src/share/vm/oops/methodData.hpp

Wed, 13 Nov 2013 07:31:26 -0800

author
acorn
date
Wed, 13 Nov 2013 07:31:26 -0800
changeset 6080
fce21ac5968d
parent 5987
5ccbab1c69f3
child 6105
6e1826d5c23e
child 6472
2b8e28fdf503
permissions
-rw-r--r--

8027229: ICCE expected for >=2 maximally specific default methods.
Summary: Need to process defaults for interfaces for invokespecial
Reviewed-by: lfoltan, hseigel, coleenp, jrose

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag,
   121     call_type_data_tag,
   122     virtual_call_type_data_tag,
   123     parameters_type_data_tag
   124   };
   126   enum {
   127     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   128     // The trap state breaks down further as [recompile:1 | reason:3].
   129     // This further breakdown is defined in deoptimization.cpp.
   130     // See Deoptimization::trap_state_reason for an assert that
   131     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   132     //
   133     // The trap_state is collected only if ProfileTraps is true.
   134     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   135     trap_shift = BitsPerByte - trap_bits,
   136     trap_mask = right_n_bits(trap_bits),
   137     trap_mask_in_place = (trap_mask << trap_shift),
   138     flag_limit = trap_shift,
   139     flag_mask = right_n_bits(flag_limit),
   140     first_flag = 0
   141   };
   143   // Size computation
   144   static int header_size_in_bytes() {
   145     return cell_size;
   146   }
   147   static int header_size_in_cells() {
   148     return 1;
   149   }
   151   static int compute_size_in_bytes(int cell_count) {
   152     return header_size_in_bytes() + cell_count * cell_size;
   153   }
   155   // Initialization
   156   void initialize(u1 tag, u2 bci, int cell_count);
   158   // Accessors
   159   u1 tag() {
   160     return _header._struct._tag;
   161   }
   163   // Return a few bits of trap state.  Range is [0..trap_mask].
   164   // The state tells if traps with zero, one, or many reasons have occurred.
   165   // It also tells whether zero or many recompilations have occurred.
   166   // The associated trap histogram in the MDO itself tells whether
   167   // traps are common or not.  If a BCI shows that a trap X has
   168   // occurred, and the MDO shows N occurrences of X, we make the
   169   // simplifying assumption that all N occurrences can be blamed
   170   // on that BCI.
   171   int trap_state() const {
   172     return ((_header._struct._flags >> trap_shift) & trap_mask);
   173   }
   175   void set_trap_state(int new_state) {
   176     assert(ProfileTraps, "used only under +ProfileTraps");
   177     uint old_flags = (_header._struct._flags & flag_mask);
   178     _header._struct._flags = (new_state << trap_shift) | old_flags;
   179   }
   181   u1 flags() const {
   182     return _header._struct._flags;
   183   }
   185   u2 bci() const {
   186     return _header._struct._bci;
   187   }
   189   void set_header(intptr_t value) {
   190     _header._bits = value;
   191   }
   192   void release_set_header(intptr_t value) {
   193     OrderAccess::release_store_ptr(&_header._bits, value);
   194   }
   195   intptr_t header() {
   196     return _header._bits;
   197   }
   198   void set_cell_at(int index, intptr_t value) {
   199     _cells[index] = value;
   200   }
   201   void release_set_cell_at(int index, intptr_t value) {
   202     OrderAccess::release_store_ptr(&_cells[index], value);
   203   }
   204   intptr_t cell_at(int index) const {
   205     return _cells[index];
   206   }
   208   void set_flag_at(int flag_number) {
   209     assert(flag_number < flag_limit, "oob");
   210     _header._struct._flags |= (0x1 << flag_number);
   211   }
   212   bool flag_at(int flag_number) const {
   213     assert(flag_number < flag_limit, "oob");
   214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   215   }
   217   // Low-level support for code generation.
   218   static ByteSize header_offset() {
   219     return byte_offset_of(DataLayout, _header);
   220   }
   221   static ByteSize tag_offset() {
   222     return byte_offset_of(DataLayout, _header._struct._tag);
   223   }
   224   static ByteSize flags_offset() {
   225     return byte_offset_of(DataLayout, _header._struct._flags);
   226   }
   227   static ByteSize bci_offset() {
   228     return byte_offset_of(DataLayout, _header._struct._bci);
   229   }
   230   static ByteSize cell_offset(int index) {
   231     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   232   }
   233   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   234   static int flag_number_to_byte_constant(int flag_number) {
   235     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   236     DataLayout temp; temp.set_header(0);
   237     temp.set_flag_at(flag_number);
   238     return temp._header._struct._flags;
   239   }
   240   // Return a value which, when or-ed as a word into _header, sets the flag.
   241   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   242     DataLayout temp; temp.set_header(0);
   243     temp._header._struct._flags = byte_constant;
   244     return temp._header._bits;
   245   }
   247   ProfileData* data_in();
   249   // GC support
   250   void clean_weak_klass_links(BoolObjectClosure* cl);
   251 };
   254 // ProfileData class hierarchy
   255 class ProfileData;
   256 class   BitData;
   257 class     CounterData;
   258 class       ReceiverTypeData;
   259 class         VirtualCallData;
   260 class           VirtualCallTypeData;
   261 class       RetData;
   262 class       CallTypeData;
   263 class   JumpData;
   264 class     BranchData;
   265 class   ArrayData;
   266 class     MultiBranchData;
   267 class     ArgInfoData;
   268 class     ParametersTypeData;
   270 // ProfileData
   271 //
   272 // A ProfileData object is created to refer to a section of profiling
   273 // data in a structured way.
   274 class ProfileData : public ResourceObj {
   275   friend class TypeEntries;
   276   friend class ReturnTypeEntry;
   277   friend class TypeStackSlotEntries;
   278 private:
   279 #ifndef PRODUCT
   280   enum {
   281     tab_width_one = 16,
   282     tab_width_two = 36
   283   };
   284 #endif // !PRODUCT
   286   // This is a pointer to a section of profiling data.
   287   DataLayout* _data;
   289 protected:
   290   DataLayout* data() { return _data; }
   291   const DataLayout* data() const { return _data; }
   293   enum {
   294     cell_size = DataLayout::cell_size
   295   };
   297 public:
   298   // How many cells are in this?
   299   virtual int cell_count() const {
   300     ShouldNotReachHere();
   301     return -1;
   302   }
   304   // Return the size of this data.
   305   int size_in_bytes() {
   306     return DataLayout::compute_size_in_bytes(cell_count());
   307   }
   309 protected:
   310   // Low-level accessors for underlying data
   311   void set_intptr_at(int index, intptr_t value) {
   312     assert(0 <= index && index < cell_count(), "oob");
   313     data()->set_cell_at(index, value);
   314   }
   315   void release_set_intptr_at(int index, intptr_t value) {
   316     assert(0 <= index && index < cell_count(), "oob");
   317     data()->release_set_cell_at(index, value);
   318   }
   319   intptr_t intptr_at(int index) const {
   320     assert(0 <= index && index < cell_count(), "oob");
   321     return data()->cell_at(index);
   322   }
   323   void set_uint_at(int index, uint value) {
   324     set_intptr_at(index, (intptr_t) value);
   325   }
   326   void release_set_uint_at(int index, uint value) {
   327     release_set_intptr_at(index, (intptr_t) value);
   328   }
   329   uint uint_at(int index) const {
   330     return (uint)intptr_at(index);
   331   }
   332   void set_int_at(int index, int value) {
   333     set_intptr_at(index, (intptr_t) value);
   334   }
   335   void release_set_int_at(int index, int value) {
   336     release_set_intptr_at(index, (intptr_t) value);
   337   }
   338   int int_at(int index) const {
   339     return (int)intptr_at(index);
   340   }
   341   int int_at_unchecked(int index) const {
   342     return (int)data()->cell_at(index);
   343   }
   344   void set_oop_at(int index, oop value) {
   345     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   346   }
   347   oop oop_at(int index) const {
   348     return cast_to_oop(intptr_at(index));
   349   }
   351   void set_flag_at(int flag_number) {
   352     data()->set_flag_at(flag_number);
   353   }
   354   bool flag_at(int flag_number) const {
   355     return data()->flag_at(flag_number);
   356   }
   358   // two convenient imports for use by subclasses:
   359   static ByteSize cell_offset(int index) {
   360     return DataLayout::cell_offset(index);
   361   }
   362   static int flag_number_to_byte_constant(int flag_number) {
   363     return DataLayout::flag_number_to_byte_constant(flag_number);
   364   }
   366   ProfileData(DataLayout* data) {
   367     _data = data;
   368   }
   370 public:
   371   // Constructor for invalid ProfileData.
   372   ProfileData();
   374   u2 bci() const {
   375     return data()->bci();
   376   }
   378   address dp() {
   379     return (address)_data;
   380   }
   382   int trap_state() const {
   383     return data()->trap_state();
   384   }
   385   void set_trap_state(int new_state) {
   386     data()->set_trap_state(new_state);
   387   }
   389   // Type checking
   390   virtual bool is_BitData()         const { return false; }
   391   virtual bool is_CounterData()     const { return false; }
   392   virtual bool is_JumpData()        const { return false; }
   393   virtual bool is_ReceiverTypeData()const { return false; }
   394   virtual bool is_VirtualCallData() const { return false; }
   395   virtual bool is_RetData()         const { return false; }
   396   virtual bool is_BranchData()      const { return false; }
   397   virtual bool is_ArrayData()       const { return false; }
   398   virtual bool is_MultiBranchData() const { return false; }
   399   virtual bool is_ArgInfoData()     const { return false; }
   400   virtual bool is_CallTypeData()    const { return false; }
   401   virtual bool is_VirtualCallTypeData()const { return false; }
   402   virtual bool is_ParametersTypeData() const { return false; }
   405   BitData* as_BitData() const {
   406     assert(is_BitData(), "wrong type");
   407     return is_BitData()         ? (BitData*)        this : NULL;
   408   }
   409   CounterData* as_CounterData() const {
   410     assert(is_CounterData(), "wrong type");
   411     return is_CounterData()     ? (CounterData*)    this : NULL;
   412   }
   413   JumpData* as_JumpData() const {
   414     assert(is_JumpData(), "wrong type");
   415     return is_JumpData()        ? (JumpData*)       this : NULL;
   416   }
   417   ReceiverTypeData* as_ReceiverTypeData() const {
   418     assert(is_ReceiverTypeData(), "wrong type");
   419     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   420   }
   421   VirtualCallData* as_VirtualCallData() const {
   422     assert(is_VirtualCallData(), "wrong type");
   423     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   424   }
   425   RetData* as_RetData() const {
   426     assert(is_RetData(), "wrong type");
   427     return is_RetData()         ? (RetData*)        this : NULL;
   428   }
   429   BranchData* as_BranchData() const {
   430     assert(is_BranchData(), "wrong type");
   431     return is_BranchData()      ? (BranchData*)     this : NULL;
   432   }
   433   ArrayData* as_ArrayData() const {
   434     assert(is_ArrayData(), "wrong type");
   435     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   436   }
   437   MultiBranchData* as_MultiBranchData() const {
   438     assert(is_MultiBranchData(), "wrong type");
   439     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   440   }
   441   ArgInfoData* as_ArgInfoData() const {
   442     assert(is_ArgInfoData(), "wrong type");
   443     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   444   }
   445   CallTypeData* as_CallTypeData() const {
   446     assert(is_CallTypeData(), "wrong type");
   447     return is_CallTypeData() ? (CallTypeData*)this : NULL;
   448   }
   449   VirtualCallTypeData* as_VirtualCallTypeData() const {
   450     assert(is_VirtualCallTypeData(), "wrong type");
   451     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
   452   }
   453   ParametersTypeData* as_ParametersTypeData() const {
   454     assert(is_ParametersTypeData(), "wrong type");
   455     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
   456   }
   459   // Subclass specific initialization
   460   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   462   // GC support
   463   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   465   // CI translation: ProfileData can represent both MethodDataOop data
   466   // as well as CIMethodData data. This function is provided for translating
   467   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   468   // most ProfileData don't require any translation, so we provide the null
   469   // translation here, and the required translators are in the ci subclasses.
   470   virtual void translate_from(const ProfileData* data) {}
   472   virtual void print_data_on(outputStream* st) const {
   473     ShouldNotReachHere();
   474   }
   476 #ifndef PRODUCT
   477   void print_shared(outputStream* st, const char* name) const;
   478   void tab(outputStream* st, bool first = false) const;
   479 #endif
   480 };
   482 // BitData
   483 //
   484 // A BitData holds a flag or two in its header.
   485 class BitData : public ProfileData {
   486 protected:
   487   enum {
   488     // null_seen:
   489     //  saw a null operand (cast/aastore/instanceof)
   490     null_seen_flag              = DataLayout::first_flag + 0
   491   };
   492   enum { bit_cell_count = 0 };  // no additional data fields needed.
   493 public:
   494   BitData(DataLayout* layout) : ProfileData(layout) {
   495   }
   497   virtual bool is_BitData() const { return true; }
   499   static int static_cell_count() {
   500     return bit_cell_count;
   501   }
   503   virtual int cell_count() const {
   504     return static_cell_count();
   505   }
   507   // Accessor
   509   // The null_seen flag bit is specially known to the interpreter.
   510   // Consulting it allows the compiler to avoid setting up null_check traps.
   511   bool null_seen()     { return flag_at(null_seen_flag); }
   512   void set_null_seen()    { set_flag_at(null_seen_flag); }
   515   // Code generation support
   516   static int null_seen_byte_constant() {
   517     return flag_number_to_byte_constant(null_seen_flag);
   518   }
   520   static ByteSize bit_data_size() {
   521     return cell_offset(bit_cell_count);
   522   }
   524 #ifndef PRODUCT
   525   void print_data_on(outputStream* st) const;
   526 #endif
   527 };
   529 // CounterData
   530 //
   531 // A CounterData corresponds to a simple counter.
   532 class CounterData : public BitData {
   533 protected:
   534   enum {
   535     count_off,
   536     counter_cell_count
   537   };
   538 public:
   539   CounterData(DataLayout* layout) : BitData(layout) {}
   541   virtual bool is_CounterData() const { return true; }
   543   static int static_cell_count() {
   544     return counter_cell_count;
   545   }
   547   virtual int cell_count() const {
   548     return static_cell_count();
   549   }
   551   // Direct accessor
   552   uint count() const {
   553     return uint_at(count_off);
   554   }
   556   // Code generation support
   557   static ByteSize count_offset() {
   558     return cell_offset(count_off);
   559   }
   560   static ByteSize counter_data_size() {
   561     return cell_offset(counter_cell_count);
   562   }
   564   void set_count(uint count) {
   565     set_uint_at(count_off, count);
   566   }
   568 #ifndef PRODUCT
   569   void print_data_on(outputStream* st) const;
   570 #endif
   571 };
   573 // JumpData
   574 //
   575 // A JumpData is used to access profiling information for a direct
   576 // branch.  It is a counter, used for counting the number of branches,
   577 // plus a data displacement, used for realigning the data pointer to
   578 // the corresponding target bci.
   579 class JumpData : public ProfileData {
   580 protected:
   581   enum {
   582     taken_off_set,
   583     displacement_off_set,
   584     jump_cell_count
   585   };
   587   void set_displacement(int displacement) {
   588     set_int_at(displacement_off_set, displacement);
   589   }
   591 public:
   592   JumpData(DataLayout* layout) : ProfileData(layout) {
   593     assert(layout->tag() == DataLayout::jump_data_tag ||
   594       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   595   }
   597   virtual bool is_JumpData() const { return true; }
   599   static int static_cell_count() {
   600     return jump_cell_count;
   601   }
   603   virtual int cell_count() const {
   604     return static_cell_count();
   605   }
   607   // Direct accessor
   608   uint taken() const {
   609     return uint_at(taken_off_set);
   610   }
   612   void set_taken(uint cnt) {
   613     set_uint_at(taken_off_set, cnt);
   614   }
   616   // Saturating counter
   617   uint inc_taken() {
   618     uint cnt = taken() + 1;
   619     // Did we wrap? Will compiler screw us??
   620     if (cnt == 0) cnt--;
   621     set_uint_at(taken_off_set, cnt);
   622     return cnt;
   623   }
   625   int displacement() const {
   626     return int_at(displacement_off_set);
   627   }
   629   // Code generation support
   630   static ByteSize taken_offset() {
   631     return cell_offset(taken_off_set);
   632   }
   634   static ByteSize displacement_offset() {
   635     return cell_offset(displacement_off_set);
   636   }
   638   // Specific initialization.
   639   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   641 #ifndef PRODUCT
   642   void print_data_on(outputStream* st) const;
   643 #endif
   644 };
   646 // Entries in a ProfileData object to record types: it can either be
   647 // none (no profile), unknown (conflicting profile data) or a klass if
   648 // a single one is seen. Whether a null reference was seen is also
   649 // recorded. No counter is associated with the type and a single type
   650 // is tracked (unlike VirtualCallData).
   651 class TypeEntries {
   653 public:
   655   // A single cell is used to record information for a type:
   656   // - the cell is initialized to 0
   657   // - when a type is discovered it is stored in the cell
   658   // - bit zero of the cell is used to record whether a null reference
   659   // was encountered or not
   660   // - bit 1 is set to record a conflict in the type information
   662   enum {
   663     null_seen = 1,
   664     type_mask = ~null_seen,
   665     type_unknown = 2,
   666     status_bits = null_seen | type_unknown,
   667     type_klass_mask = ~status_bits
   668   };
   670   // what to initialize a cell to
   671   static intptr_t type_none() {
   672     return 0;
   673   }
   675   // null seen = bit 0 set?
   676   static bool was_null_seen(intptr_t v) {
   677     return (v & null_seen) != 0;
   678   }
   680   // conflicting type information = bit 1 set?
   681   static bool is_type_unknown(intptr_t v) {
   682     return (v & type_unknown) != 0;
   683   }
   685   // not type information yet = all bits cleared, ignoring bit 0?
   686   static bool is_type_none(intptr_t v) {
   687     return (v & type_mask) == 0;
   688   }
   690   // recorded type: cell without bit 0 and 1
   691   static intptr_t klass_part(intptr_t v) {
   692     intptr_t r = v & type_klass_mask;
   693     assert (r != 0, "invalid");
   694     return r;
   695   }
   697   // type recorded
   698   static Klass* valid_klass(intptr_t k) {
   699     if (!is_type_none(k) &&
   700         !is_type_unknown(k)) {
   701       return (Klass*)klass_part(k);
   702     } else {
   703       return NULL;
   704     }
   705   }
   707   static intptr_t with_status(intptr_t k, intptr_t in) {
   708     return k | (in & status_bits);
   709   }
   711   static intptr_t with_status(Klass* k, intptr_t in) {
   712     return with_status((intptr_t)k, in);
   713   }
   715 #ifndef PRODUCT
   716   static void print_klass(outputStream* st, intptr_t k);
   717 #endif
   719   // GC support
   720   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
   722 protected:
   723   // ProfileData object these entries are part of
   724   ProfileData* _pd;
   725   // offset within the ProfileData object where the entries start
   726   const int _base_off;
   728   TypeEntries(int base_off)
   729     : _base_off(base_off), _pd(NULL) {}
   731   void set_intptr_at(int index, intptr_t value) {
   732     _pd->set_intptr_at(index, value);
   733   }
   735   intptr_t intptr_at(int index) const {
   736     return _pd->intptr_at(index);
   737   }
   739 public:
   740   void set_profile_data(ProfileData* pd) {
   741     _pd = pd;
   742   }
   743 };
   745 // Type entries used for arguments passed at a call and parameters on
   746 // method entry. 2 cells per entry: one for the type encoded as in
   747 // TypeEntries and one initialized with the stack slot where the
   748 // profiled object is to be found so that the interpreter can locate
   749 // it quickly.
   750 class TypeStackSlotEntries : public TypeEntries {
   752 private:
   753   enum {
   754     stack_slot_entry,
   755     type_entry,
   756     per_arg_cell_count
   757   };
   759   // offset of cell for stack slot for entry i within ProfileData object
   760   int stack_slot_offset(int i) const {
   761     return _base_off + stack_slot_local_offset(i);
   762   }
   764 protected:
   765   const int _number_of_entries;
   767   // offset of cell for type for entry i within ProfileData object
   768   int type_offset(int i) const {
   769     return _base_off + type_local_offset(i);
   770   }
   772 public:
   774   TypeStackSlotEntries(int base_off, int nb_entries)
   775     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
   777   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
   779   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
   781   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
   782   static int stack_slot_local_offset(int i) {
   783     return i * per_arg_cell_count + stack_slot_entry;
   784   }
   786   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
   787   static int type_local_offset(int i) {
   788     return i * per_arg_cell_count + type_entry;
   789   }
   791   // stack slot for entry i
   792   uint stack_slot(int i) const {
   793     assert(i >= 0 && i < _number_of_entries, "oob");
   794     return _pd->uint_at(stack_slot_offset(i));
   795   }
   797   // set stack slot for entry i
   798   void set_stack_slot(int i, uint num) {
   799     assert(i >= 0 && i < _number_of_entries, "oob");
   800     _pd->set_uint_at(stack_slot_offset(i), num);
   801   }
   803   // type for entry i
   804   intptr_t type(int i) const {
   805     assert(i >= 0 && i < _number_of_entries, "oob");
   806     return _pd->intptr_at(type_offset(i));
   807   }
   809   // set type for entry i
   810   void set_type(int i, intptr_t k) {
   811     assert(i >= 0 && i < _number_of_entries, "oob");
   812     _pd->set_intptr_at(type_offset(i), k);
   813   }
   815   static ByteSize per_arg_size() {
   816     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
   817   }
   819   static int per_arg_count() {
   820     return per_arg_cell_count ;
   821   }
   823   // GC support
   824   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   826 #ifndef PRODUCT
   827   void print_data_on(outputStream* st) const;
   828 #endif
   829 };
   831 // Type entry used for return from a call. A single cell to record the
   832 // type.
   833 class ReturnTypeEntry : public TypeEntries {
   835 private:
   836   enum {
   837     cell_count = 1
   838   };
   840 public:
   841   ReturnTypeEntry(int base_off)
   842     : TypeEntries(base_off) {}
   844   void post_initialize() {
   845     set_type(type_none());
   846   }
   848   intptr_t type() const {
   849     return _pd->intptr_at(_base_off);
   850   }
   852   void set_type(intptr_t k) {
   853     _pd->set_intptr_at(_base_off, k);
   854   }
   856   static int static_cell_count() {
   857     return cell_count;
   858   }
   860   static ByteSize size() {
   861     return in_ByteSize(cell_count * DataLayout::cell_size);
   862   }
   864   ByteSize type_offset() {
   865     return DataLayout::cell_offset(_base_off);
   866   }
   868   // GC support
   869   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   871 #ifndef PRODUCT
   872   void print_data_on(outputStream* st) const;
   873 #endif
   874 };
   876 // Entries to collect type information at a call: contains arguments
   877 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
   878 // number of cells. Because the number of cells for the return type is
   879 // smaller than the number of cells for the type of an arguments, the
   880 // number of cells is used to tell how many arguments are profiled and
   881 // whether a return value is profiled. See has_arguments() and
   882 // has_return().
   883 class TypeEntriesAtCall {
   884 private:
   885   static int stack_slot_local_offset(int i) {
   886     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
   887   }
   889   static int argument_type_local_offset(int i) {
   890     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
   891   }
   893 public:
   895   static int header_cell_count() {
   896     return 1;
   897   }
   899   static int cell_count_local_offset() {
   900     return 0;
   901   }
   903   static int compute_cell_count(BytecodeStream* stream);
   905   static void initialize(DataLayout* dl, int base, int cell_count) {
   906     int off = base + cell_count_local_offset();
   907     dl->set_cell_at(off, cell_count - base - header_cell_count());
   908   }
   910   static bool arguments_profiling_enabled();
   911   static bool return_profiling_enabled();
   913   // Code generation support
   914   static ByteSize cell_count_offset() {
   915     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
   916   }
   918   static ByteSize args_data_offset() {
   919     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
   920   }
   922   static ByteSize stack_slot_offset(int i) {
   923     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
   924   }
   926   static ByteSize argument_type_offset(int i) {
   927     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
   928   }
   929 };
   931 // CallTypeData
   932 //
   933 // A CallTypeData is used to access profiling information about a non
   934 // virtual call for which we collect type information about arguments
   935 // and return value.
   936 class CallTypeData : public CounterData {
   937 private:
   938   // entries for arguments if any
   939   TypeStackSlotEntries _args;
   940   // entry for return type if any
   941   ReturnTypeEntry _ret;
   943   int cell_count_global_offset() const {
   944     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
   945   }
   947   // number of cells not counting the header
   948   int cell_count_no_header() const {
   949     return uint_at(cell_count_global_offset());
   950   }
   952   void check_number_of_arguments(int total) {
   953     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
   954   }
   956 public:
   957   CallTypeData(DataLayout* layout) :
   958     CounterData(layout),
   959     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
   960     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
   961   {
   962     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
   963     // Some compilers (VC++) don't want this passed in member initialization list
   964     _args.set_profile_data(this);
   965     _ret.set_profile_data(this);
   966   }
   968   const TypeStackSlotEntries* args() const {
   969     assert(has_arguments(), "no profiling of arguments");
   970     return &_args;
   971   }
   973   const ReturnTypeEntry* ret() const {
   974     assert(has_return(), "no profiling of return value");
   975     return &_ret;
   976   }
   978   virtual bool is_CallTypeData() const { return true; }
   980   static int static_cell_count() {
   981     return -1;
   982   }
   984   static int compute_cell_count(BytecodeStream* stream) {
   985     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
   986   }
   988   static void initialize(DataLayout* dl, int cell_count) {
   989     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
   990   }
   992   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
   994   virtual int cell_count() const {
   995     return CounterData::static_cell_count() +
   996       TypeEntriesAtCall::header_cell_count() +
   997       int_at_unchecked(cell_count_global_offset());
   998   }
  1000   int number_of_arguments() const {
  1001     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1004   void set_argument_type(int i, Klass* k) {
  1005     assert(has_arguments(), "no arguments!");
  1006     intptr_t current = _args.type(i);
  1007     _args.set_type(i, TypeEntries::with_status(k, current));
  1010   void set_return_type(Klass* k) {
  1011     assert(has_return(), "no return!");
  1012     intptr_t current = _ret.type();
  1013     _ret.set_type(TypeEntries::with_status(k, current));
  1016   // An entry for a return value takes less space than an entry for an
  1017   // argument so if the number of cells exceeds the number of cells
  1018   // needed for an argument, this object contains type information for
  1019   // at least one argument.
  1020   bool has_arguments() const {
  1021     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1022     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1023     return res;
  1026   // An entry for a return value takes less space than an entry for an
  1027   // argument, so if the remainder of the number of cells divided by
  1028   // the number of cells for an argument is not null, a return value
  1029   // is profiled in this object.
  1030   bool has_return() const {
  1031     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1032     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1033     return res;
  1036   // Code generation support
  1037   static ByteSize args_data_offset() {
  1038     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1041   // GC support
  1042   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1043     if (has_arguments()) {
  1044       _args.clean_weak_klass_links(is_alive_closure);
  1046     if (has_return()) {
  1047       _ret.clean_weak_klass_links(is_alive_closure);
  1051 #ifndef PRODUCT
  1052   virtual void print_data_on(outputStream* st) const;
  1053 #endif
  1054 };
  1056 // ReceiverTypeData
  1057 //
  1058 // A ReceiverTypeData is used to access profiling information about a
  1059 // dynamic type check.  It consists of a counter which counts the total times
  1060 // that the check is reached, and a series of (Klass*, count) pairs
  1061 // which are used to store a type profile for the receiver of the check.
  1062 class ReceiverTypeData : public CounterData {
  1063 protected:
  1064   enum {
  1065     receiver0_offset = counter_cell_count,
  1066     count0_offset,
  1067     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
  1068   };
  1070 public:
  1071   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
  1072     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
  1073            layout->tag() == DataLayout::virtual_call_data_tag ||
  1074            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1077   virtual bool is_ReceiverTypeData() const { return true; }
  1079   static int static_cell_count() {
  1080     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
  1083   virtual int cell_count() const {
  1084     return static_cell_count();
  1087   // Direct accessors
  1088   static uint row_limit() {
  1089     return TypeProfileWidth;
  1091   static int receiver_cell_index(uint row) {
  1092     return receiver0_offset + row * receiver_type_row_cell_count;
  1094   static int receiver_count_cell_index(uint row) {
  1095     return count0_offset + row * receiver_type_row_cell_count;
  1098   Klass* receiver(uint row) const {
  1099     assert(row < row_limit(), "oob");
  1101     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
  1102     assert(recv == NULL || recv->is_klass(), "wrong type");
  1103     return recv;
  1106   void set_receiver(uint row, Klass* k) {
  1107     assert((uint)row < row_limit(), "oob");
  1108     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
  1111   uint receiver_count(uint row) const {
  1112     assert(row < row_limit(), "oob");
  1113     return uint_at(receiver_count_cell_index(row));
  1116   void set_receiver_count(uint row, uint count) {
  1117     assert(row < row_limit(), "oob");
  1118     set_uint_at(receiver_count_cell_index(row), count);
  1121   void clear_row(uint row) {
  1122     assert(row < row_limit(), "oob");
  1123     // Clear total count - indicator of polymorphic call site.
  1124     // The site may look like as monomorphic after that but
  1125     // it allow to have more accurate profiling information because
  1126     // there was execution phase change since klasses were unloaded.
  1127     // If the site is still polymorphic then MDO will be updated
  1128     // to reflect it. But it could be the case that the site becomes
  1129     // only bimorphic. Then keeping total count not 0 will be wrong.
  1130     // Even if we use monomorphic (when it is not) for compilation
  1131     // we will only have trap, deoptimization and recompile again
  1132     // with updated MDO after executing method in Interpreter.
  1133     // An additional receiver will be recorded in the cleaned row
  1134     // during next call execution.
  1135     //
  1136     // Note: our profiling logic works with empty rows in any slot.
  1137     // We do sorting a profiling info (ciCallProfile) for compilation.
  1138     //
  1139     set_count(0);
  1140     set_receiver(row, NULL);
  1141     set_receiver_count(row, 0);
  1144   // Code generation support
  1145   static ByteSize receiver_offset(uint row) {
  1146     return cell_offset(receiver_cell_index(row));
  1148   static ByteSize receiver_count_offset(uint row) {
  1149     return cell_offset(receiver_count_cell_index(row));
  1151   static ByteSize receiver_type_data_size() {
  1152     return cell_offset(static_cell_count());
  1155   // GC support
  1156   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
  1158 #ifndef PRODUCT
  1159   void print_receiver_data_on(outputStream* st) const;
  1160   void print_data_on(outputStream* st) const;
  1161 #endif
  1162 };
  1164 // VirtualCallData
  1165 //
  1166 // A VirtualCallData is used to access profiling information about a
  1167 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
  1168 class VirtualCallData : public ReceiverTypeData {
  1169 public:
  1170   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
  1171     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
  1172            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1175   virtual bool is_VirtualCallData() const { return true; }
  1177   static int static_cell_count() {
  1178     // At this point we could add more profile state, e.g., for arguments.
  1179     // But for now it's the same size as the base record type.
  1180     return ReceiverTypeData::static_cell_count();
  1183   virtual int cell_count() const {
  1184     return static_cell_count();
  1187   // Direct accessors
  1188   static ByteSize virtual_call_data_size() {
  1189     return cell_offset(static_cell_count());
  1192 #ifndef PRODUCT
  1193   void print_data_on(outputStream* st) const;
  1194 #endif
  1195 };
  1197 // VirtualCallTypeData
  1198 //
  1199 // A VirtualCallTypeData is used to access profiling information about
  1200 // a virtual call for which we collect type information about
  1201 // arguments and return value.
  1202 class VirtualCallTypeData : public VirtualCallData {
  1203 private:
  1204   // entries for arguments if any
  1205   TypeStackSlotEntries _args;
  1206   // entry for return type if any
  1207   ReturnTypeEntry _ret;
  1209   int cell_count_global_offset() const {
  1210     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1213   // number of cells not counting the header
  1214   int cell_count_no_header() const {
  1215     return uint_at(cell_count_global_offset());
  1218   void check_number_of_arguments(int total) {
  1219     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1222 public:
  1223   VirtualCallTypeData(DataLayout* layout) :
  1224     VirtualCallData(layout),
  1225     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1226     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1228     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1229     // Some compilers (VC++) don't want this passed in member initialization list
  1230     _args.set_profile_data(this);
  1231     _ret.set_profile_data(this);
  1234   const TypeStackSlotEntries* args() const {
  1235     assert(has_arguments(), "no profiling of arguments");
  1236     return &_args;
  1239   const ReturnTypeEntry* ret() const {
  1240     assert(has_return(), "no profiling of return value");
  1241     return &_ret;
  1244   virtual bool is_VirtualCallTypeData() const { return true; }
  1246   static int static_cell_count() {
  1247     return -1;
  1250   static int compute_cell_count(BytecodeStream* stream) {
  1251     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1254   static void initialize(DataLayout* dl, int cell_count) {
  1255     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
  1258   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1260   virtual int cell_count() const {
  1261     return VirtualCallData::static_cell_count() +
  1262       TypeEntriesAtCall::header_cell_count() +
  1263       int_at_unchecked(cell_count_global_offset());
  1266   int number_of_arguments() const {
  1267     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1270   void set_argument_type(int i, Klass* k) {
  1271     assert(has_arguments(), "no arguments!");
  1272     intptr_t current = _args.type(i);
  1273     _args.set_type(i, TypeEntries::with_status(k, current));
  1276   void set_return_type(Klass* k) {
  1277     assert(has_return(), "no return!");
  1278     intptr_t current = _ret.type();
  1279     _ret.set_type(TypeEntries::with_status(k, current));
  1282   // An entry for a return value takes less space than an entry for an
  1283   // argument, so if the remainder of the number of cells divided by
  1284   // the number of cells for an argument is not null, a return value
  1285   // is profiled in this object.
  1286   bool has_return() const {
  1287     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1288     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1289     return res;
  1292   // An entry for a return value takes less space than an entry for an
  1293   // argument so if the number of cells exceeds the number of cells
  1294   // needed for an argument, this object contains type information for
  1295   // at least one argument.
  1296   bool has_arguments() const {
  1297     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1298     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1299     return res;
  1302   // Code generation support
  1303   static ByteSize args_data_offset() {
  1304     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1307   // GC support
  1308   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1309     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
  1310     if (has_arguments()) {
  1311       _args.clean_weak_klass_links(is_alive_closure);
  1313     if (has_return()) {
  1314       _ret.clean_weak_klass_links(is_alive_closure);
  1318 #ifndef PRODUCT
  1319   virtual void print_data_on(outputStream* st) const;
  1320 #endif
  1321 };
  1323 // RetData
  1324 //
  1325 // A RetData is used to access profiling information for a ret bytecode.
  1326 // It is composed of a count of the number of times that the ret has
  1327 // been executed, followed by a series of triples of the form
  1328 // (bci, count, di) which count the number of times that some bci was the
  1329 // target of the ret and cache a corresponding data displacement.
  1330 class RetData : public CounterData {
  1331 protected:
  1332   enum {
  1333     bci0_offset = counter_cell_count,
  1334     count0_offset,
  1335     displacement0_offset,
  1336     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
  1337   };
  1339   void set_bci(uint row, int bci) {
  1340     assert((uint)row < row_limit(), "oob");
  1341     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1343   void release_set_bci(uint row, int bci) {
  1344     assert((uint)row < row_limit(), "oob");
  1345     // 'release' when setting the bci acts as a valid flag for other
  1346     // threads wrt bci_count and bci_displacement.
  1347     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1349   void set_bci_count(uint row, uint count) {
  1350     assert((uint)row < row_limit(), "oob");
  1351     set_uint_at(count0_offset + row * ret_row_cell_count, count);
  1353   void set_bci_displacement(uint row, int disp) {
  1354     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
  1357 public:
  1358   RetData(DataLayout* layout) : CounterData(layout) {
  1359     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
  1362   virtual bool is_RetData() const { return true; }
  1364   enum {
  1365     no_bci = -1 // value of bci when bci1/2 are not in use.
  1366   };
  1368   static int static_cell_count() {
  1369     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
  1372   virtual int cell_count() const {
  1373     return static_cell_count();
  1376   static uint row_limit() {
  1377     return BciProfileWidth;
  1379   static int bci_cell_index(uint row) {
  1380     return bci0_offset + row * ret_row_cell_count;
  1382   static int bci_count_cell_index(uint row) {
  1383     return count0_offset + row * ret_row_cell_count;
  1385   static int bci_displacement_cell_index(uint row) {
  1386     return displacement0_offset + row * ret_row_cell_count;
  1389   // Direct accessors
  1390   int bci(uint row) const {
  1391     return int_at(bci_cell_index(row));
  1393   uint bci_count(uint row) const {
  1394     return uint_at(bci_count_cell_index(row));
  1396   int bci_displacement(uint row) const {
  1397     return int_at(bci_displacement_cell_index(row));
  1400   // Interpreter Runtime support
  1401   address fixup_ret(int return_bci, MethodData* mdo);
  1403   // Code generation support
  1404   static ByteSize bci_offset(uint row) {
  1405     return cell_offset(bci_cell_index(row));
  1407   static ByteSize bci_count_offset(uint row) {
  1408     return cell_offset(bci_count_cell_index(row));
  1410   static ByteSize bci_displacement_offset(uint row) {
  1411     return cell_offset(bci_displacement_cell_index(row));
  1414   // Specific initialization.
  1415   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1417 #ifndef PRODUCT
  1418   void print_data_on(outputStream* st) const;
  1419 #endif
  1420 };
  1422 // BranchData
  1423 //
  1424 // A BranchData is used to access profiling data for a two-way branch.
  1425 // It consists of taken and not_taken counts as well as a data displacement
  1426 // for the taken case.
  1427 class BranchData : public JumpData {
  1428 protected:
  1429   enum {
  1430     not_taken_off_set = jump_cell_count,
  1431     branch_cell_count
  1432   };
  1434   void set_displacement(int displacement) {
  1435     set_int_at(displacement_off_set, displacement);
  1438 public:
  1439   BranchData(DataLayout* layout) : JumpData(layout) {
  1440     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
  1443   virtual bool is_BranchData() const { return true; }
  1445   static int static_cell_count() {
  1446     return branch_cell_count;
  1449   virtual int cell_count() const {
  1450     return static_cell_count();
  1453   // Direct accessor
  1454   uint not_taken() const {
  1455     return uint_at(not_taken_off_set);
  1458   void set_not_taken(uint cnt) {
  1459     set_uint_at(not_taken_off_set, cnt);
  1462   uint inc_not_taken() {
  1463     uint cnt = not_taken() + 1;
  1464     // Did we wrap? Will compiler screw us??
  1465     if (cnt == 0) cnt--;
  1466     set_uint_at(not_taken_off_set, cnt);
  1467     return cnt;
  1470   // Code generation support
  1471   static ByteSize not_taken_offset() {
  1472     return cell_offset(not_taken_off_set);
  1474   static ByteSize branch_data_size() {
  1475     return cell_offset(branch_cell_count);
  1478   // Specific initialization.
  1479   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1481 #ifndef PRODUCT
  1482   void print_data_on(outputStream* st) const;
  1483 #endif
  1484 };
  1486 // ArrayData
  1487 //
  1488 // A ArrayData is a base class for accessing profiling data which does
  1489 // not have a statically known size.  It consists of an array length
  1490 // and an array start.
  1491 class ArrayData : public ProfileData {
  1492 protected:
  1493   friend class DataLayout;
  1495   enum {
  1496     array_len_off_set,
  1497     array_start_off_set
  1498   };
  1500   uint array_uint_at(int index) const {
  1501     int aindex = index + array_start_off_set;
  1502     return uint_at(aindex);
  1504   int array_int_at(int index) const {
  1505     int aindex = index + array_start_off_set;
  1506     return int_at(aindex);
  1508   oop array_oop_at(int index) const {
  1509     int aindex = index + array_start_off_set;
  1510     return oop_at(aindex);
  1512   void array_set_int_at(int index, int value) {
  1513     int aindex = index + array_start_off_set;
  1514     set_int_at(aindex, value);
  1517   // Code generation support for subclasses.
  1518   static ByteSize array_element_offset(int index) {
  1519     return cell_offset(array_start_off_set + index);
  1522 public:
  1523   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1525   virtual bool is_ArrayData() const { return true; }
  1527   static int static_cell_count() {
  1528     return -1;
  1531   int array_len() const {
  1532     return int_at_unchecked(array_len_off_set);
  1535   virtual int cell_count() const {
  1536     return array_len() + 1;
  1539   // Code generation support
  1540   static ByteSize array_len_offset() {
  1541     return cell_offset(array_len_off_set);
  1543   static ByteSize array_start_offset() {
  1544     return cell_offset(array_start_off_set);
  1546 };
  1548 // MultiBranchData
  1549 //
  1550 // A MultiBranchData is used to access profiling information for
  1551 // a multi-way branch (*switch bytecodes).  It consists of a series
  1552 // of (count, displacement) pairs, which count the number of times each
  1553 // case was taken and specify the data displacment for each branch target.
  1554 class MultiBranchData : public ArrayData {
  1555 protected:
  1556   enum {
  1557     default_count_off_set,
  1558     default_disaplacement_off_set,
  1559     case_array_start
  1560   };
  1561   enum {
  1562     relative_count_off_set,
  1563     relative_displacement_off_set,
  1564     per_case_cell_count
  1565   };
  1567   void set_default_displacement(int displacement) {
  1568     array_set_int_at(default_disaplacement_off_set, displacement);
  1570   void set_displacement_at(int index, int displacement) {
  1571     array_set_int_at(case_array_start +
  1572                      index * per_case_cell_count +
  1573                      relative_displacement_off_set,
  1574                      displacement);
  1577 public:
  1578   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1579     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1582   virtual bool is_MultiBranchData() const { return true; }
  1584   static int compute_cell_count(BytecodeStream* stream);
  1586   int number_of_cases() const {
  1587     int alen = array_len() - 2; // get rid of default case here.
  1588     assert(alen % per_case_cell_count == 0, "must be even");
  1589     return (alen / per_case_cell_count);
  1592   uint default_count() const {
  1593     return array_uint_at(default_count_off_set);
  1595   int default_displacement() const {
  1596     return array_int_at(default_disaplacement_off_set);
  1599   uint count_at(int index) const {
  1600     return array_uint_at(case_array_start +
  1601                          index * per_case_cell_count +
  1602                          relative_count_off_set);
  1604   int displacement_at(int index) const {
  1605     return array_int_at(case_array_start +
  1606                         index * per_case_cell_count +
  1607                         relative_displacement_off_set);
  1610   // Code generation support
  1611   static ByteSize default_count_offset() {
  1612     return array_element_offset(default_count_off_set);
  1614   static ByteSize default_displacement_offset() {
  1615     return array_element_offset(default_disaplacement_off_set);
  1617   static ByteSize case_count_offset(int index) {
  1618     return case_array_offset() +
  1619            (per_case_size() * index) +
  1620            relative_count_offset();
  1622   static ByteSize case_array_offset() {
  1623     return array_element_offset(case_array_start);
  1625   static ByteSize per_case_size() {
  1626     return in_ByteSize(per_case_cell_count) * cell_size;
  1628   static ByteSize relative_count_offset() {
  1629     return in_ByteSize(relative_count_off_set) * cell_size;
  1631   static ByteSize relative_displacement_offset() {
  1632     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1635   // Specific initialization.
  1636   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1638 #ifndef PRODUCT
  1639   void print_data_on(outputStream* st) const;
  1640 #endif
  1641 };
  1643 class ArgInfoData : public ArrayData {
  1645 public:
  1646   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1647     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1650   virtual bool is_ArgInfoData() const { return true; }
  1653   int number_of_args() const {
  1654     return array_len();
  1657   uint arg_modified(int arg) const {
  1658     return array_uint_at(arg);
  1661   void set_arg_modified(int arg, uint val) {
  1662     array_set_int_at(arg, val);
  1665 #ifndef PRODUCT
  1666   void print_data_on(outputStream* st) const;
  1667 #endif
  1668 };
  1670 // ParametersTypeData
  1671 //
  1672 // A ParametersTypeData is used to access profiling information about
  1673 // types of parameters to a method
  1674 class ParametersTypeData : public ArrayData {
  1676 private:
  1677   TypeStackSlotEntries _parameters;
  1679   static int stack_slot_local_offset(int i) {
  1680     assert_profiling_enabled();
  1681     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
  1684   static int type_local_offset(int i) {
  1685     assert_profiling_enabled();
  1686     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
  1689   static bool profiling_enabled();
  1690   static void assert_profiling_enabled() {
  1691     assert(profiling_enabled(), "method parameters profiling should be on");
  1694 public:
  1695   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
  1696     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
  1697     // Some compilers (VC++) don't want this passed in member initialization list
  1698     _parameters.set_profile_data(this);
  1701   static int compute_cell_count(Method* m);
  1703   virtual bool is_ParametersTypeData() const { return true; }
  1705   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1707   int number_of_parameters() const {
  1708     return array_len() / TypeStackSlotEntries::per_arg_count();
  1711   const TypeStackSlotEntries* parameters() const { return &_parameters; }
  1713   uint stack_slot(int i) const {
  1714     return _parameters.stack_slot(i);
  1717   void set_type(int i, Klass* k) {
  1718     intptr_t current = _parameters.type(i);
  1719     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
  1722   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1723     _parameters.clean_weak_klass_links(is_alive_closure);
  1726 #ifndef PRODUCT
  1727   virtual void print_data_on(outputStream* st) const;
  1728 #endif
  1730   static ByteSize stack_slot_offset(int i) {
  1731     return cell_offset(stack_slot_local_offset(i));
  1734   static ByteSize type_offset(int i) {
  1735     return cell_offset(type_local_offset(i));
  1737 };
  1739 // MethodData*
  1740 //
  1741 // A MethodData* holds information which has been collected about
  1742 // a method.  Its layout looks like this:
  1743 //
  1744 // -----------------------------
  1745 // | header                    |
  1746 // | klass                     |
  1747 // -----------------------------
  1748 // | method                    |
  1749 // | size of the MethodData* |
  1750 // -----------------------------
  1751 // | Data entries...           |
  1752 // |   (variable size)         |
  1753 // |                           |
  1754 // .                           .
  1755 // .                           .
  1756 // .                           .
  1757 // |                           |
  1758 // -----------------------------
  1759 //
  1760 // The data entry area is a heterogeneous array of DataLayouts. Each
  1761 // DataLayout in the array corresponds to a specific bytecode in the
  1762 // method.  The entries in the array are sorted by the corresponding
  1763 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1764 // which point to the underlying blocks of DataLayout structures.
  1765 //
  1766 // During interpretation, if profiling in enabled, the interpreter
  1767 // maintains a method data pointer (mdp), which points at the entry
  1768 // in the array corresponding to the current bci.  In the course of
  1769 // intepretation, when a bytecode is encountered that has profile data
  1770 // associated with it, the entry pointed to by mdp is updated, then the
  1771 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1772 // is NULL to begin with, the interpreter assumes that the current method
  1773 // is not (yet) being profiled.
  1774 //
  1775 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1776 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1777 // from the base of the data entry array.  A "displacement" is the byte offset
  1778 // in certain ProfileData objects that indicate the amount the mdp must be
  1779 // adjusted in the event of a change in control flow.
  1780 //
  1782 class MethodData : public Metadata {
  1783   friend class VMStructs;
  1784 private:
  1785   friend class ProfileData;
  1787   // Back pointer to the Method*
  1788   Method* _method;
  1790   // Size of this oop in bytes
  1791   int _size;
  1793   // Cached hint for bci_to_dp and bci_to_data
  1794   int _hint_di;
  1796   MethodData(methodHandle method, int size, TRAPS);
  1797 public:
  1798   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1799   MethodData() {}; // For ciMethodData
  1801   bool is_methodData() const volatile { return true; }
  1803   // Whole-method sticky bits and flags
  1804   enum {
  1805     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1806     _trap_hist_mask     = max_jubyte,
  1807     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1808   }; // Public flag values
  1809 private:
  1810   uint _nof_decompiles;             // count of all nmethod removals
  1811   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1812   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1813   union {
  1814     intptr_t _align;
  1815     u1 _array[_trap_hist_limit];
  1816   } _trap_hist;
  1818   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1819   intx              _eflags;          // flags on escape information
  1820   intx              _arg_local;       // bit set of non-escaping arguments
  1821   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1822   intx              _arg_returned;    // bit set of returned arguments
  1824   int _creation_mileage;              // method mileage at MDO creation
  1826   // How many invocations has this MDO seen?
  1827   // These counters are used to determine the exact age of MDO.
  1828   // We need those because in tiered a method can be concurrently
  1829   // executed at different levels.
  1830   InvocationCounter _invocation_counter;
  1831   // Same for backedges.
  1832   InvocationCounter _backedge_counter;
  1833   // Counter values at the time profiling started.
  1834   int               _invocation_counter_start;
  1835   int               _backedge_counter_start;
  1836   // Number of loops and blocks is computed when compiling the first
  1837   // time with C1. It is used to determine if method is trivial.
  1838   short             _num_loops;
  1839   short             _num_blocks;
  1840   // Highest compile level this method has ever seen.
  1841   u1                _highest_comp_level;
  1842   // Same for OSR level
  1843   u1                _highest_osr_comp_level;
  1844   // Does this method contain anything worth profiling?
  1845   bool              _would_profile;
  1847   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1848   int _data_size;
  1850   // data index for the area dedicated to parameters. -1 if no
  1851   // parameter profiling.
  1852   int _parameters_type_data_di;
  1854   // Beginning of the data entries
  1855   intptr_t _data[1];
  1857   // Helper for size computation
  1858   static int compute_data_size(BytecodeStream* stream);
  1859   static int bytecode_cell_count(Bytecodes::Code code);
  1860   enum { no_profile_data = -1, variable_cell_count = -2 };
  1862   // Helper for initialization
  1863   DataLayout* data_layout_at(int data_index) const {
  1864     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1865     return (DataLayout*) (((address)_data) + data_index);
  1868   // Initialize an individual data segment.  Returns the size of
  1869   // the segment in bytes.
  1870   int initialize_data(BytecodeStream* stream, int data_index);
  1872   // Helper for data_at
  1873   DataLayout* limit_data_position() const {
  1874     return (DataLayout*)((address)data_base() + _data_size);
  1876   bool out_of_bounds(int data_index) const {
  1877     return data_index >= data_size();
  1880   // Give each of the data entries a chance to perform specific
  1881   // data initialization.
  1882   void post_initialize(BytecodeStream* stream);
  1884   // hint accessors
  1885   int      hint_di() const  { return _hint_di; }
  1886   void set_hint_di(int di)  {
  1887     assert(!out_of_bounds(di), "hint_di out of bounds");
  1888     _hint_di = di;
  1890   ProfileData* data_before(int bci) {
  1891     // avoid SEGV on this edge case
  1892     if (data_size() == 0)
  1893       return NULL;
  1894     int hint = hint_di();
  1895     if (data_layout_at(hint)->bci() <= bci)
  1896       return data_at(hint);
  1897     return first_data();
  1900   // What is the index of the first data entry?
  1901   int first_di() const { return 0; }
  1903   // Find or create an extra ProfileData:
  1904   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1906   // return the argument info cell
  1907   ArgInfoData *arg_info();
  1909   enum {
  1910     no_type_profile = 0,
  1911     type_profile_jsr292 = 1,
  1912     type_profile_all = 2
  1913   };
  1915   static bool profile_jsr292(methodHandle m, int bci);
  1916   static int profile_arguments_flag();
  1917   static bool profile_arguments_jsr292_only();
  1918   static bool profile_all_arguments();
  1919   static bool profile_arguments_for_invoke(methodHandle m, int bci);
  1920   static int profile_return_flag();
  1921   static bool profile_all_return();
  1922   static bool profile_return_for_invoke(methodHandle m, int bci);
  1923   static int profile_parameters_flag();
  1924   static bool profile_parameters_jsr292_only();
  1925   static bool profile_all_parameters();
  1927 public:
  1928   static int header_size() {
  1929     return sizeof(MethodData)/wordSize;
  1932   // Compute the size of a MethodData* before it is created.
  1933   static int compute_allocation_size_in_bytes(methodHandle method);
  1934   static int compute_allocation_size_in_words(methodHandle method);
  1935   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1937   // Determine if a given bytecode can have profile information.
  1938   static bool bytecode_has_profile(Bytecodes::Code code) {
  1939     return bytecode_cell_count(code) != no_profile_data;
  1942   // reset into original state
  1943   void init();
  1945   // My size
  1946   int size_in_bytes() const { return _size; }
  1947   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  1948 #if INCLUDE_SERVICES
  1949   void collect_statistics(KlassSizeStats *sz) const;
  1950 #endif
  1952   int      creation_mileage() const  { return _creation_mileage; }
  1953   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1955   int invocation_count() {
  1956     if (invocation_counter()->carry()) {
  1957       return InvocationCounter::count_limit;
  1959     return invocation_counter()->count();
  1961   int backedge_count() {
  1962     if (backedge_counter()->carry()) {
  1963       return InvocationCounter::count_limit;
  1965     return backedge_counter()->count();
  1968   int invocation_count_start() {
  1969     if (invocation_counter()->carry()) {
  1970       return 0;
  1972     return _invocation_counter_start;
  1975   int backedge_count_start() {
  1976     if (backedge_counter()->carry()) {
  1977       return 0;
  1979     return _backedge_counter_start;
  1982   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1983   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1985   void reset_start_counters() {
  1986     _invocation_counter_start = invocation_count();
  1987     _backedge_counter_start = backedge_count();
  1990   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1991   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1993   void set_would_profile(bool p)              { _would_profile = p;    }
  1994   bool would_profile() const                  { return _would_profile; }
  1996   int highest_comp_level() const              { return _highest_comp_level;      }
  1997   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1998   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
  1999   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  2001   int num_loops() const                       { return _num_loops;  }
  2002   void set_num_loops(int n)                   { _num_loops = n;     }
  2003   int num_blocks() const                      { return _num_blocks; }
  2004   void set_num_blocks(int n)                  { _num_blocks = n;    }
  2006   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  2007   static int mileage_of(Method* m);
  2009   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2010   enum EscapeFlag {
  2011     estimated    = 1 << 0,
  2012     return_local = 1 << 1,
  2013     return_allocated = 1 << 2,
  2014     allocated_escapes = 1 << 3,
  2015     unknown_modified = 1 << 4
  2016   };
  2018   intx eflags()                                  { return _eflags; }
  2019   intx arg_local()                               { return _arg_local; }
  2020   intx arg_stack()                               { return _arg_stack; }
  2021   intx arg_returned()                            { return _arg_returned; }
  2022   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  2023                                                    assert(aid != NULL, "arg_info must be not null");
  2024                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2025                                                    return aid->arg_modified(a); }
  2027   void set_eflags(intx v)                        { _eflags = v; }
  2028   void set_arg_local(intx v)                     { _arg_local = v; }
  2029   void set_arg_stack(intx v)                     { _arg_stack = v; }
  2030   void set_arg_returned(intx v)                  { _arg_returned = v; }
  2031   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  2032                                                    assert(aid != NULL, "arg_info must be not null");
  2033                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2034                                                    aid->set_arg_modified(a, v); }
  2036   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  2038   // Location and size of data area
  2039   address data_base() const {
  2040     return (address) _data;
  2042   int data_size() const {
  2043     return _data_size;
  2046   // Accessors
  2047   Method* method() const { return _method; }
  2049   // Get the data at an arbitrary (sort of) data index.
  2050   ProfileData* data_at(int data_index) const;
  2052   // Walk through the data in order.
  2053   ProfileData* first_data() const { return data_at(first_di()); }
  2054   ProfileData* next_data(ProfileData* current) const;
  2055   bool is_valid(ProfileData* current) const { return current != NULL; }
  2057   // Convert a dp (data pointer) to a di (data index).
  2058   int dp_to_di(address dp) const {
  2059     return dp - ((address)_data);
  2062   address di_to_dp(int di) {
  2063     return (address)data_layout_at(di);
  2066   // bci to di/dp conversion.
  2067   address bci_to_dp(int bci);
  2068   int bci_to_di(int bci) {
  2069     return dp_to_di(bci_to_dp(bci));
  2072   // Get the data at an arbitrary bci, or NULL if there is none.
  2073   ProfileData* bci_to_data(int bci);
  2075   // Same, but try to create an extra_data record if one is needed:
  2076   ProfileData* allocate_bci_to_data(int bci) {
  2077     ProfileData* data = bci_to_data(bci);
  2078     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  2081   // Add a handful of extra data records, for trap tracking.
  2082   DataLayout* extra_data_base() const { return limit_data_position(); }
  2083   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  2084   int extra_data_size() const { return (address)extra_data_limit()
  2085                                - (address)extra_data_base(); }
  2086   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  2088   // Return (uint)-1 for overflow.
  2089   uint trap_count(int reason) const {
  2090     assert((uint)reason < _trap_hist_limit, "oob");
  2091     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  2093   // For loops:
  2094   static uint trap_reason_limit() { return _trap_hist_limit; }
  2095   static uint trap_count_limit()  { return _trap_hist_mask; }
  2096   uint inc_trap_count(int reason) {
  2097     // Count another trap, anywhere in this method.
  2098     assert(reason >= 0, "must be single trap");
  2099     if ((uint)reason < _trap_hist_limit) {
  2100       uint cnt1 = 1 + _trap_hist._array[reason];
  2101       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  2102         _trap_hist._array[reason] = cnt1;
  2103         return cnt1;
  2104       } else {
  2105         return _trap_hist_mask + (++_nof_overflow_traps);
  2107     } else {
  2108       // Could not represent the count in the histogram.
  2109       return (++_nof_overflow_traps);
  2113   uint overflow_trap_count() const {
  2114     return _nof_overflow_traps;
  2116   uint overflow_recompile_count() const {
  2117     return _nof_overflow_recompiles;
  2119   void inc_overflow_recompile_count() {
  2120     _nof_overflow_recompiles += 1;
  2122   uint decompile_count() const {
  2123     return _nof_decompiles;
  2125   void inc_decompile_count() {
  2126     _nof_decompiles += 1;
  2127     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  2128       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  2132   // Return pointer to area dedicated to parameters in MDO
  2133   ParametersTypeData* parameters_type_data() const {
  2134     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
  2137   int parameters_type_data_di() const {
  2138     assert(_parameters_type_data_di != -1, "no args type data");
  2139     return _parameters_type_data_di;
  2142   // Support for code generation
  2143   static ByteSize data_offset() {
  2144     return byte_offset_of(MethodData, _data[0]);
  2147   static ByteSize invocation_counter_offset() {
  2148     return byte_offset_of(MethodData, _invocation_counter);
  2150   static ByteSize backedge_counter_offset() {
  2151     return byte_offset_of(MethodData, _backedge_counter);
  2154   static ByteSize parameters_type_data_di_offset() {
  2155     return byte_offset_of(MethodData, _parameters_type_data_di);
  2158   // Deallocation support - no pointer fields to deallocate
  2159   void deallocate_contents(ClassLoaderData* loader_data) {}
  2161   // GC support
  2162   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  2164   // Printing
  2165 #ifndef PRODUCT
  2166   void print_on      (outputStream* st) const;
  2167 #endif
  2168   void print_value_on(outputStream* st) const;
  2170 #ifndef PRODUCT
  2171   // printing support for method data
  2172   void print_data_on(outputStream* st) const;
  2173 #endif
  2175   const char* internal_name() const { return "{method data}"; }
  2177   // verification
  2178   void verify_on(outputStream* st);
  2179   void verify_data_on(outputStream* st);
  2181   static bool profile_parameters_for_method(methodHandle m);
  2182   static bool profile_arguments();
  2183   static bool profile_return();
  2184   static bool profile_parameters();
  2185   static bool profile_return_jsr292_only();
  2186 };
  2188 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial