src/share/vm/oops/methodData.hpp

Wed, 13 Nov 2013 13:45:50 +0100

author
roland
date
Wed, 13 Nov 2013 13:45:50 +0100
changeset 6105
6e1826d5c23e
parent 5987
5ccbab1c69f3
child 6377
b8413a9cbb84
child 6485
da862781b584
permissions
-rw-r--r--

8027572: assert(r != 0) failed: invalid
Summary: null classes should be expected in profiles with conflicts
Reviewed-by: kvn, iveresov

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag,
   121     call_type_data_tag,
   122     virtual_call_type_data_tag,
   123     parameters_type_data_tag
   124   };
   126   enum {
   127     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   128     // The trap state breaks down further as [recompile:1 | reason:3].
   129     // This further breakdown is defined in deoptimization.cpp.
   130     // See Deoptimization::trap_state_reason for an assert that
   131     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   132     //
   133     // The trap_state is collected only if ProfileTraps is true.
   134     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   135     trap_shift = BitsPerByte - trap_bits,
   136     trap_mask = right_n_bits(trap_bits),
   137     trap_mask_in_place = (trap_mask << trap_shift),
   138     flag_limit = trap_shift,
   139     flag_mask = right_n_bits(flag_limit),
   140     first_flag = 0
   141   };
   143   // Size computation
   144   static int header_size_in_bytes() {
   145     return cell_size;
   146   }
   147   static int header_size_in_cells() {
   148     return 1;
   149   }
   151   static int compute_size_in_bytes(int cell_count) {
   152     return header_size_in_bytes() + cell_count * cell_size;
   153   }
   155   // Initialization
   156   void initialize(u1 tag, u2 bci, int cell_count);
   158   // Accessors
   159   u1 tag() {
   160     return _header._struct._tag;
   161   }
   163   // Return a few bits of trap state.  Range is [0..trap_mask].
   164   // The state tells if traps with zero, one, or many reasons have occurred.
   165   // It also tells whether zero or many recompilations have occurred.
   166   // The associated trap histogram in the MDO itself tells whether
   167   // traps are common or not.  If a BCI shows that a trap X has
   168   // occurred, and the MDO shows N occurrences of X, we make the
   169   // simplifying assumption that all N occurrences can be blamed
   170   // on that BCI.
   171   int trap_state() const {
   172     return ((_header._struct._flags >> trap_shift) & trap_mask);
   173   }
   175   void set_trap_state(int new_state) {
   176     assert(ProfileTraps, "used only under +ProfileTraps");
   177     uint old_flags = (_header._struct._flags & flag_mask);
   178     _header._struct._flags = (new_state << trap_shift) | old_flags;
   179   }
   181   u1 flags() const {
   182     return _header._struct._flags;
   183   }
   185   u2 bci() const {
   186     return _header._struct._bci;
   187   }
   189   void set_header(intptr_t value) {
   190     _header._bits = value;
   191   }
   192   void release_set_header(intptr_t value) {
   193     OrderAccess::release_store_ptr(&_header._bits, value);
   194   }
   195   intptr_t header() {
   196     return _header._bits;
   197   }
   198   void set_cell_at(int index, intptr_t value) {
   199     _cells[index] = value;
   200   }
   201   void release_set_cell_at(int index, intptr_t value) {
   202     OrderAccess::release_store_ptr(&_cells[index], value);
   203   }
   204   intptr_t cell_at(int index) const {
   205     return _cells[index];
   206   }
   208   void set_flag_at(int flag_number) {
   209     assert(flag_number < flag_limit, "oob");
   210     _header._struct._flags |= (0x1 << flag_number);
   211   }
   212   bool flag_at(int flag_number) const {
   213     assert(flag_number < flag_limit, "oob");
   214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   215   }
   217   // Low-level support for code generation.
   218   static ByteSize header_offset() {
   219     return byte_offset_of(DataLayout, _header);
   220   }
   221   static ByteSize tag_offset() {
   222     return byte_offset_of(DataLayout, _header._struct._tag);
   223   }
   224   static ByteSize flags_offset() {
   225     return byte_offset_of(DataLayout, _header._struct._flags);
   226   }
   227   static ByteSize bci_offset() {
   228     return byte_offset_of(DataLayout, _header._struct._bci);
   229   }
   230   static ByteSize cell_offset(int index) {
   231     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   232   }
   233   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   234   static int flag_number_to_byte_constant(int flag_number) {
   235     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   236     DataLayout temp; temp.set_header(0);
   237     temp.set_flag_at(flag_number);
   238     return temp._header._struct._flags;
   239   }
   240   // Return a value which, when or-ed as a word into _header, sets the flag.
   241   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   242     DataLayout temp; temp.set_header(0);
   243     temp._header._struct._flags = byte_constant;
   244     return temp._header._bits;
   245   }
   247   ProfileData* data_in();
   249   // GC support
   250   void clean_weak_klass_links(BoolObjectClosure* cl);
   251 };
   254 // ProfileData class hierarchy
   255 class ProfileData;
   256 class   BitData;
   257 class     CounterData;
   258 class       ReceiverTypeData;
   259 class         VirtualCallData;
   260 class           VirtualCallTypeData;
   261 class       RetData;
   262 class       CallTypeData;
   263 class   JumpData;
   264 class     BranchData;
   265 class   ArrayData;
   266 class     MultiBranchData;
   267 class     ArgInfoData;
   268 class     ParametersTypeData;
   270 // ProfileData
   271 //
   272 // A ProfileData object is created to refer to a section of profiling
   273 // data in a structured way.
   274 class ProfileData : public ResourceObj {
   275   friend class TypeEntries;
   276   friend class ReturnTypeEntry;
   277   friend class TypeStackSlotEntries;
   278 private:
   279 #ifndef PRODUCT
   280   enum {
   281     tab_width_one = 16,
   282     tab_width_two = 36
   283   };
   284 #endif // !PRODUCT
   286   // This is a pointer to a section of profiling data.
   287   DataLayout* _data;
   289 protected:
   290   DataLayout* data() { return _data; }
   291   const DataLayout* data() const { return _data; }
   293   enum {
   294     cell_size = DataLayout::cell_size
   295   };
   297 public:
   298   // How many cells are in this?
   299   virtual int cell_count() const {
   300     ShouldNotReachHere();
   301     return -1;
   302   }
   304   // Return the size of this data.
   305   int size_in_bytes() {
   306     return DataLayout::compute_size_in_bytes(cell_count());
   307   }
   309 protected:
   310   // Low-level accessors for underlying data
   311   void set_intptr_at(int index, intptr_t value) {
   312     assert(0 <= index && index < cell_count(), "oob");
   313     data()->set_cell_at(index, value);
   314   }
   315   void release_set_intptr_at(int index, intptr_t value) {
   316     assert(0 <= index && index < cell_count(), "oob");
   317     data()->release_set_cell_at(index, value);
   318   }
   319   intptr_t intptr_at(int index) const {
   320     assert(0 <= index && index < cell_count(), "oob");
   321     return data()->cell_at(index);
   322   }
   323   void set_uint_at(int index, uint value) {
   324     set_intptr_at(index, (intptr_t) value);
   325   }
   326   void release_set_uint_at(int index, uint value) {
   327     release_set_intptr_at(index, (intptr_t) value);
   328   }
   329   uint uint_at(int index) const {
   330     return (uint)intptr_at(index);
   331   }
   332   void set_int_at(int index, int value) {
   333     set_intptr_at(index, (intptr_t) value);
   334   }
   335   void release_set_int_at(int index, int value) {
   336     release_set_intptr_at(index, (intptr_t) value);
   337   }
   338   int int_at(int index) const {
   339     return (int)intptr_at(index);
   340   }
   341   int int_at_unchecked(int index) const {
   342     return (int)data()->cell_at(index);
   343   }
   344   void set_oop_at(int index, oop value) {
   345     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   346   }
   347   oop oop_at(int index) const {
   348     return cast_to_oop(intptr_at(index));
   349   }
   351   void set_flag_at(int flag_number) {
   352     data()->set_flag_at(flag_number);
   353   }
   354   bool flag_at(int flag_number) const {
   355     return data()->flag_at(flag_number);
   356   }
   358   // two convenient imports for use by subclasses:
   359   static ByteSize cell_offset(int index) {
   360     return DataLayout::cell_offset(index);
   361   }
   362   static int flag_number_to_byte_constant(int flag_number) {
   363     return DataLayout::flag_number_to_byte_constant(flag_number);
   364   }
   366   ProfileData(DataLayout* data) {
   367     _data = data;
   368   }
   370 public:
   371   // Constructor for invalid ProfileData.
   372   ProfileData();
   374   u2 bci() const {
   375     return data()->bci();
   376   }
   378   address dp() {
   379     return (address)_data;
   380   }
   382   int trap_state() const {
   383     return data()->trap_state();
   384   }
   385   void set_trap_state(int new_state) {
   386     data()->set_trap_state(new_state);
   387   }
   389   // Type checking
   390   virtual bool is_BitData()         const { return false; }
   391   virtual bool is_CounterData()     const { return false; }
   392   virtual bool is_JumpData()        const { return false; }
   393   virtual bool is_ReceiverTypeData()const { return false; }
   394   virtual bool is_VirtualCallData() const { return false; }
   395   virtual bool is_RetData()         const { return false; }
   396   virtual bool is_BranchData()      const { return false; }
   397   virtual bool is_ArrayData()       const { return false; }
   398   virtual bool is_MultiBranchData() const { return false; }
   399   virtual bool is_ArgInfoData()     const { return false; }
   400   virtual bool is_CallTypeData()    const { return false; }
   401   virtual bool is_VirtualCallTypeData()const { return false; }
   402   virtual bool is_ParametersTypeData() const { return false; }
   405   BitData* as_BitData() const {
   406     assert(is_BitData(), "wrong type");
   407     return is_BitData()         ? (BitData*)        this : NULL;
   408   }
   409   CounterData* as_CounterData() const {
   410     assert(is_CounterData(), "wrong type");
   411     return is_CounterData()     ? (CounterData*)    this : NULL;
   412   }
   413   JumpData* as_JumpData() const {
   414     assert(is_JumpData(), "wrong type");
   415     return is_JumpData()        ? (JumpData*)       this : NULL;
   416   }
   417   ReceiverTypeData* as_ReceiverTypeData() const {
   418     assert(is_ReceiverTypeData(), "wrong type");
   419     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   420   }
   421   VirtualCallData* as_VirtualCallData() const {
   422     assert(is_VirtualCallData(), "wrong type");
   423     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   424   }
   425   RetData* as_RetData() const {
   426     assert(is_RetData(), "wrong type");
   427     return is_RetData()         ? (RetData*)        this : NULL;
   428   }
   429   BranchData* as_BranchData() const {
   430     assert(is_BranchData(), "wrong type");
   431     return is_BranchData()      ? (BranchData*)     this : NULL;
   432   }
   433   ArrayData* as_ArrayData() const {
   434     assert(is_ArrayData(), "wrong type");
   435     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   436   }
   437   MultiBranchData* as_MultiBranchData() const {
   438     assert(is_MultiBranchData(), "wrong type");
   439     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   440   }
   441   ArgInfoData* as_ArgInfoData() const {
   442     assert(is_ArgInfoData(), "wrong type");
   443     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   444   }
   445   CallTypeData* as_CallTypeData() const {
   446     assert(is_CallTypeData(), "wrong type");
   447     return is_CallTypeData() ? (CallTypeData*)this : NULL;
   448   }
   449   VirtualCallTypeData* as_VirtualCallTypeData() const {
   450     assert(is_VirtualCallTypeData(), "wrong type");
   451     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
   452   }
   453   ParametersTypeData* as_ParametersTypeData() const {
   454     assert(is_ParametersTypeData(), "wrong type");
   455     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
   456   }
   459   // Subclass specific initialization
   460   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   462   // GC support
   463   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   465   // CI translation: ProfileData can represent both MethodDataOop data
   466   // as well as CIMethodData data. This function is provided for translating
   467   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   468   // most ProfileData don't require any translation, so we provide the null
   469   // translation here, and the required translators are in the ci subclasses.
   470   virtual void translate_from(const ProfileData* data) {}
   472   virtual void print_data_on(outputStream* st) const {
   473     ShouldNotReachHere();
   474   }
   476 #ifndef PRODUCT
   477   void print_shared(outputStream* st, const char* name) const;
   478   void tab(outputStream* st, bool first = false) const;
   479 #endif
   480 };
   482 // BitData
   483 //
   484 // A BitData holds a flag or two in its header.
   485 class BitData : public ProfileData {
   486 protected:
   487   enum {
   488     // null_seen:
   489     //  saw a null operand (cast/aastore/instanceof)
   490     null_seen_flag              = DataLayout::first_flag + 0
   491   };
   492   enum { bit_cell_count = 0 };  // no additional data fields needed.
   493 public:
   494   BitData(DataLayout* layout) : ProfileData(layout) {
   495   }
   497   virtual bool is_BitData() const { return true; }
   499   static int static_cell_count() {
   500     return bit_cell_count;
   501   }
   503   virtual int cell_count() const {
   504     return static_cell_count();
   505   }
   507   // Accessor
   509   // The null_seen flag bit is specially known to the interpreter.
   510   // Consulting it allows the compiler to avoid setting up null_check traps.
   511   bool null_seen()     { return flag_at(null_seen_flag); }
   512   void set_null_seen()    { set_flag_at(null_seen_flag); }
   515   // Code generation support
   516   static int null_seen_byte_constant() {
   517     return flag_number_to_byte_constant(null_seen_flag);
   518   }
   520   static ByteSize bit_data_size() {
   521     return cell_offset(bit_cell_count);
   522   }
   524 #ifndef PRODUCT
   525   void print_data_on(outputStream* st) const;
   526 #endif
   527 };
   529 // CounterData
   530 //
   531 // A CounterData corresponds to a simple counter.
   532 class CounterData : public BitData {
   533 protected:
   534   enum {
   535     count_off,
   536     counter_cell_count
   537   };
   538 public:
   539   CounterData(DataLayout* layout) : BitData(layout) {}
   541   virtual bool is_CounterData() const { return true; }
   543   static int static_cell_count() {
   544     return counter_cell_count;
   545   }
   547   virtual int cell_count() const {
   548     return static_cell_count();
   549   }
   551   // Direct accessor
   552   uint count() const {
   553     return uint_at(count_off);
   554   }
   556   // Code generation support
   557   static ByteSize count_offset() {
   558     return cell_offset(count_off);
   559   }
   560   static ByteSize counter_data_size() {
   561     return cell_offset(counter_cell_count);
   562   }
   564   void set_count(uint count) {
   565     set_uint_at(count_off, count);
   566   }
   568 #ifndef PRODUCT
   569   void print_data_on(outputStream* st) const;
   570 #endif
   571 };
   573 // JumpData
   574 //
   575 // A JumpData is used to access profiling information for a direct
   576 // branch.  It is a counter, used for counting the number of branches,
   577 // plus a data displacement, used for realigning the data pointer to
   578 // the corresponding target bci.
   579 class JumpData : public ProfileData {
   580 protected:
   581   enum {
   582     taken_off_set,
   583     displacement_off_set,
   584     jump_cell_count
   585   };
   587   void set_displacement(int displacement) {
   588     set_int_at(displacement_off_set, displacement);
   589   }
   591 public:
   592   JumpData(DataLayout* layout) : ProfileData(layout) {
   593     assert(layout->tag() == DataLayout::jump_data_tag ||
   594       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   595   }
   597   virtual bool is_JumpData() const { return true; }
   599   static int static_cell_count() {
   600     return jump_cell_count;
   601   }
   603   virtual int cell_count() const {
   604     return static_cell_count();
   605   }
   607   // Direct accessor
   608   uint taken() const {
   609     return uint_at(taken_off_set);
   610   }
   612   void set_taken(uint cnt) {
   613     set_uint_at(taken_off_set, cnt);
   614   }
   616   // Saturating counter
   617   uint inc_taken() {
   618     uint cnt = taken() + 1;
   619     // Did we wrap? Will compiler screw us??
   620     if (cnt == 0) cnt--;
   621     set_uint_at(taken_off_set, cnt);
   622     return cnt;
   623   }
   625   int displacement() const {
   626     return int_at(displacement_off_set);
   627   }
   629   // Code generation support
   630   static ByteSize taken_offset() {
   631     return cell_offset(taken_off_set);
   632   }
   634   static ByteSize displacement_offset() {
   635     return cell_offset(displacement_off_set);
   636   }
   638   // Specific initialization.
   639   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   641 #ifndef PRODUCT
   642   void print_data_on(outputStream* st) const;
   643 #endif
   644 };
   646 // Entries in a ProfileData object to record types: it can either be
   647 // none (no profile), unknown (conflicting profile data) or a klass if
   648 // a single one is seen. Whether a null reference was seen is also
   649 // recorded. No counter is associated with the type and a single type
   650 // is tracked (unlike VirtualCallData).
   651 class TypeEntries {
   653 public:
   655   // A single cell is used to record information for a type:
   656   // - the cell is initialized to 0
   657   // - when a type is discovered it is stored in the cell
   658   // - bit zero of the cell is used to record whether a null reference
   659   // was encountered or not
   660   // - bit 1 is set to record a conflict in the type information
   662   enum {
   663     null_seen = 1,
   664     type_mask = ~null_seen,
   665     type_unknown = 2,
   666     status_bits = null_seen | type_unknown,
   667     type_klass_mask = ~status_bits
   668   };
   670   // what to initialize a cell to
   671   static intptr_t type_none() {
   672     return 0;
   673   }
   675   // null seen = bit 0 set?
   676   static bool was_null_seen(intptr_t v) {
   677     return (v & null_seen) != 0;
   678   }
   680   // conflicting type information = bit 1 set?
   681   static bool is_type_unknown(intptr_t v) {
   682     return (v & type_unknown) != 0;
   683   }
   685   // not type information yet = all bits cleared, ignoring bit 0?
   686   static bool is_type_none(intptr_t v) {
   687     return (v & type_mask) == 0;
   688   }
   690   // recorded type: cell without bit 0 and 1
   691   static intptr_t klass_part(intptr_t v) {
   692     intptr_t r = v & type_klass_mask;
   693     return r;
   694   }
   696   // type recorded
   697   static Klass* valid_klass(intptr_t k) {
   698     if (!is_type_none(k) &&
   699         !is_type_unknown(k)) {
   700       Klass* res = (Klass*)klass_part(k);
   701       assert(res != NULL, "invalid");
   702       return res;
   703     } else {
   704       return NULL;
   705     }
   706   }
   708   static intptr_t with_status(intptr_t k, intptr_t in) {
   709     return k | (in & status_bits);
   710   }
   712   static intptr_t with_status(Klass* k, intptr_t in) {
   713     return with_status((intptr_t)k, in);
   714   }
   716 #ifndef PRODUCT
   717   static void print_klass(outputStream* st, intptr_t k);
   718 #endif
   720   // GC support
   721   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
   723 protected:
   724   // ProfileData object these entries are part of
   725   ProfileData* _pd;
   726   // offset within the ProfileData object where the entries start
   727   const int _base_off;
   729   TypeEntries(int base_off)
   730     : _base_off(base_off), _pd(NULL) {}
   732   void set_intptr_at(int index, intptr_t value) {
   733     _pd->set_intptr_at(index, value);
   734   }
   736   intptr_t intptr_at(int index) const {
   737     return _pd->intptr_at(index);
   738   }
   740 public:
   741   void set_profile_data(ProfileData* pd) {
   742     _pd = pd;
   743   }
   744 };
   746 // Type entries used for arguments passed at a call and parameters on
   747 // method entry. 2 cells per entry: one for the type encoded as in
   748 // TypeEntries and one initialized with the stack slot where the
   749 // profiled object is to be found so that the interpreter can locate
   750 // it quickly.
   751 class TypeStackSlotEntries : public TypeEntries {
   753 private:
   754   enum {
   755     stack_slot_entry,
   756     type_entry,
   757     per_arg_cell_count
   758   };
   760   // offset of cell for stack slot for entry i within ProfileData object
   761   int stack_slot_offset(int i) const {
   762     return _base_off + stack_slot_local_offset(i);
   763   }
   765 protected:
   766   const int _number_of_entries;
   768   // offset of cell for type for entry i within ProfileData object
   769   int type_offset(int i) const {
   770     return _base_off + type_local_offset(i);
   771   }
   773 public:
   775   TypeStackSlotEntries(int base_off, int nb_entries)
   776     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
   778   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
   780   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
   782   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
   783   static int stack_slot_local_offset(int i) {
   784     return i * per_arg_cell_count + stack_slot_entry;
   785   }
   787   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
   788   static int type_local_offset(int i) {
   789     return i * per_arg_cell_count + type_entry;
   790   }
   792   // stack slot for entry i
   793   uint stack_slot(int i) const {
   794     assert(i >= 0 && i < _number_of_entries, "oob");
   795     return _pd->uint_at(stack_slot_offset(i));
   796   }
   798   // set stack slot for entry i
   799   void set_stack_slot(int i, uint num) {
   800     assert(i >= 0 && i < _number_of_entries, "oob");
   801     _pd->set_uint_at(stack_slot_offset(i), num);
   802   }
   804   // type for entry i
   805   intptr_t type(int i) const {
   806     assert(i >= 0 && i < _number_of_entries, "oob");
   807     return _pd->intptr_at(type_offset(i));
   808   }
   810   // set type for entry i
   811   void set_type(int i, intptr_t k) {
   812     assert(i >= 0 && i < _number_of_entries, "oob");
   813     _pd->set_intptr_at(type_offset(i), k);
   814   }
   816   static ByteSize per_arg_size() {
   817     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
   818   }
   820   static int per_arg_count() {
   821     return per_arg_cell_count ;
   822   }
   824   // GC support
   825   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   827 #ifndef PRODUCT
   828   void print_data_on(outputStream* st) const;
   829 #endif
   830 };
   832 // Type entry used for return from a call. A single cell to record the
   833 // type.
   834 class ReturnTypeEntry : public TypeEntries {
   836 private:
   837   enum {
   838     cell_count = 1
   839   };
   841 public:
   842   ReturnTypeEntry(int base_off)
   843     : TypeEntries(base_off) {}
   845   void post_initialize() {
   846     set_type(type_none());
   847   }
   849   intptr_t type() const {
   850     return _pd->intptr_at(_base_off);
   851   }
   853   void set_type(intptr_t k) {
   854     _pd->set_intptr_at(_base_off, k);
   855   }
   857   static int static_cell_count() {
   858     return cell_count;
   859   }
   861   static ByteSize size() {
   862     return in_ByteSize(cell_count * DataLayout::cell_size);
   863   }
   865   ByteSize type_offset() {
   866     return DataLayout::cell_offset(_base_off);
   867   }
   869   // GC support
   870   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   872 #ifndef PRODUCT
   873   void print_data_on(outputStream* st) const;
   874 #endif
   875 };
   877 // Entries to collect type information at a call: contains arguments
   878 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
   879 // number of cells. Because the number of cells for the return type is
   880 // smaller than the number of cells for the type of an arguments, the
   881 // number of cells is used to tell how many arguments are profiled and
   882 // whether a return value is profiled. See has_arguments() and
   883 // has_return().
   884 class TypeEntriesAtCall {
   885 private:
   886   static int stack_slot_local_offset(int i) {
   887     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
   888   }
   890   static int argument_type_local_offset(int i) {
   891     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
   892   }
   894 public:
   896   static int header_cell_count() {
   897     return 1;
   898   }
   900   static int cell_count_local_offset() {
   901     return 0;
   902   }
   904   static int compute_cell_count(BytecodeStream* stream);
   906   static void initialize(DataLayout* dl, int base, int cell_count) {
   907     int off = base + cell_count_local_offset();
   908     dl->set_cell_at(off, cell_count - base - header_cell_count());
   909   }
   911   static bool arguments_profiling_enabled();
   912   static bool return_profiling_enabled();
   914   // Code generation support
   915   static ByteSize cell_count_offset() {
   916     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
   917   }
   919   static ByteSize args_data_offset() {
   920     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
   921   }
   923   static ByteSize stack_slot_offset(int i) {
   924     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
   925   }
   927   static ByteSize argument_type_offset(int i) {
   928     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
   929   }
   930 };
   932 // CallTypeData
   933 //
   934 // A CallTypeData is used to access profiling information about a non
   935 // virtual call for which we collect type information about arguments
   936 // and return value.
   937 class CallTypeData : public CounterData {
   938 private:
   939   // entries for arguments if any
   940   TypeStackSlotEntries _args;
   941   // entry for return type if any
   942   ReturnTypeEntry _ret;
   944   int cell_count_global_offset() const {
   945     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
   946   }
   948   // number of cells not counting the header
   949   int cell_count_no_header() const {
   950     return uint_at(cell_count_global_offset());
   951   }
   953   void check_number_of_arguments(int total) {
   954     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
   955   }
   957 public:
   958   CallTypeData(DataLayout* layout) :
   959     CounterData(layout),
   960     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
   961     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
   962   {
   963     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
   964     // Some compilers (VC++) don't want this passed in member initialization list
   965     _args.set_profile_data(this);
   966     _ret.set_profile_data(this);
   967   }
   969   const TypeStackSlotEntries* args() const {
   970     assert(has_arguments(), "no profiling of arguments");
   971     return &_args;
   972   }
   974   const ReturnTypeEntry* ret() const {
   975     assert(has_return(), "no profiling of return value");
   976     return &_ret;
   977   }
   979   virtual bool is_CallTypeData() const { return true; }
   981   static int static_cell_count() {
   982     return -1;
   983   }
   985   static int compute_cell_count(BytecodeStream* stream) {
   986     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
   987   }
   989   static void initialize(DataLayout* dl, int cell_count) {
   990     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
   991   }
   993   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
   995   virtual int cell_count() const {
   996     return CounterData::static_cell_count() +
   997       TypeEntriesAtCall::header_cell_count() +
   998       int_at_unchecked(cell_count_global_offset());
   999   }
  1001   int number_of_arguments() const {
  1002     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1005   void set_argument_type(int i, Klass* k) {
  1006     assert(has_arguments(), "no arguments!");
  1007     intptr_t current = _args.type(i);
  1008     _args.set_type(i, TypeEntries::with_status(k, current));
  1011   void set_return_type(Klass* k) {
  1012     assert(has_return(), "no return!");
  1013     intptr_t current = _ret.type();
  1014     _ret.set_type(TypeEntries::with_status(k, current));
  1017   // An entry for a return value takes less space than an entry for an
  1018   // argument so if the number of cells exceeds the number of cells
  1019   // needed for an argument, this object contains type information for
  1020   // at least one argument.
  1021   bool has_arguments() const {
  1022     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1023     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1024     return res;
  1027   // An entry for a return value takes less space than an entry for an
  1028   // argument, so if the remainder of the number of cells divided by
  1029   // the number of cells for an argument is not null, a return value
  1030   // is profiled in this object.
  1031   bool has_return() const {
  1032     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1033     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1034     return res;
  1037   // Code generation support
  1038   static ByteSize args_data_offset() {
  1039     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1042   // GC support
  1043   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1044     if (has_arguments()) {
  1045       _args.clean_weak_klass_links(is_alive_closure);
  1047     if (has_return()) {
  1048       _ret.clean_weak_klass_links(is_alive_closure);
  1052 #ifndef PRODUCT
  1053   virtual void print_data_on(outputStream* st) const;
  1054 #endif
  1055 };
  1057 // ReceiverTypeData
  1058 //
  1059 // A ReceiverTypeData is used to access profiling information about a
  1060 // dynamic type check.  It consists of a counter which counts the total times
  1061 // that the check is reached, and a series of (Klass*, count) pairs
  1062 // which are used to store a type profile for the receiver of the check.
  1063 class ReceiverTypeData : public CounterData {
  1064 protected:
  1065   enum {
  1066     receiver0_offset = counter_cell_count,
  1067     count0_offset,
  1068     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
  1069   };
  1071 public:
  1072   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
  1073     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
  1074            layout->tag() == DataLayout::virtual_call_data_tag ||
  1075            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1078   virtual bool is_ReceiverTypeData() const { return true; }
  1080   static int static_cell_count() {
  1081     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
  1084   virtual int cell_count() const {
  1085     return static_cell_count();
  1088   // Direct accessors
  1089   static uint row_limit() {
  1090     return TypeProfileWidth;
  1092   static int receiver_cell_index(uint row) {
  1093     return receiver0_offset + row * receiver_type_row_cell_count;
  1095   static int receiver_count_cell_index(uint row) {
  1096     return count0_offset + row * receiver_type_row_cell_count;
  1099   Klass* receiver(uint row) const {
  1100     assert(row < row_limit(), "oob");
  1102     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
  1103     assert(recv == NULL || recv->is_klass(), "wrong type");
  1104     return recv;
  1107   void set_receiver(uint row, Klass* k) {
  1108     assert((uint)row < row_limit(), "oob");
  1109     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
  1112   uint receiver_count(uint row) const {
  1113     assert(row < row_limit(), "oob");
  1114     return uint_at(receiver_count_cell_index(row));
  1117   void set_receiver_count(uint row, uint count) {
  1118     assert(row < row_limit(), "oob");
  1119     set_uint_at(receiver_count_cell_index(row), count);
  1122   void clear_row(uint row) {
  1123     assert(row < row_limit(), "oob");
  1124     // Clear total count - indicator of polymorphic call site.
  1125     // The site may look like as monomorphic after that but
  1126     // it allow to have more accurate profiling information because
  1127     // there was execution phase change since klasses were unloaded.
  1128     // If the site is still polymorphic then MDO will be updated
  1129     // to reflect it. But it could be the case that the site becomes
  1130     // only bimorphic. Then keeping total count not 0 will be wrong.
  1131     // Even if we use monomorphic (when it is not) for compilation
  1132     // we will only have trap, deoptimization and recompile again
  1133     // with updated MDO after executing method in Interpreter.
  1134     // An additional receiver will be recorded in the cleaned row
  1135     // during next call execution.
  1136     //
  1137     // Note: our profiling logic works with empty rows in any slot.
  1138     // We do sorting a profiling info (ciCallProfile) for compilation.
  1139     //
  1140     set_count(0);
  1141     set_receiver(row, NULL);
  1142     set_receiver_count(row, 0);
  1145   // Code generation support
  1146   static ByteSize receiver_offset(uint row) {
  1147     return cell_offset(receiver_cell_index(row));
  1149   static ByteSize receiver_count_offset(uint row) {
  1150     return cell_offset(receiver_count_cell_index(row));
  1152   static ByteSize receiver_type_data_size() {
  1153     return cell_offset(static_cell_count());
  1156   // GC support
  1157   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
  1159 #ifndef PRODUCT
  1160   void print_receiver_data_on(outputStream* st) const;
  1161   void print_data_on(outputStream* st) const;
  1162 #endif
  1163 };
  1165 // VirtualCallData
  1166 //
  1167 // A VirtualCallData is used to access profiling information about a
  1168 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
  1169 class VirtualCallData : public ReceiverTypeData {
  1170 public:
  1171   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
  1172     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
  1173            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1176   virtual bool is_VirtualCallData() const { return true; }
  1178   static int static_cell_count() {
  1179     // At this point we could add more profile state, e.g., for arguments.
  1180     // But for now it's the same size as the base record type.
  1181     return ReceiverTypeData::static_cell_count();
  1184   virtual int cell_count() const {
  1185     return static_cell_count();
  1188   // Direct accessors
  1189   static ByteSize virtual_call_data_size() {
  1190     return cell_offset(static_cell_count());
  1193 #ifndef PRODUCT
  1194   void print_data_on(outputStream* st) const;
  1195 #endif
  1196 };
  1198 // VirtualCallTypeData
  1199 //
  1200 // A VirtualCallTypeData is used to access profiling information about
  1201 // a virtual call for which we collect type information about
  1202 // arguments and return value.
  1203 class VirtualCallTypeData : public VirtualCallData {
  1204 private:
  1205   // entries for arguments if any
  1206   TypeStackSlotEntries _args;
  1207   // entry for return type if any
  1208   ReturnTypeEntry _ret;
  1210   int cell_count_global_offset() const {
  1211     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1214   // number of cells not counting the header
  1215   int cell_count_no_header() const {
  1216     return uint_at(cell_count_global_offset());
  1219   void check_number_of_arguments(int total) {
  1220     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1223 public:
  1224   VirtualCallTypeData(DataLayout* layout) :
  1225     VirtualCallData(layout),
  1226     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1227     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1229     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1230     // Some compilers (VC++) don't want this passed in member initialization list
  1231     _args.set_profile_data(this);
  1232     _ret.set_profile_data(this);
  1235   const TypeStackSlotEntries* args() const {
  1236     assert(has_arguments(), "no profiling of arguments");
  1237     return &_args;
  1240   const ReturnTypeEntry* ret() const {
  1241     assert(has_return(), "no profiling of return value");
  1242     return &_ret;
  1245   virtual bool is_VirtualCallTypeData() const { return true; }
  1247   static int static_cell_count() {
  1248     return -1;
  1251   static int compute_cell_count(BytecodeStream* stream) {
  1252     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1255   static void initialize(DataLayout* dl, int cell_count) {
  1256     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
  1259   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1261   virtual int cell_count() const {
  1262     return VirtualCallData::static_cell_count() +
  1263       TypeEntriesAtCall::header_cell_count() +
  1264       int_at_unchecked(cell_count_global_offset());
  1267   int number_of_arguments() const {
  1268     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1271   void set_argument_type(int i, Klass* k) {
  1272     assert(has_arguments(), "no arguments!");
  1273     intptr_t current = _args.type(i);
  1274     _args.set_type(i, TypeEntries::with_status(k, current));
  1277   void set_return_type(Klass* k) {
  1278     assert(has_return(), "no return!");
  1279     intptr_t current = _ret.type();
  1280     _ret.set_type(TypeEntries::with_status(k, current));
  1283   // An entry for a return value takes less space than an entry for an
  1284   // argument, so if the remainder of the number of cells divided by
  1285   // the number of cells for an argument is not null, a return value
  1286   // is profiled in this object.
  1287   bool has_return() const {
  1288     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1289     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1290     return res;
  1293   // An entry for a return value takes less space than an entry for an
  1294   // argument so if the number of cells exceeds the number of cells
  1295   // needed for an argument, this object contains type information for
  1296   // at least one argument.
  1297   bool has_arguments() const {
  1298     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1299     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1300     return res;
  1303   // Code generation support
  1304   static ByteSize args_data_offset() {
  1305     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1308   // GC support
  1309   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1310     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
  1311     if (has_arguments()) {
  1312       _args.clean_weak_klass_links(is_alive_closure);
  1314     if (has_return()) {
  1315       _ret.clean_weak_klass_links(is_alive_closure);
  1319 #ifndef PRODUCT
  1320   virtual void print_data_on(outputStream* st) const;
  1321 #endif
  1322 };
  1324 // RetData
  1325 //
  1326 // A RetData is used to access profiling information for a ret bytecode.
  1327 // It is composed of a count of the number of times that the ret has
  1328 // been executed, followed by a series of triples of the form
  1329 // (bci, count, di) which count the number of times that some bci was the
  1330 // target of the ret and cache a corresponding data displacement.
  1331 class RetData : public CounterData {
  1332 protected:
  1333   enum {
  1334     bci0_offset = counter_cell_count,
  1335     count0_offset,
  1336     displacement0_offset,
  1337     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
  1338   };
  1340   void set_bci(uint row, int bci) {
  1341     assert((uint)row < row_limit(), "oob");
  1342     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1344   void release_set_bci(uint row, int bci) {
  1345     assert((uint)row < row_limit(), "oob");
  1346     // 'release' when setting the bci acts as a valid flag for other
  1347     // threads wrt bci_count and bci_displacement.
  1348     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1350   void set_bci_count(uint row, uint count) {
  1351     assert((uint)row < row_limit(), "oob");
  1352     set_uint_at(count0_offset + row * ret_row_cell_count, count);
  1354   void set_bci_displacement(uint row, int disp) {
  1355     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
  1358 public:
  1359   RetData(DataLayout* layout) : CounterData(layout) {
  1360     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
  1363   virtual bool is_RetData() const { return true; }
  1365   enum {
  1366     no_bci = -1 // value of bci when bci1/2 are not in use.
  1367   };
  1369   static int static_cell_count() {
  1370     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
  1373   virtual int cell_count() const {
  1374     return static_cell_count();
  1377   static uint row_limit() {
  1378     return BciProfileWidth;
  1380   static int bci_cell_index(uint row) {
  1381     return bci0_offset + row * ret_row_cell_count;
  1383   static int bci_count_cell_index(uint row) {
  1384     return count0_offset + row * ret_row_cell_count;
  1386   static int bci_displacement_cell_index(uint row) {
  1387     return displacement0_offset + row * ret_row_cell_count;
  1390   // Direct accessors
  1391   int bci(uint row) const {
  1392     return int_at(bci_cell_index(row));
  1394   uint bci_count(uint row) const {
  1395     return uint_at(bci_count_cell_index(row));
  1397   int bci_displacement(uint row) const {
  1398     return int_at(bci_displacement_cell_index(row));
  1401   // Interpreter Runtime support
  1402   address fixup_ret(int return_bci, MethodData* mdo);
  1404   // Code generation support
  1405   static ByteSize bci_offset(uint row) {
  1406     return cell_offset(bci_cell_index(row));
  1408   static ByteSize bci_count_offset(uint row) {
  1409     return cell_offset(bci_count_cell_index(row));
  1411   static ByteSize bci_displacement_offset(uint row) {
  1412     return cell_offset(bci_displacement_cell_index(row));
  1415   // Specific initialization.
  1416   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1418 #ifndef PRODUCT
  1419   void print_data_on(outputStream* st) const;
  1420 #endif
  1421 };
  1423 // BranchData
  1424 //
  1425 // A BranchData is used to access profiling data for a two-way branch.
  1426 // It consists of taken and not_taken counts as well as a data displacement
  1427 // for the taken case.
  1428 class BranchData : public JumpData {
  1429 protected:
  1430   enum {
  1431     not_taken_off_set = jump_cell_count,
  1432     branch_cell_count
  1433   };
  1435   void set_displacement(int displacement) {
  1436     set_int_at(displacement_off_set, displacement);
  1439 public:
  1440   BranchData(DataLayout* layout) : JumpData(layout) {
  1441     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
  1444   virtual bool is_BranchData() const { return true; }
  1446   static int static_cell_count() {
  1447     return branch_cell_count;
  1450   virtual int cell_count() const {
  1451     return static_cell_count();
  1454   // Direct accessor
  1455   uint not_taken() const {
  1456     return uint_at(not_taken_off_set);
  1459   void set_not_taken(uint cnt) {
  1460     set_uint_at(not_taken_off_set, cnt);
  1463   uint inc_not_taken() {
  1464     uint cnt = not_taken() + 1;
  1465     // Did we wrap? Will compiler screw us??
  1466     if (cnt == 0) cnt--;
  1467     set_uint_at(not_taken_off_set, cnt);
  1468     return cnt;
  1471   // Code generation support
  1472   static ByteSize not_taken_offset() {
  1473     return cell_offset(not_taken_off_set);
  1475   static ByteSize branch_data_size() {
  1476     return cell_offset(branch_cell_count);
  1479   // Specific initialization.
  1480   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1482 #ifndef PRODUCT
  1483   void print_data_on(outputStream* st) const;
  1484 #endif
  1485 };
  1487 // ArrayData
  1488 //
  1489 // A ArrayData is a base class for accessing profiling data which does
  1490 // not have a statically known size.  It consists of an array length
  1491 // and an array start.
  1492 class ArrayData : public ProfileData {
  1493 protected:
  1494   friend class DataLayout;
  1496   enum {
  1497     array_len_off_set,
  1498     array_start_off_set
  1499   };
  1501   uint array_uint_at(int index) const {
  1502     int aindex = index + array_start_off_set;
  1503     return uint_at(aindex);
  1505   int array_int_at(int index) const {
  1506     int aindex = index + array_start_off_set;
  1507     return int_at(aindex);
  1509   oop array_oop_at(int index) const {
  1510     int aindex = index + array_start_off_set;
  1511     return oop_at(aindex);
  1513   void array_set_int_at(int index, int value) {
  1514     int aindex = index + array_start_off_set;
  1515     set_int_at(aindex, value);
  1518   // Code generation support for subclasses.
  1519   static ByteSize array_element_offset(int index) {
  1520     return cell_offset(array_start_off_set + index);
  1523 public:
  1524   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1526   virtual bool is_ArrayData() const { return true; }
  1528   static int static_cell_count() {
  1529     return -1;
  1532   int array_len() const {
  1533     return int_at_unchecked(array_len_off_set);
  1536   virtual int cell_count() const {
  1537     return array_len() + 1;
  1540   // Code generation support
  1541   static ByteSize array_len_offset() {
  1542     return cell_offset(array_len_off_set);
  1544   static ByteSize array_start_offset() {
  1545     return cell_offset(array_start_off_set);
  1547 };
  1549 // MultiBranchData
  1550 //
  1551 // A MultiBranchData is used to access profiling information for
  1552 // a multi-way branch (*switch bytecodes).  It consists of a series
  1553 // of (count, displacement) pairs, which count the number of times each
  1554 // case was taken and specify the data displacment for each branch target.
  1555 class MultiBranchData : public ArrayData {
  1556 protected:
  1557   enum {
  1558     default_count_off_set,
  1559     default_disaplacement_off_set,
  1560     case_array_start
  1561   };
  1562   enum {
  1563     relative_count_off_set,
  1564     relative_displacement_off_set,
  1565     per_case_cell_count
  1566   };
  1568   void set_default_displacement(int displacement) {
  1569     array_set_int_at(default_disaplacement_off_set, displacement);
  1571   void set_displacement_at(int index, int displacement) {
  1572     array_set_int_at(case_array_start +
  1573                      index * per_case_cell_count +
  1574                      relative_displacement_off_set,
  1575                      displacement);
  1578 public:
  1579   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1580     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1583   virtual bool is_MultiBranchData() const { return true; }
  1585   static int compute_cell_count(BytecodeStream* stream);
  1587   int number_of_cases() const {
  1588     int alen = array_len() - 2; // get rid of default case here.
  1589     assert(alen % per_case_cell_count == 0, "must be even");
  1590     return (alen / per_case_cell_count);
  1593   uint default_count() const {
  1594     return array_uint_at(default_count_off_set);
  1596   int default_displacement() const {
  1597     return array_int_at(default_disaplacement_off_set);
  1600   uint count_at(int index) const {
  1601     return array_uint_at(case_array_start +
  1602                          index * per_case_cell_count +
  1603                          relative_count_off_set);
  1605   int displacement_at(int index) const {
  1606     return array_int_at(case_array_start +
  1607                         index * per_case_cell_count +
  1608                         relative_displacement_off_set);
  1611   // Code generation support
  1612   static ByteSize default_count_offset() {
  1613     return array_element_offset(default_count_off_set);
  1615   static ByteSize default_displacement_offset() {
  1616     return array_element_offset(default_disaplacement_off_set);
  1618   static ByteSize case_count_offset(int index) {
  1619     return case_array_offset() +
  1620            (per_case_size() * index) +
  1621            relative_count_offset();
  1623   static ByteSize case_array_offset() {
  1624     return array_element_offset(case_array_start);
  1626   static ByteSize per_case_size() {
  1627     return in_ByteSize(per_case_cell_count) * cell_size;
  1629   static ByteSize relative_count_offset() {
  1630     return in_ByteSize(relative_count_off_set) * cell_size;
  1632   static ByteSize relative_displacement_offset() {
  1633     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1636   // Specific initialization.
  1637   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1639 #ifndef PRODUCT
  1640   void print_data_on(outputStream* st) const;
  1641 #endif
  1642 };
  1644 class ArgInfoData : public ArrayData {
  1646 public:
  1647   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1648     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1651   virtual bool is_ArgInfoData() const { return true; }
  1654   int number_of_args() const {
  1655     return array_len();
  1658   uint arg_modified(int arg) const {
  1659     return array_uint_at(arg);
  1662   void set_arg_modified(int arg, uint val) {
  1663     array_set_int_at(arg, val);
  1666 #ifndef PRODUCT
  1667   void print_data_on(outputStream* st) const;
  1668 #endif
  1669 };
  1671 // ParametersTypeData
  1672 //
  1673 // A ParametersTypeData is used to access profiling information about
  1674 // types of parameters to a method
  1675 class ParametersTypeData : public ArrayData {
  1677 private:
  1678   TypeStackSlotEntries _parameters;
  1680   static int stack_slot_local_offset(int i) {
  1681     assert_profiling_enabled();
  1682     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
  1685   static int type_local_offset(int i) {
  1686     assert_profiling_enabled();
  1687     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
  1690   static bool profiling_enabled();
  1691   static void assert_profiling_enabled() {
  1692     assert(profiling_enabled(), "method parameters profiling should be on");
  1695 public:
  1696   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
  1697     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
  1698     // Some compilers (VC++) don't want this passed in member initialization list
  1699     _parameters.set_profile_data(this);
  1702   static int compute_cell_count(Method* m);
  1704   virtual bool is_ParametersTypeData() const { return true; }
  1706   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1708   int number_of_parameters() const {
  1709     return array_len() / TypeStackSlotEntries::per_arg_count();
  1712   const TypeStackSlotEntries* parameters() const { return &_parameters; }
  1714   uint stack_slot(int i) const {
  1715     return _parameters.stack_slot(i);
  1718   void set_type(int i, Klass* k) {
  1719     intptr_t current = _parameters.type(i);
  1720     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
  1723   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1724     _parameters.clean_weak_klass_links(is_alive_closure);
  1727 #ifndef PRODUCT
  1728   virtual void print_data_on(outputStream* st) const;
  1729 #endif
  1731   static ByteSize stack_slot_offset(int i) {
  1732     return cell_offset(stack_slot_local_offset(i));
  1735   static ByteSize type_offset(int i) {
  1736     return cell_offset(type_local_offset(i));
  1738 };
  1740 // MethodData*
  1741 //
  1742 // A MethodData* holds information which has been collected about
  1743 // a method.  Its layout looks like this:
  1744 //
  1745 // -----------------------------
  1746 // | header                    |
  1747 // | klass                     |
  1748 // -----------------------------
  1749 // | method                    |
  1750 // | size of the MethodData* |
  1751 // -----------------------------
  1752 // | Data entries...           |
  1753 // |   (variable size)         |
  1754 // |                           |
  1755 // .                           .
  1756 // .                           .
  1757 // .                           .
  1758 // |                           |
  1759 // -----------------------------
  1760 //
  1761 // The data entry area is a heterogeneous array of DataLayouts. Each
  1762 // DataLayout in the array corresponds to a specific bytecode in the
  1763 // method.  The entries in the array are sorted by the corresponding
  1764 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1765 // which point to the underlying blocks of DataLayout structures.
  1766 //
  1767 // During interpretation, if profiling in enabled, the interpreter
  1768 // maintains a method data pointer (mdp), which points at the entry
  1769 // in the array corresponding to the current bci.  In the course of
  1770 // intepretation, when a bytecode is encountered that has profile data
  1771 // associated with it, the entry pointed to by mdp is updated, then the
  1772 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1773 // is NULL to begin with, the interpreter assumes that the current method
  1774 // is not (yet) being profiled.
  1775 //
  1776 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1777 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1778 // from the base of the data entry array.  A "displacement" is the byte offset
  1779 // in certain ProfileData objects that indicate the amount the mdp must be
  1780 // adjusted in the event of a change in control flow.
  1781 //
  1783 class MethodData : public Metadata {
  1784   friend class VMStructs;
  1785 private:
  1786   friend class ProfileData;
  1788   // Back pointer to the Method*
  1789   Method* _method;
  1791   // Size of this oop in bytes
  1792   int _size;
  1794   // Cached hint for bci_to_dp and bci_to_data
  1795   int _hint_di;
  1797   MethodData(methodHandle method, int size, TRAPS);
  1798 public:
  1799   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1800   MethodData() {}; // For ciMethodData
  1802   bool is_methodData() const volatile { return true; }
  1804   // Whole-method sticky bits and flags
  1805   enum {
  1806     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1807     _trap_hist_mask     = max_jubyte,
  1808     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1809   }; // Public flag values
  1810 private:
  1811   uint _nof_decompiles;             // count of all nmethod removals
  1812   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1813   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1814   union {
  1815     intptr_t _align;
  1816     u1 _array[_trap_hist_limit];
  1817   } _trap_hist;
  1819   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1820   intx              _eflags;          // flags on escape information
  1821   intx              _arg_local;       // bit set of non-escaping arguments
  1822   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1823   intx              _arg_returned;    // bit set of returned arguments
  1825   int _creation_mileage;              // method mileage at MDO creation
  1827   // How many invocations has this MDO seen?
  1828   // These counters are used to determine the exact age of MDO.
  1829   // We need those because in tiered a method can be concurrently
  1830   // executed at different levels.
  1831   InvocationCounter _invocation_counter;
  1832   // Same for backedges.
  1833   InvocationCounter _backedge_counter;
  1834   // Counter values at the time profiling started.
  1835   int               _invocation_counter_start;
  1836   int               _backedge_counter_start;
  1837   // Number of loops and blocks is computed when compiling the first
  1838   // time with C1. It is used to determine if method is trivial.
  1839   short             _num_loops;
  1840   short             _num_blocks;
  1841   // Highest compile level this method has ever seen.
  1842   u1                _highest_comp_level;
  1843   // Same for OSR level
  1844   u1                _highest_osr_comp_level;
  1845   // Does this method contain anything worth profiling?
  1846   bool              _would_profile;
  1848   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1849   int _data_size;
  1851   // data index for the area dedicated to parameters. -1 if no
  1852   // parameter profiling.
  1853   int _parameters_type_data_di;
  1855   // Beginning of the data entries
  1856   intptr_t _data[1];
  1858   // Helper for size computation
  1859   static int compute_data_size(BytecodeStream* stream);
  1860   static int bytecode_cell_count(Bytecodes::Code code);
  1861   enum { no_profile_data = -1, variable_cell_count = -2 };
  1863   // Helper for initialization
  1864   DataLayout* data_layout_at(int data_index) const {
  1865     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1866     return (DataLayout*) (((address)_data) + data_index);
  1869   // Initialize an individual data segment.  Returns the size of
  1870   // the segment in bytes.
  1871   int initialize_data(BytecodeStream* stream, int data_index);
  1873   // Helper for data_at
  1874   DataLayout* limit_data_position() const {
  1875     return (DataLayout*)((address)data_base() + _data_size);
  1877   bool out_of_bounds(int data_index) const {
  1878     return data_index >= data_size();
  1881   // Give each of the data entries a chance to perform specific
  1882   // data initialization.
  1883   void post_initialize(BytecodeStream* stream);
  1885   // hint accessors
  1886   int      hint_di() const  { return _hint_di; }
  1887   void set_hint_di(int di)  {
  1888     assert(!out_of_bounds(di), "hint_di out of bounds");
  1889     _hint_di = di;
  1891   ProfileData* data_before(int bci) {
  1892     // avoid SEGV on this edge case
  1893     if (data_size() == 0)
  1894       return NULL;
  1895     int hint = hint_di();
  1896     if (data_layout_at(hint)->bci() <= bci)
  1897       return data_at(hint);
  1898     return first_data();
  1901   // What is the index of the first data entry?
  1902   int first_di() const { return 0; }
  1904   // Find or create an extra ProfileData:
  1905   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1907   // return the argument info cell
  1908   ArgInfoData *arg_info();
  1910   enum {
  1911     no_type_profile = 0,
  1912     type_profile_jsr292 = 1,
  1913     type_profile_all = 2
  1914   };
  1916   static bool profile_jsr292(methodHandle m, int bci);
  1917   static int profile_arguments_flag();
  1918   static bool profile_arguments_jsr292_only();
  1919   static bool profile_all_arguments();
  1920   static bool profile_arguments_for_invoke(methodHandle m, int bci);
  1921   static int profile_return_flag();
  1922   static bool profile_all_return();
  1923   static bool profile_return_for_invoke(methodHandle m, int bci);
  1924   static int profile_parameters_flag();
  1925   static bool profile_parameters_jsr292_only();
  1926   static bool profile_all_parameters();
  1928 public:
  1929   static int header_size() {
  1930     return sizeof(MethodData)/wordSize;
  1933   // Compute the size of a MethodData* before it is created.
  1934   static int compute_allocation_size_in_bytes(methodHandle method);
  1935   static int compute_allocation_size_in_words(methodHandle method);
  1936   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1938   // Determine if a given bytecode can have profile information.
  1939   static bool bytecode_has_profile(Bytecodes::Code code) {
  1940     return bytecode_cell_count(code) != no_profile_data;
  1943   // reset into original state
  1944   void init();
  1946   // My size
  1947   int size_in_bytes() const { return _size; }
  1948   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  1949 #if INCLUDE_SERVICES
  1950   void collect_statistics(KlassSizeStats *sz) const;
  1951 #endif
  1953   int      creation_mileage() const  { return _creation_mileage; }
  1954   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1956   int invocation_count() {
  1957     if (invocation_counter()->carry()) {
  1958       return InvocationCounter::count_limit;
  1960     return invocation_counter()->count();
  1962   int backedge_count() {
  1963     if (backedge_counter()->carry()) {
  1964       return InvocationCounter::count_limit;
  1966     return backedge_counter()->count();
  1969   int invocation_count_start() {
  1970     if (invocation_counter()->carry()) {
  1971       return 0;
  1973     return _invocation_counter_start;
  1976   int backedge_count_start() {
  1977     if (backedge_counter()->carry()) {
  1978       return 0;
  1980     return _backedge_counter_start;
  1983   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1984   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1986   void reset_start_counters() {
  1987     _invocation_counter_start = invocation_count();
  1988     _backedge_counter_start = backedge_count();
  1991   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1992   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1994   void set_would_profile(bool p)              { _would_profile = p;    }
  1995   bool would_profile() const                  { return _would_profile; }
  1997   int highest_comp_level() const              { return _highest_comp_level;      }
  1998   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1999   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
  2000   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  2002   int num_loops() const                       { return _num_loops;  }
  2003   void set_num_loops(int n)                   { _num_loops = n;     }
  2004   int num_blocks() const                      { return _num_blocks; }
  2005   void set_num_blocks(int n)                  { _num_blocks = n;    }
  2007   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  2008   static int mileage_of(Method* m);
  2010   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2011   enum EscapeFlag {
  2012     estimated    = 1 << 0,
  2013     return_local = 1 << 1,
  2014     return_allocated = 1 << 2,
  2015     allocated_escapes = 1 << 3,
  2016     unknown_modified = 1 << 4
  2017   };
  2019   intx eflags()                                  { return _eflags; }
  2020   intx arg_local()                               { return _arg_local; }
  2021   intx arg_stack()                               { return _arg_stack; }
  2022   intx arg_returned()                            { return _arg_returned; }
  2023   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  2024                                                    assert(aid != NULL, "arg_info must be not null");
  2025                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2026                                                    return aid->arg_modified(a); }
  2028   void set_eflags(intx v)                        { _eflags = v; }
  2029   void set_arg_local(intx v)                     { _arg_local = v; }
  2030   void set_arg_stack(intx v)                     { _arg_stack = v; }
  2031   void set_arg_returned(intx v)                  { _arg_returned = v; }
  2032   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  2033                                                    assert(aid != NULL, "arg_info must be not null");
  2034                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2035                                                    aid->set_arg_modified(a, v); }
  2037   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  2039   // Location and size of data area
  2040   address data_base() const {
  2041     return (address) _data;
  2043   int data_size() const {
  2044     return _data_size;
  2047   // Accessors
  2048   Method* method() const { return _method; }
  2050   // Get the data at an arbitrary (sort of) data index.
  2051   ProfileData* data_at(int data_index) const;
  2053   // Walk through the data in order.
  2054   ProfileData* first_data() const { return data_at(first_di()); }
  2055   ProfileData* next_data(ProfileData* current) const;
  2056   bool is_valid(ProfileData* current) const { return current != NULL; }
  2058   // Convert a dp (data pointer) to a di (data index).
  2059   int dp_to_di(address dp) const {
  2060     return dp - ((address)_data);
  2063   address di_to_dp(int di) {
  2064     return (address)data_layout_at(di);
  2067   // bci to di/dp conversion.
  2068   address bci_to_dp(int bci);
  2069   int bci_to_di(int bci) {
  2070     return dp_to_di(bci_to_dp(bci));
  2073   // Get the data at an arbitrary bci, or NULL if there is none.
  2074   ProfileData* bci_to_data(int bci);
  2076   // Same, but try to create an extra_data record if one is needed:
  2077   ProfileData* allocate_bci_to_data(int bci) {
  2078     ProfileData* data = bci_to_data(bci);
  2079     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  2082   // Add a handful of extra data records, for trap tracking.
  2083   DataLayout* extra_data_base() const { return limit_data_position(); }
  2084   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  2085   int extra_data_size() const { return (address)extra_data_limit()
  2086                                - (address)extra_data_base(); }
  2087   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  2089   // Return (uint)-1 for overflow.
  2090   uint trap_count(int reason) const {
  2091     assert((uint)reason < _trap_hist_limit, "oob");
  2092     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  2094   // For loops:
  2095   static uint trap_reason_limit() { return _trap_hist_limit; }
  2096   static uint trap_count_limit()  { return _trap_hist_mask; }
  2097   uint inc_trap_count(int reason) {
  2098     // Count another trap, anywhere in this method.
  2099     assert(reason >= 0, "must be single trap");
  2100     if ((uint)reason < _trap_hist_limit) {
  2101       uint cnt1 = 1 + _trap_hist._array[reason];
  2102       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  2103         _trap_hist._array[reason] = cnt1;
  2104         return cnt1;
  2105       } else {
  2106         return _trap_hist_mask + (++_nof_overflow_traps);
  2108     } else {
  2109       // Could not represent the count in the histogram.
  2110       return (++_nof_overflow_traps);
  2114   uint overflow_trap_count() const {
  2115     return _nof_overflow_traps;
  2117   uint overflow_recompile_count() const {
  2118     return _nof_overflow_recompiles;
  2120   void inc_overflow_recompile_count() {
  2121     _nof_overflow_recompiles += 1;
  2123   uint decompile_count() const {
  2124     return _nof_decompiles;
  2126   void inc_decompile_count() {
  2127     _nof_decompiles += 1;
  2128     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  2129       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  2133   // Return pointer to area dedicated to parameters in MDO
  2134   ParametersTypeData* parameters_type_data() const {
  2135     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
  2138   int parameters_type_data_di() const {
  2139     assert(_parameters_type_data_di != -1, "no args type data");
  2140     return _parameters_type_data_di;
  2143   // Support for code generation
  2144   static ByteSize data_offset() {
  2145     return byte_offset_of(MethodData, _data[0]);
  2148   static ByteSize invocation_counter_offset() {
  2149     return byte_offset_of(MethodData, _invocation_counter);
  2151   static ByteSize backedge_counter_offset() {
  2152     return byte_offset_of(MethodData, _backedge_counter);
  2155   static ByteSize parameters_type_data_di_offset() {
  2156     return byte_offset_of(MethodData, _parameters_type_data_di);
  2159   // Deallocation support - no pointer fields to deallocate
  2160   void deallocate_contents(ClassLoaderData* loader_data) {}
  2162   // GC support
  2163   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  2165   // Printing
  2166 #ifndef PRODUCT
  2167   void print_on      (outputStream* st) const;
  2168 #endif
  2169   void print_value_on(outputStream* st) const;
  2171 #ifndef PRODUCT
  2172   // printing support for method data
  2173   void print_data_on(outputStream* st) const;
  2174 #endif
  2176   const char* internal_name() const { return "{method data}"; }
  2178   // verification
  2179   void verify_on(outputStream* st);
  2180   void verify_data_on(outputStream* st);
  2182   static bool profile_parameters_for_method(methodHandle m);
  2183   static bool profile_arguments();
  2184   static bool profile_return();
  2185   static bool profile_parameters();
  2186   static bool profile_return_jsr292_only();
  2187 };
  2189 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial