src/share/vm/opto/library_call.cpp

Tue, 02 Sep 2014 12:48:45 -0700

author
kvn
date
Tue, 02 Sep 2014 12:48:45 -0700
changeset 7152
166d744df0de
parent 7134
d8847542f83a
child 7155
4874332f9799
permissions
-rw-r--r--

8055494: Add C2 x86 intrinsic for BigInteger::multiplyToLen() method
Summary: Add new C2 intrinsic for BigInteger::multiplyToLen() on x86 in 64-bit VM.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _does_virtual_dispatch;
    50   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
    51   int8_t           _last_predicate; // Last generated predicate
    52   vmIntrinsics::ID _intrinsic_id;
    54  public:
    55   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
    56     : InlineCallGenerator(m),
    57       _is_virtual(is_virtual),
    58       _does_virtual_dispatch(does_virtual_dispatch),
    59       _predicates_count((int8_t)predicates_count),
    60       _last_predicate((int8_t)-1),
    61       _intrinsic_id(id)
    62   {
    63   }
    64   virtual bool is_intrinsic() const { return true; }
    65   virtual bool is_virtual()   const { return _is_virtual; }
    66   virtual bool is_predicated() const { return _predicates_count > 0; }
    67   virtual int  predicates_count() const { return _predicates_count; }
    68   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    69   virtual JVMState* generate(JVMState* jvms);
    70   virtual Node* generate_predicate(JVMState* jvms, int predicate);
    71   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    72 };
    75 // Local helper class for LibraryIntrinsic:
    76 class LibraryCallKit : public GraphKit {
    77  private:
    78   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    79   Node*             _result;        // the result node, if any
    80   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    82   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    84  public:
    85   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    86     : GraphKit(jvms),
    87       _intrinsic(intrinsic),
    88       _result(NULL)
    89   {
    90     // Check if this is a root compile.  In that case we don't have a caller.
    91     if (!jvms->has_method()) {
    92       _reexecute_sp = sp();
    93     } else {
    94       // Find out how many arguments the interpreter needs when deoptimizing
    95       // and save the stack pointer value so it can used by uncommon_trap.
    96       // We find the argument count by looking at the declared signature.
    97       bool ignored_will_link;
    98       ciSignature* declared_signature = NULL;
    99       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
   100       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
   101       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
   102     }
   103   }
   105   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   107   ciMethod*         caller()    const    { return jvms()->method(); }
   108   int               bci()       const    { return jvms()->bci(); }
   109   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   110   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   111   ciMethod*         callee()    const    { return _intrinsic->method(); }
   113   bool  try_to_inline(int predicate);
   114   Node* try_to_predicate(int predicate);
   116   void push_result() {
   117     // Push the result onto the stack.
   118     if (!stopped() && result() != NULL) {
   119       BasicType bt = result()->bottom_type()->basic_type();
   120       push_node(bt, result());
   121     }
   122   }
   124  private:
   125   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   126     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   127   }
   129   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   130   void  set_result(RegionNode* region, PhiNode* value);
   131   Node*     result() { return _result; }
   133   virtual int reexecute_sp() { return _reexecute_sp; }
   135   // Helper functions to inline natives
   136   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   137   Node* generate_slow_guard(Node* test, RegionNode* region);
   138   Node* generate_fair_guard(Node* test, RegionNode* region);
   139   Node* generate_negative_guard(Node* index, RegionNode* region,
   140                                 // resulting CastII of index:
   141                                 Node* *pos_index = NULL);
   142   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   143                                    // resulting CastII of index:
   144                                    Node* *pos_index = NULL);
   145   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   146                              Node* array_length,
   147                              RegionNode* region);
   148   Node* generate_current_thread(Node* &tls_output);
   149   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   150                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   151   Node* load_mirror_from_klass(Node* klass);
   152   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   153                                       RegionNode* region, int null_path,
   154                                       int offset);
   155   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   156                                RegionNode* region, int null_path) {
   157     int offset = java_lang_Class::klass_offset_in_bytes();
   158     return load_klass_from_mirror_common(mirror, never_see_null,
   159                                          region, null_path,
   160                                          offset);
   161   }
   162   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   163                                      RegionNode* region, int null_path) {
   164     int offset = java_lang_Class::array_klass_offset_in_bytes();
   165     return load_klass_from_mirror_common(mirror, never_see_null,
   166                                          region, null_path,
   167                                          offset);
   168   }
   169   Node* generate_access_flags_guard(Node* kls,
   170                                     int modifier_mask, int modifier_bits,
   171                                     RegionNode* region);
   172   Node* generate_interface_guard(Node* kls, RegionNode* region);
   173   Node* generate_array_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, false, false);
   175   }
   176   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, false, true);
   178   }
   179   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   180     return generate_array_guard_common(kls, region, true, false);
   181   }
   182   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   183     return generate_array_guard_common(kls, region, true, true);
   184   }
   185   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   186                                     bool obj_array, bool not_array);
   187   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   188   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   189                                      bool is_virtual = false, bool is_static = false);
   190   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   191     return generate_method_call(method_id, false, true);
   192   }
   193   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   194     return generate_method_call(method_id, true, false);
   195   }
   196   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   198   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   199   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   200   bool inline_string_compareTo();
   201   bool inline_string_indexOf();
   202   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   203   bool inline_string_equals();
   204   Node* round_double_node(Node* n);
   205   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   206   bool inline_math_native(vmIntrinsics::ID id);
   207   bool inline_trig(vmIntrinsics::ID id);
   208   bool inline_math(vmIntrinsics::ID id);
   209   template <typename OverflowOp>
   210   bool inline_math_overflow(Node* arg1, Node* arg2);
   211   void inline_math_mathExact(Node* math, Node* test);
   212   bool inline_math_addExactI(bool is_increment);
   213   bool inline_math_addExactL(bool is_increment);
   214   bool inline_math_multiplyExactI();
   215   bool inline_math_multiplyExactL();
   216   bool inline_math_negateExactI();
   217   bool inline_math_negateExactL();
   218   bool inline_math_subtractExactI(bool is_decrement);
   219   bool inline_math_subtractExactL(bool is_decrement);
   220   bool inline_exp();
   221   bool inline_pow();
   222   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   223   bool inline_min_max(vmIntrinsics::ID id);
   224   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   225   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   226   int classify_unsafe_addr(Node* &base, Node* &offset);
   227   Node* make_unsafe_address(Node* base, Node* offset);
   228   // Helper for inline_unsafe_access.
   229   // Generates the guards that check whether the result of
   230   // Unsafe.getObject should be recorded in an SATB log buffer.
   231   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   232   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   233   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   234   static bool klass_needs_init_guard(Node* kls);
   235   bool inline_unsafe_allocate();
   236   bool inline_unsafe_copyMemory();
   237   bool inline_native_currentThread();
   238 #ifdef TRACE_HAVE_INTRINSICS
   239   bool inline_native_classID();
   240   bool inline_native_threadID();
   241 #endif
   242   bool inline_native_time_funcs(address method, const char* funcName);
   243   bool inline_native_isInterrupted();
   244   bool inline_native_Class_query(vmIntrinsics::ID id);
   245   bool inline_native_subtype_check();
   247   bool inline_native_newArray();
   248   bool inline_native_getLength();
   249   bool inline_array_copyOf(bool is_copyOfRange);
   250   bool inline_array_equals();
   251   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   252   bool inline_native_clone(bool is_virtual);
   253   bool inline_native_Reflection_getCallerClass();
   254   // Helper function for inlining native object hash method
   255   bool inline_native_hashcode(bool is_virtual, bool is_static);
   256   bool inline_native_getClass();
   258   // Helper functions for inlining arraycopy
   259   bool inline_arraycopy();
   260   void generate_arraycopy(const TypePtr* adr_type,
   261                           BasicType basic_elem_type,
   262                           Node* src,  Node* src_offset,
   263                           Node* dest, Node* dest_offset,
   264                           Node* copy_length,
   265                           bool disjoint_bases = false,
   266                           bool length_never_negative = false,
   267                           RegionNode* slow_region = NULL);
   268   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   269                                                 RegionNode* slow_region);
   270   void generate_clear_array(const TypePtr* adr_type,
   271                             Node* dest,
   272                             BasicType basic_elem_type,
   273                             Node* slice_off,
   274                             Node* slice_len,
   275                             Node* slice_end);
   276   bool generate_block_arraycopy(const TypePtr* adr_type,
   277                                 BasicType basic_elem_type,
   278                                 AllocateNode* alloc,
   279                                 Node* src,  Node* src_offset,
   280                                 Node* dest, Node* dest_offset,
   281                                 Node* dest_size, bool dest_uninitialized);
   282   void generate_slow_arraycopy(const TypePtr* adr_type,
   283                                Node* src,  Node* src_offset,
   284                                Node* dest, Node* dest_offset,
   285                                Node* copy_length, bool dest_uninitialized);
   286   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   287                                      Node* dest_elem_klass,
   288                                      Node* src,  Node* src_offset,
   289                                      Node* dest, Node* dest_offset,
   290                                      Node* copy_length, bool dest_uninitialized);
   291   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   292                                    Node* src,  Node* src_offset,
   293                                    Node* dest, Node* dest_offset,
   294                                    Node* copy_length, bool dest_uninitialized);
   295   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   296                                     BasicType basic_elem_type,
   297                                     bool disjoint_bases,
   298                                     Node* src,  Node* src_offset,
   299                                     Node* dest, Node* dest_offset,
   300                                     Node* copy_length, bool dest_uninitialized);
   301   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   302   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   303   bool inline_unsafe_ordered_store(BasicType type);
   304   bool inline_unsafe_fence(vmIntrinsics::ID id);
   305   bool inline_fp_conversions(vmIntrinsics::ID id);
   306   bool inline_number_methods(vmIntrinsics::ID id);
   307   bool inline_reference_get();
   308   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   309   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   310   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   311   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   312   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   313   bool inline_sha_implCompress(vmIntrinsics::ID id);
   314   bool inline_digestBase_implCompressMB(int predicate);
   315   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
   316                                  bool long_state, address stubAddr, const char *stubName,
   317                                  Node* src_start, Node* ofs, Node* limit);
   318   Node* get_state_from_sha_object(Node *sha_object);
   319   Node* get_state_from_sha5_object(Node *sha_object);
   320   Node* inline_digestBase_implCompressMB_predicate(int predicate);
   321   bool inline_encodeISOArray();
   322   bool inline_updateCRC32();
   323   bool inline_updateBytesCRC32();
   324   bool inline_updateByteBufferCRC32();
   325   bool inline_multiplyToLen();
   326 };
   329 //---------------------------make_vm_intrinsic----------------------------
   330 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   331   vmIntrinsics::ID id = m->intrinsic_id();
   332   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   334   ccstr disable_intr = NULL;
   336   if ((DisableIntrinsic[0] != '\0'
   337        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
   338       (method_has_option_value("DisableIntrinsic", disable_intr)
   339        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
   340     // disabled by a user request on the command line:
   341     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   342     return NULL;
   343   }
   345   if (!m->is_loaded()) {
   346     // do not attempt to inline unloaded methods
   347     return NULL;
   348   }
   350   // Only a few intrinsics implement a virtual dispatch.
   351   // They are expensive calls which are also frequently overridden.
   352   if (is_virtual) {
   353     switch (id) {
   354     case vmIntrinsics::_hashCode:
   355     case vmIntrinsics::_clone:
   356       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   357       break;
   358     default:
   359       return NULL;
   360     }
   361   }
   363   // -XX:-InlineNatives disables nearly all intrinsics:
   364   if (!InlineNatives) {
   365     switch (id) {
   366     case vmIntrinsics::_indexOf:
   367     case vmIntrinsics::_compareTo:
   368     case vmIntrinsics::_equals:
   369     case vmIntrinsics::_equalsC:
   370     case vmIntrinsics::_getAndAddInt:
   371     case vmIntrinsics::_getAndAddLong:
   372     case vmIntrinsics::_getAndSetInt:
   373     case vmIntrinsics::_getAndSetLong:
   374     case vmIntrinsics::_getAndSetObject:
   375     case vmIntrinsics::_loadFence:
   376     case vmIntrinsics::_storeFence:
   377     case vmIntrinsics::_fullFence:
   378       break;  // InlineNatives does not control String.compareTo
   379     case vmIntrinsics::_Reference_get:
   380       break;  // InlineNatives does not control Reference.get
   381     default:
   382       return NULL;
   383     }
   384   }
   386   int predicates = 0;
   387   bool does_virtual_dispatch = false;
   389   switch (id) {
   390   case vmIntrinsics::_compareTo:
   391     if (!SpecialStringCompareTo)  return NULL;
   392     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   393     break;
   394   case vmIntrinsics::_indexOf:
   395     if (!SpecialStringIndexOf)  return NULL;
   396     break;
   397   case vmIntrinsics::_equals:
   398     if (!SpecialStringEquals)  return NULL;
   399     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   400     break;
   401   case vmIntrinsics::_equalsC:
   402     if (!SpecialArraysEquals)  return NULL;
   403     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   404     break;
   405   case vmIntrinsics::_arraycopy:
   406     if (!InlineArrayCopy)  return NULL;
   407     break;
   408   case vmIntrinsics::_copyMemory:
   409     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   410     if (!InlineArrayCopy)  return NULL;
   411     break;
   412   case vmIntrinsics::_hashCode:
   413     if (!InlineObjectHash)  return NULL;
   414     does_virtual_dispatch = true;
   415     break;
   416   case vmIntrinsics::_clone:
   417     does_virtual_dispatch = true;
   418   case vmIntrinsics::_copyOf:
   419   case vmIntrinsics::_copyOfRange:
   420     if (!InlineObjectCopy)  return NULL;
   421     // These also use the arraycopy intrinsic mechanism:
   422     if (!InlineArrayCopy)  return NULL;
   423     break;
   424   case vmIntrinsics::_encodeISOArray:
   425     if (!SpecialEncodeISOArray)  return NULL;
   426     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   427     break;
   428   case vmIntrinsics::_checkIndex:
   429     // We do not intrinsify this.  The optimizer does fine with it.
   430     return NULL;
   432   case vmIntrinsics::_getCallerClass:
   433     if (!UseNewReflection)  return NULL;
   434     if (!InlineReflectionGetCallerClass)  return NULL;
   435     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   436     break;
   438   case vmIntrinsics::_bitCount_i:
   439     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   440     break;
   442   case vmIntrinsics::_bitCount_l:
   443     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   444     break;
   446   case vmIntrinsics::_numberOfLeadingZeros_i:
   447     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   448     break;
   450   case vmIntrinsics::_numberOfLeadingZeros_l:
   451     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   452     break;
   454   case vmIntrinsics::_numberOfTrailingZeros_i:
   455     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   456     break;
   458   case vmIntrinsics::_numberOfTrailingZeros_l:
   459     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   460     break;
   462   case vmIntrinsics::_reverseBytes_c:
   463     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   464     break;
   465   case vmIntrinsics::_reverseBytes_s:
   466     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   467     break;
   468   case vmIntrinsics::_reverseBytes_i:
   469     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   470     break;
   471   case vmIntrinsics::_reverseBytes_l:
   472     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   473     break;
   475   case vmIntrinsics::_Reference_get:
   476     // Use the intrinsic version of Reference.get() so that the value in
   477     // the referent field can be registered by the G1 pre-barrier code.
   478     // Also add memory barrier to prevent commoning reads from this field
   479     // across safepoint since GC can change it value.
   480     break;
   482   case vmIntrinsics::_compareAndSwapObject:
   483 #ifdef _LP64
   484     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   485 #endif
   486     break;
   488   case vmIntrinsics::_compareAndSwapLong:
   489     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   490     break;
   492   case vmIntrinsics::_getAndAddInt:
   493     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   494     break;
   496   case vmIntrinsics::_getAndAddLong:
   497     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   498     break;
   500   case vmIntrinsics::_getAndSetInt:
   501     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   502     break;
   504   case vmIntrinsics::_getAndSetLong:
   505     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   506     break;
   508   case vmIntrinsics::_getAndSetObject:
   509 #ifdef _LP64
   510     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   511     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   512     break;
   513 #else
   514     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   515     break;
   516 #endif
   518   case vmIntrinsics::_aescrypt_encryptBlock:
   519   case vmIntrinsics::_aescrypt_decryptBlock:
   520     if (!UseAESIntrinsics) return NULL;
   521     break;
   523   case vmIntrinsics::_multiplyToLen:
   524     if (!UseMultiplyToLenIntrinsic) return NULL;
   525     break;
   527   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   528   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   529     if (!UseAESIntrinsics) return NULL;
   530     // these two require the predicated logic
   531     predicates = 1;
   532     break;
   534   case vmIntrinsics::_sha_implCompress:
   535     if (!UseSHA1Intrinsics) return NULL;
   536     break;
   538   case vmIntrinsics::_sha2_implCompress:
   539     if (!UseSHA256Intrinsics) return NULL;
   540     break;
   542   case vmIntrinsics::_sha5_implCompress:
   543     if (!UseSHA512Intrinsics) return NULL;
   544     break;
   546   case vmIntrinsics::_digestBase_implCompressMB:
   547     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
   548     predicates = 3;
   549     break;
   551   case vmIntrinsics::_updateCRC32:
   552   case vmIntrinsics::_updateBytesCRC32:
   553   case vmIntrinsics::_updateByteBufferCRC32:
   554     if (!UseCRC32Intrinsics) return NULL;
   555     break;
   557   case vmIntrinsics::_incrementExactI:
   558   case vmIntrinsics::_addExactI:
   559     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   560     break;
   561   case vmIntrinsics::_incrementExactL:
   562   case vmIntrinsics::_addExactL:
   563     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   564     break;
   565   case vmIntrinsics::_decrementExactI:
   566   case vmIntrinsics::_subtractExactI:
   567     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   568     break;
   569   case vmIntrinsics::_decrementExactL:
   570   case vmIntrinsics::_subtractExactL:
   571     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   572     break;
   573   case vmIntrinsics::_negateExactI:
   574     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   575     break;
   576   case vmIntrinsics::_negateExactL:
   577     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   578     break;
   579   case vmIntrinsics::_multiplyExactI:
   580     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   581     break;
   582   case vmIntrinsics::_multiplyExactL:
   583     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   584     break;
   586  default:
   587     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   588     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   589     break;
   590   }
   592   // -XX:-InlineClassNatives disables natives from the Class class.
   593   // The flag applies to all reflective calls, notably Array.newArray
   594   // (visible to Java programmers as Array.newInstance).
   595   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   596       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   597     if (!InlineClassNatives)  return NULL;
   598   }
   600   // -XX:-InlineThreadNatives disables natives from the Thread class.
   601   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   602     if (!InlineThreadNatives)  return NULL;
   603   }
   605   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   606   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   607       m->holder()->name() == ciSymbol::java_lang_Float() ||
   608       m->holder()->name() == ciSymbol::java_lang_Double()) {
   609     if (!InlineMathNatives)  return NULL;
   610   }
   612   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   613   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   614     if (!InlineUnsafeOps)  return NULL;
   615   }
   617   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
   618 }
   620 //----------------------register_library_intrinsics-----------------------
   621 // Initialize this file's data structures, for each Compile instance.
   622 void Compile::register_library_intrinsics() {
   623   // Nothing to do here.
   624 }
   626 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   627   LibraryCallKit kit(jvms, this);
   628   Compile* C = kit.C;
   629   int nodes = C->unique();
   630 #ifndef PRODUCT
   631   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   632     char buf[1000];
   633     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   634     tty->print_cr("Intrinsic %s", str);
   635   }
   636 #endif
   637   ciMethod* callee = kit.callee();
   638   const int bci    = kit.bci();
   640   // Try to inline the intrinsic.
   641   if (kit.try_to_inline(_last_predicate)) {
   642     if (C->print_intrinsics() || C->print_inlining()) {
   643       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   644     }
   645     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   646     if (C->log()) {
   647       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   648                      vmIntrinsics::name_at(intrinsic_id()),
   649                      (is_virtual() ? " virtual='1'" : ""),
   650                      C->unique() - nodes);
   651     }
   652     // Push the result from the inlined method onto the stack.
   653     kit.push_result();
   654     return kit.transfer_exceptions_into_jvms();
   655   }
   657   // The intrinsic bailed out
   658   if (C->print_intrinsics() || C->print_inlining()) {
   659     if (jvms->has_method()) {
   660       // Not a root compile.
   661       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   662       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   663     } else {
   664       // Root compile
   665       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   666                vmIntrinsics::name_at(intrinsic_id()),
   667                (is_virtual() ? " (virtual)" : ""), bci);
   668     }
   669   }
   670   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   671   return NULL;
   672 }
   674 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
   675   LibraryCallKit kit(jvms, this);
   676   Compile* C = kit.C;
   677   int nodes = C->unique();
   678   _last_predicate = predicate;
   679 #ifndef PRODUCT
   680   assert(is_predicated() && predicate < predicates_count(), "sanity");
   681   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   682     char buf[1000];
   683     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   684     tty->print_cr("Predicate for intrinsic %s", str);
   685   }
   686 #endif
   687   ciMethod* callee = kit.callee();
   688   const int bci    = kit.bci();
   690   Node* slow_ctl = kit.try_to_predicate(predicate);
   691   if (!kit.failing()) {
   692     if (C->print_intrinsics() || C->print_inlining()) {
   693       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
   694     }
   695     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   696     if (C->log()) {
   697       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   698                      vmIntrinsics::name_at(intrinsic_id()),
   699                      (is_virtual() ? " virtual='1'" : ""),
   700                      C->unique() - nodes);
   701     }
   702     return slow_ctl; // Could be NULL if the check folds.
   703   }
   705   // The intrinsic bailed out
   706   if (C->print_intrinsics() || C->print_inlining()) {
   707     if (jvms->has_method()) {
   708       // Not a root compile.
   709       const char* msg = "failed to generate predicate for intrinsic";
   710       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   711     } else {
   712       // Root compile
   713       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   714                                         vmIntrinsics::name_at(intrinsic_id()),
   715                                         (is_virtual() ? " (virtual)" : ""), bci);
   716     }
   717   }
   718   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   719   return NULL;
   720 }
   722 bool LibraryCallKit::try_to_inline(int predicate) {
   723   // Handle symbolic names for otherwise undistinguished boolean switches:
   724   const bool is_store       = true;
   725   const bool is_native_ptr  = true;
   726   const bool is_static      = true;
   727   const bool is_volatile    = true;
   729   if (!jvms()->has_method()) {
   730     // Root JVMState has a null method.
   731     assert(map()->memory()->Opcode() == Op_Parm, "");
   732     // Insert the memory aliasing node
   733     set_all_memory(reset_memory());
   734   }
   735   assert(merged_memory(), "");
   738   switch (intrinsic_id()) {
   739   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   740   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   741   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   743   case vmIntrinsics::_dsin:
   744   case vmIntrinsics::_dcos:
   745   case vmIntrinsics::_dtan:
   746   case vmIntrinsics::_dabs:
   747   case vmIntrinsics::_datan2:
   748   case vmIntrinsics::_dsqrt:
   749   case vmIntrinsics::_dexp:
   750   case vmIntrinsics::_dlog:
   751   case vmIntrinsics::_dlog10:
   752   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   754   case vmIntrinsics::_min:
   755   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   757   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   758   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   759   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   760   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   761   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   762   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   763   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   764   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   765   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   766   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   767   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   768   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   770   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   772   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   773   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   774   case vmIntrinsics::_equals:                   return inline_string_equals();
   776   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   777   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   778   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   779   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   780   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   781   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   782   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   783   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   784   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   786   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   787   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   788   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   789   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   790   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   791   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   792   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   793   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   794   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   796   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   797   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   798   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   799   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   800   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   801   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   802   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   803   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   805   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   806   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   807   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   808   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   809   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   810   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   811   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   812   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   814   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   815   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   816   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   817   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   818   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   819   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   820   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   821   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   822   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   824   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   825   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   826   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   827   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   828   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   829   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   830   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   831   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   832   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   834   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   835   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   836   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   837   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   839   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   840   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   841   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   843   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   844   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   845   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   847   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   848   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   849   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   850   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   851   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   853   case vmIntrinsics::_loadFence:
   854   case vmIntrinsics::_storeFence:
   855   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   857   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   858   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   860 #ifdef TRACE_HAVE_INTRINSICS
   861   case vmIntrinsics::_classID:                  return inline_native_classID();
   862   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   863   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   864 #endif
   865   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   866   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   867   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   868   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   869   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   870   case vmIntrinsics::_getLength:                return inline_native_getLength();
   871   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   872   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   873   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   874   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   876   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   878   case vmIntrinsics::_isInstance:
   879   case vmIntrinsics::_getModifiers:
   880   case vmIntrinsics::_isInterface:
   881   case vmIntrinsics::_isArray:
   882   case vmIntrinsics::_isPrimitive:
   883   case vmIntrinsics::_getSuperclass:
   884   case vmIntrinsics::_getComponentType:
   885   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   887   case vmIntrinsics::_floatToRawIntBits:
   888   case vmIntrinsics::_floatToIntBits:
   889   case vmIntrinsics::_intBitsToFloat:
   890   case vmIntrinsics::_doubleToRawLongBits:
   891   case vmIntrinsics::_doubleToLongBits:
   892   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   894   case vmIntrinsics::_numberOfLeadingZeros_i:
   895   case vmIntrinsics::_numberOfLeadingZeros_l:
   896   case vmIntrinsics::_numberOfTrailingZeros_i:
   897   case vmIntrinsics::_numberOfTrailingZeros_l:
   898   case vmIntrinsics::_bitCount_i:
   899   case vmIntrinsics::_bitCount_l:
   900   case vmIntrinsics::_reverseBytes_i:
   901   case vmIntrinsics::_reverseBytes_l:
   902   case vmIntrinsics::_reverseBytes_s:
   903   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   905   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   907   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   909   case vmIntrinsics::_aescrypt_encryptBlock:
   910   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   912   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   913   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   914     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   916   case vmIntrinsics::_sha_implCompress:
   917   case vmIntrinsics::_sha2_implCompress:
   918   case vmIntrinsics::_sha5_implCompress:
   919     return inline_sha_implCompress(intrinsic_id());
   921   case vmIntrinsics::_digestBase_implCompressMB:
   922     return inline_digestBase_implCompressMB(predicate);
   924   case vmIntrinsics::_multiplyToLen:
   925     return inline_multiplyToLen();
   927   case vmIntrinsics::_encodeISOArray:
   928     return inline_encodeISOArray();
   930   case vmIntrinsics::_updateCRC32:
   931     return inline_updateCRC32();
   932   case vmIntrinsics::_updateBytesCRC32:
   933     return inline_updateBytesCRC32();
   934   case vmIntrinsics::_updateByteBufferCRC32:
   935     return inline_updateByteBufferCRC32();
   937   default:
   938     // If you get here, it may be that someone has added a new intrinsic
   939     // to the list in vmSymbols.hpp without implementing it here.
   940 #ifndef PRODUCT
   941     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   942       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   943                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   944     }
   945 #endif
   946     return false;
   947   }
   948 }
   950 Node* LibraryCallKit::try_to_predicate(int predicate) {
   951   if (!jvms()->has_method()) {
   952     // Root JVMState has a null method.
   953     assert(map()->memory()->Opcode() == Op_Parm, "");
   954     // Insert the memory aliasing node
   955     set_all_memory(reset_memory());
   956   }
   957   assert(merged_memory(), "");
   959   switch (intrinsic_id()) {
   960   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   961     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   962   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   963     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   964   case vmIntrinsics::_digestBase_implCompressMB:
   965     return inline_digestBase_implCompressMB_predicate(predicate);
   967   default:
   968     // If you get here, it may be that someone has added a new intrinsic
   969     // to the list in vmSymbols.hpp without implementing it here.
   970 #ifndef PRODUCT
   971     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   972       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   973                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   974     }
   975 #endif
   976     Node* slow_ctl = control();
   977     set_control(top()); // No fast path instrinsic
   978     return slow_ctl;
   979   }
   980 }
   982 //------------------------------set_result-------------------------------
   983 // Helper function for finishing intrinsics.
   984 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   985   record_for_igvn(region);
   986   set_control(_gvn.transform(region));
   987   set_result( _gvn.transform(value));
   988   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   989 }
   991 //------------------------------generate_guard---------------------------
   992 // Helper function for generating guarded fast-slow graph structures.
   993 // The given 'test', if true, guards a slow path.  If the test fails
   994 // then a fast path can be taken.  (We generally hope it fails.)
   995 // In all cases, GraphKit::control() is updated to the fast path.
   996 // The returned value represents the control for the slow path.
   997 // The return value is never 'top'; it is either a valid control
   998 // or NULL if it is obvious that the slow path can never be taken.
   999 // Also, if region and the slow control are not NULL, the slow edge
  1000 // is appended to the region.
  1001 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
  1002   if (stopped()) {
  1003     // Already short circuited.
  1004     return NULL;
  1007   // Build an if node and its projections.
  1008   // If test is true we take the slow path, which we assume is uncommon.
  1009   if (_gvn.type(test) == TypeInt::ZERO) {
  1010     // The slow branch is never taken.  No need to build this guard.
  1011     return NULL;
  1014   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
  1016   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
  1017   if (if_slow == top()) {
  1018     // The slow branch is never taken.  No need to build this guard.
  1019     return NULL;
  1022   if (region != NULL)
  1023     region->add_req(if_slow);
  1025   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
  1026   set_control(if_fast);
  1028   return if_slow;
  1031 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
  1032   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
  1034 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
  1035   return generate_guard(test, region, PROB_FAIR);
  1038 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
  1039                                                      Node* *pos_index) {
  1040   if (stopped())
  1041     return NULL;                // already stopped
  1042   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
  1043     return NULL;                // index is already adequately typed
  1044   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1045   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1046   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
  1047   if (is_neg != NULL && pos_index != NULL) {
  1048     // Emulate effect of Parse::adjust_map_after_if.
  1049     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
  1050     ccast->set_req(0, control());
  1051     (*pos_index) = _gvn.transform(ccast);
  1053   return is_neg;
  1056 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1057                                                         Node* *pos_index) {
  1058   if (stopped())
  1059     return NULL;                // already stopped
  1060   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1061     return NULL;                // index is already adequately typed
  1062   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1063   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1064   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1065   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1066   if (is_notp != NULL && pos_index != NULL) {
  1067     // Emulate effect of Parse::adjust_map_after_if.
  1068     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1069     ccast->set_req(0, control());
  1070     (*pos_index) = _gvn.transform(ccast);
  1072   return is_notp;
  1075 // Make sure that 'position' is a valid limit index, in [0..length].
  1076 // There are two equivalent plans for checking this:
  1077 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1078 //   B. offset  <=  (arrayLength - copyLength)
  1079 // We require that all of the values above, except for the sum and
  1080 // difference, are already known to be non-negative.
  1081 // Plan A is robust in the face of overflow, if offset and copyLength
  1082 // are both hugely positive.
  1083 //
  1084 // Plan B is less direct and intuitive, but it does not overflow at
  1085 // all, since the difference of two non-negatives is always
  1086 // representable.  Whenever Java methods must perform the equivalent
  1087 // check they generally use Plan B instead of Plan A.
  1088 // For the moment we use Plan A.
  1089 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1090                                                   Node* subseq_length,
  1091                                                   Node* array_length,
  1092                                                   RegionNode* region) {
  1093   if (stopped())
  1094     return NULL;                // already stopped
  1095   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1096   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1097     return NULL;                // common case of whole-array copy
  1098   Node* last = subseq_length;
  1099   if (!zero_offset)             // last += offset
  1100     last = _gvn.transform(new (C) AddINode(last, offset));
  1101   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1102   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1103   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1104   return is_over;
  1108 //--------------------------generate_current_thread--------------------
  1109 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1110   ciKlass*    thread_klass = env()->Thread_klass();
  1111   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1112   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1113   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1114   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1115   tls_output = thread;
  1116   return threadObj;
  1120 //------------------------------make_string_method_node------------------------
  1121 // Helper method for String intrinsic functions. This version is called
  1122 // with str1 and str2 pointing to String object nodes.
  1123 //
  1124 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1125   Node* no_ctrl = NULL;
  1127   // Get start addr of string
  1128   Node* str1_value   = load_String_value(no_ctrl, str1);
  1129   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1130   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1132   // Get length of string 1
  1133   Node* str1_len  = load_String_length(no_ctrl, str1);
  1135   Node* str2_value   = load_String_value(no_ctrl, str2);
  1136   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1137   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1139   Node* str2_len = NULL;
  1140   Node* result = NULL;
  1142   switch (opcode) {
  1143   case Op_StrIndexOf:
  1144     // Get length of string 2
  1145     str2_len = load_String_length(no_ctrl, str2);
  1147     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1148                                  str1_start, str1_len, str2_start, str2_len);
  1149     break;
  1150   case Op_StrComp:
  1151     // Get length of string 2
  1152     str2_len = load_String_length(no_ctrl, str2);
  1154     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1155                                  str1_start, str1_len, str2_start, str2_len);
  1156     break;
  1157   case Op_StrEquals:
  1158     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1159                                str1_start, str2_start, str1_len);
  1160     break;
  1161   default:
  1162     ShouldNotReachHere();
  1163     return NULL;
  1166   // All these intrinsics have checks.
  1167   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1169   return _gvn.transform(result);
  1172 // Helper method for String intrinsic functions. This version is called
  1173 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1174 // to Int nodes containing the lenghts of str1 and str2.
  1175 //
  1176 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1177   Node* result = NULL;
  1178   switch (opcode) {
  1179   case Op_StrIndexOf:
  1180     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1181                                  str1_start, cnt1, str2_start, cnt2);
  1182     break;
  1183   case Op_StrComp:
  1184     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1185                                  str1_start, cnt1, str2_start, cnt2);
  1186     break;
  1187   case Op_StrEquals:
  1188     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1189                                  str1_start, str2_start, cnt1);
  1190     break;
  1191   default:
  1192     ShouldNotReachHere();
  1193     return NULL;
  1196   // All these intrinsics have checks.
  1197   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1199   return _gvn.transform(result);
  1202 //------------------------------inline_string_compareTo------------------------
  1203 // public int java.lang.String.compareTo(String anotherString);
  1204 bool LibraryCallKit::inline_string_compareTo() {
  1205   Node* receiver = null_check(argument(0));
  1206   Node* arg      = null_check(argument(1));
  1207   if (stopped()) {
  1208     return true;
  1210   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1211   return true;
  1214 //------------------------------inline_string_equals------------------------
  1215 bool LibraryCallKit::inline_string_equals() {
  1216   Node* receiver = null_check_receiver();
  1217   // NOTE: Do not null check argument for String.equals() because spec
  1218   // allows to specify NULL as argument.
  1219   Node* argument = this->argument(1);
  1220   if (stopped()) {
  1221     return true;
  1224   // paths (plus control) merge
  1225   RegionNode* region = new (C) RegionNode(5);
  1226   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1228   // does source == target string?
  1229   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1230   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1232   Node* if_eq = generate_slow_guard(bol, NULL);
  1233   if (if_eq != NULL) {
  1234     // receiver == argument
  1235     phi->init_req(2, intcon(1));
  1236     region->init_req(2, if_eq);
  1239   // get String klass for instanceOf
  1240   ciInstanceKlass* klass = env()->String_klass();
  1242   if (!stopped()) {
  1243     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1244     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1245     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1247     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1248     //instanceOf == true, fallthrough
  1250     if (inst_false != NULL) {
  1251       phi->init_req(3, intcon(0));
  1252       region->init_req(3, inst_false);
  1256   if (!stopped()) {
  1257     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1259     // Properly cast the argument to String
  1260     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1261     // This path is taken only when argument's type is String:NotNull.
  1262     argument = cast_not_null(argument, false);
  1264     Node* no_ctrl = NULL;
  1266     // Get start addr of receiver
  1267     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1268     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1269     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1271     // Get length of receiver
  1272     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1274     // Get start addr of argument
  1275     Node* argument_val    = load_String_value(no_ctrl, argument);
  1276     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1277     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1279     // Get length of argument
  1280     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1282     // Check for receiver count != argument count
  1283     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1284     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1285     Node* if_ne = generate_slow_guard(bol, NULL);
  1286     if (if_ne != NULL) {
  1287       phi->init_req(4, intcon(0));
  1288       region->init_req(4, if_ne);
  1291     // Check for count == 0 is done by assembler code for StrEquals.
  1293     if (!stopped()) {
  1294       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1295       phi->init_req(1, equals);
  1296       region->init_req(1, control());
  1300   // post merge
  1301   set_control(_gvn.transform(region));
  1302   record_for_igvn(region);
  1304   set_result(_gvn.transform(phi));
  1305   return true;
  1308 //------------------------------inline_array_equals----------------------------
  1309 bool LibraryCallKit::inline_array_equals() {
  1310   Node* arg1 = argument(0);
  1311   Node* arg2 = argument(1);
  1312   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1313   return true;
  1316 // Java version of String.indexOf(constant string)
  1317 // class StringDecl {
  1318 //   StringDecl(char[] ca) {
  1319 //     offset = 0;
  1320 //     count = ca.length;
  1321 //     value = ca;
  1322 //   }
  1323 //   int offset;
  1324 //   int count;
  1325 //   char[] value;
  1326 // }
  1327 //
  1328 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1329 //                             int targetOffset, int cache_i, int md2) {
  1330 //   int cache = cache_i;
  1331 //   int sourceOffset = string_object.offset;
  1332 //   int sourceCount = string_object.count;
  1333 //   int targetCount = target_object.length;
  1334 //
  1335 //   int targetCountLess1 = targetCount - 1;
  1336 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1337 //
  1338 //   char[] source = string_object.value;
  1339 //   char[] target = target_object;
  1340 //   int lastChar = target[targetCountLess1];
  1341 //
  1342 //  outer_loop:
  1343 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1344 //     int src = source[i + targetCountLess1];
  1345 //     if (src == lastChar) {
  1346 //       // With random strings and a 4-character alphabet,
  1347 //       // reverse matching at this point sets up 0.8% fewer
  1348 //       // frames, but (paradoxically) makes 0.3% more probes.
  1349 //       // Since those probes are nearer the lastChar probe,
  1350 //       // there is may be a net D$ win with reverse matching.
  1351 //       // But, reversing loop inhibits unroll of inner loop
  1352 //       // for unknown reason.  So, does running outer loop from
  1353 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1354 //       for (int j = 0; j < targetCountLess1; j++) {
  1355 //         if (target[targetOffset + j] != source[i+j]) {
  1356 //           if ((cache & (1 << source[i+j])) == 0) {
  1357 //             if (md2 < j+1) {
  1358 //               i += j+1;
  1359 //               continue outer_loop;
  1360 //             }
  1361 //           }
  1362 //           i += md2;
  1363 //           continue outer_loop;
  1364 //         }
  1365 //       }
  1366 //       return i - sourceOffset;
  1367 //     }
  1368 //     if ((cache & (1 << src)) == 0) {
  1369 //       i += targetCountLess1;
  1370 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1371 //     i++;
  1372 //   }
  1373 //   return -1;
  1374 // }
  1376 //------------------------------string_indexOf------------------------
  1377 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1378                                      jint cache_i, jint md2_i) {
  1380   Node* no_ctrl  = NULL;
  1381   float likely   = PROB_LIKELY(0.9);
  1382   float unlikely = PROB_UNLIKELY(0.9);
  1384   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1386   Node* source        = load_String_value(no_ctrl, string_object);
  1387   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1388   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1390   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1391   jint target_length = target_array->length();
  1392   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1393   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1395   // String.value field is known to be @Stable.
  1396   if (UseImplicitStableValues) {
  1397     target = cast_array_to_stable(target, target_type);
  1400   IdealKit kit(this, false, true);
  1401 #define __ kit.
  1402   Node* zero             = __ ConI(0);
  1403   Node* one              = __ ConI(1);
  1404   Node* cache            = __ ConI(cache_i);
  1405   Node* md2              = __ ConI(md2_i);
  1406   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1407   Node* targetCount      = __ ConI(target_length);
  1408   Node* targetCountLess1 = __ ConI(target_length - 1);
  1409   Node* targetOffset     = __ ConI(targetOffset_i);
  1410   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1412   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1413   Node* outer_loop = __ make_label(2 /* goto */);
  1414   Node* return_    = __ make_label(1);
  1416   __ set(rtn,__ ConI(-1));
  1417   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1418        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1419        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1420        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1421        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1422          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1423               Node* tpj = __ AddI(targetOffset, __ value(j));
  1424               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1425               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1426               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1427               __ if_then(targ, BoolTest::ne, src2); {
  1428                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1429                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1430                     __ increment(i, __ AddI(__ value(j), one));
  1431                     __ goto_(outer_loop);
  1432                   } __ end_if(); __ dead(j);
  1433                 }__ end_if(); __ dead(j);
  1434                 __ increment(i, md2);
  1435                 __ goto_(outer_loop);
  1436               }__ end_if();
  1437               __ increment(j, one);
  1438          }__ end_loop(); __ dead(j);
  1439          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1440          __ goto_(return_);
  1441        }__ end_if();
  1442        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1443          __ increment(i, targetCountLess1);
  1444        }__ end_if();
  1445        __ increment(i, one);
  1446        __ bind(outer_loop);
  1447   }__ end_loop(); __ dead(i);
  1448   __ bind(return_);
  1450   // Final sync IdealKit and GraphKit.
  1451   final_sync(kit);
  1452   Node* result = __ value(rtn);
  1453 #undef __
  1454   C->set_has_loops(true);
  1455   return result;
  1458 //------------------------------inline_string_indexOf------------------------
  1459 bool LibraryCallKit::inline_string_indexOf() {
  1460   Node* receiver = argument(0);
  1461   Node* arg      = argument(1);
  1463   Node* result;
  1464   // Disable the use of pcmpestri until it can be guaranteed that
  1465   // the load doesn't cross into the uncommited space.
  1466   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1467       UseSSE42Intrinsics) {
  1468     // Generate SSE4.2 version of indexOf
  1469     // We currently only have match rules that use SSE4.2
  1471     receiver = null_check(receiver);
  1472     arg      = null_check(arg);
  1473     if (stopped()) {
  1474       return true;
  1477     ciInstanceKlass* str_klass = env()->String_klass();
  1478     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1480     // Make the merge point
  1481     RegionNode* result_rgn = new (C) RegionNode(4);
  1482     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1483     Node* no_ctrl  = NULL;
  1485     // Get start addr of source string
  1486     Node* source = load_String_value(no_ctrl, receiver);
  1487     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1488     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1490     // Get length of source string
  1491     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1493     // Get start addr of substring
  1494     Node* substr = load_String_value(no_ctrl, arg);
  1495     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1496     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1498     // Get length of source string
  1499     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1501     // Check for substr count > string count
  1502     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1503     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1504     Node* if_gt = generate_slow_guard(bol, NULL);
  1505     if (if_gt != NULL) {
  1506       result_phi->init_req(2, intcon(-1));
  1507       result_rgn->init_req(2, if_gt);
  1510     if (!stopped()) {
  1511       // Check for substr count == 0
  1512       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1513       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1514       Node* if_zero = generate_slow_guard(bol, NULL);
  1515       if (if_zero != NULL) {
  1516         result_phi->init_req(3, intcon(0));
  1517         result_rgn->init_req(3, if_zero);
  1521     if (!stopped()) {
  1522       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1523       result_phi->init_req(1, result);
  1524       result_rgn->init_req(1, control());
  1526     set_control(_gvn.transform(result_rgn));
  1527     record_for_igvn(result_rgn);
  1528     result = _gvn.transform(result_phi);
  1530   } else { // Use LibraryCallKit::string_indexOf
  1531     // don't intrinsify if argument isn't a constant string.
  1532     if (!arg->is_Con()) {
  1533      return false;
  1535     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1536     if (str_type == NULL) {
  1537       return false;
  1539     ciInstanceKlass* klass = env()->String_klass();
  1540     ciObject* str_const = str_type->const_oop();
  1541     if (str_const == NULL || str_const->klass() != klass) {
  1542       return false;
  1544     ciInstance* str = str_const->as_instance();
  1545     assert(str != NULL, "must be instance");
  1547     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1548     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1550     int o;
  1551     int c;
  1552     if (java_lang_String::has_offset_field()) {
  1553       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1554       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1555     } else {
  1556       o = 0;
  1557       c = pat->length();
  1560     // constant strings have no offset and count == length which
  1561     // simplifies the resulting code somewhat so lets optimize for that.
  1562     if (o != 0 || c != pat->length()) {
  1563      return false;
  1566     receiver = null_check(receiver, T_OBJECT);
  1567     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1568     if (stopped()) {
  1569       return true;
  1572     // The null string as a pattern always returns 0 (match at beginning of string)
  1573     if (c == 0) {
  1574       set_result(intcon(0));
  1575       return true;
  1578     // Generate default indexOf
  1579     jchar lastChar = pat->char_at(o + (c - 1));
  1580     int cache = 0;
  1581     int i;
  1582     for (i = 0; i < c - 1; i++) {
  1583       assert(i < pat->length(), "out of range");
  1584       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1587     int md2 = c;
  1588     for (i = 0; i < c - 1; i++) {
  1589       assert(i < pat->length(), "out of range");
  1590       if (pat->char_at(o + i) == lastChar) {
  1591         md2 = (c - 1) - i;
  1595     result = string_indexOf(receiver, pat, o, cache, md2);
  1597   set_result(result);
  1598   return true;
  1601 //--------------------------round_double_node--------------------------------
  1602 // Round a double node if necessary.
  1603 Node* LibraryCallKit::round_double_node(Node* n) {
  1604   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1605     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1606   return n;
  1609 //------------------------------inline_math-----------------------------------
  1610 // public static double Math.abs(double)
  1611 // public static double Math.sqrt(double)
  1612 // public static double Math.log(double)
  1613 // public static double Math.log10(double)
  1614 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1615   Node* arg = round_double_node(argument(0));
  1616   Node* n;
  1617   switch (id) {
  1618   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1619   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1620   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1621   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1622   default:  fatal_unexpected_iid(id);  break;
  1624   set_result(_gvn.transform(n));
  1625   return true;
  1628 //------------------------------inline_trig----------------------------------
  1629 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1630 // argument reduction which will turn into a fast/slow diamond.
  1631 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1632   Node* arg = round_double_node(argument(0));
  1633   Node* n = NULL;
  1635   switch (id) {
  1636   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1637   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1638   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1639   default:  fatal_unexpected_iid(id);  break;
  1641   n = _gvn.transform(n);
  1643   // Rounding required?  Check for argument reduction!
  1644   if (Matcher::strict_fp_requires_explicit_rounding) {
  1645     static const double     pi_4 =  0.7853981633974483;
  1646     static const double neg_pi_4 = -0.7853981633974483;
  1647     // pi/2 in 80-bit extended precision
  1648     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1649     // -pi/2 in 80-bit extended precision
  1650     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1651     // Cutoff value for using this argument reduction technique
  1652     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1653     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1655     // Pseudocode for sin:
  1656     // if (x <= Math.PI / 4.0) {
  1657     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1658     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1659     // } else {
  1660     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1661     // }
  1662     // return StrictMath.sin(x);
  1664     // Pseudocode for cos:
  1665     // if (x <= Math.PI / 4.0) {
  1666     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1667     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1668     // } else {
  1669     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1670     // }
  1671     // return StrictMath.cos(x);
  1673     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1674     // requires a special machine instruction to load it.  Instead we'll try
  1675     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1676     // probably do the math inside the SIN encoding.
  1678     // Make the merge point
  1679     RegionNode* r = new (C) RegionNode(3);
  1680     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1682     // Flatten arg so we need only 1 test
  1683     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1684     // Node for PI/4 constant
  1685     Node *pi4 = makecon(TypeD::make(pi_4));
  1686     // Check PI/4 : abs(arg)
  1687     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1688     // Check: If PI/4 < abs(arg) then go slow
  1689     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1690     // Branch either way
  1691     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1692     set_control(opt_iff(r,iff));
  1694     // Set fast path result
  1695     phi->init_req(2, n);
  1697     // Slow path - non-blocking leaf call
  1698     Node* call = NULL;
  1699     switch (id) {
  1700     case vmIntrinsics::_dsin:
  1701       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1702                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1703                                "Sin", NULL, arg, top());
  1704       break;
  1705     case vmIntrinsics::_dcos:
  1706       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1707                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1708                                "Cos", NULL, arg, top());
  1709       break;
  1710     case vmIntrinsics::_dtan:
  1711       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1712                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1713                                "Tan", NULL, arg, top());
  1714       break;
  1716     assert(control()->in(0) == call, "");
  1717     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1718     r->init_req(1, control());
  1719     phi->init_req(1, slow_result);
  1721     // Post-merge
  1722     set_control(_gvn.transform(r));
  1723     record_for_igvn(r);
  1724     n = _gvn.transform(phi);
  1726     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1728   set_result(n);
  1729   return true;
  1732 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1733   //-------------------
  1734   //result=(result.isNaN())? funcAddr():result;
  1735   // Check: If isNaN() by checking result!=result? then either trap
  1736   // or go to runtime
  1737   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1738   // Build the boolean node
  1739   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1741   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1742     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1743       // The pow or exp intrinsic returned a NaN, which requires a call
  1744       // to the runtime.  Recompile with the runtime call.
  1745       uncommon_trap(Deoptimization::Reason_intrinsic,
  1746                     Deoptimization::Action_make_not_entrant);
  1748     return result;
  1749   } else {
  1750     // If this inlining ever returned NaN in the past, we compile a call
  1751     // to the runtime to properly handle corner cases
  1753     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1754     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1755     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1757     if (!if_slow->is_top()) {
  1758       RegionNode* result_region = new (C) RegionNode(3);
  1759       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1761       result_region->init_req(1, if_fast);
  1762       result_val->init_req(1, result);
  1764       set_control(if_slow);
  1766       const TypePtr* no_memory_effects = NULL;
  1767       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1768                                    no_memory_effects,
  1769                                    x, top(), y, y ? top() : NULL);
  1770       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1771 #ifdef ASSERT
  1772       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1773       assert(value_top == top(), "second value must be top");
  1774 #endif
  1776       result_region->init_req(2, control());
  1777       result_val->init_req(2, value);
  1778       set_control(_gvn.transform(result_region));
  1779       return _gvn.transform(result_val);
  1780     } else {
  1781       return result;
  1786 //------------------------------inline_exp-------------------------------------
  1787 // Inline exp instructions, if possible.  The Intel hardware only misses
  1788 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1789 bool LibraryCallKit::inline_exp() {
  1790   Node* arg = round_double_node(argument(0));
  1791   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1793   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1794   set_result(n);
  1796   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1797   return true;
  1800 //------------------------------inline_pow-------------------------------------
  1801 // Inline power instructions, if possible.
  1802 bool LibraryCallKit::inline_pow() {
  1803   // Pseudocode for pow
  1804   // if (y == 2) {
  1805   //   return x * x;
  1806   // } else {
  1807   //   if (x <= 0.0) {
  1808   //     long longy = (long)y;
  1809   //     if ((double)longy == y) { // if y is long
  1810   //       if (y + 1 == y) longy = 0; // huge number: even
  1811   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1812   //     } else {
  1813   //       result = NaN;
  1814   //     }
  1815   //   } else {
  1816   //     result = DPow(x,y);
  1817   //   }
  1818   //   if (result != result)?  {
  1819   //     result = uncommon_trap() or runtime_call();
  1820   //   }
  1821   //   return result;
  1822   // }
  1824   Node* x = round_double_node(argument(0));
  1825   Node* y = round_double_node(argument(2));
  1827   Node* result = NULL;
  1829   Node*   const_two_node = makecon(TypeD::make(2.0));
  1830   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
  1831   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
  1832   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1833   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
  1834   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
  1836   RegionNode* region_node = new (C) RegionNode(3);
  1837   region_node->init_req(1, if_true);
  1839   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
  1840   // special case for x^y where y == 2, we can convert it to x * x
  1841   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
  1843   // set control to if_false since we will now process the false branch
  1844   set_control(if_false);
  1846   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1847     // Short form: skip the fancy tests and just check for NaN result.
  1848     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1849   } else {
  1850     // If this inlining ever returned NaN in the past, include all
  1851     // checks + call to the runtime.
  1853     // Set the merge point for If node with condition of (x <= 0.0)
  1854     // There are four possible paths to region node and phi node
  1855     RegionNode *r = new (C) RegionNode(4);
  1856     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1858     // Build the first if node: if (x <= 0.0)
  1859     // Node for 0 constant
  1860     Node *zeronode = makecon(TypeD::ZERO);
  1861     // Check x:0
  1862     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1863     // Check: If (x<=0) then go complex path
  1864     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1865     // Branch either way
  1866     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1867     // Fast path taken; set region slot 3
  1868     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1869     r->init_req(3,fast_taken); // Capture fast-control
  1871     // Fast path not-taken, i.e. slow path
  1872     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1874     // Set fast path result
  1875     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1876     phi->init_req(3, fast_result);
  1878     // Complex path
  1879     // Build the second if node (if y is long)
  1880     // Node for (long)y
  1881     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1882     // Node for (double)((long) y)
  1883     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1884     // Check (double)((long) y) : y
  1885     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1886     // Check if (y isn't long) then go to slow path
  1888     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1889     // Branch either way
  1890     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1891     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1893     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1895     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1896     // Node for constant 1
  1897     Node *conone = longcon(1);
  1898     // 1& (long)y
  1899     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1901     // A huge number is always even. Detect a huge number by checking
  1902     // if y + 1 == y and set integer to be tested for parity to 0.
  1903     // Required for corner case:
  1904     // (long)9.223372036854776E18 = max_jlong
  1905     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1906     // max_jlong is odd but 9.223372036854776E18 is even
  1907     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1908     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1909     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1910     Node* correctedsign = NULL;
  1911     if (ConditionalMoveLimit != 0) {
  1912       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1913     } else {
  1914       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1915       RegionNode *r = new (C) RegionNode(3);
  1916       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1917       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1918       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1919       phi->init_req(1, signnode);
  1920       phi->init_req(2, longcon(0));
  1921       correctedsign = _gvn.transform(phi);
  1922       ylong_path = _gvn.transform(r);
  1923       record_for_igvn(r);
  1926     // zero node
  1927     Node *conzero = longcon(0);
  1928     // Check (1&(long)y)==0?
  1929     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1930     // Check if (1&(long)y)!=0?, if so the result is negative
  1931     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1932     // abs(x)
  1933     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1934     // abs(x)^y
  1935     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1936     // -abs(x)^y
  1937     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1938     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1939     Node *signresult = NULL;
  1940     if (ConditionalMoveLimit != 0) {
  1941       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1942     } else {
  1943       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1944       RegionNode *r = new (C) RegionNode(3);
  1945       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1946       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1947       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1948       phi->init_req(1, absxpowy);
  1949       phi->init_req(2, negabsxpowy);
  1950       signresult = _gvn.transform(phi);
  1951       ylong_path = _gvn.transform(r);
  1952       record_for_igvn(r);
  1954     // Set complex path fast result
  1955     r->init_req(2, ylong_path);
  1956     phi->init_req(2, signresult);
  1958     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1959     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1960     r->init_req(1,slow_path);
  1961     phi->init_req(1,slow_result);
  1963     // Post merge
  1964     set_control(_gvn.transform(r));
  1965     record_for_igvn(r);
  1966     result = _gvn.transform(phi);
  1969   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1971   // control from finish_pow_exp is now input to the region node
  1972   region_node->set_req(2, control());
  1973   // the result from finish_pow_exp is now input to the phi node
  1974   phi_node->init_req(2, result);
  1975   set_control(_gvn.transform(region_node));
  1976   record_for_igvn(region_node);
  1977   set_result(_gvn.transform(phi_node));
  1979   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1980   return true;
  1983 //------------------------------runtime_math-----------------------------
  1984 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1985   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1986          "must be (DD)D or (D)D type");
  1988   // Inputs
  1989   Node* a = round_double_node(argument(0));
  1990   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1992   const TypePtr* no_memory_effects = NULL;
  1993   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1994                                  no_memory_effects,
  1995                                  a, top(), b, b ? top() : NULL);
  1996   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1997 #ifdef ASSERT
  1998   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1999   assert(value_top == top(), "second value must be top");
  2000 #endif
  2002   set_result(value);
  2003   return true;
  2006 //------------------------------inline_math_native-----------------------------
  2007 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  2008 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  2009   switch (id) {
  2010     // These intrinsics are not properly supported on all hardware
  2011   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  2012     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  2013   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  2014     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  2015   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  2016     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  2018   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  2019     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  2020   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  2021     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  2023     // These intrinsics are supported on all hardware
  2024   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  2025   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  2027   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  2028     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  2029   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  2030     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  2031 #undef FN_PTR
  2033    // These intrinsics are not yet correctly implemented
  2034   case vmIntrinsics::_datan2:
  2035     return false;
  2037   default:
  2038     fatal_unexpected_iid(id);
  2039     return false;
  2043 static bool is_simple_name(Node* n) {
  2044   return (n->req() == 1         // constant
  2045           || (n->is_Type() && n->as_Type()->type()->singleton())
  2046           || n->is_Proj()       // parameter or return value
  2047           || n->is_Phi()        // local of some sort
  2048           );
  2051 //----------------------------inline_min_max-----------------------------------
  2052 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  2053   set_result(generate_min_max(id, argument(0), argument(1)));
  2054   return true;
  2057 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  2058   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  2059   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2060   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  2061   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  2064     PreserveJVMState pjvms(this);
  2065     PreserveReexecuteState preexecs(this);
  2066     jvms()->set_should_reexecute(true);
  2068     set_control(slow_path);
  2069     set_i_o(i_o());
  2071     uncommon_trap(Deoptimization::Reason_intrinsic,
  2072                   Deoptimization::Action_none);
  2075   set_control(fast_path);
  2076   set_result(math);
  2079 template <typename OverflowOp>
  2080 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  2081   typedef typename OverflowOp::MathOp MathOp;
  2083   MathOp* mathOp = new(C) MathOp(arg1, arg2);
  2084   Node* operation = _gvn.transform( mathOp );
  2085   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  2086   inline_math_mathExact(operation, ofcheck);
  2087   return true;
  2090 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2091   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  2094 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2095   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  2098 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2099   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  2102 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2103   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  2106 bool LibraryCallKit::inline_math_negateExactI() {
  2107   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  2110 bool LibraryCallKit::inline_math_negateExactL() {
  2111   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  2114 bool LibraryCallKit::inline_math_multiplyExactI() {
  2115   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  2118 bool LibraryCallKit::inline_math_multiplyExactL() {
  2119   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  2122 Node*
  2123 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2124   // These are the candidate return value:
  2125   Node* xvalue = x0;
  2126   Node* yvalue = y0;
  2128   if (xvalue == yvalue) {
  2129     return xvalue;
  2132   bool want_max = (id == vmIntrinsics::_max);
  2134   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2135   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2136   if (txvalue == NULL || tyvalue == NULL)  return top();
  2137   // This is not really necessary, but it is consistent with a
  2138   // hypothetical MaxINode::Value method:
  2139   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2141   // %%% This folding logic should (ideally) be in a different place.
  2142   // Some should be inside IfNode, and there to be a more reliable
  2143   // transformation of ?: style patterns into cmoves.  We also want
  2144   // more powerful optimizations around cmove and min/max.
  2146   // Try to find a dominating comparison of these guys.
  2147   // It can simplify the index computation for Arrays.copyOf
  2148   // and similar uses of System.arraycopy.
  2149   // First, compute the normalized version of CmpI(x, y).
  2150   int   cmp_op = Op_CmpI;
  2151   Node* xkey = xvalue;
  2152   Node* ykey = yvalue;
  2153   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2154   if (ideal_cmpxy->is_Cmp()) {
  2155     // E.g., if we have CmpI(length - offset, count),
  2156     // it might idealize to CmpI(length, count + offset)
  2157     cmp_op = ideal_cmpxy->Opcode();
  2158     xkey = ideal_cmpxy->in(1);
  2159     ykey = ideal_cmpxy->in(2);
  2162   // Start by locating any relevant comparisons.
  2163   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2164   Node* cmpxy = NULL;
  2165   Node* cmpyx = NULL;
  2166   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2167     Node* cmp = start_from->fast_out(k);
  2168     if (cmp->outcnt() > 0 &&            // must have prior uses
  2169         cmp->in(0) == NULL &&           // must be context-independent
  2170         cmp->Opcode() == cmp_op) {      // right kind of compare
  2171       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2172       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2176   const int NCMPS = 2;
  2177   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2178   int cmpn;
  2179   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2180     if (cmps[cmpn] != NULL)  break;     // find a result
  2182   if (cmpn < NCMPS) {
  2183     // Look for a dominating test that tells us the min and max.
  2184     int depth = 0;                // Limit search depth for speed
  2185     Node* dom = control();
  2186     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2187       if (++depth >= 100)  break;
  2188       Node* ifproj = dom;
  2189       if (!ifproj->is_Proj())  continue;
  2190       Node* iff = ifproj->in(0);
  2191       if (!iff->is_If())  continue;
  2192       Node* bol = iff->in(1);
  2193       if (!bol->is_Bool())  continue;
  2194       Node* cmp = bol->in(1);
  2195       if (cmp == NULL)  continue;
  2196       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2197         if (cmps[cmpn] == cmp)  break;
  2198       if (cmpn == NCMPS)  continue;
  2199       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2200       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2201       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2202       // At this point, we know that 'x btest y' is true.
  2203       switch (btest) {
  2204       case BoolTest::eq:
  2205         // They are proven equal, so we can collapse the min/max.
  2206         // Either value is the answer.  Choose the simpler.
  2207         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2208           return yvalue;
  2209         return xvalue;
  2210       case BoolTest::lt:          // x < y
  2211       case BoolTest::le:          // x <= y
  2212         return (want_max ? yvalue : xvalue);
  2213       case BoolTest::gt:          // x > y
  2214       case BoolTest::ge:          // x >= y
  2215         return (want_max ? xvalue : yvalue);
  2220   // We failed to find a dominating test.
  2221   // Let's pick a test that might GVN with prior tests.
  2222   Node*          best_bol   = NULL;
  2223   BoolTest::mask best_btest = BoolTest::illegal;
  2224   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2225     Node* cmp = cmps[cmpn];
  2226     if (cmp == NULL)  continue;
  2227     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2228       Node* bol = cmp->fast_out(j);
  2229       if (!bol->is_Bool())  continue;
  2230       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2231       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2232       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2233       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2234         best_bol   = bol->as_Bool();
  2235         best_btest = btest;
  2240   Node* answer_if_true  = NULL;
  2241   Node* answer_if_false = NULL;
  2242   switch (best_btest) {
  2243   default:
  2244     if (cmpxy == NULL)
  2245       cmpxy = ideal_cmpxy;
  2246     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2247     // and fall through:
  2248   case BoolTest::lt:          // x < y
  2249   case BoolTest::le:          // x <= y
  2250     answer_if_true  = (want_max ? yvalue : xvalue);
  2251     answer_if_false = (want_max ? xvalue : yvalue);
  2252     break;
  2253   case BoolTest::gt:          // x > y
  2254   case BoolTest::ge:          // x >= y
  2255     answer_if_true  = (want_max ? xvalue : yvalue);
  2256     answer_if_false = (want_max ? yvalue : xvalue);
  2257     break;
  2260   jint hi, lo;
  2261   if (want_max) {
  2262     // We can sharpen the minimum.
  2263     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2264     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2265   } else {
  2266     // We can sharpen the maximum.
  2267     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2268     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2271   // Use a flow-free graph structure, to avoid creating excess control edges
  2272   // which could hinder other optimizations.
  2273   // Since Math.min/max is often used with arraycopy, we want
  2274   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2275   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2276                                answer_if_false, answer_if_true,
  2277                                TypeInt::make(lo, hi, widen));
  2279   return _gvn.transform(cmov);
  2281   /*
  2282   // This is not as desirable as it may seem, since Min and Max
  2283   // nodes do not have a full set of optimizations.
  2284   // And they would interfere, anyway, with 'if' optimizations
  2285   // and with CMoveI canonical forms.
  2286   switch (id) {
  2287   case vmIntrinsics::_min:
  2288     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2289   case vmIntrinsics::_max:
  2290     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2291   default:
  2292     ShouldNotReachHere();
  2294   */
  2297 inline int
  2298 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2299   const TypePtr* base_type = TypePtr::NULL_PTR;
  2300   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2301   if (base_type == NULL) {
  2302     // Unknown type.
  2303     return Type::AnyPtr;
  2304   } else if (base_type == TypePtr::NULL_PTR) {
  2305     // Since this is a NULL+long form, we have to switch to a rawptr.
  2306     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2307     offset = MakeConX(0);
  2308     return Type::RawPtr;
  2309   } else if (base_type->base() == Type::RawPtr) {
  2310     return Type::RawPtr;
  2311   } else if (base_type->isa_oopptr()) {
  2312     // Base is never null => always a heap address.
  2313     if (base_type->ptr() == TypePtr::NotNull) {
  2314       return Type::OopPtr;
  2316     // Offset is small => always a heap address.
  2317     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2318     if (offset_type != NULL &&
  2319         base_type->offset() == 0 &&     // (should always be?)
  2320         offset_type->_lo >= 0 &&
  2321         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2322       return Type::OopPtr;
  2324     // Otherwise, it might either be oop+off or NULL+addr.
  2325     return Type::AnyPtr;
  2326   } else {
  2327     // No information:
  2328     return Type::AnyPtr;
  2332 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2333   int kind = classify_unsafe_addr(base, offset);
  2334   if (kind == Type::RawPtr) {
  2335     return basic_plus_adr(top(), base, offset);
  2336   } else {
  2337     return basic_plus_adr(base, offset);
  2341 //--------------------------inline_number_methods-----------------------------
  2342 // inline int     Integer.numberOfLeadingZeros(int)
  2343 // inline int        Long.numberOfLeadingZeros(long)
  2344 //
  2345 // inline int     Integer.numberOfTrailingZeros(int)
  2346 // inline int        Long.numberOfTrailingZeros(long)
  2347 //
  2348 // inline int     Integer.bitCount(int)
  2349 // inline int        Long.bitCount(long)
  2350 //
  2351 // inline char  Character.reverseBytes(char)
  2352 // inline short     Short.reverseBytes(short)
  2353 // inline int     Integer.reverseBytes(int)
  2354 // inline long       Long.reverseBytes(long)
  2355 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2356   Node* arg = argument(0);
  2357   Node* n;
  2358   switch (id) {
  2359   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2360   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2361   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2362   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2363   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2364   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2365   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2366   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2367   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2368   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2369   default:  fatal_unexpected_iid(id);  break;
  2371   set_result(_gvn.transform(n));
  2372   return true;
  2375 //----------------------------inline_unsafe_access----------------------------
  2377 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2379 // Helper that guards and inserts a pre-barrier.
  2380 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2381                                         Node* pre_val, bool need_mem_bar) {
  2382   // We could be accessing the referent field of a reference object. If so, when G1
  2383   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2384   // This routine performs some compile time filters and generates suitable
  2385   // runtime filters that guard the pre-barrier code.
  2386   // Also add memory barrier for non volatile load from the referent field
  2387   // to prevent commoning of loads across safepoint.
  2388   if (!UseG1GC && !need_mem_bar)
  2389     return;
  2391   // Some compile time checks.
  2393   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2394   const TypeX* otype = offset->find_intptr_t_type();
  2395   if (otype != NULL && otype->is_con() &&
  2396       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2397     // Constant offset but not the reference_offset so just return
  2398     return;
  2401   // We only need to generate the runtime guards for instances.
  2402   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2403   if (btype != NULL) {
  2404     if (btype->isa_aryptr()) {
  2405       // Array type so nothing to do
  2406       return;
  2409     const TypeInstPtr* itype = btype->isa_instptr();
  2410     if (itype != NULL) {
  2411       // Can the klass of base_oop be statically determined to be
  2412       // _not_ a sub-class of Reference and _not_ Object?
  2413       ciKlass* klass = itype->klass();
  2414       if ( klass->is_loaded() &&
  2415           !klass->is_subtype_of(env()->Reference_klass()) &&
  2416           !env()->Object_klass()->is_subtype_of(klass)) {
  2417         return;
  2422   // The compile time filters did not reject base_oop/offset so
  2423   // we need to generate the following runtime filters
  2424   //
  2425   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2426   //   if (instance_of(base, java.lang.ref.Reference)) {
  2427   //     pre_barrier(_, pre_val, ...);
  2428   //   }
  2429   // }
  2431   float likely   = PROB_LIKELY(  0.999);
  2432   float unlikely = PROB_UNLIKELY(0.999);
  2434   IdealKit ideal(this);
  2435 #define __ ideal.
  2437   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2439   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2440       // Update graphKit memory and control from IdealKit.
  2441       sync_kit(ideal);
  2443       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2444       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2446       // Update IdealKit memory and control from graphKit.
  2447       __ sync_kit(this);
  2449       Node* one = __ ConI(1);
  2450       // is_instof == 0 if base_oop == NULL
  2451       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2453         // Update graphKit from IdeakKit.
  2454         sync_kit(ideal);
  2456         // Use the pre-barrier to record the value in the referent field
  2457         pre_barrier(false /* do_load */,
  2458                     __ ctrl(),
  2459                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2460                     pre_val /* pre_val */,
  2461                     T_OBJECT);
  2462         if (need_mem_bar) {
  2463           // Add memory barrier to prevent commoning reads from this field
  2464           // across safepoint since GC can change its value.
  2465           insert_mem_bar(Op_MemBarCPUOrder);
  2467         // Update IdealKit from graphKit.
  2468         __ sync_kit(this);
  2470       } __ end_if(); // _ref_type != ref_none
  2471   } __ end_if(); // offset == referent_offset
  2473   // Final sync IdealKit and GraphKit.
  2474   final_sync(ideal);
  2475 #undef __
  2479 // Interpret Unsafe.fieldOffset cookies correctly:
  2480 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2482 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2483   // Attempt to infer a sharper value type from the offset and base type.
  2484   ciKlass* sharpened_klass = NULL;
  2486   // See if it is an instance field, with an object type.
  2487   if (alias_type->field() != NULL) {
  2488     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2489     if (alias_type->field()->type()->is_klass()) {
  2490       sharpened_klass = alias_type->field()->type()->as_klass();
  2494   // See if it is a narrow oop array.
  2495   if (adr_type->isa_aryptr()) {
  2496     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2497       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2498       if (elem_type != NULL) {
  2499         sharpened_klass = elem_type->klass();
  2504   // The sharpened class might be unloaded if there is no class loader
  2505   // contraint in place.
  2506   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2507     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2509 #ifndef PRODUCT
  2510     if (C->print_intrinsics() || C->print_inlining()) {
  2511       tty->print("  from base type: ");  adr_type->dump();
  2512       tty->print("  sharpened value: ");  tjp->dump();
  2514 #endif
  2515     // Sharpen the value type.
  2516     return tjp;
  2518   return NULL;
  2521 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2522   if (callee()->is_static())  return false;  // caller must have the capability!
  2524 #ifndef PRODUCT
  2526     ResourceMark rm;
  2527     // Check the signatures.
  2528     ciSignature* sig = callee()->signature();
  2529 #ifdef ASSERT
  2530     if (!is_store) {
  2531       // Object getObject(Object base, int/long offset), etc.
  2532       BasicType rtype = sig->return_type()->basic_type();
  2533       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2534           rtype = T_ADDRESS;  // it is really a C void*
  2535       assert(rtype == type, "getter must return the expected value");
  2536       if (!is_native_ptr) {
  2537         assert(sig->count() == 2, "oop getter has 2 arguments");
  2538         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2539         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2540       } else {
  2541         assert(sig->count() == 1, "native getter has 1 argument");
  2542         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2544     } else {
  2545       // void putObject(Object base, int/long offset, Object x), etc.
  2546       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2547       if (!is_native_ptr) {
  2548         assert(sig->count() == 3, "oop putter has 3 arguments");
  2549         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2550         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2551       } else {
  2552         assert(sig->count() == 2, "native putter has 2 arguments");
  2553         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2555       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2556       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2557         vtype = T_ADDRESS;  // it is really a C void*
  2558       assert(vtype == type, "putter must accept the expected value");
  2560 #endif // ASSERT
  2562 #endif //PRODUCT
  2564   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2566   Node* receiver = argument(0);  // type: oop
  2568   // Build address expression.  See the code in inline_unsafe_prefetch.
  2569   Node* adr;
  2570   Node* heap_base_oop = top();
  2571   Node* offset = top();
  2572   Node* val;
  2574   if (!is_native_ptr) {
  2575     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2576     Node* base = argument(1);  // type: oop
  2577     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2578     offset = argument(2);  // type: long
  2579     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2580     // to be plain byte offsets, which are also the same as those accepted
  2581     // by oopDesc::field_base.
  2582     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2583            "fieldOffset must be byte-scaled");
  2584     // 32-bit machines ignore the high half!
  2585     offset = ConvL2X(offset);
  2586     adr = make_unsafe_address(base, offset);
  2587     heap_base_oop = base;
  2588     val = is_store ? argument(4) : NULL;
  2589   } else {
  2590     Node* ptr = argument(1);  // type: long
  2591     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2592     adr = make_unsafe_address(NULL, ptr);
  2593     val = is_store ? argument(3) : NULL;
  2596   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2598   // First guess at the value type.
  2599   const Type *value_type = Type::get_const_basic_type(type);
  2601   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2602   // there was not enough information to nail it down.
  2603   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2604   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2606   // We will need memory barriers unless we can determine a unique
  2607   // alias category for this reference.  (Note:  If for some reason
  2608   // the barriers get omitted and the unsafe reference begins to "pollute"
  2609   // the alias analysis of the rest of the graph, either Compile::can_alias
  2610   // or Compile::must_alias will throw a diagnostic assert.)
  2611   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2613   // If we are reading the value of the referent field of a Reference
  2614   // object (either by using Unsafe directly or through reflection)
  2615   // then, if G1 is enabled, we need to record the referent in an
  2616   // SATB log buffer using the pre-barrier mechanism.
  2617   // Also we need to add memory barrier to prevent commoning reads
  2618   // from this field across safepoint since GC can change its value.
  2619   bool need_read_barrier = !is_native_ptr && !is_store &&
  2620                            offset != top() && heap_base_oop != top();
  2622   if (!is_store && type == T_OBJECT) {
  2623     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2624     if (tjp != NULL) {
  2625       value_type = tjp;
  2629   receiver = null_check(receiver);
  2630   if (stopped()) {
  2631     return true;
  2633   // Heap pointers get a null-check from the interpreter,
  2634   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2635   // and it is not possible to fully distinguish unintended nulls
  2636   // from intended ones in this API.
  2638   if (is_volatile) {
  2639     // We need to emit leading and trailing CPU membars (see below) in
  2640     // addition to memory membars when is_volatile. This is a little
  2641     // too strong, but avoids the need to insert per-alias-type
  2642     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2643     // we cannot do effectively here because we probably only have a
  2644     // rough approximation of type.
  2645     need_mem_bar = true;
  2646     // For Stores, place a memory ordering barrier now.
  2647     if (is_store) {
  2648       insert_mem_bar(Op_MemBarRelease);
  2649     } else {
  2650       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2651         insert_mem_bar(Op_MemBarVolatile);
  2656   // Memory barrier to prevent normal and 'unsafe' accesses from
  2657   // bypassing each other.  Happens after null checks, so the
  2658   // exception paths do not take memory state from the memory barrier,
  2659   // so there's no problems making a strong assert about mixing users
  2660   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2661   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2662   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2664   if (!is_store) {
  2665     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
  2666     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
  2667     // load value
  2668     switch (type) {
  2669     case T_BOOLEAN:
  2670     case T_CHAR:
  2671     case T_BYTE:
  2672     case T_SHORT:
  2673     case T_INT:
  2674     case T_LONG:
  2675     case T_FLOAT:
  2676     case T_DOUBLE:
  2677       break;
  2678     case T_OBJECT:
  2679       if (need_read_barrier) {
  2680         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2682       break;
  2683     case T_ADDRESS:
  2684       // Cast to an int type.
  2685       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2686       p = ConvX2UL(p);
  2687       break;
  2688     default:
  2689       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2690       break;
  2692     // The load node has the control of the preceding MemBarCPUOrder.  All
  2693     // following nodes will have the control of the MemBarCPUOrder inserted at
  2694     // the end of this method.  So, pushing the load onto the stack at a later
  2695     // point is fine.
  2696     set_result(p);
  2697   } else {
  2698     // place effect of store into memory
  2699     switch (type) {
  2700     case T_DOUBLE:
  2701       val = dstore_rounding(val);
  2702       break;
  2703     case T_ADDRESS:
  2704       // Repackage the long as a pointer.
  2705       val = ConvL2X(val);
  2706       val = _gvn.transform(new (C) CastX2PNode(val));
  2707       break;
  2710     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2711     if (type != T_OBJECT ) {
  2712       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2713     } else {
  2714       // Possibly an oop being stored to Java heap or native memory
  2715       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2716         // oop to Java heap.
  2717         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2718       } else {
  2719         // We can't tell at compile time if we are storing in the Java heap or outside
  2720         // of it. So we need to emit code to conditionally do the proper type of
  2721         // store.
  2723         IdealKit ideal(this);
  2724 #define __ ideal.
  2725         // QQQ who knows what probability is here??
  2726         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2727           // Sync IdealKit and graphKit.
  2728           sync_kit(ideal);
  2729           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2730           // Update IdealKit memory.
  2731           __ sync_kit(this);
  2732         } __ else_(); {
  2733           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2734         } __ end_if();
  2735         // Final sync IdealKit and GraphKit.
  2736         final_sync(ideal);
  2737 #undef __
  2742   if (is_volatile) {
  2743     if (!is_store) {
  2744       insert_mem_bar(Op_MemBarAcquire);
  2745     } else {
  2746       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2747         insert_mem_bar(Op_MemBarVolatile);
  2752   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2754   return true;
  2757 //----------------------------inline_unsafe_prefetch----------------------------
  2759 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2760 #ifndef PRODUCT
  2762     ResourceMark rm;
  2763     // Check the signatures.
  2764     ciSignature* sig = callee()->signature();
  2765 #ifdef ASSERT
  2766     // Object getObject(Object base, int/long offset), etc.
  2767     BasicType rtype = sig->return_type()->basic_type();
  2768     if (!is_native_ptr) {
  2769       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2770       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2771       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2772     } else {
  2773       assert(sig->count() == 1, "native prefetch has 1 argument");
  2774       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2776 #endif // ASSERT
  2778 #endif // !PRODUCT
  2780   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2782   const int idx = is_static ? 0 : 1;
  2783   if (!is_static) {
  2784     null_check_receiver();
  2785     if (stopped()) {
  2786       return true;
  2790   // Build address expression.  See the code in inline_unsafe_access.
  2791   Node *adr;
  2792   if (!is_native_ptr) {
  2793     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2794     Node* base   = argument(idx + 0);  // type: oop
  2795     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2796     Node* offset = argument(idx + 1);  // type: long
  2797     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2798     // to be plain byte offsets, which are also the same as those accepted
  2799     // by oopDesc::field_base.
  2800     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2801            "fieldOffset must be byte-scaled");
  2802     // 32-bit machines ignore the high half!
  2803     offset = ConvL2X(offset);
  2804     adr = make_unsafe_address(base, offset);
  2805   } else {
  2806     Node* ptr = argument(idx + 0);  // type: long
  2807     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2808     adr = make_unsafe_address(NULL, ptr);
  2811   // Generate the read or write prefetch
  2812   Node *prefetch;
  2813   if (is_store) {
  2814     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2815   } else {
  2816     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2818   prefetch->init_req(0, control());
  2819   set_i_o(_gvn.transform(prefetch));
  2821   return true;
  2824 //----------------------------inline_unsafe_load_store----------------------------
  2825 // This method serves a couple of different customers (depending on LoadStoreKind):
  2826 //
  2827 // LS_cmpxchg:
  2828 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2829 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2830 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2831 //
  2832 // LS_xadd:
  2833 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2834 //   public long getAndAddLong(Object o, long offset, long delta)
  2835 //
  2836 // LS_xchg:
  2837 //   int    getAndSet(Object o, long offset, int    newValue)
  2838 //   long   getAndSet(Object o, long offset, long   newValue)
  2839 //   Object getAndSet(Object o, long offset, Object newValue)
  2840 //
  2841 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2842   // This basic scheme here is the same as inline_unsafe_access, but
  2843   // differs in enough details that combining them would make the code
  2844   // overly confusing.  (This is a true fact! I originally combined
  2845   // them, but even I was confused by it!) As much code/comments as
  2846   // possible are retained from inline_unsafe_access though to make
  2847   // the correspondences clearer. - dl
  2849   if (callee()->is_static())  return false;  // caller must have the capability!
  2851 #ifndef PRODUCT
  2852   BasicType rtype;
  2854     ResourceMark rm;
  2855     // Check the signatures.
  2856     ciSignature* sig = callee()->signature();
  2857     rtype = sig->return_type()->basic_type();
  2858     if (kind == LS_xadd || kind == LS_xchg) {
  2859       // Check the signatures.
  2860 #ifdef ASSERT
  2861       assert(rtype == type, "get and set must return the expected type");
  2862       assert(sig->count() == 3, "get and set has 3 arguments");
  2863       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2864       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2865       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2866 #endif // ASSERT
  2867     } else if (kind == LS_cmpxchg) {
  2868       // Check the signatures.
  2869 #ifdef ASSERT
  2870       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2871       assert(sig->count() == 4, "CAS has 4 arguments");
  2872       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2873       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2874 #endif // ASSERT
  2875     } else {
  2876       ShouldNotReachHere();
  2879 #endif //PRODUCT
  2881   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2883   // Get arguments:
  2884   Node* receiver = NULL;
  2885   Node* base     = NULL;
  2886   Node* offset   = NULL;
  2887   Node* oldval   = NULL;
  2888   Node* newval   = NULL;
  2889   if (kind == LS_cmpxchg) {
  2890     const bool two_slot_type = type2size[type] == 2;
  2891     receiver = argument(0);  // type: oop
  2892     base     = argument(1);  // type: oop
  2893     offset   = argument(2);  // type: long
  2894     oldval   = argument(4);  // type: oop, int, or long
  2895     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2896   } else if (kind == LS_xadd || kind == LS_xchg){
  2897     receiver = argument(0);  // type: oop
  2898     base     = argument(1);  // type: oop
  2899     offset   = argument(2);  // type: long
  2900     oldval   = NULL;
  2901     newval   = argument(4);  // type: oop, int, or long
  2904   // Null check receiver.
  2905   receiver = null_check(receiver);
  2906   if (stopped()) {
  2907     return true;
  2910   // Build field offset expression.
  2911   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2912   // to be plain byte offsets, which are also the same as those accepted
  2913   // by oopDesc::field_base.
  2914   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2915   // 32-bit machines ignore the high half of long offsets
  2916   offset = ConvL2X(offset);
  2917   Node* adr = make_unsafe_address(base, offset);
  2918   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2920   // For CAS, unlike inline_unsafe_access, there seems no point in
  2921   // trying to refine types. Just use the coarse types here.
  2922   const Type *value_type = Type::get_const_basic_type(type);
  2923   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2924   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2926   if (kind == LS_xchg && type == T_OBJECT) {
  2927     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2928     if (tjp != NULL) {
  2929       value_type = tjp;
  2933   int alias_idx = C->get_alias_index(adr_type);
  2935   // Memory-model-wise, a LoadStore acts like a little synchronized
  2936   // block, so needs barriers on each side.  These don't translate
  2937   // into actual barriers on most machines, but we still need rest of
  2938   // compiler to respect ordering.
  2940   insert_mem_bar(Op_MemBarRelease);
  2941   insert_mem_bar(Op_MemBarCPUOrder);
  2943   // 4984716: MemBars must be inserted before this
  2944   //          memory node in order to avoid a false
  2945   //          dependency which will confuse the scheduler.
  2946   Node *mem = memory(alias_idx);
  2948   // For now, we handle only those cases that actually exist: ints,
  2949   // longs, and Object. Adding others should be straightforward.
  2950   Node* load_store;
  2951   switch(type) {
  2952   case T_INT:
  2953     if (kind == LS_xadd) {
  2954       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2955     } else if (kind == LS_xchg) {
  2956       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2957     } else if (kind == LS_cmpxchg) {
  2958       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2959     } else {
  2960       ShouldNotReachHere();
  2962     break;
  2963   case T_LONG:
  2964     if (kind == LS_xadd) {
  2965       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2966     } else if (kind == LS_xchg) {
  2967       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2968     } else if (kind == LS_cmpxchg) {
  2969       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2970     } else {
  2971       ShouldNotReachHere();
  2973     break;
  2974   case T_OBJECT:
  2975     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2976     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2977     // Execute transformation here to avoid barrier generation in such case.
  2978     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2979       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2981     // Reference stores need a store barrier.
  2982     if (kind == LS_xchg) {
  2983       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2984       if (!can_move_pre_barrier()) {
  2985         pre_barrier(true /* do_load*/,
  2986                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2987                     NULL /* pre_val*/,
  2988                     T_OBJECT);
  2989       } // Else move pre_barrier to use load_store value, see below.
  2990     } else if (kind == LS_cmpxchg) {
  2991       // Same as for newval above:
  2992       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2993         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2995       // The only known value which might get overwritten is oldval.
  2996       pre_barrier(false /* do_load */,
  2997                   control(), NULL, NULL, max_juint, NULL, NULL,
  2998                   oldval /* pre_val */,
  2999                   T_OBJECT);
  3000     } else {
  3001       ShouldNotReachHere();
  3004 #ifdef _LP64
  3005     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3006       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  3007       if (kind == LS_xchg) {
  3008         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  3009                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  3010       } else {
  3011         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3012         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  3013         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  3014                                                                 newval_enc, oldval_enc));
  3016     } else
  3017 #endif
  3019       if (kind == LS_xchg) {
  3020         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  3021       } else {
  3022         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3023         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3026     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3027     break;
  3028   default:
  3029     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  3030     break;
  3033   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3034   // main role is to prevent LoadStore nodes from being optimized away
  3035   // when their results aren't used.
  3036   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  3037   set_memory(proj, alias_idx);
  3039   if (type == T_OBJECT && kind == LS_xchg) {
  3040 #ifdef _LP64
  3041     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3042       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  3044 #endif
  3045     if (can_move_pre_barrier()) {
  3046       // Don't need to load pre_val. The old value is returned by load_store.
  3047       // The pre_barrier can execute after the xchg as long as no safepoint
  3048       // gets inserted between them.
  3049       pre_barrier(false /* do_load */,
  3050                   control(), NULL, NULL, max_juint, NULL, NULL,
  3051                   load_store /* pre_val */,
  3052                   T_OBJECT);
  3056   // Add the trailing membar surrounding the access
  3057   insert_mem_bar(Op_MemBarCPUOrder);
  3058   insert_mem_bar(Op_MemBarAcquire);
  3060   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3061   set_result(load_store);
  3062   return true;
  3065 //----------------------------inline_unsafe_ordered_store----------------------
  3066 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3067 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3068 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3069 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3070   // This is another variant of inline_unsafe_access, differing in
  3071   // that it always issues store-store ("release") barrier and ensures
  3072   // store-atomicity (which only matters for "long").
  3074   if (callee()->is_static())  return false;  // caller must have the capability!
  3076 #ifndef PRODUCT
  3078     ResourceMark rm;
  3079     // Check the signatures.
  3080     ciSignature* sig = callee()->signature();
  3081 #ifdef ASSERT
  3082     BasicType rtype = sig->return_type()->basic_type();
  3083     assert(rtype == T_VOID, "must return void");
  3084     assert(sig->count() == 3, "has 3 arguments");
  3085     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3086     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3087 #endif // ASSERT
  3089 #endif //PRODUCT
  3091   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3093   // Get arguments:
  3094   Node* receiver = argument(0);  // type: oop
  3095   Node* base     = argument(1);  // type: oop
  3096   Node* offset   = argument(2);  // type: long
  3097   Node* val      = argument(4);  // type: oop, int, or long
  3099   // Null check receiver.
  3100   receiver = null_check(receiver);
  3101   if (stopped()) {
  3102     return true;
  3105   // Build field offset expression.
  3106   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3107   // 32-bit machines ignore the high half of long offsets
  3108   offset = ConvL2X(offset);
  3109   Node* adr = make_unsafe_address(base, offset);
  3110   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3111   const Type *value_type = Type::get_const_basic_type(type);
  3112   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3114   insert_mem_bar(Op_MemBarRelease);
  3115   insert_mem_bar(Op_MemBarCPUOrder);
  3116   // Ensure that the store is atomic for longs:
  3117   const bool require_atomic_access = true;
  3118   Node* store;
  3119   if (type == T_OBJECT) // reference stores need a store barrier.
  3120     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3121   else {
  3122     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3124   insert_mem_bar(Op_MemBarCPUOrder);
  3125   return true;
  3128 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3129   // Regardless of form, don't allow previous ld/st to move down,
  3130   // then issue acquire, release, or volatile mem_bar.
  3131   insert_mem_bar(Op_MemBarCPUOrder);
  3132   switch(id) {
  3133     case vmIntrinsics::_loadFence:
  3134       insert_mem_bar(Op_LoadFence);
  3135       return true;
  3136     case vmIntrinsics::_storeFence:
  3137       insert_mem_bar(Op_StoreFence);
  3138       return true;
  3139     case vmIntrinsics::_fullFence:
  3140       insert_mem_bar(Op_MemBarVolatile);
  3141       return true;
  3142     default:
  3143       fatal_unexpected_iid(id);
  3144       return false;
  3148 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3149   if (!kls->is_Con()) {
  3150     return true;
  3152   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3153   if (klsptr == NULL) {
  3154     return true;
  3156   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3157   // don't need a guard for a klass that is already initialized
  3158   return !ik->is_initialized();
  3161 //----------------------------inline_unsafe_allocate---------------------------
  3162 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3163 bool LibraryCallKit::inline_unsafe_allocate() {
  3164   if (callee()->is_static())  return false;  // caller must have the capability!
  3166   null_check_receiver();  // null-check, then ignore
  3167   Node* cls = null_check(argument(1));
  3168   if (stopped())  return true;
  3170   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3171   kls = null_check(kls);
  3172   if (stopped())  return true;  // argument was like int.class
  3174   Node* test = NULL;
  3175   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3176     // Note:  The argument might still be an illegal value like
  3177     // Serializable.class or Object[].class.   The runtime will handle it.
  3178     // But we must make an explicit check for initialization.
  3179     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3180     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3181     // can generate code to load it as unsigned byte.
  3182     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3183     Node* bits = intcon(InstanceKlass::fully_initialized);
  3184     test = _gvn.transform(new (C) SubINode(inst, bits));
  3185     // The 'test' is non-zero if we need to take a slow path.
  3188   Node* obj = new_instance(kls, test);
  3189   set_result(obj);
  3190   return true;
  3193 #ifdef TRACE_HAVE_INTRINSICS
  3194 /*
  3195  * oop -> myklass
  3196  * myklass->trace_id |= USED
  3197  * return myklass->trace_id & ~0x3
  3198  */
  3199 bool LibraryCallKit::inline_native_classID() {
  3200   null_check_receiver();  // null-check, then ignore
  3201   Node* cls = null_check(argument(1), T_OBJECT);
  3202   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3203   kls = null_check(kls, T_OBJECT);
  3204   ByteSize offset = TRACE_ID_OFFSET;
  3205   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3206   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3207   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3208   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3209   Node* clsused = longcon(0x01l); // set the class bit
  3210   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3212   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3213   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3214   set_result(andl);
  3215   return true;
  3218 bool LibraryCallKit::inline_native_threadID() {
  3219   Node* tls_ptr = NULL;
  3220   Node* cur_thr = generate_current_thread(tls_ptr);
  3221   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3222   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3223   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3225   Node* threadid = NULL;
  3226   size_t thread_id_size = OSThread::thread_id_size();
  3227   if (thread_id_size == (size_t) BytesPerLong) {
  3228     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3229   } else if (thread_id_size == (size_t) BytesPerInt) {
  3230     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3231   } else {
  3232     ShouldNotReachHere();
  3234   set_result(threadid);
  3235   return true;
  3237 #endif
  3239 //------------------------inline_native_time_funcs--------------
  3240 // inline code for System.currentTimeMillis() and System.nanoTime()
  3241 // these have the same type and signature
  3242 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3243   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3244   const TypePtr* no_memory_effects = NULL;
  3245   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3246   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3247 #ifdef ASSERT
  3248   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3249   assert(value_top == top(), "second value must be top");
  3250 #endif
  3251   set_result(value);
  3252   return true;
  3255 //------------------------inline_native_currentThread------------------
  3256 bool LibraryCallKit::inline_native_currentThread() {
  3257   Node* junk = NULL;
  3258   set_result(generate_current_thread(junk));
  3259   return true;
  3262 //------------------------inline_native_isInterrupted------------------
  3263 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3264 bool LibraryCallKit::inline_native_isInterrupted() {
  3265   // Add a fast path to t.isInterrupted(clear_int):
  3266   //   (t == Thread.current() &&
  3267   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  3268   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3269   // So, in the common case that the interrupt bit is false,
  3270   // we avoid making a call into the VM.  Even if the interrupt bit
  3271   // is true, if the clear_int argument is false, we avoid the VM call.
  3272   // However, if the receiver is not currentThread, we must call the VM,
  3273   // because there must be some locking done around the operation.
  3275   // We only go to the fast case code if we pass two guards.
  3276   // Paths which do not pass are accumulated in the slow_region.
  3278   enum {
  3279     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3280     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3281     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3282     PATH_LIMIT
  3283   };
  3285   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3286   // out of the function.
  3287   insert_mem_bar(Op_MemBarCPUOrder);
  3289   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3290   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3292   RegionNode* slow_region = new (C) RegionNode(1);
  3293   record_for_igvn(slow_region);
  3295   // (a) Receiving thread must be the current thread.
  3296   Node* rec_thr = argument(0);
  3297   Node* tls_ptr = NULL;
  3298   Node* cur_thr = generate_current_thread(tls_ptr);
  3299   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3300   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3302   generate_slow_guard(bol_thr, slow_region);
  3304   // (b) Interrupt bit on TLS must be false.
  3305   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3306   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3307   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3309   // Set the control input on the field _interrupted read to prevent it floating up.
  3310   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3311   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3312   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3314   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3316   // First fast path:  if (!TLS._interrupted) return false;
  3317   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3318   result_rgn->init_req(no_int_result_path, false_bit);
  3319   result_val->init_req(no_int_result_path, intcon(0));
  3321   // drop through to next case
  3322   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3324 #ifndef TARGET_OS_FAMILY_windows
  3325   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3326   Node* clr_arg = argument(1);
  3327   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3328   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3329   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3331   // Second fast path:  ... else if (!clear_int) return true;
  3332   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3333   result_rgn->init_req(no_clear_result_path, false_arg);
  3334   result_val->init_req(no_clear_result_path, intcon(1));
  3336   // drop through to next case
  3337   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3338 #else
  3339   // To return true on Windows you must read the _interrupted field
  3340   // and check the the event state i.e. take the slow path.
  3341 #endif // TARGET_OS_FAMILY_windows
  3343   // (d) Otherwise, go to the slow path.
  3344   slow_region->add_req(control());
  3345   set_control( _gvn.transform(slow_region));
  3347   if (stopped()) {
  3348     // There is no slow path.
  3349     result_rgn->init_req(slow_result_path, top());
  3350     result_val->init_req(slow_result_path, top());
  3351   } else {
  3352     // non-virtual because it is a private non-static
  3353     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3355     Node* slow_val = set_results_for_java_call(slow_call);
  3356     // this->control() comes from set_results_for_java_call
  3358     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3359     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3361     // These two phis are pre-filled with copies of of the fast IO and Memory
  3362     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3363     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3365     result_rgn->init_req(slow_result_path, control());
  3366     result_io ->init_req(slow_result_path, i_o());
  3367     result_mem->init_req(slow_result_path, reset_memory());
  3368     result_val->init_req(slow_result_path, slow_val);
  3370     set_all_memory(_gvn.transform(result_mem));
  3371     set_i_o(       _gvn.transform(result_io));
  3374   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3375   set_result(result_rgn, result_val);
  3376   return true;
  3379 //---------------------------load_mirror_from_klass----------------------------
  3380 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3381 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3382   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3383   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3386 //-----------------------load_klass_from_mirror_common-------------------------
  3387 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3388 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3389 // and branch to the given path on the region.
  3390 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3391 // compile for the non-null case.
  3392 // If the region is NULL, force never_see_null = true.
  3393 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3394                                                     bool never_see_null,
  3395                                                     RegionNode* region,
  3396                                                     int null_path,
  3397                                                     int offset) {
  3398   if (region == NULL)  never_see_null = true;
  3399   Node* p = basic_plus_adr(mirror, offset);
  3400   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3401   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3402   Node* null_ctl = top();
  3403   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3404   if (region != NULL) {
  3405     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3406     region->init_req(null_path, null_ctl);
  3407   } else {
  3408     assert(null_ctl == top(), "no loose ends");
  3410   return kls;
  3413 //--------------------(inline_native_Class_query helpers)---------------------
  3414 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3415 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3416 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3417   // Branch around if the given klass has the given modifier bit set.
  3418   // Like generate_guard, adds a new path onto the region.
  3419   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3420   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3421   Node* mask = intcon(modifier_mask);
  3422   Node* bits = intcon(modifier_bits);
  3423   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3424   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3425   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3426   return generate_fair_guard(bol, region);
  3428 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3429   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3432 //-------------------------inline_native_Class_query-------------------
  3433 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3434   const Type* return_type = TypeInt::BOOL;
  3435   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3436   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3437   bool expect_prim = false;     // most of these guys expect to work on refs
  3439   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3441   Node* mirror = argument(0);
  3442   Node* obj    = top();
  3444   switch (id) {
  3445   case vmIntrinsics::_isInstance:
  3446     // nothing is an instance of a primitive type
  3447     prim_return_value = intcon(0);
  3448     obj = argument(1);
  3449     break;
  3450   case vmIntrinsics::_getModifiers:
  3451     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3452     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3453     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3454     break;
  3455   case vmIntrinsics::_isInterface:
  3456     prim_return_value = intcon(0);
  3457     break;
  3458   case vmIntrinsics::_isArray:
  3459     prim_return_value = intcon(0);
  3460     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3461     break;
  3462   case vmIntrinsics::_isPrimitive:
  3463     prim_return_value = intcon(1);
  3464     expect_prim = true;  // obviously
  3465     break;
  3466   case vmIntrinsics::_getSuperclass:
  3467     prim_return_value = null();
  3468     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3469     break;
  3470   case vmIntrinsics::_getComponentType:
  3471     prim_return_value = null();
  3472     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3473     break;
  3474   case vmIntrinsics::_getClassAccessFlags:
  3475     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3476     return_type = TypeInt::INT;  // not bool!  6297094
  3477     break;
  3478   default:
  3479     fatal_unexpected_iid(id);
  3480     break;
  3483   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3484   if (mirror_con == NULL)  return false;  // cannot happen?
  3486 #ifndef PRODUCT
  3487   if (C->print_intrinsics() || C->print_inlining()) {
  3488     ciType* k = mirror_con->java_mirror_type();
  3489     if (k) {
  3490       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3491       k->print_name();
  3492       tty->cr();
  3495 #endif
  3497   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3498   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3499   record_for_igvn(region);
  3500   PhiNode* phi = new (C) PhiNode(region, return_type);
  3502   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3503   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3504   // if it is. See bug 4774291.
  3506   // For Reflection.getClassAccessFlags(), the null check occurs in
  3507   // the wrong place; see inline_unsafe_access(), above, for a similar
  3508   // situation.
  3509   mirror = null_check(mirror);
  3510   // If mirror or obj is dead, only null-path is taken.
  3511   if (stopped())  return true;
  3513   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3515   // Now load the mirror's klass metaobject, and null-check it.
  3516   // Side-effects region with the control path if the klass is null.
  3517   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3518   // If kls is null, we have a primitive mirror.
  3519   phi->init_req(_prim_path, prim_return_value);
  3520   if (stopped()) { set_result(region, phi); return true; }
  3521   bool safe_for_replace = (region->in(_prim_path) == top());
  3523   Node* p;  // handy temp
  3524   Node* null_ctl;
  3526   // Now that we have the non-null klass, we can perform the real query.
  3527   // For constant classes, the query will constant-fold in LoadNode::Value.
  3528   Node* query_value = top();
  3529   switch (id) {
  3530   case vmIntrinsics::_isInstance:
  3531     // nothing is an instance of a primitive type
  3532     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3533     break;
  3535   case vmIntrinsics::_getModifiers:
  3536     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3537     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3538     break;
  3540   case vmIntrinsics::_isInterface:
  3541     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3542     if (generate_interface_guard(kls, region) != NULL)
  3543       // A guard was added.  If the guard is taken, it was an interface.
  3544       phi->add_req(intcon(1));
  3545     // If we fall through, it's a plain class.
  3546     query_value = intcon(0);
  3547     break;
  3549   case vmIntrinsics::_isArray:
  3550     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3551     if (generate_array_guard(kls, region) != NULL)
  3552       // A guard was added.  If the guard is taken, it was an array.
  3553       phi->add_req(intcon(1));
  3554     // If we fall through, it's a plain class.
  3555     query_value = intcon(0);
  3556     break;
  3558   case vmIntrinsics::_isPrimitive:
  3559     query_value = intcon(0); // "normal" path produces false
  3560     break;
  3562   case vmIntrinsics::_getSuperclass:
  3563     // The rules here are somewhat unfortunate, but we can still do better
  3564     // with random logic than with a JNI call.
  3565     // Interfaces store null or Object as _super, but must report null.
  3566     // Arrays store an intermediate super as _super, but must report Object.
  3567     // Other types can report the actual _super.
  3568     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3569     if (generate_interface_guard(kls, region) != NULL)
  3570       // A guard was added.  If the guard is taken, it was an interface.
  3571       phi->add_req(null());
  3572     if (generate_array_guard(kls, region) != NULL)
  3573       // A guard was added.  If the guard is taken, it was an array.
  3574       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3575     // If we fall through, it's a plain class.  Get its _super.
  3576     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3577     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3578     null_ctl = top();
  3579     kls = null_check_oop(kls, &null_ctl);
  3580     if (null_ctl != top()) {
  3581       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3582       region->add_req(null_ctl);
  3583       phi   ->add_req(null());
  3585     if (!stopped()) {
  3586       query_value = load_mirror_from_klass(kls);
  3588     break;
  3590   case vmIntrinsics::_getComponentType:
  3591     if (generate_array_guard(kls, region) != NULL) {
  3592       // Be sure to pin the oop load to the guard edge just created:
  3593       Node* is_array_ctrl = region->in(region->req()-1);
  3594       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3595       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3596       phi->add_req(cmo);
  3598     query_value = null();  // non-array case is null
  3599     break;
  3601   case vmIntrinsics::_getClassAccessFlags:
  3602     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3603     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3604     break;
  3606   default:
  3607     fatal_unexpected_iid(id);
  3608     break;
  3611   // Fall-through is the normal case of a query to a real class.
  3612   phi->init_req(1, query_value);
  3613   region->init_req(1, control());
  3615   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3616   set_result(region, phi);
  3617   return true;
  3620 //--------------------------inline_native_subtype_check------------------------
  3621 // This intrinsic takes the JNI calls out of the heart of
  3622 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3623 bool LibraryCallKit::inline_native_subtype_check() {
  3624   // Pull both arguments off the stack.
  3625   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3626   args[0] = argument(0);
  3627   args[1] = argument(1);
  3628   Node* klasses[2];             // corresponding Klasses: superk, subk
  3629   klasses[0] = klasses[1] = top();
  3631   enum {
  3632     // A full decision tree on {superc is prim, subc is prim}:
  3633     _prim_0_path = 1,           // {P,N} => false
  3634                                 // {P,P} & superc!=subc => false
  3635     _prim_same_path,            // {P,P} & superc==subc => true
  3636     _prim_1_path,               // {N,P} => false
  3637     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3638     _both_ref_path,             // {N,N} & subtype check loses => false
  3639     PATH_LIMIT
  3640   };
  3642   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3643   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3644   record_for_igvn(region);
  3646   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3647   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3648   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3650   // First null-check both mirrors and load each mirror's klass metaobject.
  3651   int which_arg;
  3652   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3653     Node* arg = args[which_arg];
  3654     arg = null_check(arg);
  3655     if (stopped())  break;
  3656     args[which_arg] = arg;
  3658     Node* p = basic_plus_adr(arg, class_klass_offset);
  3659     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3660     klasses[which_arg] = _gvn.transform(kls);
  3663   // Having loaded both klasses, test each for null.
  3664   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3665   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3666     Node* kls = klasses[which_arg];
  3667     Node* null_ctl = top();
  3668     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3669     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3670     region->init_req(prim_path, null_ctl);
  3671     if (stopped())  break;
  3672     klasses[which_arg] = kls;
  3675   if (!stopped()) {
  3676     // now we have two reference types, in klasses[0..1]
  3677     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3678     Node* superk = klasses[0];  // the receiver
  3679     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3680     // now we have a successful reference subtype check
  3681     region->set_req(_ref_subtype_path, control());
  3684   // If both operands are primitive (both klasses null), then
  3685   // we must return true when they are identical primitives.
  3686   // It is convenient to test this after the first null klass check.
  3687   set_control(region->in(_prim_0_path)); // go back to first null check
  3688   if (!stopped()) {
  3689     // Since superc is primitive, make a guard for the superc==subc case.
  3690     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3691     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3692     generate_guard(bol_eq, region, PROB_FAIR);
  3693     if (region->req() == PATH_LIMIT+1) {
  3694       // A guard was added.  If the added guard is taken, superc==subc.
  3695       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3696       region->del_req(PATH_LIMIT);
  3698     region->set_req(_prim_0_path, control()); // Not equal after all.
  3701   // these are the only paths that produce 'true':
  3702   phi->set_req(_prim_same_path,   intcon(1));
  3703   phi->set_req(_ref_subtype_path, intcon(1));
  3705   // pull together the cases:
  3706   assert(region->req() == PATH_LIMIT, "sane region");
  3707   for (uint i = 1; i < region->req(); i++) {
  3708     Node* ctl = region->in(i);
  3709     if (ctl == NULL || ctl == top()) {
  3710       region->set_req(i, top());
  3711       phi   ->set_req(i, top());
  3712     } else if (phi->in(i) == NULL) {
  3713       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3717   set_control(_gvn.transform(region));
  3718   set_result(_gvn.transform(phi));
  3719   return true;
  3722 //---------------------generate_array_guard_common------------------------
  3723 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3724                                                   bool obj_array, bool not_array) {
  3725   // If obj_array/non_array==false/false:
  3726   // Branch around if the given klass is in fact an array (either obj or prim).
  3727   // If obj_array/non_array==false/true:
  3728   // Branch around if the given klass is not an array klass of any kind.
  3729   // If obj_array/non_array==true/true:
  3730   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3731   // If obj_array/non_array==true/false:
  3732   // Branch around if the kls is an oop array (Object[] or subtype)
  3733   //
  3734   // Like generate_guard, adds a new path onto the region.
  3735   jint  layout_con = 0;
  3736   Node* layout_val = get_layout_helper(kls, layout_con);
  3737   if (layout_val == NULL) {
  3738     bool query = (obj_array
  3739                   ? Klass::layout_helper_is_objArray(layout_con)
  3740                   : Klass::layout_helper_is_array(layout_con));
  3741     if (query == not_array) {
  3742       return NULL;                       // never a branch
  3743     } else {                             // always a branch
  3744       Node* always_branch = control();
  3745       if (region != NULL)
  3746         region->add_req(always_branch);
  3747       set_control(top());
  3748       return always_branch;
  3751   // Now test the correct condition.
  3752   jint  nval = (obj_array
  3753                 ? ((jint)Klass::_lh_array_tag_type_value
  3754                    <<    Klass::_lh_array_tag_shift)
  3755                 : Klass::_lh_neutral_value);
  3756   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3757   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3758   // invert the test if we are looking for a non-array
  3759   if (not_array)  btest = BoolTest(btest).negate();
  3760   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3761   return generate_fair_guard(bol, region);
  3765 //-----------------------inline_native_newArray--------------------------
  3766 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3767 bool LibraryCallKit::inline_native_newArray() {
  3768   Node* mirror    = argument(0);
  3769   Node* count_val = argument(1);
  3771   mirror = null_check(mirror);
  3772   // If mirror or obj is dead, only null-path is taken.
  3773   if (stopped())  return true;
  3775   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3776   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3777   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3778                                           TypeInstPtr::NOTNULL);
  3779   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3780   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3781                                           TypePtr::BOTTOM);
  3783   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3784   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3785                                                   result_reg, _slow_path);
  3786   Node* normal_ctl   = control();
  3787   Node* no_array_ctl = result_reg->in(_slow_path);
  3789   // Generate code for the slow case.  We make a call to newArray().
  3790   set_control(no_array_ctl);
  3791   if (!stopped()) {
  3792     // Either the input type is void.class, or else the
  3793     // array klass has not yet been cached.  Either the
  3794     // ensuing call will throw an exception, or else it
  3795     // will cache the array klass for next time.
  3796     PreserveJVMState pjvms(this);
  3797     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3798     Node* slow_result = set_results_for_java_call(slow_call);
  3799     // this->control() comes from set_results_for_java_call
  3800     result_reg->set_req(_slow_path, control());
  3801     result_val->set_req(_slow_path, slow_result);
  3802     result_io ->set_req(_slow_path, i_o());
  3803     result_mem->set_req(_slow_path, reset_memory());
  3806   set_control(normal_ctl);
  3807   if (!stopped()) {
  3808     // Normal case:  The array type has been cached in the java.lang.Class.
  3809     // The following call works fine even if the array type is polymorphic.
  3810     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3811     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3812     result_reg->init_req(_normal_path, control());
  3813     result_val->init_req(_normal_path, obj);
  3814     result_io ->init_req(_normal_path, i_o());
  3815     result_mem->init_req(_normal_path, reset_memory());
  3818   // Return the combined state.
  3819   set_i_o(        _gvn.transform(result_io)  );
  3820   set_all_memory( _gvn.transform(result_mem));
  3822   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3823   set_result(result_reg, result_val);
  3824   return true;
  3827 //----------------------inline_native_getLength--------------------------
  3828 // public static native int java.lang.reflect.Array.getLength(Object array);
  3829 bool LibraryCallKit::inline_native_getLength() {
  3830   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3832   Node* array = null_check(argument(0));
  3833   // If array is dead, only null-path is taken.
  3834   if (stopped())  return true;
  3836   // Deoptimize if it is a non-array.
  3837   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3839   if (non_array != NULL) {
  3840     PreserveJVMState pjvms(this);
  3841     set_control(non_array);
  3842     uncommon_trap(Deoptimization::Reason_intrinsic,
  3843                   Deoptimization::Action_maybe_recompile);
  3846   // If control is dead, only non-array-path is taken.
  3847   if (stopped())  return true;
  3849   // The works fine even if the array type is polymorphic.
  3850   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3851   Node* result = load_array_length(array);
  3853   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3854   set_result(result);
  3855   return true;
  3858 //------------------------inline_array_copyOf----------------------------
  3859 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3860 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3861 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3862   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3864   // Get the arguments.
  3865   Node* original          = argument(0);
  3866   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3867   Node* end               = is_copyOfRange? argument(2): argument(1);
  3868   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3870   Node* newcopy;
  3872   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3873   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3874   { PreserveReexecuteState preexecs(this);
  3875     jvms()->set_should_reexecute(true);
  3877     array_type_mirror = null_check(array_type_mirror);
  3878     original          = null_check(original);
  3880     // Check if a null path was taken unconditionally.
  3881     if (stopped())  return true;
  3883     Node* orig_length = load_array_length(original);
  3885     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3886     klass_node = null_check(klass_node);
  3888     RegionNode* bailout = new (C) RegionNode(1);
  3889     record_for_igvn(bailout);
  3891     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3892     // Bail out if that is so.
  3893     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3894     if (not_objArray != NULL) {
  3895       // Improve the klass node's type from the new optimistic assumption:
  3896       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3897       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3898       Node* cast = new (C) CastPPNode(klass_node, akls);
  3899       cast->init_req(0, control());
  3900       klass_node = _gvn.transform(cast);
  3903     // Bail out if either start or end is negative.
  3904     generate_negative_guard(start, bailout, &start);
  3905     generate_negative_guard(end,   bailout, &end);
  3907     Node* length = end;
  3908     if (_gvn.type(start) != TypeInt::ZERO) {
  3909       length = _gvn.transform(new (C) SubINode(end, start));
  3912     // Bail out if length is negative.
  3913     // Without this the new_array would throw
  3914     // NegativeArraySizeException but IllegalArgumentException is what
  3915     // should be thrown
  3916     generate_negative_guard(length, bailout, &length);
  3918     if (bailout->req() > 1) {
  3919       PreserveJVMState pjvms(this);
  3920       set_control(_gvn.transform(bailout));
  3921       uncommon_trap(Deoptimization::Reason_intrinsic,
  3922                     Deoptimization::Action_maybe_recompile);
  3925     if (!stopped()) {
  3926       // How many elements will we copy from the original?
  3927       // The answer is MinI(orig_length - start, length).
  3928       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3929       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3931       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3933       // Generate a direct call to the right arraycopy function(s).
  3934       // We know the copy is disjoint but we might not know if the
  3935       // oop stores need checking.
  3936       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3937       // This will fail a store-check if x contains any non-nulls.
  3938       bool disjoint_bases = true;
  3939       // if start > orig_length then the length of the copy may be
  3940       // negative.
  3941       bool length_never_negative = !is_copyOfRange;
  3942       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3943                          original, start, newcopy, intcon(0), moved,
  3944                          disjoint_bases, length_never_negative);
  3946   } // original reexecute is set back here
  3948   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3949   if (!stopped()) {
  3950     set_result(newcopy);
  3952   return true;
  3956 //----------------------generate_virtual_guard---------------------------
  3957 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3958 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3959                                              RegionNode* slow_region) {
  3960   ciMethod* method = callee();
  3961   int vtable_index = method->vtable_index();
  3962   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3963          err_msg_res("bad index %d", vtable_index));
  3964   // Get the Method* out of the appropriate vtable entry.
  3965   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3966                      vtable_index*vtableEntry::size()) * wordSize +
  3967                      vtableEntry::method_offset_in_bytes();
  3968   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3969   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3971   // Compare the target method with the expected method (e.g., Object.hashCode).
  3972   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3974   Node* native_call = makecon(native_call_addr);
  3975   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3976   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3978   return generate_slow_guard(test_native, slow_region);
  3981 //-----------------------generate_method_call----------------------------
  3982 // Use generate_method_call to make a slow-call to the real
  3983 // method if the fast path fails.  An alternative would be to
  3984 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3985 // This only works for expanding the current library call,
  3986 // not another intrinsic.  (E.g., don't use this for making an
  3987 // arraycopy call inside of the copyOf intrinsic.)
  3988 CallJavaNode*
  3989 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3990   // When compiling the intrinsic method itself, do not use this technique.
  3991   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3993   ciMethod* method = callee();
  3994   // ensure the JVMS we have will be correct for this call
  3995   guarantee(method_id == method->intrinsic_id(), "must match");
  3997   const TypeFunc* tf = TypeFunc::make(method);
  3998   CallJavaNode* slow_call;
  3999   if (is_static) {
  4000     assert(!is_virtual, "");
  4001     slow_call = new(C) CallStaticJavaNode(C, tf,
  4002                            SharedRuntime::get_resolve_static_call_stub(),
  4003                            method, bci());
  4004   } else if (is_virtual) {
  4005     null_check_receiver();
  4006     int vtable_index = Method::invalid_vtable_index;
  4007     if (UseInlineCaches) {
  4008       // Suppress the vtable call
  4009     } else {
  4010       // hashCode and clone are not a miranda methods,
  4011       // so the vtable index is fixed.
  4012       // No need to use the linkResolver to get it.
  4013        vtable_index = method->vtable_index();
  4014        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  4015               err_msg_res("bad index %d", vtable_index));
  4017     slow_call = new(C) CallDynamicJavaNode(tf,
  4018                           SharedRuntime::get_resolve_virtual_call_stub(),
  4019                           method, vtable_index, bci());
  4020   } else {  // neither virtual nor static:  opt_virtual
  4021     null_check_receiver();
  4022     slow_call = new(C) CallStaticJavaNode(C, tf,
  4023                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  4024                                 method, bci());
  4025     slow_call->set_optimized_virtual(true);
  4027   set_arguments_for_java_call(slow_call);
  4028   set_edges_for_java_call(slow_call);
  4029   return slow_call;
  4033 /**
  4034  * Build special case code for calls to hashCode on an object. This call may
  4035  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
  4036  * slightly different code.
  4037  */
  4038 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4039   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4040   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4042   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4044   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4045   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
  4046   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4047   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
  4048   Node* obj = NULL;
  4049   if (!is_static) {
  4050     // Check for hashing null object
  4051     obj = null_check_receiver();
  4052     if (stopped())  return true;        // unconditionally null
  4053     result_reg->init_req(_null_path, top());
  4054     result_val->init_req(_null_path, top());
  4055   } else {
  4056     // Do a null check, and return zero if null.
  4057     // System.identityHashCode(null) == 0
  4058     obj = argument(0);
  4059     Node* null_ctl = top();
  4060     obj = null_check_oop(obj, &null_ctl);
  4061     result_reg->init_req(_null_path, null_ctl);
  4062     result_val->init_req(_null_path, _gvn.intcon(0));
  4065   // Unconditionally null?  Then return right away.
  4066   if (stopped()) {
  4067     set_control( result_reg->in(_null_path));
  4068     if (!stopped())
  4069       set_result(result_val->in(_null_path));
  4070     return true;
  4073   // We only go to the fast case code if we pass a number of guards.  The
  4074   // paths which do not pass are accumulated in the slow_region.
  4075   RegionNode* slow_region = new (C) RegionNode(1);
  4076   record_for_igvn(slow_region);
  4078   // If this is a virtual call, we generate a funny guard.  We pull out
  4079   // the vtable entry corresponding to hashCode() from the target object.
  4080   // If the target method which we are calling happens to be the native
  4081   // Object hashCode() method, we pass the guard.  We do not need this
  4082   // guard for non-virtual calls -- the caller is known to be the native
  4083   // Object hashCode().
  4084   if (is_virtual) {
  4085     // After null check, get the object's klass.
  4086     Node* obj_klass = load_object_klass(obj);
  4087     generate_virtual_guard(obj_klass, slow_region);
  4090   // Get the header out of the object, use LoadMarkNode when available
  4091   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4092   // The control of the load must be NULL. Otherwise, the load can move before
  4093   // the null check after castPP removal.
  4094   Node* no_ctrl = NULL;
  4095   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4097   // Test the header to see if it is unlocked.
  4098   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4099   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4100   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4101   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4102   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4104   generate_slow_guard(test_unlocked, slow_region);
  4106   // Get the hash value and check to see that it has been properly assigned.
  4107   // We depend on hash_mask being at most 32 bits and avoid the use of
  4108   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4109   // vm: see markOop.hpp.
  4110   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4111   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4112   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4113   // This hack lets the hash bits live anywhere in the mark object now, as long
  4114   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4115   // Java spec says that HashCode is an int so there's no point in capturing
  4116   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4117   hshifted_header      = ConvX2I(hshifted_header);
  4118   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4120   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4121   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4122   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4124   generate_slow_guard(test_assigned, slow_region);
  4126   Node* init_mem = reset_memory();
  4127   // fill in the rest of the null path:
  4128   result_io ->init_req(_null_path, i_o());
  4129   result_mem->init_req(_null_path, init_mem);
  4131   result_val->init_req(_fast_path, hash_val);
  4132   result_reg->init_req(_fast_path, control());
  4133   result_io ->init_req(_fast_path, i_o());
  4134   result_mem->init_req(_fast_path, init_mem);
  4136   // Generate code for the slow case.  We make a call to hashCode().
  4137   set_control(_gvn.transform(slow_region));
  4138   if (!stopped()) {
  4139     // No need for PreserveJVMState, because we're using up the present state.
  4140     set_all_memory(init_mem);
  4141     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4142     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4143     Node* slow_result = set_results_for_java_call(slow_call);
  4144     // this->control() comes from set_results_for_java_call
  4145     result_reg->init_req(_slow_path, control());
  4146     result_val->init_req(_slow_path, slow_result);
  4147     result_io  ->set_req(_slow_path, i_o());
  4148     result_mem ->set_req(_slow_path, reset_memory());
  4151   // Return the combined state.
  4152   set_i_o(        _gvn.transform(result_io)  );
  4153   set_all_memory( _gvn.transform(result_mem));
  4155   set_result(result_reg, result_val);
  4156   return true;
  4159 //---------------------------inline_native_getClass----------------------------
  4160 // public final native Class<?> java.lang.Object.getClass();
  4161 //
  4162 // Build special case code for calls to getClass on an object.
  4163 bool LibraryCallKit::inline_native_getClass() {
  4164   Node* obj = null_check_receiver();
  4165   if (stopped())  return true;
  4166   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4167   return true;
  4170 //-----------------inline_native_Reflection_getCallerClass---------------------
  4171 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4172 //
  4173 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4174 //
  4175 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4176 // in that it must skip particular security frames and checks for
  4177 // caller sensitive methods.
  4178 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4179 #ifndef PRODUCT
  4180   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4181     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4183 #endif
  4185   if (!jvms()->has_method()) {
  4186 #ifndef PRODUCT
  4187     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4188       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4190 #endif
  4191     return false;
  4194   // Walk back up the JVM state to find the caller at the required
  4195   // depth.
  4196   JVMState* caller_jvms = jvms();
  4198   // Cf. JVM_GetCallerClass
  4199   // NOTE: Start the loop at depth 1 because the current JVM state does
  4200   // not include the Reflection.getCallerClass() frame.
  4201   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4202     ciMethod* m = caller_jvms->method();
  4203     switch (n) {
  4204     case 0:
  4205       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4206       break;
  4207     case 1:
  4208       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4209       if (!m->caller_sensitive()) {
  4210 #ifndef PRODUCT
  4211         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4212           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4214 #endif
  4215         return false;  // bail-out; let JVM_GetCallerClass do the work
  4217       break;
  4218     default:
  4219       if (!m->is_ignored_by_security_stack_walk()) {
  4220         // We have reached the desired frame; return the holder class.
  4221         // Acquire method holder as java.lang.Class and push as constant.
  4222         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4223         ciInstance* caller_mirror = caller_klass->java_mirror();
  4224         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4226 #ifndef PRODUCT
  4227         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4228           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4229           tty->print_cr("  JVM state at this point:");
  4230           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4231             ciMethod* m = jvms()->of_depth(i)->method();
  4232             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4235 #endif
  4236         return true;
  4238       break;
  4242 #ifndef PRODUCT
  4243   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4244     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4245     tty->print_cr("  JVM state at this point:");
  4246     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4247       ciMethod* m = jvms()->of_depth(i)->method();
  4248       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4251 #endif
  4253   return false;  // bail-out; let JVM_GetCallerClass do the work
  4256 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4257   Node* arg = argument(0);
  4258   Node* result;
  4260   switch (id) {
  4261   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4262   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4263   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4264   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4266   case vmIntrinsics::_doubleToLongBits: {
  4267     // two paths (plus control) merge in a wood
  4268     RegionNode *r = new (C) RegionNode(3);
  4269     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4271     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4272     // Build the boolean node
  4273     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4275     // Branch either way.
  4276     // NaN case is less traveled, which makes all the difference.
  4277     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4278     Node *opt_isnan = _gvn.transform(ifisnan);
  4279     assert( opt_isnan->is_If(), "Expect an IfNode");
  4280     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4281     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4283     set_control(iftrue);
  4285     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4286     Node *slow_result = longcon(nan_bits); // return NaN
  4287     phi->init_req(1, _gvn.transform( slow_result ));
  4288     r->init_req(1, iftrue);
  4290     // Else fall through
  4291     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4292     set_control(iffalse);
  4294     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4295     r->init_req(2, iffalse);
  4297     // Post merge
  4298     set_control(_gvn.transform(r));
  4299     record_for_igvn(r);
  4301     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4302     result = phi;
  4303     assert(result->bottom_type()->isa_long(), "must be");
  4304     break;
  4307   case vmIntrinsics::_floatToIntBits: {
  4308     // two paths (plus control) merge in a wood
  4309     RegionNode *r = new (C) RegionNode(3);
  4310     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4312     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4313     // Build the boolean node
  4314     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4316     // Branch either way.
  4317     // NaN case is less traveled, which makes all the difference.
  4318     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4319     Node *opt_isnan = _gvn.transform(ifisnan);
  4320     assert( opt_isnan->is_If(), "Expect an IfNode");
  4321     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4322     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4324     set_control(iftrue);
  4326     static const jint nan_bits = 0x7fc00000;
  4327     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4328     phi->init_req(1, _gvn.transform( slow_result ));
  4329     r->init_req(1, iftrue);
  4331     // Else fall through
  4332     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4333     set_control(iffalse);
  4335     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4336     r->init_req(2, iffalse);
  4338     // Post merge
  4339     set_control(_gvn.transform(r));
  4340     record_for_igvn(r);
  4342     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4343     result = phi;
  4344     assert(result->bottom_type()->isa_int(), "must be");
  4345     break;
  4348   default:
  4349     fatal_unexpected_iid(id);
  4350     break;
  4352   set_result(_gvn.transform(result));
  4353   return true;
  4356 #ifdef _LP64
  4357 #define XTOP ,top() /*additional argument*/
  4358 #else  //_LP64
  4359 #define XTOP        /*no additional argument*/
  4360 #endif //_LP64
  4362 //----------------------inline_unsafe_copyMemory-------------------------
  4363 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4364 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4365   if (callee()->is_static())  return false;  // caller must have the capability!
  4366   null_check_receiver();  // null-check receiver
  4367   if (stopped())  return true;
  4369   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4371   Node* src_ptr =         argument(1);   // type: oop
  4372   Node* src_off = ConvL2X(argument(2));  // type: long
  4373   Node* dst_ptr =         argument(4);   // type: oop
  4374   Node* dst_off = ConvL2X(argument(5));  // type: long
  4375   Node* size    = ConvL2X(argument(7));  // type: long
  4377   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4378          "fieldOffset must be byte-scaled");
  4380   Node* src = make_unsafe_address(src_ptr, src_off);
  4381   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4383   // Conservatively insert a memory barrier on all memory slices.
  4384   // Do not let writes of the copy source or destination float below the copy.
  4385   insert_mem_bar(Op_MemBarCPUOrder);
  4387   // Call it.  Note that the length argument is not scaled.
  4388   make_runtime_call(RC_LEAF|RC_NO_FP,
  4389                     OptoRuntime::fast_arraycopy_Type(),
  4390                     StubRoutines::unsafe_arraycopy(),
  4391                     "unsafe_arraycopy",
  4392                     TypeRawPtr::BOTTOM,
  4393                     src, dst, size XTOP);
  4395   // Do not let reads of the copy destination float above the copy.
  4396   insert_mem_bar(Op_MemBarCPUOrder);
  4398   return true;
  4401 //------------------------clone_coping-----------------------------------
  4402 // Helper function for inline_native_clone.
  4403 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4404   assert(obj_size != NULL, "");
  4405   Node* raw_obj = alloc_obj->in(1);
  4406   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4408   AllocateNode* alloc = NULL;
  4409   if (ReduceBulkZeroing) {
  4410     // We will be completely responsible for initializing this object -
  4411     // mark Initialize node as complete.
  4412     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4413     // The object was just allocated - there should be no any stores!
  4414     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4415     // Mark as complete_with_arraycopy so that on AllocateNode
  4416     // expansion, we know this AllocateNode is initialized by an array
  4417     // copy and a StoreStore barrier exists after the array copy.
  4418     alloc->initialization()->set_complete_with_arraycopy();
  4421   // Copy the fastest available way.
  4422   // TODO: generate fields copies for small objects instead.
  4423   Node* src  = obj;
  4424   Node* dest = alloc_obj;
  4425   Node* size = _gvn.transform(obj_size);
  4427   // Exclude the header but include array length to copy by 8 bytes words.
  4428   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4429   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4430                             instanceOopDesc::base_offset_in_bytes();
  4431   // base_off:
  4432   // 8  - 32-bit VM
  4433   // 12 - 64-bit VM, compressed klass
  4434   // 16 - 64-bit VM, normal klass
  4435   if (base_off % BytesPerLong != 0) {
  4436     assert(UseCompressedClassPointers, "");
  4437     if (is_array) {
  4438       // Exclude length to copy by 8 bytes words.
  4439       base_off += sizeof(int);
  4440     } else {
  4441       // Include klass to copy by 8 bytes words.
  4442       base_off = instanceOopDesc::klass_offset_in_bytes();
  4444     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4446   src  = basic_plus_adr(src,  base_off);
  4447   dest = basic_plus_adr(dest, base_off);
  4449   // Compute the length also, if needed:
  4450   Node* countx = size;
  4451   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4452   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4454   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4455   bool disjoint_bases = true;
  4456   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4457                                src, NULL, dest, NULL, countx,
  4458                                /*dest_uninitialized*/true);
  4460   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4461   if (card_mark) {
  4462     assert(!is_array, "");
  4463     // Put in store barrier for any and all oops we are sticking
  4464     // into this object.  (We could avoid this if we could prove
  4465     // that the object type contains no oop fields at all.)
  4466     Node* no_particular_value = NULL;
  4467     Node* no_particular_field = NULL;
  4468     int raw_adr_idx = Compile::AliasIdxRaw;
  4469     post_barrier(control(),
  4470                  memory(raw_adr_type),
  4471                  alloc_obj,
  4472                  no_particular_field,
  4473                  raw_adr_idx,
  4474                  no_particular_value,
  4475                  T_OBJECT,
  4476                  false);
  4479   // Do not let reads from the cloned object float above the arraycopy.
  4480   if (alloc != NULL) {
  4481     // Do not let stores that initialize this object be reordered with
  4482     // a subsequent store that would make this object accessible by
  4483     // other threads.
  4484     // Record what AllocateNode this StoreStore protects so that
  4485     // escape analysis can go from the MemBarStoreStoreNode to the
  4486     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4487     // based on the escape status of the AllocateNode.
  4488     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4489   } else {
  4490     insert_mem_bar(Op_MemBarCPUOrder);
  4494 //------------------------inline_native_clone----------------------------
  4495 // protected native Object java.lang.Object.clone();
  4496 //
  4497 // Here are the simple edge cases:
  4498 //  null receiver => normal trap
  4499 //  virtual and clone was overridden => slow path to out-of-line clone
  4500 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4501 //
  4502 // The general case has two steps, allocation and copying.
  4503 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4504 //
  4505 // Copying also has two cases, oop arrays and everything else.
  4506 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4507 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4508 //
  4509 // These steps fold up nicely if and when the cloned object's klass
  4510 // can be sharply typed as an object array, a type array, or an instance.
  4511 //
  4512 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4513   PhiNode* result_val;
  4515   // Set the reexecute bit for the interpreter to reexecute
  4516   // the bytecode that invokes Object.clone if deoptimization happens.
  4517   { PreserveReexecuteState preexecs(this);
  4518     jvms()->set_should_reexecute(true);
  4520     Node* obj = null_check_receiver();
  4521     if (stopped())  return true;
  4523     Node* obj_klass = load_object_klass(obj);
  4524     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4525     const TypeOopPtr*   toop   = ((tklass != NULL)
  4526                                 ? tklass->as_instance_type()
  4527                                 : TypeInstPtr::NOTNULL);
  4529     // Conservatively insert a memory barrier on all memory slices.
  4530     // Do not let writes into the original float below the clone.
  4531     insert_mem_bar(Op_MemBarCPUOrder);
  4533     // paths into result_reg:
  4534     enum {
  4535       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4536       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4537       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4538       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4539       PATH_LIMIT
  4540     };
  4541     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4542     result_val             = new(C) PhiNode(result_reg,
  4543                                             TypeInstPtr::NOTNULL);
  4544     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4545     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4546                                             TypePtr::BOTTOM);
  4547     record_for_igvn(result_reg);
  4549     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4550     int raw_adr_idx = Compile::AliasIdxRaw;
  4552     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4553     if (array_ctl != NULL) {
  4554       // It's an array.
  4555       PreserveJVMState pjvms(this);
  4556       set_control(array_ctl);
  4557       Node* obj_length = load_array_length(obj);
  4558       Node* obj_size  = NULL;
  4559       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4561       if (!use_ReduceInitialCardMarks()) {
  4562         // If it is an oop array, it requires very special treatment,
  4563         // because card marking is required on each card of the array.
  4564         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4565         if (is_obja != NULL) {
  4566           PreserveJVMState pjvms2(this);
  4567           set_control(is_obja);
  4568           // Generate a direct call to the right arraycopy function(s).
  4569           bool disjoint_bases = true;
  4570           bool length_never_negative = true;
  4571           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4572                              obj, intcon(0), alloc_obj, intcon(0),
  4573                              obj_length,
  4574                              disjoint_bases, length_never_negative);
  4575           result_reg->init_req(_objArray_path, control());
  4576           result_val->init_req(_objArray_path, alloc_obj);
  4577           result_i_o ->set_req(_objArray_path, i_o());
  4578           result_mem ->set_req(_objArray_path, reset_memory());
  4581       // Otherwise, there are no card marks to worry about.
  4582       // (We can dispense with card marks if we know the allocation
  4583       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4584       //  causes the non-eden paths to take compensating steps to
  4585       //  simulate a fresh allocation, so that no further
  4586       //  card marks are required in compiled code to initialize
  4587       //  the object.)
  4589       if (!stopped()) {
  4590         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4592         // Present the results of the copy.
  4593         result_reg->init_req(_array_path, control());
  4594         result_val->init_req(_array_path, alloc_obj);
  4595         result_i_o ->set_req(_array_path, i_o());
  4596         result_mem ->set_req(_array_path, reset_memory());
  4600     // We only go to the instance fast case code if we pass a number of guards.
  4601     // The paths which do not pass are accumulated in the slow_region.
  4602     RegionNode* slow_region = new (C) RegionNode(1);
  4603     record_for_igvn(slow_region);
  4604     if (!stopped()) {
  4605       // It's an instance (we did array above).  Make the slow-path tests.
  4606       // If this is a virtual call, we generate a funny guard.  We grab
  4607       // the vtable entry corresponding to clone() from the target object.
  4608       // If the target method which we are calling happens to be the
  4609       // Object clone() method, we pass the guard.  We do not need this
  4610       // guard for non-virtual calls; the caller is known to be the native
  4611       // Object clone().
  4612       if (is_virtual) {
  4613         generate_virtual_guard(obj_klass, slow_region);
  4616       // The object must be cloneable and must not have a finalizer.
  4617       // Both of these conditions may be checked in a single test.
  4618       // We could optimize the cloneable test further, but we don't care.
  4619       generate_access_flags_guard(obj_klass,
  4620                                   // Test both conditions:
  4621                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4622                                   // Must be cloneable but not finalizer:
  4623                                   JVM_ACC_IS_CLONEABLE,
  4624                                   slow_region);
  4627     if (!stopped()) {
  4628       // It's an instance, and it passed the slow-path tests.
  4629       PreserveJVMState pjvms(this);
  4630       Node* obj_size  = NULL;
  4631       // Need to deoptimize on exception from allocation since Object.clone intrinsic
  4632       // is reexecuted if deoptimization occurs and there could be problems when merging
  4633       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
  4634       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
  4636       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4638       // Present the results of the slow call.
  4639       result_reg->init_req(_instance_path, control());
  4640       result_val->init_req(_instance_path, alloc_obj);
  4641       result_i_o ->set_req(_instance_path, i_o());
  4642       result_mem ->set_req(_instance_path, reset_memory());
  4645     // Generate code for the slow case.  We make a call to clone().
  4646     set_control(_gvn.transform(slow_region));
  4647     if (!stopped()) {
  4648       PreserveJVMState pjvms(this);
  4649       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4650       Node* slow_result = set_results_for_java_call(slow_call);
  4651       // this->control() comes from set_results_for_java_call
  4652       result_reg->init_req(_slow_path, control());
  4653       result_val->init_req(_slow_path, slow_result);
  4654       result_i_o ->set_req(_slow_path, i_o());
  4655       result_mem ->set_req(_slow_path, reset_memory());
  4658     // Return the combined state.
  4659     set_control(    _gvn.transform(result_reg));
  4660     set_i_o(        _gvn.transform(result_i_o));
  4661     set_all_memory( _gvn.transform(result_mem));
  4662   } // original reexecute is set back here
  4664   set_result(_gvn.transform(result_val));
  4665   return true;
  4668 //------------------------------basictype2arraycopy----------------------------
  4669 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4670                                             Node* src_offset,
  4671                                             Node* dest_offset,
  4672                                             bool disjoint_bases,
  4673                                             const char* &name,
  4674                                             bool dest_uninitialized) {
  4675   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4676   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4678   bool aligned = false;
  4679   bool disjoint = disjoint_bases;
  4681   // if the offsets are the same, we can treat the memory regions as
  4682   // disjoint, because either the memory regions are in different arrays,
  4683   // or they are identical (which we can treat as disjoint.)  We can also
  4684   // treat a copy with a destination index  less that the source index
  4685   // as disjoint since a low->high copy will work correctly in this case.
  4686   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4687       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4688     // both indices are constants
  4689     int s_offs = src_offset_inttype->get_con();
  4690     int d_offs = dest_offset_inttype->get_con();
  4691     int element_size = type2aelembytes(t);
  4692     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4693               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4694     if (s_offs >= d_offs)  disjoint = true;
  4695   } else if (src_offset == dest_offset && src_offset != NULL) {
  4696     // This can occur if the offsets are identical non-constants.
  4697     disjoint = true;
  4700   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4704 //------------------------------inline_arraycopy-----------------------
  4705 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4706 //                                                      Object dest, int destPos,
  4707 //                                                      int length);
  4708 bool LibraryCallKit::inline_arraycopy() {
  4709   // Get the arguments.
  4710   Node* src         = argument(0);  // type: oop
  4711   Node* src_offset  = argument(1);  // type: int
  4712   Node* dest        = argument(2);  // type: oop
  4713   Node* dest_offset = argument(3);  // type: int
  4714   Node* length      = argument(4);  // type: int
  4716   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4717   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4718   // is.  The checks we choose to mandate at compile time are:
  4719   //
  4720   // (1) src and dest are arrays.
  4721   const Type* src_type  = src->Value(&_gvn);
  4722   const Type* dest_type = dest->Value(&_gvn);
  4723   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4724   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4726   // Do we have the type of src?
  4727   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4728   // Do we have the type of dest?
  4729   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4730   // Is the type for src from speculation?
  4731   bool src_spec = false;
  4732   // Is the type for dest from speculation?
  4733   bool dest_spec = false;
  4735   if (!has_src || !has_dest) {
  4736     // We don't have sufficient type information, let's see if
  4737     // speculative types can help. We need to have types for both src
  4738     // and dest so that it pays off.
  4740     // Do we already have or could we have type information for src
  4741     bool could_have_src = has_src;
  4742     // Do we already have or could we have type information for dest
  4743     bool could_have_dest = has_dest;
  4745     ciKlass* src_k = NULL;
  4746     if (!has_src) {
  4747       src_k = src_type->speculative_type();
  4748       if (src_k != NULL && src_k->is_array_klass()) {
  4749         could_have_src = true;
  4753     ciKlass* dest_k = NULL;
  4754     if (!has_dest) {
  4755       dest_k = dest_type->speculative_type();
  4756       if (dest_k != NULL && dest_k->is_array_klass()) {
  4757         could_have_dest = true;
  4761     if (could_have_src && could_have_dest) {
  4762       // This is going to pay off so emit the required guards
  4763       if (!has_src) {
  4764         src = maybe_cast_profiled_obj(src, src_k);
  4765         src_type  = _gvn.type(src);
  4766         top_src  = src_type->isa_aryptr();
  4767         has_src = (top_src != NULL && top_src->klass() != NULL);
  4768         src_spec = true;
  4770       if (!has_dest) {
  4771         dest = maybe_cast_profiled_obj(dest, dest_k);
  4772         dest_type  = _gvn.type(dest);
  4773         top_dest  = dest_type->isa_aryptr();
  4774         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4775         dest_spec = true;
  4780   if (!has_src || !has_dest) {
  4781     // Conservatively insert a memory barrier on all memory slices.
  4782     // Do not let writes into the source float below the arraycopy.
  4783     insert_mem_bar(Op_MemBarCPUOrder);
  4785     // Call StubRoutines::generic_arraycopy stub.
  4786     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4787                        src, src_offset, dest, dest_offset, length);
  4789     // Do not let reads from the destination float above the arraycopy.
  4790     // Since we cannot type the arrays, we don't know which slices
  4791     // might be affected.  We could restrict this barrier only to those
  4792     // memory slices which pertain to array elements--but don't bother.
  4793     if (!InsertMemBarAfterArraycopy)
  4794       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4795       insert_mem_bar(Op_MemBarCPUOrder);
  4796     return true;
  4799   // (2) src and dest arrays must have elements of the same BasicType
  4800   // Figure out the size and type of the elements we will be copying.
  4801   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4802   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4803   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4804   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4806   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4807     // The component types are not the same or are not recognized.  Punt.
  4808     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4809     generate_slow_arraycopy(TypePtr::BOTTOM,
  4810                             src, src_offset, dest, dest_offset, length,
  4811                             /*dest_uninitialized*/false);
  4812     return true;
  4815   if (src_elem == T_OBJECT) {
  4816     // If both arrays are object arrays then having the exact types
  4817     // for both will remove the need for a subtype check at runtime
  4818     // before the call and may make it possible to pick a faster copy
  4819     // routine (without a subtype check on every element)
  4820     // Do we have the exact type of src?
  4821     bool could_have_src = src_spec;
  4822     // Do we have the exact type of dest?
  4823     bool could_have_dest = dest_spec;
  4824     ciKlass* src_k = top_src->klass();
  4825     ciKlass* dest_k = top_dest->klass();
  4826     if (!src_spec) {
  4827       src_k = src_type->speculative_type();
  4828       if (src_k != NULL && src_k->is_array_klass()) {
  4829           could_have_src = true;
  4832     if (!dest_spec) {
  4833       dest_k = dest_type->speculative_type();
  4834       if (dest_k != NULL && dest_k->is_array_klass()) {
  4835         could_have_dest = true;
  4838     if (could_have_src && could_have_dest) {
  4839       // If we can have both exact types, emit the missing guards
  4840       if (could_have_src && !src_spec) {
  4841         src = maybe_cast_profiled_obj(src, src_k);
  4843       if (could_have_dest && !dest_spec) {
  4844         dest = maybe_cast_profiled_obj(dest, dest_k);
  4849   //---------------------------------------------------------------------------
  4850   // We will make a fast path for this call to arraycopy.
  4852   // We have the following tests left to perform:
  4853   //
  4854   // (3) src and dest must not be null.
  4855   // (4) src_offset must not be negative.
  4856   // (5) dest_offset must not be negative.
  4857   // (6) length must not be negative.
  4858   // (7) src_offset + length must not exceed length of src.
  4859   // (8) dest_offset + length must not exceed length of dest.
  4860   // (9) each element of an oop array must be assignable
  4862   RegionNode* slow_region = new (C) RegionNode(1);
  4863   record_for_igvn(slow_region);
  4865   // (3) operands must not be null
  4866   // We currently perform our null checks with the null_check routine.
  4867   // This means that the null exceptions will be reported in the caller
  4868   // rather than (correctly) reported inside of the native arraycopy call.
  4869   // This should be corrected, given time.  We do our null check with the
  4870   // stack pointer restored.
  4871   src  = null_check(src,  T_ARRAY);
  4872   dest = null_check(dest, T_ARRAY);
  4874   // (4) src_offset must not be negative.
  4875   generate_negative_guard(src_offset, slow_region);
  4877   // (5) dest_offset must not be negative.
  4878   generate_negative_guard(dest_offset, slow_region);
  4880   // (6) length must not be negative (moved to generate_arraycopy()).
  4881   // generate_negative_guard(length, slow_region);
  4883   // (7) src_offset + length must not exceed length of src.
  4884   generate_limit_guard(src_offset, length,
  4885                        load_array_length(src),
  4886                        slow_region);
  4888   // (8) dest_offset + length must not exceed length of dest.
  4889   generate_limit_guard(dest_offset, length,
  4890                        load_array_length(dest),
  4891                        slow_region);
  4893   // (9) each element of an oop array must be assignable
  4894   // The generate_arraycopy subroutine checks this.
  4896   // This is where the memory effects are placed:
  4897   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4898   generate_arraycopy(adr_type, dest_elem,
  4899                      src, src_offset, dest, dest_offset, length,
  4900                      false, false, slow_region);
  4902   return true;
  4905 //-----------------------------generate_arraycopy----------------------
  4906 // Generate an optimized call to arraycopy.
  4907 // Caller must guard against non-arrays.
  4908 // Caller must determine a common array basic-type for both arrays.
  4909 // Caller must validate offsets against array bounds.
  4910 // The slow_region has already collected guard failure paths
  4911 // (such as out of bounds length or non-conformable array types).
  4912 // The generated code has this shape, in general:
  4913 //
  4914 //     if (length == 0)  return   // via zero_path
  4915 //     slowval = -1
  4916 //     if (types unknown) {
  4917 //       slowval = call generic copy loop
  4918 //       if (slowval == 0)  return  // via checked_path
  4919 //     } else if (indexes in bounds) {
  4920 //       if ((is object array) && !(array type check)) {
  4921 //         slowval = call checked copy loop
  4922 //         if (slowval == 0)  return  // via checked_path
  4923 //       } else {
  4924 //         call bulk copy loop
  4925 //         return  // via fast_path
  4926 //       }
  4927 //     }
  4928 //     // adjust params for remaining work:
  4929 //     if (slowval != -1) {
  4930 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4931 //     }
  4932 //   slow_region:
  4933 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4934 //     return  // via slow_call_path
  4935 //
  4936 // This routine is used from several intrinsics:  System.arraycopy,
  4937 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4938 //
  4939 void
  4940 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4941                                    BasicType basic_elem_type,
  4942                                    Node* src,  Node* src_offset,
  4943                                    Node* dest, Node* dest_offset,
  4944                                    Node* copy_length,
  4945                                    bool disjoint_bases,
  4946                                    bool length_never_negative,
  4947                                    RegionNode* slow_region) {
  4949   if (slow_region == NULL) {
  4950     slow_region = new(C) RegionNode(1);
  4951     record_for_igvn(slow_region);
  4954   Node* original_dest      = dest;
  4955   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4956   bool  dest_uninitialized = false;
  4958   // See if this is the initialization of a newly-allocated array.
  4959   // If so, we will take responsibility here for initializing it to zero.
  4960   // (Note:  Because tightly_coupled_allocation performs checks on the
  4961   // out-edges of the dest, we need to avoid making derived pointers
  4962   // from it until we have checked its uses.)
  4963   if (ReduceBulkZeroing
  4964       && !ZeroTLAB              // pointless if already zeroed
  4965       && basic_elem_type != T_CONFLICT // avoid corner case
  4966       && !src->eqv_uncast(dest)
  4967       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4968           != NULL)
  4969       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4970       && alloc->maybe_set_complete(&_gvn)) {
  4971     // "You break it, you buy it."
  4972     InitializeNode* init = alloc->initialization();
  4973     assert(init->is_complete(), "we just did this");
  4974     init->set_complete_with_arraycopy();
  4975     assert(dest->is_CheckCastPP(), "sanity");
  4976     assert(dest->in(0)->in(0) == init, "dest pinned");
  4977     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4978     // From this point on, every exit path is responsible for
  4979     // initializing any non-copied parts of the object to zero.
  4980     // Also, if this flag is set we make sure that arraycopy interacts properly
  4981     // with G1, eliding pre-barriers. See CR 6627983.
  4982     dest_uninitialized = true;
  4983   } else {
  4984     // No zeroing elimination here.
  4985     alloc             = NULL;
  4986     //original_dest   = dest;
  4987     //dest_uninitialized = false;
  4990   // Results are placed here:
  4991   enum { fast_path        = 1,  // normal void-returning assembly stub
  4992          checked_path     = 2,  // special assembly stub with cleanup
  4993          slow_call_path   = 3,  // something went wrong; call the VM
  4994          zero_path        = 4,  // bypass when length of copy is zero
  4995          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4996          PATH_LIMIT       = 6
  4997   };
  4998   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4999   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  5000   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  5001   record_for_igvn(result_region);
  5002   _gvn.set_type_bottom(result_i_o);
  5003   _gvn.set_type_bottom(result_memory);
  5004   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  5006   // The slow_control path:
  5007   Node* slow_control;
  5008   Node* slow_i_o = i_o();
  5009   Node* slow_mem = memory(adr_type);
  5010   debug_only(slow_control = (Node*) badAddress);
  5012   // Checked control path:
  5013   Node* checked_control = top();
  5014   Node* checked_mem     = NULL;
  5015   Node* checked_i_o     = NULL;
  5016   Node* checked_value   = NULL;
  5018   if (basic_elem_type == T_CONFLICT) {
  5019     assert(!dest_uninitialized, "");
  5020     Node* cv = generate_generic_arraycopy(adr_type,
  5021                                           src, src_offset, dest, dest_offset,
  5022                                           copy_length, dest_uninitialized);
  5023     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5024     checked_control = control();
  5025     checked_i_o     = i_o();
  5026     checked_mem     = memory(adr_type);
  5027     checked_value   = cv;
  5028     set_control(top());         // no fast path
  5031   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  5032   if (not_pos != NULL) {
  5033     PreserveJVMState pjvms(this);
  5034     set_control(not_pos);
  5036     // (6) length must not be negative.
  5037     if (!length_never_negative) {
  5038       generate_negative_guard(copy_length, slow_region);
  5041     // copy_length is 0.
  5042     if (!stopped() && dest_uninitialized) {
  5043       Node* dest_length = alloc->in(AllocateNode::ALength);
  5044       if (copy_length->eqv_uncast(dest_length)
  5045           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5046         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5047       } else {
  5048         // Clear the whole thing since there are no source elements to copy.
  5049         generate_clear_array(adr_type, dest, basic_elem_type,
  5050                              intcon(0), NULL,
  5051                              alloc->in(AllocateNode::AllocSize));
  5052         // Use a secondary InitializeNode as raw memory barrier.
  5053         // Currently it is needed only on this path since other
  5054         // paths have stub or runtime calls as raw memory barriers.
  5055         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5056                                                        Compile::AliasIdxRaw,
  5057                                                        top())->as_Initialize();
  5058         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5062     // Present the results of the fast call.
  5063     result_region->init_req(zero_path, control());
  5064     result_i_o   ->init_req(zero_path, i_o());
  5065     result_memory->init_req(zero_path, memory(adr_type));
  5068   if (!stopped() && dest_uninitialized) {
  5069     // We have to initialize the *uncopied* part of the array to zero.
  5070     // The copy destination is the slice dest[off..off+len].  The other slices
  5071     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5072     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5073     Node* dest_length = alloc->in(AllocateNode::ALength);
  5074     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5075                                                           copy_length));
  5077     // If there is a head section that needs zeroing, do it now.
  5078     if (find_int_con(dest_offset, -1) != 0) {
  5079       generate_clear_array(adr_type, dest, basic_elem_type,
  5080                            intcon(0), dest_offset,
  5081                            NULL);
  5084     // Next, perform a dynamic check on the tail length.
  5085     // It is often zero, and we can win big if we prove this.
  5086     // There are two wins:  Avoid generating the ClearArray
  5087     // with its attendant messy index arithmetic, and upgrade
  5088     // the copy to a more hardware-friendly word size of 64 bits.
  5089     Node* tail_ctl = NULL;
  5090     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5091       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5092       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5093       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5094       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5097     // At this point, let's assume there is no tail.
  5098     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5099       // There is no tail.  Try an upgrade to a 64-bit copy.
  5100       bool didit = false;
  5101       { PreserveJVMState pjvms(this);
  5102         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5103                                          src, src_offset, dest, dest_offset,
  5104                                          dest_size, dest_uninitialized);
  5105         if (didit) {
  5106           // Present the results of the block-copying fast call.
  5107           result_region->init_req(bcopy_path, control());
  5108           result_i_o   ->init_req(bcopy_path, i_o());
  5109           result_memory->init_req(bcopy_path, memory(adr_type));
  5112       if (didit)
  5113         set_control(top());     // no regular fast path
  5116     // Clear the tail, if any.
  5117     if (tail_ctl != NULL) {
  5118       Node* notail_ctl = stopped() ? NULL : control();
  5119       set_control(tail_ctl);
  5120       if (notail_ctl == NULL) {
  5121         generate_clear_array(adr_type, dest, basic_elem_type,
  5122                              dest_tail, NULL,
  5123                              dest_size);
  5124       } else {
  5125         // Make a local merge.
  5126         Node* done_ctl = new(C) RegionNode(3);
  5127         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5128         done_ctl->init_req(1, notail_ctl);
  5129         done_mem->init_req(1, memory(adr_type));
  5130         generate_clear_array(adr_type, dest, basic_elem_type,
  5131                              dest_tail, NULL,
  5132                              dest_size);
  5133         done_ctl->init_req(2, control());
  5134         done_mem->init_req(2, memory(adr_type));
  5135         set_control( _gvn.transform(done_ctl));
  5136         set_memory(  _gvn.transform(done_mem), adr_type );
  5141   BasicType copy_type = basic_elem_type;
  5142   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5143   if (!stopped() && copy_type == T_OBJECT) {
  5144     // If src and dest have compatible element types, we can copy bits.
  5145     // Types S[] and D[] are compatible if D is a supertype of S.
  5146     //
  5147     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5148     // which performs a fast optimistic per-oop check, and backs off
  5149     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5150     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5152     // Get the Klass* for both src and dest
  5153     Node* src_klass  = load_object_klass(src);
  5154     Node* dest_klass = load_object_klass(dest);
  5156     // Generate the subtype check.
  5157     // This might fold up statically, or then again it might not.
  5158     //
  5159     // Non-static example:  Copying List<String>.elements to a new String[].
  5160     // The backing store for a List<String> is always an Object[],
  5161     // but its elements are always type String, if the generic types
  5162     // are correct at the source level.
  5163     //
  5164     // Test S[] against D[], not S against D, because (probably)
  5165     // the secondary supertype cache is less busy for S[] than S.
  5166     // This usually only matters when D is an interface.
  5167     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5168     // Plug failing path into checked_oop_disjoint_arraycopy
  5169     if (not_subtype_ctrl != top()) {
  5170       PreserveJVMState pjvms(this);
  5171       set_control(not_subtype_ctrl);
  5172       // (At this point we can assume disjoint_bases, since types differ.)
  5173       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5174       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5175       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5176       Node* dest_elem_klass = _gvn.transform(n1);
  5177       Node* cv = generate_checkcast_arraycopy(adr_type,
  5178                                               dest_elem_klass,
  5179                                               src, src_offset, dest, dest_offset,
  5180                                               ConvI2X(copy_length), dest_uninitialized);
  5181       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5182       checked_control = control();
  5183       checked_i_o     = i_o();
  5184       checked_mem     = memory(adr_type);
  5185       checked_value   = cv;
  5187     // At this point we know we do not need type checks on oop stores.
  5189     // Let's see if we need card marks:
  5190     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5191       // If we do not need card marks, copy using the jint or jlong stub.
  5192       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5193       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5194              "sizes agree");
  5198   if (!stopped()) {
  5199     // Generate the fast path, if possible.
  5200     PreserveJVMState pjvms(this);
  5201     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5202                                  src, src_offset, dest, dest_offset,
  5203                                  ConvI2X(copy_length), dest_uninitialized);
  5205     // Present the results of the fast call.
  5206     result_region->init_req(fast_path, control());
  5207     result_i_o   ->init_req(fast_path, i_o());
  5208     result_memory->init_req(fast_path, memory(adr_type));
  5211   // Here are all the slow paths up to this point, in one bundle:
  5212   slow_control = top();
  5213   if (slow_region != NULL)
  5214     slow_control = _gvn.transform(slow_region);
  5215   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5217   set_control(checked_control);
  5218   if (!stopped()) {
  5219     // Clean up after the checked call.
  5220     // The returned value is either 0 or -1^K,
  5221     // where K = number of partially transferred array elements.
  5222     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5223     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5224     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5226     // If it is 0, we are done, so transfer to the end.
  5227     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5228     result_region->init_req(checked_path, checks_done);
  5229     result_i_o   ->init_req(checked_path, checked_i_o);
  5230     result_memory->init_req(checked_path, checked_mem);
  5232     // If it is not zero, merge into the slow call.
  5233     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5234     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5235     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5236     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5237     record_for_igvn(slow_reg2);
  5238     slow_reg2  ->init_req(1, slow_control);
  5239     slow_i_o2  ->init_req(1, slow_i_o);
  5240     slow_mem2  ->init_req(1, slow_mem);
  5241     slow_reg2  ->init_req(2, control());
  5242     slow_i_o2  ->init_req(2, checked_i_o);
  5243     slow_mem2  ->init_req(2, checked_mem);
  5245     slow_control = _gvn.transform(slow_reg2);
  5246     slow_i_o     = _gvn.transform(slow_i_o2);
  5247     slow_mem     = _gvn.transform(slow_mem2);
  5249     if (alloc != NULL) {
  5250       // We'll restart from the very beginning, after zeroing the whole thing.
  5251       // This can cause double writes, but that's OK since dest is brand new.
  5252       // So we ignore the low 31 bits of the value returned from the stub.
  5253     } else {
  5254       // We must continue the copy exactly where it failed, or else
  5255       // another thread might see the wrong number of writes to dest.
  5256       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5257       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5258       slow_offset->init_req(1, intcon(0));
  5259       slow_offset->init_req(2, checked_offset);
  5260       slow_offset  = _gvn.transform(slow_offset);
  5262       // Adjust the arguments by the conditionally incoming offset.
  5263       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5264       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5265       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5267       // Tweak the node variables to adjust the code produced below:
  5268       src_offset  = src_off_plus;
  5269       dest_offset = dest_off_plus;
  5270       copy_length = length_minus;
  5274   set_control(slow_control);
  5275   if (!stopped()) {
  5276     // Generate the slow path, if needed.
  5277     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5279     set_memory(slow_mem, adr_type);
  5280     set_i_o(slow_i_o);
  5282     if (dest_uninitialized) {
  5283       generate_clear_array(adr_type, dest, basic_elem_type,
  5284                            intcon(0), NULL,
  5285                            alloc->in(AllocateNode::AllocSize));
  5288     generate_slow_arraycopy(adr_type,
  5289                             src, src_offset, dest, dest_offset,
  5290                             copy_length, /*dest_uninitialized*/false);
  5292     result_region->init_req(slow_call_path, control());
  5293     result_i_o   ->init_req(slow_call_path, i_o());
  5294     result_memory->init_req(slow_call_path, memory(adr_type));
  5297   // Remove unused edges.
  5298   for (uint i = 1; i < result_region->req(); i++) {
  5299     if (result_region->in(i) == NULL)
  5300       result_region->init_req(i, top());
  5303   // Finished; return the combined state.
  5304   set_control( _gvn.transform(result_region));
  5305   set_i_o(     _gvn.transform(result_i_o)    );
  5306   set_memory(  _gvn.transform(result_memory), adr_type );
  5308   // The memory edges above are precise in order to model effects around
  5309   // array copies accurately to allow value numbering of field loads around
  5310   // arraycopy.  Such field loads, both before and after, are common in Java
  5311   // collections and similar classes involving header/array data structures.
  5312   //
  5313   // But with low number of register or when some registers are used or killed
  5314   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5315   // The next memory barrier is added to avoid it. If the arraycopy can be
  5316   // optimized away (which it can, sometimes) then we can manually remove
  5317   // the membar also.
  5318   //
  5319   // Do not let reads from the cloned object float above the arraycopy.
  5320   if (alloc != NULL) {
  5321     // Do not let stores that initialize this object be reordered with
  5322     // a subsequent store that would make this object accessible by
  5323     // other threads.
  5324     // Record what AllocateNode this StoreStore protects so that
  5325     // escape analysis can go from the MemBarStoreStoreNode to the
  5326     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5327     // based on the escape status of the AllocateNode.
  5328     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5329   } else if (InsertMemBarAfterArraycopy)
  5330     insert_mem_bar(Op_MemBarCPUOrder);
  5334 // Helper function which determines if an arraycopy immediately follows
  5335 // an allocation, with no intervening tests or other escapes for the object.
  5336 AllocateArrayNode*
  5337 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5338                                            RegionNode* slow_region) {
  5339   if (stopped())             return NULL;  // no fast path
  5340   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5342   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5343   if (alloc == NULL)  return NULL;
  5345   Node* rawmem = memory(Compile::AliasIdxRaw);
  5346   // Is the allocation's memory state untouched?
  5347   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5348     // Bail out if there have been raw-memory effects since the allocation.
  5349     // (Example:  There might have been a call or safepoint.)
  5350     return NULL;
  5352   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5353   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5354     return NULL;
  5357   // There must be no unexpected observers of this allocation.
  5358   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5359     Node* obs = ptr->fast_out(i);
  5360     if (obs != this->map()) {
  5361       return NULL;
  5365   // This arraycopy must unconditionally follow the allocation of the ptr.
  5366   Node* alloc_ctl = ptr->in(0);
  5367   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5369   Node* ctl = control();
  5370   while (ctl != alloc_ctl) {
  5371     // There may be guards which feed into the slow_region.
  5372     // Any other control flow means that we might not get a chance
  5373     // to finish initializing the allocated object.
  5374     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5375       IfNode* iff = ctl->in(0)->as_If();
  5376       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5377       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5378       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5379         ctl = iff->in(0);       // This test feeds the known slow_region.
  5380         continue;
  5382       // One more try:  Various low-level checks bottom out in
  5383       // uncommon traps.  If the debug-info of the trap omits
  5384       // any reference to the allocation, as we've already
  5385       // observed, then there can be no objection to the trap.
  5386       bool found_trap = false;
  5387       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5388         Node* obs = not_ctl->fast_out(j);
  5389         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5390             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5391           found_trap = true; break;
  5394       if (found_trap) {
  5395         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5396         continue;
  5399     return NULL;
  5402   // If we get this far, we have an allocation which immediately
  5403   // precedes the arraycopy, and we can take over zeroing the new object.
  5404   // The arraycopy will finish the initialization, and provide
  5405   // a new control state to which we will anchor the destination pointer.
  5407   return alloc;
  5410 // Helper for initialization of arrays, creating a ClearArray.
  5411 // It writes zero bits in [start..end), within the body of an array object.
  5412 // The memory effects are all chained onto the 'adr_type' alias category.
  5413 //
  5414 // Since the object is otherwise uninitialized, we are free
  5415 // to put a little "slop" around the edges of the cleared area,
  5416 // as long as it does not go back into the array's header,
  5417 // or beyond the array end within the heap.
  5418 //
  5419 // The lower edge can be rounded down to the nearest jint and the
  5420 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5421 //
  5422 // Arguments:
  5423 //   adr_type           memory slice where writes are generated
  5424 //   dest               oop of the destination array
  5425 //   basic_elem_type    element type of the destination
  5426 //   slice_idx          array index of first element to store
  5427 //   slice_len          number of elements to store (or NULL)
  5428 //   dest_size          total size in bytes of the array object
  5429 //
  5430 // Exactly one of slice_len or dest_size must be non-NULL.
  5431 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5432 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5433 void
  5434 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5435                                      Node* dest,
  5436                                      BasicType basic_elem_type,
  5437                                      Node* slice_idx,
  5438                                      Node* slice_len,
  5439                                      Node* dest_size) {
  5440   // one or the other but not both of slice_len and dest_size:
  5441   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5442   if (slice_len == NULL)  slice_len = top();
  5443   if (dest_size == NULL)  dest_size = top();
  5445   // operate on this memory slice:
  5446   Node* mem = memory(adr_type); // memory slice to operate on
  5448   // scaling and rounding of indexes:
  5449   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5450   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5451   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5452   int bump_bit  = (-1 << scale) & BytesPerInt;
  5454   // determine constant starts and ends
  5455   const intptr_t BIG_NEG = -128;
  5456   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5457   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5458   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5459   if (slice_len_con == 0) {
  5460     return;                     // nothing to do here
  5462   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5463   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5464   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5465     assert(end_con < 0, "not two cons");
  5466     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5467                        BytesPerLong);
  5470   if (start_con >= 0 && end_con >= 0) {
  5471     // Constant start and end.  Simple.
  5472     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5473                                        start_con, end_con, &_gvn);
  5474   } else if (start_con >= 0 && dest_size != top()) {
  5475     // Constant start, pre-rounded end after the tail of the array.
  5476     Node* end = dest_size;
  5477     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5478                                        start_con, end, &_gvn);
  5479   } else if (start_con >= 0 && slice_len != top()) {
  5480     // Constant start, non-constant end.  End needs rounding up.
  5481     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5482     intptr_t end_base  = abase + (slice_idx_con << scale);
  5483     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5484     Node*    end       = ConvI2X(slice_len);
  5485     if (scale != 0)
  5486       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5487     end_base += end_round;
  5488     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5489     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5490     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5491                                        start_con, end, &_gvn);
  5492   } else if (start_con < 0 && dest_size != top()) {
  5493     // Non-constant start, pre-rounded end after the tail of the array.
  5494     // This is almost certainly a "round-to-end" operation.
  5495     Node* start = slice_idx;
  5496     start = ConvI2X(start);
  5497     if (scale != 0)
  5498       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5499     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5500     if ((bump_bit | clear_low) != 0) {
  5501       int to_clear = (bump_bit | clear_low);
  5502       // Align up mod 8, then store a jint zero unconditionally
  5503       // just before the mod-8 boundary.
  5504       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5505           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5506         bump_bit = 0;
  5507         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5508       } else {
  5509         // Bump 'start' up to (or past) the next jint boundary:
  5510         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5511         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5513       // Round bumped 'start' down to jlong boundary in body of array.
  5514       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5515       if (bump_bit != 0) {
  5516         // Store a zero to the immediately preceding jint:
  5517         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5518         Node* p1 = basic_plus_adr(dest, x1);
  5519         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5520         mem = _gvn.transform(mem);
  5523     Node* end = dest_size; // pre-rounded
  5524     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5525                                        start, end, &_gvn);
  5526   } else {
  5527     // Non-constant start, unrounded non-constant end.
  5528     // (Nobody zeroes a random midsection of an array using this routine.)
  5529     ShouldNotReachHere();       // fix caller
  5532   // Done.
  5533   set_memory(mem, adr_type);
  5537 bool
  5538 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5539                                          BasicType basic_elem_type,
  5540                                          AllocateNode* alloc,
  5541                                          Node* src,  Node* src_offset,
  5542                                          Node* dest, Node* dest_offset,
  5543                                          Node* dest_size, bool dest_uninitialized) {
  5544   // See if there is an advantage from block transfer.
  5545   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5546   if (scale >= LogBytesPerLong)
  5547     return false;               // it is already a block transfer
  5549   // Look at the alignment of the starting offsets.
  5550   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5552   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5553   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5554   if (src_off_con < 0 || dest_off_con < 0)
  5555     // At present, we can only understand constants.
  5556     return false;
  5558   intptr_t src_off  = abase + (src_off_con  << scale);
  5559   intptr_t dest_off = abase + (dest_off_con << scale);
  5561   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5562     // Non-aligned; too bad.
  5563     // One more chance:  Pick off an initial 32-bit word.
  5564     // This is a common case, since abase can be odd mod 8.
  5565     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5566         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5567       Node* sptr = basic_plus_adr(src,  src_off);
  5568       Node* dptr = basic_plus_adr(dest, dest_off);
  5569       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5570       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5571       src_off += BytesPerInt;
  5572       dest_off += BytesPerInt;
  5573     } else {
  5574       return false;
  5577   assert(src_off % BytesPerLong == 0, "");
  5578   assert(dest_off % BytesPerLong == 0, "");
  5580   // Do this copy by giant steps.
  5581   Node* sptr  = basic_plus_adr(src,  src_off);
  5582   Node* dptr  = basic_plus_adr(dest, dest_off);
  5583   Node* countx = dest_size;
  5584   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5585   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5587   bool disjoint_bases = true;   // since alloc != NULL
  5588   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5589                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5591   return true;
  5595 // Helper function; generates code for the slow case.
  5596 // We make a call to a runtime method which emulates the native method,
  5597 // but without the native wrapper overhead.
  5598 void
  5599 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5600                                         Node* src,  Node* src_offset,
  5601                                         Node* dest, Node* dest_offset,
  5602                                         Node* copy_length, bool dest_uninitialized) {
  5603   assert(!dest_uninitialized, "Invariant");
  5604   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5605                                  OptoRuntime::slow_arraycopy_Type(),
  5606                                  OptoRuntime::slow_arraycopy_Java(),
  5607                                  "slow_arraycopy", adr_type,
  5608                                  src, src_offset, dest, dest_offset,
  5609                                  copy_length);
  5611   // Handle exceptions thrown by this fellow:
  5612   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5615 // Helper function; generates code for cases requiring runtime checks.
  5616 Node*
  5617 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5618                                              Node* dest_elem_klass,
  5619                                              Node* src,  Node* src_offset,
  5620                                              Node* dest, Node* dest_offset,
  5621                                              Node* copy_length, bool dest_uninitialized) {
  5622   if (stopped())  return NULL;
  5624   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5625   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5626     return NULL;
  5629   // Pick out the parameters required to perform a store-check
  5630   // for the target array.  This is an optimistic check.  It will
  5631   // look in each non-null element's class, at the desired klass's
  5632   // super_check_offset, for the desired klass.
  5633   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5634   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5635   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5636   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5637   Node* check_value  = dest_elem_klass;
  5639   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5640   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5642   // (We know the arrays are never conjoint, because their types differ.)
  5643   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5644                                  OptoRuntime::checkcast_arraycopy_Type(),
  5645                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5646                                  // five arguments, of which two are
  5647                                  // intptr_t (jlong in LP64)
  5648                                  src_start, dest_start,
  5649                                  copy_length XTOP,
  5650                                  check_offset XTOP,
  5651                                  check_value);
  5653   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5657 // Helper function; generates code for cases requiring runtime checks.
  5658 Node*
  5659 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5660                                            Node* src,  Node* src_offset,
  5661                                            Node* dest, Node* dest_offset,
  5662                                            Node* copy_length, bool dest_uninitialized) {
  5663   assert(!dest_uninitialized, "Invariant");
  5664   if (stopped())  return NULL;
  5665   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5666   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5667     return NULL;
  5670   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5671                     OptoRuntime::generic_arraycopy_Type(),
  5672                     copyfunc_addr, "generic_arraycopy", adr_type,
  5673                     src, src_offset, dest, dest_offset, copy_length);
  5675   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5678 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5679 void
  5680 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5681                                              BasicType basic_elem_type,
  5682                                              bool disjoint_bases,
  5683                                              Node* src,  Node* src_offset,
  5684                                              Node* dest, Node* dest_offset,
  5685                                              Node* copy_length, bool dest_uninitialized) {
  5686   if (stopped())  return;               // nothing to do
  5688   Node* src_start  = src;
  5689   Node* dest_start = dest;
  5690   if (src_offset != NULL || dest_offset != NULL) {
  5691     assert(src_offset != NULL && dest_offset != NULL, "");
  5692     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5693     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5696   // Figure out which arraycopy runtime method to call.
  5697   const char* copyfunc_name = "arraycopy";
  5698   address     copyfunc_addr =
  5699       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5700                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5702   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5703   make_runtime_call(RC_LEAF|RC_NO_FP,
  5704                     OptoRuntime::fast_arraycopy_Type(),
  5705                     copyfunc_addr, copyfunc_name, adr_type,
  5706                     src_start, dest_start, copy_length XTOP);
  5709 //-------------inline_encodeISOArray-----------------------------------
  5710 // encode char[] to byte[] in ISO_8859_1
  5711 bool LibraryCallKit::inline_encodeISOArray() {
  5712   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5713   // no receiver since it is static method
  5714   Node *src         = argument(0);
  5715   Node *src_offset  = argument(1);
  5716   Node *dst         = argument(2);
  5717   Node *dst_offset  = argument(3);
  5718   Node *length      = argument(4);
  5720   const Type* src_type = src->Value(&_gvn);
  5721   const Type* dst_type = dst->Value(&_gvn);
  5722   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5723   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5724   if (top_src  == NULL || top_src->klass()  == NULL ||
  5725       top_dest == NULL || top_dest->klass() == NULL) {
  5726     // failed array check
  5727     return false;
  5730   // Figure out the size and type of the elements we will be copying.
  5731   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5732   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5733   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5734     return false;
  5736   Node* src_start = array_element_address(src, src_offset, src_elem);
  5737   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5738   // 'src_start' points to src array + scaled offset
  5739   // 'dst_start' points to dst array + scaled offset
  5741   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5742   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5743   enc = _gvn.transform(enc);
  5744   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5745   set_memory(res_mem, mtype);
  5746   set_result(enc);
  5747   return true;
  5750 //-------------inline_multiplyToLen-----------------------------------
  5751 bool LibraryCallKit::inline_multiplyToLen() {
  5752   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
  5754   address stubAddr = StubRoutines::multiplyToLen();
  5755   if (stubAddr == NULL) {
  5756     return false; // Intrinsic's stub is not implemented on this platform
  5758   const char* stubName = "multiplyToLen";
  5760   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
  5762   Node* x    = argument(1);
  5763   Node* xlen = argument(2);
  5764   Node* y    = argument(3);
  5765   Node* ylen = argument(4);
  5766   Node* z    = argument(5);
  5768   const Type* x_type = x->Value(&_gvn);
  5769   const Type* y_type = y->Value(&_gvn);
  5770   const TypeAryPtr* top_x = x_type->isa_aryptr();
  5771   const TypeAryPtr* top_y = y_type->isa_aryptr();
  5772   if (top_x  == NULL || top_x->klass()  == NULL ||
  5773       top_y == NULL || top_y->klass() == NULL) {
  5774     // failed array check
  5775     return false;
  5778   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5779   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5780   if (x_elem != T_INT || y_elem != T_INT) {
  5781     return false;
  5784   // Set the original stack and the reexecute bit for the interpreter to reexecute
  5785   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
  5786   // on the return from z array allocation in runtime.
  5787   { PreserveReexecuteState preexecs(this);
  5788     jvms()->set_should_reexecute(true);
  5790     Node* x_start = array_element_address(x, intcon(0), x_elem);
  5791     Node* y_start = array_element_address(y, intcon(0), y_elem);
  5792     // 'x_start' points to x array + scaled xlen
  5793     // 'y_start' points to y array + scaled ylen
  5795     // Allocate the result array
  5796     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
  5797     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
  5799     IdealKit ideal(this);
  5801 #define __ ideal.
  5802      Node* one = __ ConI(1);
  5803      Node* zero = __ ConI(0);
  5804      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
  5805      __ set(need_alloc, zero);
  5806      __ set(z_alloc, z);
  5807      __ if_then(z, BoolTest::eq, null()); {
  5808        __ increment (need_alloc, one);
  5809      } __ else_(); {
  5810        // Update graphKit memory and control from IdealKit.
  5811        sync_kit(ideal);
  5812        Node* zlen_arg = load_array_length(z);
  5813        // Update IdealKit memory and control from graphKit.
  5814        __ sync_kit(this);
  5815        __ if_then(zlen_arg, BoolTest::lt, zlen); {
  5816          __ increment (need_alloc, one);
  5817        } __ end_if();
  5818      } __ end_if();
  5820      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
  5821        // Update graphKit memory and control from IdealKit.
  5822        sync_kit(ideal);
  5823        Node * narr = new_array(klass_node, zlen, 1);
  5824        // Update IdealKit memory and control from graphKit.
  5825        __ sync_kit(this);
  5826        __ set(z_alloc, narr);
  5827      } __ end_if();
  5829      sync_kit(ideal);
  5830      z = __ value(z_alloc);
  5831      _gvn.set_type(z, TypeAryPtr::INTS);
  5832      // Final sync IdealKit and GraphKit.
  5833      final_sync(ideal);
  5834 #undef __
  5836     Node* z_start = array_element_address(z, intcon(0), T_INT);
  5838     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5839                                    OptoRuntime::multiplyToLen_Type(),
  5840                                    stubAddr, stubName, TypePtr::BOTTOM,
  5841                                    x_start, xlen, y_start, ylen, z_start, zlen);
  5842   } // original reexecute is set back here
  5844   C->set_has_split_ifs(true); // Has chance for split-if optimization
  5845   set_result(z);
  5846   return true;
  5850 /**
  5851  * Calculate CRC32 for byte.
  5852  * int java.util.zip.CRC32.update(int crc, int b)
  5853  */
  5854 bool LibraryCallKit::inline_updateCRC32() {
  5855   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5856   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5857   // no receiver since it is static method
  5858   Node* crc  = argument(0); // type: int
  5859   Node* b    = argument(1); // type: int
  5861   /*
  5862    *    int c = ~ crc;
  5863    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5864    *    b = b ^ (c >>> 8);
  5865    *    crc = ~b;
  5866    */
  5868   Node* M1 = intcon(-1);
  5869   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5870   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5871   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5873   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5874   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5875   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5876   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  5878   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5879   result = _gvn.transform(new (C) XorINode(crc, result));
  5880   result = _gvn.transform(new (C) XorINode(result, M1));
  5881   set_result(result);
  5882   return true;
  5885 /**
  5886  * Calculate CRC32 for byte[] array.
  5887  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5888  */
  5889 bool LibraryCallKit::inline_updateBytesCRC32() {
  5890   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5891   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5892   // no receiver since it is static method
  5893   Node* crc     = argument(0); // type: int
  5894   Node* src     = argument(1); // type: oop
  5895   Node* offset  = argument(2); // type: int
  5896   Node* length  = argument(3); // type: int
  5898   const Type* src_type = src->Value(&_gvn);
  5899   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5900   if (top_src  == NULL || top_src->klass()  == NULL) {
  5901     // failed array check
  5902     return false;
  5905   // Figure out the size and type of the elements we will be copying.
  5906   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5907   if (src_elem != T_BYTE) {
  5908     return false;
  5911   // 'src_start' points to src array + scaled offset
  5912   Node* src_start = array_element_address(src, offset, src_elem);
  5914   // We assume that range check is done by caller.
  5915   // TODO: generate range check (offset+length < src.length) in debug VM.
  5917   // Call the stub.
  5918   address stubAddr = StubRoutines::updateBytesCRC32();
  5919   const char *stubName = "updateBytesCRC32";
  5921   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5922                                  stubAddr, stubName, TypePtr::BOTTOM,
  5923                                  crc, src_start, length);
  5924   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5925   set_result(result);
  5926   return true;
  5929 /**
  5930  * Calculate CRC32 for ByteBuffer.
  5931  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5932  */
  5933 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5934   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5935   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5936   // no receiver since it is static method
  5937   Node* crc     = argument(0); // type: int
  5938   Node* src     = argument(1); // type: long
  5939   Node* offset  = argument(3); // type: int
  5940   Node* length  = argument(4); // type: int
  5942   src = ConvL2X(src);  // adjust Java long to machine word
  5943   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5944   offset = ConvI2X(offset);
  5946   // 'src_start' points to src array + scaled offset
  5947   Node* src_start = basic_plus_adr(top(), base, offset);
  5949   // Call the stub.
  5950   address stubAddr = StubRoutines::updateBytesCRC32();
  5951   const char *stubName = "updateBytesCRC32";
  5953   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5954                                  stubAddr, stubName, TypePtr::BOTTOM,
  5955                                  crc, src_start, length);
  5956   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5957   set_result(result);
  5958   return true;
  5961 //----------------------------inline_reference_get----------------------------
  5962 // public T java.lang.ref.Reference.get();
  5963 bool LibraryCallKit::inline_reference_get() {
  5964   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5965   guarantee(referent_offset > 0, "should have already been set");
  5967   // Get the argument:
  5968   Node* reference_obj = null_check_receiver();
  5969   if (stopped()) return true;
  5971   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5973   ciInstanceKlass* klass = env()->Object_klass();
  5974   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5976   Node* no_ctrl = NULL;
  5977   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  5979   // Use the pre-barrier to record the value in the referent field
  5980   pre_barrier(false /* do_load */,
  5981               control(),
  5982               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5983               result /* pre_val */,
  5984               T_OBJECT);
  5986   // Add memory barrier to prevent commoning reads from this field
  5987   // across safepoint since GC can change its value.
  5988   insert_mem_bar(Op_MemBarCPUOrder);
  5990   set_result(result);
  5991   return true;
  5995 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5996                                               bool is_exact=true, bool is_static=false) {
  5998   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5999   assert(tinst != NULL, "obj is null");
  6000   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  6001   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  6003   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  6004                                                                           ciSymbol::make(fieldTypeString),
  6005                                                                           is_static);
  6006   if (field == NULL) return (Node *) NULL;
  6007   assert (field != NULL, "undefined field");
  6009   // Next code  copied from Parse::do_get_xxx():
  6011   // Compute address and memory type.
  6012   int offset  = field->offset_in_bytes();
  6013   bool is_vol = field->is_volatile();
  6014   ciType* field_klass = field->type();
  6015   assert(field_klass->is_loaded(), "should be loaded");
  6016   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  6017   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  6018   BasicType bt = field->layout_type();
  6020   // Build the resultant type of the load
  6021   const Type *type;
  6022   if (bt == T_OBJECT) {
  6023     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  6024   } else {
  6025     type = Type::get_const_basic_type(bt);
  6028   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
  6029     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
  6031   // Build the load.
  6032   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
  6033   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
  6034   // If reference is volatile, prevent following memory ops from
  6035   // floating up past the volatile read.  Also prevents commoning
  6036   // another volatile read.
  6037   if (is_vol) {
  6038     // Memory barrier includes bogus read of value to force load BEFORE membar
  6039     insert_mem_bar(Op_MemBarAcquire, loadedField);
  6041   return loadedField;
  6045 //------------------------------inline_aescrypt_Block-----------------------
  6046 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  6047   address stubAddr;
  6048   const char *stubName;
  6049   assert(UseAES, "need AES instruction support");
  6051   switch(id) {
  6052   case vmIntrinsics::_aescrypt_encryptBlock:
  6053     stubAddr = StubRoutines::aescrypt_encryptBlock();
  6054     stubName = "aescrypt_encryptBlock";
  6055     break;
  6056   case vmIntrinsics::_aescrypt_decryptBlock:
  6057     stubAddr = StubRoutines::aescrypt_decryptBlock();
  6058     stubName = "aescrypt_decryptBlock";
  6059     break;
  6061   if (stubAddr == NULL) return false;
  6063   Node* aescrypt_object = argument(0);
  6064   Node* src             = argument(1);
  6065   Node* src_offset      = argument(2);
  6066   Node* dest            = argument(3);
  6067   Node* dest_offset     = argument(4);
  6069   // (1) src and dest are arrays.
  6070   const Type* src_type = src->Value(&_gvn);
  6071   const Type* dest_type = dest->Value(&_gvn);
  6072   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6073   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6074   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6076   // for the quick and dirty code we will skip all the checks.
  6077   // we are just trying to get the call to be generated.
  6078   Node* src_start  = src;
  6079   Node* dest_start = dest;
  6080   if (src_offset != NULL || dest_offset != NULL) {
  6081     assert(src_offset != NULL && dest_offset != NULL, "");
  6082     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6083     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6086   // now need to get the start of its expanded key array
  6087   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6088   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6089   if (k_start == NULL) return false;
  6091   if (Matcher::pass_original_key_for_aes()) {
  6092     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6093     // compatibility issues between Java key expansion and SPARC crypto instructions
  6094     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6095     if (original_k_start == NULL) return false;
  6097     // Call the stub.
  6098     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6099                       stubAddr, stubName, TypePtr::BOTTOM,
  6100                       src_start, dest_start, k_start, original_k_start);
  6101   } else {
  6102     // Call the stub.
  6103     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6104                       stubAddr, stubName, TypePtr::BOTTOM,
  6105                       src_start, dest_start, k_start);
  6108   return true;
  6111 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  6112 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  6113   address stubAddr;
  6114   const char *stubName;
  6116   assert(UseAES, "need AES instruction support");
  6118   switch(id) {
  6119   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  6120     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  6121     stubName = "cipherBlockChaining_encryptAESCrypt";
  6122     break;
  6123   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  6124     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  6125     stubName = "cipherBlockChaining_decryptAESCrypt";
  6126     break;
  6128   if (stubAddr == NULL) return false;
  6130   Node* cipherBlockChaining_object = argument(0);
  6131   Node* src                        = argument(1);
  6132   Node* src_offset                 = argument(2);
  6133   Node* len                        = argument(3);
  6134   Node* dest                       = argument(4);
  6135   Node* dest_offset                = argument(5);
  6137   // (1) src and dest are arrays.
  6138   const Type* src_type = src->Value(&_gvn);
  6139   const Type* dest_type = dest->Value(&_gvn);
  6140   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6141   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6142   assert (top_src  != NULL && top_src->klass()  != NULL
  6143           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6145   // checks are the responsibility of the caller
  6146   Node* src_start  = src;
  6147   Node* dest_start = dest;
  6148   if (src_offset != NULL || dest_offset != NULL) {
  6149     assert(src_offset != NULL && dest_offset != NULL, "");
  6150     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6151     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6154   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  6155   // (because of the predicated logic executed earlier).
  6156   // so we cast it here safely.
  6157   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6159   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6160   if (embeddedCipherObj == NULL) return false;
  6162   // cast it to what we know it will be at runtime
  6163   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  6164   assert(tinst != NULL, "CBC obj is null");
  6165   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  6166   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6167   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
  6169   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6170   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6171   const TypeOopPtr* xtype = aklass->as_instance_type();
  6172   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6173   aescrypt_object = _gvn.transform(aescrypt_object);
  6175   // we need to get the start of the aescrypt_object's expanded key array
  6176   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6177   if (k_start == NULL) return false;
  6179   // similarly, get the start address of the r vector
  6180   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6181   if (objRvec == NULL) return false;
  6182   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6184   Node* cbcCrypt;
  6185   if (Matcher::pass_original_key_for_aes()) {
  6186     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6187     // compatibility issues between Java key expansion and SPARC crypto instructions
  6188     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6189     if (original_k_start == NULL) return false;
  6191     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  6192     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6193                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6194                                  stubAddr, stubName, TypePtr::BOTTOM,
  6195                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  6196   } else {
  6197     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6198     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6199                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6200                                  stubAddr, stubName, TypePtr::BOTTOM,
  6201                                  src_start, dest_start, k_start, r_start, len);
  6204   // return cipher length (int)
  6205   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  6206   set_result(retvalue);
  6207   return true;
  6210 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6211 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6212   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6213   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6214   if (objAESCryptKey == NULL) return (Node *) NULL;
  6216   // now have the array, need to get the start address of the K array
  6217   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6218   return k_start;
  6221 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6222 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6223   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6224   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6225   if (objAESCryptKey == NULL) return (Node *) NULL;
  6227   // now have the array, need to get the start address of the lastKey array
  6228   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6229   return original_k_start;
  6232 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6233 // Return node representing slow path of predicate check.
  6234 // the pseudo code we want to emulate with this predicate is:
  6235 // for encryption:
  6236 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6237 // for decryption:
  6238 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6239 //    note cipher==plain is more conservative than the original java code but that's OK
  6240 //
  6241 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6242   // The receiver was checked for NULL already.
  6243   Node* objCBC = argument(0);
  6245   // Load embeddedCipher field of CipherBlockChaining object.
  6246   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6248   // get AESCrypt klass for instanceOf check
  6249   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6250   // will have same classloader as CipherBlockChaining object
  6251   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6252   assert(tinst != NULL, "CBCobj is null");
  6253   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6255   // we want to do an instanceof comparison against the AESCrypt class
  6256   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6257   if (!klass_AESCrypt->is_loaded()) {
  6258     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6259     Node* ctrl = control();
  6260     set_control(top()); // no regular fast path
  6261     return ctrl;
  6263   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6265   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6266   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6267   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6269   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6271   // for encryption, we are done
  6272   if (!decrypting)
  6273     return instof_false;  // even if it is NULL
  6275   // for decryption, we need to add a further check to avoid
  6276   // taking the intrinsic path when cipher and plain are the same
  6277   // see the original java code for why.
  6278   RegionNode* region = new(C) RegionNode(3);
  6279   region->init_req(1, instof_false);
  6280   Node* src = argument(1);
  6281   Node* dest = argument(4);
  6282   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6283   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6284   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6285   region->init_req(2, src_dest_conjoint);
  6287   record_for_igvn(region);
  6288   return _gvn.transform(region);
  6291 //------------------------------inline_sha_implCompress-----------------------
  6292 //
  6293 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
  6294 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
  6295 //
  6296 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
  6297 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
  6298 //
  6299 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
  6300 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
  6301 //
  6302 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
  6303   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
  6305   Node* sha_obj = argument(0);
  6306   Node* src     = argument(1); // type oop
  6307   Node* ofs     = argument(2); // type int
  6309   const Type* src_type = src->Value(&_gvn);
  6310   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6311   if (top_src  == NULL || top_src->klass()  == NULL) {
  6312     // failed array check
  6313     return false;
  6315   // Figure out the size and type of the elements we will be copying.
  6316   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6317   if (src_elem != T_BYTE) {
  6318     return false;
  6320   // 'src_start' points to src array + offset
  6321   Node* src_start = array_element_address(src, ofs, src_elem);
  6322   Node* state = NULL;
  6323   address stubAddr;
  6324   const char *stubName;
  6326   switch(id) {
  6327   case vmIntrinsics::_sha_implCompress:
  6328     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
  6329     state = get_state_from_sha_object(sha_obj);
  6330     stubAddr = StubRoutines::sha1_implCompress();
  6331     stubName = "sha1_implCompress";
  6332     break;
  6333   case vmIntrinsics::_sha2_implCompress:
  6334     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
  6335     state = get_state_from_sha_object(sha_obj);
  6336     stubAddr = StubRoutines::sha256_implCompress();
  6337     stubName = "sha256_implCompress";
  6338     break;
  6339   case vmIntrinsics::_sha5_implCompress:
  6340     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
  6341     state = get_state_from_sha5_object(sha_obj);
  6342     stubAddr = StubRoutines::sha512_implCompress();
  6343     stubName = "sha512_implCompress";
  6344     break;
  6345   default:
  6346     fatal_unexpected_iid(id);
  6347     return false;
  6349   if (state == NULL) return false;
  6351   // Call the stub.
  6352   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
  6353                                  stubAddr, stubName, TypePtr::BOTTOM,
  6354                                  src_start, state);
  6356   return true;
  6359 //------------------------------inline_digestBase_implCompressMB-----------------------
  6360 //
  6361 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
  6362 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
  6363 //
  6364 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
  6365   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6366          "need SHA1/SHA256/SHA512 instruction support");
  6367   assert((uint)predicate < 3, "sanity");
  6368   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
  6370   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
  6371   Node* src            = argument(1); // byte[] array
  6372   Node* ofs            = argument(2); // type int
  6373   Node* limit          = argument(3); // type int
  6375   const Type* src_type = src->Value(&_gvn);
  6376   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6377   if (top_src  == NULL || top_src->klass()  == NULL) {
  6378     // failed array check
  6379     return false;
  6381   // Figure out the size and type of the elements we will be copying.
  6382   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6383   if (src_elem != T_BYTE) {
  6384     return false;
  6386   // 'src_start' points to src array + offset
  6387   Node* src_start = array_element_address(src, ofs, src_elem);
  6389   const char* klass_SHA_name = NULL;
  6390   const char* stub_name = NULL;
  6391   address     stub_addr = NULL;
  6392   bool        long_state = false;
  6394   switch (predicate) {
  6395   case 0:
  6396     if (UseSHA1Intrinsics) {
  6397       klass_SHA_name = "sun/security/provider/SHA";
  6398       stub_name = "sha1_implCompressMB";
  6399       stub_addr = StubRoutines::sha1_implCompressMB();
  6401     break;
  6402   case 1:
  6403     if (UseSHA256Intrinsics) {
  6404       klass_SHA_name = "sun/security/provider/SHA2";
  6405       stub_name = "sha256_implCompressMB";
  6406       stub_addr = StubRoutines::sha256_implCompressMB();
  6408     break;
  6409   case 2:
  6410     if (UseSHA512Intrinsics) {
  6411       klass_SHA_name = "sun/security/provider/SHA5";
  6412       stub_name = "sha512_implCompressMB";
  6413       stub_addr = StubRoutines::sha512_implCompressMB();
  6414       long_state = true;
  6416     break;
  6417   default:
  6418     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6420   if (klass_SHA_name != NULL) {
  6421     // get DigestBase klass to lookup for SHA klass
  6422     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
  6423     assert(tinst != NULL, "digestBase_obj is not instance???");
  6424     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6426     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6427     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
  6428     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6429     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
  6431   return false;
  6433 //------------------------------inline_sha_implCompressMB-----------------------
  6434 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
  6435                                                bool long_state, address stubAddr, const char *stubName,
  6436                                                Node* src_start, Node* ofs, Node* limit) {
  6437   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
  6438   const TypeOopPtr* xtype = aklass->as_instance_type();
  6439   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
  6440   sha_obj = _gvn.transform(sha_obj);
  6442   Node* state;
  6443   if (long_state) {
  6444     state = get_state_from_sha5_object(sha_obj);
  6445   } else {
  6446     state = get_state_from_sha_object(sha_obj);
  6448   if (state == NULL) return false;
  6450   // Call the stub.
  6451   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  6452                                  OptoRuntime::digestBase_implCompressMB_Type(),
  6453                                  stubAddr, stubName, TypePtr::BOTTOM,
  6454                                  src_start, state, ofs, limit);
  6455   // return ofs (int)
  6456   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6457   set_result(result);
  6459   return true;
  6462 //------------------------------get_state_from_sha_object-----------------------
  6463 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
  6464   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
  6465   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
  6466   if (sha_state == NULL) return (Node *) NULL;
  6468   // now have the array, need to get the start address of the state array
  6469   Node* state = array_element_address(sha_state, intcon(0), T_INT);
  6470   return state;
  6473 //------------------------------get_state_from_sha5_object-----------------------
  6474 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
  6475   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
  6476   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
  6477   if (sha_state == NULL) return (Node *) NULL;
  6479   // now have the array, need to get the start address of the state array
  6480   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
  6481   return state;
  6484 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
  6485 // Return node representing slow path of predicate check.
  6486 // the pseudo code we want to emulate with this predicate is:
  6487 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
  6488 //
  6489 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
  6490   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6491          "need SHA1/SHA256/SHA512 instruction support");
  6492   assert((uint)predicate < 3, "sanity");
  6494   // The receiver was checked for NULL already.
  6495   Node* digestBaseObj = argument(0);
  6497   // get DigestBase klass for instanceOf check
  6498   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
  6499   assert(tinst != NULL, "digestBaseObj is null");
  6500   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6502   const char* klass_SHA_name = NULL;
  6503   switch (predicate) {
  6504   case 0:
  6505     if (UseSHA1Intrinsics) {
  6506       // we want to do an instanceof comparison against the SHA class
  6507       klass_SHA_name = "sun/security/provider/SHA";
  6509     break;
  6510   case 1:
  6511     if (UseSHA256Intrinsics) {
  6512       // we want to do an instanceof comparison against the SHA2 class
  6513       klass_SHA_name = "sun/security/provider/SHA2";
  6515     break;
  6516   case 2:
  6517     if (UseSHA512Intrinsics) {
  6518       // we want to do an instanceof comparison against the SHA5 class
  6519       klass_SHA_name = "sun/security/provider/SHA5";
  6521     break;
  6522   default:
  6523     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6526   ciKlass* klass_SHA = NULL;
  6527   if (klass_SHA_name != NULL) {
  6528     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6530   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
  6531     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
  6532     Node* ctrl = control();
  6533     set_control(top()); // no intrinsic path
  6534     return ctrl;
  6536   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6538   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
  6539   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
  6540   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6541   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6543   return instof_false;  // even if it is NULL

mercurial