src/share/vm/opto/node.cpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8604
04d83ba48607
child 9852
70aa912cebe5
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/loopnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/matcher.hpp"
    33 #include "opto/node.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/regmask.hpp"
    36 #include "opto/type.hpp"
    37 #include "utilities/copy.hpp"
    39 class RegMask;
    40 // #include "phase.hpp"
    41 class PhaseTransform;
    42 class PhaseGVN;
    44 // Arena we are currently building Nodes in
    45 const uint Node::NotAMachineReg = 0xffff0000;
    47 #ifndef PRODUCT
    48 extern int nodes_created;
    49 #endif
    51 #ifdef ASSERT
    53 //-------------------------- construct_node------------------------------------
    54 // Set a breakpoint here to identify where a particular node index is built.
    55 void Node::verify_construction() {
    56   _debug_orig = NULL;
    57   int old_debug_idx = Compile::debug_idx();
    58   int new_debug_idx = old_debug_idx+1;
    59   if (new_debug_idx > 0) {
    60     // Arrange that the lowest five decimal digits of _debug_idx
    61     // will repeat those of _idx. In case this is somehow pathological,
    62     // we continue to assign negative numbers (!) consecutively.
    63     const int mod = 100000;
    64     int bump = (int)(_idx - new_debug_idx) % mod;
    65     if (bump < 0)  bump += mod;
    66     assert(bump >= 0 && bump < mod, "");
    67     new_debug_idx += bump;
    68   }
    69   Compile::set_debug_idx(new_debug_idx);
    70   set_debug_idx( new_debug_idx );
    71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
    72   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
    73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    75     BREAKPOINT;
    76   }
    77 #if OPTO_DU_ITERATOR_ASSERT
    78   _last_del = NULL;
    79   _del_tick = 0;
    80 #endif
    81   _hash_lock = 0;
    82 }
    85 // #ifdef ASSERT ...
    87 #if OPTO_DU_ITERATOR_ASSERT
    88 void DUIterator_Common::sample(const Node* node) {
    89   _vdui     = VerifyDUIterators;
    90   _node     = node;
    91   _outcnt   = node->_outcnt;
    92   _del_tick = node->_del_tick;
    93   _last     = NULL;
    94 }
    96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
    97   assert(_node     == node, "consistent iterator source");
    98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
    99 }
   101 void DUIterator_Common::verify_resync() {
   102   // Ensure that the loop body has just deleted the last guy produced.
   103   const Node* node = _node;
   104   // Ensure that at least one copy of the last-seen edge was deleted.
   105   // Note:  It is OK to delete multiple copies of the last-seen edge.
   106   // Unfortunately, we have no way to verify that all the deletions delete
   107   // that same edge.  On this point we must use the Honor System.
   108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
   109   assert(node->_last_del == _last, "must have deleted the edge just produced");
   110   // We liked this deletion, so accept the resulting outcnt and tick.
   111   _outcnt   = node->_outcnt;
   112   _del_tick = node->_del_tick;
   113 }
   115 void DUIterator_Common::reset(const DUIterator_Common& that) {
   116   if (this == &that)  return;  // ignore assignment to self
   117   if (!_vdui) {
   118     // We need to initialize everything, overwriting garbage values.
   119     _last = that._last;
   120     _vdui = that._vdui;
   121   }
   122   // Note:  It is legal (though odd) for an iterator over some node x
   123   // to be reassigned to iterate over another node y.  Some doubly-nested
   124   // progress loops depend on being able to do this.
   125   const Node* node = that._node;
   126   // Re-initialize everything, except _last.
   127   _node     = node;
   128   _outcnt   = node->_outcnt;
   129   _del_tick = node->_del_tick;
   130 }
   132 void DUIterator::sample(const Node* node) {
   133   DUIterator_Common::sample(node);      // Initialize the assertion data.
   134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
   135 }
   137 void DUIterator::verify(const Node* node, bool at_end_ok) {
   138   DUIterator_Common::verify(node, at_end_ok);
   139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
   140 }
   142 void DUIterator::verify_increment() {
   143   if (_refresh_tick & 1) {
   144     // We have refreshed the index during this loop.
   145     // Fix up _idx to meet asserts.
   146     if (_idx > _outcnt)  _idx = _outcnt;
   147   }
   148   verify(_node, true);
   149 }
   151 void DUIterator::verify_resync() {
   152   // Note:  We do not assert on _outcnt, because insertions are OK here.
   153   DUIterator_Common::verify_resync();
   154   // Make sure we are still in sync, possibly with no more out-edges:
   155   verify(_node, true);
   156 }
   158 void DUIterator::reset(const DUIterator& that) {
   159   if (this == &that)  return;  // self assignment is always a no-op
   160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
   161   assert(that._idx          == 0, "assign only the result of Node::outs()");
   162   assert(_idx               == that._idx, "already assigned _idx");
   163   if (!_vdui) {
   164     // We need to initialize everything, overwriting garbage values.
   165     sample(that._node);
   166   } else {
   167     DUIterator_Common::reset(that);
   168     if (_refresh_tick & 1) {
   169       _refresh_tick++;                  // Clear the "was refreshed" flag.
   170     }
   171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
   172   }
   173 }
   175 void DUIterator::refresh() {
   176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
   177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
   178 }
   180 void DUIterator::verify_finish() {
   181   // If the loop has killed the node, do not require it to re-run.
   182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
   183   // If this assert triggers, it means that a loop used refresh_out_pos
   184   // to re-synch an iteration index, but the loop did not correctly
   185   // re-run itself, using a "while (progress)" construct.
   186   // This iterator enforces the rule that you must keep trying the loop
   187   // until it "runs clean" without any need for refreshing.
   188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
   189 }
   192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
   193   DUIterator_Common::verify(node, at_end_ok);
   194   Node** out    = node->_out;
   195   uint   cnt    = node->_outcnt;
   196   assert(cnt == _outcnt, "no insertions allowed");
   197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
   198   // This last check is carefully designed to work for NO_OUT_ARRAY.
   199 }
   201 void DUIterator_Fast::verify_limit() {
   202   const Node* node = _node;
   203   verify(node, true);
   204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
   205 }
   207 void DUIterator_Fast::verify_resync() {
   208   const Node* node = _node;
   209   if (_outp == node->_out + _outcnt) {
   210     // Note that the limit imax, not the pointer i, gets updated with the
   211     // exact count of deletions.  (For the pointer it's always "--i".)
   212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
   213     // This is a limit pointer, with a name like "imax".
   214     // Fudge the _last field so that the common assert will be happy.
   215     _last = (Node*) node->_last_del;
   216     DUIterator_Common::verify_resync();
   217   } else {
   218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
   219     // A normal internal pointer.
   220     DUIterator_Common::verify_resync();
   221     // Make sure we are still in sync, possibly with no more out-edges:
   222     verify(node, true);
   223   }
   224 }
   226 void DUIterator_Fast::verify_relimit(uint n) {
   227   const Node* node = _node;
   228   assert((int)n > 0, "use imax -= n only with a positive count");
   229   // This must be a limit pointer, with a name like "imax".
   230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
   231   // The reported number of deletions must match what the node saw.
   232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
   233   // Fudge the _last field so that the common assert will be happy.
   234   _last = (Node*) node->_last_del;
   235   DUIterator_Common::verify_resync();
   236 }
   238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
   239   assert(_outp              == that._outp, "already assigned _outp");
   240   DUIterator_Common::reset(that);
   241 }
   243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
   244   // at_end_ok means the _outp is allowed to underflow by 1
   245   _outp += at_end_ok;
   246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
   247   _outp -= at_end_ok;
   248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
   249 }
   251 void DUIterator_Last::verify_limit() {
   252   // Do not require the limit address to be resynched.
   253   //verify(node, true);
   254   assert(_outp == _node->_out, "limit still correct");
   255 }
   257 void DUIterator_Last::verify_step(uint num_edges) {
   258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
   259   _outcnt   -= num_edges;
   260   _del_tick += num_edges;
   261   // Make sure we are still in sync, possibly with no more out-edges:
   262   const Node* node = _node;
   263   verify(node, true);
   264   assert(node->_last_del == _last, "must have deleted the edge just produced");
   265 }
   267 #endif //OPTO_DU_ITERATOR_ASSERT
   270 #endif //ASSERT
   273 // This constant used to initialize _out may be any non-null value.
   274 // The value NULL is reserved for the top node only.
   275 #define NO_OUT_ARRAY ((Node**)-1)
   277 // This funny expression handshakes with Node::operator new
   278 // to pull Compile::current out of the new node's _out field,
   279 // and then calls a subroutine which manages most field
   280 // initializations.  The only one which is tricky is the
   281 // _idx field, which is const, and so must be initialized
   282 // by a return value, not an assignment.
   283 //
   284 // (Aren't you thankful that Java finals don't require so many tricks?)
   285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
   286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
   287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   288 #endif
   290 // Out-of-line code from node constructors.
   291 // Executed only when extra debug info. is being passed around.
   292 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
   293   C->set_node_notes_at(idx, nn);
   294 }
   296 // Shared initialization code.
   297 inline int Node::Init(int req, Compile* C) {
   298   assert(Compile::current() == C, "must use operator new(Compile*)");
   299   int idx = C->next_unique();
   301   // Allocate memory for the necessary number of edges.
   302   if (req > 0) {
   303     // Allocate space for _in array to have double alignment.
   304     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
   305 #ifdef ASSERT
   306     _in[req-1] = this; // magic cookie for assertion check
   307 #endif
   308   }
   309   // If there are default notes floating around, capture them:
   310   Node_Notes* nn = C->default_node_notes();
   311   if (nn != NULL)  init_node_notes(C, idx, nn);
   313   // Note:  At this point, C is dead,
   314   // and we begin to initialize the new Node.
   316   _cnt = _max = req;
   317   _outcnt = _outmax = 0;
   318   _class_id = Class_Node;
   319   _flags = 0;
   320   _out = NO_OUT_ARRAY;
   321   return idx;
   322 }
   324 //------------------------------Node-------------------------------------------
   325 // Create a Node, with a given number of required edges.
   326 Node::Node(uint req)
   327   : _idx(IDX_INIT(req))
   328 #ifdef ASSERT
   329   , _parse_idx(_idx)
   330 #endif
   331 {
   332   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
   333   debug_only( verify_construction() );
   334   NOT_PRODUCT(nodes_created++);
   335   if (req == 0) {
   336     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
   337     _in = NULL;
   338   } else {
   339     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
   340     Node** to = _in;
   341     for(uint i = 0; i < req; i++) {
   342       to[i] = NULL;
   343     }
   344   }
   345 }
   347 //------------------------------Node-------------------------------------------
   348 Node::Node(Node *n0)
   349   : _idx(IDX_INIT(1))
   350 #ifdef ASSERT
   351   , _parse_idx(_idx)
   352 #endif
   353 {
   354   debug_only( verify_construction() );
   355   NOT_PRODUCT(nodes_created++);
   356   // Assert we allocated space for input array already
   357   assert( _in[0] == this, "Must pass arg count to 'new'" );
   358   assert( is_not_dead(n0), "can not use dead node");
   359   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   360 }
   362 //------------------------------Node-------------------------------------------
   363 Node::Node(Node *n0, Node *n1)
   364   : _idx(IDX_INIT(2))
   365 #ifdef ASSERT
   366   , _parse_idx(_idx)
   367 #endif
   368 {
   369   debug_only( verify_construction() );
   370   NOT_PRODUCT(nodes_created++);
   371   // Assert we allocated space for input array already
   372   assert( _in[1] == this, "Must pass arg count to 'new'" );
   373   assert( is_not_dead(n0), "can not use dead node");
   374   assert( is_not_dead(n1), "can not use dead node");
   375   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   376   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   377 }
   379 //------------------------------Node-------------------------------------------
   380 Node::Node(Node *n0, Node *n1, Node *n2)
   381   : _idx(IDX_INIT(3))
   382 #ifdef ASSERT
   383   , _parse_idx(_idx)
   384 #endif
   385 {
   386   debug_only( verify_construction() );
   387   NOT_PRODUCT(nodes_created++);
   388   // Assert we allocated space for input array already
   389   assert( _in[2] == this, "Must pass arg count to 'new'" );
   390   assert( is_not_dead(n0), "can not use dead node");
   391   assert( is_not_dead(n1), "can not use dead node");
   392   assert( is_not_dead(n2), "can not use dead node");
   393   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   394   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   395   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   396 }
   398 //------------------------------Node-------------------------------------------
   399 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
   400   : _idx(IDX_INIT(4))
   401 #ifdef ASSERT
   402   , _parse_idx(_idx)
   403 #endif
   404 {
   405   debug_only( verify_construction() );
   406   NOT_PRODUCT(nodes_created++);
   407   // Assert we allocated space for input array already
   408   assert( _in[3] == this, "Must pass arg count to 'new'" );
   409   assert( is_not_dead(n0), "can not use dead node");
   410   assert( is_not_dead(n1), "can not use dead node");
   411   assert( is_not_dead(n2), "can not use dead node");
   412   assert( is_not_dead(n3), "can not use dead node");
   413   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   414   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   415   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   416   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   417 }
   419 //------------------------------Node-------------------------------------------
   420 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
   421   : _idx(IDX_INIT(5))
   422 #ifdef ASSERT
   423   , _parse_idx(_idx)
   424 #endif
   425 {
   426   debug_only( verify_construction() );
   427   NOT_PRODUCT(nodes_created++);
   428   // Assert we allocated space for input array already
   429   assert( _in[4] == this, "Must pass arg count to 'new'" );
   430   assert( is_not_dead(n0), "can not use dead node");
   431   assert( is_not_dead(n1), "can not use dead node");
   432   assert( is_not_dead(n2), "can not use dead node");
   433   assert( is_not_dead(n3), "can not use dead node");
   434   assert( is_not_dead(n4), "can not use dead node");
   435   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   436   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   437   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   438   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   439   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   440 }
   442 //------------------------------Node-------------------------------------------
   443 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   444                      Node *n4, Node *n5)
   445   : _idx(IDX_INIT(6))
   446 #ifdef ASSERT
   447   , _parse_idx(_idx)
   448 #endif
   449 {
   450   debug_only( verify_construction() );
   451   NOT_PRODUCT(nodes_created++);
   452   // Assert we allocated space for input array already
   453   assert( _in[5] == this, "Must pass arg count to 'new'" );
   454   assert( is_not_dead(n0), "can not use dead node");
   455   assert( is_not_dead(n1), "can not use dead node");
   456   assert( is_not_dead(n2), "can not use dead node");
   457   assert( is_not_dead(n3), "can not use dead node");
   458   assert( is_not_dead(n4), "can not use dead node");
   459   assert( is_not_dead(n5), "can not use dead node");
   460   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   461   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   462   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   463   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   464   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   465   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   466 }
   468 //------------------------------Node-------------------------------------------
   469 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   470                      Node *n4, Node *n5, Node *n6)
   471   : _idx(IDX_INIT(7))
   472 #ifdef ASSERT
   473   , _parse_idx(_idx)
   474 #endif
   475 {
   476   debug_only( verify_construction() );
   477   NOT_PRODUCT(nodes_created++);
   478   // Assert we allocated space for input array already
   479   assert( _in[6] == this, "Must pass arg count to 'new'" );
   480   assert( is_not_dead(n0), "can not use dead node");
   481   assert( is_not_dead(n1), "can not use dead node");
   482   assert( is_not_dead(n2), "can not use dead node");
   483   assert( is_not_dead(n3), "can not use dead node");
   484   assert( is_not_dead(n4), "can not use dead node");
   485   assert( is_not_dead(n5), "can not use dead node");
   486   assert( is_not_dead(n6), "can not use dead node");
   487   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   488   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   489   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   490   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   491   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   492   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   493   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
   494 }
   497 //------------------------------clone------------------------------------------
   498 // Clone a Node.
   499 Node *Node::clone() const {
   500   Compile* C = Compile::current();
   501   uint s = size_of();           // Size of inherited Node
   502   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
   503   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
   504   // Set the new input pointer array
   505   n->_in = (Node**)(((char*)n)+s);
   506   // Cannot share the old output pointer array, so kill it
   507   n->_out = NO_OUT_ARRAY;
   508   // And reset the counters to 0
   509   n->_outcnt = 0;
   510   n->_outmax = 0;
   511   // Unlock this guy, since he is not in any hash table.
   512   debug_only(n->_hash_lock = 0);
   513   // Walk the old node's input list to duplicate its edges
   514   uint i;
   515   for( i = 0; i < len(); i++ ) {
   516     Node *x = in(i);
   517     n->_in[i] = x;
   518     if (x != NULL) x->add_out(n);
   519   }
   520   if (is_macro())
   521     C->add_macro_node(n);
   522   if (is_expensive())
   523     C->add_expensive_node(n);
   524   // If the cloned node is a range check dependent CastII, add it to the list.
   525   CastIINode* cast = n->isa_CastII();
   526   if (cast != NULL && cast->has_range_check()) {
   527     C->add_range_check_cast(cast);
   528   }
   530   n->set_idx(C->next_unique()); // Get new unique index as well
   531   debug_only( n->verify_construction() );
   532   NOT_PRODUCT(nodes_created++);
   533   // Do not patch over the debug_idx of a clone, because it makes it
   534   // impossible to break on the clone's moment of creation.
   535   //debug_only( n->set_debug_idx( debug_idx() ) );
   537   C->copy_node_notes_to(n, (Node*) this);
   539   // MachNode clone
   540   uint nopnds;
   541   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
   542     MachNode *mach  = n->as_Mach();
   543     MachNode *mthis = this->as_Mach();
   544     // Get address of _opnd_array.
   545     // It should be the same offset since it is the clone of this node.
   546     MachOper **from = mthis->_opnds;
   547     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
   548                     pointer_delta((const void*)from,
   549                                   (const void*)(&mthis->_opnds), 1));
   550     mach->_opnds = to;
   551     for ( uint i = 0; i < nopnds; ++i ) {
   552       to[i] = from[i]->clone(C);
   553     }
   554   }
   555   // cloning CallNode may need to clone JVMState
   556   if (n->is_Call()) {
   557     n->as_Call()->clone_jvms(C);
   558   }
   559   if (n->is_SafePoint()) {
   560     n->as_SafePoint()->clone_replaced_nodes();
   561   }
   562   return n;                     // Return the clone
   563 }
   565 //---------------------------setup_is_top--------------------------------------
   566 // Call this when changing the top node, to reassert the invariants
   567 // required by Node::is_top.  See Compile::set_cached_top_node.
   568 void Node::setup_is_top() {
   569   if (this == (Node*)Compile::current()->top()) {
   570     // This node has just become top.  Kill its out array.
   571     _outcnt = _outmax = 0;
   572     _out = NULL;                           // marker value for top
   573     assert(is_top(), "must be top");
   574   } else {
   575     if (_out == NULL)  _out = NO_OUT_ARRAY;
   576     assert(!is_top(), "must not be top");
   577   }
   578 }
   581 //------------------------------~Node------------------------------------------
   582 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   583 extern int reclaim_idx ;
   584 extern int reclaim_in  ;
   585 extern int reclaim_node;
   586 void Node::destruct() {
   587   // Eagerly reclaim unique Node numberings
   588   Compile* compile = Compile::current();
   589   if ((uint)_idx+1 == compile->unique()) {
   590     compile->set_unique(compile->unique()-1);
   591 #ifdef ASSERT
   592     reclaim_idx++;
   593 #endif
   594   }
   595   // Clear debug info:
   596   Node_Notes* nn = compile->node_notes_at(_idx);
   597   if (nn != NULL)  nn->clear();
   598   // Walk the input array, freeing the corresponding output edges
   599   _cnt = _max;  // forget req/prec distinction
   600   uint i;
   601   for( i = 0; i < _max; i++ ) {
   602     set_req(i, NULL);
   603     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
   604   }
   605   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
   606   // See if the input array was allocated just prior to the object
   607   int edge_size = _max*sizeof(void*);
   608   int out_edge_size = _outmax*sizeof(void*);
   609   char *edge_end = ((char*)_in) + edge_size;
   610   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
   611   char *out_edge_end = out_array + out_edge_size;
   612   int node_size = size_of();
   614   // Free the output edge array
   615   if (out_edge_size > 0) {
   616 #ifdef ASSERT
   617     if( out_edge_end == compile->node_arena()->hwm() )
   618       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
   619 #endif
   620     compile->node_arena()->Afree(out_array, out_edge_size);
   621   }
   623   // Free the input edge array and the node itself
   624   if( edge_end == (char*)this ) {
   625 #ifdef ASSERT
   626     if( edge_end+node_size == compile->node_arena()->hwm() ) {
   627       reclaim_in  += edge_size;
   628       reclaim_node+= node_size;
   629     }
   630 #else
   631     // It was; free the input array and object all in one hit
   632     compile->node_arena()->Afree(_in,edge_size+node_size);
   633 #endif
   634   } else {
   636     // Free just the input array
   637 #ifdef ASSERT
   638     if( edge_end == compile->node_arena()->hwm() )
   639       reclaim_in  += edge_size;
   640 #endif
   641     compile->node_arena()->Afree(_in,edge_size);
   643     // Free just the object
   644 #ifdef ASSERT
   645     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
   646       reclaim_node+= node_size;
   647 #else
   648     compile->node_arena()->Afree(this,node_size);
   649 #endif
   650   }
   651   if (is_macro()) {
   652     compile->remove_macro_node(this);
   653   }
   654   if (is_expensive()) {
   655     compile->remove_expensive_node(this);
   656   }
   657   CastIINode* cast = isa_CastII();
   658   if (cast != NULL && cast->has_range_check()) {
   659     compile->remove_range_check_cast(cast);
   660   }
   662   if (is_SafePoint()) {
   663     as_SafePoint()->delete_replaced_nodes();
   664   }
   665 #ifdef ASSERT
   666   // We will not actually delete the storage, but we'll make the node unusable.
   667   *(address*)this = badAddress;  // smash the C++ vtbl, probably
   668   _in = _out = (Node**) badAddress;
   669   _max = _cnt = _outmax = _outcnt = 0;
   670 #endif
   671 }
   673 //------------------------------grow-------------------------------------------
   674 // Grow the input array, making space for more edges
   675 void Node::grow( uint len ) {
   676   Arena* arena = Compile::current()->node_arena();
   677   uint new_max = _max;
   678   if( new_max == 0 ) {
   679     _max = 4;
   680     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
   681     Node** to = _in;
   682     to[0] = NULL;
   683     to[1] = NULL;
   684     to[2] = NULL;
   685     to[3] = NULL;
   686     return;
   687   }
   688   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   689   // Trimming to limit allows a uint8 to handle up to 255 edges.
   690   // Previously I was using only powers-of-2 which peaked at 128 edges.
   691   //if( new_max >= limit ) new_max = limit-1;
   692   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
   693   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
   694   _max = new_max;               // Record new max length
   695   // This assertion makes sure that Node::_max is wide enough to
   696   // represent the numerical value of new_max.
   697   assert(_max == new_max && _max > len, "int width of _max is too small");
   698 }
   700 //-----------------------------out_grow----------------------------------------
   701 // Grow the input array, making space for more edges
   702 void Node::out_grow( uint len ) {
   703   assert(!is_top(), "cannot grow a top node's out array");
   704   Arena* arena = Compile::current()->node_arena();
   705   uint new_max = _outmax;
   706   if( new_max == 0 ) {
   707     _outmax = 4;
   708     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
   709     return;
   710   }
   711   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   712   // Trimming to limit allows a uint8 to handle up to 255 edges.
   713   // Previously I was using only powers-of-2 which peaked at 128 edges.
   714   //if( new_max >= limit ) new_max = limit-1;
   715   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
   716   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
   717   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
   718   _outmax = new_max;               // Record new max length
   719   // This assertion makes sure that Node::_max is wide enough to
   720   // represent the numerical value of new_max.
   721   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
   722 }
   724 #ifdef ASSERT
   725 //------------------------------is_dead----------------------------------------
   726 bool Node::is_dead() const {
   727   // Mach and pinch point nodes may look like dead.
   728   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
   729     return false;
   730   for( uint i = 0; i < _max; i++ )
   731     if( _in[i] != NULL )
   732       return false;
   733   dump();
   734   return true;
   735 }
   736 #endif
   739 //------------------------------is_unreachable---------------------------------
   740 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
   741   assert(!is_Mach(), "doesn't work with MachNodes");
   742   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
   743 }
   745 //------------------------------add_req----------------------------------------
   746 // Add a new required input at the end
   747 void Node::add_req( Node *n ) {
   748   assert( is_not_dead(n), "can not use dead node");
   750   // Look to see if I can move precedence down one without reallocating
   751   if( (_cnt >= _max) || (in(_max-1) != NULL) )
   752     grow( _max+1 );
   754   // Find a precedence edge to move
   755   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
   756     uint i;
   757     for( i=_cnt; i<_max; i++ )
   758       if( in(i) == NULL )       // Find the NULL at end of prec edge list
   759         break;                  // There must be one, since we grew the array
   760     _in[i] = in(_cnt);          // Move prec over, making space for req edge
   761   }
   762   _in[_cnt++] = n;            // Stuff over old prec edge
   763   if (n != NULL) n->add_out((Node *)this);
   764 }
   766 //---------------------------add_req_batch-------------------------------------
   767 // Add a new required input at the end
   768 void Node::add_req_batch( Node *n, uint m ) {
   769   assert( is_not_dead(n), "can not use dead node");
   770   // check various edge cases
   771   if ((int)m <= 1) {
   772     assert((int)m >= 0, "oob");
   773     if (m != 0)  add_req(n);
   774     return;
   775   }
   777   // Look to see if I can move precedence down one without reallocating
   778   if( (_cnt+m) > _max || _in[_max-m] )
   779     grow( _max+m );
   781   // Find a precedence edge to move
   782   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
   783     uint i;
   784     for( i=_cnt; i<_max; i++ )
   785       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
   786         break;                  // There must be one, since we grew the array
   787     // Slide all the precs over by m positions (assume #prec << m).
   788     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
   789   }
   791   // Stuff over the old prec edges
   792   for(uint i=0; i<m; i++ ) {
   793     _in[_cnt++] = n;
   794   }
   796   // Insert multiple out edges on the node.
   797   if (n != NULL && !n->is_top()) {
   798     for(uint i=0; i<m; i++ ) {
   799       n->add_out((Node *)this);
   800     }
   801   }
   802 }
   804 //------------------------------del_req----------------------------------------
   805 // Delete the required edge and compact the edge array
   806 void Node::del_req( uint idx ) {
   807   assert( idx < _cnt, "oob");
   808   assert( !VerifyHashTableKeys || _hash_lock == 0,
   809           "remove node from hash table before modifying it");
   810   // First remove corresponding def-use edge
   811   Node *n = in(idx);
   812   if (n != NULL) n->del_out((Node *)this);
   813   _in[idx] = in(--_cnt);  // Compact the array
   814   _in[_cnt] = NULL;       // NULL out emptied slot
   815 }
   817 //------------------------------del_req_ordered--------------------------------
   818 // Delete the required edge and compact the edge array with preserved order
   819 void Node::del_req_ordered( uint idx ) {
   820   assert( idx < _cnt, "oob");
   821   assert( !VerifyHashTableKeys || _hash_lock == 0,
   822           "remove node from hash table before modifying it");
   823   // First remove corresponding def-use edge
   824   Node *n = in(idx);
   825   if (n != NULL) n->del_out((Node *)this);
   826   if (idx < _cnt - 1) { // Not last edge ?
   827     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
   828   }
   829   _in[--_cnt] = NULL;   // NULL out emptied slot
   830 }
   832 //------------------------------ins_req----------------------------------------
   833 // Insert a new required input at the end
   834 void Node::ins_req( uint idx, Node *n ) {
   835   assert( is_not_dead(n), "can not use dead node");
   836   add_req(NULL);                // Make space
   837   assert( idx < _max, "Must have allocated enough space");
   838   // Slide over
   839   if(_cnt-idx-1 > 0) {
   840     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
   841   }
   842   _in[idx] = n;                            // Stuff over old required edge
   843   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
   844 }
   846 //-----------------------------find_edge---------------------------------------
   847 int Node::find_edge(Node* n) {
   848   for (uint i = 0; i < len(); i++) {
   849     if (_in[i] == n)  return i;
   850   }
   851   return -1;
   852 }
   854 //----------------------------replace_edge-------------------------------------
   855 int Node::replace_edge(Node* old, Node* neww) {
   856   if (old == neww)  return 0;  // nothing to do
   857   uint nrep = 0;
   858   for (uint i = 0; i < len(); i++) {
   859     if (in(i) == old) {
   860       if (i < req())
   861         set_req(i, neww);
   862       else
   863         set_prec(i, neww);
   864       nrep++;
   865     }
   866   }
   867   return nrep;
   868 }
   870 /**
   871  * Replace input edges in the range pointing to 'old' node.
   872  */
   873 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
   874   if (old == neww)  return 0;  // nothing to do
   875   uint nrep = 0;
   876   for (int i = start; i < end; i++) {
   877     if (in(i) == old) {
   878       set_req(i, neww);
   879       nrep++;
   880     }
   881   }
   882   return nrep;
   883 }
   885 //-------------------------disconnect_inputs-----------------------------------
   886 // NULL out all inputs to eliminate incoming Def-Use edges.
   887 // Return the number of edges between 'n' and 'this'
   888 int Node::disconnect_inputs(Node *n, Compile* C) {
   889   int edges_to_n = 0;
   891   uint cnt = req();
   892   for( uint i = 0; i < cnt; ++i ) {
   893     if( in(i) == 0 ) continue;
   894     if( in(i) == n ) ++edges_to_n;
   895     set_req(i, NULL);
   896   }
   897   // Remove precedence edges if any exist
   898   // Note: Safepoints may have precedence edges, even during parsing
   899   if( (req() != len()) && (in(req()) != NULL) ) {
   900     uint max = len();
   901     for( uint i = 0; i < max; ++i ) {
   902       if( in(i) == 0 ) continue;
   903       if( in(i) == n ) ++edges_to_n;
   904       set_prec(i, NULL);
   905     }
   906   }
   908   // Node::destruct requires all out edges be deleted first
   909   // debug_only(destruct();)   // no reuse benefit expected
   910   if (edges_to_n == 0) {
   911     C->record_dead_node(_idx);
   912   }
   913   return edges_to_n;
   914 }
   916 //-----------------------------uncast---------------------------------------
   917 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
   918 // Strip away casting.  (It is depth-limited.)
   919 Node* Node::uncast() const {
   920   // Should be inline:
   921   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
   922   if (is_ConstraintCast() || is_CheckCastPP())
   923     return uncast_helper(this);
   924   else
   925     return (Node*) this;
   926 }
   928 //---------------------------uncast_helper-------------------------------------
   929 Node* Node::uncast_helper(const Node* p) {
   930 #ifdef ASSERT
   931   uint depth_count = 0;
   932   const Node* orig_p = p;
   933 #endif
   935   while (true) {
   936 #ifdef ASSERT
   937     if (depth_count >= K) {
   938       orig_p->dump(4);
   939       if (p != orig_p)
   940         p->dump(1);
   941     }
   942     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
   943 #endif
   944     if (p == NULL || p->req() != 2) {
   945       break;
   946     } else if (p->is_ConstraintCast()) {
   947       p = p->in(1);
   948     } else if (p->is_CheckCastPP()) {
   949       p = p->in(1);
   950     } else {
   951       break;
   952     }
   953   }
   954   return (Node*) p;
   955 }
   957 //------------------------------add_prec---------------------------------------
   958 // Add a new precedence input.  Precedence inputs are unordered, with
   959 // duplicates removed and NULLs packed down at the end.
   960 void Node::add_prec( Node *n ) {
   961   assert( is_not_dead(n), "can not use dead node");
   963   // Check for NULL at end
   964   if( _cnt >= _max || in(_max-1) )
   965     grow( _max+1 );
   967   // Find a precedence edge to move
   968   uint i = _cnt;
   969   while( in(i) != NULL ) i++;
   970   _in[i] = n;                                // Stuff prec edge over NULL
   971   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
   972 }
   974 //------------------------------rm_prec----------------------------------------
   975 // Remove a precedence input.  Precedence inputs are unordered, with
   976 // duplicates removed and NULLs packed down at the end.
   977 void Node::rm_prec( uint j ) {
   979   // Find end of precedence list to pack NULLs
   980   uint i;
   981   for( i=j; i<_max; i++ )
   982     if( !_in[i] )               // Find the NULL at end of prec edge list
   983       break;
   984   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
   985   _in[j] = _in[--i];            // Move last element over removed guy
   986   _in[i] = NULL;                // NULL out last element
   987 }
   989 //------------------------------size_of----------------------------------------
   990 uint Node::size_of() const { return sizeof(*this); }
   992 //------------------------------ideal_reg--------------------------------------
   993 uint Node::ideal_reg() const { return 0; }
   995 //------------------------------jvms-------------------------------------------
   996 JVMState* Node::jvms() const { return NULL; }
   998 #ifdef ASSERT
   999 //------------------------------jvms-------------------------------------------
  1000 bool Node::verify_jvms(const JVMState* using_jvms) const {
  1001   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
  1002     if (jvms == using_jvms)  return true;
  1004   return false;
  1007 //------------------------------init_NodeProperty------------------------------
  1008 void Node::init_NodeProperty() {
  1009   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
  1010   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
  1012 #endif
  1014 //------------------------------format-----------------------------------------
  1015 // Print as assembly
  1016 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
  1017 //------------------------------emit-------------------------------------------
  1018 // Emit bytes starting at parameter 'ptr'.
  1019 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
  1020 //------------------------------size-------------------------------------------
  1021 // Size of instruction in bytes
  1022 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
  1024 //------------------------------CFG Construction-------------------------------
  1025 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
  1026 // Goto and Return.
  1027 const Node *Node::is_block_proj() const { return 0; }
  1029 // Minimum guaranteed type
  1030 const Type *Node::bottom_type() const { return Type::BOTTOM; }
  1033 //------------------------------raise_bottom_type------------------------------
  1034 // Get the worst-case Type output for this Node.
  1035 void Node::raise_bottom_type(const Type* new_type) {
  1036   if (is_Type()) {
  1037     TypeNode *n = this->as_Type();
  1038     if (VerifyAliases) {
  1039       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1041     n->set_type(new_type);
  1042   } else if (is_Load()) {
  1043     LoadNode *n = this->as_Load();
  1044     if (VerifyAliases) {
  1045       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1047     n->set_type(new_type);
  1051 //------------------------------Identity---------------------------------------
  1052 // Return a node that the given node is equivalent to.
  1053 Node *Node::Identity( PhaseTransform * ) {
  1054   return this;                  // Default to no identities
  1057 //------------------------------Value------------------------------------------
  1058 // Compute a new Type for a node using the Type of the inputs.
  1059 const Type *Node::Value( PhaseTransform * ) const {
  1060   return bottom_type();         // Default to worst-case Type
  1063 //------------------------------Ideal------------------------------------------
  1064 //
  1065 // 'Idealize' the graph rooted at this Node.
  1066 //
  1067 // In order to be efficient and flexible there are some subtle invariants
  1068 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
  1069 // these invariants, although its too slow to have on by default.  If you are
  1070 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
  1071 //
  1072 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
  1073 // pointer.  If ANY change is made, it must return the root of the reshaped
  1074 // graph - even if the root is the same Node.  Example: swapping the inputs
  1075 // to an AddINode gives the same answer and same root, but you still have to
  1076 // return the 'this' pointer instead of NULL.
  1077 //
  1078 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
  1079 // Identity call to return an old Node; basically if Identity can find
  1080 // another Node have the Ideal call make no change and return NULL.
  1081 // Example: AddINode::Ideal must check for add of zero; in this case it
  1082 // returns NULL instead of doing any graph reshaping.
  1083 //
  1084 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
  1085 // sharing there may be other users of the old Nodes relying on their current
  1086 // semantics.  Modifying them will break the other users.
  1087 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
  1088 // "X+3" unchanged in case it is shared.
  1089 //
  1090 // If you modify the 'this' pointer's inputs, you should use
  1091 // 'set_req'.  If you are making a new Node (either as the new root or
  1092 // some new internal piece) you may use 'init_req' to set the initial
  1093 // value.  You can make a new Node with either 'new' or 'clone'.  In
  1094 // either case, def-use info is correctly maintained.
  1095 //
  1096 // Example: reshape "(X+3)+4" into "X+7":
  1097 //    set_req(1, in(1)->in(1));
  1098 //    set_req(2, phase->intcon(7));
  1099 //    return this;
  1100 // Example: reshape "X*4" into "X<<2"
  1101 //    return new (C) LShiftINode(in(1), phase->intcon(2));
  1102 //
  1103 // You must call 'phase->transform(X)' on any new Nodes X you make, except
  1104 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
  1105 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
  1106 //    return new (C) AddINode(shift, in(1));
  1107 //
  1108 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
  1109 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
  1110 // The Right Thing with def-use info.
  1111 //
  1112 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
  1113 // graph uses the 'this' Node it must be the root.  If you want a Node with
  1114 // the same Opcode as the 'this' pointer use 'clone'.
  1115 //
  1116 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
  1117   return NULL;                  // Default to being Ideal already
  1120 // Some nodes have specific Ideal subgraph transformations only if they are
  1121 // unique users of specific nodes. Such nodes should be put on IGVN worklist
  1122 // for the transformations to happen.
  1123 bool Node::has_special_unique_user() const {
  1124   assert(outcnt() == 1, "match only for unique out");
  1125   Node* n = unique_out();
  1126   int op  = Opcode();
  1127   if( this->is_Store() ) {
  1128     // Condition for back-to-back stores folding.
  1129     return n->Opcode() == op && n->in(MemNode::Memory) == this;
  1130   } else if (this->is_Load()) {
  1131     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
  1132     return n->Opcode() == Op_MemBarAcquire;
  1133   } else if( op == Op_AddL ) {
  1134     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1135     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  1136   } else if( op == Op_SubI || op == Op_SubL ) {
  1137     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
  1138     return n->Opcode() == op && n->in(2) == this;
  1140   return false;
  1141 };
  1143 //--------------------------find_exact_control---------------------------------
  1144 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  1145 Node* Node::find_exact_control(Node* ctrl) {
  1146   if (ctrl == NULL && this->is_Region())
  1147     ctrl = this->as_Region()->is_copy();
  1149   if (ctrl != NULL && ctrl->is_CatchProj()) {
  1150     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
  1151       ctrl = ctrl->in(0);
  1152     if (ctrl != NULL && !ctrl->is_top())
  1153       ctrl = ctrl->in(0);
  1156   if (ctrl != NULL && ctrl->is_Proj())
  1157     ctrl = ctrl->in(0);
  1159   return ctrl;
  1162 //--------------------------dominates------------------------------------------
  1163 // Helper function for MemNode::all_controls_dominate().
  1164 // Check if 'this' control node dominates or equal to 'sub' control node.
  1165 // We already know that if any path back to Root or Start reaches 'this',
  1166 // then all paths so, so this is a simple search for one example,
  1167 // not an exhaustive search for a counterexample.
  1168 bool Node::dominates(Node* sub, Node_List &nlist) {
  1169   assert(this->is_CFG(), "expecting control");
  1170   assert(sub != NULL && sub->is_CFG(), "expecting control");
  1172   // detect dead cycle without regions
  1173   int iterations_without_region_limit = DominatorSearchLimit;
  1175   Node* orig_sub = sub;
  1176   Node* dom      = this;
  1177   bool  met_dom  = false;
  1178   nlist.clear();
  1180   // Walk 'sub' backward up the chain to 'dom', watching for regions.
  1181   // After seeing 'dom', continue up to Root or Start.
  1182   // If we hit a region (backward split point), it may be a loop head.
  1183   // Keep going through one of the region's inputs.  If we reach the
  1184   // same region again, go through a different input.  Eventually we
  1185   // will either exit through the loop head, or give up.
  1186   // (If we get confused, break out and return a conservative 'false'.)
  1187   while (sub != NULL) {
  1188     if (sub->is_top())  break; // Conservative answer for dead code.
  1189     if (sub == dom) {
  1190       if (nlist.size() == 0) {
  1191         // No Region nodes except loops were visited before and the EntryControl
  1192         // path was taken for loops: it did not walk in a cycle.
  1193         return true;
  1194       } else if (met_dom) {
  1195         break;          // already met before: walk in a cycle
  1196       } else {
  1197         // Region nodes were visited. Continue walk up to Start or Root
  1198         // to make sure that it did not walk in a cycle.
  1199         met_dom = true; // first time meet
  1200         iterations_without_region_limit = DominatorSearchLimit; // Reset
  1203     if (sub->is_Start() || sub->is_Root()) {
  1204       // Success if we met 'dom' along a path to Start or Root.
  1205       // We assume there are no alternative paths that avoid 'dom'.
  1206       // (This assumption is up to the caller to ensure!)
  1207       return met_dom;
  1209     Node* up = sub->in(0);
  1210     // Normalize simple pass-through regions and projections:
  1211     up = sub->find_exact_control(up);
  1212     // If sub == up, we found a self-loop.  Try to push past it.
  1213     if (sub == up && sub->is_Loop()) {
  1214       // Take loop entry path on the way up to 'dom'.
  1215       up = sub->in(1); // in(LoopNode::EntryControl);
  1216     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
  1217       // Always take in(1) path on the way up to 'dom' for clone regions
  1218       // (with only one input) or regions which merge > 2 paths
  1219       // (usually used to merge fast/slow paths).
  1220       up = sub->in(1);
  1221     } else if (sub == up && sub->is_Region()) {
  1222       // Try both paths for Regions with 2 input paths (it may be a loop head).
  1223       // It could give conservative 'false' answer without information
  1224       // which region's input is the entry path.
  1225       iterations_without_region_limit = DominatorSearchLimit; // Reset
  1227       bool region_was_visited_before = false;
  1228       // Was this Region node visited before?
  1229       // If so, we have reached it because we accidentally took a
  1230       // loop-back edge from 'sub' back into the body of the loop,
  1231       // and worked our way up again to the loop header 'sub'.
  1232       // So, take the first unexplored path on the way up to 'dom'.
  1233       for (int j = nlist.size() - 1; j >= 0; j--) {
  1234         intptr_t ni = (intptr_t)nlist.at(j);
  1235         Node* visited = (Node*)(ni & ~1);
  1236         bool  visited_twice_already = ((ni & 1) != 0);
  1237         if (visited == sub) {
  1238           if (visited_twice_already) {
  1239             // Visited 2 paths, but still stuck in loop body.  Give up.
  1240             return false;
  1242           // The Region node was visited before only once.
  1243           // (We will repush with the low bit set, below.)
  1244           nlist.remove(j);
  1245           // We will find a new edge and re-insert.
  1246           region_was_visited_before = true;
  1247           break;
  1251       // Find an incoming edge which has not been seen yet; walk through it.
  1252       assert(up == sub, "");
  1253       uint skip = region_was_visited_before ? 1 : 0;
  1254       for (uint i = 1; i < sub->req(); i++) {
  1255         Node* in = sub->in(i);
  1256         if (in != NULL && !in->is_top() && in != sub) {
  1257           if (skip == 0) {
  1258             up = in;
  1259             break;
  1261           --skip;               // skip this nontrivial input
  1265       // Set 0 bit to indicate that both paths were taken.
  1266       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
  1269     if (up == sub) {
  1270       break;    // some kind of tight cycle
  1272     if (up == orig_sub && met_dom) {
  1273       // returned back after visiting 'dom'
  1274       break;    // some kind of cycle
  1276     if (--iterations_without_region_limit < 0) {
  1277       break;    // dead cycle
  1279     sub = up;
  1282   // Did not meet Root or Start node in pred. chain.
  1283   // Conservative answer for dead code.
  1284   return false;
  1287 //------------------------------remove_dead_region-----------------------------
  1288 // This control node is dead.  Follow the subgraph below it making everything
  1289 // using it dead as well.  This will happen normally via the usual IterGVN
  1290 // worklist but this call is more efficient.  Do not update use-def info
  1291 // inside the dead region, just at the borders.
  1292 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
  1293   // Con's are a popular node to re-hit in the hash table again.
  1294   if( dead->is_Con() ) return;
  1296   // Can't put ResourceMark here since igvn->_worklist uses the same arena
  1297   // for verify pass with +VerifyOpto and we add/remove elements in it here.
  1298   Node_List  nstack(Thread::current()->resource_area());
  1300   Node *top = igvn->C->top();
  1301   nstack.push(dead);
  1302   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
  1304   while (nstack.size() > 0) {
  1305     dead = nstack.pop();
  1306     if (dead->outcnt() > 0) {
  1307       // Keep dead node on stack until all uses are processed.
  1308       nstack.push(dead);
  1309       // For all Users of the Dead...    ;-)
  1310       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
  1311         Node* use = dead->last_out(k);
  1312         igvn->hash_delete(use);       // Yank from hash table prior to mod
  1313         if (use->in(0) == dead) {     // Found another dead node
  1314           assert (!use->is_Con(), "Control for Con node should be Root node.");
  1315           use->set_req(0, top);       // Cut dead edge to prevent processing
  1316           nstack.push(use);           // the dead node again.
  1317         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
  1318                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
  1319                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
  1320           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
  1321           use->set_req(0, top);       // Cut self edge
  1322           nstack.push(use);
  1323         } else {                      // Else found a not-dead user
  1324           // Dead if all inputs are top or null
  1325           bool dead_use = !use->is_Root(); // Keep empty graph alive
  1326           for (uint j = 1; j < use->req(); j++) {
  1327             Node* in = use->in(j);
  1328             if (in == dead) {         // Turn all dead inputs into TOP
  1329               use->set_req(j, top);
  1330             } else if (in != NULL && !in->is_top()) {
  1331               dead_use = false;
  1334           if (dead_use) {
  1335             if (use->is_Region()) {
  1336               use->set_req(0, top);   // Cut self edge
  1338             nstack.push(use);
  1339           } else {
  1340             igvn->_worklist.push(use);
  1343         // Refresh the iterator, since any number of kills might have happened.
  1344         k = dead->last_outs(kmin);
  1346     } else { // (dead->outcnt() == 0)
  1347       // Done with outputs.
  1348       igvn->hash_delete(dead);
  1349       igvn->_worklist.remove(dead);
  1350       igvn->set_type(dead, Type::TOP);
  1351       if (dead->is_macro()) {
  1352         igvn->C->remove_macro_node(dead);
  1354       if (dead->is_expensive()) {
  1355         igvn->C->remove_expensive_node(dead);
  1357       CastIINode* cast = dead->isa_CastII();
  1358       if (cast != NULL && cast->has_range_check()) {
  1359         igvn->C->remove_range_check_cast(cast);
  1361       igvn->C->record_dead_node(dead->_idx);
  1362       // Kill all inputs to the dead guy
  1363       for (uint i=0; i < dead->req(); i++) {
  1364         Node *n = dead->in(i);      // Get input to dead guy
  1365         if (n != NULL && !n->is_top()) { // Input is valid?
  1366           dead->set_req(i, top);    // Smash input away
  1367           if (n->outcnt() == 0) {   // Input also goes dead?
  1368             if (!n->is_Con())
  1369               nstack.push(n);       // Clear it out as well
  1370           } else if (n->outcnt() == 1 &&
  1371                      n->has_special_unique_user()) {
  1372             igvn->add_users_to_worklist( n );
  1373           } else if (n->outcnt() <= 2 && n->is_Store()) {
  1374             // Push store's uses on worklist to enable folding optimization for
  1375             // store/store and store/load to the same address.
  1376             // The restriction (outcnt() <= 2) is the same as in set_req_X()
  1377             // and remove_globally_dead_node().
  1378             igvn->add_users_to_worklist( n );
  1382     } // (dead->outcnt() == 0)
  1383   }   // while (nstack.size() > 0) for outputs
  1384   return;
  1387 //------------------------------remove_dead_region-----------------------------
  1388 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  1389   Node *n = in(0);
  1390   if( !n ) return false;
  1391   // Lost control into this guy?  I.e., it became unreachable?
  1392   // Aggressively kill all unreachable code.
  1393   if (can_reshape && n->is_top()) {
  1394     kill_dead_code(this, phase->is_IterGVN());
  1395     return false; // Node is dead.
  1398   if( n->is_Region() && n->as_Region()->is_copy() ) {
  1399     Node *m = n->nonnull_req();
  1400     set_req(0, m);
  1401     return true;
  1403   return false;
  1406 //------------------------------Ideal_DU_postCCP-------------------------------
  1407 // Idealize graph, using DU info.  Must clone result into new-space
  1408 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  1409   return NULL;                 // Default to no change
  1412 //------------------------------hash-------------------------------------------
  1413 // Hash function over Nodes.
  1414 uint Node::hash() const {
  1415   uint sum = 0;
  1416   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
  1417     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  1418   return (sum>>2) + _cnt + Opcode();
  1421 //------------------------------cmp--------------------------------------------
  1422 // Compare special parts of simple Nodes
  1423 uint Node::cmp( const Node &n ) const {
  1424   return 1;                     // Must be same
  1427 //------------------------------rematerialize-----------------------------------
  1428 // Should we clone rather than spill this instruction?
  1429 bool Node::rematerialize() const {
  1430   if ( is_Mach() )
  1431     return this->as_Mach()->rematerialize();
  1432   else
  1433     return (_flags & Flag_rematerialize) != 0;
  1436 //------------------------------needs_anti_dependence_check---------------------
  1437 // Nodes which use memory without consuming it, hence need antidependences.
  1438 bool Node::needs_anti_dependence_check() const {
  1439   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
  1440     return false;
  1441   else
  1442     return in(1)->bottom_type()->has_memory();
  1446 // Get an integer constant from a ConNode (or CastIINode).
  1447 // Return a default value if there is no apparent constant here.
  1448 const TypeInt* Node::find_int_type() const {
  1449   if (this->is_Type()) {
  1450     return this->as_Type()->type()->isa_int();
  1451   } else if (this->is_Con()) {
  1452     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1453     return this->bottom_type()->isa_int();
  1455   return NULL;
  1458 // Get a pointer constant from a ConstNode.
  1459 // Returns the constant if it is a pointer ConstNode
  1460 intptr_t Node::get_ptr() const {
  1461   assert( Opcode() == Op_ConP, "" );
  1462   return ((ConPNode*)this)->type()->is_ptr()->get_con();
  1465 // Get a narrow oop constant from a ConNNode.
  1466 intptr_t Node::get_narrowcon() const {
  1467   assert( Opcode() == Op_ConN, "" );
  1468   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
  1471 // Get a long constant from a ConNode.
  1472 // Return a default value if there is no apparent constant here.
  1473 const TypeLong* Node::find_long_type() const {
  1474   if (this->is_Type()) {
  1475     return this->as_Type()->type()->isa_long();
  1476   } else if (this->is_Con()) {
  1477     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1478     return this->bottom_type()->isa_long();
  1480   return NULL;
  1484 /**
  1485  * Return a ptr type for nodes which should have it.
  1486  */
  1487 const TypePtr* Node::get_ptr_type() const {
  1488   const TypePtr* tp = this->bottom_type()->make_ptr();
  1489 #ifdef ASSERT
  1490   if (tp == NULL) {
  1491     this->dump(1);
  1492     assert((tp != NULL), "unexpected node type");
  1494 #endif
  1495   return tp;
  1498 // Get a double constant from a ConstNode.
  1499 // Returns the constant if it is a double ConstNode
  1500 jdouble Node::getd() const {
  1501   assert( Opcode() == Op_ConD, "" );
  1502   return ((ConDNode*)this)->type()->is_double_constant()->getd();
  1505 // Get a float constant from a ConstNode.
  1506 // Returns the constant if it is a float ConstNode
  1507 jfloat Node::getf() const {
  1508   assert( Opcode() == Op_ConF, "" );
  1509   return ((ConFNode*)this)->type()->is_float_constant()->getf();
  1512 #ifndef PRODUCT
  1514 //----------------------------NotANode----------------------------------------
  1515 // Used in debugging code to avoid walking across dead or uninitialized edges.
  1516 static inline bool NotANode(const Node* n) {
  1517   if (n == NULL)                   return true;
  1518   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  1519   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  1520   return false;
  1524 //------------------------------find------------------------------------------
  1525 // Find a neighbor of this Node with the given _idx
  1526 // If idx is negative, find its absolute value, following both _in and _out.
  1527 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
  1528                         VectorSet* old_space, VectorSet* new_space ) {
  1529   int node_idx = (idx >= 0) ? idx : -idx;
  1530   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  1531   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
  1532   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
  1533   if( v->test(n->_idx) ) return;
  1534   if( (int)n->_idx == node_idx
  1535       debug_only(|| n->debug_idx() == node_idx) ) {
  1536     if (result != NULL)
  1537       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
  1538                  (uintptr_t)result, (uintptr_t)n, node_idx);
  1539     result = n;
  1541   v->set(n->_idx);
  1542   for( uint i=0; i<n->len(); i++ ) {
  1543     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
  1544     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
  1546   // Search along forward edges also:
  1547   if (idx < 0 && !only_ctrl) {
  1548     for( uint j=0; j<n->outcnt(); j++ ) {
  1549       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
  1552 #ifdef ASSERT
  1553   // Search along debug_orig edges last, checking for cycles
  1554   Node* orig = n->debug_orig();
  1555   if (orig != NULL) {
  1556     do {
  1557       if (NotANode(orig))  break;
  1558       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
  1559       orig = orig->debug_orig();
  1560     } while (orig != NULL && orig != n->debug_orig());
  1562 #endif //ASSERT
  1565 // call this from debugger:
  1566 Node* find_node(Node* n, int idx) {
  1567   return n->find(idx);
  1570 //------------------------------find-------------------------------------------
  1571 Node* Node::find(int idx) const {
  1572   ResourceArea *area = Thread::current()->resource_area();
  1573   VectorSet old_space(area), new_space(area);
  1574   Node* result = NULL;
  1575   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
  1576   return result;
  1579 //------------------------------find_ctrl--------------------------------------
  1580 // Find an ancestor to this node in the control history with given _idx
  1581 Node* Node::find_ctrl(int idx) const {
  1582   ResourceArea *area = Thread::current()->resource_area();
  1583   VectorSet old_space(area), new_space(area);
  1584   Node* result = NULL;
  1585   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
  1586   return result;
  1588 #endif
  1592 #ifndef PRODUCT
  1594 // -----------------------------Name-------------------------------------------
  1595 extern const char *NodeClassNames[];
  1596 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
  1598 static bool is_disconnected(const Node* n) {
  1599   for (uint i = 0; i < n->req(); i++) {
  1600     if (n->in(i) != NULL)  return false;
  1602   return true;
  1605 #ifdef ASSERT
  1606 static void dump_orig(Node* orig, outputStream *st) {
  1607   Compile* C = Compile::current();
  1608   if (NotANode(orig)) orig = NULL;
  1609   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1610   if (orig == NULL) return;
  1611   st->print(" !orig=");
  1612   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  1613   if (NotANode(fast)) fast = NULL;
  1614   while (orig != NULL) {
  1615     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
  1616     if (discon) st->print("[");
  1617     if (!Compile::current()->node_arena()->contains(orig))
  1618       st->print("o");
  1619     st->print("%d", orig->_idx);
  1620     if (discon) st->print("]");
  1621     orig = orig->debug_orig();
  1622     if (NotANode(orig)) orig = NULL;
  1623     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1624     if (orig != NULL) st->print(",");
  1625     if (fast != NULL) {
  1626       // Step fast twice for each single step of orig:
  1627       fast = fast->debug_orig();
  1628       if (NotANode(fast)) fast = NULL;
  1629       if (fast != NULL && fast != orig) {
  1630         fast = fast->debug_orig();
  1631         if (NotANode(fast)) fast = NULL;
  1633       if (fast == orig) {
  1634         st->print("...");
  1635         break;
  1641 void Node::set_debug_orig(Node* orig) {
  1642   _debug_orig = orig;
  1643   if (BreakAtNode == 0)  return;
  1644   if (NotANode(orig))  orig = NULL;
  1645   int trip = 10;
  1646   while (orig != NULL) {
  1647     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
  1648       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
  1649                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
  1650       BREAKPOINT;
  1652     orig = orig->debug_orig();
  1653     if (NotANode(orig))  orig = NULL;
  1654     if (trip-- <= 0)  break;
  1657 #endif //ASSERT
  1659 //------------------------------dump------------------------------------------
  1660 // Dump a Node
  1661 void Node::dump(const char* suffix, outputStream *st) const {
  1662   Compile* C = Compile::current();
  1663   bool is_new = C->node_arena()->contains(this);
  1664   C->_in_dump_cnt++;
  1665   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
  1667   // Dump the required and precedence inputs
  1668   dump_req(st);
  1669   dump_prec(st);
  1670   // Dump the outputs
  1671   dump_out(st);
  1673   if (is_disconnected(this)) {
  1674 #ifdef ASSERT
  1675     st->print("  [%d]",debug_idx());
  1676     dump_orig(debug_orig(), st);
  1677 #endif
  1678     st->cr();
  1679     C->_in_dump_cnt--;
  1680     return;                     // don't process dead nodes
  1683   // Dump node-specific info
  1684   dump_spec(st);
  1685 #ifdef ASSERT
  1686   // Dump the non-reset _debug_idx
  1687   if (Verbose && WizardMode) {
  1688     st->print("  [%d]",debug_idx());
  1690 #endif
  1692   const Type *t = bottom_type();
  1694   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
  1695     const TypeInstPtr  *toop = t->isa_instptr();
  1696     const TypeKlassPtr *tkls = t->isa_klassptr();
  1697     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
  1698     if (klass && klass->is_loaded() && klass->is_interface()) {
  1699       st->print("  Interface:");
  1700     } else if (toop) {
  1701       st->print("  Oop:");
  1702     } else if (tkls) {
  1703       st->print("  Klass:");
  1705     t->dump_on(st);
  1706   } else if (t == Type::MEMORY) {
  1707     st->print("  Memory:");
  1708     MemNode::dump_adr_type(this, adr_type(), st);
  1709   } else if (Verbose || WizardMode) {
  1710     st->print("  Type:");
  1711     if (t) {
  1712       t->dump_on(st);
  1713     } else {
  1714       st->print("no type");
  1716   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
  1717     // Dump MachSpillcopy vector type.
  1718     t->dump_on(st);
  1720   if (is_new) {
  1721     debug_only(dump_orig(debug_orig(), st));
  1722     Node_Notes* nn = C->node_notes_at(_idx);
  1723     if (nn != NULL && !nn->is_clear()) {
  1724       if (nn->jvms() != NULL) {
  1725         st->print(" !jvms:");
  1726         nn->jvms()->dump_spec(st);
  1730   if (suffix) st->print("%s", suffix);
  1731   C->_in_dump_cnt--;
  1734 //------------------------------dump_req--------------------------------------
  1735 void Node::dump_req(outputStream *st) const {
  1736   // Dump the required input edges
  1737   for (uint i = 0; i < req(); i++) {    // For all required inputs
  1738     Node* d = in(i);
  1739     if (d == NULL) {
  1740       st->print("_ ");
  1741     } else if (NotANode(d)) {
  1742       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
  1743     } else {
  1744       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
  1750 //------------------------------dump_prec-------------------------------------
  1751 void Node::dump_prec(outputStream *st) const {
  1752   // Dump the precedence edges
  1753   int any_prec = 0;
  1754   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
  1755     Node* p = in(i);
  1756     if (p != NULL) {
  1757       if (!any_prec++) st->print(" |");
  1758       if (NotANode(p)) { st->print("NotANode "); continue; }
  1759       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
  1764 //------------------------------dump_out--------------------------------------
  1765 void Node::dump_out(outputStream *st) const {
  1766   // Delimit the output edges
  1767   st->print(" [[");
  1768   // Dump the output edges
  1769   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
  1770     Node* u = _out[i];
  1771     if (u == NULL) {
  1772       st->print("_ ");
  1773     } else if (NotANode(u)) {
  1774       st->print("NotANode ");
  1775     } else {
  1776       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
  1779   st->print("]] ");
  1782 //------------------------------dump_nodes-------------------------------------
  1783 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  1784   Node* s = (Node*)start; // remove const
  1785   if (NotANode(s)) return;
  1787   uint depth = (uint)ABS(d);
  1788   int direction = d;
  1789   Compile* C = Compile::current();
  1790   GrowableArray <Node *> nstack(C->live_nodes());
  1792   nstack.append(s);
  1793   int begin = 0;
  1794   int end = 0;
  1795   for(uint i = 0; i < depth; i++) {
  1796     end = nstack.length();
  1797     for(int j = begin; j < end; j++) {
  1798       Node* tp  = nstack.at(j);
  1799       uint limit = direction > 0 ? tp->len() : tp->outcnt();
  1800       for(uint k = 0; k < limit; k++) {
  1801         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
  1803         if (NotANode(n))  continue;
  1804         // do not recurse through top or the root (would reach unrelated stuff)
  1805         if (n->is_Root() || n->is_top())  continue;
  1806         if (only_ctrl && !n->is_CFG()) continue;
  1808         bool on_stack = nstack.contains(n);
  1809         if (!on_stack) {
  1810           nstack.append(n);
  1814     begin = end;
  1816   end = nstack.length();
  1817   if (direction > 0) {
  1818     for(int j = end-1; j >= 0; j--) {
  1819       nstack.at(j)->dump();
  1821   } else {
  1822     for(int j = 0; j < end; j++) {
  1823       nstack.at(j)->dump();
  1828 //------------------------------dump-------------------------------------------
  1829 void Node::dump(int d) const {
  1830   dump_nodes(this, d, false);
  1833 //------------------------------dump_ctrl--------------------------------------
  1834 // Dump a Node's control history to depth
  1835 void Node::dump_ctrl(int d) const {
  1836   dump_nodes(this, d, true);
  1839 // VERIFICATION CODE
  1840 // For each input edge to a node (ie - for each Use-Def edge), verify that
  1841 // there is a corresponding Def-Use edge.
  1842 //------------------------------verify_edges-----------------------------------
  1843 void Node::verify_edges(Unique_Node_List &visited) {
  1844   uint i, j, idx;
  1845   int  cnt;
  1846   Node *n;
  1848   // Recursive termination test
  1849   if (visited.member(this))  return;
  1850   visited.push(this);
  1852   // Walk over all input edges, checking for correspondence
  1853   for( i = 0; i < len(); i++ ) {
  1854     n = in(i);
  1855     if (n != NULL && !n->is_top()) {
  1856       // Count instances of (Node *)this
  1857       cnt = 0;
  1858       for (idx = 0; idx < n->_outcnt; idx++ ) {
  1859         if (n->_out[idx] == (Node *)this)  cnt++;
  1861       assert( cnt > 0,"Failed to find Def-Use edge." );
  1862       // Check for duplicate edges
  1863       // walk the input array downcounting the input edges to n
  1864       for( j = 0; j < len(); j++ ) {
  1865         if( in(j) == n ) cnt--;
  1867       assert( cnt == 0,"Mismatched edge count.");
  1868     } else if (n == NULL) {
  1869       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
  1870     } else {
  1871       assert(n->is_top(), "sanity");
  1872       // Nothing to check.
  1875   // Recursive walk over all input edges
  1876   for( i = 0; i < len(); i++ ) {
  1877     n = in(i);
  1878     if( n != NULL )
  1879       in(i)->verify_edges(visited);
  1883 //------------------------------verify_recur-----------------------------------
  1884 static const Node *unique_top = NULL;
  1886 void Node::verify_recur(const Node *n, int verify_depth,
  1887                         VectorSet &old_space, VectorSet &new_space) {
  1888   if ( verify_depth == 0 )  return;
  1889   if (verify_depth > 0)  --verify_depth;
  1891   Compile* C = Compile::current();
  1893   // Contained in new_space or old_space?
  1894   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  1895   // Check for visited in the proper space.  Numberings are not unique
  1896   // across spaces so we need a separate VectorSet for each space.
  1897   if( v->test_set(n->_idx) ) return;
  1899   if (n->is_Con() && n->bottom_type() == Type::TOP) {
  1900     if (C->cached_top_node() == NULL)
  1901       C->set_cached_top_node((Node*)n);
  1902     assert(C->cached_top_node() == n, "TOP node must be unique");
  1905   for( uint i = 0; i < n->len(); i++ ) {
  1906     Node *x = n->in(i);
  1907     if (!x || x->is_top()) continue;
  1909     // Verify my input has a def-use edge to me
  1910     if (true /*VerifyDefUse*/) {
  1911       // Count use-def edges from n to x
  1912       int cnt = 0;
  1913       for( uint j = 0; j < n->len(); j++ )
  1914         if( n->in(j) == x )
  1915           cnt++;
  1916       // Count def-use edges from x to n
  1917       uint max = x->_outcnt;
  1918       for( uint k = 0; k < max; k++ )
  1919         if (x->_out[k] == n)
  1920           cnt--;
  1921       assert( cnt == 0, "mismatched def-use edge counts" );
  1924     verify_recur(x, verify_depth, old_space, new_space);
  1929 //------------------------------verify-----------------------------------------
  1930 // Check Def-Use info for my subgraph
  1931 void Node::verify() const {
  1932   Compile* C = Compile::current();
  1933   Node* old_top = C->cached_top_node();
  1934   ResourceMark rm;
  1935   ResourceArea *area = Thread::current()->resource_area();
  1936   VectorSet old_space(area), new_space(area);
  1937   verify_recur(this, -1, old_space, new_space);
  1938   C->set_cached_top_node(old_top);
  1940 #endif
  1943 //------------------------------walk-------------------------------------------
  1944 // Graph walk, with both pre-order and post-order functions
  1945 void Node::walk(NFunc pre, NFunc post, void *env) {
  1946   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  1947   walk_(pre, post, env, visited);
  1950 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  1951   if( visited.test_set(_idx) ) return;
  1952   pre(*this,env);               // Call the pre-order walk function
  1953   for( uint i=0; i<_max; i++ )
  1954     if( in(i) )                 // Input exists and is not walked?
  1955       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  1956   post(*this,env);              // Call the post-order walk function
  1959 void Node::nop(Node &, void*) {}
  1961 //------------------------------Registers--------------------------------------
  1962 // Do we Match on this edge index or not?  Generally false for Control
  1963 // and true for everything else.  Weird for calls & returns.
  1964 uint Node::match_edge(uint idx) const {
  1965   return idx;                   // True for other than index 0 (control)
  1968 static RegMask _not_used_at_all;
  1969 // Register classes are defined for specific machines
  1970 const RegMask &Node::out_RegMask() const {
  1971   ShouldNotCallThis();
  1972   return _not_used_at_all;
  1975 const RegMask &Node::in_RegMask(uint) const {
  1976   ShouldNotCallThis();
  1977   return _not_used_at_all;
  1980 //=============================================================================
  1981 //-----------------------------------------------------------------------------
  1982 void Node_Array::reset( Arena *new_arena ) {
  1983   _a->Afree(_nodes,_max*sizeof(Node*));
  1984   _max   = 0;
  1985   _nodes = NULL;
  1986   _a     = new_arena;
  1989 //------------------------------clear------------------------------------------
  1990 // Clear all entries in _nodes to NULL but keep storage
  1991 void Node_Array::clear() {
  1992   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
  1995 //-----------------------------------------------------------------------------
  1996 void Node_Array::grow( uint i ) {
  1997   if( !_max ) {
  1998     _max = 1;
  1999     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
  2000     _nodes[0] = NULL;
  2002   uint old = _max;
  2003   while( i >= _max ) _max <<= 1;        // Double to fit
  2004   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  2005   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
  2008 //-----------------------------------------------------------------------------
  2009 void Node_Array::insert( uint i, Node *n ) {
  2010   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  2011   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  2012   _nodes[i] = n;
  2015 //-----------------------------------------------------------------------------
  2016 void Node_Array::remove( uint i ) {
  2017   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  2018   _nodes[_max-1] = NULL;
  2021 //-----------------------------------------------------------------------------
  2022 void Node_Array::sort( C_sort_func_t func) {
  2023   qsort( _nodes, _max, sizeof( Node* ), func );
  2026 //-----------------------------------------------------------------------------
  2027 void Node_Array::dump() const {
  2028 #ifndef PRODUCT
  2029   for( uint i = 0; i < _max; i++ ) {
  2030     Node *nn = _nodes[i];
  2031     if( nn != NULL ) {
  2032       tty->print("%5d--> ",i); nn->dump();
  2035 #endif
  2038 //--------------------------is_iteratively_computed------------------------------
  2039 // Operation appears to be iteratively computed (such as an induction variable)
  2040 // It is possible for this operation to return false for a loop-varying
  2041 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  2042 bool Node::is_iteratively_computed() {
  2043   if (ideal_reg()) { // does operation have a result register?
  2044     for (uint i = 1; i < req(); i++) {
  2045       Node* n = in(i);
  2046       if (n != NULL && n->is_Phi()) {
  2047         for (uint j = 1; j < n->req(); j++) {
  2048           if (n->in(j) == this) {
  2049             return true;
  2055   return false;
  2058 //--------------------------find_similar------------------------------
  2059 // Return a node with opcode "opc" and same inputs as "this" if one can
  2060 // be found; Otherwise return NULL;
  2061 Node* Node::find_similar(int opc) {
  2062   if (req() >= 2) {
  2063     Node* def = in(1);
  2064     if (def && def->outcnt() >= 2) {
  2065       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
  2066         Node* use = def->fast_out(i);
  2067         if (use->Opcode() == opc &&
  2068             use->req() == req()) {
  2069           uint j;
  2070           for (j = 0; j < use->req(); j++) {
  2071             if (use->in(j) != in(j)) {
  2072               break;
  2075           if (j == use->req()) {
  2076             return use;
  2082   return NULL;
  2086 //--------------------------unique_ctrl_out------------------------------
  2087 // Return the unique control out if only one. Null if none or more than one.
  2088 Node* Node::unique_ctrl_out() {
  2089   Node* found = NULL;
  2090   for (uint i = 0; i < outcnt(); i++) {
  2091     Node* use = raw_out(i);
  2092     if (use->is_CFG() && use != this) {
  2093       if (found != NULL) return NULL;
  2094       found = use;
  2097   return found;
  2100 //=============================================================================
  2101 //------------------------------yank-------------------------------------------
  2102 // Find and remove
  2103 void Node_List::yank( Node *n ) {
  2104   uint i;
  2105   for( i = 0; i < _cnt; i++ )
  2106     if( _nodes[i] == n )
  2107       break;
  2109   if( i < _cnt )
  2110     _nodes[i] = _nodes[--_cnt];
  2113 //------------------------------dump-------------------------------------------
  2114 void Node_List::dump() const {
  2115 #ifndef PRODUCT
  2116   for( uint i = 0; i < _cnt; i++ )
  2117     if( _nodes[i] ) {
  2118       tty->print("%5d--> ",i);
  2119       _nodes[i]->dump();
  2121 #endif
  2124 void Node_List::dump_simple() const {
  2125 #ifndef PRODUCT
  2126   for( uint i = 0; i < _cnt; i++ )
  2127     if( _nodes[i] ) {
  2128       tty->print(" %d", _nodes[i]->_idx);
  2129     } else {
  2130       tty->print(" NULL");
  2132 #endif
  2135 //=============================================================================
  2136 //------------------------------remove-----------------------------------------
  2137 void Unique_Node_List::remove( Node *n ) {
  2138   if( _in_worklist[n->_idx] ) {
  2139     for( uint i = 0; i < size(); i++ )
  2140       if( _nodes[i] == n ) {
  2141         map(i,Node_List::pop());
  2142         _in_worklist >>= n->_idx;
  2143         return;
  2145     ShouldNotReachHere();
  2149 //-----------------------remove_useless_nodes----------------------------------
  2150 // Remove useless nodes from worklist
  2151 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
  2153   for( uint i = 0; i < size(); ++i ) {
  2154     Node *n = at(i);
  2155     assert( n != NULL, "Did not expect null entries in worklist");
  2156     if( ! useful.test(n->_idx) ) {
  2157       _in_worklist >>= n->_idx;
  2158       map(i,Node_List::pop());
  2159       // Node *replacement = Node_List::pop();
  2160       // if( i != size() ) { // Check if removing last entry
  2161       //   _nodes[i] = replacement;
  2162       // }
  2163       --i;  // Visit popped node
  2164       // If it was last entry, loop terminates since size() was also reduced
  2169 //=============================================================================
  2170 void Node_Stack::grow() {
  2171   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  2172   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  2173   size_t max = old_max << 1;             // max * 2
  2174   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  2175   _inode_max = _inodes + max;
  2176   _inode_top = _inodes + old_top;        // restore _top
  2179 // Node_Stack is used to map nodes.
  2180 Node* Node_Stack::find(uint idx) const {
  2181   uint sz = size();
  2182   for (uint i=0; i < sz; i++) {
  2183     if (idx == index_at(i) )
  2184       return node_at(i);
  2186   return NULL;
  2189 //=============================================================================
  2190 uint TypeNode::size_of() const { return sizeof(*this); }
  2191 #ifndef PRODUCT
  2192 void TypeNode::dump_spec(outputStream *st) const {
  2193   if( !Verbose && !WizardMode ) {
  2194     // standard dump does this in Verbose and WizardMode
  2195     st->print(" #"); _type->dump_on(st);
  2198 #endif
  2199 uint TypeNode::hash() const {
  2200   return Node::hash() + _type->hash();
  2202 uint TypeNode::cmp( const Node &n ) const
  2203 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
  2204 const Type *TypeNode::bottom_type() const { return _type; }
  2205 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
  2207 //------------------------------ideal_reg--------------------------------------
  2208 uint TypeNode::ideal_reg() const {
  2209   return _type->ideal_reg();

mercurial