src/share/vm/opto/library_call.cpp

Fri, 11 Jul 2014 19:51:36 -0400

author
drchase
date
Fri, 11 Jul 2014 19:51:36 -0400
changeset 7161
fc2c88ea11a9
parent 7134
d8847542f83a
child 7152
166d744df0de
permissions
-rw-r--r--

8036588: VerifyFieldClosure fails instanceKlass:3133
Summary: Changed deopt live-pointer test to use returns-object instead of live-and-returns-object
Reviewed-by: iveresov, kvn, jrose

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _does_virtual_dispatch;
    50   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
    51   int8_t           _last_predicate; // Last generated predicate
    52   vmIntrinsics::ID _intrinsic_id;
    54  public:
    55   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
    56     : InlineCallGenerator(m),
    57       _is_virtual(is_virtual),
    58       _does_virtual_dispatch(does_virtual_dispatch),
    59       _predicates_count((int8_t)predicates_count),
    60       _last_predicate((int8_t)-1),
    61       _intrinsic_id(id)
    62   {
    63   }
    64   virtual bool is_intrinsic() const { return true; }
    65   virtual bool is_virtual()   const { return _is_virtual; }
    66   virtual bool is_predicated() const { return _predicates_count > 0; }
    67   virtual int  predicates_count() const { return _predicates_count; }
    68   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    69   virtual JVMState* generate(JVMState* jvms);
    70   virtual Node* generate_predicate(JVMState* jvms, int predicate);
    71   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    72 };
    75 // Local helper class for LibraryIntrinsic:
    76 class LibraryCallKit : public GraphKit {
    77  private:
    78   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    79   Node*             _result;        // the result node, if any
    80   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    82   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    84  public:
    85   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    86     : GraphKit(jvms),
    87       _intrinsic(intrinsic),
    88       _result(NULL)
    89   {
    90     // Check if this is a root compile.  In that case we don't have a caller.
    91     if (!jvms->has_method()) {
    92       _reexecute_sp = sp();
    93     } else {
    94       // Find out how many arguments the interpreter needs when deoptimizing
    95       // and save the stack pointer value so it can used by uncommon_trap.
    96       // We find the argument count by looking at the declared signature.
    97       bool ignored_will_link;
    98       ciSignature* declared_signature = NULL;
    99       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
   100       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
   101       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
   102     }
   103   }
   105   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   107   ciMethod*         caller()    const    { return jvms()->method(); }
   108   int               bci()       const    { return jvms()->bci(); }
   109   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   110   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   111   ciMethod*         callee()    const    { return _intrinsic->method(); }
   113   bool  try_to_inline(int predicate);
   114   Node* try_to_predicate(int predicate);
   116   void push_result() {
   117     // Push the result onto the stack.
   118     if (!stopped() && result() != NULL) {
   119       BasicType bt = result()->bottom_type()->basic_type();
   120       push_node(bt, result());
   121     }
   122   }
   124  private:
   125   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   126     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   127   }
   129   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   130   void  set_result(RegionNode* region, PhiNode* value);
   131   Node*     result() { return _result; }
   133   virtual int reexecute_sp() { return _reexecute_sp; }
   135   // Helper functions to inline natives
   136   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   137   Node* generate_slow_guard(Node* test, RegionNode* region);
   138   Node* generate_fair_guard(Node* test, RegionNode* region);
   139   Node* generate_negative_guard(Node* index, RegionNode* region,
   140                                 // resulting CastII of index:
   141                                 Node* *pos_index = NULL);
   142   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   143                                    // resulting CastII of index:
   144                                    Node* *pos_index = NULL);
   145   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   146                              Node* array_length,
   147                              RegionNode* region);
   148   Node* generate_current_thread(Node* &tls_output);
   149   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   150                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   151   Node* load_mirror_from_klass(Node* klass);
   152   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   153                                       RegionNode* region, int null_path,
   154                                       int offset);
   155   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   156                                RegionNode* region, int null_path) {
   157     int offset = java_lang_Class::klass_offset_in_bytes();
   158     return load_klass_from_mirror_common(mirror, never_see_null,
   159                                          region, null_path,
   160                                          offset);
   161   }
   162   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   163                                      RegionNode* region, int null_path) {
   164     int offset = java_lang_Class::array_klass_offset_in_bytes();
   165     return load_klass_from_mirror_common(mirror, never_see_null,
   166                                          region, null_path,
   167                                          offset);
   168   }
   169   Node* generate_access_flags_guard(Node* kls,
   170                                     int modifier_mask, int modifier_bits,
   171                                     RegionNode* region);
   172   Node* generate_interface_guard(Node* kls, RegionNode* region);
   173   Node* generate_array_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, false, false);
   175   }
   176   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, false, true);
   178   }
   179   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   180     return generate_array_guard_common(kls, region, true, false);
   181   }
   182   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   183     return generate_array_guard_common(kls, region, true, true);
   184   }
   185   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   186                                     bool obj_array, bool not_array);
   187   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   188   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   189                                      bool is_virtual = false, bool is_static = false);
   190   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   191     return generate_method_call(method_id, false, true);
   192   }
   193   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   194     return generate_method_call(method_id, true, false);
   195   }
   196   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   198   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   199   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   200   bool inline_string_compareTo();
   201   bool inline_string_indexOf();
   202   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   203   bool inline_string_equals();
   204   Node* round_double_node(Node* n);
   205   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   206   bool inline_math_native(vmIntrinsics::ID id);
   207   bool inline_trig(vmIntrinsics::ID id);
   208   bool inline_math(vmIntrinsics::ID id);
   209   template <typename OverflowOp>
   210   bool inline_math_overflow(Node* arg1, Node* arg2);
   211   void inline_math_mathExact(Node* math, Node* test);
   212   bool inline_math_addExactI(bool is_increment);
   213   bool inline_math_addExactL(bool is_increment);
   214   bool inline_math_multiplyExactI();
   215   bool inline_math_multiplyExactL();
   216   bool inline_math_negateExactI();
   217   bool inline_math_negateExactL();
   218   bool inline_math_subtractExactI(bool is_decrement);
   219   bool inline_math_subtractExactL(bool is_decrement);
   220   bool inline_exp();
   221   bool inline_pow();
   222   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   223   bool inline_min_max(vmIntrinsics::ID id);
   224   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   225   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   226   int classify_unsafe_addr(Node* &base, Node* &offset);
   227   Node* make_unsafe_address(Node* base, Node* offset);
   228   // Helper for inline_unsafe_access.
   229   // Generates the guards that check whether the result of
   230   // Unsafe.getObject should be recorded in an SATB log buffer.
   231   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   232   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   233   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   234   static bool klass_needs_init_guard(Node* kls);
   235   bool inline_unsafe_allocate();
   236   bool inline_unsafe_copyMemory();
   237   bool inline_native_currentThread();
   238 #ifdef TRACE_HAVE_INTRINSICS
   239   bool inline_native_classID();
   240   bool inline_native_threadID();
   241 #endif
   242   bool inline_native_time_funcs(address method, const char* funcName);
   243   bool inline_native_isInterrupted();
   244   bool inline_native_Class_query(vmIntrinsics::ID id);
   245   bool inline_native_subtype_check();
   247   bool inline_native_newArray();
   248   bool inline_native_getLength();
   249   bool inline_array_copyOf(bool is_copyOfRange);
   250   bool inline_array_equals();
   251   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   252   bool inline_native_clone(bool is_virtual);
   253   bool inline_native_Reflection_getCallerClass();
   254   // Helper function for inlining native object hash method
   255   bool inline_native_hashcode(bool is_virtual, bool is_static);
   256   bool inline_native_getClass();
   258   // Helper functions for inlining arraycopy
   259   bool inline_arraycopy();
   260   void generate_arraycopy(const TypePtr* adr_type,
   261                           BasicType basic_elem_type,
   262                           Node* src,  Node* src_offset,
   263                           Node* dest, Node* dest_offset,
   264                           Node* copy_length,
   265                           bool disjoint_bases = false,
   266                           bool length_never_negative = false,
   267                           RegionNode* slow_region = NULL);
   268   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   269                                                 RegionNode* slow_region);
   270   void generate_clear_array(const TypePtr* adr_type,
   271                             Node* dest,
   272                             BasicType basic_elem_type,
   273                             Node* slice_off,
   274                             Node* slice_len,
   275                             Node* slice_end);
   276   bool generate_block_arraycopy(const TypePtr* adr_type,
   277                                 BasicType basic_elem_type,
   278                                 AllocateNode* alloc,
   279                                 Node* src,  Node* src_offset,
   280                                 Node* dest, Node* dest_offset,
   281                                 Node* dest_size, bool dest_uninitialized);
   282   void generate_slow_arraycopy(const TypePtr* adr_type,
   283                                Node* src,  Node* src_offset,
   284                                Node* dest, Node* dest_offset,
   285                                Node* copy_length, bool dest_uninitialized);
   286   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   287                                      Node* dest_elem_klass,
   288                                      Node* src,  Node* src_offset,
   289                                      Node* dest, Node* dest_offset,
   290                                      Node* copy_length, bool dest_uninitialized);
   291   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   292                                    Node* src,  Node* src_offset,
   293                                    Node* dest, Node* dest_offset,
   294                                    Node* copy_length, bool dest_uninitialized);
   295   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   296                                     BasicType basic_elem_type,
   297                                     bool disjoint_bases,
   298                                     Node* src,  Node* src_offset,
   299                                     Node* dest, Node* dest_offset,
   300                                     Node* copy_length, bool dest_uninitialized);
   301   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   302   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   303   bool inline_unsafe_ordered_store(BasicType type);
   304   bool inline_unsafe_fence(vmIntrinsics::ID id);
   305   bool inline_fp_conversions(vmIntrinsics::ID id);
   306   bool inline_number_methods(vmIntrinsics::ID id);
   307   bool inline_reference_get();
   308   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   309   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   310   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   311   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   312   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   313   bool inline_sha_implCompress(vmIntrinsics::ID id);
   314   bool inline_digestBase_implCompressMB(int predicate);
   315   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
   316                                  bool long_state, address stubAddr, const char *stubName,
   317                                  Node* src_start, Node* ofs, Node* limit);
   318   Node* get_state_from_sha_object(Node *sha_object);
   319   Node* get_state_from_sha5_object(Node *sha_object);
   320   Node* inline_digestBase_implCompressMB_predicate(int predicate);
   321   bool inline_encodeISOArray();
   322   bool inline_updateCRC32();
   323   bool inline_updateBytesCRC32();
   324   bool inline_updateByteBufferCRC32();
   325 };
   328 //---------------------------make_vm_intrinsic----------------------------
   329 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   330   vmIntrinsics::ID id = m->intrinsic_id();
   331   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   333   if (DisableIntrinsic[0] != '\0'
   334       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   335     // disabled by a user request on the command line:
   336     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   337     return NULL;
   338   }
   340   if (!m->is_loaded()) {
   341     // do not attempt to inline unloaded methods
   342     return NULL;
   343   }
   345   // Only a few intrinsics implement a virtual dispatch.
   346   // They are expensive calls which are also frequently overridden.
   347   if (is_virtual) {
   348     switch (id) {
   349     case vmIntrinsics::_hashCode:
   350     case vmIntrinsics::_clone:
   351       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   352       break;
   353     default:
   354       return NULL;
   355     }
   356   }
   358   // -XX:-InlineNatives disables nearly all intrinsics:
   359   if (!InlineNatives) {
   360     switch (id) {
   361     case vmIntrinsics::_indexOf:
   362     case vmIntrinsics::_compareTo:
   363     case vmIntrinsics::_equals:
   364     case vmIntrinsics::_equalsC:
   365     case vmIntrinsics::_getAndAddInt:
   366     case vmIntrinsics::_getAndAddLong:
   367     case vmIntrinsics::_getAndSetInt:
   368     case vmIntrinsics::_getAndSetLong:
   369     case vmIntrinsics::_getAndSetObject:
   370     case vmIntrinsics::_loadFence:
   371     case vmIntrinsics::_storeFence:
   372     case vmIntrinsics::_fullFence:
   373       break;  // InlineNatives does not control String.compareTo
   374     case vmIntrinsics::_Reference_get:
   375       break;  // InlineNatives does not control Reference.get
   376     default:
   377       return NULL;
   378     }
   379   }
   381   int predicates = 0;
   382   bool does_virtual_dispatch = false;
   384   switch (id) {
   385   case vmIntrinsics::_compareTo:
   386     if (!SpecialStringCompareTo)  return NULL;
   387     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   388     break;
   389   case vmIntrinsics::_indexOf:
   390     if (!SpecialStringIndexOf)  return NULL;
   391     break;
   392   case vmIntrinsics::_equals:
   393     if (!SpecialStringEquals)  return NULL;
   394     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   395     break;
   396   case vmIntrinsics::_equalsC:
   397     if (!SpecialArraysEquals)  return NULL;
   398     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   399     break;
   400   case vmIntrinsics::_arraycopy:
   401     if (!InlineArrayCopy)  return NULL;
   402     break;
   403   case vmIntrinsics::_copyMemory:
   404     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   405     if (!InlineArrayCopy)  return NULL;
   406     break;
   407   case vmIntrinsics::_hashCode:
   408     if (!InlineObjectHash)  return NULL;
   409     does_virtual_dispatch = true;
   410     break;
   411   case vmIntrinsics::_clone:
   412     does_virtual_dispatch = true;
   413   case vmIntrinsics::_copyOf:
   414   case vmIntrinsics::_copyOfRange:
   415     if (!InlineObjectCopy)  return NULL;
   416     // These also use the arraycopy intrinsic mechanism:
   417     if (!InlineArrayCopy)  return NULL;
   418     break;
   419   case vmIntrinsics::_encodeISOArray:
   420     if (!SpecialEncodeISOArray)  return NULL;
   421     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   422     break;
   423   case vmIntrinsics::_checkIndex:
   424     // We do not intrinsify this.  The optimizer does fine with it.
   425     return NULL;
   427   case vmIntrinsics::_getCallerClass:
   428     if (!UseNewReflection)  return NULL;
   429     if (!InlineReflectionGetCallerClass)  return NULL;
   430     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   431     break;
   433   case vmIntrinsics::_bitCount_i:
   434     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   435     break;
   437   case vmIntrinsics::_bitCount_l:
   438     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   439     break;
   441   case vmIntrinsics::_numberOfLeadingZeros_i:
   442     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   443     break;
   445   case vmIntrinsics::_numberOfLeadingZeros_l:
   446     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   447     break;
   449   case vmIntrinsics::_numberOfTrailingZeros_i:
   450     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   451     break;
   453   case vmIntrinsics::_numberOfTrailingZeros_l:
   454     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   455     break;
   457   case vmIntrinsics::_reverseBytes_c:
   458     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   459     break;
   460   case vmIntrinsics::_reverseBytes_s:
   461     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   462     break;
   463   case vmIntrinsics::_reverseBytes_i:
   464     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   465     break;
   466   case vmIntrinsics::_reverseBytes_l:
   467     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   468     break;
   470   case vmIntrinsics::_Reference_get:
   471     // Use the intrinsic version of Reference.get() so that the value in
   472     // the referent field can be registered by the G1 pre-barrier code.
   473     // Also add memory barrier to prevent commoning reads from this field
   474     // across safepoint since GC can change it value.
   475     break;
   477   case vmIntrinsics::_compareAndSwapObject:
   478 #ifdef _LP64
   479     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   480 #endif
   481     break;
   483   case vmIntrinsics::_compareAndSwapLong:
   484     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   485     break;
   487   case vmIntrinsics::_getAndAddInt:
   488     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   489     break;
   491   case vmIntrinsics::_getAndAddLong:
   492     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   493     break;
   495   case vmIntrinsics::_getAndSetInt:
   496     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   497     break;
   499   case vmIntrinsics::_getAndSetLong:
   500     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   501     break;
   503   case vmIntrinsics::_getAndSetObject:
   504 #ifdef _LP64
   505     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   506     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   507     break;
   508 #else
   509     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   510     break;
   511 #endif
   513   case vmIntrinsics::_aescrypt_encryptBlock:
   514   case vmIntrinsics::_aescrypt_decryptBlock:
   515     if (!UseAESIntrinsics) return NULL;
   516     break;
   518   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   519   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   520     if (!UseAESIntrinsics) return NULL;
   521     // these two require the predicated logic
   522     predicates = 1;
   523     break;
   525   case vmIntrinsics::_sha_implCompress:
   526     if (!UseSHA1Intrinsics) return NULL;
   527     break;
   529   case vmIntrinsics::_sha2_implCompress:
   530     if (!UseSHA256Intrinsics) return NULL;
   531     break;
   533   case vmIntrinsics::_sha5_implCompress:
   534     if (!UseSHA512Intrinsics) return NULL;
   535     break;
   537   case vmIntrinsics::_digestBase_implCompressMB:
   538     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
   539     predicates = 3;
   540     break;
   542   case vmIntrinsics::_updateCRC32:
   543   case vmIntrinsics::_updateBytesCRC32:
   544   case vmIntrinsics::_updateByteBufferCRC32:
   545     if (!UseCRC32Intrinsics) return NULL;
   546     break;
   548   case vmIntrinsics::_incrementExactI:
   549   case vmIntrinsics::_addExactI:
   550     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   551     break;
   552   case vmIntrinsics::_incrementExactL:
   553   case vmIntrinsics::_addExactL:
   554     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   555     break;
   556   case vmIntrinsics::_decrementExactI:
   557   case vmIntrinsics::_subtractExactI:
   558     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   559     break;
   560   case vmIntrinsics::_decrementExactL:
   561   case vmIntrinsics::_subtractExactL:
   562     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   563     break;
   564   case vmIntrinsics::_negateExactI:
   565     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   566     break;
   567   case vmIntrinsics::_negateExactL:
   568     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   569     break;
   570   case vmIntrinsics::_multiplyExactI:
   571     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   572     break;
   573   case vmIntrinsics::_multiplyExactL:
   574     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   575     break;
   577  default:
   578     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   579     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   580     break;
   581   }
   583   // -XX:-InlineClassNatives disables natives from the Class class.
   584   // The flag applies to all reflective calls, notably Array.newArray
   585   // (visible to Java programmers as Array.newInstance).
   586   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   587       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   588     if (!InlineClassNatives)  return NULL;
   589   }
   591   // -XX:-InlineThreadNatives disables natives from the Thread class.
   592   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   593     if (!InlineThreadNatives)  return NULL;
   594   }
   596   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   597   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   598       m->holder()->name() == ciSymbol::java_lang_Float() ||
   599       m->holder()->name() == ciSymbol::java_lang_Double()) {
   600     if (!InlineMathNatives)  return NULL;
   601   }
   603   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   604   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   605     if (!InlineUnsafeOps)  return NULL;
   606   }
   608   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
   609 }
   611 //----------------------register_library_intrinsics-----------------------
   612 // Initialize this file's data structures, for each Compile instance.
   613 void Compile::register_library_intrinsics() {
   614   // Nothing to do here.
   615 }
   617 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   618   LibraryCallKit kit(jvms, this);
   619   Compile* C = kit.C;
   620   int nodes = C->unique();
   621 #ifndef PRODUCT
   622   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   623     char buf[1000];
   624     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   625     tty->print_cr("Intrinsic %s", str);
   626   }
   627 #endif
   628   ciMethod* callee = kit.callee();
   629   const int bci    = kit.bci();
   631   // Try to inline the intrinsic.
   632   if (kit.try_to_inline(_last_predicate)) {
   633     if (C->print_intrinsics() || C->print_inlining()) {
   634       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   635     }
   636     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   637     if (C->log()) {
   638       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   639                      vmIntrinsics::name_at(intrinsic_id()),
   640                      (is_virtual() ? " virtual='1'" : ""),
   641                      C->unique() - nodes);
   642     }
   643     // Push the result from the inlined method onto the stack.
   644     kit.push_result();
   645     return kit.transfer_exceptions_into_jvms();
   646   }
   648   // The intrinsic bailed out
   649   if (C->print_intrinsics() || C->print_inlining()) {
   650     if (jvms->has_method()) {
   651       // Not a root compile.
   652       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   653       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   654     } else {
   655       // Root compile
   656       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   657                vmIntrinsics::name_at(intrinsic_id()),
   658                (is_virtual() ? " (virtual)" : ""), bci);
   659     }
   660   }
   661   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   662   return NULL;
   663 }
   665 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
   666   LibraryCallKit kit(jvms, this);
   667   Compile* C = kit.C;
   668   int nodes = C->unique();
   669   _last_predicate = predicate;
   670 #ifndef PRODUCT
   671   assert(is_predicated() && predicate < predicates_count(), "sanity");
   672   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   673     char buf[1000];
   674     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   675     tty->print_cr("Predicate for intrinsic %s", str);
   676   }
   677 #endif
   678   ciMethod* callee = kit.callee();
   679   const int bci    = kit.bci();
   681   Node* slow_ctl = kit.try_to_predicate(predicate);
   682   if (!kit.failing()) {
   683     if (C->print_intrinsics() || C->print_inlining()) {
   684       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
   685     }
   686     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   687     if (C->log()) {
   688       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   689                      vmIntrinsics::name_at(intrinsic_id()),
   690                      (is_virtual() ? " virtual='1'" : ""),
   691                      C->unique() - nodes);
   692     }
   693     return slow_ctl; // Could be NULL if the check folds.
   694   }
   696   // The intrinsic bailed out
   697   if (C->print_intrinsics() || C->print_inlining()) {
   698     if (jvms->has_method()) {
   699       // Not a root compile.
   700       const char* msg = "failed to generate predicate for intrinsic";
   701       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   702     } else {
   703       // Root compile
   704       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   705                                         vmIntrinsics::name_at(intrinsic_id()),
   706                                         (is_virtual() ? " (virtual)" : ""), bci);
   707     }
   708   }
   709   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   710   return NULL;
   711 }
   713 bool LibraryCallKit::try_to_inline(int predicate) {
   714   // Handle symbolic names for otherwise undistinguished boolean switches:
   715   const bool is_store       = true;
   716   const bool is_native_ptr  = true;
   717   const bool is_static      = true;
   718   const bool is_volatile    = true;
   720   if (!jvms()->has_method()) {
   721     // Root JVMState has a null method.
   722     assert(map()->memory()->Opcode() == Op_Parm, "");
   723     // Insert the memory aliasing node
   724     set_all_memory(reset_memory());
   725   }
   726   assert(merged_memory(), "");
   729   switch (intrinsic_id()) {
   730   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   731   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   732   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   734   case vmIntrinsics::_dsin:
   735   case vmIntrinsics::_dcos:
   736   case vmIntrinsics::_dtan:
   737   case vmIntrinsics::_dabs:
   738   case vmIntrinsics::_datan2:
   739   case vmIntrinsics::_dsqrt:
   740   case vmIntrinsics::_dexp:
   741   case vmIntrinsics::_dlog:
   742   case vmIntrinsics::_dlog10:
   743   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   745   case vmIntrinsics::_min:
   746   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   748   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   749   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   750   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   751   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   752   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   753   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   754   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   755   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   756   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   757   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   758   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   759   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   761   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   763   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   764   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   765   case vmIntrinsics::_equals:                   return inline_string_equals();
   767   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   768   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   769   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   770   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   771   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   772   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   773   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   774   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   775   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   777   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   778   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   779   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   780   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   781   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   782   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   783   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   784   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   785   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   787   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   788   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   789   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   790   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   791   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   792   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   793   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   794   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   796   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   797   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   798   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   799   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   800   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   801   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   802   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   803   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   805   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   806   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   807   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   808   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   809   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   810   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   811   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   812   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   813   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   815   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   816   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   817   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   818   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   819   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   820   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   821   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   822   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   823   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   825   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   826   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   827   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   828   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   830   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   831   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   832   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   834   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   835   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   836   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   838   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   839   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   840   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   841   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   842   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   844   case vmIntrinsics::_loadFence:
   845   case vmIntrinsics::_storeFence:
   846   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   848   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   849   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   851 #ifdef TRACE_HAVE_INTRINSICS
   852   case vmIntrinsics::_classID:                  return inline_native_classID();
   853   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   854   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   855 #endif
   856   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   857   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   858   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   859   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   860   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   861   case vmIntrinsics::_getLength:                return inline_native_getLength();
   862   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   863   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   864   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   865   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   867   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   869   case vmIntrinsics::_isInstance:
   870   case vmIntrinsics::_getModifiers:
   871   case vmIntrinsics::_isInterface:
   872   case vmIntrinsics::_isArray:
   873   case vmIntrinsics::_isPrimitive:
   874   case vmIntrinsics::_getSuperclass:
   875   case vmIntrinsics::_getComponentType:
   876   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   878   case vmIntrinsics::_floatToRawIntBits:
   879   case vmIntrinsics::_floatToIntBits:
   880   case vmIntrinsics::_intBitsToFloat:
   881   case vmIntrinsics::_doubleToRawLongBits:
   882   case vmIntrinsics::_doubleToLongBits:
   883   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   885   case vmIntrinsics::_numberOfLeadingZeros_i:
   886   case vmIntrinsics::_numberOfLeadingZeros_l:
   887   case vmIntrinsics::_numberOfTrailingZeros_i:
   888   case vmIntrinsics::_numberOfTrailingZeros_l:
   889   case vmIntrinsics::_bitCount_i:
   890   case vmIntrinsics::_bitCount_l:
   891   case vmIntrinsics::_reverseBytes_i:
   892   case vmIntrinsics::_reverseBytes_l:
   893   case vmIntrinsics::_reverseBytes_s:
   894   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   896   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   898   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   900   case vmIntrinsics::_aescrypt_encryptBlock:
   901   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   903   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   904   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   905     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   907   case vmIntrinsics::_sha_implCompress:
   908   case vmIntrinsics::_sha2_implCompress:
   909   case vmIntrinsics::_sha5_implCompress:
   910     return inline_sha_implCompress(intrinsic_id());
   912   case vmIntrinsics::_digestBase_implCompressMB:
   913     return inline_digestBase_implCompressMB(predicate);
   915   case vmIntrinsics::_encodeISOArray:
   916     return inline_encodeISOArray();
   918   case vmIntrinsics::_updateCRC32:
   919     return inline_updateCRC32();
   920   case vmIntrinsics::_updateBytesCRC32:
   921     return inline_updateBytesCRC32();
   922   case vmIntrinsics::_updateByteBufferCRC32:
   923     return inline_updateByteBufferCRC32();
   925   default:
   926     // If you get here, it may be that someone has added a new intrinsic
   927     // to the list in vmSymbols.hpp without implementing it here.
   928 #ifndef PRODUCT
   929     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   930       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   931                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   932     }
   933 #endif
   934     return false;
   935   }
   936 }
   938 Node* LibraryCallKit::try_to_predicate(int predicate) {
   939   if (!jvms()->has_method()) {
   940     // Root JVMState has a null method.
   941     assert(map()->memory()->Opcode() == Op_Parm, "");
   942     // Insert the memory aliasing node
   943     set_all_memory(reset_memory());
   944   }
   945   assert(merged_memory(), "");
   947   switch (intrinsic_id()) {
   948   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   949     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   950   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   951     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   952   case vmIntrinsics::_digestBase_implCompressMB:
   953     return inline_digestBase_implCompressMB_predicate(predicate);
   955   default:
   956     // If you get here, it may be that someone has added a new intrinsic
   957     // to the list in vmSymbols.hpp without implementing it here.
   958 #ifndef PRODUCT
   959     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   960       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   961                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   962     }
   963 #endif
   964     Node* slow_ctl = control();
   965     set_control(top()); // No fast path instrinsic
   966     return slow_ctl;
   967   }
   968 }
   970 //------------------------------set_result-------------------------------
   971 // Helper function for finishing intrinsics.
   972 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   973   record_for_igvn(region);
   974   set_control(_gvn.transform(region));
   975   set_result( _gvn.transform(value));
   976   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   977 }
   979 //------------------------------generate_guard---------------------------
   980 // Helper function for generating guarded fast-slow graph structures.
   981 // The given 'test', if true, guards a slow path.  If the test fails
   982 // then a fast path can be taken.  (We generally hope it fails.)
   983 // In all cases, GraphKit::control() is updated to the fast path.
   984 // The returned value represents the control for the slow path.
   985 // The return value is never 'top'; it is either a valid control
   986 // or NULL if it is obvious that the slow path can never be taken.
   987 // Also, if region and the slow control are not NULL, the slow edge
   988 // is appended to the region.
   989 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   990   if (stopped()) {
   991     // Already short circuited.
   992     return NULL;
   993   }
   995   // Build an if node and its projections.
   996   // If test is true we take the slow path, which we assume is uncommon.
   997   if (_gvn.type(test) == TypeInt::ZERO) {
   998     // The slow branch is never taken.  No need to build this guard.
   999     return NULL;
  1002   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
  1004   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
  1005   if (if_slow == top()) {
  1006     // The slow branch is never taken.  No need to build this guard.
  1007     return NULL;
  1010   if (region != NULL)
  1011     region->add_req(if_slow);
  1013   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
  1014   set_control(if_fast);
  1016   return if_slow;
  1019 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
  1020   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
  1022 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
  1023   return generate_guard(test, region, PROB_FAIR);
  1026 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
  1027                                                      Node* *pos_index) {
  1028   if (stopped())
  1029     return NULL;                // already stopped
  1030   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
  1031     return NULL;                // index is already adequately typed
  1032   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1033   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1034   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
  1035   if (is_neg != NULL && pos_index != NULL) {
  1036     // Emulate effect of Parse::adjust_map_after_if.
  1037     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
  1038     ccast->set_req(0, control());
  1039     (*pos_index) = _gvn.transform(ccast);
  1041   return is_neg;
  1044 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1045                                                         Node* *pos_index) {
  1046   if (stopped())
  1047     return NULL;                // already stopped
  1048   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1049     return NULL;                // index is already adequately typed
  1050   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1051   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1052   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1053   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1054   if (is_notp != NULL && pos_index != NULL) {
  1055     // Emulate effect of Parse::adjust_map_after_if.
  1056     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1057     ccast->set_req(0, control());
  1058     (*pos_index) = _gvn.transform(ccast);
  1060   return is_notp;
  1063 // Make sure that 'position' is a valid limit index, in [0..length].
  1064 // There are two equivalent plans for checking this:
  1065 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1066 //   B. offset  <=  (arrayLength - copyLength)
  1067 // We require that all of the values above, except for the sum and
  1068 // difference, are already known to be non-negative.
  1069 // Plan A is robust in the face of overflow, if offset and copyLength
  1070 // are both hugely positive.
  1071 //
  1072 // Plan B is less direct and intuitive, but it does not overflow at
  1073 // all, since the difference of two non-negatives is always
  1074 // representable.  Whenever Java methods must perform the equivalent
  1075 // check they generally use Plan B instead of Plan A.
  1076 // For the moment we use Plan A.
  1077 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1078                                                   Node* subseq_length,
  1079                                                   Node* array_length,
  1080                                                   RegionNode* region) {
  1081   if (stopped())
  1082     return NULL;                // already stopped
  1083   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1084   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1085     return NULL;                // common case of whole-array copy
  1086   Node* last = subseq_length;
  1087   if (!zero_offset)             // last += offset
  1088     last = _gvn.transform(new (C) AddINode(last, offset));
  1089   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1090   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1091   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1092   return is_over;
  1096 //--------------------------generate_current_thread--------------------
  1097 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1098   ciKlass*    thread_klass = env()->Thread_klass();
  1099   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1100   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1101   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1102   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1103   tls_output = thread;
  1104   return threadObj;
  1108 //------------------------------make_string_method_node------------------------
  1109 // Helper method for String intrinsic functions. This version is called
  1110 // with str1 and str2 pointing to String object nodes.
  1111 //
  1112 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1113   Node* no_ctrl = NULL;
  1115   // Get start addr of string
  1116   Node* str1_value   = load_String_value(no_ctrl, str1);
  1117   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1118   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1120   // Get length of string 1
  1121   Node* str1_len  = load_String_length(no_ctrl, str1);
  1123   Node* str2_value   = load_String_value(no_ctrl, str2);
  1124   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1125   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1127   Node* str2_len = NULL;
  1128   Node* result = NULL;
  1130   switch (opcode) {
  1131   case Op_StrIndexOf:
  1132     // Get length of string 2
  1133     str2_len = load_String_length(no_ctrl, str2);
  1135     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1136                                  str1_start, str1_len, str2_start, str2_len);
  1137     break;
  1138   case Op_StrComp:
  1139     // Get length of string 2
  1140     str2_len = load_String_length(no_ctrl, str2);
  1142     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1143                                  str1_start, str1_len, str2_start, str2_len);
  1144     break;
  1145   case Op_StrEquals:
  1146     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1147                                str1_start, str2_start, str1_len);
  1148     break;
  1149   default:
  1150     ShouldNotReachHere();
  1151     return NULL;
  1154   // All these intrinsics have checks.
  1155   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1157   return _gvn.transform(result);
  1160 // Helper method for String intrinsic functions. This version is called
  1161 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1162 // to Int nodes containing the lenghts of str1 and str2.
  1163 //
  1164 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1165   Node* result = NULL;
  1166   switch (opcode) {
  1167   case Op_StrIndexOf:
  1168     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1169                                  str1_start, cnt1, str2_start, cnt2);
  1170     break;
  1171   case Op_StrComp:
  1172     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1173                                  str1_start, cnt1, str2_start, cnt2);
  1174     break;
  1175   case Op_StrEquals:
  1176     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1177                                  str1_start, str2_start, cnt1);
  1178     break;
  1179   default:
  1180     ShouldNotReachHere();
  1181     return NULL;
  1184   // All these intrinsics have checks.
  1185   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1187   return _gvn.transform(result);
  1190 //------------------------------inline_string_compareTo------------------------
  1191 // public int java.lang.String.compareTo(String anotherString);
  1192 bool LibraryCallKit::inline_string_compareTo() {
  1193   Node* receiver = null_check(argument(0));
  1194   Node* arg      = null_check(argument(1));
  1195   if (stopped()) {
  1196     return true;
  1198   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1199   return true;
  1202 //------------------------------inline_string_equals------------------------
  1203 bool LibraryCallKit::inline_string_equals() {
  1204   Node* receiver = null_check_receiver();
  1205   // NOTE: Do not null check argument for String.equals() because spec
  1206   // allows to specify NULL as argument.
  1207   Node* argument = this->argument(1);
  1208   if (stopped()) {
  1209     return true;
  1212   // paths (plus control) merge
  1213   RegionNode* region = new (C) RegionNode(5);
  1214   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1216   // does source == target string?
  1217   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1218   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1220   Node* if_eq = generate_slow_guard(bol, NULL);
  1221   if (if_eq != NULL) {
  1222     // receiver == argument
  1223     phi->init_req(2, intcon(1));
  1224     region->init_req(2, if_eq);
  1227   // get String klass for instanceOf
  1228   ciInstanceKlass* klass = env()->String_klass();
  1230   if (!stopped()) {
  1231     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1232     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1233     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1235     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1236     //instanceOf == true, fallthrough
  1238     if (inst_false != NULL) {
  1239       phi->init_req(3, intcon(0));
  1240       region->init_req(3, inst_false);
  1244   if (!stopped()) {
  1245     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1247     // Properly cast the argument to String
  1248     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1249     // This path is taken only when argument's type is String:NotNull.
  1250     argument = cast_not_null(argument, false);
  1252     Node* no_ctrl = NULL;
  1254     // Get start addr of receiver
  1255     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1256     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1257     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1259     // Get length of receiver
  1260     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1262     // Get start addr of argument
  1263     Node* argument_val    = load_String_value(no_ctrl, argument);
  1264     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1265     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1267     // Get length of argument
  1268     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1270     // Check for receiver count != argument count
  1271     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1272     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1273     Node* if_ne = generate_slow_guard(bol, NULL);
  1274     if (if_ne != NULL) {
  1275       phi->init_req(4, intcon(0));
  1276       region->init_req(4, if_ne);
  1279     // Check for count == 0 is done by assembler code for StrEquals.
  1281     if (!stopped()) {
  1282       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1283       phi->init_req(1, equals);
  1284       region->init_req(1, control());
  1288   // post merge
  1289   set_control(_gvn.transform(region));
  1290   record_for_igvn(region);
  1292   set_result(_gvn.transform(phi));
  1293   return true;
  1296 //------------------------------inline_array_equals----------------------------
  1297 bool LibraryCallKit::inline_array_equals() {
  1298   Node* arg1 = argument(0);
  1299   Node* arg2 = argument(1);
  1300   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1301   return true;
  1304 // Java version of String.indexOf(constant string)
  1305 // class StringDecl {
  1306 //   StringDecl(char[] ca) {
  1307 //     offset = 0;
  1308 //     count = ca.length;
  1309 //     value = ca;
  1310 //   }
  1311 //   int offset;
  1312 //   int count;
  1313 //   char[] value;
  1314 // }
  1315 //
  1316 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1317 //                             int targetOffset, int cache_i, int md2) {
  1318 //   int cache = cache_i;
  1319 //   int sourceOffset = string_object.offset;
  1320 //   int sourceCount = string_object.count;
  1321 //   int targetCount = target_object.length;
  1322 //
  1323 //   int targetCountLess1 = targetCount - 1;
  1324 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1325 //
  1326 //   char[] source = string_object.value;
  1327 //   char[] target = target_object;
  1328 //   int lastChar = target[targetCountLess1];
  1329 //
  1330 //  outer_loop:
  1331 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1332 //     int src = source[i + targetCountLess1];
  1333 //     if (src == lastChar) {
  1334 //       // With random strings and a 4-character alphabet,
  1335 //       // reverse matching at this point sets up 0.8% fewer
  1336 //       // frames, but (paradoxically) makes 0.3% more probes.
  1337 //       // Since those probes are nearer the lastChar probe,
  1338 //       // there is may be a net D$ win with reverse matching.
  1339 //       // But, reversing loop inhibits unroll of inner loop
  1340 //       // for unknown reason.  So, does running outer loop from
  1341 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1342 //       for (int j = 0; j < targetCountLess1; j++) {
  1343 //         if (target[targetOffset + j] != source[i+j]) {
  1344 //           if ((cache & (1 << source[i+j])) == 0) {
  1345 //             if (md2 < j+1) {
  1346 //               i += j+1;
  1347 //               continue outer_loop;
  1348 //             }
  1349 //           }
  1350 //           i += md2;
  1351 //           continue outer_loop;
  1352 //         }
  1353 //       }
  1354 //       return i - sourceOffset;
  1355 //     }
  1356 //     if ((cache & (1 << src)) == 0) {
  1357 //       i += targetCountLess1;
  1358 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1359 //     i++;
  1360 //   }
  1361 //   return -1;
  1362 // }
  1364 //------------------------------string_indexOf------------------------
  1365 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1366                                      jint cache_i, jint md2_i) {
  1368   Node* no_ctrl  = NULL;
  1369   float likely   = PROB_LIKELY(0.9);
  1370   float unlikely = PROB_UNLIKELY(0.9);
  1372   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1374   Node* source        = load_String_value(no_ctrl, string_object);
  1375   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1376   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1378   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1379   jint target_length = target_array->length();
  1380   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1381   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1383   // String.value field is known to be @Stable.
  1384   if (UseImplicitStableValues) {
  1385     target = cast_array_to_stable(target, target_type);
  1388   IdealKit kit(this, false, true);
  1389 #define __ kit.
  1390   Node* zero             = __ ConI(0);
  1391   Node* one              = __ ConI(1);
  1392   Node* cache            = __ ConI(cache_i);
  1393   Node* md2              = __ ConI(md2_i);
  1394   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1395   Node* targetCount      = __ ConI(target_length);
  1396   Node* targetCountLess1 = __ ConI(target_length - 1);
  1397   Node* targetOffset     = __ ConI(targetOffset_i);
  1398   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1400   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1401   Node* outer_loop = __ make_label(2 /* goto */);
  1402   Node* return_    = __ make_label(1);
  1404   __ set(rtn,__ ConI(-1));
  1405   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1406        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1407        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1408        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1409        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1410          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1411               Node* tpj = __ AddI(targetOffset, __ value(j));
  1412               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1413               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1414               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1415               __ if_then(targ, BoolTest::ne, src2); {
  1416                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1417                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1418                     __ increment(i, __ AddI(__ value(j), one));
  1419                     __ goto_(outer_loop);
  1420                   } __ end_if(); __ dead(j);
  1421                 }__ end_if(); __ dead(j);
  1422                 __ increment(i, md2);
  1423                 __ goto_(outer_loop);
  1424               }__ end_if();
  1425               __ increment(j, one);
  1426          }__ end_loop(); __ dead(j);
  1427          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1428          __ goto_(return_);
  1429        }__ end_if();
  1430        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1431          __ increment(i, targetCountLess1);
  1432        }__ end_if();
  1433        __ increment(i, one);
  1434        __ bind(outer_loop);
  1435   }__ end_loop(); __ dead(i);
  1436   __ bind(return_);
  1438   // Final sync IdealKit and GraphKit.
  1439   final_sync(kit);
  1440   Node* result = __ value(rtn);
  1441 #undef __
  1442   C->set_has_loops(true);
  1443   return result;
  1446 //------------------------------inline_string_indexOf------------------------
  1447 bool LibraryCallKit::inline_string_indexOf() {
  1448   Node* receiver = argument(0);
  1449   Node* arg      = argument(1);
  1451   Node* result;
  1452   // Disable the use of pcmpestri until it can be guaranteed that
  1453   // the load doesn't cross into the uncommited space.
  1454   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1455       UseSSE42Intrinsics) {
  1456     // Generate SSE4.2 version of indexOf
  1457     // We currently only have match rules that use SSE4.2
  1459     receiver = null_check(receiver);
  1460     arg      = null_check(arg);
  1461     if (stopped()) {
  1462       return true;
  1465     ciInstanceKlass* str_klass = env()->String_klass();
  1466     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1468     // Make the merge point
  1469     RegionNode* result_rgn = new (C) RegionNode(4);
  1470     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1471     Node* no_ctrl  = NULL;
  1473     // Get start addr of source string
  1474     Node* source = load_String_value(no_ctrl, receiver);
  1475     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1476     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1478     // Get length of source string
  1479     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1481     // Get start addr of substring
  1482     Node* substr = load_String_value(no_ctrl, arg);
  1483     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1484     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1486     // Get length of source string
  1487     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1489     // Check for substr count > string count
  1490     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1491     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1492     Node* if_gt = generate_slow_guard(bol, NULL);
  1493     if (if_gt != NULL) {
  1494       result_phi->init_req(2, intcon(-1));
  1495       result_rgn->init_req(2, if_gt);
  1498     if (!stopped()) {
  1499       // Check for substr count == 0
  1500       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1501       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1502       Node* if_zero = generate_slow_guard(bol, NULL);
  1503       if (if_zero != NULL) {
  1504         result_phi->init_req(3, intcon(0));
  1505         result_rgn->init_req(3, if_zero);
  1509     if (!stopped()) {
  1510       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1511       result_phi->init_req(1, result);
  1512       result_rgn->init_req(1, control());
  1514     set_control(_gvn.transform(result_rgn));
  1515     record_for_igvn(result_rgn);
  1516     result = _gvn.transform(result_phi);
  1518   } else { // Use LibraryCallKit::string_indexOf
  1519     // don't intrinsify if argument isn't a constant string.
  1520     if (!arg->is_Con()) {
  1521      return false;
  1523     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1524     if (str_type == NULL) {
  1525       return false;
  1527     ciInstanceKlass* klass = env()->String_klass();
  1528     ciObject* str_const = str_type->const_oop();
  1529     if (str_const == NULL || str_const->klass() != klass) {
  1530       return false;
  1532     ciInstance* str = str_const->as_instance();
  1533     assert(str != NULL, "must be instance");
  1535     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1536     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1538     int o;
  1539     int c;
  1540     if (java_lang_String::has_offset_field()) {
  1541       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1542       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1543     } else {
  1544       o = 0;
  1545       c = pat->length();
  1548     // constant strings have no offset and count == length which
  1549     // simplifies the resulting code somewhat so lets optimize for that.
  1550     if (o != 0 || c != pat->length()) {
  1551      return false;
  1554     receiver = null_check(receiver, T_OBJECT);
  1555     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1556     if (stopped()) {
  1557       return true;
  1560     // The null string as a pattern always returns 0 (match at beginning of string)
  1561     if (c == 0) {
  1562       set_result(intcon(0));
  1563       return true;
  1566     // Generate default indexOf
  1567     jchar lastChar = pat->char_at(o + (c - 1));
  1568     int cache = 0;
  1569     int i;
  1570     for (i = 0; i < c - 1; i++) {
  1571       assert(i < pat->length(), "out of range");
  1572       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1575     int md2 = c;
  1576     for (i = 0; i < c - 1; i++) {
  1577       assert(i < pat->length(), "out of range");
  1578       if (pat->char_at(o + i) == lastChar) {
  1579         md2 = (c - 1) - i;
  1583     result = string_indexOf(receiver, pat, o, cache, md2);
  1585   set_result(result);
  1586   return true;
  1589 //--------------------------round_double_node--------------------------------
  1590 // Round a double node if necessary.
  1591 Node* LibraryCallKit::round_double_node(Node* n) {
  1592   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1593     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1594   return n;
  1597 //------------------------------inline_math-----------------------------------
  1598 // public static double Math.abs(double)
  1599 // public static double Math.sqrt(double)
  1600 // public static double Math.log(double)
  1601 // public static double Math.log10(double)
  1602 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1603   Node* arg = round_double_node(argument(0));
  1604   Node* n;
  1605   switch (id) {
  1606   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1607   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1608   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1609   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1610   default:  fatal_unexpected_iid(id);  break;
  1612   set_result(_gvn.transform(n));
  1613   return true;
  1616 //------------------------------inline_trig----------------------------------
  1617 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1618 // argument reduction which will turn into a fast/slow diamond.
  1619 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1620   Node* arg = round_double_node(argument(0));
  1621   Node* n = NULL;
  1623   switch (id) {
  1624   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1625   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1626   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1627   default:  fatal_unexpected_iid(id);  break;
  1629   n = _gvn.transform(n);
  1631   // Rounding required?  Check for argument reduction!
  1632   if (Matcher::strict_fp_requires_explicit_rounding) {
  1633     static const double     pi_4 =  0.7853981633974483;
  1634     static const double neg_pi_4 = -0.7853981633974483;
  1635     // pi/2 in 80-bit extended precision
  1636     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1637     // -pi/2 in 80-bit extended precision
  1638     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1639     // Cutoff value for using this argument reduction technique
  1640     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1641     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1643     // Pseudocode for sin:
  1644     // if (x <= Math.PI / 4.0) {
  1645     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1646     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1647     // } else {
  1648     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1649     // }
  1650     // return StrictMath.sin(x);
  1652     // Pseudocode for cos:
  1653     // if (x <= Math.PI / 4.0) {
  1654     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1655     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1656     // } else {
  1657     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1658     // }
  1659     // return StrictMath.cos(x);
  1661     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1662     // requires a special machine instruction to load it.  Instead we'll try
  1663     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1664     // probably do the math inside the SIN encoding.
  1666     // Make the merge point
  1667     RegionNode* r = new (C) RegionNode(3);
  1668     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1670     // Flatten arg so we need only 1 test
  1671     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1672     // Node for PI/4 constant
  1673     Node *pi4 = makecon(TypeD::make(pi_4));
  1674     // Check PI/4 : abs(arg)
  1675     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1676     // Check: If PI/4 < abs(arg) then go slow
  1677     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1678     // Branch either way
  1679     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1680     set_control(opt_iff(r,iff));
  1682     // Set fast path result
  1683     phi->init_req(2, n);
  1685     // Slow path - non-blocking leaf call
  1686     Node* call = NULL;
  1687     switch (id) {
  1688     case vmIntrinsics::_dsin:
  1689       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1690                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1691                                "Sin", NULL, arg, top());
  1692       break;
  1693     case vmIntrinsics::_dcos:
  1694       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1695                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1696                                "Cos", NULL, arg, top());
  1697       break;
  1698     case vmIntrinsics::_dtan:
  1699       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1700                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1701                                "Tan", NULL, arg, top());
  1702       break;
  1704     assert(control()->in(0) == call, "");
  1705     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1706     r->init_req(1, control());
  1707     phi->init_req(1, slow_result);
  1709     // Post-merge
  1710     set_control(_gvn.transform(r));
  1711     record_for_igvn(r);
  1712     n = _gvn.transform(phi);
  1714     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1716   set_result(n);
  1717   return true;
  1720 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1721   //-------------------
  1722   //result=(result.isNaN())? funcAddr():result;
  1723   // Check: If isNaN() by checking result!=result? then either trap
  1724   // or go to runtime
  1725   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1726   // Build the boolean node
  1727   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1729   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1730     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1731       // The pow or exp intrinsic returned a NaN, which requires a call
  1732       // to the runtime.  Recompile with the runtime call.
  1733       uncommon_trap(Deoptimization::Reason_intrinsic,
  1734                     Deoptimization::Action_make_not_entrant);
  1736     return result;
  1737   } else {
  1738     // If this inlining ever returned NaN in the past, we compile a call
  1739     // to the runtime to properly handle corner cases
  1741     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1742     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1743     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1745     if (!if_slow->is_top()) {
  1746       RegionNode* result_region = new (C) RegionNode(3);
  1747       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1749       result_region->init_req(1, if_fast);
  1750       result_val->init_req(1, result);
  1752       set_control(if_slow);
  1754       const TypePtr* no_memory_effects = NULL;
  1755       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1756                                    no_memory_effects,
  1757                                    x, top(), y, y ? top() : NULL);
  1758       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1759 #ifdef ASSERT
  1760       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1761       assert(value_top == top(), "second value must be top");
  1762 #endif
  1764       result_region->init_req(2, control());
  1765       result_val->init_req(2, value);
  1766       set_control(_gvn.transform(result_region));
  1767       return _gvn.transform(result_val);
  1768     } else {
  1769       return result;
  1774 //------------------------------inline_exp-------------------------------------
  1775 // Inline exp instructions, if possible.  The Intel hardware only misses
  1776 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1777 bool LibraryCallKit::inline_exp() {
  1778   Node* arg = round_double_node(argument(0));
  1779   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1781   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1782   set_result(n);
  1784   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1785   return true;
  1788 //------------------------------inline_pow-------------------------------------
  1789 // Inline power instructions, if possible.
  1790 bool LibraryCallKit::inline_pow() {
  1791   // Pseudocode for pow
  1792   // if (y == 2) {
  1793   //   return x * x;
  1794   // } else {
  1795   //   if (x <= 0.0) {
  1796   //     long longy = (long)y;
  1797   //     if ((double)longy == y) { // if y is long
  1798   //       if (y + 1 == y) longy = 0; // huge number: even
  1799   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1800   //     } else {
  1801   //       result = NaN;
  1802   //     }
  1803   //   } else {
  1804   //     result = DPow(x,y);
  1805   //   }
  1806   //   if (result != result)?  {
  1807   //     result = uncommon_trap() or runtime_call();
  1808   //   }
  1809   //   return result;
  1810   // }
  1812   Node* x = round_double_node(argument(0));
  1813   Node* y = round_double_node(argument(2));
  1815   Node* result = NULL;
  1817   Node*   const_two_node = makecon(TypeD::make(2.0));
  1818   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
  1819   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
  1820   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1821   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
  1822   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
  1824   RegionNode* region_node = new (C) RegionNode(3);
  1825   region_node->init_req(1, if_true);
  1827   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
  1828   // special case for x^y where y == 2, we can convert it to x * x
  1829   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
  1831   // set control to if_false since we will now process the false branch
  1832   set_control(if_false);
  1834   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1835     // Short form: skip the fancy tests and just check for NaN result.
  1836     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1837   } else {
  1838     // If this inlining ever returned NaN in the past, include all
  1839     // checks + call to the runtime.
  1841     // Set the merge point for If node with condition of (x <= 0.0)
  1842     // There are four possible paths to region node and phi node
  1843     RegionNode *r = new (C) RegionNode(4);
  1844     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1846     // Build the first if node: if (x <= 0.0)
  1847     // Node for 0 constant
  1848     Node *zeronode = makecon(TypeD::ZERO);
  1849     // Check x:0
  1850     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1851     // Check: If (x<=0) then go complex path
  1852     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1853     // Branch either way
  1854     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1855     // Fast path taken; set region slot 3
  1856     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1857     r->init_req(3,fast_taken); // Capture fast-control
  1859     // Fast path not-taken, i.e. slow path
  1860     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1862     // Set fast path result
  1863     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1864     phi->init_req(3, fast_result);
  1866     // Complex path
  1867     // Build the second if node (if y is long)
  1868     // Node for (long)y
  1869     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1870     // Node for (double)((long) y)
  1871     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1872     // Check (double)((long) y) : y
  1873     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1874     // Check if (y isn't long) then go to slow path
  1876     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1877     // Branch either way
  1878     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1879     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1881     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1883     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1884     // Node for constant 1
  1885     Node *conone = longcon(1);
  1886     // 1& (long)y
  1887     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1889     // A huge number is always even. Detect a huge number by checking
  1890     // if y + 1 == y and set integer to be tested for parity to 0.
  1891     // Required for corner case:
  1892     // (long)9.223372036854776E18 = max_jlong
  1893     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1894     // max_jlong is odd but 9.223372036854776E18 is even
  1895     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1896     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1897     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1898     Node* correctedsign = NULL;
  1899     if (ConditionalMoveLimit != 0) {
  1900       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1901     } else {
  1902       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1903       RegionNode *r = new (C) RegionNode(3);
  1904       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1905       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1906       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1907       phi->init_req(1, signnode);
  1908       phi->init_req(2, longcon(0));
  1909       correctedsign = _gvn.transform(phi);
  1910       ylong_path = _gvn.transform(r);
  1911       record_for_igvn(r);
  1914     // zero node
  1915     Node *conzero = longcon(0);
  1916     // Check (1&(long)y)==0?
  1917     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1918     // Check if (1&(long)y)!=0?, if so the result is negative
  1919     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1920     // abs(x)
  1921     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1922     // abs(x)^y
  1923     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1924     // -abs(x)^y
  1925     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1926     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1927     Node *signresult = NULL;
  1928     if (ConditionalMoveLimit != 0) {
  1929       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1930     } else {
  1931       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1932       RegionNode *r = new (C) RegionNode(3);
  1933       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1934       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1935       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1936       phi->init_req(1, absxpowy);
  1937       phi->init_req(2, negabsxpowy);
  1938       signresult = _gvn.transform(phi);
  1939       ylong_path = _gvn.transform(r);
  1940       record_for_igvn(r);
  1942     // Set complex path fast result
  1943     r->init_req(2, ylong_path);
  1944     phi->init_req(2, signresult);
  1946     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1947     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1948     r->init_req(1,slow_path);
  1949     phi->init_req(1,slow_result);
  1951     // Post merge
  1952     set_control(_gvn.transform(r));
  1953     record_for_igvn(r);
  1954     result = _gvn.transform(phi);
  1957   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1959   // control from finish_pow_exp is now input to the region node
  1960   region_node->set_req(2, control());
  1961   // the result from finish_pow_exp is now input to the phi node
  1962   phi_node->init_req(2, result);
  1963   set_control(_gvn.transform(region_node));
  1964   record_for_igvn(region_node);
  1965   set_result(_gvn.transform(phi_node));
  1967   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1968   return true;
  1971 //------------------------------runtime_math-----------------------------
  1972 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1973   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1974          "must be (DD)D or (D)D type");
  1976   // Inputs
  1977   Node* a = round_double_node(argument(0));
  1978   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1980   const TypePtr* no_memory_effects = NULL;
  1981   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1982                                  no_memory_effects,
  1983                                  a, top(), b, b ? top() : NULL);
  1984   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1985 #ifdef ASSERT
  1986   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1987   assert(value_top == top(), "second value must be top");
  1988 #endif
  1990   set_result(value);
  1991   return true;
  1994 //------------------------------inline_math_native-----------------------------
  1995 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1996 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1997   switch (id) {
  1998     // These intrinsics are not properly supported on all hardware
  1999   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  2000     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  2001   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  2002     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  2003   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  2004     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  2006   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  2007     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  2008   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  2009     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  2011     // These intrinsics are supported on all hardware
  2012   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  2013   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  2015   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  2016     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  2017   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  2018     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  2019 #undef FN_PTR
  2021    // These intrinsics are not yet correctly implemented
  2022   case vmIntrinsics::_datan2:
  2023     return false;
  2025   default:
  2026     fatal_unexpected_iid(id);
  2027     return false;
  2031 static bool is_simple_name(Node* n) {
  2032   return (n->req() == 1         // constant
  2033           || (n->is_Type() && n->as_Type()->type()->singleton())
  2034           || n->is_Proj()       // parameter or return value
  2035           || n->is_Phi()        // local of some sort
  2036           );
  2039 //----------------------------inline_min_max-----------------------------------
  2040 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  2041   set_result(generate_min_max(id, argument(0), argument(1)));
  2042   return true;
  2045 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  2046   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  2047   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2048   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  2049   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  2052     PreserveJVMState pjvms(this);
  2053     PreserveReexecuteState preexecs(this);
  2054     jvms()->set_should_reexecute(true);
  2056     set_control(slow_path);
  2057     set_i_o(i_o());
  2059     uncommon_trap(Deoptimization::Reason_intrinsic,
  2060                   Deoptimization::Action_none);
  2063   set_control(fast_path);
  2064   set_result(math);
  2067 template <typename OverflowOp>
  2068 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  2069   typedef typename OverflowOp::MathOp MathOp;
  2071   MathOp* mathOp = new(C) MathOp(arg1, arg2);
  2072   Node* operation = _gvn.transform( mathOp );
  2073   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  2074   inline_math_mathExact(operation, ofcheck);
  2075   return true;
  2078 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2079   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  2082 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2083   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  2086 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2087   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  2090 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2091   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  2094 bool LibraryCallKit::inline_math_negateExactI() {
  2095   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  2098 bool LibraryCallKit::inline_math_negateExactL() {
  2099   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  2102 bool LibraryCallKit::inline_math_multiplyExactI() {
  2103   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  2106 bool LibraryCallKit::inline_math_multiplyExactL() {
  2107   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  2110 Node*
  2111 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2112   // These are the candidate return value:
  2113   Node* xvalue = x0;
  2114   Node* yvalue = y0;
  2116   if (xvalue == yvalue) {
  2117     return xvalue;
  2120   bool want_max = (id == vmIntrinsics::_max);
  2122   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2123   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2124   if (txvalue == NULL || tyvalue == NULL)  return top();
  2125   // This is not really necessary, but it is consistent with a
  2126   // hypothetical MaxINode::Value method:
  2127   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2129   // %%% This folding logic should (ideally) be in a different place.
  2130   // Some should be inside IfNode, and there to be a more reliable
  2131   // transformation of ?: style patterns into cmoves.  We also want
  2132   // more powerful optimizations around cmove and min/max.
  2134   // Try to find a dominating comparison of these guys.
  2135   // It can simplify the index computation for Arrays.copyOf
  2136   // and similar uses of System.arraycopy.
  2137   // First, compute the normalized version of CmpI(x, y).
  2138   int   cmp_op = Op_CmpI;
  2139   Node* xkey = xvalue;
  2140   Node* ykey = yvalue;
  2141   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2142   if (ideal_cmpxy->is_Cmp()) {
  2143     // E.g., if we have CmpI(length - offset, count),
  2144     // it might idealize to CmpI(length, count + offset)
  2145     cmp_op = ideal_cmpxy->Opcode();
  2146     xkey = ideal_cmpxy->in(1);
  2147     ykey = ideal_cmpxy->in(2);
  2150   // Start by locating any relevant comparisons.
  2151   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2152   Node* cmpxy = NULL;
  2153   Node* cmpyx = NULL;
  2154   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2155     Node* cmp = start_from->fast_out(k);
  2156     if (cmp->outcnt() > 0 &&            // must have prior uses
  2157         cmp->in(0) == NULL &&           // must be context-independent
  2158         cmp->Opcode() == cmp_op) {      // right kind of compare
  2159       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2160       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2164   const int NCMPS = 2;
  2165   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2166   int cmpn;
  2167   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2168     if (cmps[cmpn] != NULL)  break;     // find a result
  2170   if (cmpn < NCMPS) {
  2171     // Look for a dominating test that tells us the min and max.
  2172     int depth = 0;                // Limit search depth for speed
  2173     Node* dom = control();
  2174     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2175       if (++depth >= 100)  break;
  2176       Node* ifproj = dom;
  2177       if (!ifproj->is_Proj())  continue;
  2178       Node* iff = ifproj->in(0);
  2179       if (!iff->is_If())  continue;
  2180       Node* bol = iff->in(1);
  2181       if (!bol->is_Bool())  continue;
  2182       Node* cmp = bol->in(1);
  2183       if (cmp == NULL)  continue;
  2184       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2185         if (cmps[cmpn] == cmp)  break;
  2186       if (cmpn == NCMPS)  continue;
  2187       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2188       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2189       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2190       // At this point, we know that 'x btest y' is true.
  2191       switch (btest) {
  2192       case BoolTest::eq:
  2193         // They are proven equal, so we can collapse the min/max.
  2194         // Either value is the answer.  Choose the simpler.
  2195         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2196           return yvalue;
  2197         return xvalue;
  2198       case BoolTest::lt:          // x < y
  2199       case BoolTest::le:          // x <= y
  2200         return (want_max ? yvalue : xvalue);
  2201       case BoolTest::gt:          // x > y
  2202       case BoolTest::ge:          // x >= y
  2203         return (want_max ? xvalue : yvalue);
  2208   // We failed to find a dominating test.
  2209   // Let's pick a test that might GVN with prior tests.
  2210   Node*          best_bol   = NULL;
  2211   BoolTest::mask best_btest = BoolTest::illegal;
  2212   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2213     Node* cmp = cmps[cmpn];
  2214     if (cmp == NULL)  continue;
  2215     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2216       Node* bol = cmp->fast_out(j);
  2217       if (!bol->is_Bool())  continue;
  2218       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2219       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2220       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2221       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2222         best_bol   = bol->as_Bool();
  2223         best_btest = btest;
  2228   Node* answer_if_true  = NULL;
  2229   Node* answer_if_false = NULL;
  2230   switch (best_btest) {
  2231   default:
  2232     if (cmpxy == NULL)
  2233       cmpxy = ideal_cmpxy;
  2234     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2235     // and fall through:
  2236   case BoolTest::lt:          // x < y
  2237   case BoolTest::le:          // x <= y
  2238     answer_if_true  = (want_max ? yvalue : xvalue);
  2239     answer_if_false = (want_max ? xvalue : yvalue);
  2240     break;
  2241   case BoolTest::gt:          // x > y
  2242   case BoolTest::ge:          // x >= y
  2243     answer_if_true  = (want_max ? xvalue : yvalue);
  2244     answer_if_false = (want_max ? yvalue : xvalue);
  2245     break;
  2248   jint hi, lo;
  2249   if (want_max) {
  2250     // We can sharpen the minimum.
  2251     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2252     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2253   } else {
  2254     // We can sharpen the maximum.
  2255     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2256     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2259   // Use a flow-free graph structure, to avoid creating excess control edges
  2260   // which could hinder other optimizations.
  2261   // Since Math.min/max is often used with arraycopy, we want
  2262   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2263   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2264                                answer_if_false, answer_if_true,
  2265                                TypeInt::make(lo, hi, widen));
  2267   return _gvn.transform(cmov);
  2269   /*
  2270   // This is not as desirable as it may seem, since Min and Max
  2271   // nodes do not have a full set of optimizations.
  2272   // And they would interfere, anyway, with 'if' optimizations
  2273   // and with CMoveI canonical forms.
  2274   switch (id) {
  2275   case vmIntrinsics::_min:
  2276     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2277   case vmIntrinsics::_max:
  2278     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2279   default:
  2280     ShouldNotReachHere();
  2282   */
  2285 inline int
  2286 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2287   const TypePtr* base_type = TypePtr::NULL_PTR;
  2288   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2289   if (base_type == NULL) {
  2290     // Unknown type.
  2291     return Type::AnyPtr;
  2292   } else if (base_type == TypePtr::NULL_PTR) {
  2293     // Since this is a NULL+long form, we have to switch to a rawptr.
  2294     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2295     offset = MakeConX(0);
  2296     return Type::RawPtr;
  2297   } else if (base_type->base() == Type::RawPtr) {
  2298     return Type::RawPtr;
  2299   } else if (base_type->isa_oopptr()) {
  2300     // Base is never null => always a heap address.
  2301     if (base_type->ptr() == TypePtr::NotNull) {
  2302       return Type::OopPtr;
  2304     // Offset is small => always a heap address.
  2305     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2306     if (offset_type != NULL &&
  2307         base_type->offset() == 0 &&     // (should always be?)
  2308         offset_type->_lo >= 0 &&
  2309         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2310       return Type::OopPtr;
  2312     // Otherwise, it might either be oop+off or NULL+addr.
  2313     return Type::AnyPtr;
  2314   } else {
  2315     // No information:
  2316     return Type::AnyPtr;
  2320 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2321   int kind = classify_unsafe_addr(base, offset);
  2322   if (kind == Type::RawPtr) {
  2323     return basic_plus_adr(top(), base, offset);
  2324   } else {
  2325     return basic_plus_adr(base, offset);
  2329 //--------------------------inline_number_methods-----------------------------
  2330 // inline int     Integer.numberOfLeadingZeros(int)
  2331 // inline int        Long.numberOfLeadingZeros(long)
  2332 //
  2333 // inline int     Integer.numberOfTrailingZeros(int)
  2334 // inline int        Long.numberOfTrailingZeros(long)
  2335 //
  2336 // inline int     Integer.bitCount(int)
  2337 // inline int        Long.bitCount(long)
  2338 //
  2339 // inline char  Character.reverseBytes(char)
  2340 // inline short     Short.reverseBytes(short)
  2341 // inline int     Integer.reverseBytes(int)
  2342 // inline long       Long.reverseBytes(long)
  2343 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2344   Node* arg = argument(0);
  2345   Node* n;
  2346   switch (id) {
  2347   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2348   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2349   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2350   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2351   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2352   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2353   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2354   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2355   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2356   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2357   default:  fatal_unexpected_iid(id);  break;
  2359   set_result(_gvn.transform(n));
  2360   return true;
  2363 //----------------------------inline_unsafe_access----------------------------
  2365 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2367 // Helper that guards and inserts a pre-barrier.
  2368 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2369                                         Node* pre_val, bool need_mem_bar) {
  2370   // We could be accessing the referent field of a reference object. If so, when G1
  2371   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2372   // This routine performs some compile time filters and generates suitable
  2373   // runtime filters that guard the pre-barrier code.
  2374   // Also add memory barrier for non volatile load from the referent field
  2375   // to prevent commoning of loads across safepoint.
  2376   if (!UseG1GC && !need_mem_bar)
  2377     return;
  2379   // Some compile time checks.
  2381   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2382   const TypeX* otype = offset->find_intptr_t_type();
  2383   if (otype != NULL && otype->is_con() &&
  2384       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2385     // Constant offset but not the reference_offset so just return
  2386     return;
  2389   // We only need to generate the runtime guards for instances.
  2390   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2391   if (btype != NULL) {
  2392     if (btype->isa_aryptr()) {
  2393       // Array type so nothing to do
  2394       return;
  2397     const TypeInstPtr* itype = btype->isa_instptr();
  2398     if (itype != NULL) {
  2399       // Can the klass of base_oop be statically determined to be
  2400       // _not_ a sub-class of Reference and _not_ Object?
  2401       ciKlass* klass = itype->klass();
  2402       if ( klass->is_loaded() &&
  2403           !klass->is_subtype_of(env()->Reference_klass()) &&
  2404           !env()->Object_klass()->is_subtype_of(klass)) {
  2405         return;
  2410   // The compile time filters did not reject base_oop/offset so
  2411   // we need to generate the following runtime filters
  2412   //
  2413   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2414   //   if (instance_of(base, java.lang.ref.Reference)) {
  2415   //     pre_barrier(_, pre_val, ...);
  2416   //   }
  2417   // }
  2419   float likely   = PROB_LIKELY(  0.999);
  2420   float unlikely = PROB_UNLIKELY(0.999);
  2422   IdealKit ideal(this);
  2423 #define __ ideal.
  2425   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2427   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2428       // Update graphKit memory and control from IdealKit.
  2429       sync_kit(ideal);
  2431       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2432       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2434       // Update IdealKit memory and control from graphKit.
  2435       __ sync_kit(this);
  2437       Node* one = __ ConI(1);
  2438       // is_instof == 0 if base_oop == NULL
  2439       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2441         // Update graphKit from IdeakKit.
  2442         sync_kit(ideal);
  2444         // Use the pre-barrier to record the value in the referent field
  2445         pre_barrier(false /* do_load */,
  2446                     __ ctrl(),
  2447                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2448                     pre_val /* pre_val */,
  2449                     T_OBJECT);
  2450         if (need_mem_bar) {
  2451           // Add memory barrier to prevent commoning reads from this field
  2452           // across safepoint since GC can change its value.
  2453           insert_mem_bar(Op_MemBarCPUOrder);
  2455         // Update IdealKit from graphKit.
  2456         __ sync_kit(this);
  2458       } __ end_if(); // _ref_type != ref_none
  2459   } __ end_if(); // offset == referent_offset
  2461   // Final sync IdealKit and GraphKit.
  2462   final_sync(ideal);
  2463 #undef __
  2467 // Interpret Unsafe.fieldOffset cookies correctly:
  2468 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2470 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2471   // Attempt to infer a sharper value type from the offset and base type.
  2472   ciKlass* sharpened_klass = NULL;
  2474   // See if it is an instance field, with an object type.
  2475   if (alias_type->field() != NULL) {
  2476     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2477     if (alias_type->field()->type()->is_klass()) {
  2478       sharpened_klass = alias_type->field()->type()->as_klass();
  2482   // See if it is a narrow oop array.
  2483   if (adr_type->isa_aryptr()) {
  2484     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2485       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2486       if (elem_type != NULL) {
  2487         sharpened_klass = elem_type->klass();
  2492   // The sharpened class might be unloaded if there is no class loader
  2493   // contraint in place.
  2494   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2495     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2497 #ifndef PRODUCT
  2498     if (C->print_intrinsics() || C->print_inlining()) {
  2499       tty->print("  from base type: ");  adr_type->dump();
  2500       tty->print("  sharpened value: ");  tjp->dump();
  2502 #endif
  2503     // Sharpen the value type.
  2504     return tjp;
  2506   return NULL;
  2509 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2510   if (callee()->is_static())  return false;  // caller must have the capability!
  2512 #ifndef PRODUCT
  2514     ResourceMark rm;
  2515     // Check the signatures.
  2516     ciSignature* sig = callee()->signature();
  2517 #ifdef ASSERT
  2518     if (!is_store) {
  2519       // Object getObject(Object base, int/long offset), etc.
  2520       BasicType rtype = sig->return_type()->basic_type();
  2521       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2522           rtype = T_ADDRESS;  // it is really a C void*
  2523       assert(rtype == type, "getter must return the expected value");
  2524       if (!is_native_ptr) {
  2525         assert(sig->count() == 2, "oop getter has 2 arguments");
  2526         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2527         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2528       } else {
  2529         assert(sig->count() == 1, "native getter has 1 argument");
  2530         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2532     } else {
  2533       // void putObject(Object base, int/long offset, Object x), etc.
  2534       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2535       if (!is_native_ptr) {
  2536         assert(sig->count() == 3, "oop putter has 3 arguments");
  2537         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2538         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2539       } else {
  2540         assert(sig->count() == 2, "native putter has 2 arguments");
  2541         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2543       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2544       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2545         vtype = T_ADDRESS;  // it is really a C void*
  2546       assert(vtype == type, "putter must accept the expected value");
  2548 #endif // ASSERT
  2550 #endif //PRODUCT
  2552   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2554   Node* receiver = argument(0);  // type: oop
  2556   // Build address expression.  See the code in inline_unsafe_prefetch.
  2557   Node* adr;
  2558   Node* heap_base_oop = top();
  2559   Node* offset = top();
  2560   Node* val;
  2562   if (!is_native_ptr) {
  2563     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2564     Node* base = argument(1);  // type: oop
  2565     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2566     offset = argument(2);  // type: long
  2567     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2568     // to be plain byte offsets, which are also the same as those accepted
  2569     // by oopDesc::field_base.
  2570     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2571            "fieldOffset must be byte-scaled");
  2572     // 32-bit machines ignore the high half!
  2573     offset = ConvL2X(offset);
  2574     adr = make_unsafe_address(base, offset);
  2575     heap_base_oop = base;
  2576     val = is_store ? argument(4) : NULL;
  2577   } else {
  2578     Node* ptr = argument(1);  // type: long
  2579     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2580     adr = make_unsafe_address(NULL, ptr);
  2581     val = is_store ? argument(3) : NULL;
  2584   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2586   // First guess at the value type.
  2587   const Type *value_type = Type::get_const_basic_type(type);
  2589   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2590   // there was not enough information to nail it down.
  2591   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2592   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2594   // We will need memory barriers unless we can determine a unique
  2595   // alias category for this reference.  (Note:  If for some reason
  2596   // the barriers get omitted and the unsafe reference begins to "pollute"
  2597   // the alias analysis of the rest of the graph, either Compile::can_alias
  2598   // or Compile::must_alias will throw a diagnostic assert.)
  2599   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2601   // If we are reading the value of the referent field of a Reference
  2602   // object (either by using Unsafe directly or through reflection)
  2603   // then, if G1 is enabled, we need to record the referent in an
  2604   // SATB log buffer using the pre-barrier mechanism.
  2605   // Also we need to add memory barrier to prevent commoning reads
  2606   // from this field across safepoint since GC can change its value.
  2607   bool need_read_barrier = !is_native_ptr && !is_store &&
  2608                            offset != top() && heap_base_oop != top();
  2610   if (!is_store && type == T_OBJECT) {
  2611     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2612     if (tjp != NULL) {
  2613       value_type = tjp;
  2617   receiver = null_check(receiver);
  2618   if (stopped()) {
  2619     return true;
  2621   // Heap pointers get a null-check from the interpreter,
  2622   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2623   // and it is not possible to fully distinguish unintended nulls
  2624   // from intended ones in this API.
  2626   if (is_volatile) {
  2627     // We need to emit leading and trailing CPU membars (see below) in
  2628     // addition to memory membars when is_volatile. This is a little
  2629     // too strong, but avoids the need to insert per-alias-type
  2630     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2631     // we cannot do effectively here because we probably only have a
  2632     // rough approximation of type.
  2633     need_mem_bar = true;
  2634     // For Stores, place a memory ordering barrier now.
  2635     if (is_store) {
  2636       insert_mem_bar(Op_MemBarRelease);
  2637     } else {
  2638       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2639         insert_mem_bar(Op_MemBarVolatile);
  2644   // Memory barrier to prevent normal and 'unsafe' accesses from
  2645   // bypassing each other.  Happens after null checks, so the
  2646   // exception paths do not take memory state from the memory barrier,
  2647   // so there's no problems making a strong assert about mixing users
  2648   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2649   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2650   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2652   if (!is_store) {
  2653     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
  2654     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
  2655     // load value
  2656     switch (type) {
  2657     case T_BOOLEAN:
  2658     case T_CHAR:
  2659     case T_BYTE:
  2660     case T_SHORT:
  2661     case T_INT:
  2662     case T_LONG:
  2663     case T_FLOAT:
  2664     case T_DOUBLE:
  2665       break;
  2666     case T_OBJECT:
  2667       if (need_read_barrier) {
  2668         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2670       break;
  2671     case T_ADDRESS:
  2672       // Cast to an int type.
  2673       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2674       p = ConvX2UL(p);
  2675       break;
  2676     default:
  2677       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2678       break;
  2680     // The load node has the control of the preceding MemBarCPUOrder.  All
  2681     // following nodes will have the control of the MemBarCPUOrder inserted at
  2682     // the end of this method.  So, pushing the load onto the stack at a later
  2683     // point is fine.
  2684     set_result(p);
  2685   } else {
  2686     // place effect of store into memory
  2687     switch (type) {
  2688     case T_DOUBLE:
  2689       val = dstore_rounding(val);
  2690       break;
  2691     case T_ADDRESS:
  2692       // Repackage the long as a pointer.
  2693       val = ConvL2X(val);
  2694       val = _gvn.transform(new (C) CastX2PNode(val));
  2695       break;
  2698     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2699     if (type != T_OBJECT ) {
  2700       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2701     } else {
  2702       // Possibly an oop being stored to Java heap or native memory
  2703       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2704         // oop to Java heap.
  2705         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2706       } else {
  2707         // We can't tell at compile time if we are storing in the Java heap or outside
  2708         // of it. So we need to emit code to conditionally do the proper type of
  2709         // store.
  2711         IdealKit ideal(this);
  2712 #define __ ideal.
  2713         // QQQ who knows what probability is here??
  2714         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2715           // Sync IdealKit and graphKit.
  2716           sync_kit(ideal);
  2717           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2718           // Update IdealKit memory.
  2719           __ sync_kit(this);
  2720         } __ else_(); {
  2721           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2722         } __ end_if();
  2723         // Final sync IdealKit and GraphKit.
  2724         final_sync(ideal);
  2725 #undef __
  2730   if (is_volatile) {
  2731     if (!is_store) {
  2732       insert_mem_bar(Op_MemBarAcquire);
  2733     } else {
  2734       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2735         insert_mem_bar(Op_MemBarVolatile);
  2740   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2742   return true;
  2745 //----------------------------inline_unsafe_prefetch----------------------------
  2747 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2748 #ifndef PRODUCT
  2750     ResourceMark rm;
  2751     // Check the signatures.
  2752     ciSignature* sig = callee()->signature();
  2753 #ifdef ASSERT
  2754     // Object getObject(Object base, int/long offset), etc.
  2755     BasicType rtype = sig->return_type()->basic_type();
  2756     if (!is_native_ptr) {
  2757       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2758       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2759       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2760     } else {
  2761       assert(sig->count() == 1, "native prefetch has 1 argument");
  2762       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2764 #endif // ASSERT
  2766 #endif // !PRODUCT
  2768   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2770   const int idx = is_static ? 0 : 1;
  2771   if (!is_static) {
  2772     null_check_receiver();
  2773     if (stopped()) {
  2774       return true;
  2778   // Build address expression.  See the code in inline_unsafe_access.
  2779   Node *adr;
  2780   if (!is_native_ptr) {
  2781     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2782     Node* base   = argument(idx + 0);  // type: oop
  2783     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2784     Node* offset = argument(idx + 1);  // type: long
  2785     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2786     // to be plain byte offsets, which are also the same as those accepted
  2787     // by oopDesc::field_base.
  2788     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2789            "fieldOffset must be byte-scaled");
  2790     // 32-bit machines ignore the high half!
  2791     offset = ConvL2X(offset);
  2792     adr = make_unsafe_address(base, offset);
  2793   } else {
  2794     Node* ptr = argument(idx + 0);  // type: long
  2795     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2796     adr = make_unsafe_address(NULL, ptr);
  2799   // Generate the read or write prefetch
  2800   Node *prefetch;
  2801   if (is_store) {
  2802     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2803   } else {
  2804     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2806   prefetch->init_req(0, control());
  2807   set_i_o(_gvn.transform(prefetch));
  2809   return true;
  2812 //----------------------------inline_unsafe_load_store----------------------------
  2813 // This method serves a couple of different customers (depending on LoadStoreKind):
  2814 //
  2815 // LS_cmpxchg:
  2816 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2817 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2818 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2819 //
  2820 // LS_xadd:
  2821 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2822 //   public long getAndAddLong(Object o, long offset, long delta)
  2823 //
  2824 // LS_xchg:
  2825 //   int    getAndSet(Object o, long offset, int    newValue)
  2826 //   long   getAndSet(Object o, long offset, long   newValue)
  2827 //   Object getAndSet(Object o, long offset, Object newValue)
  2828 //
  2829 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2830   // This basic scheme here is the same as inline_unsafe_access, but
  2831   // differs in enough details that combining them would make the code
  2832   // overly confusing.  (This is a true fact! I originally combined
  2833   // them, but even I was confused by it!) As much code/comments as
  2834   // possible are retained from inline_unsafe_access though to make
  2835   // the correspondences clearer. - dl
  2837   if (callee()->is_static())  return false;  // caller must have the capability!
  2839 #ifndef PRODUCT
  2840   BasicType rtype;
  2842     ResourceMark rm;
  2843     // Check the signatures.
  2844     ciSignature* sig = callee()->signature();
  2845     rtype = sig->return_type()->basic_type();
  2846     if (kind == LS_xadd || kind == LS_xchg) {
  2847       // Check the signatures.
  2848 #ifdef ASSERT
  2849       assert(rtype == type, "get and set must return the expected type");
  2850       assert(sig->count() == 3, "get and set has 3 arguments");
  2851       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2852       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2853       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2854 #endif // ASSERT
  2855     } else if (kind == LS_cmpxchg) {
  2856       // Check the signatures.
  2857 #ifdef ASSERT
  2858       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2859       assert(sig->count() == 4, "CAS has 4 arguments");
  2860       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2861       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2862 #endif // ASSERT
  2863     } else {
  2864       ShouldNotReachHere();
  2867 #endif //PRODUCT
  2869   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2871   // Get arguments:
  2872   Node* receiver = NULL;
  2873   Node* base     = NULL;
  2874   Node* offset   = NULL;
  2875   Node* oldval   = NULL;
  2876   Node* newval   = NULL;
  2877   if (kind == LS_cmpxchg) {
  2878     const bool two_slot_type = type2size[type] == 2;
  2879     receiver = argument(0);  // type: oop
  2880     base     = argument(1);  // type: oop
  2881     offset   = argument(2);  // type: long
  2882     oldval   = argument(4);  // type: oop, int, or long
  2883     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2884   } else if (kind == LS_xadd || kind == LS_xchg){
  2885     receiver = argument(0);  // type: oop
  2886     base     = argument(1);  // type: oop
  2887     offset   = argument(2);  // type: long
  2888     oldval   = NULL;
  2889     newval   = argument(4);  // type: oop, int, or long
  2892   // Null check receiver.
  2893   receiver = null_check(receiver);
  2894   if (stopped()) {
  2895     return true;
  2898   // Build field offset expression.
  2899   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2900   // to be plain byte offsets, which are also the same as those accepted
  2901   // by oopDesc::field_base.
  2902   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2903   // 32-bit machines ignore the high half of long offsets
  2904   offset = ConvL2X(offset);
  2905   Node* adr = make_unsafe_address(base, offset);
  2906   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2908   // For CAS, unlike inline_unsafe_access, there seems no point in
  2909   // trying to refine types. Just use the coarse types here.
  2910   const Type *value_type = Type::get_const_basic_type(type);
  2911   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2912   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2914   if (kind == LS_xchg && type == T_OBJECT) {
  2915     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2916     if (tjp != NULL) {
  2917       value_type = tjp;
  2921   int alias_idx = C->get_alias_index(adr_type);
  2923   // Memory-model-wise, a LoadStore acts like a little synchronized
  2924   // block, so needs barriers on each side.  These don't translate
  2925   // into actual barriers on most machines, but we still need rest of
  2926   // compiler to respect ordering.
  2928   insert_mem_bar(Op_MemBarRelease);
  2929   insert_mem_bar(Op_MemBarCPUOrder);
  2931   // 4984716: MemBars must be inserted before this
  2932   //          memory node in order to avoid a false
  2933   //          dependency which will confuse the scheduler.
  2934   Node *mem = memory(alias_idx);
  2936   // For now, we handle only those cases that actually exist: ints,
  2937   // longs, and Object. Adding others should be straightforward.
  2938   Node* load_store;
  2939   switch(type) {
  2940   case T_INT:
  2941     if (kind == LS_xadd) {
  2942       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2943     } else if (kind == LS_xchg) {
  2944       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2945     } else if (kind == LS_cmpxchg) {
  2946       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2947     } else {
  2948       ShouldNotReachHere();
  2950     break;
  2951   case T_LONG:
  2952     if (kind == LS_xadd) {
  2953       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2954     } else if (kind == LS_xchg) {
  2955       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2956     } else if (kind == LS_cmpxchg) {
  2957       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2958     } else {
  2959       ShouldNotReachHere();
  2961     break;
  2962   case T_OBJECT:
  2963     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2964     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2965     // Execute transformation here to avoid barrier generation in such case.
  2966     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2967       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2969     // Reference stores need a store barrier.
  2970     if (kind == LS_xchg) {
  2971       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2972       if (!can_move_pre_barrier()) {
  2973         pre_barrier(true /* do_load*/,
  2974                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2975                     NULL /* pre_val*/,
  2976                     T_OBJECT);
  2977       } // Else move pre_barrier to use load_store value, see below.
  2978     } else if (kind == LS_cmpxchg) {
  2979       // Same as for newval above:
  2980       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2981         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2983       // The only known value which might get overwritten is oldval.
  2984       pre_barrier(false /* do_load */,
  2985                   control(), NULL, NULL, max_juint, NULL, NULL,
  2986                   oldval /* pre_val */,
  2987                   T_OBJECT);
  2988     } else {
  2989       ShouldNotReachHere();
  2992 #ifdef _LP64
  2993     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2994       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2995       if (kind == LS_xchg) {
  2996         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2997                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  2998       } else {
  2999         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3000         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  3001         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  3002                                                                 newval_enc, oldval_enc));
  3004     } else
  3005 #endif
  3007       if (kind == LS_xchg) {
  3008         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  3009       } else {
  3010         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3011         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3014     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3015     break;
  3016   default:
  3017     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  3018     break;
  3021   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3022   // main role is to prevent LoadStore nodes from being optimized away
  3023   // when their results aren't used.
  3024   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  3025   set_memory(proj, alias_idx);
  3027   if (type == T_OBJECT && kind == LS_xchg) {
  3028 #ifdef _LP64
  3029     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3030       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  3032 #endif
  3033     if (can_move_pre_barrier()) {
  3034       // Don't need to load pre_val. The old value is returned by load_store.
  3035       // The pre_barrier can execute after the xchg as long as no safepoint
  3036       // gets inserted between them.
  3037       pre_barrier(false /* do_load */,
  3038                   control(), NULL, NULL, max_juint, NULL, NULL,
  3039                   load_store /* pre_val */,
  3040                   T_OBJECT);
  3044   // Add the trailing membar surrounding the access
  3045   insert_mem_bar(Op_MemBarCPUOrder);
  3046   insert_mem_bar(Op_MemBarAcquire);
  3048   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3049   set_result(load_store);
  3050   return true;
  3053 //----------------------------inline_unsafe_ordered_store----------------------
  3054 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3055 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3056 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3057 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3058   // This is another variant of inline_unsafe_access, differing in
  3059   // that it always issues store-store ("release") barrier and ensures
  3060   // store-atomicity (which only matters for "long").
  3062   if (callee()->is_static())  return false;  // caller must have the capability!
  3064 #ifndef PRODUCT
  3066     ResourceMark rm;
  3067     // Check the signatures.
  3068     ciSignature* sig = callee()->signature();
  3069 #ifdef ASSERT
  3070     BasicType rtype = sig->return_type()->basic_type();
  3071     assert(rtype == T_VOID, "must return void");
  3072     assert(sig->count() == 3, "has 3 arguments");
  3073     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3074     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3075 #endif // ASSERT
  3077 #endif //PRODUCT
  3079   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3081   // Get arguments:
  3082   Node* receiver = argument(0);  // type: oop
  3083   Node* base     = argument(1);  // type: oop
  3084   Node* offset   = argument(2);  // type: long
  3085   Node* val      = argument(4);  // type: oop, int, or long
  3087   // Null check receiver.
  3088   receiver = null_check(receiver);
  3089   if (stopped()) {
  3090     return true;
  3093   // Build field offset expression.
  3094   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3095   // 32-bit machines ignore the high half of long offsets
  3096   offset = ConvL2X(offset);
  3097   Node* adr = make_unsafe_address(base, offset);
  3098   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3099   const Type *value_type = Type::get_const_basic_type(type);
  3100   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3102   insert_mem_bar(Op_MemBarRelease);
  3103   insert_mem_bar(Op_MemBarCPUOrder);
  3104   // Ensure that the store is atomic for longs:
  3105   const bool require_atomic_access = true;
  3106   Node* store;
  3107   if (type == T_OBJECT) // reference stores need a store barrier.
  3108     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3109   else {
  3110     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3112   insert_mem_bar(Op_MemBarCPUOrder);
  3113   return true;
  3116 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3117   // Regardless of form, don't allow previous ld/st to move down,
  3118   // then issue acquire, release, or volatile mem_bar.
  3119   insert_mem_bar(Op_MemBarCPUOrder);
  3120   switch(id) {
  3121     case vmIntrinsics::_loadFence:
  3122       insert_mem_bar(Op_LoadFence);
  3123       return true;
  3124     case vmIntrinsics::_storeFence:
  3125       insert_mem_bar(Op_StoreFence);
  3126       return true;
  3127     case vmIntrinsics::_fullFence:
  3128       insert_mem_bar(Op_MemBarVolatile);
  3129       return true;
  3130     default:
  3131       fatal_unexpected_iid(id);
  3132       return false;
  3136 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3137   if (!kls->is_Con()) {
  3138     return true;
  3140   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3141   if (klsptr == NULL) {
  3142     return true;
  3144   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3145   // don't need a guard for a klass that is already initialized
  3146   return !ik->is_initialized();
  3149 //----------------------------inline_unsafe_allocate---------------------------
  3150 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3151 bool LibraryCallKit::inline_unsafe_allocate() {
  3152   if (callee()->is_static())  return false;  // caller must have the capability!
  3154   null_check_receiver();  // null-check, then ignore
  3155   Node* cls = null_check(argument(1));
  3156   if (stopped())  return true;
  3158   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3159   kls = null_check(kls);
  3160   if (stopped())  return true;  // argument was like int.class
  3162   Node* test = NULL;
  3163   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3164     // Note:  The argument might still be an illegal value like
  3165     // Serializable.class or Object[].class.   The runtime will handle it.
  3166     // But we must make an explicit check for initialization.
  3167     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3168     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3169     // can generate code to load it as unsigned byte.
  3170     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3171     Node* bits = intcon(InstanceKlass::fully_initialized);
  3172     test = _gvn.transform(new (C) SubINode(inst, bits));
  3173     // The 'test' is non-zero if we need to take a slow path.
  3176   Node* obj = new_instance(kls, test);
  3177   set_result(obj);
  3178   return true;
  3181 #ifdef TRACE_HAVE_INTRINSICS
  3182 /*
  3183  * oop -> myklass
  3184  * myklass->trace_id |= USED
  3185  * return myklass->trace_id & ~0x3
  3186  */
  3187 bool LibraryCallKit::inline_native_classID() {
  3188   null_check_receiver();  // null-check, then ignore
  3189   Node* cls = null_check(argument(1), T_OBJECT);
  3190   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3191   kls = null_check(kls, T_OBJECT);
  3192   ByteSize offset = TRACE_ID_OFFSET;
  3193   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3194   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3195   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3196   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3197   Node* clsused = longcon(0x01l); // set the class bit
  3198   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3200   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3201   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3202   set_result(andl);
  3203   return true;
  3206 bool LibraryCallKit::inline_native_threadID() {
  3207   Node* tls_ptr = NULL;
  3208   Node* cur_thr = generate_current_thread(tls_ptr);
  3209   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3210   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3211   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3213   Node* threadid = NULL;
  3214   size_t thread_id_size = OSThread::thread_id_size();
  3215   if (thread_id_size == (size_t) BytesPerLong) {
  3216     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3217   } else if (thread_id_size == (size_t) BytesPerInt) {
  3218     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3219   } else {
  3220     ShouldNotReachHere();
  3222   set_result(threadid);
  3223   return true;
  3225 #endif
  3227 //------------------------inline_native_time_funcs--------------
  3228 // inline code for System.currentTimeMillis() and System.nanoTime()
  3229 // these have the same type and signature
  3230 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3231   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3232   const TypePtr* no_memory_effects = NULL;
  3233   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3234   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3235 #ifdef ASSERT
  3236   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3237   assert(value_top == top(), "second value must be top");
  3238 #endif
  3239   set_result(value);
  3240   return true;
  3243 //------------------------inline_native_currentThread------------------
  3244 bool LibraryCallKit::inline_native_currentThread() {
  3245   Node* junk = NULL;
  3246   set_result(generate_current_thread(junk));
  3247   return true;
  3250 //------------------------inline_native_isInterrupted------------------
  3251 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3252 bool LibraryCallKit::inline_native_isInterrupted() {
  3253   // Add a fast path to t.isInterrupted(clear_int):
  3254   //   (t == Thread.current() &&
  3255   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  3256   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3257   // So, in the common case that the interrupt bit is false,
  3258   // we avoid making a call into the VM.  Even if the interrupt bit
  3259   // is true, if the clear_int argument is false, we avoid the VM call.
  3260   // However, if the receiver is not currentThread, we must call the VM,
  3261   // because there must be some locking done around the operation.
  3263   // We only go to the fast case code if we pass two guards.
  3264   // Paths which do not pass are accumulated in the slow_region.
  3266   enum {
  3267     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3268     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3269     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3270     PATH_LIMIT
  3271   };
  3273   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3274   // out of the function.
  3275   insert_mem_bar(Op_MemBarCPUOrder);
  3277   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3278   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3280   RegionNode* slow_region = new (C) RegionNode(1);
  3281   record_for_igvn(slow_region);
  3283   // (a) Receiving thread must be the current thread.
  3284   Node* rec_thr = argument(0);
  3285   Node* tls_ptr = NULL;
  3286   Node* cur_thr = generate_current_thread(tls_ptr);
  3287   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3288   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3290   generate_slow_guard(bol_thr, slow_region);
  3292   // (b) Interrupt bit on TLS must be false.
  3293   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3294   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3295   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3297   // Set the control input on the field _interrupted read to prevent it floating up.
  3298   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3299   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3300   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3302   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3304   // First fast path:  if (!TLS._interrupted) return false;
  3305   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3306   result_rgn->init_req(no_int_result_path, false_bit);
  3307   result_val->init_req(no_int_result_path, intcon(0));
  3309   // drop through to next case
  3310   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3312 #ifndef TARGET_OS_FAMILY_windows
  3313   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3314   Node* clr_arg = argument(1);
  3315   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3316   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3317   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3319   // Second fast path:  ... else if (!clear_int) return true;
  3320   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3321   result_rgn->init_req(no_clear_result_path, false_arg);
  3322   result_val->init_req(no_clear_result_path, intcon(1));
  3324   // drop through to next case
  3325   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3326 #else
  3327   // To return true on Windows you must read the _interrupted field
  3328   // and check the the event state i.e. take the slow path.
  3329 #endif // TARGET_OS_FAMILY_windows
  3331   // (d) Otherwise, go to the slow path.
  3332   slow_region->add_req(control());
  3333   set_control( _gvn.transform(slow_region));
  3335   if (stopped()) {
  3336     // There is no slow path.
  3337     result_rgn->init_req(slow_result_path, top());
  3338     result_val->init_req(slow_result_path, top());
  3339   } else {
  3340     // non-virtual because it is a private non-static
  3341     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3343     Node* slow_val = set_results_for_java_call(slow_call);
  3344     // this->control() comes from set_results_for_java_call
  3346     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3347     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3349     // These two phis are pre-filled with copies of of the fast IO and Memory
  3350     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3351     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3353     result_rgn->init_req(slow_result_path, control());
  3354     result_io ->init_req(slow_result_path, i_o());
  3355     result_mem->init_req(slow_result_path, reset_memory());
  3356     result_val->init_req(slow_result_path, slow_val);
  3358     set_all_memory(_gvn.transform(result_mem));
  3359     set_i_o(       _gvn.transform(result_io));
  3362   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3363   set_result(result_rgn, result_val);
  3364   return true;
  3367 //---------------------------load_mirror_from_klass----------------------------
  3368 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3369 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3370   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3371   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3374 //-----------------------load_klass_from_mirror_common-------------------------
  3375 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3376 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3377 // and branch to the given path on the region.
  3378 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3379 // compile for the non-null case.
  3380 // If the region is NULL, force never_see_null = true.
  3381 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3382                                                     bool never_see_null,
  3383                                                     RegionNode* region,
  3384                                                     int null_path,
  3385                                                     int offset) {
  3386   if (region == NULL)  never_see_null = true;
  3387   Node* p = basic_plus_adr(mirror, offset);
  3388   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3389   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3390   Node* null_ctl = top();
  3391   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3392   if (region != NULL) {
  3393     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3394     region->init_req(null_path, null_ctl);
  3395   } else {
  3396     assert(null_ctl == top(), "no loose ends");
  3398   return kls;
  3401 //--------------------(inline_native_Class_query helpers)---------------------
  3402 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3403 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3404 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3405   // Branch around if the given klass has the given modifier bit set.
  3406   // Like generate_guard, adds a new path onto the region.
  3407   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3408   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3409   Node* mask = intcon(modifier_mask);
  3410   Node* bits = intcon(modifier_bits);
  3411   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3412   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3413   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3414   return generate_fair_guard(bol, region);
  3416 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3417   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3420 //-------------------------inline_native_Class_query-------------------
  3421 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3422   const Type* return_type = TypeInt::BOOL;
  3423   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3424   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3425   bool expect_prim = false;     // most of these guys expect to work on refs
  3427   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3429   Node* mirror = argument(0);
  3430   Node* obj    = top();
  3432   switch (id) {
  3433   case vmIntrinsics::_isInstance:
  3434     // nothing is an instance of a primitive type
  3435     prim_return_value = intcon(0);
  3436     obj = argument(1);
  3437     break;
  3438   case vmIntrinsics::_getModifiers:
  3439     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3440     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3441     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3442     break;
  3443   case vmIntrinsics::_isInterface:
  3444     prim_return_value = intcon(0);
  3445     break;
  3446   case vmIntrinsics::_isArray:
  3447     prim_return_value = intcon(0);
  3448     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3449     break;
  3450   case vmIntrinsics::_isPrimitive:
  3451     prim_return_value = intcon(1);
  3452     expect_prim = true;  // obviously
  3453     break;
  3454   case vmIntrinsics::_getSuperclass:
  3455     prim_return_value = null();
  3456     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3457     break;
  3458   case vmIntrinsics::_getComponentType:
  3459     prim_return_value = null();
  3460     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3461     break;
  3462   case vmIntrinsics::_getClassAccessFlags:
  3463     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3464     return_type = TypeInt::INT;  // not bool!  6297094
  3465     break;
  3466   default:
  3467     fatal_unexpected_iid(id);
  3468     break;
  3471   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3472   if (mirror_con == NULL)  return false;  // cannot happen?
  3474 #ifndef PRODUCT
  3475   if (C->print_intrinsics() || C->print_inlining()) {
  3476     ciType* k = mirror_con->java_mirror_type();
  3477     if (k) {
  3478       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3479       k->print_name();
  3480       tty->cr();
  3483 #endif
  3485   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3486   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3487   record_for_igvn(region);
  3488   PhiNode* phi = new (C) PhiNode(region, return_type);
  3490   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3491   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3492   // if it is. See bug 4774291.
  3494   // For Reflection.getClassAccessFlags(), the null check occurs in
  3495   // the wrong place; see inline_unsafe_access(), above, for a similar
  3496   // situation.
  3497   mirror = null_check(mirror);
  3498   // If mirror or obj is dead, only null-path is taken.
  3499   if (stopped())  return true;
  3501   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3503   // Now load the mirror's klass metaobject, and null-check it.
  3504   // Side-effects region with the control path if the klass is null.
  3505   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3506   // If kls is null, we have a primitive mirror.
  3507   phi->init_req(_prim_path, prim_return_value);
  3508   if (stopped()) { set_result(region, phi); return true; }
  3509   bool safe_for_replace = (region->in(_prim_path) == top());
  3511   Node* p;  // handy temp
  3512   Node* null_ctl;
  3514   // Now that we have the non-null klass, we can perform the real query.
  3515   // For constant classes, the query will constant-fold in LoadNode::Value.
  3516   Node* query_value = top();
  3517   switch (id) {
  3518   case vmIntrinsics::_isInstance:
  3519     // nothing is an instance of a primitive type
  3520     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3521     break;
  3523   case vmIntrinsics::_getModifiers:
  3524     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3525     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3526     break;
  3528   case vmIntrinsics::_isInterface:
  3529     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3530     if (generate_interface_guard(kls, region) != NULL)
  3531       // A guard was added.  If the guard is taken, it was an interface.
  3532       phi->add_req(intcon(1));
  3533     // If we fall through, it's a plain class.
  3534     query_value = intcon(0);
  3535     break;
  3537   case vmIntrinsics::_isArray:
  3538     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3539     if (generate_array_guard(kls, region) != NULL)
  3540       // A guard was added.  If the guard is taken, it was an array.
  3541       phi->add_req(intcon(1));
  3542     // If we fall through, it's a plain class.
  3543     query_value = intcon(0);
  3544     break;
  3546   case vmIntrinsics::_isPrimitive:
  3547     query_value = intcon(0); // "normal" path produces false
  3548     break;
  3550   case vmIntrinsics::_getSuperclass:
  3551     // The rules here are somewhat unfortunate, but we can still do better
  3552     // with random logic than with a JNI call.
  3553     // Interfaces store null or Object as _super, but must report null.
  3554     // Arrays store an intermediate super as _super, but must report Object.
  3555     // Other types can report the actual _super.
  3556     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3557     if (generate_interface_guard(kls, region) != NULL)
  3558       // A guard was added.  If the guard is taken, it was an interface.
  3559       phi->add_req(null());
  3560     if (generate_array_guard(kls, region) != NULL)
  3561       // A guard was added.  If the guard is taken, it was an array.
  3562       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3563     // If we fall through, it's a plain class.  Get its _super.
  3564     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3565     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3566     null_ctl = top();
  3567     kls = null_check_oop(kls, &null_ctl);
  3568     if (null_ctl != top()) {
  3569       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3570       region->add_req(null_ctl);
  3571       phi   ->add_req(null());
  3573     if (!stopped()) {
  3574       query_value = load_mirror_from_klass(kls);
  3576     break;
  3578   case vmIntrinsics::_getComponentType:
  3579     if (generate_array_guard(kls, region) != NULL) {
  3580       // Be sure to pin the oop load to the guard edge just created:
  3581       Node* is_array_ctrl = region->in(region->req()-1);
  3582       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3583       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3584       phi->add_req(cmo);
  3586     query_value = null();  // non-array case is null
  3587     break;
  3589   case vmIntrinsics::_getClassAccessFlags:
  3590     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3591     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3592     break;
  3594   default:
  3595     fatal_unexpected_iid(id);
  3596     break;
  3599   // Fall-through is the normal case of a query to a real class.
  3600   phi->init_req(1, query_value);
  3601   region->init_req(1, control());
  3603   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3604   set_result(region, phi);
  3605   return true;
  3608 //--------------------------inline_native_subtype_check------------------------
  3609 // This intrinsic takes the JNI calls out of the heart of
  3610 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3611 bool LibraryCallKit::inline_native_subtype_check() {
  3612   // Pull both arguments off the stack.
  3613   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3614   args[0] = argument(0);
  3615   args[1] = argument(1);
  3616   Node* klasses[2];             // corresponding Klasses: superk, subk
  3617   klasses[0] = klasses[1] = top();
  3619   enum {
  3620     // A full decision tree on {superc is prim, subc is prim}:
  3621     _prim_0_path = 1,           // {P,N} => false
  3622                                 // {P,P} & superc!=subc => false
  3623     _prim_same_path,            // {P,P} & superc==subc => true
  3624     _prim_1_path,               // {N,P} => false
  3625     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3626     _both_ref_path,             // {N,N} & subtype check loses => false
  3627     PATH_LIMIT
  3628   };
  3630   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3631   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3632   record_for_igvn(region);
  3634   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3635   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3636   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3638   // First null-check both mirrors and load each mirror's klass metaobject.
  3639   int which_arg;
  3640   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3641     Node* arg = args[which_arg];
  3642     arg = null_check(arg);
  3643     if (stopped())  break;
  3644     args[which_arg] = arg;
  3646     Node* p = basic_plus_adr(arg, class_klass_offset);
  3647     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3648     klasses[which_arg] = _gvn.transform(kls);
  3651   // Having loaded both klasses, test each for null.
  3652   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3653   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3654     Node* kls = klasses[which_arg];
  3655     Node* null_ctl = top();
  3656     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3657     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3658     region->init_req(prim_path, null_ctl);
  3659     if (stopped())  break;
  3660     klasses[which_arg] = kls;
  3663   if (!stopped()) {
  3664     // now we have two reference types, in klasses[0..1]
  3665     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3666     Node* superk = klasses[0];  // the receiver
  3667     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3668     // now we have a successful reference subtype check
  3669     region->set_req(_ref_subtype_path, control());
  3672   // If both operands are primitive (both klasses null), then
  3673   // we must return true when they are identical primitives.
  3674   // It is convenient to test this after the first null klass check.
  3675   set_control(region->in(_prim_0_path)); // go back to first null check
  3676   if (!stopped()) {
  3677     // Since superc is primitive, make a guard for the superc==subc case.
  3678     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3679     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3680     generate_guard(bol_eq, region, PROB_FAIR);
  3681     if (region->req() == PATH_LIMIT+1) {
  3682       // A guard was added.  If the added guard is taken, superc==subc.
  3683       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3684       region->del_req(PATH_LIMIT);
  3686     region->set_req(_prim_0_path, control()); // Not equal after all.
  3689   // these are the only paths that produce 'true':
  3690   phi->set_req(_prim_same_path,   intcon(1));
  3691   phi->set_req(_ref_subtype_path, intcon(1));
  3693   // pull together the cases:
  3694   assert(region->req() == PATH_LIMIT, "sane region");
  3695   for (uint i = 1; i < region->req(); i++) {
  3696     Node* ctl = region->in(i);
  3697     if (ctl == NULL || ctl == top()) {
  3698       region->set_req(i, top());
  3699       phi   ->set_req(i, top());
  3700     } else if (phi->in(i) == NULL) {
  3701       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3705   set_control(_gvn.transform(region));
  3706   set_result(_gvn.transform(phi));
  3707   return true;
  3710 //---------------------generate_array_guard_common------------------------
  3711 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3712                                                   bool obj_array, bool not_array) {
  3713   // If obj_array/non_array==false/false:
  3714   // Branch around if the given klass is in fact an array (either obj or prim).
  3715   // If obj_array/non_array==false/true:
  3716   // Branch around if the given klass is not an array klass of any kind.
  3717   // If obj_array/non_array==true/true:
  3718   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3719   // If obj_array/non_array==true/false:
  3720   // Branch around if the kls is an oop array (Object[] or subtype)
  3721   //
  3722   // Like generate_guard, adds a new path onto the region.
  3723   jint  layout_con = 0;
  3724   Node* layout_val = get_layout_helper(kls, layout_con);
  3725   if (layout_val == NULL) {
  3726     bool query = (obj_array
  3727                   ? Klass::layout_helper_is_objArray(layout_con)
  3728                   : Klass::layout_helper_is_array(layout_con));
  3729     if (query == not_array) {
  3730       return NULL;                       // never a branch
  3731     } else {                             // always a branch
  3732       Node* always_branch = control();
  3733       if (region != NULL)
  3734         region->add_req(always_branch);
  3735       set_control(top());
  3736       return always_branch;
  3739   // Now test the correct condition.
  3740   jint  nval = (obj_array
  3741                 ? ((jint)Klass::_lh_array_tag_type_value
  3742                    <<    Klass::_lh_array_tag_shift)
  3743                 : Klass::_lh_neutral_value);
  3744   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3745   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3746   // invert the test if we are looking for a non-array
  3747   if (not_array)  btest = BoolTest(btest).negate();
  3748   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3749   return generate_fair_guard(bol, region);
  3753 //-----------------------inline_native_newArray--------------------------
  3754 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3755 bool LibraryCallKit::inline_native_newArray() {
  3756   Node* mirror    = argument(0);
  3757   Node* count_val = argument(1);
  3759   mirror = null_check(mirror);
  3760   // If mirror or obj is dead, only null-path is taken.
  3761   if (stopped())  return true;
  3763   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3764   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3765   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3766                                           TypeInstPtr::NOTNULL);
  3767   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3768   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3769                                           TypePtr::BOTTOM);
  3771   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3772   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3773                                                   result_reg, _slow_path);
  3774   Node* normal_ctl   = control();
  3775   Node* no_array_ctl = result_reg->in(_slow_path);
  3777   // Generate code for the slow case.  We make a call to newArray().
  3778   set_control(no_array_ctl);
  3779   if (!stopped()) {
  3780     // Either the input type is void.class, or else the
  3781     // array klass has not yet been cached.  Either the
  3782     // ensuing call will throw an exception, or else it
  3783     // will cache the array klass for next time.
  3784     PreserveJVMState pjvms(this);
  3785     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3786     Node* slow_result = set_results_for_java_call(slow_call);
  3787     // this->control() comes from set_results_for_java_call
  3788     result_reg->set_req(_slow_path, control());
  3789     result_val->set_req(_slow_path, slow_result);
  3790     result_io ->set_req(_slow_path, i_o());
  3791     result_mem->set_req(_slow_path, reset_memory());
  3794   set_control(normal_ctl);
  3795   if (!stopped()) {
  3796     // Normal case:  The array type has been cached in the java.lang.Class.
  3797     // The following call works fine even if the array type is polymorphic.
  3798     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3799     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3800     result_reg->init_req(_normal_path, control());
  3801     result_val->init_req(_normal_path, obj);
  3802     result_io ->init_req(_normal_path, i_o());
  3803     result_mem->init_req(_normal_path, reset_memory());
  3806   // Return the combined state.
  3807   set_i_o(        _gvn.transform(result_io)  );
  3808   set_all_memory( _gvn.transform(result_mem));
  3810   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3811   set_result(result_reg, result_val);
  3812   return true;
  3815 //----------------------inline_native_getLength--------------------------
  3816 // public static native int java.lang.reflect.Array.getLength(Object array);
  3817 bool LibraryCallKit::inline_native_getLength() {
  3818   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3820   Node* array = null_check(argument(0));
  3821   // If array is dead, only null-path is taken.
  3822   if (stopped())  return true;
  3824   // Deoptimize if it is a non-array.
  3825   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3827   if (non_array != NULL) {
  3828     PreserveJVMState pjvms(this);
  3829     set_control(non_array);
  3830     uncommon_trap(Deoptimization::Reason_intrinsic,
  3831                   Deoptimization::Action_maybe_recompile);
  3834   // If control is dead, only non-array-path is taken.
  3835   if (stopped())  return true;
  3837   // The works fine even if the array type is polymorphic.
  3838   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3839   Node* result = load_array_length(array);
  3841   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3842   set_result(result);
  3843   return true;
  3846 //------------------------inline_array_copyOf----------------------------
  3847 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3848 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3849 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3850   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3852   // Get the arguments.
  3853   Node* original          = argument(0);
  3854   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3855   Node* end               = is_copyOfRange? argument(2): argument(1);
  3856   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3858   Node* newcopy;
  3860   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3861   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3862   { PreserveReexecuteState preexecs(this);
  3863     jvms()->set_should_reexecute(true);
  3865     array_type_mirror = null_check(array_type_mirror);
  3866     original          = null_check(original);
  3868     // Check if a null path was taken unconditionally.
  3869     if (stopped())  return true;
  3871     Node* orig_length = load_array_length(original);
  3873     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3874     klass_node = null_check(klass_node);
  3876     RegionNode* bailout = new (C) RegionNode(1);
  3877     record_for_igvn(bailout);
  3879     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3880     // Bail out if that is so.
  3881     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3882     if (not_objArray != NULL) {
  3883       // Improve the klass node's type from the new optimistic assumption:
  3884       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3885       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3886       Node* cast = new (C) CastPPNode(klass_node, akls);
  3887       cast->init_req(0, control());
  3888       klass_node = _gvn.transform(cast);
  3891     // Bail out if either start or end is negative.
  3892     generate_negative_guard(start, bailout, &start);
  3893     generate_negative_guard(end,   bailout, &end);
  3895     Node* length = end;
  3896     if (_gvn.type(start) != TypeInt::ZERO) {
  3897       length = _gvn.transform(new (C) SubINode(end, start));
  3900     // Bail out if length is negative.
  3901     // Without this the new_array would throw
  3902     // NegativeArraySizeException but IllegalArgumentException is what
  3903     // should be thrown
  3904     generate_negative_guard(length, bailout, &length);
  3906     if (bailout->req() > 1) {
  3907       PreserveJVMState pjvms(this);
  3908       set_control(_gvn.transform(bailout));
  3909       uncommon_trap(Deoptimization::Reason_intrinsic,
  3910                     Deoptimization::Action_maybe_recompile);
  3913     if (!stopped()) {
  3914       // How many elements will we copy from the original?
  3915       // The answer is MinI(orig_length - start, length).
  3916       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3917       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3919       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3921       // Generate a direct call to the right arraycopy function(s).
  3922       // We know the copy is disjoint but we might not know if the
  3923       // oop stores need checking.
  3924       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3925       // This will fail a store-check if x contains any non-nulls.
  3926       bool disjoint_bases = true;
  3927       // if start > orig_length then the length of the copy may be
  3928       // negative.
  3929       bool length_never_negative = !is_copyOfRange;
  3930       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3931                          original, start, newcopy, intcon(0), moved,
  3932                          disjoint_bases, length_never_negative);
  3934   } // original reexecute is set back here
  3936   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3937   if (!stopped()) {
  3938     set_result(newcopy);
  3940   return true;
  3944 //----------------------generate_virtual_guard---------------------------
  3945 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3946 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3947                                              RegionNode* slow_region) {
  3948   ciMethod* method = callee();
  3949   int vtable_index = method->vtable_index();
  3950   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3951          err_msg_res("bad index %d", vtable_index));
  3952   // Get the Method* out of the appropriate vtable entry.
  3953   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3954                      vtable_index*vtableEntry::size()) * wordSize +
  3955                      vtableEntry::method_offset_in_bytes();
  3956   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3957   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3959   // Compare the target method with the expected method (e.g., Object.hashCode).
  3960   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3962   Node* native_call = makecon(native_call_addr);
  3963   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3964   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3966   return generate_slow_guard(test_native, slow_region);
  3969 //-----------------------generate_method_call----------------------------
  3970 // Use generate_method_call to make a slow-call to the real
  3971 // method if the fast path fails.  An alternative would be to
  3972 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3973 // This only works for expanding the current library call,
  3974 // not another intrinsic.  (E.g., don't use this for making an
  3975 // arraycopy call inside of the copyOf intrinsic.)
  3976 CallJavaNode*
  3977 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3978   // When compiling the intrinsic method itself, do not use this technique.
  3979   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3981   ciMethod* method = callee();
  3982   // ensure the JVMS we have will be correct for this call
  3983   guarantee(method_id == method->intrinsic_id(), "must match");
  3985   const TypeFunc* tf = TypeFunc::make(method);
  3986   CallJavaNode* slow_call;
  3987   if (is_static) {
  3988     assert(!is_virtual, "");
  3989     slow_call = new(C) CallStaticJavaNode(C, tf,
  3990                            SharedRuntime::get_resolve_static_call_stub(),
  3991                            method, bci());
  3992   } else if (is_virtual) {
  3993     null_check_receiver();
  3994     int vtable_index = Method::invalid_vtable_index;
  3995     if (UseInlineCaches) {
  3996       // Suppress the vtable call
  3997     } else {
  3998       // hashCode and clone are not a miranda methods,
  3999       // so the vtable index is fixed.
  4000       // No need to use the linkResolver to get it.
  4001        vtable_index = method->vtable_index();
  4002        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  4003               err_msg_res("bad index %d", vtable_index));
  4005     slow_call = new(C) CallDynamicJavaNode(tf,
  4006                           SharedRuntime::get_resolve_virtual_call_stub(),
  4007                           method, vtable_index, bci());
  4008   } else {  // neither virtual nor static:  opt_virtual
  4009     null_check_receiver();
  4010     slow_call = new(C) CallStaticJavaNode(C, tf,
  4011                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  4012                                 method, bci());
  4013     slow_call->set_optimized_virtual(true);
  4015   set_arguments_for_java_call(slow_call);
  4016   set_edges_for_java_call(slow_call);
  4017   return slow_call;
  4021 /**
  4022  * Build special case code for calls to hashCode on an object. This call may
  4023  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
  4024  * slightly different code.
  4025  */
  4026 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4027   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4028   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4030   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4032   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4033   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
  4034   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4035   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
  4036   Node* obj = NULL;
  4037   if (!is_static) {
  4038     // Check for hashing null object
  4039     obj = null_check_receiver();
  4040     if (stopped())  return true;        // unconditionally null
  4041     result_reg->init_req(_null_path, top());
  4042     result_val->init_req(_null_path, top());
  4043   } else {
  4044     // Do a null check, and return zero if null.
  4045     // System.identityHashCode(null) == 0
  4046     obj = argument(0);
  4047     Node* null_ctl = top();
  4048     obj = null_check_oop(obj, &null_ctl);
  4049     result_reg->init_req(_null_path, null_ctl);
  4050     result_val->init_req(_null_path, _gvn.intcon(0));
  4053   // Unconditionally null?  Then return right away.
  4054   if (stopped()) {
  4055     set_control( result_reg->in(_null_path));
  4056     if (!stopped())
  4057       set_result(result_val->in(_null_path));
  4058     return true;
  4061   // We only go to the fast case code if we pass a number of guards.  The
  4062   // paths which do not pass are accumulated in the slow_region.
  4063   RegionNode* slow_region = new (C) RegionNode(1);
  4064   record_for_igvn(slow_region);
  4066   // If this is a virtual call, we generate a funny guard.  We pull out
  4067   // the vtable entry corresponding to hashCode() from the target object.
  4068   // If the target method which we are calling happens to be the native
  4069   // Object hashCode() method, we pass the guard.  We do not need this
  4070   // guard for non-virtual calls -- the caller is known to be the native
  4071   // Object hashCode().
  4072   if (is_virtual) {
  4073     // After null check, get the object's klass.
  4074     Node* obj_klass = load_object_klass(obj);
  4075     generate_virtual_guard(obj_klass, slow_region);
  4078   // Get the header out of the object, use LoadMarkNode when available
  4079   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4080   // The control of the load must be NULL. Otherwise, the load can move before
  4081   // the null check after castPP removal.
  4082   Node* no_ctrl = NULL;
  4083   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4085   // Test the header to see if it is unlocked.
  4086   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4087   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4088   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4089   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4090   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4092   generate_slow_guard(test_unlocked, slow_region);
  4094   // Get the hash value and check to see that it has been properly assigned.
  4095   // We depend on hash_mask being at most 32 bits and avoid the use of
  4096   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4097   // vm: see markOop.hpp.
  4098   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4099   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4100   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4101   // This hack lets the hash bits live anywhere in the mark object now, as long
  4102   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4103   // Java spec says that HashCode is an int so there's no point in capturing
  4104   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4105   hshifted_header      = ConvX2I(hshifted_header);
  4106   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4108   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4109   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4110   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4112   generate_slow_guard(test_assigned, slow_region);
  4114   Node* init_mem = reset_memory();
  4115   // fill in the rest of the null path:
  4116   result_io ->init_req(_null_path, i_o());
  4117   result_mem->init_req(_null_path, init_mem);
  4119   result_val->init_req(_fast_path, hash_val);
  4120   result_reg->init_req(_fast_path, control());
  4121   result_io ->init_req(_fast_path, i_o());
  4122   result_mem->init_req(_fast_path, init_mem);
  4124   // Generate code for the slow case.  We make a call to hashCode().
  4125   set_control(_gvn.transform(slow_region));
  4126   if (!stopped()) {
  4127     // No need for PreserveJVMState, because we're using up the present state.
  4128     set_all_memory(init_mem);
  4129     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4130     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4131     Node* slow_result = set_results_for_java_call(slow_call);
  4132     // this->control() comes from set_results_for_java_call
  4133     result_reg->init_req(_slow_path, control());
  4134     result_val->init_req(_slow_path, slow_result);
  4135     result_io  ->set_req(_slow_path, i_o());
  4136     result_mem ->set_req(_slow_path, reset_memory());
  4139   // Return the combined state.
  4140   set_i_o(        _gvn.transform(result_io)  );
  4141   set_all_memory( _gvn.transform(result_mem));
  4143   set_result(result_reg, result_val);
  4144   return true;
  4147 //---------------------------inline_native_getClass----------------------------
  4148 // public final native Class<?> java.lang.Object.getClass();
  4149 //
  4150 // Build special case code for calls to getClass on an object.
  4151 bool LibraryCallKit::inline_native_getClass() {
  4152   Node* obj = null_check_receiver();
  4153   if (stopped())  return true;
  4154   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4155   return true;
  4158 //-----------------inline_native_Reflection_getCallerClass---------------------
  4159 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4160 //
  4161 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4162 //
  4163 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4164 // in that it must skip particular security frames and checks for
  4165 // caller sensitive methods.
  4166 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4167 #ifndef PRODUCT
  4168   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4169     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4171 #endif
  4173   if (!jvms()->has_method()) {
  4174 #ifndef PRODUCT
  4175     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4176       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4178 #endif
  4179     return false;
  4182   // Walk back up the JVM state to find the caller at the required
  4183   // depth.
  4184   JVMState* caller_jvms = jvms();
  4186   // Cf. JVM_GetCallerClass
  4187   // NOTE: Start the loop at depth 1 because the current JVM state does
  4188   // not include the Reflection.getCallerClass() frame.
  4189   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4190     ciMethod* m = caller_jvms->method();
  4191     switch (n) {
  4192     case 0:
  4193       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4194       break;
  4195     case 1:
  4196       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4197       if (!m->caller_sensitive()) {
  4198 #ifndef PRODUCT
  4199         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4200           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4202 #endif
  4203         return false;  // bail-out; let JVM_GetCallerClass do the work
  4205       break;
  4206     default:
  4207       if (!m->is_ignored_by_security_stack_walk()) {
  4208         // We have reached the desired frame; return the holder class.
  4209         // Acquire method holder as java.lang.Class and push as constant.
  4210         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4211         ciInstance* caller_mirror = caller_klass->java_mirror();
  4212         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4214 #ifndef PRODUCT
  4215         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4216           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4217           tty->print_cr("  JVM state at this point:");
  4218           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4219             ciMethod* m = jvms()->of_depth(i)->method();
  4220             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4223 #endif
  4224         return true;
  4226       break;
  4230 #ifndef PRODUCT
  4231   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4232     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4233     tty->print_cr("  JVM state at this point:");
  4234     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4235       ciMethod* m = jvms()->of_depth(i)->method();
  4236       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4239 #endif
  4241   return false;  // bail-out; let JVM_GetCallerClass do the work
  4244 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4245   Node* arg = argument(0);
  4246   Node* result;
  4248   switch (id) {
  4249   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4250   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4251   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4252   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4254   case vmIntrinsics::_doubleToLongBits: {
  4255     // two paths (plus control) merge in a wood
  4256     RegionNode *r = new (C) RegionNode(3);
  4257     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4259     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4260     // Build the boolean node
  4261     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4263     // Branch either way.
  4264     // NaN case is less traveled, which makes all the difference.
  4265     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4266     Node *opt_isnan = _gvn.transform(ifisnan);
  4267     assert( opt_isnan->is_If(), "Expect an IfNode");
  4268     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4269     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4271     set_control(iftrue);
  4273     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4274     Node *slow_result = longcon(nan_bits); // return NaN
  4275     phi->init_req(1, _gvn.transform( slow_result ));
  4276     r->init_req(1, iftrue);
  4278     // Else fall through
  4279     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4280     set_control(iffalse);
  4282     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4283     r->init_req(2, iffalse);
  4285     // Post merge
  4286     set_control(_gvn.transform(r));
  4287     record_for_igvn(r);
  4289     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4290     result = phi;
  4291     assert(result->bottom_type()->isa_long(), "must be");
  4292     break;
  4295   case vmIntrinsics::_floatToIntBits: {
  4296     // two paths (plus control) merge in a wood
  4297     RegionNode *r = new (C) RegionNode(3);
  4298     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4300     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4301     // Build the boolean node
  4302     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4304     // Branch either way.
  4305     // NaN case is less traveled, which makes all the difference.
  4306     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4307     Node *opt_isnan = _gvn.transform(ifisnan);
  4308     assert( opt_isnan->is_If(), "Expect an IfNode");
  4309     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4310     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4312     set_control(iftrue);
  4314     static const jint nan_bits = 0x7fc00000;
  4315     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4316     phi->init_req(1, _gvn.transform( slow_result ));
  4317     r->init_req(1, iftrue);
  4319     // Else fall through
  4320     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4321     set_control(iffalse);
  4323     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4324     r->init_req(2, iffalse);
  4326     // Post merge
  4327     set_control(_gvn.transform(r));
  4328     record_for_igvn(r);
  4330     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4331     result = phi;
  4332     assert(result->bottom_type()->isa_int(), "must be");
  4333     break;
  4336   default:
  4337     fatal_unexpected_iid(id);
  4338     break;
  4340   set_result(_gvn.transform(result));
  4341   return true;
  4344 #ifdef _LP64
  4345 #define XTOP ,top() /*additional argument*/
  4346 #else  //_LP64
  4347 #define XTOP        /*no additional argument*/
  4348 #endif //_LP64
  4350 //----------------------inline_unsafe_copyMemory-------------------------
  4351 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4352 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4353   if (callee()->is_static())  return false;  // caller must have the capability!
  4354   null_check_receiver();  // null-check receiver
  4355   if (stopped())  return true;
  4357   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4359   Node* src_ptr =         argument(1);   // type: oop
  4360   Node* src_off = ConvL2X(argument(2));  // type: long
  4361   Node* dst_ptr =         argument(4);   // type: oop
  4362   Node* dst_off = ConvL2X(argument(5));  // type: long
  4363   Node* size    = ConvL2X(argument(7));  // type: long
  4365   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4366          "fieldOffset must be byte-scaled");
  4368   Node* src = make_unsafe_address(src_ptr, src_off);
  4369   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4371   // Conservatively insert a memory barrier on all memory slices.
  4372   // Do not let writes of the copy source or destination float below the copy.
  4373   insert_mem_bar(Op_MemBarCPUOrder);
  4375   // Call it.  Note that the length argument is not scaled.
  4376   make_runtime_call(RC_LEAF|RC_NO_FP,
  4377                     OptoRuntime::fast_arraycopy_Type(),
  4378                     StubRoutines::unsafe_arraycopy(),
  4379                     "unsafe_arraycopy",
  4380                     TypeRawPtr::BOTTOM,
  4381                     src, dst, size XTOP);
  4383   // Do not let reads of the copy destination float above the copy.
  4384   insert_mem_bar(Op_MemBarCPUOrder);
  4386   return true;
  4389 //------------------------clone_coping-----------------------------------
  4390 // Helper function for inline_native_clone.
  4391 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4392   assert(obj_size != NULL, "");
  4393   Node* raw_obj = alloc_obj->in(1);
  4394   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4396   AllocateNode* alloc = NULL;
  4397   if (ReduceBulkZeroing) {
  4398     // We will be completely responsible for initializing this object -
  4399     // mark Initialize node as complete.
  4400     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4401     // The object was just allocated - there should be no any stores!
  4402     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4403     // Mark as complete_with_arraycopy so that on AllocateNode
  4404     // expansion, we know this AllocateNode is initialized by an array
  4405     // copy and a StoreStore barrier exists after the array copy.
  4406     alloc->initialization()->set_complete_with_arraycopy();
  4409   // Copy the fastest available way.
  4410   // TODO: generate fields copies for small objects instead.
  4411   Node* src  = obj;
  4412   Node* dest = alloc_obj;
  4413   Node* size = _gvn.transform(obj_size);
  4415   // Exclude the header but include array length to copy by 8 bytes words.
  4416   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4417   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4418                             instanceOopDesc::base_offset_in_bytes();
  4419   // base_off:
  4420   // 8  - 32-bit VM
  4421   // 12 - 64-bit VM, compressed klass
  4422   // 16 - 64-bit VM, normal klass
  4423   if (base_off % BytesPerLong != 0) {
  4424     assert(UseCompressedClassPointers, "");
  4425     if (is_array) {
  4426       // Exclude length to copy by 8 bytes words.
  4427       base_off += sizeof(int);
  4428     } else {
  4429       // Include klass to copy by 8 bytes words.
  4430       base_off = instanceOopDesc::klass_offset_in_bytes();
  4432     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4434   src  = basic_plus_adr(src,  base_off);
  4435   dest = basic_plus_adr(dest, base_off);
  4437   // Compute the length also, if needed:
  4438   Node* countx = size;
  4439   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4440   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4442   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4443   bool disjoint_bases = true;
  4444   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4445                                src, NULL, dest, NULL, countx,
  4446                                /*dest_uninitialized*/true);
  4448   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4449   if (card_mark) {
  4450     assert(!is_array, "");
  4451     // Put in store barrier for any and all oops we are sticking
  4452     // into this object.  (We could avoid this if we could prove
  4453     // that the object type contains no oop fields at all.)
  4454     Node* no_particular_value = NULL;
  4455     Node* no_particular_field = NULL;
  4456     int raw_adr_idx = Compile::AliasIdxRaw;
  4457     post_barrier(control(),
  4458                  memory(raw_adr_type),
  4459                  alloc_obj,
  4460                  no_particular_field,
  4461                  raw_adr_idx,
  4462                  no_particular_value,
  4463                  T_OBJECT,
  4464                  false);
  4467   // Do not let reads from the cloned object float above the arraycopy.
  4468   if (alloc != NULL) {
  4469     // Do not let stores that initialize this object be reordered with
  4470     // a subsequent store that would make this object accessible by
  4471     // other threads.
  4472     // Record what AllocateNode this StoreStore protects so that
  4473     // escape analysis can go from the MemBarStoreStoreNode to the
  4474     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4475     // based on the escape status of the AllocateNode.
  4476     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4477   } else {
  4478     insert_mem_bar(Op_MemBarCPUOrder);
  4482 //------------------------inline_native_clone----------------------------
  4483 // protected native Object java.lang.Object.clone();
  4484 //
  4485 // Here are the simple edge cases:
  4486 //  null receiver => normal trap
  4487 //  virtual and clone was overridden => slow path to out-of-line clone
  4488 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4489 //
  4490 // The general case has two steps, allocation and copying.
  4491 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4492 //
  4493 // Copying also has two cases, oop arrays and everything else.
  4494 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4495 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4496 //
  4497 // These steps fold up nicely if and when the cloned object's klass
  4498 // can be sharply typed as an object array, a type array, or an instance.
  4499 //
  4500 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4501   PhiNode* result_val;
  4503   // Set the reexecute bit for the interpreter to reexecute
  4504   // the bytecode that invokes Object.clone if deoptimization happens.
  4505   { PreserveReexecuteState preexecs(this);
  4506     jvms()->set_should_reexecute(true);
  4508     Node* obj = null_check_receiver();
  4509     if (stopped())  return true;
  4511     Node* obj_klass = load_object_klass(obj);
  4512     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4513     const TypeOopPtr*   toop   = ((tklass != NULL)
  4514                                 ? tklass->as_instance_type()
  4515                                 : TypeInstPtr::NOTNULL);
  4517     // Conservatively insert a memory barrier on all memory slices.
  4518     // Do not let writes into the original float below the clone.
  4519     insert_mem_bar(Op_MemBarCPUOrder);
  4521     // paths into result_reg:
  4522     enum {
  4523       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4524       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4525       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4526       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4527       PATH_LIMIT
  4528     };
  4529     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4530     result_val             = new(C) PhiNode(result_reg,
  4531                                             TypeInstPtr::NOTNULL);
  4532     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4533     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4534                                             TypePtr::BOTTOM);
  4535     record_for_igvn(result_reg);
  4537     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4538     int raw_adr_idx = Compile::AliasIdxRaw;
  4540     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4541     if (array_ctl != NULL) {
  4542       // It's an array.
  4543       PreserveJVMState pjvms(this);
  4544       set_control(array_ctl);
  4545       Node* obj_length = load_array_length(obj);
  4546       Node* obj_size  = NULL;
  4547       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4549       if (!use_ReduceInitialCardMarks()) {
  4550         // If it is an oop array, it requires very special treatment,
  4551         // because card marking is required on each card of the array.
  4552         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4553         if (is_obja != NULL) {
  4554           PreserveJVMState pjvms2(this);
  4555           set_control(is_obja);
  4556           // Generate a direct call to the right arraycopy function(s).
  4557           bool disjoint_bases = true;
  4558           bool length_never_negative = true;
  4559           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4560                              obj, intcon(0), alloc_obj, intcon(0),
  4561                              obj_length,
  4562                              disjoint_bases, length_never_negative);
  4563           result_reg->init_req(_objArray_path, control());
  4564           result_val->init_req(_objArray_path, alloc_obj);
  4565           result_i_o ->set_req(_objArray_path, i_o());
  4566           result_mem ->set_req(_objArray_path, reset_memory());
  4569       // Otherwise, there are no card marks to worry about.
  4570       // (We can dispense with card marks if we know the allocation
  4571       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4572       //  causes the non-eden paths to take compensating steps to
  4573       //  simulate a fresh allocation, so that no further
  4574       //  card marks are required in compiled code to initialize
  4575       //  the object.)
  4577       if (!stopped()) {
  4578         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4580         // Present the results of the copy.
  4581         result_reg->init_req(_array_path, control());
  4582         result_val->init_req(_array_path, alloc_obj);
  4583         result_i_o ->set_req(_array_path, i_o());
  4584         result_mem ->set_req(_array_path, reset_memory());
  4588     // We only go to the instance fast case code if we pass a number of guards.
  4589     // The paths which do not pass are accumulated in the slow_region.
  4590     RegionNode* slow_region = new (C) RegionNode(1);
  4591     record_for_igvn(slow_region);
  4592     if (!stopped()) {
  4593       // It's an instance (we did array above).  Make the slow-path tests.
  4594       // If this is a virtual call, we generate a funny guard.  We grab
  4595       // the vtable entry corresponding to clone() from the target object.
  4596       // If the target method which we are calling happens to be the
  4597       // Object clone() method, we pass the guard.  We do not need this
  4598       // guard for non-virtual calls; the caller is known to be the native
  4599       // Object clone().
  4600       if (is_virtual) {
  4601         generate_virtual_guard(obj_klass, slow_region);
  4604       // The object must be cloneable and must not have a finalizer.
  4605       // Both of these conditions may be checked in a single test.
  4606       // We could optimize the cloneable test further, but we don't care.
  4607       generate_access_flags_guard(obj_klass,
  4608                                   // Test both conditions:
  4609                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4610                                   // Must be cloneable but not finalizer:
  4611                                   JVM_ACC_IS_CLONEABLE,
  4612                                   slow_region);
  4615     if (!stopped()) {
  4616       // It's an instance, and it passed the slow-path tests.
  4617       PreserveJVMState pjvms(this);
  4618       Node* obj_size  = NULL;
  4619       // Need to deoptimize on exception from allocation since Object.clone intrinsic
  4620       // is reexecuted if deoptimization occurs and there could be problems when merging
  4621       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
  4622       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
  4624       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4626       // Present the results of the slow call.
  4627       result_reg->init_req(_instance_path, control());
  4628       result_val->init_req(_instance_path, alloc_obj);
  4629       result_i_o ->set_req(_instance_path, i_o());
  4630       result_mem ->set_req(_instance_path, reset_memory());
  4633     // Generate code for the slow case.  We make a call to clone().
  4634     set_control(_gvn.transform(slow_region));
  4635     if (!stopped()) {
  4636       PreserveJVMState pjvms(this);
  4637       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4638       Node* slow_result = set_results_for_java_call(slow_call);
  4639       // this->control() comes from set_results_for_java_call
  4640       result_reg->init_req(_slow_path, control());
  4641       result_val->init_req(_slow_path, slow_result);
  4642       result_i_o ->set_req(_slow_path, i_o());
  4643       result_mem ->set_req(_slow_path, reset_memory());
  4646     // Return the combined state.
  4647     set_control(    _gvn.transform(result_reg));
  4648     set_i_o(        _gvn.transform(result_i_o));
  4649     set_all_memory( _gvn.transform(result_mem));
  4650   } // original reexecute is set back here
  4652   set_result(_gvn.transform(result_val));
  4653   return true;
  4656 //------------------------------basictype2arraycopy----------------------------
  4657 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4658                                             Node* src_offset,
  4659                                             Node* dest_offset,
  4660                                             bool disjoint_bases,
  4661                                             const char* &name,
  4662                                             bool dest_uninitialized) {
  4663   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4664   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4666   bool aligned = false;
  4667   bool disjoint = disjoint_bases;
  4669   // if the offsets are the same, we can treat the memory regions as
  4670   // disjoint, because either the memory regions are in different arrays,
  4671   // or they are identical (which we can treat as disjoint.)  We can also
  4672   // treat a copy with a destination index  less that the source index
  4673   // as disjoint since a low->high copy will work correctly in this case.
  4674   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4675       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4676     // both indices are constants
  4677     int s_offs = src_offset_inttype->get_con();
  4678     int d_offs = dest_offset_inttype->get_con();
  4679     int element_size = type2aelembytes(t);
  4680     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4681               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4682     if (s_offs >= d_offs)  disjoint = true;
  4683   } else if (src_offset == dest_offset && src_offset != NULL) {
  4684     // This can occur if the offsets are identical non-constants.
  4685     disjoint = true;
  4688   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4692 //------------------------------inline_arraycopy-----------------------
  4693 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4694 //                                                      Object dest, int destPos,
  4695 //                                                      int length);
  4696 bool LibraryCallKit::inline_arraycopy() {
  4697   // Get the arguments.
  4698   Node* src         = argument(0);  // type: oop
  4699   Node* src_offset  = argument(1);  // type: int
  4700   Node* dest        = argument(2);  // type: oop
  4701   Node* dest_offset = argument(3);  // type: int
  4702   Node* length      = argument(4);  // type: int
  4704   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4705   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4706   // is.  The checks we choose to mandate at compile time are:
  4707   //
  4708   // (1) src and dest are arrays.
  4709   const Type* src_type  = src->Value(&_gvn);
  4710   const Type* dest_type = dest->Value(&_gvn);
  4711   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4712   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4714   // Do we have the type of src?
  4715   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4716   // Do we have the type of dest?
  4717   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4718   // Is the type for src from speculation?
  4719   bool src_spec = false;
  4720   // Is the type for dest from speculation?
  4721   bool dest_spec = false;
  4723   if (!has_src || !has_dest) {
  4724     // We don't have sufficient type information, let's see if
  4725     // speculative types can help. We need to have types for both src
  4726     // and dest so that it pays off.
  4728     // Do we already have or could we have type information for src
  4729     bool could_have_src = has_src;
  4730     // Do we already have or could we have type information for dest
  4731     bool could_have_dest = has_dest;
  4733     ciKlass* src_k = NULL;
  4734     if (!has_src) {
  4735       src_k = src_type->speculative_type();
  4736       if (src_k != NULL && src_k->is_array_klass()) {
  4737         could_have_src = true;
  4741     ciKlass* dest_k = NULL;
  4742     if (!has_dest) {
  4743       dest_k = dest_type->speculative_type();
  4744       if (dest_k != NULL && dest_k->is_array_klass()) {
  4745         could_have_dest = true;
  4749     if (could_have_src && could_have_dest) {
  4750       // This is going to pay off so emit the required guards
  4751       if (!has_src) {
  4752         src = maybe_cast_profiled_obj(src, src_k);
  4753         src_type  = _gvn.type(src);
  4754         top_src  = src_type->isa_aryptr();
  4755         has_src = (top_src != NULL && top_src->klass() != NULL);
  4756         src_spec = true;
  4758       if (!has_dest) {
  4759         dest = maybe_cast_profiled_obj(dest, dest_k);
  4760         dest_type  = _gvn.type(dest);
  4761         top_dest  = dest_type->isa_aryptr();
  4762         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4763         dest_spec = true;
  4768   if (!has_src || !has_dest) {
  4769     // Conservatively insert a memory barrier on all memory slices.
  4770     // Do not let writes into the source float below the arraycopy.
  4771     insert_mem_bar(Op_MemBarCPUOrder);
  4773     // Call StubRoutines::generic_arraycopy stub.
  4774     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4775                        src, src_offset, dest, dest_offset, length);
  4777     // Do not let reads from the destination float above the arraycopy.
  4778     // Since we cannot type the arrays, we don't know which slices
  4779     // might be affected.  We could restrict this barrier only to those
  4780     // memory slices which pertain to array elements--but don't bother.
  4781     if (!InsertMemBarAfterArraycopy)
  4782       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4783       insert_mem_bar(Op_MemBarCPUOrder);
  4784     return true;
  4787   // (2) src and dest arrays must have elements of the same BasicType
  4788   // Figure out the size and type of the elements we will be copying.
  4789   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4790   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4791   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4792   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4794   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4795     // The component types are not the same or are not recognized.  Punt.
  4796     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4797     generate_slow_arraycopy(TypePtr::BOTTOM,
  4798                             src, src_offset, dest, dest_offset, length,
  4799                             /*dest_uninitialized*/false);
  4800     return true;
  4803   if (src_elem == T_OBJECT) {
  4804     // If both arrays are object arrays then having the exact types
  4805     // for both will remove the need for a subtype check at runtime
  4806     // before the call and may make it possible to pick a faster copy
  4807     // routine (without a subtype check on every element)
  4808     // Do we have the exact type of src?
  4809     bool could_have_src = src_spec;
  4810     // Do we have the exact type of dest?
  4811     bool could_have_dest = dest_spec;
  4812     ciKlass* src_k = top_src->klass();
  4813     ciKlass* dest_k = top_dest->klass();
  4814     if (!src_spec) {
  4815       src_k = src_type->speculative_type();
  4816       if (src_k != NULL && src_k->is_array_klass()) {
  4817           could_have_src = true;
  4820     if (!dest_spec) {
  4821       dest_k = dest_type->speculative_type();
  4822       if (dest_k != NULL && dest_k->is_array_klass()) {
  4823         could_have_dest = true;
  4826     if (could_have_src && could_have_dest) {
  4827       // If we can have both exact types, emit the missing guards
  4828       if (could_have_src && !src_spec) {
  4829         src = maybe_cast_profiled_obj(src, src_k);
  4831       if (could_have_dest && !dest_spec) {
  4832         dest = maybe_cast_profiled_obj(dest, dest_k);
  4837   //---------------------------------------------------------------------------
  4838   // We will make a fast path for this call to arraycopy.
  4840   // We have the following tests left to perform:
  4841   //
  4842   // (3) src and dest must not be null.
  4843   // (4) src_offset must not be negative.
  4844   // (5) dest_offset must not be negative.
  4845   // (6) length must not be negative.
  4846   // (7) src_offset + length must not exceed length of src.
  4847   // (8) dest_offset + length must not exceed length of dest.
  4848   // (9) each element of an oop array must be assignable
  4850   RegionNode* slow_region = new (C) RegionNode(1);
  4851   record_for_igvn(slow_region);
  4853   // (3) operands must not be null
  4854   // We currently perform our null checks with the null_check routine.
  4855   // This means that the null exceptions will be reported in the caller
  4856   // rather than (correctly) reported inside of the native arraycopy call.
  4857   // This should be corrected, given time.  We do our null check with the
  4858   // stack pointer restored.
  4859   src  = null_check(src,  T_ARRAY);
  4860   dest = null_check(dest, T_ARRAY);
  4862   // (4) src_offset must not be negative.
  4863   generate_negative_guard(src_offset, slow_region);
  4865   // (5) dest_offset must not be negative.
  4866   generate_negative_guard(dest_offset, slow_region);
  4868   // (6) length must not be negative (moved to generate_arraycopy()).
  4869   // generate_negative_guard(length, slow_region);
  4871   // (7) src_offset + length must not exceed length of src.
  4872   generate_limit_guard(src_offset, length,
  4873                        load_array_length(src),
  4874                        slow_region);
  4876   // (8) dest_offset + length must not exceed length of dest.
  4877   generate_limit_guard(dest_offset, length,
  4878                        load_array_length(dest),
  4879                        slow_region);
  4881   // (9) each element of an oop array must be assignable
  4882   // The generate_arraycopy subroutine checks this.
  4884   // This is where the memory effects are placed:
  4885   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4886   generate_arraycopy(adr_type, dest_elem,
  4887                      src, src_offset, dest, dest_offset, length,
  4888                      false, false, slow_region);
  4890   return true;
  4893 //-----------------------------generate_arraycopy----------------------
  4894 // Generate an optimized call to arraycopy.
  4895 // Caller must guard against non-arrays.
  4896 // Caller must determine a common array basic-type for both arrays.
  4897 // Caller must validate offsets against array bounds.
  4898 // The slow_region has already collected guard failure paths
  4899 // (such as out of bounds length or non-conformable array types).
  4900 // The generated code has this shape, in general:
  4901 //
  4902 //     if (length == 0)  return   // via zero_path
  4903 //     slowval = -1
  4904 //     if (types unknown) {
  4905 //       slowval = call generic copy loop
  4906 //       if (slowval == 0)  return  // via checked_path
  4907 //     } else if (indexes in bounds) {
  4908 //       if ((is object array) && !(array type check)) {
  4909 //         slowval = call checked copy loop
  4910 //         if (slowval == 0)  return  // via checked_path
  4911 //       } else {
  4912 //         call bulk copy loop
  4913 //         return  // via fast_path
  4914 //       }
  4915 //     }
  4916 //     // adjust params for remaining work:
  4917 //     if (slowval != -1) {
  4918 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4919 //     }
  4920 //   slow_region:
  4921 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4922 //     return  // via slow_call_path
  4923 //
  4924 // This routine is used from several intrinsics:  System.arraycopy,
  4925 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4926 //
  4927 void
  4928 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4929                                    BasicType basic_elem_type,
  4930                                    Node* src,  Node* src_offset,
  4931                                    Node* dest, Node* dest_offset,
  4932                                    Node* copy_length,
  4933                                    bool disjoint_bases,
  4934                                    bool length_never_negative,
  4935                                    RegionNode* slow_region) {
  4937   if (slow_region == NULL) {
  4938     slow_region = new(C) RegionNode(1);
  4939     record_for_igvn(slow_region);
  4942   Node* original_dest      = dest;
  4943   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4944   bool  dest_uninitialized = false;
  4946   // See if this is the initialization of a newly-allocated array.
  4947   // If so, we will take responsibility here for initializing it to zero.
  4948   // (Note:  Because tightly_coupled_allocation performs checks on the
  4949   // out-edges of the dest, we need to avoid making derived pointers
  4950   // from it until we have checked its uses.)
  4951   if (ReduceBulkZeroing
  4952       && !ZeroTLAB              // pointless if already zeroed
  4953       && basic_elem_type != T_CONFLICT // avoid corner case
  4954       && !src->eqv_uncast(dest)
  4955       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4956           != NULL)
  4957       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4958       && alloc->maybe_set_complete(&_gvn)) {
  4959     // "You break it, you buy it."
  4960     InitializeNode* init = alloc->initialization();
  4961     assert(init->is_complete(), "we just did this");
  4962     init->set_complete_with_arraycopy();
  4963     assert(dest->is_CheckCastPP(), "sanity");
  4964     assert(dest->in(0)->in(0) == init, "dest pinned");
  4965     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4966     // From this point on, every exit path is responsible for
  4967     // initializing any non-copied parts of the object to zero.
  4968     // Also, if this flag is set we make sure that arraycopy interacts properly
  4969     // with G1, eliding pre-barriers. See CR 6627983.
  4970     dest_uninitialized = true;
  4971   } else {
  4972     // No zeroing elimination here.
  4973     alloc             = NULL;
  4974     //original_dest   = dest;
  4975     //dest_uninitialized = false;
  4978   // Results are placed here:
  4979   enum { fast_path        = 1,  // normal void-returning assembly stub
  4980          checked_path     = 2,  // special assembly stub with cleanup
  4981          slow_call_path   = 3,  // something went wrong; call the VM
  4982          zero_path        = 4,  // bypass when length of copy is zero
  4983          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4984          PATH_LIMIT       = 6
  4985   };
  4986   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4987   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4988   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4989   record_for_igvn(result_region);
  4990   _gvn.set_type_bottom(result_i_o);
  4991   _gvn.set_type_bottom(result_memory);
  4992   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4994   // The slow_control path:
  4995   Node* slow_control;
  4996   Node* slow_i_o = i_o();
  4997   Node* slow_mem = memory(adr_type);
  4998   debug_only(slow_control = (Node*) badAddress);
  5000   // Checked control path:
  5001   Node* checked_control = top();
  5002   Node* checked_mem     = NULL;
  5003   Node* checked_i_o     = NULL;
  5004   Node* checked_value   = NULL;
  5006   if (basic_elem_type == T_CONFLICT) {
  5007     assert(!dest_uninitialized, "");
  5008     Node* cv = generate_generic_arraycopy(adr_type,
  5009                                           src, src_offset, dest, dest_offset,
  5010                                           copy_length, dest_uninitialized);
  5011     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5012     checked_control = control();
  5013     checked_i_o     = i_o();
  5014     checked_mem     = memory(adr_type);
  5015     checked_value   = cv;
  5016     set_control(top());         // no fast path
  5019   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  5020   if (not_pos != NULL) {
  5021     PreserveJVMState pjvms(this);
  5022     set_control(not_pos);
  5024     // (6) length must not be negative.
  5025     if (!length_never_negative) {
  5026       generate_negative_guard(copy_length, slow_region);
  5029     // copy_length is 0.
  5030     if (!stopped() && dest_uninitialized) {
  5031       Node* dest_length = alloc->in(AllocateNode::ALength);
  5032       if (copy_length->eqv_uncast(dest_length)
  5033           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5034         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5035       } else {
  5036         // Clear the whole thing since there are no source elements to copy.
  5037         generate_clear_array(adr_type, dest, basic_elem_type,
  5038                              intcon(0), NULL,
  5039                              alloc->in(AllocateNode::AllocSize));
  5040         // Use a secondary InitializeNode as raw memory barrier.
  5041         // Currently it is needed only on this path since other
  5042         // paths have stub or runtime calls as raw memory barriers.
  5043         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5044                                                        Compile::AliasIdxRaw,
  5045                                                        top())->as_Initialize();
  5046         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5050     // Present the results of the fast call.
  5051     result_region->init_req(zero_path, control());
  5052     result_i_o   ->init_req(zero_path, i_o());
  5053     result_memory->init_req(zero_path, memory(adr_type));
  5056   if (!stopped() && dest_uninitialized) {
  5057     // We have to initialize the *uncopied* part of the array to zero.
  5058     // The copy destination is the slice dest[off..off+len].  The other slices
  5059     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5060     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5061     Node* dest_length = alloc->in(AllocateNode::ALength);
  5062     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5063                                                           copy_length));
  5065     // If there is a head section that needs zeroing, do it now.
  5066     if (find_int_con(dest_offset, -1) != 0) {
  5067       generate_clear_array(adr_type, dest, basic_elem_type,
  5068                            intcon(0), dest_offset,
  5069                            NULL);
  5072     // Next, perform a dynamic check on the tail length.
  5073     // It is often zero, and we can win big if we prove this.
  5074     // There are two wins:  Avoid generating the ClearArray
  5075     // with its attendant messy index arithmetic, and upgrade
  5076     // the copy to a more hardware-friendly word size of 64 bits.
  5077     Node* tail_ctl = NULL;
  5078     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5079       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5080       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5081       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5082       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5085     // At this point, let's assume there is no tail.
  5086     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5087       // There is no tail.  Try an upgrade to a 64-bit copy.
  5088       bool didit = false;
  5089       { PreserveJVMState pjvms(this);
  5090         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5091                                          src, src_offset, dest, dest_offset,
  5092                                          dest_size, dest_uninitialized);
  5093         if (didit) {
  5094           // Present the results of the block-copying fast call.
  5095           result_region->init_req(bcopy_path, control());
  5096           result_i_o   ->init_req(bcopy_path, i_o());
  5097           result_memory->init_req(bcopy_path, memory(adr_type));
  5100       if (didit)
  5101         set_control(top());     // no regular fast path
  5104     // Clear the tail, if any.
  5105     if (tail_ctl != NULL) {
  5106       Node* notail_ctl = stopped() ? NULL : control();
  5107       set_control(tail_ctl);
  5108       if (notail_ctl == NULL) {
  5109         generate_clear_array(adr_type, dest, basic_elem_type,
  5110                              dest_tail, NULL,
  5111                              dest_size);
  5112       } else {
  5113         // Make a local merge.
  5114         Node* done_ctl = new(C) RegionNode(3);
  5115         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5116         done_ctl->init_req(1, notail_ctl);
  5117         done_mem->init_req(1, memory(adr_type));
  5118         generate_clear_array(adr_type, dest, basic_elem_type,
  5119                              dest_tail, NULL,
  5120                              dest_size);
  5121         done_ctl->init_req(2, control());
  5122         done_mem->init_req(2, memory(adr_type));
  5123         set_control( _gvn.transform(done_ctl));
  5124         set_memory(  _gvn.transform(done_mem), adr_type );
  5129   BasicType copy_type = basic_elem_type;
  5130   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5131   if (!stopped() && copy_type == T_OBJECT) {
  5132     // If src and dest have compatible element types, we can copy bits.
  5133     // Types S[] and D[] are compatible if D is a supertype of S.
  5134     //
  5135     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5136     // which performs a fast optimistic per-oop check, and backs off
  5137     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5138     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5140     // Get the Klass* for both src and dest
  5141     Node* src_klass  = load_object_klass(src);
  5142     Node* dest_klass = load_object_klass(dest);
  5144     // Generate the subtype check.
  5145     // This might fold up statically, or then again it might not.
  5146     //
  5147     // Non-static example:  Copying List<String>.elements to a new String[].
  5148     // The backing store for a List<String> is always an Object[],
  5149     // but its elements are always type String, if the generic types
  5150     // are correct at the source level.
  5151     //
  5152     // Test S[] against D[], not S against D, because (probably)
  5153     // the secondary supertype cache is less busy for S[] than S.
  5154     // This usually only matters when D is an interface.
  5155     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5156     // Plug failing path into checked_oop_disjoint_arraycopy
  5157     if (not_subtype_ctrl != top()) {
  5158       PreserveJVMState pjvms(this);
  5159       set_control(not_subtype_ctrl);
  5160       // (At this point we can assume disjoint_bases, since types differ.)
  5161       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5162       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5163       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5164       Node* dest_elem_klass = _gvn.transform(n1);
  5165       Node* cv = generate_checkcast_arraycopy(adr_type,
  5166                                               dest_elem_klass,
  5167                                               src, src_offset, dest, dest_offset,
  5168                                               ConvI2X(copy_length), dest_uninitialized);
  5169       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5170       checked_control = control();
  5171       checked_i_o     = i_o();
  5172       checked_mem     = memory(adr_type);
  5173       checked_value   = cv;
  5175     // At this point we know we do not need type checks on oop stores.
  5177     // Let's see if we need card marks:
  5178     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5179       // If we do not need card marks, copy using the jint or jlong stub.
  5180       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5181       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5182              "sizes agree");
  5186   if (!stopped()) {
  5187     // Generate the fast path, if possible.
  5188     PreserveJVMState pjvms(this);
  5189     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5190                                  src, src_offset, dest, dest_offset,
  5191                                  ConvI2X(copy_length), dest_uninitialized);
  5193     // Present the results of the fast call.
  5194     result_region->init_req(fast_path, control());
  5195     result_i_o   ->init_req(fast_path, i_o());
  5196     result_memory->init_req(fast_path, memory(adr_type));
  5199   // Here are all the slow paths up to this point, in one bundle:
  5200   slow_control = top();
  5201   if (slow_region != NULL)
  5202     slow_control = _gvn.transform(slow_region);
  5203   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5205   set_control(checked_control);
  5206   if (!stopped()) {
  5207     // Clean up after the checked call.
  5208     // The returned value is either 0 or -1^K,
  5209     // where K = number of partially transferred array elements.
  5210     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5211     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5212     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5214     // If it is 0, we are done, so transfer to the end.
  5215     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5216     result_region->init_req(checked_path, checks_done);
  5217     result_i_o   ->init_req(checked_path, checked_i_o);
  5218     result_memory->init_req(checked_path, checked_mem);
  5220     // If it is not zero, merge into the slow call.
  5221     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5222     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5223     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5224     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5225     record_for_igvn(slow_reg2);
  5226     slow_reg2  ->init_req(1, slow_control);
  5227     slow_i_o2  ->init_req(1, slow_i_o);
  5228     slow_mem2  ->init_req(1, slow_mem);
  5229     slow_reg2  ->init_req(2, control());
  5230     slow_i_o2  ->init_req(2, checked_i_o);
  5231     slow_mem2  ->init_req(2, checked_mem);
  5233     slow_control = _gvn.transform(slow_reg2);
  5234     slow_i_o     = _gvn.transform(slow_i_o2);
  5235     slow_mem     = _gvn.transform(slow_mem2);
  5237     if (alloc != NULL) {
  5238       // We'll restart from the very beginning, after zeroing the whole thing.
  5239       // This can cause double writes, but that's OK since dest is brand new.
  5240       // So we ignore the low 31 bits of the value returned from the stub.
  5241     } else {
  5242       // We must continue the copy exactly where it failed, or else
  5243       // another thread might see the wrong number of writes to dest.
  5244       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5245       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5246       slow_offset->init_req(1, intcon(0));
  5247       slow_offset->init_req(2, checked_offset);
  5248       slow_offset  = _gvn.transform(slow_offset);
  5250       // Adjust the arguments by the conditionally incoming offset.
  5251       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5252       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5253       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5255       // Tweak the node variables to adjust the code produced below:
  5256       src_offset  = src_off_plus;
  5257       dest_offset = dest_off_plus;
  5258       copy_length = length_minus;
  5262   set_control(slow_control);
  5263   if (!stopped()) {
  5264     // Generate the slow path, if needed.
  5265     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5267     set_memory(slow_mem, adr_type);
  5268     set_i_o(slow_i_o);
  5270     if (dest_uninitialized) {
  5271       generate_clear_array(adr_type, dest, basic_elem_type,
  5272                            intcon(0), NULL,
  5273                            alloc->in(AllocateNode::AllocSize));
  5276     generate_slow_arraycopy(adr_type,
  5277                             src, src_offset, dest, dest_offset,
  5278                             copy_length, /*dest_uninitialized*/false);
  5280     result_region->init_req(slow_call_path, control());
  5281     result_i_o   ->init_req(slow_call_path, i_o());
  5282     result_memory->init_req(slow_call_path, memory(adr_type));
  5285   // Remove unused edges.
  5286   for (uint i = 1; i < result_region->req(); i++) {
  5287     if (result_region->in(i) == NULL)
  5288       result_region->init_req(i, top());
  5291   // Finished; return the combined state.
  5292   set_control( _gvn.transform(result_region));
  5293   set_i_o(     _gvn.transform(result_i_o)    );
  5294   set_memory(  _gvn.transform(result_memory), adr_type );
  5296   // The memory edges above are precise in order to model effects around
  5297   // array copies accurately to allow value numbering of field loads around
  5298   // arraycopy.  Such field loads, both before and after, are common in Java
  5299   // collections and similar classes involving header/array data structures.
  5300   //
  5301   // But with low number of register or when some registers are used or killed
  5302   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5303   // The next memory barrier is added to avoid it. If the arraycopy can be
  5304   // optimized away (which it can, sometimes) then we can manually remove
  5305   // the membar also.
  5306   //
  5307   // Do not let reads from the cloned object float above the arraycopy.
  5308   if (alloc != NULL) {
  5309     // Do not let stores that initialize this object be reordered with
  5310     // a subsequent store that would make this object accessible by
  5311     // other threads.
  5312     // Record what AllocateNode this StoreStore protects so that
  5313     // escape analysis can go from the MemBarStoreStoreNode to the
  5314     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5315     // based on the escape status of the AllocateNode.
  5316     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5317   } else if (InsertMemBarAfterArraycopy)
  5318     insert_mem_bar(Op_MemBarCPUOrder);
  5322 // Helper function which determines if an arraycopy immediately follows
  5323 // an allocation, with no intervening tests or other escapes for the object.
  5324 AllocateArrayNode*
  5325 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5326                                            RegionNode* slow_region) {
  5327   if (stopped())             return NULL;  // no fast path
  5328   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5330   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5331   if (alloc == NULL)  return NULL;
  5333   Node* rawmem = memory(Compile::AliasIdxRaw);
  5334   // Is the allocation's memory state untouched?
  5335   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5336     // Bail out if there have been raw-memory effects since the allocation.
  5337     // (Example:  There might have been a call or safepoint.)
  5338     return NULL;
  5340   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5341   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5342     return NULL;
  5345   // There must be no unexpected observers of this allocation.
  5346   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5347     Node* obs = ptr->fast_out(i);
  5348     if (obs != this->map()) {
  5349       return NULL;
  5353   // This arraycopy must unconditionally follow the allocation of the ptr.
  5354   Node* alloc_ctl = ptr->in(0);
  5355   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5357   Node* ctl = control();
  5358   while (ctl != alloc_ctl) {
  5359     // There may be guards which feed into the slow_region.
  5360     // Any other control flow means that we might not get a chance
  5361     // to finish initializing the allocated object.
  5362     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5363       IfNode* iff = ctl->in(0)->as_If();
  5364       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5365       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5366       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5367         ctl = iff->in(0);       // This test feeds the known slow_region.
  5368         continue;
  5370       // One more try:  Various low-level checks bottom out in
  5371       // uncommon traps.  If the debug-info of the trap omits
  5372       // any reference to the allocation, as we've already
  5373       // observed, then there can be no objection to the trap.
  5374       bool found_trap = false;
  5375       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5376         Node* obs = not_ctl->fast_out(j);
  5377         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5378             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5379           found_trap = true; break;
  5382       if (found_trap) {
  5383         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5384         continue;
  5387     return NULL;
  5390   // If we get this far, we have an allocation which immediately
  5391   // precedes the arraycopy, and we can take over zeroing the new object.
  5392   // The arraycopy will finish the initialization, and provide
  5393   // a new control state to which we will anchor the destination pointer.
  5395   return alloc;
  5398 // Helper for initialization of arrays, creating a ClearArray.
  5399 // It writes zero bits in [start..end), within the body of an array object.
  5400 // The memory effects are all chained onto the 'adr_type' alias category.
  5401 //
  5402 // Since the object is otherwise uninitialized, we are free
  5403 // to put a little "slop" around the edges of the cleared area,
  5404 // as long as it does not go back into the array's header,
  5405 // or beyond the array end within the heap.
  5406 //
  5407 // The lower edge can be rounded down to the nearest jint and the
  5408 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5409 //
  5410 // Arguments:
  5411 //   adr_type           memory slice where writes are generated
  5412 //   dest               oop of the destination array
  5413 //   basic_elem_type    element type of the destination
  5414 //   slice_idx          array index of first element to store
  5415 //   slice_len          number of elements to store (or NULL)
  5416 //   dest_size          total size in bytes of the array object
  5417 //
  5418 // Exactly one of slice_len or dest_size must be non-NULL.
  5419 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5420 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5421 void
  5422 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5423                                      Node* dest,
  5424                                      BasicType basic_elem_type,
  5425                                      Node* slice_idx,
  5426                                      Node* slice_len,
  5427                                      Node* dest_size) {
  5428   // one or the other but not both of slice_len and dest_size:
  5429   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5430   if (slice_len == NULL)  slice_len = top();
  5431   if (dest_size == NULL)  dest_size = top();
  5433   // operate on this memory slice:
  5434   Node* mem = memory(adr_type); // memory slice to operate on
  5436   // scaling and rounding of indexes:
  5437   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5438   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5439   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5440   int bump_bit  = (-1 << scale) & BytesPerInt;
  5442   // determine constant starts and ends
  5443   const intptr_t BIG_NEG = -128;
  5444   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5445   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5446   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5447   if (slice_len_con == 0) {
  5448     return;                     // nothing to do here
  5450   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5451   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5452   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5453     assert(end_con < 0, "not two cons");
  5454     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5455                        BytesPerLong);
  5458   if (start_con >= 0 && end_con >= 0) {
  5459     // Constant start and end.  Simple.
  5460     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5461                                        start_con, end_con, &_gvn);
  5462   } else if (start_con >= 0 && dest_size != top()) {
  5463     // Constant start, pre-rounded end after the tail of the array.
  5464     Node* end = dest_size;
  5465     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5466                                        start_con, end, &_gvn);
  5467   } else if (start_con >= 0 && slice_len != top()) {
  5468     // Constant start, non-constant end.  End needs rounding up.
  5469     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5470     intptr_t end_base  = abase + (slice_idx_con << scale);
  5471     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5472     Node*    end       = ConvI2X(slice_len);
  5473     if (scale != 0)
  5474       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5475     end_base += end_round;
  5476     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5477     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5478     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5479                                        start_con, end, &_gvn);
  5480   } else if (start_con < 0 && dest_size != top()) {
  5481     // Non-constant start, pre-rounded end after the tail of the array.
  5482     // This is almost certainly a "round-to-end" operation.
  5483     Node* start = slice_idx;
  5484     start = ConvI2X(start);
  5485     if (scale != 0)
  5486       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5487     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5488     if ((bump_bit | clear_low) != 0) {
  5489       int to_clear = (bump_bit | clear_low);
  5490       // Align up mod 8, then store a jint zero unconditionally
  5491       // just before the mod-8 boundary.
  5492       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5493           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5494         bump_bit = 0;
  5495         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5496       } else {
  5497         // Bump 'start' up to (or past) the next jint boundary:
  5498         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5499         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5501       // Round bumped 'start' down to jlong boundary in body of array.
  5502       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5503       if (bump_bit != 0) {
  5504         // Store a zero to the immediately preceding jint:
  5505         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5506         Node* p1 = basic_plus_adr(dest, x1);
  5507         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5508         mem = _gvn.transform(mem);
  5511     Node* end = dest_size; // pre-rounded
  5512     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5513                                        start, end, &_gvn);
  5514   } else {
  5515     // Non-constant start, unrounded non-constant end.
  5516     // (Nobody zeroes a random midsection of an array using this routine.)
  5517     ShouldNotReachHere();       // fix caller
  5520   // Done.
  5521   set_memory(mem, adr_type);
  5525 bool
  5526 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5527                                          BasicType basic_elem_type,
  5528                                          AllocateNode* alloc,
  5529                                          Node* src,  Node* src_offset,
  5530                                          Node* dest, Node* dest_offset,
  5531                                          Node* dest_size, bool dest_uninitialized) {
  5532   // See if there is an advantage from block transfer.
  5533   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5534   if (scale >= LogBytesPerLong)
  5535     return false;               // it is already a block transfer
  5537   // Look at the alignment of the starting offsets.
  5538   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5540   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5541   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5542   if (src_off_con < 0 || dest_off_con < 0)
  5543     // At present, we can only understand constants.
  5544     return false;
  5546   intptr_t src_off  = abase + (src_off_con  << scale);
  5547   intptr_t dest_off = abase + (dest_off_con << scale);
  5549   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5550     // Non-aligned; too bad.
  5551     // One more chance:  Pick off an initial 32-bit word.
  5552     // This is a common case, since abase can be odd mod 8.
  5553     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5554         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5555       Node* sptr = basic_plus_adr(src,  src_off);
  5556       Node* dptr = basic_plus_adr(dest, dest_off);
  5557       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5558       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5559       src_off += BytesPerInt;
  5560       dest_off += BytesPerInt;
  5561     } else {
  5562       return false;
  5565   assert(src_off % BytesPerLong == 0, "");
  5566   assert(dest_off % BytesPerLong == 0, "");
  5568   // Do this copy by giant steps.
  5569   Node* sptr  = basic_plus_adr(src,  src_off);
  5570   Node* dptr  = basic_plus_adr(dest, dest_off);
  5571   Node* countx = dest_size;
  5572   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5573   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5575   bool disjoint_bases = true;   // since alloc != NULL
  5576   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5577                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5579   return true;
  5583 // Helper function; generates code for the slow case.
  5584 // We make a call to a runtime method which emulates the native method,
  5585 // but without the native wrapper overhead.
  5586 void
  5587 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5588                                         Node* src,  Node* src_offset,
  5589                                         Node* dest, Node* dest_offset,
  5590                                         Node* copy_length, bool dest_uninitialized) {
  5591   assert(!dest_uninitialized, "Invariant");
  5592   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5593                                  OptoRuntime::slow_arraycopy_Type(),
  5594                                  OptoRuntime::slow_arraycopy_Java(),
  5595                                  "slow_arraycopy", adr_type,
  5596                                  src, src_offset, dest, dest_offset,
  5597                                  copy_length);
  5599   // Handle exceptions thrown by this fellow:
  5600   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5603 // Helper function; generates code for cases requiring runtime checks.
  5604 Node*
  5605 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5606                                              Node* dest_elem_klass,
  5607                                              Node* src,  Node* src_offset,
  5608                                              Node* dest, Node* dest_offset,
  5609                                              Node* copy_length, bool dest_uninitialized) {
  5610   if (stopped())  return NULL;
  5612   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5613   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5614     return NULL;
  5617   // Pick out the parameters required to perform a store-check
  5618   // for the target array.  This is an optimistic check.  It will
  5619   // look in each non-null element's class, at the desired klass's
  5620   // super_check_offset, for the desired klass.
  5621   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5622   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5623   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5624   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5625   Node* check_value  = dest_elem_klass;
  5627   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5628   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5630   // (We know the arrays are never conjoint, because their types differ.)
  5631   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5632                                  OptoRuntime::checkcast_arraycopy_Type(),
  5633                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5634                                  // five arguments, of which two are
  5635                                  // intptr_t (jlong in LP64)
  5636                                  src_start, dest_start,
  5637                                  copy_length XTOP,
  5638                                  check_offset XTOP,
  5639                                  check_value);
  5641   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5645 // Helper function; generates code for cases requiring runtime checks.
  5646 Node*
  5647 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5648                                            Node* src,  Node* src_offset,
  5649                                            Node* dest, Node* dest_offset,
  5650                                            Node* copy_length, bool dest_uninitialized) {
  5651   assert(!dest_uninitialized, "Invariant");
  5652   if (stopped())  return NULL;
  5653   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5654   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5655     return NULL;
  5658   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5659                     OptoRuntime::generic_arraycopy_Type(),
  5660                     copyfunc_addr, "generic_arraycopy", adr_type,
  5661                     src, src_offset, dest, dest_offset, copy_length);
  5663   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5666 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5667 void
  5668 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5669                                              BasicType basic_elem_type,
  5670                                              bool disjoint_bases,
  5671                                              Node* src,  Node* src_offset,
  5672                                              Node* dest, Node* dest_offset,
  5673                                              Node* copy_length, bool dest_uninitialized) {
  5674   if (stopped())  return;               // nothing to do
  5676   Node* src_start  = src;
  5677   Node* dest_start = dest;
  5678   if (src_offset != NULL || dest_offset != NULL) {
  5679     assert(src_offset != NULL && dest_offset != NULL, "");
  5680     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5681     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5684   // Figure out which arraycopy runtime method to call.
  5685   const char* copyfunc_name = "arraycopy";
  5686   address     copyfunc_addr =
  5687       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5688                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5690   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5691   make_runtime_call(RC_LEAF|RC_NO_FP,
  5692                     OptoRuntime::fast_arraycopy_Type(),
  5693                     copyfunc_addr, copyfunc_name, adr_type,
  5694                     src_start, dest_start, copy_length XTOP);
  5697 //-------------inline_encodeISOArray-----------------------------------
  5698 // encode char[] to byte[] in ISO_8859_1
  5699 bool LibraryCallKit::inline_encodeISOArray() {
  5700   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5701   // no receiver since it is static method
  5702   Node *src         = argument(0);
  5703   Node *src_offset  = argument(1);
  5704   Node *dst         = argument(2);
  5705   Node *dst_offset  = argument(3);
  5706   Node *length      = argument(4);
  5708   const Type* src_type = src->Value(&_gvn);
  5709   const Type* dst_type = dst->Value(&_gvn);
  5710   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5711   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5712   if (top_src  == NULL || top_src->klass()  == NULL ||
  5713       top_dest == NULL || top_dest->klass() == NULL) {
  5714     // failed array check
  5715     return false;
  5718   // Figure out the size and type of the elements we will be copying.
  5719   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5720   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5721   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5722     return false;
  5724   Node* src_start = array_element_address(src, src_offset, src_elem);
  5725   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5726   // 'src_start' points to src array + scaled offset
  5727   // 'dst_start' points to dst array + scaled offset
  5729   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5730   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5731   enc = _gvn.transform(enc);
  5732   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5733   set_memory(res_mem, mtype);
  5734   set_result(enc);
  5735   return true;
  5738 /**
  5739  * Calculate CRC32 for byte.
  5740  * int java.util.zip.CRC32.update(int crc, int b)
  5741  */
  5742 bool LibraryCallKit::inline_updateCRC32() {
  5743   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5744   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5745   // no receiver since it is static method
  5746   Node* crc  = argument(0); // type: int
  5747   Node* b    = argument(1); // type: int
  5749   /*
  5750    *    int c = ~ crc;
  5751    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5752    *    b = b ^ (c >>> 8);
  5753    *    crc = ~b;
  5754    */
  5756   Node* M1 = intcon(-1);
  5757   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5758   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5759   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5761   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5762   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5763   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5764   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  5766   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5767   result = _gvn.transform(new (C) XorINode(crc, result));
  5768   result = _gvn.transform(new (C) XorINode(result, M1));
  5769   set_result(result);
  5770   return true;
  5773 /**
  5774  * Calculate CRC32 for byte[] array.
  5775  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5776  */
  5777 bool LibraryCallKit::inline_updateBytesCRC32() {
  5778   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5779   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5780   // no receiver since it is static method
  5781   Node* crc     = argument(0); // type: int
  5782   Node* src     = argument(1); // type: oop
  5783   Node* offset  = argument(2); // type: int
  5784   Node* length  = argument(3); // type: int
  5786   const Type* src_type = src->Value(&_gvn);
  5787   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5788   if (top_src  == NULL || top_src->klass()  == NULL) {
  5789     // failed array check
  5790     return false;
  5793   // Figure out the size and type of the elements we will be copying.
  5794   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5795   if (src_elem != T_BYTE) {
  5796     return false;
  5799   // 'src_start' points to src array + scaled offset
  5800   Node* src_start = array_element_address(src, offset, src_elem);
  5802   // We assume that range check is done by caller.
  5803   // TODO: generate range check (offset+length < src.length) in debug VM.
  5805   // Call the stub.
  5806   address stubAddr = StubRoutines::updateBytesCRC32();
  5807   const char *stubName = "updateBytesCRC32";
  5809   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5810                                  stubAddr, stubName, TypePtr::BOTTOM,
  5811                                  crc, src_start, length);
  5812   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5813   set_result(result);
  5814   return true;
  5817 /**
  5818  * Calculate CRC32 for ByteBuffer.
  5819  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5820  */
  5821 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5822   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5823   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5824   // no receiver since it is static method
  5825   Node* crc     = argument(0); // type: int
  5826   Node* src     = argument(1); // type: long
  5827   Node* offset  = argument(3); // type: int
  5828   Node* length  = argument(4); // type: int
  5830   src = ConvL2X(src);  // adjust Java long to machine word
  5831   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5832   offset = ConvI2X(offset);
  5834   // 'src_start' points to src array + scaled offset
  5835   Node* src_start = basic_plus_adr(top(), base, offset);
  5837   // Call the stub.
  5838   address stubAddr = StubRoutines::updateBytesCRC32();
  5839   const char *stubName = "updateBytesCRC32";
  5841   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5842                                  stubAddr, stubName, TypePtr::BOTTOM,
  5843                                  crc, src_start, length);
  5844   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5845   set_result(result);
  5846   return true;
  5849 //----------------------------inline_reference_get----------------------------
  5850 // public T java.lang.ref.Reference.get();
  5851 bool LibraryCallKit::inline_reference_get() {
  5852   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5853   guarantee(referent_offset > 0, "should have already been set");
  5855   // Get the argument:
  5856   Node* reference_obj = null_check_receiver();
  5857   if (stopped()) return true;
  5859   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5861   ciInstanceKlass* klass = env()->Object_klass();
  5862   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5864   Node* no_ctrl = NULL;
  5865   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  5867   // Use the pre-barrier to record the value in the referent field
  5868   pre_barrier(false /* do_load */,
  5869               control(),
  5870               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5871               result /* pre_val */,
  5872               T_OBJECT);
  5874   // Add memory barrier to prevent commoning reads from this field
  5875   // across safepoint since GC can change its value.
  5876   insert_mem_bar(Op_MemBarCPUOrder);
  5878   set_result(result);
  5879   return true;
  5883 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5884                                               bool is_exact=true, bool is_static=false) {
  5886   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5887   assert(tinst != NULL, "obj is null");
  5888   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5889   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5891   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5892                                                                           ciSymbol::make(fieldTypeString),
  5893                                                                           is_static);
  5894   if (field == NULL) return (Node *) NULL;
  5895   assert (field != NULL, "undefined field");
  5897   // Next code  copied from Parse::do_get_xxx():
  5899   // Compute address and memory type.
  5900   int offset  = field->offset_in_bytes();
  5901   bool is_vol = field->is_volatile();
  5902   ciType* field_klass = field->type();
  5903   assert(field_klass->is_loaded(), "should be loaded");
  5904   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5905   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5906   BasicType bt = field->layout_type();
  5908   // Build the resultant type of the load
  5909   const Type *type;
  5910   if (bt == T_OBJECT) {
  5911     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5912   } else {
  5913     type = Type::get_const_basic_type(bt);
  5916   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
  5917     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
  5919   // Build the load.
  5920   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
  5921   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
  5922   // If reference is volatile, prevent following memory ops from
  5923   // floating up past the volatile read.  Also prevents commoning
  5924   // another volatile read.
  5925   if (is_vol) {
  5926     // Memory barrier includes bogus read of value to force load BEFORE membar
  5927     insert_mem_bar(Op_MemBarAcquire, loadedField);
  5929   return loadedField;
  5933 //------------------------------inline_aescrypt_Block-----------------------
  5934 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5935   address stubAddr;
  5936   const char *stubName;
  5937   assert(UseAES, "need AES instruction support");
  5939   switch(id) {
  5940   case vmIntrinsics::_aescrypt_encryptBlock:
  5941     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5942     stubName = "aescrypt_encryptBlock";
  5943     break;
  5944   case vmIntrinsics::_aescrypt_decryptBlock:
  5945     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5946     stubName = "aescrypt_decryptBlock";
  5947     break;
  5949   if (stubAddr == NULL) return false;
  5951   Node* aescrypt_object = argument(0);
  5952   Node* src             = argument(1);
  5953   Node* src_offset      = argument(2);
  5954   Node* dest            = argument(3);
  5955   Node* dest_offset     = argument(4);
  5957   // (1) src and dest are arrays.
  5958   const Type* src_type = src->Value(&_gvn);
  5959   const Type* dest_type = dest->Value(&_gvn);
  5960   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5961   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5962   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5964   // for the quick and dirty code we will skip all the checks.
  5965   // we are just trying to get the call to be generated.
  5966   Node* src_start  = src;
  5967   Node* dest_start = dest;
  5968   if (src_offset != NULL || dest_offset != NULL) {
  5969     assert(src_offset != NULL && dest_offset != NULL, "");
  5970     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5971     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5974   // now need to get the start of its expanded key array
  5975   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5976   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5977   if (k_start == NULL) return false;
  5979   if (Matcher::pass_original_key_for_aes()) {
  5980     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  5981     // compatibility issues between Java key expansion and SPARC crypto instructions
  5982     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  5983     if (original_k_start == NULL) return false;
  5985     // Call the stub.
  5986     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5987                       stubAddr, stubName, TypePtr::BOTTOM,
  5988                       src_start, dest_start, k_start, original_k_start);
  5989   } else {
  5990     // Call the stub.
  5991     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5992                       stubAddr, stubName, TypePtr::BOTTOM,
  5993                       src_start, dest_start, k_start);
  5996   return true;
  5999 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  6000 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  6001   address stubAddr;
  6002   const char *stubName;
  6004   assert(UseAES, "need AES instruction support");
  6006   switch(id) {
  6007   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  6008     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  6009     stubName = "cipherBlockChaining_encryptAESCrypt";
  6010     break;
  6011   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  6012     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  6013     stubName = "cipherBlockChaining_decryptAESCrypt";
  6014     break;
  6016   if (stubAddr == NULL) return false;
  6018   Node* cipherBlockChaining_object = argument(0);
  6019   Node* src                        = argument(1);
  6020   Node* src_offset                 = argument(2);
  6021   Node* len                        = argument(3);
  6022   Node* dest                       = argument(4);
  6023   Node* dest_offset                = argument(5);
  6025   // (1) src and dest are arrays.
  6026   const Type* src_type = src->Value(&_gvn);
  6027   const Type* dest_type = dest->Value(&_gvn);
  6028   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6029   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6030   assert (top_src  != NULL && top_src->klass()  != NULL
  6031           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6033   // checks are the responsibility of the caller
  6034   Node* src_start  = src;
  6035   Node* dest_start = dest;
  6036   if (src_offset != NULL || dest_offset != NULL) {
  6037     assert(src_offset != NULL && dest_offset != NULL, "");
  6038     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6039     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6042   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  6043   // (because of the predicated logic executed earlier).
  6044   // so we cast it here safely.
  6045   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6047   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6048   if (embeddedCipherObj == NULL) return false;
  6050   // cast it to what we know it will be at runtime
  6051   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  6052   assert(tinst != NULL, "CBC obj is null");
  6053   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  6054   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6055   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
  6057   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6058   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6059   const TypeOopPtr* xtype = aklass->as_instance_type();
  6060   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6061   aescrypt_object = _gvn.transform(aescrypt_object);
  6063   // we need to get the start of the aescrypt_object's expanded key array
  6064   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6065   if (k_start == NULL) return false;
  6067   // similarly, get the start address of the r vector
  6068   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6069   if (objRvec == NULL) return false;
  6070   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6072   Node* cbcCrypt;
  6073   if (Matcher::pass_original_key_for_aes()) {
  6074     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6075     // compatibility issues between Java key expansion and SPARC crypto instructions
  6076     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6077     if (original_k_start == NULL) return false;
  6079     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  6080     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6081                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6082                                  stubAddr, stubName, TypePtr::BOTTOM,
  6083                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  6084   } else {
  6085     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6086     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6087                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6088                                  stubAddr, stubName, TypePtr::BOTTOM,
  6089                                  src_start, dest_start, k_start, r_start, len);
  6092   // return cipher length (int)
  6093   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  6094   set_result(retvalue);
  6095   return true;
  6098 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6099 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6100   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6101   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6102   if (objAESCryptKey == NULL) return (Node *) NULL;
  6104   // now have the array, need to get the start address of the K array
  6105   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6106   return k_start;
  6109 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6110 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6111   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6112   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6113   if (objAESCryptKey == NULL) return (Node *) NULL;
  6115   // now have the array, need to get the start address of the lastKey array
  6116   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6117   return original_k_start;
  6120 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6121 // Return node representing slow path of predicate check.
  6122 // the pseudo code we want to emulate with this predicate is:
  6123 // for encryption:
  6124 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6125 // for decryption:
  6126 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6127 //    note cipher==plain is more conservative than the original java code but that's OK
  6128 //
  6129 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6130   // The receiver was checked for NULL already.
  6131   Node* objCBC = argument(0);
  6133   // Load embeddedCipher field of CipherBlockChaining object.
  6134   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6136   // get AESCrypt klass for instanceOf check
  6137   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6138   // will have same classloader as CipherBlockChaining object
  6139   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6140   assert(tinst != NULL, "CBCobj is null");
  6141   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6143   // we want to do an instanceof comparison against the AESCrypt class
  6144   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6145   if (!klass_AESCrypt->is_loaded()) {
  6146     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6147     Node* ctrl = control();
  6148     set_control(top()); // no regular fast path
  6149     return ctrl;
  6151   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6153   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6154   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6155   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6157   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6159   // for encryption, we are done
  6160   if (!decrypting)
  6161     return instof_false;  // even if it is NULL
  6163   // for decryption, we need to add a further check to avoid
  6164   // taking the intrinsic path when cipher and plain are the same
  6165   // see the original java code for why.
  6166   RegionNode* region = new(C) RegionNode(3);
  6167   region->init_req(1, instof_false);
  6168   Node* src = argument(1);
  6169   Node* dest = argument(4);
  6170   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6171   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6172   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6173   region->init_req(2, src_dest_conjoint);
  6175   record_for_igvn(region);
  6176   return _gvn.transform(region);
  6179 //------------------------------inline_sha_implCompress-----------------------
  6180 //
  6181 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
  6182 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
  6183 //
  6184 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
  6185 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
  6186 //
  6187 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
  6188 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
  6189 //
  6190 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
  6191   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
  6193   Node* sha_obj = argument(0);
  6194   Node* src     = argument(1); // type oop
  6195   Node* ofs     = argument(2); // type int
  6197   const Type* src_type = src->Value(&_gvn);
  6198   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6199   if (top_src  == NULL || top_src->klass()  == NULL) {
  6200     // failed array check
  6201     return false;
  6203   // Figure out the size and type of the elements we will be copying.
  6204   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6205   if (src_elem != T_BYTE) {
  6206     return false;
  6208   // 'src_start' points to src array + offset
  6209   Node* src_start = array_element_address(src, ofs, src_elem);
  6210   Node* state = NULL;
  6211   address stubAddr;
  6212   const char *stubName;
  6214   switch(id) {
  6215   case vmIntrinsics::_sha_implCompress:
  6216     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
  6217     state = get_state_from_sha_object(sha_obj);
  6218     stubAddr = StubRoutines::sha1_implCompress();
  6219     stubName = "sha1_implCompress";
  6220     break;
  6221   case vmIntrinsics::_sha2_implCompress:
  6222     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
  6223     state = get_state_from_sha_object(sha_obj);
  6224     stubAddr = StubRoutines::sha256_implCompress();
  6225     stubName = "sha256_implCompress";
  6226     break;
  6227   case vmIntrinsics::_sha5_implCompress:
  6228     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
  6229     state = get_state_from_sha5_object(sha_obj);
  6230     stubAddr = StubRoutines::sha512_implCompress();
  6231     stubName = "sha512_implCompress";
  6232     break;
  6233   default:
  6234     fatal_unexpected_iid(id);
  6235     return false;
  6237   if (state == NULL) return false;
  6239   // Call the stub.
  6240   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
  6241                                  stubAddr, stubName, TypePtr::BOTTOM,
  6242                                  src_start, state);
  6244   return true;
  6247 //------------------------------inline_digestBase_implCompressMB-----------------------
  6248 //
  6249 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
  6250 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
  6251 //
  6252 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
  6253   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6254          "need SHA1/SHA256/SHA512 instruction support");
  6255   assert((uint)predicate < 3, "sanity");
  6256   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
  6258   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
  6259   Node* src            = argument(1); // byte[] array
  6260   Node* ofs            = argument(2); // type int
  6261   Node* limit          = argument(3); // type int
  6263   const Type* src_type = src->Value(&_gvn);
  6264   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6265   if (top_src  == NULL || top_src->klass()  == NULL) {
  6266     // failed array check
  6267     return false;
  6269   // Figure out the size and type of the elements we will be copying.
  6270   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6271   if (src_elem != T_BYTE) {
  6272     return false;
  6274   // 'src_start' points to src array + offset
  6275   Node* src_start = array_element_address(src, ofs, src_elem);
  6277   const char* klass_SHA_name = NULL;
  6278   const char* stub_name = NULL;
  6279   address     stub_addr = NULL;
  6280   bool        long_state = false;
  6282   switch (predicate) {
  6283   case 0:
  6284     if (UseSHA1Intrinsics) {
  6285       klass_SHA_name = "sun/security/provider/SHA";
  6286       stub_name = "sha1_implCompressMB";
  6287       stub_addr = StubRoutines::sha1_implCompressMB();
  6289     break;
  6290   case 1:
  6291     if (UseSHA256Intrinsics) {
  6292       klass_SHA_name = "sun/security/provider/SHA2";
  6293       stub_name = "sha256_implCompressMB";
  6294       stub_addr = StubRoutines::sha256_implCompressMB();
  6296     break;
  6297   case 2:
  6298     if (UseSHA512Intrinsics) {
  6299       klass_SHA_name = "sun/security/provider/SHA5";
  6300       stub_name = "sha512_implCompressMB";
  6301       stub_addr = StubRoutines::sha512_implCompressMB();
  6302       long_state = true;
  6304     break;
  6305   default:
  6306     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6308   if (klass_SHA_name != NULL) {
  6309     // get DigestBase klass to lookup for SHA klass
  6310     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
  6311     assert(tinst != NULL, "digestBase_obj is not instance???");
  6312     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6314     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6315     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
  6316     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6317     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
  6319   return false;
  6321 //------------------------------inline_sha_implCompressMB-----------------------
  6322 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
  6323                                                bool long_state, address stubAddr, const char *stubName,
  6324                                                Node* src_start, Node* ofs, Node* limit) {
  6325   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
  6326   const TypeOopPtr* xtype = aklass->as_instance_type();
  6327   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
  6328   sha_obj = _gvn.transform(sha_obj);
  6330   Node* state;
  6331   if (long_state) {
  6332     state = get_state_from_sha5_object(sha_obj);
  6333   } else {
  6334     state = get_state_from_sha_object(sha_obj);
  6336   if (state == NULL) return false;
  6338   // Call the stub.
  6339   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  6340                                  OptoRuntime::digestBase_implCompressMB_Type(),
  6341                                  stubAddr, stubName, TypePtr::BOTTOM,
  6342                                  src_start, state, ofs, limit);
  6343   // return ofs (int)
  6344   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6345   set_result(result);
  6347   return true;
  6350 //------------------------------get_state_from_sha_object-----------------------
  6351 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
  6352   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
  6353   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
  6354   if (sha_state == NULL) return (Node *) NULL;
  6356   // now have the array, need to get the start address of the state array
  6357   Node* state = array_element_address(sha_state, intcon(0), T_INT);
  6358   return state;
  6361 //------------------------------get_state_from_sha5_object-----------------------
  6362 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
  6363   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
  6364   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
  6365   if (sha_state == NULL) return (Node *) NULL;
  6367   // now have the array, need to get the start address of the state array
  6368   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
  6369   return state;
  6372 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
  6373 // Return node representing slow path of predicate check.
  6374 // the pseudo code we want to emulate with this predicate is:
  6375 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
  6376 //
  6377 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
  6378   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6379          "need SHA1/SHA256/SHA512 instruction support");
  6380   assert((uint)predicate < 3, "sanity");
  6382   // The receiver was checked for NULL already.
  6383   Node* digestBaseObj = argument(0);
  6385   // get DigestBase klass for instanceOf check
  6386   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
  6387   assert(tinst != NULL, "digestBaseObj is null");
  6388   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6390   const char* klass_SHA_name = NULL;
  6391   switch (predicate) {
  6392   case 0:
  6393     if (UseSHA1Intrinsics) {
  6394       // we want to do an instanceof comparison against the SHA class
  6395       klass_SHA_name = "sun/security/provider/SHA";
  6397     break;
  6398   case 1:
  6399     if (UseSHA256Intrinsics) {
  6400       // we want to do an instanceof comparison against the SHA2 class
  6401       klass_SHA_name = "sun/security/provider/SHA2";
  6403     break;
  6404   case 2:
  6405     if (UseSHA512Intrinsics) {
  6406       // we want to do an instanceof comparison against the SHA5 class
  6407       klass_SHA_name = "sun/security/provider/SHA5";
  6409     break;
  6410   default:
  6411     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6414   ciKlass* klass_SHA = NULL;
  6415   if (klass_SHA_name != NULL) {
  6416     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6418   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
  6419     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
  6420     Node* ctrl = control();
  6421     set_control(top()); // no intrinsic path
  6422     return ctrl;
  6424   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6426   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
  6427   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
  6428   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6429   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6431   return instof_false;  // even if it is NULL

mercurial