd_release_memory(base, bytes);
  3906 bool os::release_memory_special(char* base, size_t bytes) {
  3907   bool res;
  3908   if (MemTracker::tracking_level() > NMT_minimal) {
  3909     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3910     res = os::Linux::release_memory_special_impl(base, bytes);
  3911     if (res) {
  3912       tkr.record((address)base, bytes);
  3915   } else {
  3916     res = os::Linux::release_memory_special_impl(base, bytes);
  3918   return res;
  3921 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3922   assert(UseLargePages, "only for large pages");
  3923   bool res;
  3925   if (UseSHM) {
  3926     res = os::Linux::release_memory_special_shm(base, bytes);
  3927   } else {
  3928     assert(UseHugeTLBFS, "must be");
  3929     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3931   return res;
  3934 size_t os::large_page_size() {
  3935   return _large_page_size;
  3938 // With SysV SHM the entire memory region must be allocated as shared
  3939 // memory.
  3940 // HugeTLBFS allows application to commit large page memory on demand.
  3941 // However, when committing memory with HugeTLBFS fails, the region
  3942 // that was supposed to be committed will lose the old reservation
  3943 // and allow other threads to steal that memory region. Because of this
  3944 // behavior we can't commit HugeTLBFS memory.
  3945 bool os::can_commit_large_page_memory() {
  3946   return UseTransparentHugePages;
  3949 bool os::can_execute_large_page_memory() {
  3950   return UseTransparentHugePages || UseHugeTLBFS;
  3953 // Reserve memory at an arbitrary address, only if that area is
  3954 // available (and not reserved for something else).
  3956 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3957   const int max_tries = 10;
  3958   char* base[max_tries];
  3959   size_t size[max_tries];
  3960   const size_t gap = 0x000000;
  3962   // Assert only that the size is a multiple of the page size, since
  3963   // that's all that mmap requires, and since that's all we really know
  3964   // about at this low abstraction level.  If we need higher alignment,
  3965   // we can either pass an alignment to this method or verify alignment
  3966   // in one of the methods further up the call chain.  See bug 5044738.
  3967   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3969   // Repeatedly allocate blocks until the block is allocated at the
  3970   // right spot. Give up after max_tries. Note that reserve_memory() will
  3971   // automatically update _highest_vm_reserved_address if the call is
  3972   // successful. The variable tracks the highest memory address every reserved
  3973   // by JVM. It is used to detect heap-stack collision if running with
  3974   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3975   // space than needed, it could confuse the collision detecting code. To
  3976   // solve the problem, save current _highest_vm_reserved_address and
  3977   // calculate the correct value before return.
  3978   address old_highest = _highest_vm_reserved_address;
  3980   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3981   // if kernel honors the hint then we can return immediately.
  3982   char * addr = anon_mmap(requested_addr, bytes, false);
  3983   if (addr == requested_addr) {
  3984      return requested_addr;
  3987   if (addr != NULL) {
  3988      // mmap() is successful but it fails to reserve at the requested address
  3989      anon_munmap(addr, bytes);
  3992   int i;
  3993   for (i = 0; i < max_tries; ++i) {
  3994     base[i] = reserve_memory(bytes);
  3996     if (base[i] != NULL) {
  3997       // Is this the block we wanted?
  3998       if (base[i] == requested_addr) {
  3999         size[i] = bytes;
  4000         break;
  4003       // Does this overlap the block we wanted? Give back the overlapped
  4004       // parts and try again.
  4006       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  4007       if (top_overlap >= 0 && top_overlap < bytes) {
  4008         unmap_memory(base[i], top_overlap);
  4009         base[i] += top_overlap;
  4010         size[i] = bytes - top_overlap;
  4011       } else {
  4012         size_t bottom_overlap = base[i] + bytes - requested_addr;
  4013         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  4014           unmap_memory(requested_addr, bottom_overlap);
  4015           size[i] = bytes - bottom_overlap;
  4016         } else {
  4017           size[i] = bytes;
  4023   // Give back the unused reserved pieces.
  4025   for (int j = 0; j < i; ++j) {
  4026     if (base[j] != NULL) {
  4027       unmap_memory(base[j], size[j]);
  4031   if (i < max_tries) {
  4032     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  4033     return requested_addr;
  4034   } else {
  4035     _highest_vm_reserved_address = old_highest;
  4036     return NULL;
  4040 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  4041   return ::read(fd, buf, nBytes);
  4044 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  4045 // Solaris uses poll(), linux uses park().
  4046 // Poll() is likely a better choice, assuming that Thread.interrupt()
  4047 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  4048 // SIGSEGV, see 4355769.
  4050 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  4051   assert(thread == Thread::current(),  "thread consistency check");
  4053   ParkEvent * const slp = thread->_SleepEvent ;
  4054   slp->reset() ;
  4055   OrderAccess::fence() ;
  4057   if (interruptible) {
  4058     jlong prevtime = javaTimeNanos();
  4060     for (;;) {
  4061       if (os::is_interrupted(thread, true)) {
  4062         return OS_INTRPT;
  4065       jlong newtime = javaTimeNanos();
  4067       if (newtime - prevtime < 0) {
  4068         // time moving backwards, should only happen if no monotonic clock
  4069         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4070         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4071       } else {
  4072         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4075       if(millis <= 0) {
  4076         return OS_OK;
  4079       prevtime = newtime;
  4082         assert(thread->is_Java_thread(), "sanity check");
  4083         JavaThread *jt = (JavaThread *) thread;
  4084         ThreadBlockInVM tbivm(jt);
  4085         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  4087         jt->set_suspend_equivalent();
  4088         // cleared by handle_special_suspend_equivalent_condition() or
  4089         // java_suspend_self() via check_and_wait_while_suspended()
  4091         slp->park(millis);
  4093         // were we externally suspended while we were waiting?
  4094         jt->check_and_wait_while_suspended();
  4097   } else {
  4098     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4099     jlong prevtime = javaTimeNanos();
  4101     for (;;) {
  4102       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  4103       // the 1st iteration ...
  4104       jlong newtime = javaTimeNanos();
  4106       if (newtime - prevtime < 0) {
  4107         // time moving backwards, should only happen if no monotonic clock
  4108         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4109         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4110       } else {
  4111         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4114       if(millis <= 0) break ;
  4116       prevtime = newtime;
  4117       slp->park(millis);
  4119     return OS_OK ;
  4123 //
  4124 // Short sleep, direct OS call.
  4125 //
  4126 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  4127 // sched_yield(2) will actually give up the CPU:
  4128 //
  4129 //   * Alone on this pariticular CPU, keeps running.
  4130 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  4131 //     (pre 2.6.39).
  4132 //
  4133 // So calling this with 0 is an alternative.
  4134 //
  4135 void os::naked_short_sleep(jlong ms) {
  4136   struct timespec req;
  4138   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  4139   req.tv_sec = 0;
  4140   if (ms > 0) {
  4141     req.tv_nsec = (ms % 1000) * 1000000;
  4143   else {
  4144     req.tv_nsec = 1;
  4147   nanosleep(&req, NULL);
  4149   return;
  4152 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  4153 void os::infinite_sleep() {
  4154   while (true) {    // sleep forever ...
  4155     ::sleep(100);   // ... 100 seconds at a time
  4159 // Used to convert frequent JVM_Yield() to nops
  4160 bool os::dont_yield() {
  4161   return DontYieldALot;
  4164 void os::yield() {
  4165   sched_yield();
  4168 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  4170 void os::yield_all(int attempts) {
  4171   // Yields to all threads, including threads with lower priorities
  4172   // Threads on Linux are all with same priority. The Solaris style
  4173   // os::yield_all() with nanosleep(1ms) is not necessary.
  4174   sched_yield();
  4177 // Called from the tight loops to possibly influence time-sharing heuristics
  4178 void os::loop_breaker(int attempts) {
  4179   os::yield_all(attempts);
  4182 ////////////////////////////////////////////////////////////////////////////////
  4183 // thread priority support
  4185 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  4186 // only supports dynamic priority, static priority must be zero. For real-time
  4187 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  4188 // However, for large multi-threaded applications, SCHED_RR is not only slower
  4189 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  4190 // of 5 runs - Sep 2005).
  4191 //
  4192 // The following code actually changes the niceness of kernel-thread/LWP. It
  4193 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  4194 // not the entire user process, and user level threads are 1:1 mapped to kernel
  4195 // threads. It has always been the case, but could change in the future. For
  4196 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  4197 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  4199 int os::java_to_os_priority[CriticalPriority + 1] = {
  4200   19,              // 0 Entry should never be used
  4202    4,              // 1 MinPriority
  4203    3,              // 2
  4204    2,              // 3
  4206    1,              // 4
  4207    0,              // 5 NormPriority
  4208   -1,              // 6
  4210   -2,              // 7
  4211   -3,              // 8
  4212   -4,              // 9 NearMaxPriority
  4214   -5,              // 10 MaxPriority
  4216   -5               // 11 CriticalPriority
  4217 };
  4219 static int prio_init() {
  4220   if (ThreadPriorityPolicy == 1) {
  4221     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4222     // if effective uid is not root. Perhaps, a more elegant way of doing
  4223     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4224     if (geteuid() != 0) {
  4225       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4226         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4228       ThreadPriorityPolicy = 0;
  4231   if (UseCriticalJavaThreadPriority) {
  4232     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4234   return 0;
  4237 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4238   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4240   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4241   return (ret == 0) ? OS_OK : OS_ERR;
  4244 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4245   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4246     *priority_ptr = java_to_os_priority[NormPriority];
  4247     return OS_OK;
  4250   errno = 0;
  4251   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4252   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4255 // Hint to the underlying OS that a task switch would not be good.
  4256 // Void return because it's a hint and can fail.
  4257 void os::hint_no_preempt() {}
  4259 ////////////////////////////////////////////////////////////////////////////////
  4260 // suspend/resume support
  4262 //  the low-level signal-based suspend/resume support is a remnant from the
  4263 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4264 //  within hotspot. Now there is a single use-case for this:
  4265 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4266 //      that runs in the watcher thread.
  4267 //  The remaining code is greatly simplified from the more general suspension
  4268 //  code that used to be used.
  4269 //
  4270 //  The protocol is quite simple:
  4271 //  - suspend:
  4272 //      - sends a signal to the target thread
  4273 //      - polls the suspend state of the osthread using a yield loop
  4274 //      - target thread signal handler (SR_handler) sets suspend state
  4275 //        and blocks in sigsuspend until continued
  4276 //  - resume:
  4277 //      - sets target osthread state to continue
  4278 //      - sends signal to end the sigsuspend loop in the SR_handler
  4279 //
  4280 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4281 //
  4283 static void resume_clear_context(OSThread *osthread) {
  4284   osthread->set_ucontext(NULL);
  4285   osthread->set_siginfo(NULL);
  4288 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4289   osthread->set_ucontext(context);
  4290   osthread->set_siginfo(siginfo);
  4293 //
  4294 // Handler function invoked when a thread's execution is suspended or
  4295 // resumed. We have to be careful that only async-safe functions are
  4296 // called here (Note: most pthread functions are not async safe and
  4297 // should be avoided.)
  4298 //
  4299 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4300 // interface point of view, but sigwait() prevents the signal hander
  4301 // from being run. libpthread would get very confused by not having
  4302 // its signal handlers run and prevents sigwait()'s use with the
  4303 // mutex granting granting signal.
  4304 //
  4305 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4306 //
  4307 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4308   // Save and restore errno to avoid confusing native code with EINTR
  4309   // after sigsuspend.
  4310   int old_errno = errno;
  4312   Thread* thread = Thread::current();
  4313   OSThread* osthread = thread->osthread();
  4314   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4316   os::SuspendResume::State current = osthread->sr.state();
  4317   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4318     suspend_save_context(osthread, siginfo, context);
  4320     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4321     os::SuspendResume::State state = osthread->sr.suspended();
  4322     if (state == os::SuspendResume::SR_SUSPENDED) {
  4323       sigset_t suspend_set;  // signals for sigsuspend()
  4325       // get current set of blocked signals and unblock resume signal
  4326       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4327       sigdelset(&suspend_set, SR_signum);
  4329       sr_semaphore.signal();
  4330       // wait here until we are resumed
  4331       while (1) {
  4332         sigsuspend(&suspend_set);
  4334         os::SuspendResume::State result = osthread->sr.running();
  4335         if (result == os::SuspendResume::SR_RUNNING) {
  4336           sr_semaphore.signal();
  4337           break;
  4341     } else if (state == os::SuspendResume::SR_RUNNING) {
  4342       // request was cancelled, continue
  4343     } else {
  4344       ShouldNotReachHere();
  4347     resume_clear_context(osthread);
  4348   } else if (current == os::SuspendResume::SR_RUNNING) {
  4349     // request was cancelled, continue
  4350   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4351     // ignore
  4352   } else {
  4353     // ignore
  4356   errno = old_errno;
  4360 static int SR_initialize() {
  4361   struct sigaction act;
  4362   char *s;
  4363   /* Get signal number to use for suspend/resume */
  4364   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4365     int sig = ::strtol(s, 0, 10);
  4366     if (sig > 0 || sig < _NSIG) {
  4367         SR_signum = sig;
  4371   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4372         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4374   sigemptyset(&SR_sigset);
  4375   sigaddset(&SR_sigset, SR_signum);
  4377   /* Set up signal handler for suspend/resume */
  4378   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4379   act.sa_handler = (void (*)(int)) SR_handler;
  4381   // SR_signum is blocked by default.
  4382   // 4528190 - We also need to block pthread restart signal (32 on all
  4383   // supported Linux platforms). Note that LinuxThreads need to block
  4384   // this signal for all threads to work properly. So we don't have
  4385   // to use hard-coded signal number when setting up the mask.
  4386   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4388   if (sigaction(SR_signum, &act, 0) == -1) {
  4389     return -1;
  4392   // Save signal flag
  4393   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4394   return 0;
  4397 static int sr_notify(OSThread* osthread) {
  4398   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4399   assert_status(status == 0, status, "pthread_kill");
  4400   return status;
  4403 // "Randomly" selected value for how long we want to spin
  4404 // before bailing out on suspending a thread, also how often
  4405 // we send a signal to a thread we want to resume
  4406 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4407 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4409 // returns true on success and false on error - really an error is fatal
  4410 // but this seems the normal response to library errors
  4411 static bool do_suspend(OSThread* osthread) {
  4412   assert(osthread->sr.is_running(), "thread should be running");
  4413   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4415   // mark as suspended and send signal
  4416   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4417     // failed to switch, state wasn't running?
  4418     ShouldNotReachHere();
  4419     return false;
  4422   if (sr_notify(osthread) != 0) {
  4423     ShouldNotReachHere();
  4426   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4427   while (true) {
  4428     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4429       break;
  4430     } else {
  4431       // timeout
  4432       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4433       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4434         return false;
  4435       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4436         // make sure that we consume the signal on the semaphore as well
  4437         sr_semaphore.wait();
  4438         break;
  4439       } else {
  4440         ShouldNotReachHere();
  4441         return false;
  4446   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4447   return true;
  4450 static void do_resume(OSThread* osthread) {
  4451   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4452   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4454   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4455     // failed to switch to WAKEUP_REQUEST
  4456     ShouldNotReachHere();
  4457     return;
  4460   while (true) {
  4461     if (sr_notify(osthread) == 0) {
  4462       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4463         if (osthread->sr.is_running()) {
  4464           return;
  4467     } else {
  4468       ShouldNotReachHere();
  4472   guarantee(osthread->sr.is_running(), "Must be running!");
  4475 ////////////////////////////////////////////////////////////////////////////////
  4476 // interrupt support
  4478 void os::interrupt(Thread* thread) {
  4479   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4480     "possibility of dangling Thread pointer");
  4482   OSThread* osthread = thread->osthread();
  4484   if (!osthread->interrupted()) {
  4485     osthread->set_interrupted(true);
  4486     // More than one thread can get here with the same value of osthread,
  4487     // resulting in multiple notifications.  We do, however, want the store
  4488     // to interrupted() to be visible to other threads before we execute unpark().
  4489     OrderAccess::fence();
  4490     ParkEvent * const slp = thread->_SleepEvent ;
  4491     if (slp != NULL) slp->unpark() ;
  4494   // For JSR166. Unpark even if interrupt status already was set
  4495   if (thread->is_Java_thread())
  4496     ((JavaThread*)thread)->parker()->unpark();
  4498   ParkEvent * ev = thread->_ParkEvent ;
  4499   if (ev != NULL) ev->unpark() ;
  4503 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4504   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4505     "possibility of dangling Thread pointer");
  4507   OSThread* osthread = thread->osthread();
  4509   bool interrupted = osthread->interrupted();
  4511   if (interrupted && clear_interrupted) {
  4512     osthread->set_interrupted(false);
  4513     // consider thread->_SleepEvent->reset() ... optional optimization
  4516   return interrupted;
  4519 ///////////////////////////////////////////////////////////////////////////////////
  4520 // signal handling (except suspend/resume)
  4522 // This routine may be used by user applications as a "hook" to catch signals.
  4523 // The user-defined signal handler must pass unrecognized signals to this
  4524 // routine, and if it returns true (non-zero), then the signal handler must
  4525 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4526 // routine will never retun false (zero), but instead will execute a VM panic
  4527 // routine kill the process.
  4528 //
  4529 // If this routine returns false, it is OK to call it again.  This allows
  4530 // the user-defined signal handler to perform checks either before or after
  4531 // the VM performs its own checks.  Naturally, the user code would be making
  4532 // a serious error if it tried to handle an exception (such as a null check
  4533 // or breakpoint) that the VM was generating for its own correct operation.
  4534 //
  4535 // This routine may recognize any of the following kinds of signals:
  4536 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4537 // It should be consulted by handlers for any of those signals.
  4538 //
  4539 // The caller of this routine must pass in the three arguments supplied
  4540 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4541 // field of the structure passed to sigaction().  This routine assumes that
  4542 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4543 //
  4544 // Note that the VM will print warnings if it detects conflicting signal
  4545 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4546 //
  4547 extern "C" JNIEXPORT int
  4548 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4549                         void* ucontext, int abort_if_unrecognized);
  4551 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4552   assert(info != NULL && uc != NULL, "it must be old kernel");
  4553   int orig_errno = errno;  // Preserve errno value over signal handler.
  4554   JVM_handle_linux_signal(sig, info, uc, true);
  4555   errno = orig_errno;
  4559 // This boolean allows users to forward their own non-matching signals
  4560 // to JVM_handle_linux_signal, harmlessly.
  4561 bool os::Linux::signal_handlers_are_installed = false;
  4563 // For signal-chaining
  4564 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4565 unsigned int os::Linux::sigs = 0;
  4566 bool os::Linux::libjsig_is_loaded = false;
  4567 typedef struct sigaction *(*get_signal_t)(int);
  4568 get_signal_t os::Linux::get_signal_action = NULL;
  4570 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4571   struct sigaction *actp = NULL;
  4573   if (libjsig_is_loaded) {
  4574     // Retrieve the old signal handler from libjsig
  4575     actp = (*get_signal_action)(sig);
  4577   if (actp == NULL) {
  4578     // Retrieve the preinstalled signal handler from jvm
  4579     actp = get_preinstalled_handler(sig);
  4582   return actp;
  4585 static bool call_chained_handler(struct sigaction *actp, int sig,
  4586                                  siginfo_t *siginfo, void *context) {
  4587   // Call the old signal handler
  4588   if (actp->sa_handler == SIG_DFL) {
  4589     // It's more reasonable to let jvm treat it as an unexpected exception
  4590     // instead of taking the default action.
  4591     return false;
  4592   } else if (actp->sa_handler != SIG_IGN) {
  4593     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4594       // automaticlly block the signal
  4595       sigaddset(&(actp->sa_mask), sig);
  4598     sa_handler_t hand = NULL;
  4599     sa_sigaction_t sa = NULL;
  4600     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4601     // retrieve the chained handler
  4602     if (siginfo_flag_set) {
  4603       sa = actp->sa_sigaction;
  4604     } else {
  4605       hand = actp->sa_handler;
  4608     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4609       actp->sa_handler = SIG_DFL;
  4612     // try to honor the signal mask
  4613     sigset_t oset;
  4614     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4616     // call into the chained handler
  4617     if (siginfo_flag_set) {
  4618       (*sa)(sig, siginfo, context);
  4619     } else {
  4620       (*hand)(sig);
  4623     // restore the signal mask
  4624     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4626   // Tell jvm's signal handler the signal is taken care of.
  4627   return true;
  4630 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4631   bool chained = false;
  4632   // signal-chaining
  4633   if (UseSignalChaining) {
  4634     struct sigaction *actp = get_chained_signal_action(sig);
  4635     if (actp != NULL) {
  4636       chained = call_chained_handler(actp, sig, siginfo, context);
  4639   return chained;
  4642 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4643   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4644     return &sigact[sig];
  4646   return NULL;
  4649 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4650   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4651   sigact[sig] = oldAct;
  4652   sigs |= (unsigned int)1 << sig;
  4655 // for diagnostic
  4656 int os::Linux::sigflags[MAXSIGNUM];
  4658 int os::Linux::get_our_sigflags(int sig) {
  4659   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4660   return sigflags[sig];
  4663 void os::Linux::set_our_sigflags(int sig, int flags) {
  4664   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4665   sigflags[sig] = flags;
  4668 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4669   // Check for overwrite.
  4670   struct sigaction oldAct;
  4671   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4673   void* oldhand = oldAct.sa_sigaction
  4674                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4675                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4676   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4677       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4678       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4679     if (AllowUserSignalHandlers || !set_installed) {
  4680       // Do not overwrite; user takes responsibility to forward to us.
  4681       return;
  4682     } else if (UseSignalChaining) {
  4683       // save the old handler in jvm
  4684       save_preinstalled_handler(sig, oldAct);
  4685       // libjsig also interposes the sigaction() call below and saves the
  4686       // old sigaction on it own.
  4687     } else {
  4688       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4689                     "%#lx for signal %d.", (long)oldhand, sig));
  4693   struct sigaction sigAct;
  4694   sigfillset(&(sigAct.sa_mask));
  4695   sigAct.sa_handler = SIG_DFL;
  4696   if (!set_installed) {
  4697     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4698   } else {
  4699     sigAct.sa_sigaction = signalHandler;
  4700     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4702   // Save flags, which are set by ours
  4703   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4704   sigflags[sig] = sigAct.sa_flags;
  4706   int ret = sigaction(sig, &sigAct, &oldAct);
  4707   assert(ret == 0, "check");
  4709   void* oldhand2  = oldAct.sa_sigaction
  4710                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4711                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4712   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4715 // install signal handlers for signals that HotSpot needs to
  4716 // handle in order to support Java-level exception handling.
  4718 void os::Linux::install_signal_handlers() {
  4719   if (!signal_handlers_are_installed) {
  4720     signal_handlers_are_installed = true;
  4722     // signal-chaining
  4723     typedef void (*signal_setting_t)();
  4724     signal_setting_t begin_signal_setting = NULL;
  4725     signal_setting_t end_signal_setting = NULL;
  4726     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4727                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4728     if (begin_signal_setting != NULL) {
  4729       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4730                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4731       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4732                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4733       libjsig_is_loaded = true;
  4734       assert(UseSignalChaining, "should enable signal-chaining");
  4736     if (libjsig_is_loaded) {
  4737       // Tell libjsig jvm is setting signal handlers
  4738       (*begin_signal_setting)();
  4741     set_signal_handler(SIGSEGV, true);
  4742     set_signal_handler(SIGPIPE, true);
  4743     set_signal_handler(SIGBUS, true);
  4744     set_signal_handler(SIGILL, true);
  4745     set_signal_handler(SIGFPE, true);
  4746 #if defined(PPC64)
  4747     set_signal_handler(SIGTRAP, true);
  4748 #endif
  4749     set_signal_handler(SIGXFSZ, true);
  4751     if (libjsig_is_loaded) {
  4752       // Tell libjsig jvm finishes setting signal handlers
  4753       (*end_signal_setting)();
  4756     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4757     // and if UserSignalHandler is installed all bets are off.
  4758     // Log that signal checking is off only if -verbose:jni is specified.
  4759     if (CheckJNICalls) {
  4760       if (libjsig_is_loaded) {
  4761         if (PrintJNIResolving) {
  4762           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4764         check_signals = false;
  4766       if (AllowUserSignalHandlers) {
  4767         if (PrintJNIResolving) {
  4768           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4770         check_signals = false;
  4776 // This is the fastest way to get thread cpu time on Linux.
  4777 // Returns cpu time (user+sys) for any thread, not only for current.
  4778 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4779 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4780 // For reference, please, see IEEE Std 1003.1-2004:
  4781 //   http://www.unix.org/single_unix_specification
  4783 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4784   struct timespec tp;
  4785   int rc = os::Linux::clock_gettime(clockid, &tp);
  4786   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4788   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4791 /////
  4792 // glibc on Linux platform uses non-documented flag
  4793 // to indicate, that some special sort of signal
  4794 // trampoline is used.
  4795 // We will never set this flag, and we should
  4796 // ignore this flag in our diagnostic
  4797 #ifdef SIGNIFICANT_SIGNAL_MASK
  4798 #undef SIGNIFICANT_SIGNAL_MASK
  4799 #endif
  4800 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4802 static const char* get_signal_handler_name(address handler,
  4803                                            char* buf, int buflen) {
  4804   int offset = 0;
  4805   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4806   if (found) {
  4807     // skip directory names
  4808     const char *p1, *p2;
  4809     p1 = buf;
  4810     size_t len = strlen(os::file_separator());
  4811     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4812     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4813   } else {
  4814     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4816   return buf;
  4819 static void print_signal_handler(outputStream* st, int sig,
  4820                                  char* buf, size_t buflen) {
  4821   struct sigaction sa;
  4823   sigaction(sig, NULL, &sa);
  4825   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4826   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4828   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4830   address handler = (sa.sa_flags & SA_SIGINFO)
  4831     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4832     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4834   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4835     st->print("SIG_DFL");
  4836   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4837     st->print("SIG_IGN");
  4838   } else {
  4839     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4842   st->print(", sa_mask[0]=");
  4843   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4845   address rh = VMError::get_resetted_sighandler(sig);
  4846   // May be, handler was resetted by VMError?
  4847   if(rh != NULL) {
  4848     handler = rh;
  4849     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4852   st->print(", sa_flags=");
  4853   os::Posix::print_sa_flags(st, sa.sa_flags);
  4855   // Check: is it our handler?
  4856   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4857      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4858     // It is our signal handler
  4859     // check for flags, reset system-used one!
  4860     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4861       st->print(
  4862                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4863                 os::Linux::get_our_sigflags(sig));
  4866   st->cr();
  4870 #define DO_SIGNAL_CHECK(sig) \
  4871   if (!sigismember(&check_signal_done, sig)) \
  4872     os::Linux::check_signal_handler(sig)
  4874 // This method is a periodic task to check for misbehaving JNI applications
  4875 // under CheckJNI, we can add any periodic checks here
  4877 void os::run_periodic_checks() {
  4879   if (check_signals == false) return;
  4881   // SEGV and BUS if overridden could potentially prevent
  4882   // generation of hs*.log in the event of a crash, debugging
  4883   // such a case can be very challenging, so we absolutely
  4884   // check the following for a good measure:
  4885   DO_SIGNAL_CHECK(SIGSEGV);
  4886   DO_SIGNAL_CHECK(SIGILL);
  4887   DO_SIGNAL_CHECK(SIGFPE);
  4888   DO_SIGNAL_CHECK(SIGBUS);
  4889   DO_SIGNAL_CHECK(SIGPIPE);
  4890   DO_SIGNAL_CHECK(SIGXFSZ);
  4891 #if defined(PPC64)
  4892   DO_SIGNAL_CHECK(SIGTRAP);
  4893 #endif
  4895   // ReduceSignalUsage allows the user to override these handlers
  4896   // see comments at the very top and jvm_solaris.h
  4897   if (!ReduceSignalUsage) {
  4898     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4899     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4900     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4901     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4904   DO_SIGNAL_CHECK(SR_signum);
  4905   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4908 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4910 static os_sigaction_t os_sigaction = NULL;
  4912 void os::Linux::check_signal_handler(int sig) {
  4913   char buf[O_BUFLEN];
  4914   address jvmHandler = NULL;
  4917   struct sigaction act;
  4918   if (os_sigaction == NULL) {
  4919     // only trust the default sigaction, in case it has been interposed
  4920     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4921     if (os_sigaction == NULL) return;
  4924   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4927   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4929   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4930     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4931     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4934   switch(sig) {
  4935   case SIGSEGV:
  4936   case SIGBUS:
  4937   case SIGFPE:
  4938   case SIGPIPE:
  4939   case SIGILL:
  4940   case SIGXFSZ:
  4941     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4942     break;
  4944   case SHUTDOWN1_SIGNAL:
  4945   case SHUTDOWN2_SIGNAL:
  4946   case SHUTDOWN3_SIGNAL:
  4947   case BREAK_SIGNAL:
  4948     jvmHandler = (address)user_handler();
  4949     break;
  4951   case INTERRUPT_SIGNAL:
  4952     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4953     break;
  4955   default:
  4956     if (sig == SR_signum) {
  4957       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4958     } else {
  4959       return;
  4961     break;
  4964   if (thisHandler != jvmHandler) {
  4965     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4966     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4967     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4968     // No need to check this sig any longer
  4969     sigaddset(&check_signal_done, sig);
  4970     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4971     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4972       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4973                     exception_name(sig, buf, O_BUFLEN));
  4975   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4976     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4977     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4978     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4979     // No need to check this sig any longer
  4980     sigaddset(&check_signal_done, sig);
  4983   // Dump all the signal
  4984   if (sigismember(&check_signal_done, sig)) {
  4985     print_signal_handlers(tty, buf, O_BUFLEN);
  4989 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4991 extern bool signal_name(int signo, char* buf, size_t len);
  4993 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4994   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4995     // signal
  4996     if (!signal_name(exception_code, buf, size)) {
  4997       jio_snprintf(buf, size, "SIG%d", exception_code);
  4999     return buf;
  5000   } else {
  5001     return NULL;
  5005 // this is called _before_ most of the global arguments have been parsed
  5006 void os::init(void) {
  5007   char dummy;   /* used to get a guess on initial stack address */
  5009   // With LinuxThreads the JavaMain thread pid (primordial thread)
  5010   // is different than the pid of the java launcher thread.
  5011   // So, on Linux, the launcher thread pid is passed to the VM
  5012   // via the sun.java.launcher.pid property.
  5013   // Use this property instead of getpid() if it was correctly passed.
  5014   // See bug 6351349.
  5015   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  5017   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  5019   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  5021   init_random(1234567);
  5023   ThreadCritical::initialize();
  5025   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  5026   if (Linux::page_size() == -1) {
  5027     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  5028                   strerror(errno)));
  5030   init_page_sizes((size_t) Linux::page_size());
  5032   Linux::initialize_system_info();
  5034   // _main_thread points to the thread that created/loaded the JVM.
  5035   Linux::_main_thread = pthread_self();
  5037   Linux::clock_init();
  5038   initial_time_count = javaTimeNanos();
  5040   // pthread_condattr initialization for monotonic clock
  5041   int status;
  5042   pthread_condattr_t* _condattr = os::Linux::condAttr();
  5043   if ((status = pthread_condattr_init(_condattr)) != 0) {
  5044     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  5046   // Only set the clock if CLOCK_MONOTONIC is available
  5047   if (Linux::supports_monotonic_clock()) {
  5048     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  5049       if (status == EINVAL) {
  5050         warning("Unable to use monotonic clock with relative timed-waits" \
  5051                 " - changes to the time-of-day clock may have adverse affects");
  5052       } else {
  5053         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  5057   // else it defaults to CLOCK_REALTIME
  5059   pthread_mutex_init(&dl_mutex, NULL);
  5061   // If the pagesize of the VM is greater than 8K determine the appropriate
  5062   // number of initial guard pages.  The user can change this with the
  5063   // command line arguments, if needed.
  5064   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  5065     StackYellowPages = 1;
  5066     StackRedPages = 1;
  5067     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  5070   // retrieve entry point for pthread_setname_np
  5071   Linux::_pthread_setname_np =
  5072     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
  5076 // To install functions for atexit system call
  5077 extern "C" {
  5078   static void perfMemory_exit_helper() {
  5079     perfMemory_exit();
  5083 void os::pd_init_container_support() {
  5084   OSContainer::init();
  5087 // this is called _after_ the global arguments have been parsed
  5088 jint os::init_2(void)
  5090   Linux::fast_thread_clock_init();
  5092   // Allocate a single page and mark it as readable for safepoint polling
  5093 #ifdef OPT_SAFEPOINT
  5094   void * p = (void *)(0x10000);
  5095   address polling_page = (address) ::mmap(p, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5096 #else
  5097   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5098 #endif
  5099   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  5101   os::set_polling_page( polling_page );
  5103 #ifndef PRODUCT
  5104   if(Verbose && PrintMiscellaneous)
  5105     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5106 #endif
  5108   if (!UseMembar) {
  5109     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5110     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  5111     os::set_memory_serialize_page( mem_serialize_page );
  5113 #ifndef PRODUCT
  5114     if(Verbose && PrintMiscellaneous)
  5115       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5116 #endif
  5119   // initialize suspend/resume support - must do this before signal_sets_init()
  5120   if (SR_initialize() != 0) {
  5121     perror("SR_initialize failed");
  5122     return JNI_ERR;
  5125   Linux::signal_sets_init();
  5126   Linux::install_signal_handlers();
  5128   // Check minimum allowable stack size for thread creation and to initialize
  5129   // the java system classes, including StackOverflowError - depends on page
  5130   // size.  Add a page for compiler2 recursion in main thread.
  5131   // Add in 2*BytesPerWord times page size to account for VM stack during
  5132   // class initialization depending on 32 or 64 bit VM.
  5134   /* 2014/1/2 Liao: JDK8 requires larger -Xss option.
  5135    *   TongWeb cannot run with -Xss192K.
  5136    *   We are not sure whether this causes errors, so simply print a warning. */
  5137   size_t min_stack_allowed_jdk6 = os::Linux::min_stack_allowed;
  5138   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  5139             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  5140                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  5142   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5143   if (threadStackSizeInBytes != 0 &&
  5144       threadStackSizeInBytes < min_stack_allowed_jdk6) {
  5145         tty->print_cr("\nThe stack size specified is too small, "
  5146                       "Specify at least %dk",
  5147                       os::Linux::min_stack_allowed/ K);
  5148         return JNI_ERR;
  5151   // Make the stack size a multiple of the page size so that
  5152   // the yellow/red zones can be guarded.
  5153   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5154         vm_page_size()));
  5156   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  5158 #if defined(IA32)
  5159   workaround_expand_exec_shield_cs_limit();
  5160 #endif
  5162   Linux::libpthread_init();
  5163   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  5164      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  5165           Linux::glibc_version(), Linux::libpthread_version(),
  5166           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  5169   if (UseNUMA) {
  5170     if (!Linux::libnuma_init()) {
  5171       UseNUMA = false;
  5172     } else {
  5173       if ((Linux::numa_max_node() < 1)) {
  5174         // There's only one node(they start from 0), disable NUMA.
  5175         UseNUMA = false;
  5178     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  5179     // we can make the adaptive lgrp chunk resizing work. If the user specified
  5180     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  5181     // disable adaptive resizing.
  5182     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  5183       if (FLAG_IS_DEFAULT(UseNUMA)) {
  5184         UseNUMA = false;
  5185       } else {
  5186         if (FLAG_IS_DEFAULT(UseLargePages) &&
  5187             FLAG_IS_DEFAULT(UseSHM) &&
  5188             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  5189           UseLargePages = false;
  5190         } else {
  5191           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  5192           UseAdaptiveSizePolicy = false;
  5193           UseAdaptiveNUMAChunkSizing = false;
  5197     if (!UseNUMA && ForceNUMA) {
  5198       UseNUMA = true;
  5202   if (MaxFDLimit) {
  5203     // set the number of file descriptors to max. print out error
  5204     // if getrlimit/setrlimit fails but continue regardless.
  5205     struct rlimit nbr_files;
  5206     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5207     if (status != 0) {
  5208       if (PrintMiscellaneous && (Verbose || WizardMode))
  5209         perror("os::init_2 getrlimit failed");
  5210     } else {
  5211       nbr_files.rlim_cur = nbr_files.rlim_max;
  5212       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5213       if (status != 0) {
  5214         if (PrintMiscellaneous && (Verbose || WizardMode))
  5215           perror("os::init_2 setrlimit failed");
  5220   // Initialize lock used to serialize thread creation (see os::create_thread)
  5221   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  5223   // at-exit methods are called in the reverse order of their registration.
  5224   // atexit functions are called on return from main or as a result of a
  5225   // call to exit(3C). There can be only 32 of these functions registered
  5226   // and atexit() does not set errno.
  5228   if (PerfAllowAtExitRegistration) {
  5229     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5230     // atexit functions can be delayed until process exit time, which
  5231     // can be problematic for embedded VM situations. Embedded VMs should
  5232     // call DestroyJavaVM() to assure that VM resources are released.
  5234     // note: perfMemory_exit_helper atexit function may be removed in
  5235     // the future if the appropriate cleanup code can be added to the
  5236     // VM_Exit VMOperation's doit method.
  5237     if (atexit(perfMemory_exit_helper) != 0) {
  5238       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5242   // initialize thread priority policy
  5243   prio_init();
  5245   return JNI_OK;
  5248 // Mark the polling page as unreadable
  5249 void os::make_polling_page_unreadable(void) {
  5250   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5251     fatal("Could not disable polling page");
  5252 };
  5254 // Mark the polling page as readable
  5255 void os::make_polling_page_readable(void) {
  5256   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5257     fatal("Could not enable polling page");
  5259 };
  5261 static int os_cpu_count(const cpu_set_t* cpus) {
  5262   int count = 0;
  5263   // only look up to the number of configured processors
  5264   for (int i = 0; i < os::processor_count(); i++) {
  5265     if (CPU_ISSET(i, cpus)) {
  5266       count++;
  5269   return count;
  5272 // Get the current number of available processors for this process.
  5273 // This value can change at any time during a process's lifetime.
  5274 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5275 // If anything goes wrong we fallback to returning the number of online
  5276 // processors - which can be greater than the number available to the process.
  5277 int os::Linux::active_processor_count() {
  5278   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5279   int cpus_size = sizeof(cpu_set_t);
  5280   int cpu_count = 0;
  5282   // pid 0 means the current thread - which we have to assume represents the process
  5283   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5284     cpu_count = os_cpu_count(&cpus);
  5285     if (PrintActiveCpus) {
  5286       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5289   else {
  5290     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5291     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5292             "which may exceed available processors", strerror(errno), cpu_count);
  5295   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
  5296   return cpu_count;
  5299 // Determine the active processor count from one of
  5300 // three different sources:
  5301 //
  5302 // 1. User option -XX:ActiveProcessorCount
  5303 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
  5304 // 3. extracted from cgroup cpu subsystem (shares and quotas)
  5305 //
  5306 // Option 1, if specified, will always override.
  5307 // If the cgroup subsystem is active and configured, we
  5308 // will return the min of the cgroup and option 2 results.
  5309 // This is required since tools, such as numactl, that
  5310 // alter cpu affinity do not update cgroup subsystem
  5311 // cpuset configuration files.
  5312 int os::active_processor_count() {
  5313   // User has overridden the number of active processors
  5314   if (ActiveProcessorCount > 0) {
  5315     if (PrintActiveCpus) {
  5316       tty->print_cr("active_processor_count: "
  5317                     "active processor count set by user : %d",
  5318                     ActiveProcessorCount);
  5320     return ActiveProcessorCount;
  5323   int active_cpus;
  5324   if (OSContainer::is_containerized()) {
  5325     active_cpus = OSContainer::active_processor_count();
  5326     if (PrintActiveCpus) {
  5327       tty->print_cr("active_processor_count: determined by OSContainer: %d",
  5328                      active_cpus);
  5330   } else {
  5331     active_cpus = os::Linux::active_processor_count();
  5334   return active_cpus;
  5337 void os::set_native_thread_name(const char *name) {
  5338   if (Linux::_pthread_setname_np) {
  5339     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
  5340     snprintf(buf, sizeof(buf), "%s", name);
  5341     buf[sizeof(buf) - 1] = '\0';
  5342     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
  5343     // ERANGE should not happen; all other errors should just be ignored.
  5344     assert(rc != ERANGE, "pthread_setname_np failed");
  5348 bool os::distribute_processes(uint length, uint* distribution) {
  5349   // Not yet implemented.
  5350   return false;
  5353 bool os::bind_to_processor(uint processor_id) {
  5354   // Not yet implemented.
  5355   return false;
  5358 ///
  5360 void os::SuspendedThreadTask::internal_do_task() {
  5361   if (do_suspend(_thread->osthread())) {
  5362     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5363     do_task(context);
  5364     do_resume(_thread->osthread());
  5368 class PcFetcher : public os::SuspendedThreadTask {
  5369 public:
  5370   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5371   ExtendedPC result();
  5372 protected:
  5373   void do_task(const os::SuspendedThreadTaskContext& context);
  5374 private:
  5375   ExtendedPC _epc;
  5376 };
  5378 ExtendedPC PcFetcher::result() {
  5379   guarantee(is_done(), "task is not done yet.");
  5380   return _epc;
  5383 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5384   Thread* thread = context.thread();
  5385   OSThread* osthread = thread->osthread();
  5386   if (osthread->ucontext() != NULL) {
  5387     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5388   } else {
  5389     // NULL context is unexpected, double-check this is the VMThread
  5390     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5394 // Suspends the target using the signal mechanism and then grabs the PC before
  5395 // resuming the target. Used by the flat-profiler only
  5396 ExtendedPC os::get_thread_pc(Thread* thread) {
  5397   // Make sure that it is called by the watcher for the VMThread
  5398   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5399   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5401   PcFetcher fetcher(thread);
  5402   fetcher.run();
  5403   return fetcher.result();
  5406 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5408    if (is_NPTL()) {
  5409       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5410    } else {
  5411       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5412       // word back to default 64bit precision if condvar is signaled. Java
  5413       // wants 53bit precision.  Save and restore current value.
  5414       int fpu = get_fpu_control_word();
  5415       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5416       set_fpu_control_word(fpu);
  5417       return status;
  5421 ////////////////////////////////////////////////////////////////////////////////
  5422 // debug support
  5424 bool os::find(address addr, outputStream* st) {
  5425   Dl_info dlinfo;
  5426   memset(&dlinfo, 0, sizeof(dlinfo));
  5427   if (dladdr(addr, &dlinfo) != 0) {
  5428     st->print(PTR_FORMAT ": ", addr);
  5429     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5430       st->print("%s+%#x", dlinfo.dli_sname,
  5431                  addr - (intptr_t)dlinfo.dli_saddr);
  5432     } else if (dlinfo.dli_fbase != NULL) {
  5433       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5434     } else {
  5435       st->print("<absolute address>");
  5437     if (dlinfo.dli_fname != NULL) {
  5438       st->print(" in %s", dlinfo.dli_fname);
  5440     if (dlinfo.dli_fbase != NULL) {
  5441       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5443     st->cr();
  5445     if (Verbose) {
  5446       // decode some bytes around the PC
  5447       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5448       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5449       address       lowest = (address) dlinfo.dli_sname;
  5450       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5451       if (begin < lowest)  begin = lowest;
  5452       Dl_info dlinfo2;
  5453       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5454           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5455         end = (address) dlinfo2.dli_saddr;
  5456       Disassembler::decode(begin, end, st);
  5458     return true;
  5460   return false;
  5463 ////////////////////////////////////////////////////////////////////////////////
  5464 // misc
  5466 // This does not do anything on Linux. This is basically a hook for being
  5467 // able to use structured exception handling (thread-local exception filters)
  5468 // on, e.g., Win32.
  5469 void
  5470 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5471                          JavaCallArguments* args, Thread* thread) {
  5472   f(value, method, args, thread);
  5475 void os::print_statistics() {
  5478 int os::message_box(const char* title, const char* message) {
  5479   int i;
  5480   fdStream err(defaultStream::error_fd());
  5481   for (i = 0; i < 78; i++) err.print_raw("=");
  5482   err.cr();
  5483   err.print_raw_cr(title);
  5484   for (i = 0; i < 78; i++) err.print_raw("-");
  5485   err.cr();
  5486   err.print_raw_cr(message);
  5487   for (i = 0; i < 78; i++) err.print_raw("=");
  5488   err.cr();
  5490   char buf[16];
  5491   // Prevent process from exiting upon "read error" without consuming all CPU
  5492   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5494   return buf[0] == 'y' || buf[0] == 'Y';
  5497 int os::stat(const char *path, struct stat *sbuf) {
  5498   char pathbuf[MAX_PATH];
  5499   if (strlen(path) > MAX_PATH - 1) {
  5500     errno = ENAMETOOLONG;
  5501     return -1;
  5503   os::native_path(strcpy(pathbuf, path));
  5504   return ::stat(pathbuf, sbuf);
  5507 bool os::check_heap(bool force) {
  5508   return true;
  5511 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5512   return ::vsnprintf(buf, count, format, args);
  5515 // Is a (classpath) directory empty?
  5516 bool os::dir_is_empty(const char* path) {
  5517   DIR *dir = NULL;
  5518   struct dirent *ptr;
  5520   dir = opendir(path);
  5521   if (dir == NULL) return true;
  5523   /* Scan the directory */
  5524   bool result = true;
  5525   while (result && (ptr = readdir(dir)) != NULL) {
  5526     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5527       result = false;
  5530   closedir(dir);
  5531   return result;
  5534 // This code originates from JDK's sysOpen and open64_w
  5535 // from src/solaris/hpi/src/system_md.c
  5537 #ifndef O_DELETE
  5538 #define O_DELETE 0x10000
  5539 #endif
  5541 // Open a file. Unlink the file immediately after open returns
  5542 // if the specified oflag has the O_DELETE flag set.
  5543 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5545 int os::open(const char *path, int oflag, int mode) {
  5547   if (strlen(path) > MAX_PATH - 1) {
  5548     errno = ENAMETOOLONG;
  5549     return -1;
  5551   int fd;
  5552   int o_delete = (oflag & O_DELETE);
  5553   oflag = oflag & ~O_DELETE;
  5555   fd = ::open64(path, oflag, mode);
  5556   if (fd == -1) return -1;
  5558   //If the open succeeded, the file might still be a directory
  5560     struct stat64 buf64;
  5561     int ret = ::fstat64(fd, &buf64);
  5562     int st_mode = buf64.st_mode;
  5564     if (ret != -1) {
  5565       if ((st_mode & S_IFMT) == S_IFDIR) {
  5566         errno = EISDIR;
  5567         ::close(fd);
  5568         return -1;
  5570     } else {
  5571       ::close(fd);
  5572       return -1;
  5576     /*
  5577      * All file descriptors that are opened in the JVM and not
  5578      * specifically destined for a subprocess should have the
  5579      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5580      * party native code might fork and exec without closing all
  5581      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5582      * UNIXProcess.c), and this in turn might:
  5584      * - cause end-of-file to fail to be detected on some file
  5585      *   descriptors, resulting in mysterious hangs, or
  5587      * - might cause an fopen in the subprocess to fail on a system
  5588      *   suffering from bug 1085341.
  5590      * (Yes, the default setting of the close-on-exec flag is a Unix
  5591      * design flaw)
  5593      * See:
  5594      * 1085341: 32-bit stdio routines should support file descriptors >255
  5595      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5596      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5597      */
  5598 #ifdef FD_CLOEXEC
  5600         int flags = ::fcntl(fd, F_GETFD);
  5601         if (flags != -1)
  5602             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5604 #endif
  5606   if (o_delete != 0) {
  5607     ::unlink(path);
  5609   return fd;
  5613 // create binary file, rewriting existing file if required
  5614 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5615   int oflags = O_WRONLY | O_CREAT;
  5616   if (!rewrite_existing) {
  5617     oflags |= O_EXCL;
  5619   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5622 // return current position of file pointer
  5623 jlong os::current_file_offset(int fd) {
  5624   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5627 // move file pointer to the specified offset
  5628 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5629   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5632 // This code originates from JDK's sysAvailable
  5633 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5635 int os::available(int fd, jlong *bytes) {
  5636   jlong cur, end;
  5637   int mode;
  5638   struct stat64 buf64;
  5640   if (::fstat64(fd, &buf64) >= 0) {
  5641     mode = buf64.st_mode;
  5642     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5643       /*
  5644       * XXX: is the following call interruptible? If so, this might
  5645       * need to go through the INTERRUPT_IO() wrapper as for other
  5646       * blocking, interruptible calls in this file.
  5647       */
  5648       int n;
  5649       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5650         *bytes = n;
  5651         return 1;
  5655   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5656     return 0;
  5657   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5658     return 0;
  5659   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5660     return 0;
  5662   *bytes = end - cur;
  5663   return 1;
  5666 int os::socket_available(int fd, jint *pbytes) {
  5667   // Linux doc says EINTR not returned, unlike Solaris
  5668   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5670   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5671   // is expected to return 0 on failure and 1 on success to the jdk.
  5672   return (ret < 0) ? 0 : 1;
  5675 // Map a block of memory.
  5676 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5677                      char *addr, size_t bytes, bool read_only,
  5678                      bool allow_exec) {
  5679   int prot;
  5680   int flags = MAP_PRIVATE;
  5682   if (read_only) {
  5683     prot = PROT_READ;
  5684   } else {
  5685     prot = PROT_READ | PROT_WRITE;
  5688   if (allow_exec) {
  5689     prot |= PROT_EXEC;
  5692   if (addr != NULL) {
  5693     flags |= MAP_FIXED;
  5696   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5697                                      fd, file_offset);
  5698   if (mapped_address == MAP_FAILED) {
  5699     return NULL;
  5701   return mapped_address;
  5705 // Remap a block of memory.
  5706 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5707                        char *addr, size_t bytes, bool read_only,
  5708                        bool allow_exec) {
  5709   // same as map_memory() on this OS
  5710   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5711                         allow_exec);
  5715 // Unmap a block of memory.
  5716 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5717   return munmap(addr, bytes) == 0;
  5720 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5722 static clockid_t thread_cpu_clockid(Thread* thread) {
  5723   pthread_t tid = thread->osthread()->pthread_id();
  5724   clockid_t clockid;
  5726   // Get thread clockid
  5727   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5728   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5729   return clockid;
  5732 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5733 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5734 // of a thread.
  5735 //
  5736 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5737 // the fast estimate available on the platform.
  5739 jlong os::current_thread_cpu_time() {
  5740   if (os::Linux::supports_fast_thread_cpu_time()) {
  5741     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5742   } else {
  5743     // return user + sys since the cost is the same
  5744     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5748 jlong os::thread_cpu_time(Thread* thread) {
  5749   // consistent with what current_thread_cpu_time() returns
  5750   if (os::Linux::supports_fast_thread_cpu_time()) {
  5751     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5752   } else {
  5753     return slow_thread_cpu_time(thread, true /* user + sys */);
  5757 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5758   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5759     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5760   } else {
  5761     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5765 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5766   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5767     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5768   } else {
  5769     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5773 //
  5774 //  -1 on error.
  5775 //
  5777 PRAGMA_DIAG_PUSH
  5778 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5779 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5780   static bool proc_task_unchecked = true;
  5781   static const char *proc_stat_path = "/proc/%d/stat";
  5782   pid_t  tid = thread->osthread()->thread_id();
  5783   char *s;
  5784   char stat[2048];
  5785   int statlen;
  5786   char proc_name[64];
  5787   int count;
  5788   long sys_time, user_time;
  5789   char cdummy;
  5790   int idummy;
  5791   long ldummy;
  5792   FILE *fp;
  5794   // The /proc/<tid>/stat aggregates per-process usage on
  5795   // new Linux kernels 2.6+ where NPTL is supported.
  5796   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5797   // See bug 6328462.
  5798   // There possibly can be cases where there is no directory
  5799   // /proc/self/task, so we check its availability.
  5800   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5801     // This is executed only once
  5802     proc_task_unchecked = false;
  5803     fp = fopen("/proc/self/task", "r");
  5804     if (fp != NULL) {
  5805       proc_stat_path = "/proc/self/task/%d/stat";
  5806       fclose(fp);
  5810   sprintf(proc_name, proc_stat_path, tid);
  5811   fp = fopen(proc_name, "r");
  5812   if ( fp == NULL ) return -1;
  5813   statlen = fread(stat, 1, 2047, fp);
  5814   stat[statlen] = '\0';
  5815   fclose(fp);
  5817   // Skip pid and the command string. Note that we could be dealing with
  5818   // weird command names, e.g. user could decide to rename java launcher
  5819   // to "java 1.4.2 :)", then the stat file would look like
  5820   //                1234 (java 1.4.2 :)) R ... ...
  5821   // We don't really need to know the command string, just find the last
  5822   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5823   s = strrchr(stat, ')');
  5824   if (s == NULL ) return -1;
  5826   // Skip blank chars
  5827   do s++; while (isspace(*s));
  5829   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5830                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5831                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5832                  &user_time, &sys_time);
  5833   if ( count != 13 ) return -1;
  5834   if (user_sys_cpu_time) {
  5835     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5836   } else {
  5837     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5840 PRAGMA_DIAG_POP
  5842 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5843   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5844   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5845   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5846   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5849 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5850   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5851   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5852   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5853   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5856 bool os::is_thread_cpu_time_supported() {
  5857   return true;
  5860 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5861 // Linux doesn't yet have a (official) notion of processor sets,
  5862 // so just return the system wide load average.
  5863 int os::loadavg(double loadavg[], int nelem) {
  5864   return ::getloadavg(loadavg, nelem);
  5867 void os::pause() {
  5868   char filename[MAX_PATH];
  5869   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5870     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5871   } else {
  5872     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5875   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5876   if (fd != -1) {
  5877     struct stat buf;
  5878     ::close(fd);
  5879     while (::stat(filename, &buf) == 0) {
  5880       (void)::poll(NULL, 0, 100);
  5882   } else {
  5883     jio_fprintf(stderr,
  5884       "Could not open pause file '%s', continuing immediately.\n", filename);
  5889 // Refer to the comments in os_solaris.cpp park-unpark.
  5890 //
  5891 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5892 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5893 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5894 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5895 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5896 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5897 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5898 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5899 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5900 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5901 // of libpthread avoids the problem, but isn't practical.
  5902 //
  5903 // Possible remedies:
  5904 //
  5905 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5906 //      This is palliative and probabilistic, however.  If the thread is preempted
  5907 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5908 //      than the minimum period may have passed, and the abstime may be stale (in the
  5909 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5910 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5911 //
  5912 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5913 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5914 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5915 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5916 //      thread.
  5917 //
  5918 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5919 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5920 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5921 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5922 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5923 //      timers in a graceful fashion.
  5924 //
  5925 // 4.   When the abstime value is in the past it appears that control returns
  5926 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5927 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5928 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5929 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5930 //      It may be possible to avoid reinitialization by checking the return
  5931 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5932 //      condvar we must establish the invariant that cond_signal() is only called
  5933 //      within critical sections protected by the adjunct mutex.  This prevents
  5934 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5935 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5936 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5937 //
  5938 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5939 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5940 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5941 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5942 //
  5943 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5944 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5945 // and only enabling the work-around for vulnerable environments.
  5947 // utility to compute the abstime argument to timedwait:
  5948 // millis is the relative timeout time
  5949 // abstime will be the absolute timeout time
  5950 // TODO: replace compute_abstime() with unpackTime()
  5952 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5953   if (millis < 0)  millis = 0;
  5955   jlong seconds = millis / 1000;
  5956   millis %= 1000;
  5957   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5958     seconds = 50000000;
  5961   if (os::Linux::supports_monotonic_clock()) {
  5962     struct timespec now;
  5963     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5964     assert_status(status == 0, status, "clock_gettime");
  5965     abstime->tv_sec = now.tv_sec  + seconds;
  5966     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5967     if (nanos >= NANOSECS_PER_SEC) {
  5968       abstime->tv_sec += 1;
  5969       nanos -= NANOSECS_PER_SEC;
  5971     abstime->tv_nsec = nanos;
  5972   } else {
  5973     struct timeval now;
  5974     int status = gettimeofday(&now, NULL);
  5975     assert(status == 0, "gettimeofday");
  5976     abstime->tv_sec = now.tv_sec  + seconds;
  5977     long usec = now.tv_usec + millis * 1000;
  5978     if (usec >= 1000000) {
  5979       abstime->tv_sec += 1;
  5980       usec -= 1000000;
  5982     abstime->tv_nsec = usec * 1000;
  5984   return abstime;
  5988 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5989 // Conceptually TryPark() should be equivalent to park(0).
  5991 int os::PlatformEvent::TryPark() {
  5992   for (;;) {
  5993     const int v = _Event ;
  5994     guarantee ((v == 0) || (v == 1), "invariant") ;
  5995     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5999 void os::PlatformEvent::park() {       // AKA "down()"
  6000   // Invariant: Only the thread associated with the Event/PlatformEvent
  6001   // may call park().
  6002   // TODO: assert that _Assoc != NULL or _Assoc == Self
  6003   int v ;
  6004   for (;;) {
  6005       v = _Event ;
  6006       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6008   guarantee (v >= 0, "invariant") ;
  6009   if (v == 0) {
  6010      // Do this the hard way by blocking ...
  6011      int status = pthread_mutex_lock(_mutex);
  6012      assert_status(status == 0, status, "mutex_lock");
  6013      guarantee (_nParked == 0, "invariant") ;
  6014      ++ _nParked ;
  6015      while (_Event < 0) {
  6016         status = pthread_cond_wait(_cond, _mutex);
  6017         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  6018         // Treat this the same as if the wait was interrupted
  6019         if (status == ETIME) { status = EINTR; }
  6020         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  6022      -- _nParked ;
  6024     _Event = 0 ;
  6025      status = pthread_mutex_unlock(_mutex);
  6026      assert_status(status == 0, status, "mutex_unlock");
  6027     // Paranoia to ensure our locked and lock-free paths interact
  6028     // correctly with each other.
  6029     OrderAccess::fence();
  6031   guarantee (_Event >= 0, "invariant") ;
  6034 int os::PlatformEvent::park(jlong millis) {
  6035   guarantee (_nParked == 0, "invariant") ;
  6037   int v ;
  6038   for (;;) {
  6039       v = _Event ;
  6040       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6042   guarantee (v >= 0, "invariant") ;
  6043   if (v != 0) return OS_OK ;
  6045   // We do this the hard way, by blocking the thread.
  6046   // Consider enforcing a minimum timeout value.
  6047   struct timespec abst;
  6048   compute_abstime(&abst, millis);
  6050   int ret = OS_TIMEOUT;
  6051   int status = pthread_mutex_lock(_mutex);
  6052   assert_status(status == 0, status, "mutex_lock");
  6053   guarantee (_nParked == 0, "invariant") ;
  6054   ++_nParked ;
  6056   // Object.wait(timo) will return because of
  6057   // (a) notification
  6058   // (b) timeout
  6059   // (c) thread.interrupt
  6060   //
  6061   // Thread.interrupt and object.notify{All} both call Event::set.
  6062   // That is, we treat thread.interrupt as a special case of notification.
  6063   // The underlying Solaris implementation, cond_timedwait, admits
  6064   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  6065   // JVM from making those visible to Java code.  As such, we must
  6066   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  6067   //
  6068   // TODO: properly differentiate simultaneous notify+interrupt.
  6069   // In that case, we should propagate the notify to another waiter.
  6071   while (_Event < 0) {
  6072     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  6073     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6074       pthread_cond_destroy (_cond);
  6075       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  6077     assert_status(status == 0 || status == EINTR ||
  6078                   status == ETIME || status == ETIMEDOUT,
  6079                   status, "cond_timedwait");
  6080     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  6081     if (status == ETIME || status == ETIMEDOUT) break ;
  6082     // We consume and ignore EINTR and spurious wakeups.
  6084   --_nParked ;
  6085   if (_Event >= 0) {
  6086      ret = OS_OK;
  6088   _Event = 0 ;
  6089   status = pthread_mutex_unlock(_mutex);
  6090   assert_status(status == 0, status, "mutex_unlock");
  6091   assert (_nParked == 0, "invariant") ;
  6092   // Paranoia to ensure our locked and lock-free paths interact
  6093   // correctly with each other.
  6094   OrderAccess::fence();
  6095   return ret;
  6098 void os::PlatformEvent::unpark() {
  6099   // Transitions for _Event:
  6100   //    0 :=> 1
  6101   //    1 :=> 1
  6102   //   -1 :=> either 0 or 1; must signal target thread
  6103   //          That is, we can safely transition _Event from -1 to either
  6104   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6105   //          unpark() calls.
  6106   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6107   //
  6108   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6109   // that it will take two back-to-back park() calls for the owning
  6110   // thread to block. This has the benefit of forcing a spurious return
  6111   // from the first park() call after an unpark() call which will help
  6112   // shake out uses of park() and unpark() without condition variables.
  6114   if (Atomic::xchg(1, &_Event) >= 0) return;
  6116   // Wait for the thread associated with the event to vacate
  6117   int status = pthread_mutex_lock(_mutex);
  6118   assert_status(status == 0, status, "mutex_lock");
  6119   int AnyWaiters = _nParked;
  6120   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6121   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  6122     AnyWaiters = 0;
  6123     pthread_cond_signal(_cond);
  6125   status = pthread_mutex_unlock(_mutex);
  6126   assert_status(status == 0, status, "mutex_unlock");
  6127   if (AnyWaiters != 0) {
  6128     status = pthread_cond_signal(_cond);
  6129     assert_status(status == 0, status, "cond_signal");
  6132   // Note that we signal() _after dropping the lock for "immortal" Events.
  6133   // This is safe and avoids a common class of  futile wakeups.  In rare
  6134   // circumstances this can cause a thread to return prematurely from
  6135   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  6136   // simply re-test the condition and re-park itself.
  6140 // JSR166
  6141 // -------------------------------------------------------
  6143 /*
  6144  * The solaris and linux implementations of park/unpark are fairly
  6145  * conservative for now, but can be improved. They currently use a
  6146  * mutex/condvar pair, plus a a count.
  6147  * Park decrements count if > 0, else does a condvar wait.  Unpark
  6148  * sets count to 1 and signals condvar.  Only one thread ever waits
  6149  * on the condvar. Contention seen when trying to park implies that someone
  6150  * is unparking you, so don't wait. And spurious returns are fine, so there
  6151  * is no need to track notifications.
  6152  */
  6154 /*
  6155  * This code is common to linux and solaris and will be moved to a
  6156  * common place in dolphin.
  6158  * The passed in time value is either a relative time in nanoseconds
  6159  * or an absolute time in milliseconds. Either way it has to be unpacked
  6160  * into suitable seconds and nanoseconds components and stored in the
  6161  * given timespec structure.
  6162  * Given time is a 64-bit value and the time_t used in the timespec is only
  6163  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6164  * overflow if times way in the future are given. Further on Solaris versions
  6165  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6166  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6167  * As it will be 28 years before "now + 100000000" will overflow we can
  6168  * ignore overflow and just impose a hard-limit on seconds using the value
  6169  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6170  * years from "now".
  6171  */
  6173 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6174   assert (time > 0, "convertTime");
  6175   time_t max_secs = 0;
  6177   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  6178     struct timeval now;
  6179     int status = gettimeofday(&now, NULL);
  6180     assert(status == 0, "gettimeofday");
  6182     max_secs = now.tv_sec + MAX_SECS;
  6184     if (isAbsolute) {
  6185       jlong secs = time / 1000;
  6186       if (secs > max_secs) {
  6187         absTime->tv_sec = max_secs;
  6188       } else {
  6189         absTime->tv_sec = secs;
  6191       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6192     } else {
  6193       jlong secs = time / NANOSECS_PER_SEC;
  6194       if (secs >= MAX_SECS) {
  6195         absTime->tv_sec = max_secs;
  6196         absTime->tv_nsec = 0;
  6197       } else {
  6198         absTime->tv_sec = now.tv_sec + secs;
  6199         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6200         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6201           absTime->tv_nsec -= NANOSECS_PER_SEC;
  6202           ++absTime->tv_sec; // note: this must be <= max_secs
  6206   } else {
  6207     // must be relative using monotonic clock
  6208     struct timespec now;
  6209     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6210     assert_status(status == 0, status, "clock_gettime");
  6211     max_secs = now.tv_sec + MAX_SECS;
  6212     jlong secs = time / NANOSECS_PER_SEC;
  6213     if (secs >= MAX_SECS) {
  6214       absTime->tv_sec = max_secs;
  6215       absTime->tv_nsec = 0;
  6216     } else {
  6217       absTime->tv_sec = now.tv_sec + secs;
  6218       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  6219       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6220         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6221         ++absTime->tv_sec; // note: this must be <= max_secs
  6225   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6226   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6227   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6228   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6231 void Parker::park(bool isAbsolute, jlong time) {
  6232   // Ideally we'd do something useful while spinning, such
  6233   // as calling unpackTime().
  6235   // Optional fast-path check:
  6236   // Return immediately if a permit is available.
  6237   // We depend on Atomic::xchg() having full barrier semantics
  6238   // since we are doing a lock-free update to _counter.
  6239   if (Atomic::xchg(0, &_counter) > 0) return;
  6241   Thread* thread = Thread::current();
  6242   assert(thread->is_Java_thread(), "Must be JavaThread");
  6243   JavaThread *jt = (JavaThread *)thread;
  6245   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  6246   // Check interrupt before trying to wait
  6247   if (Thread::is_interrupted(thread, false)) {
  6248     return;
  6251   // Next, demultiplex/decode time arguments
  6252   timespec absTime;
  6253   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6254     return;
  6256   if (time > 0) {
  6257     unpackTime(&absTime, isAbsolute, time);
  6261   // Enter safepoint region
  6262   // Beware of deadlocks such as 6317397.
  6263   // The per-thread Parker:: mutex is a classic leaf-lock.
  6264   // In particular a thread must never block on the Threads_lock while
  6265   // holding the Parker:: mutex.  If safepoints are pending both the
  6266   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6267   ThreadBlockInVM tbivm(jt);
  6269   // Don't wait if cannot get lock since interference arises from
  6270   // unblocking.  Also. check interrupt before trying wait
  6271   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6272     return;
  6275   int status ;
  6276   if (_counter > 0)  { // no wait needed
  6277     _counter = 0;
  6278     status = pthread_mutex_unlock(_mutex);
  6279     assert (status == 0, "invariant") ;
  6280     // Paranoia to ensure our locked and lock-free paths interact
  6281     // correctly with each other and Java-level accesses.
  6282     OrderAccess::fence();
  6283     return;
  6286 #ifdef ASSERT
  6287   // Don't catch signals while blocked; let the running threads have the signals.
  6288   // (This allows a debugger to break into the running thread.)
  6289   sigset_t oldsigs;
  6290   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6291   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6292 #endif
  6294   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6295   jt->set_suspend_equivalent();
  6296   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6298   assert(_cur_index == -1, "invariant");
  6299   if (time == 0) {
  6300     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6301     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6302   } else {
  6303     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6304     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6305     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6306       pthread_cond_destroy (&_cond[_cur_index]) ;
  6307       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6310   _cur_index = -1;
  6311   assert_status(status == 0 || status == EINTR ||
  6312                 status == ETIME || status == ETIMEDOUT,
  6313                 status, "cond_timedwait");
  6315 #ifdef ASSERT
  6316   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6317 #endif
  6319   _counter = 0 ;
  6320   status = pthread_mutex_unlock(_mutex) ;
  6321   assert_status(status == 0, status, "invariant") ;
  6322   // Paranoia to ensure our locked and lock-free paths interact
  6323   // correctly with each other and Java-level accesses.
  6324   OrderAccess::fence();
  6326   // If externally suspended while waiting, re-suspend
  6327   if (jt->handle_special_suspend_equivalent_condition()) {
  6328     jt->java_suspend_self();
  6332 void Parker::unpark() {
  6333   int s, status ;
  6334   status = pthread_mutex_lock(_mutex);
  6335   assert (status == 0, "invariant") ;
  6336   s = _counter;
  6337   _counter = 1;
  6338   if (s < 1) {
  6339     // thread might be parked
  6340     if (_cur_index != -1) {
  6341       // thread is definitely parked
  6342       if (WorkAroundNPTLTimedWaitHang) {
  6343         status = pthread_cond_signal (&_cond[_cur_index]);
  6344         assert (status == 0, "invariant");
  6345         status = pthread_mutex_unlock(_mutex);
  6346         assert (status == 0, "invariant");
  6347       } else {
  6348         // must capture correct index before unlocking
  6349         int index = _cur_index;
  6350         status = pthread_mutex_unlock(_mutex);
  6351         assert (status == 0, "invariant");
  6352         status = pthread_cond_signal (&_cond[index]);
  6353         assert (status == 0, "invariant");
  6355     } else {
  6356       pthread_mutex_unlock(_mutex);
  6357       assert (status == 0, "invariant") ;
  6359   } else {
  6360     pthread_mutex_unlock(_mutex);
  6361     assert (status == 0, "invariant") ;
  6366 extern char** environ;
  6368 // Run the specified command in a separate process. Return its exit value,
  6369 // or -1 on failure (e.g. can't fork a new process).
  6370 // Unlike system(), this function can be called from signal handler. It
  6371 // doesn't block SIGINT et al.
  6372 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
  6373   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6375   pid_t pid ;
  6377   if (use_vfork_if_available) {
  6378     pid = vfork();
  6379   } else {
  6380     pid = fork();
  6383   if (pid < 0) {
  6384     // fork failed
  6385     return -1;
  6387   } else if (pid == 0) {
  6388     // child process
  6390     execve("/bin/sh", (char* const*)argv, environ);
  6392     // execve failed
  6393     _exit(-1);
  6395   } else  {
  6396     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6397     // care about the actual exit code, for now.
  6399     int status;
  6401     // Wait for the child process to exit.  This returns immediately if
  6402     // the child has already exited. */
  6403     while (waitpid(pid, &status, 0) < 0) {
  6404         switch (errno) {
  6405         case ECHILD: return 0;
  6406         case EINTR: break;
  6407         default: return -1;
  6411     if (WIFEXITED(status)) {
  6412        // The child exited normally; get its exit code.
  6413        return WEXITSTATUS(status);
  6414     } else if (WIFSIGNALED(status)) {
  6415        // The child exited because of a signal
  6416        // The best value to return is 0x80 + signal number,
  6417        // because that is what all Unix shells do, and because
  6418        // it allows callers to distinguish between process exit and
  6419        // process death by signal.
  6420        return 0x80 + WTERMSIG(status);
  6421     } else {
  6422        // Unknown exit code; pass it through
  6423        return status;
  6428 // is_headless_jre()
  6429 //
  6430 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6431 // in order to report if we are running in a headless jre
  6432 //
  6433 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6434 // as libawt.so, and renamed libawt_xawt.so
  6435 //
  6436 bool os::is_headless_jre() {
  6437     struct stat statbuf;
  6438     char buf[MAXPATHLEN];
  6439     char libmawtpath[MAXPATHLEN];
  6440     const char *xawtstr  = "/xawt/libmawt.so";
  6441     const char *new_xawtstr = "/libawt_xawt.so";
  6442     char *p;
  6444     // Get path to libjvm.so
  6445     os::jvm_path(buf, sizeof(buf));
  6447     // Get rid of libjvm.so
  6448     p = strrchr(buf, '/');
  6449     if (p == NULL) return false;
  6450     else *p = '\0';
  6452     // Get rid of client or server
  6453     p = strrchr(buf, '/');
  6454     if (p == NULL) return false;
  6455     else *p = '\0';
  6457     // check xawt/libmawt.so
  6458     strcpy(libmawtpath, buf);
  6459     strcat(libmawtpath, xawtstr);
  6460     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6462     // check libawt_xawt.so
  6463     strcpy(libmawtpath, buf);
  6464     strcat(libmawtpath, new_xawtstr);
  6465     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6467     return true;
  6470 // Get the default path to the core file
  6471 // Returns the length of the string
  6472 int os::get_core_path(char* buffer, size_t bufferSize) {
  6473   const char* p = get_current_directory(buffer, bufferSize);
  6475   if (p == NULL) {
  6476     assert(p != NULL, "failed to get current directory");
  6477     return 0;
  6480   return strlen(buffer);
  6483 /////////////// Unit tests ///////////////
  6485 #ifndef PRODUCT
  6487 #define test_log(...) \
  6488   do {\
  6489     if (VerboseInternalVMTests) { \
  6490       tty->print_cr(__VA_ARGS__); \
  6491       tty->flush(); \
  6492     }\
  6493   } while (false)
  6495 class TestReserveMemorySpecial : AllStatic {
  6496  public:
  6497   static void small_page_write(void* addr, size_t size) {
  6498     size_t page_size = os::vm_page_size();
  6500     char* end = (char*)addr + size;
  6501     for (char* p = (char*)addr; p < end; p += page_size) {
  6502       *p = 1;
  6506   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6507     if (!UseHugeTLBFS) {
  6508       return;
  6511     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6513     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6515     if (addr != NULL) {
  6516       small_page_write(addr, size);
  6518       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6522   static void test_reserve_memory_special_huge_tlbfs_only() {
  6523     if (!UseHugeTLBFS) {
  6524       return;
  6527     size_t lp = os::large_page_size();
  6529     for (size_t size = lp; size <= lp * 10; size += lp) {
  6530       test_reserve_memory_special_huge_tlbfs_only(size);
  6534   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6535     size_t lp = os::large_page_size();
  6536     size_t ag = os::vm_allocation_granularity();
  6538     // sizes to test
  6539     const size_t sizes[] = {
  6540       lp, lp + ag, lp + lp / 2, lp * 2,
  6541       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6542       lp * 10, lp * 10 + lp / 2
  6543     };
  6544     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6546     // For each size/alignment combination, we test three scenarios:
  6547     // 1) with req_addr == NULL
  6548     // 2) with a non-null req_addr at which we expect to successfully allocate
  6549     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6550     //    expect the allocation to either fail or to ignore req_addr
  6552     // Pre-allocate two areas; they shall be as large as the largest allocation
  6553     //  and aligned to the largest alignment we will be testing.
  6554     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6555     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6556       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6557       -1, 0);
  6558     assert(mapping1 != MAP_FAILED, "should work");
  6560     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6561       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6562       -1, 0);
  6563     assert(mapping2 != MAP_FAILED, "should work");
  6565     // Unmap the first mapping, but leave the second mapping intact: the first
  6566     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6567     // mapping, still intact, as "bad" req_addr (case 3).
  6568     ::munmap(mapping1, mapping_size);
  6570     // Case 1
  6571     test_log("%s, req_addr NULL:", __FUNCTION__);
  6572     test_log("size            align           result");
  6574     for (int i = 0; i < num_sizes; i++) {
  6575       const size_t size = sizes[i];
  6576       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6577         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6578         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6579             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6580         if (p != NULL) {
  6581           assert(is_ptr_aligned(p, alignment), "must be");
  6582           small_page_write(p, size);
  6583           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6588     // Case 2
  6589     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6590     test_log("size            align           req_addr         result");
  6592     for (int i = 0; i < num_sizes; i++) {
  6593       const size_t size = sizes[i];
  6594       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6595         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6596         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6597         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6598             size, alignment, req_addr, p,
  6599             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6600         if (p != NULL) {
  6601           assert(p == req_addr, "must be");
  6602           small_page_write(p, size);
  6603           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6608     // Case 3
  6609     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6610     test_log("size            align           req_addr         result");
  6612     for (int i = 0; i < num_sizes; i++) {
  6613       const size_t size = sizes[i];
  6614       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6615         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6616         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6617         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6618             size, alignment, req_addr, p,
  6619             ((p != NULL ? "" : "(failed)")));
  6620         // as the area around req_addr contains already existing mappings, the API should always
  6621         // return NULL (as per contract, it cannot return another address)
  6622         assert(p == NULL, "must be");
  6626     ::munmap(mapping2, mapping_size);
  6630   static void test_reserve_memory_special_huge_tlbfs() {
  6631     if (!UseHugeTLBFS) {
  6632       return;
  6635     test_reserve_memory_special_huge_tlbfs_only();
  6636     test_reserve_memory_special_huge_tlbfs_mixed();
  6639   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6640     if (!UseSHM) {
  6641       return;
  6644     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6646     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6648     if (addr != NULL) {
  6649       assert(is_ptr_aligned(addr, alignment), "Check");
  6650       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6652       small_page_write(addr, size);
  6654       os::Linux::release_memory_special_shm(addr, size);
  6658   static void test_reserve_memory_special_shm() {
  6659     size_t lp = os::large_page_size();
  6660     size_t ag = os::vm_allocation_granularity();
  6662     for (size_t size = ag; size < lp * 3; size += ag) {
  6663       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6664         test_reserve_memory_special_shm(size, alignment);
  6669   static void test() {
  6670     test_reserve_memory_special_huge_tlbfs();
  6671     test_reserve_memory_special_shm();
  6673 };
  6675 void TestReserveMemorySpecial_test() {
  6676   TestReserveMemorySpecial::test();
  6679 #endif

mercurial