src/share/vm/adlc/formssel.cpp

Tue, 11 May 2010 14:35:43 -0700

author
prr
date
Tue, 11 May 2010 14:35:43 -0700
changeset 1840
fb57d4cf76c2
parent 1831
d7f654633cfe
child 1896
b5fdf39b9749
permissions
-rw-r--r--

6931180: Migration to recent versions of MS Platform SDK
6951582: Build problems on win64
Summary: Changes to enable building JDK7 with Microsoft Visual Studio 2010
Reviewed-by: ohair, art, ccheung, dcubed

     1 /*
     2  * Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena) {
    34       _ftype = Form::INS;
    36       _matrule   = NULL;
    37       _insencode = NULL;
    38       _opcode    = NULL;
    39       _size      = NULL;
    40       _attribs   = NULL;
    41       _predicate = NULL;
    42       _exprule   = NULL;
    43       _rewrule   = NULL;
    44       _format    = NULL;
    45       _peephole  = NULL;
    46       _ins_pipe  = NULL;
    47       _uniq_idx  = NULL;
    48       _num_uniq  = 0;
    49       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    50       _cisc_spill_alternate = NULL;            // possible cisc replacement
    51       _cisc_reg_mask_name = NULL;
    52       _is_cisc_alternate = false;
    53       _is_short_branch = false;
    54       _short_branch_form = NULL;
    55       _alignment = 1;
    56 }
    58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    59   : _ident(id), _ideal_only(false),
    60     _localNames(instr->_localNames),
    61     _effects(instr->_effects) {
    62       _ftype = Form::INS;
    64       _matrule   = rule;
    65       _insencode = instr->_insencode;
    66       _opcode    = instr->_opcode;
    67       _size      = instr->_size;
    68       _attribs   = instr->_attribs;
    69       _predicate = instr->_predicate;
    70       _exprule   = instr->_exprule;
    71       _rewrule   = instr->_rewrule;
    72       _format    = instr->_format;
    73       _peephole  = instr->_peephole;
    74       _ins_pipe  = instr->_ins_pipe;
    75       _uniq_idx  = instr->_uniq_idx;
    76       _num_uniq  = instr->_num_uniq;
    77       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    78       _cisc_spill_alternate = NULL;            // possible cisc replacement
    79       _cisc_reg_mask_name = NULL;
    80       _is_cisc_alternate = false;
    81       _is_short_branch = false;
    82       _short_branch_form = NULL;
    83       _alignment = 1;
    84      // Copy parameters
    85      const char *name;
    86      instr->_parameters.reset();
    87      for (; (name = instr->_parameters.iter()) != NULL;)
    88        _parameters.addName(name);
    89 }
    91 InstructForm::~InstructForm() {
    92 }
    94 InstructForm *InstructForm::is_instruction() const {
    95   return (InstructForm*)this;
    96 }
    98 bool InstructForm::ideal_only() const {
    99   return _ideal_only;
   100 }
   102 bool InstructForm::sets_result() const {
   103   return (_matrule != NULL && _matrule->sets_result());
   104 }
   106 bool InstructForm::needs_projections() {
   107   _components.reset();
   108   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   109     if (comp->isa(Component::KILL)) {
   110       return true;
   111     }
   112   }
   113   return false;
   114 }
   117 bool InstructForm::has_temps() {
   118   if (_matrule) {
   119     // Examine each component to see if it is a TEMP
   120     _components.reset();
   121     // Skip the first component, if already handled as (SET dst (...))
   122     Component *comp = NULL;
   123     if (sets_result())  comp = _components.iter();
   124     while ((comp = _components.iter()) != NULL) {
   125       if (comp->isa(Component::TEMP)) {
   126         return true;
   127       }
   128     }
   129   }
   131   return false;
   132 }
   134 uint InstructForm::num_defs_or_kills() {
   135   uint   defs_or_kills = 0;
   137   _components.reset();
   138   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   139     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   140       ++defs_or_kills;
   141     }
   142   }
   144   return  defs_or_kills;
   145 }
   147 // This instruction has an expand rule?
   148 bool InstructForm::expands() const {
   149   return ( _exprule != NULL );
   150 }
   152 // This instruction has a peephole rule?
   153 Peephole *InstructForm::peepholes() const {
   154   return _peephole;
   155 }
   157 // This instruction has a peephole rule?
   158 void InstructForm::append_peephole(Peephole *peephole) {
   159   if( _peephole == NULL ) {
   160     _peephole = peephole;
   161   } else {
   162     _peephole->append_peephole(peephole);
   163   }
   164 }
   167 // ideal opcode enumeration
   168 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   169   if( !_matrule ) return "Node"; // Something weird
   170   // Chain rules do not really have ideal Opcodes; use their source
   171   // operand ideal Opcode instead.
   172   if( is_simple_chain_rule(globalNames) ) {
   173     const char *src = _matrule->_rChild->_opType;
   174     OperandForm *src_op = globalNames[src]->is_operand();
   175     assert( src_op, "Not operand class of chain rule" );
   176     if( !src_op->_matrule ) return "Node";
   177     return src_op->_matrule->_opType;
   178   }
   179   // Operand chain rules do not really have ideal Opcodes
   180   if( _matrule->is_chain_rule(globalNames) )
   181     return "Node";
   182   return strcmp(_matrule->_opType,"Set")
   183     ? _matrule->_opType
   184     : _matrule->_rChild->_opType;
   185 }
   187 // Recursive check on all operands' match rules in my match rule
   188 bool InstructForm::is_pinned(FormDict &globals) {
   189   if ( ! _matrule)  return false;
   191   int  index   = 0;
   192   if (_matrule->find_type("Goto",          index)) return true;
   193   if (_matrule->find_type("If",            index)) return true;
   194   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   195   if (_matrule->find_type("Return",        index)) return true;
   196   if (_matrule->find_type("Rethrow",       index)) return true;
   197   if (_matrule->find_type("TailCall",      index)) return true;
   198   if (_matrule->find_type("TailJump",      index)) return true;
   199   if (_matrule->find_type("Halt",          index)) return true;
   200   if (_matrule->find_type("Jump",          index)) return true;
   202   return is_parm(globals);
   203 }
   205 // Recursive check on all operands' match rules in my match rule
   206 bool InstructForm::is_projection(FormDict &globals) {
   207   if ( ! _matrule)  return false;
   209   int  index   = 0;
   210   if (_matrule->find_type("Goto",    index)) return true;
   211   if (_matrule->find_type("Return",  index)) return true;
   212   if (_matrule->find_type("Rethrow", index)) return true;
   213   if (_matrule->find_type("TailCall",index)) return true;
   214   if (_matrule->find_type("TailJump",index)) return true;
   215   if (_matrule->find_type("Halt",    index)) return true;
   217   return false;
   218 }
   220 // Recursive check on all operands' match rules in my match rule
   221 bool InstructForm::is_parm(FormDict &globals) {
   222   if ( ! _matrule)  return false;
   224   int  index   = 0;
   225   if (_matrule->find_type("Parm",index)) return true;
   227   return false;
   228 }
   231 // Return 'true' if this instruction matches an ideal 'Copy*' node
   232 int InstructForm::is_ideal_copy() const {
   233   return _matrule ? _matrule->is_ideal_copy() : 0;
   234 }
   236 // Return 'true' if this instruction is too complex to rematerialize.
   237 int InstructForm::is_expensive() const {
   238   // We can prove it is cheap if it has an empty encoding.
   239   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   240   if (is_empty_encoding())
   241     return 0;
   243   if (is_tls_instruction())
   244     return 1;
   246   if (_matrule == NULL)  return 0;
   248   return _matrule->is_expensive();
   249 }
   251 // Has an empty encoding if _size is a constant zero or there
   252 // are no ins_encode tokens.
   253 int InstructForm::is_empty_encoding() const {
   254   if (_insencode != NULL) {
   255     _insencode->reset();
   256     if (_insencode->encode_class_iter() == NULL) {
   257       return 1;
   258     }
   259   }
   260   if (_size != NULL && strcmp(_size, "0") == 0) {
   261     return 1;
   262   }
   263   return 0;
   264 }
   266 int InstructForm::is_tls_instruction() const {
   267   if (_ident != NULL &&
   268       ( ! strcmp( _ident,"tlsLoadP") ||
   269         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   270     return 1;
   271   }
   273   if (_matrule != NULL && _insencode != NULL) {
   274     const char* opType = _matrule->_opType;
   275     if (strcmp(opType, "Set")==0)
   276       opType = _matrule->_rChild->_opType;
   277     if (strcmp(opType,"ThreadLocal")==0) {
   278       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   279               (_ident == NULL ? "NULL" : _ident));
   280       return 1;
   281     }
   282   }
   284   return 0;
   285 }
   288 // Return 'true' if this instruction matches an ideal 'Copy*' node
   289 bool InstructForm::is_ideal_unlock() const {
   290   return _matrule ? _matrule->is_ideal_unlock() : false;
   291 }
   293 bool InstructForm::is_ideal_call_leaf() const {
   294   return _matrule ? _matrule->is_ideal_call_leaf() : false;
   295 }
   297 // Return 'true' if this instruction matches an ideal 'If' node
   298 bool InstructForm::is_ideal_if() const {
   299   if( _matrule == NULL ) return false;
   301   return _matrule->is_ideal_if();
   302 }
   304 // Return 'true' if this instruction matches an ideal 'FastLock' node
   305 bool InstructForm::is_ideal_fastlock() const {
   306   if( _matrule == NULL ) return false;
   308   return _matrule->is_ideal_fastlock();
   309 }
   311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   312 bool InstructForm::is_ideal_membar() const {
   313   if( _matrule == NULL ) return false;
   315   return _matrule->is_ideal_membar();
   316 }
   318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   319 bool InstructForm::is_ideal_loadPC() const {
   320   if( _matrule == NULL ) return false;
   322   return _matrule->is_ideal_loadPC();
   323 }
   325 // Return 'true' if this instruction matches an ideal 'Box' node
   326 bool InstructForm::is_ideal_box() const {
   327   if( _matrule == NULL ) return false;
   329   return _matrule->is_ideal_box();
   330 }
   332 // Return 'true' if this instruction matches an ideal 'Goto' node
   333 bool InstructForm::is_ideal_goto() const {
   334   if( _matrule == NULL ) return false;
   336   return _matrule->is_ideal_goto();
   337 }
   339 // Return 'true' if this instruction matches an ideal 'Jump' node
   340 bool InstructForm::is_ideal_jump() const {
   341   if( _matrule == NULL ) return false;
   343   return _matrule->is_ideal_jump();
   344 }
   346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
   347 //                    'CountedLoopEnd' | 'Jump'
   348 bool InstructForm::is_ideal_branch() const {
   349   if( _matrule == NULL ) return false;
   351   return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
   352 }
   355 // Return 'true' if this instruction matches an ideal 'Return' node
   356 bool InstructForm::is_ideal_return() const {
   357   if( _matrule == NULL ) return false;
   359   // Check MatchRule to see if the first entry is the ideal "Return" node
   360   int  index   = 0;
   361   if (_matrule->find_type("Return",index)) return true;
   362   if (_matrule->find_type("Rethrow",index)) return true;
   363   if (_matrule->find_type("TailCall",index)) return true;
   364   if (_matrule->find_type("TailJump",index)) return true;
   366   return false;
   367 }
   369 // Return 'true' if this instruction matches an ideal 'Halt' node
   370 bool InstructForm::is_ideal_halt() const {
   371   int  index   = 0;
   372   return _matrule && _matrule->find_type("Halt",index);
   373 }
   375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   376 bool InstructForm::is_ideal_safepoint() const {
   377   int  index   = 0;
   378   return _matrule && _matrule->find_type("SafePoint",index);
   379 }
   381 // Return 'true' if this instruction matches an ideal 'Nop' node
   382 bool InstructForm::is_ideal_nop() const {
   383   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   384 }
   386 bool InstructForm::is_ideal_control() const {
   387   if ( ! _matrule)  return false;
   389   return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
   390 }
   392 // Return 'true' if this instruction matches an ideal 'Call' node
   393 Form::CallType InstructForm::is_ideal_call() const {
   394   if( _matrule == NULL ) return Form::invalid_type;
   396   // Check MatchRule to see if the first entry is the ideal "Call" node
   397   int  idx   = 0;
   398   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   399   idx = 0;
   400   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   401   idx = 0;
   402   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   403   idx = 0;
   404   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   405   idx = 0;
   406   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   407   idx = 0;
   408   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   409   idx = 0;
   410   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   411   idx = 0;
   413   return Form::invalid_type;
   414 }
   416 // Return 'true' if this instruction matches an ideal 'Load?' node
   417 Form::DataType InstructForm::is_ideal_load() const {
   418   if( _matrule == NULL ) return Form::none;
   420   return  _matrule->is_ideal_load();
   421 }
   423 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   424 bool InstructForm::skip_antidep_check() const {
   425   if( _matrule == NULL ) return false;
   427   return  _matrule->skip_antidep_check();
   428 }
   430 // Return 'true' if this instruction matches an ideal 'Load?' node
   431 Form::DataType InstructForm::is_ideal_store() const {
   432   if( _matrule == NULL ) return Form::none;
   434   return  _matrule->is_ideal_store();
   435 }
   437 // Return the input register that must match the output register
   438 // If this is not required, return 0
   439 uint InstructForm::two_address(FormDict &globals) {
   440   uint  matching_input = 0;
   441   if(_components.count() == 0) return 0;
   443   _components.reset();
   444   Component *comp = _components.iter();
   445   // Check if there is a DEF
   446   if( comp->isa(Component::DEF) ) {
   447     // Check that this is a register
   448     const char  *def_type = comp->_type;
   449     const Form  *form     = globals[def_type];
   450     OperandForm *op       = form->is_operand();
   451     if( op ) {
   452       if( op->constrained_reg_class() != NULL &&
   453           op->interface_type(globals) == Form::register_interface ) {
   454         // Remember the local name for equality test later
   455         const char *def_name = comp->_name;
   456         // Check if a component has the same name and is a USE
   457         do {
   458           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   459             return operand_position_format(def_name);
   460           }
   461         } while( (comp = _components.iter()) != NULL);
   462       }
   463     }
   464   }
   466   return 0;
   467 }
   470 // when chaining a constant to an instruction, returns 'true' and sets opType
   471 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   472   const char *dummy  = NULL;
   473   const char *dummy2 = NULL;
   474   return is_chain_of_constant(globals, dummy, dummy2);
   475 }
   476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   477                 const char * &opTypeParam) {
   478   const char *result = NULL;
   480   return is_chain_of_constant(globals, opTypeParam, result);
   481 }
   483 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   484                 const char * &opTypeParam, const char * &resultParam) {
   485   Form::DataType  data_type = Form::none;
   486   if ( ! _matrule)  return data_type;
   488   // !!!!!
   489   // The source of the chain rule is 'position = 1'
   490   uint         position = 1;
   491   const char  *result   = NULL;
   492   const char  *name     = NULL;
   493   const char  *opType   = NULL;
   494   // Here base_operand is looking for an ideal type to be returned (opType).
   495   if ( _matrule->is_chain_rule(globals)
   496        && _matrule->base_operand(position, globals, result, name, opType) ) {
   497     data_type = ideal_to_const_type(opType);
   499     // if it isn't an ideal constant type, just return
   500     if ( data_type == Form::none ) return data_type;
   502     // Ideal constant types also adjust the opType parameter.
   503     resultParam = result;
   504     opTypeParam = opType;
   505     return data_type;
   506   }
   508   return data_type;
   509 }
   511 // Check if a simple chain rule
   512 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   513   if( _matrule && _matrule->sets_result()
   514       && _matrule->_rChild->_lChild == NULL
   515       && globals[_matrule->_rChild->_opType]
   516       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   517     return true;
   518   }
   519   return false;
   520 }
   522 // check for structural rematerialization
   523 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   524   bool   rematerialize = false;
   526   Form::DataType data_type = is_chain_of_constant(globals);
   527   if( data_type != Form::none )
   528     rematerialize = true;
   530   // Constants
   531   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   532     rematerialize = true;
   534   // Pseudo-constants (values easily available to the runtime)
   535   if (is_empty_encoding() && is_tls_instruction())
   536     rematerialize = true;
   538   // 1-input, 1-output, such as copies or increments.
   539   if( _components.count() == 2 &&
   540       _components[0]->is(Component::DEF) &&
   541       _components[1]->isa(Component::USE) )
   542     rematerialize = true;
   544   // Check for an ideal 'Load?' and eliminate rematerialize option
   545   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   546        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   547        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   548     rematerialize = false;
   549   }
   551   // Always rematerialize the flags.  They are more expensive to save &
   552   // restore than to recompute (and possibly spill the compare's inputs).
   553   if( _components.count() >= 1 ) {
   554     Component *c = _components[0];
   555     const Form *form = globals[c->_type];
   556     OperandForm *opform = form->is_operand();
   557     if( opform ) {
   558       // Avoid the special stack_slots register classes
   559       const char *rc_name = opform->constrained_reg_class();
   560       if( rc_name ) {
   561         if( strcmp(rc_name,"stack_slots") ) {
   562           // Check for ideal_type of RegFlags
   563           const char *type = opform->ideal_type( globals, registers );
   564           if( !strcmp(type,"RegFlags") )
   565             rematerialize = true;
   566         } else
   567           rematerialize = false; // Do not rematerialize things target stk
   568       }
   569     }
   570   }
   572   return rematerialize;
   573 }
   575 // loads from memory, so must check for anti-dependence
   576 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   577   if ( skip_antidep_check() ) return false;
   579   // Machine independent loads must be checked for anti-dependences
   580   if( is_ideal_load() != Form::none )  return true;
   582   // !!!!! !!!!! !!!!!
   583   // TEMPORARY
   584   // if( is_simple_chain_rule(globals) )  return false;
   586   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   587   // but writes none
   588   if( _matrule && _matrule->_rChild &&
   589       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   590         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   591         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   592         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   593     return true;
   595   // Check if instruction has a USE of a memory operand class, but no defs
   596   bool USE_of_memory  = false;
   597   bool DEF_of_memory  = false;
   598   Component     *comp = NULL;
   599   ComponentList &components = (ComponentList &)_components;
   601   components.reset();
   602   while( (comp = components.iter()) != NULL ) {
   603     const Form  *form = globals[comp->_type];
   604     if( !form ) continue;
   605     OpClassForm *op   = form->is_opclass();
   606     if( !op ) continue;
   607     if( form->interface_type(globals) == Form::memory_interface ) {
   608       if( comp->isa(Component::USE) ) USE_of_memory = true;
   609       if( comp->isa(Component::DEF) ) {
   610         OperandForm *oper = form->is_operand();
   611         if( oper && oper->is_user_name_for_sReg() ) {
   612           // Stack slots are unaliased memory handled by allocator
   613           oper = oper;  // debug stopping point !!!!!
   614         } else {
   615           DEF_of_memory = true;
   616         }
   617       }
   618     }
   619   }
   620   return (USE_of_memory && !DEF_of_memory);
   621 }
   624 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   625   if( _matrule == NULL ) return false;
   626   if( !_matrule->_opType ) return false;
   628   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   629   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   631   return false;
   632 }
   634 int InstructForm::memory_operand(FormDict &globals) const {
   635   // Machine independent loads must be checked for anti-dependences
   636   // Check if instruction has a USE of a memory operand class, or a def.
   637   int USE_of_memory  = 0;
   638   int DEF_of_memory  = 0;
   639   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   640   Component     *unique          = NULL;
   641   Component     *comp            = NULL;
   642   ComponentList &components      = (ComponentList &)_components;
   644   components.reset();
   645   while( (comp = components.iter()) != NULL ) {
   646     const Form  *form = globals[comp->_type];
   647     if( !form ) continue;
   648     OpClassForm *op   = form->is_opclass();
   649     if( !op ) continue;
   650     if( op->stack_slots_only(globals) )  continue;
   651     if( form->interface_type(globals) == Form::memory_interface ) {
   652       if( comp->isa(Component::DEF) ) {
   653         last_memory_DEF = comp->_name;
   654         DEF_of_memory++;
   655         unique = comp;
   656       } else if( comp->isa(Component::USE) ) {
   657         if( last_memory_DEF != NULL ) {
   658           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   659           last_memory_DEF = NULL;
   660         }
   661         USE_of_memory++;
   662         if (DEF_of_memory == 0)  // defs take precedence
   663           unique = comp;
   664       } else {
   665         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   666       }
   667     }
   668   }
   669   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   670   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   671   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   672   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   673     if( is_simple_chain_rule(globals) ) {
   674       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   675       //((InstructForm*)this)->dump();
   676       // Preceding code prints nothing on sparc and these insns on intel:
   677       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   678       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   679       return NO_MEMORY_OPERAND;
   680     }
   682     if( DEF_of_memory == 1 ) {
   683       assert(unique != NULL, "");
   684       if( USE_of_memory == 0 ) {
   685         // unique def, no uses
   686       } else {
   687         // // unique def, some uses
   688         // // must return bottom unless all uses match def
   689         // unique = NULL;
   690       }
   691     } else if( DEF_of_memory > 0 ) {
   692       // multiple defs, don't care about uses
   693       unique = NULL;
   694     } else if( USE_of_memory == 1) {
   695       // unique use, no defs
   696       assert(unique != NULL, "");
   697     } else if( USE_of_memory > 0 ) {
   698       // multiple uses, no defs
   699       unique = NULL;
   700     } else {
   701       assert(false, "bad case analysis");
   702     }
   703     // process the unique DEF or USE, if there is one
   704     if( unique == NULL ) {
   705       return MANY_MEMORY_OPERANDS;
   706     } else {
   707       int pos = components.operand_position(unique->_name);
   708       if( unique->isa(Component::DEF) ) {
   709         pos += 1;                // get corresponding USE from DEF
   710       }
   711       assert(pos >= 1, "I was just looking at it!");
   712       return pos;
   713     }
   714   }
   716   // missed the memory op??
   717   if( true ) {  // %%% should not be necessary
   718     if( is_ideal_store() != Form::none ) {
   719       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   720       ((InstructForm*)this)->dump();
   721       // pretend it has multiple defs and uses
   722       return MANY_MEMORY_OPERANDS;
   723     }
   724     if( is_ideal_load()  != Form::none ) {
   725       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   726       ((InstructForm*)this)->dump();
   727       // pretend it has multiple uses and no defs
   728       return MANY_MEMORY_OPERANDS;
   729     }
   730   }
   732   return NO_MEMORY_OPERAND;
   733 }
   736 // This instruction captures the machine-independent bottom_type
   737 // Expected use is for pointer vs oop determination for LoadP
   738 bool InstructForm::captures_bottom_type() const {
   739   if( _matrule && _matrule->_rChild &&
   740        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
   741         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
   742         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
   743         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
   744         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
   745         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
   746         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
   747         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
   748   else if ( is_ideal_load() == Form::idealP )                return true;
   749   else if ( is_ideal_store() != Form::none  )                return true;
   751   return  false;
   752 }
   755 // Access instr_cost attribute or return NULL.
   756 const char* InstructForm::cost() {
   757   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   758     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   759       return cur->_val;
   760     }
   761   }
   762   return NULL;
   763 }
   765 // Return count of top-level operands.
   766 uint InstructForm::num_opnds() {
   767   int  num_opnds = _components.num_operands();
   769   // Need special handling for matching some ideal nodes
   770   // i.e. Matching a return node
   771   /*
   772   if( _matrule ) {
   773     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   774         strcmp(_matrule->_opType,"Halt"     )==0 )
   775       return 3;
   776   }
   777     */
   778   return num_opnds;
   779 }
   781 // Return count of unmatched operands.
   782 uint InstructForm::num_post_match_opnds() {
   783   uint  num_post_match_opnds = _components.count();
   784   uint  num_match_opnds = _components.match_count();
   785   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   787   return num_post_match_opnds;
   788 }
   790 // Return the number of leaves below this complex operand
   791 uint InstructForm::num_consts(FormDict &globals) const {
   792   if ( ! _matrule) return 0;
   794   // This is a recursive invocation on all operands in the matchrule
   795   return _matrule->num_consts(globals);
   796 }
   798 // Constants in match rule with specified type
   799 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   800   if ( ! _matrule) return 0;
   802   // This is a recursive invocation on all operands in the matchrule
   803   return _matrule->num_consts(globals, type);
   804 }
   807 // Return the register class associated with 'leaf'.
   808 const char *InstructForm::out_reg_class(FormDict &globals) {
   809   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   811   return NULL;
   812 }
   816 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   817 uint InstructForm::oper_input_base(FormDict &globals) {
   818   if( !_matrule ) return 1;     // Skip control for most nodes
   820   // Need special handling for matching some ideal nodes
   821   // i.e. Matching a return node
   822   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   823       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   824       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   825       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   826       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   827       strcmp(_matrule->_opType,"Halt"      )==0 )
   828     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   830   if( _matrule->_rChild &&
   831       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   832         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   833         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   834         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
   835         // String.(compareTo/equals/indexOf) and Arrays.equals
   836         // take 1 control and 1 memory edges.
   837     return 2;
   838   }
   840   // Check for handling of 'Memory' input/edge in the ideal world.
   841   // The AD file writer is shielded from knowledge of these edges.
   842   int base = 1;                 // Skip control
   843   base += _matrule->needs_ideal_memory_edge(globals);
   845   // Also skip the base-oop value for uses of derived oops.
   846   // The AD file writer is shielded from knowledge of these edges.
   847   base += needs_base_oop_edge(globals);
   849   return base;
   850 }
   852 // Implementation does not modify state of internal structures
   853 void InstructForm::build_components() {
   854   // Add top-level operands to the components
   855   if (_matrule)  _matrule->append_components(_localNames, _components);
   857   // Add parameters that "do not appear in match rule".
   858   bool has_temp = false;
   859   const char *name;
   860   const char *kill_name = NULL;
   861   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   862     OperandForm *opForm = (OperandForm*)_localNames[name];
   864     Effect* e = NULL;
   865     {
   866       const Form* form = _effects[name];
   867       e = form ? form->is_effect() : NULL;
   868     }
   870     if (e != NULL) {
   871       has_temp |= e->is(Component::TEMP);
   873       // KILLs must be declared after any TEMPs because TEMPs are real
   874       // uses so their operand numbering must directly follow the real
   875       // inputs from the match rule.  Fixing the numbering seems
   876       // complex so simply enforce the restriction during parse.
   877       if (kill_name != NULL &&
   878           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   879         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   880         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   881                              _ident, kill->_ident, kill_name);
   882       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   883         kill_name = name;
   884       }
   885     }
   887     const Component *component  = _components.search(name);
   888     if ( component  == NULL ) {
   889       if (e) {
   890         _components.insert(name, opForm->_ident, e->_use_def, false);
   891         component = _components.search(name);
   892         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   893           const Form *form = globalAD->globalNames()[component->_type];
   894           assert( form, "component type must be a defined form");
   895           OperandForm *op   = form->is_operand();
   896           if (op->_interface && op->_interface->is_RegInterface()) {
   897             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   898                                  _ident, opForm->_ident, name);
   899           }
   900         }
   901       } else {
   902         // This would be a nice warning but it triggers in a few places in a benign way
   903         // if (_matrule != NULL && !expands()) {
   904         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   905         //                        _ident, opForm->_ident, name);
   906         // }
   907         _components.insert(name, opForm->_ident, Component::INVALID, false);
   908       }
   909     }
   910     else if (e) {
   911       // Component was found in the list
   912       // Check if there is a new effect that requires an extra component.
   913       // This happens when adding 'USE' to a component that is not yet one.
   914       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   915         if (component->isa(Component::USE) && _matrule) {
   916           const Form *form = globalAD->globalNames()[component->_type];
   917           assert( form, "component type must be a defined form");
   918           OperandForm *op   = form->is_operand();
   919           if (op->_interface && op->_interface->is_RegInterface()) {
   920             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   921                                  _ident, opForm->_ident, name);
   922           }
   923         }
   924         _components.insert(name, opForm->_ident, e->_use_def, false);
   925       } else {
   926         Component  *comp = (Component*)component;
   927         comp->promote_use_def_info(e->_use_def);
   928       }
   929       // Component positions are zero based.
   930       int  pos  = _components.operand_position(name);
   931       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   932               "Component::DEF can only occur in the first position");
   933     }
   934   }
   936   // Resolving the interactions between expand rules and TEMPs would
   937   // be complex so simply disallow it.
   938   if (_matrule == NULL && has_temp) {
   939     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   940   }
   942   return;
   943 }
   945 // Return zero-based position in component list;  -1 if not in list.
   946 int   InstructForm::operand_position(const char *name, int usedef) {
   947   return unique_opnds_idx(_components.operand_position(name, usedef));
   948 }
   950 int   InstructForm::operand_position_format(const char *name) {
   951   return unique_opnds_idx(_components.operand_position_format(name));
   952 }
   954 // Return zero-based position in component list; -1 if not in list.
   955 int   InstructForm::label_position() {
   956   return unique_opnds_idx(_components.label_position());
   957 }
   959 int   InstructForm::method_position() {
   960   return unique_opnds_idx(_components.method_position());
   961 }
   963 // Return number of relocation entries needed for this instruction.
   964 uint  InstructForm::reloc(FormDict &globals) {
   965   uint reloc_entries  = 0;
   966   // Check for "Call" nodes
   967   if ( is_ideal_call() )      ++reloc_entries;
   968   if ( is_ideal_return() )    ++reloc_entries;
   969   if ( is_ideal_safepoint() ) ++reloc_entries;
   972   // Check if operands MAYBE oop pointers, by checking for ConP elements
   973   // Proceed through the leaves of the match-tree and check for ConPs
   974   if ( _matrule != NULL ) {
   975     uint         position = 0;
   976     const char  *result   = NULL;
   977     const char  *name     = NULL;
   978     const char  *opType   = NULL;
   979     while (_matrule->base_operand(position, globals, result, name, opType)) {
   980       if ( strcmp(opType,"ConP") == 0 ) {
   981 #ifdef SPARC
   982         reloc_entries += 2; // 1 for sethi + 1 for setlo
   983 #else
   984         ++reloc_entries;
   985 #endif
   986       }
   987       ++position;
   988     }
   989   }
   991   // Above is only a conservative estimate
   992   // because it did not check contents of operand classes.
   993   // !!!!! !!!!!
   994   // Add 1 to reloc info for each operand class in the component list.
   995   Component  *comp;
   996   _components.reset();
   997   while ( (comp = _components.iter()) != NULL ) {
   998     const Form        *form = globals[comp->_type];
   999     assert( form, "Did not find component's type in global names");
  1000     const OpClassForm *opc  = form->is_opclass();
  1001     const OperandForm *oper = form->is_operand();
  1002     if ( opc && (oper == NULL) ) {
  1003       ++reloc_entries;
  1004     } else if ( oper ) {
  1005       // floats and doubles loaded out of method's constant pool require reloc info
  1006       Form::DataType type = oper->is_base_constant(globals);
  1007       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1008         ++reloc_entries;
  1013   // Float and Double constants may come from the CodeBuffer table
  1014   // and require relocatable addresses for access
  1015   // !!!!!
  1016   // Check for any component being an immediate float or double.
  1017   Form::DataType data_type = is_chain_of_constant(globals);
  1018   if( data_type==idealD || data_type==idealF ) {
  1019 #ifdef SPARC
  1020     // sparc required more relocation entries for floating constants
  1021     // (expires 9/98)
  1022     reloc_entries += 6;
  1023 #else
  1024     reloc_entries++;
  1025 #endif
  1028   return reloc_entries;
  1031 // Utility function defined in archDesc.cpp
  1032 extern bool is_def(int usedef);
  1034 // Return the result of reducing an instruction
  1035 const char *InstructForm::reduce_result() {
  1036   const char* result = "Universe";  // default
  1037   _components.reset();
  1038   Component *comp = _components.iter();
  1039   if (comp != NULL && comp->isa(Component::DEF)) {
  1040     result = comp->_type;
  1041     // Override this if the rule is a store operation:
  1042     if (_matrule && _matrule->_rChild &&
  1043         is_store_to_memory(_matrule->_rChild->_opType))
  1044       result = "Universe";
  1046   return result;
  1049 // Return the name of the operand on the right hand side of the binary match
  1050 // Return NULL if there is no right hand side
  1051 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1052   if( _matrule == NULL ) return NULL;
  1053   return  _matrule->reduce_right(globals);
  1056 // Similar for left
  1057 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1058   if( _matrule == NULL ) return NULL;
  1059   return  _matrule->reduce_left(globals);
  1063 // Base class for this instruction, MachNode except for calls
  1064 const char *InstructForm::mach_base_class()  const {
  1065   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1066     return "MachCallStaticJavaNode";
  1068   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1069     return "MachCallDynamicJavaNode";
  1071   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1072     return "MachCallRuntimeNode";
  1074   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1075     return "MachCallLeafNode";
  1077   else if (is_ideal_return()) {
  1078     return "MachReturnNode";
  1080   else if (is_ideal_halt()) {
  1081     return "MachHaltNode";
  1083   else if (is_ideal_safepoint()) {
  1084     return "MachSafePointNode";
  1086   else if (is_ideal_if()) {
  1087     return "MachIfNode";
  1089   else if (is_ideal_fastlock()) {
  1090     return "MachFastLockNode";
  1092   else if (is_ideal_nop()) {
  1093     return "MachNopNode";
  1095   else if (captures_bottom_type()) {
  1096     return "MachTypeNode";
  1097   } else {
  1098     return "MachNode";
  1100   assert( false, "ShouldNotReachHere()");
  1101   return NULL;
  1104 // Compare the instruction predicates for textual equality
  1105 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1106   const Predicate *pred1  = instr1->_predicate;
  1107   const Predicate *pred2  = instr2->_predicate;
  1108   if( pred1 == NULL && pred2 == NULL ) {
  1109     // no predicates means they are identical
  1110     return true;
  1112   if( pred1 != NULL && pred2 != NULL ) {
  1113     // compare the predicates
  1114     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1115       return true;
  1119   return false;
  1122 // Check if this instruction can cisc-spill to 'alternate'
  1123 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1124   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1125   // Do not replace if a cisc-version has been found.
  1126   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1128   int         cisc_spill_operand = Maybe_cisc_spillable;
  1129   char       *result             = NULL;
  1130   char       *result2            = NULL;
  1131   const char *op_name            = NULL;
  1132   const char *reg_type           = NULL;
  1133   FormDict   &globals            = AD.globalNames();
  1134   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1135   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1136     cisc_spill_operand = operand_position(op_name, Component::USE);
  1137     int def_oper  = operand_position(op_name, Component::DEF);
  1138     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1139       // Do not support cisc-spilling for destination operands and
  1140       // make sure they have the same number of operands.
  1141       _cisc_spill_alternate = instr;
  1142       instr->set_cisc_alternate(true);
  1143       if( AD._cisc_spill_debug ) {
  1144         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1145         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1147       // Record that a stack-version of the reg_mask is needed
  1148       // !!!!!
  1149       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1150       assert( oper != NULL, "cisc-spilling non operand");
  1151       const char *reg_class_name = oper->constrained_reg_class();
  1152       AD.set_stack_or_reg(reg_class_name);
  1153       const char *reg_mask_name  = AD.reg_mask(*oper);
  1154       set_cisc_reg_mask_name(reg_mask_name);
  1155       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1156     } else {
  1157       cisc_spill_operand = Not_cisc_spillable;
  1159   } else {
  1160     cisc_spill_operand = Not_cisc_spillable;
  1163   set_cisc_spill_operand(cisc_spill_operand);
  1164   return (cisc_spill_operand != Not_cisc_spillable);
  1167 // Check to see if this instruction can be replaced with the short branch
  1168 // instruction `short-branch'
  1169 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1170   if (_matrule != NULL &&
  1171       this != short_branch &&   // Don't match myself
  1172       !is_short_branch() &&     // Don't match another short branch variant
  1173       reduce_result() != NULL &&
  1174       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1175       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1176     // The instructions are equivalent.
  1177     if (AD._short_branch_debug) {
  1178       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1180     _short_branch_form = short_branch;
  1181     return true;
  1183   return false;
  1187 // --------------------------- FILE *output_routines
  1188 //
  1189 // Generate the format call for the replacement variable
  1190 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1191   // Find replacement variable's type
  1192   const Form *form   = _localNames[rep_var];
  1193   if (form == NULL) {
  1194     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
  1195     assert(false, "ShouldNotReachHere()");
  1197   OpClassForm *opc   = form->is_opclass();
  1198   assert( opc, "replacement variable was not found in local names");
  1199   // Lookup the index position of the replacement variable
  1200   int idx  = operand_position_format(rep_var);
  1201   if ( idx == -1 ) {
  1202     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
  1203     assert( false, "ShouldNotReachHere()");
  1206   if (is_noninput_operand(idx)) {
  1207     // This component isn't in the input array.  Print out the static
  1208     // name of the register.
  1209     OperandForm* oper = form->is_operand();
  1210     if (oper != NULL && oper->is_bound_register()) {
  1211       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1212       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
  1213     } else {
  1214       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1216   } else {
  1217     // Output the format call for this operand
  1218     fprintf(fp,"opnd_array(%d)->",idx);
  1219     if (idx == 0)
  1220       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1221     else
  1222       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1226 // Seach through operands to determine parameters unique positions.
  1227 void InstructForm::set_unique_opnds() {
  1228   uint* uniq_idx = NULL;
  1229   int  nopnds = num_opnds();
  1230   uint  num_uniq = nopnds;
  1231   int i;
  1232   _uniq_idx_length = 0;
  1233   if ( nopnds > 0 ) {
  1234     // Allocate index array.  Worst case we're mapping from each
  1235     // component back to an index and any DEF always goes at 0 so the
  1236     // length of the array has to be the number of components + 1.
  1237     _uniq_idx_length = _components.count() + 1;
  1238     uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
  1239     for( i = 0; i < _uniq_idx_length; i++ ) {
  1240       uniq_idx[i] = i;
  1243   // Do it only if there is a match rule and no expand rule.  With an
  1244   // expand rule it is done by creating new mach node in Expand()
  1245   // method.
  1246   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
  1247     const char *name;
  1248     uint count;
  1249     bool has_dupl_use = false;
  1251     _parameters.reset();
  1252     while( (name = _parameters.iter()) != NULL ) {
  1253       count = 0;
  1254       int position = 0;
  1255       int uniq_position = 0;
  1256       _components.reset();
  1257       Component *comp = NULL;
  1258       if( sets_result() ) {
  1259         comp = _components.iter();
  1260         position++;
  1262       // The next code is copied from the method operand_position().
  1263       for (; (comp = _components.iter()) != NULL; ++position) {
  1264         // When the first component is not a DEF,
  1265         // leave space for the result operand!
  1266         if ( position==0 && (! comp->isa(Component::DEF)) ) {
  1267           ++position;
  1269         if( strcmp(name, comp->_name)==0 ) {
  1270           if( ++count > 1 ) {
  1271             assert(position < _uniq_idx_length, "out of bounds");
  1272             uniq_idx[position] = uniq_position;
  1273             has_dupl_use = true;
  1274           } else {
  1275             uniq_position = position;
  1278         if( comp->isa(Component::DEF)
  1279             && comp->isa(Component::USE) ) {
  1280           ++position;
  1281           if( position != 1 )
  1282             --position;   // only use two slots for the 1st USE_DEF
  1286     if( has_dupl_use ) {
  1287       for( i = 1; i < nopnds; i++ )
  1288         if( i != uniq_idx[i] )
  1289           break;
  1290       int  j = i;
  1291       for( ; i < nopnds; i++ )
  1292         if( i == uniq_idx[i] )
  1293           uniq_idx[i] = j++;
  1294       num_uniq = j;
  1297   _uniq_idx = uniq_idx;
  1298   _num_uniq = num_uniq;
  1301 // Generate index values needed for determining the operand position
  1302 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1303   uint  idx = 0;                  // position of operand in match rule
  1304   int   cur_num_opnds = num_opnds();
  1306   // Compute the index into vector of operand pointers:
  1307   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1308   // idx1 starts at oper_input_base()
  1309   if ( cur_num_opnds >= 1 ) {
  1310     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
  1311     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1312     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
  1314     // Generate starting points for other unique operands if they exist
  1315     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1316       if( *receiver == 0 ) {
  1317         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
  1318                 prefix, idx, prefix, idx-1, idx-1 );
  1319       } else {
  1320         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
  1321                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1325   if( *receiver != 0 ) {
  1326     // This value is used by generate_peepreplace when copying a node.
  1327     // Don't emit it in other cases since it can hide bugs with the
  1328     // use invalid idx's.
  1329     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1334 // ---------------------------
  1335 bool InstructForm::verify() {
  1336   // !!!!! !!!!!
  1337   // Check that a "label" operand occurs last in the operand list, if present
  1338   return true;
  1341 void InstructForm::dump() {
  1342   output(stderr);
  1345 void InstructForm::output(FILE *fp) {
  1346   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1347   if (_matrule)   _matrule->output(fp);
  1348   if (_insencode) _insencode->output(fp);
  1349   if (_opcode)    _opcode->output(fp);
  1350   if (_attribs)   _attribs->output(fp);
  1351   if (_predicate) _predicate->output(fp);
  1352   if (_effects.Size()) {
  1353     fprintf(fp,"Effects\n");
  1354     _effects.dump();
  1356   if (_exprule)   _exprule->output(fp);
  1357   if (_rewrule)   _rewrule->output(fp);
  1358   if (_format)    _format->output(fp);
  1359   if (_peephole)  _peephole->output(fp);
  1362 void MachNodeForm::dump() {
  1363   output(stderr);
  1366 void MachNodeForm::output(FILE *fp) {
  1367   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1370 //------------------------------build_predicate--------------------------------
  1371 // Build instruction predicates.  If the user uses the same operand name
  1372 // twice, we need to check that the operands are pointer-eequivalent in
  1373 // the DFA during the labeling process.
  1374 Predicate *InstructForm::build_predicate() {
  1375   char buf[1024], *s=buf;
  1376   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1378   MatchNode *mnode =
  1379     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1380   mnode->count_instr_names(names);
  1382   uint first = 1;
  1383   // Start with the predicate supplied in the .ad file.
  1384   if( _predicate ) {
  1385     if( first ) first=0;
  1386     strcpy(s,"("); s += strlen(s);
  1387     strcpy(s,_predicate->_pred);
  1388     s += strlen(s);
  1389     strcpy(s,")"); s += strlen(s);
  1391   for( DictI i(&names); i.test(); ++i ) {
  1392     uintptr_t cnt = (uintptr_t)i._value;
  1393     if( cnt > 1 ) {             // Need a predicate at all?
  1394       assert( cnt == 2, "Unimplemented" );
  1395       // Handle many pairs
  1396       if( first ) first=0;
  1397       else {                    // All tests must pass, so use '&&'
  1398         strcpy(s," && ");
  1399         s += strlen(s);
  1401       // Add predicate to working buffer
  1402       sprintf(s,"/*%s*/(",(char*)i._key);
  1403       s += strlen(s);
  1404       mnode->build_instr_pred(s,(char*)i._key,0);
  1405       s += strlen(s);
  1406       strcpy(s," == "); s += strlen(s);
  1407       mnode->build_instr_pred(s,(char*)i._key,1);
  1408       s += strlen(s);
  1409       strcpy(s,")"); s += strlen(s);
  1412   if( s == buf ) s = NULL;
  1413   else {
  1414     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1415     s = strdup(buf);
  1417   return new Predicate(s);
  1420 //------------------------------EncodeForm-------------------------------------
  1421 // Constructor
  1422 EncodeForm::EncodeForm()
  1423   : _encClass(cmpstr,hashstr, Form::arena) {
  1425 EncodeForm::~EncodeForm() {
  1428 // record a new register class
  1429 EncClass *EncodeForm::add_EncClass(const char *className) {
  1430   EncClass *encClass = new EncClass(className);
  1431   _eclasses.addName(className);
  1432   _encClass.Insert(className,encClass);
  1433   return encClass;
  1436 // Lookup the function body for an encoding class
  1437 EncClass  *EncodeForm::encClass(const char *className) {
  1438   assert( className != NULL, "Must provide a defined encoding name");
  1440   EncClass *encClass = (EncClass*)_encClass[className];
  1441   return encClass;
  1444 // Lookup the function body for an encoding class
  1445 const char *EncodeForm::encClassBody(const char *className) {
  1446   if( className == NULL ) return NULL;
  1448   EncClass *encClass = (EncClass*)_encClass[className];
  1449   assert( encClass != NULL, "Encode Class is missing.");
  1450   encClass->_code.reset();
  1451   const char *code = (const char*)encClass->_code.iter();
  1452   assert( code != NULL, "Found an empty encode class body.");
  1454   return code;
  1457 // Lookup the function body for an encoding class
  1458 const char *EncodeForm::encClassPrototype(const char *className) {
  1459   assert( className != NULL, "Encode class name must be non NULL.");
  1461   return className;
  1464 void EncodeForm::dump() {                  // Debug printer
  1465   output(stderr);
  1468 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1469   const char *name;
  1470   fprintf(fp,"\n");
  1471   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1472   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1473     ((EncClass*)_encClass[name])->output(fp);
  1475   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1477 //------------------------------EncClass---------------------------------------
  1478 EncClass::EncClass(const char *name)
  1479   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1481 EncClass::~EncClass() {
  1484 // Add a parameter <type,name> pair
  1485 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1486   _parameter_type.addName( parameter_type );
  1487   _parameter_name.addName( parameter_name );
  1490 // Verify operand types in parameter list
  1491 bool EncClass::check_parameter_types(FormDict &globals) {
  1492   // !!!!!
  1493   return false;
  1496 // Add the decomposed "code" sections of an encoding's code-block
  1497 void EncClass::add_code(const char *code) {
  1498   _code.addName(code);
  1501 // Add the decomposed "replacement variables" of an encoding's code-block
  1502 void EncClass::add_rep_var(char *replacement_var) {
  1503   _code.addName(NameList::_signal);
  1504   _rep_vars.addName(replacement_var);
  1507 // Lookup the function body for an encoding class
  1508 int EncClass::rep_var_index(const char *rep_var) {
  1509   uint        position = 0;
  1510   const char *name     = NULL;
  1512   _parameter_name.reset();
  1513   while ( (name = _parameter_name.iter()) != NULL ) {
  1514     if ( strcmp(rep_var,name) == 0 ) return position;
  1515     ++position;
  1518   return -1;
  1521 // Check after parsing
  1522 bool EncClass::verify() {
  1523   // 1!!!!
  1524   // Check that each replacement variable, '$name' in architecture description
  1525   // is actually a local variable for this encode class, or a reserved name
  1526   // "primary, secondary, tertiary"
  1527   return true;
  1530 void EncClass::dump() {
  1531   output(stderr);
  1534 // Write info to output files
  1535 void EncClass::output(FILE *fp) {
  1536   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1538   // Output the parameter list
  1539   _parameter_type.reset();
  1540   _parameter_name.reset();
  1541   const char *type = _parameter_type.iter();
  1542   const char *name = _parameter_name.iter();
  1543   fprintf(fp, " ( ");
  1544   for ( ; (type != NULL) && (name != NULL);
  1545         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1546     fprintf(fp, " %s %s,", type, name);
  1548   fprintf(fp, " ) ");
  1550   // Output the code block
  1551   _code.reset();
  1552   _rep_vars.reset();
  1553   const char *code;
  1554   while ( (code = _code.iter()) != NULL ) {
  1555     if ( _code.is_signal(code) ) {
  1556       // A replacement variable
  1557       const char *rep_var = _rep_vars.iter();
  1558       fprintf(fp,"($%s)", rep_var);
  1559     } else {
  1560       // A section of code
  1561       fprintf(fp,"%s", code);
  1567 //------------------------------Opcode-----------------------------------------
  1568 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1569   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1572 Opcode::~Opcode() {
  1575 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1576   if( strcmp(param,"primary") == 0 ) {
  1577     return Opcode::PRIMARY;
  1579   else if( strcmp(param,"secondary") == 0 ) {
  1580     return Opcode::SECONDARY;
  1582   else if( strcmp(param,"tertiary") == 0 ) {
  1583     return Opcode::TERTIARY;
  1585   return Opcode::NOT_AN_OPCODE;
  1588 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1589   // Default values previously provided by MachNode::primary()...
  1590   const char *description = NULL;
  1591   const char *value       = NULL;
  1592   // Check if user provided any opcode definitions
  1593   if( this != NULL ) {
  1594     // Update 'value' if user provided a definition in the instruction
  1595     switch (desired_opcode) {
  1596     case PRIMARY:
  1597       description = "primary()";
  1598       if( _primary   != NULL)  { value = _primary;     }
  1599       break;
  1600     case SECONDARY:
  1601       description = "secondary()";
  1602       if( _secondary != NULL ) { value = _secondary;   }
  1603       break;
  1604     case TERTIARY:
  1605       description = "tertiary()";
  1606       if( _tertiary  != NULL ) { value = _tertiary;    }
  1607       break;
  1608     default:
  1609       assert( false, "ShouldNotReachHere();");
  1610       break;
  1613   if (value != NULL) {
  1614     fprintf(fp, "(%s /*%s*/)", value, description);
  1616   return value != NULL;
  1619 void Opcode::dump() {
  1620   output(stderr);
  1623 // Write info to output files
  1624 void Opcode::output(FILE *fp) {
  1625   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1626   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1627   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1630 //------------------------------InsEncode--------------------------------------
  1631 InsEncode::InsEncode() {
  1633 InsEncode::~InsEncode() {
  1636 // Add "encode class name" and its parameters
  1637 NameAndList *InsEncode::add_encode(char *encoding) {
  1638   assert( encoding != NULL, "Must provide name for encoding");
  1640   // add_parameter(NameList::_signal);
  1641   NameAndList *encode = new NameAndList(encoding);
  1642   _encoding.addName((char*)encode);
  1644   return encode;
  1647 // Access the list of encodings
  1648 void InsEncode::reset() {
  1649   _encoding.reset();
  1650   // _parameter.reset();
  1652 const char* InsEncode::encode_class_iter() {
  1653   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1654   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1656 // Obtain parameter name from zero based index
  1657 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1658   NameAndList *params = (NameAndList*)_encoding.current();
  1659   assert( params != NULL, "Internal Error");
  1660   const char *param = (*params)[param_no];
  1662   // Remove '$' if parser placed it there.
  1663   return ( param != NULL && *param == '$') ? (param+1) : param;
  1666 void InsEncode::dump() {
  1667   output(stderr);
  1670 // Write info to output files
  1671 void InsEncode::output(FILE *fp) {
  1672   NameAndList *encoding  = NULL;
  1673   const char  *parameter = NULL;
  1675   fprintf(fp,"InsEncode: ");
  1676   _encoding.reset();
  1678   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1679     // Output the encoding being used
  1680     fprintf(fp,"%s(", encoding->name() );
  1682     // Output its parameter list, if any
  1683     bool first_param = true;
  1684     encoding->reset();
  1685     while (  (parameter = encoding->iter()) != 0 ) {
  1686       // Output the ',' between parameters
  1687       if ( ! first_param )  fprintf(fp,", ");
  1688       first_param = false;
  1689       // Output the parameter
  1690       fprintf(fp,"%s", parameter);
  1691     } // done with parameters
  1692     fprintf(fp,")  ");
  1693   } // done with encodings
  1695   fprintf(fp,"\n");
  1698 //------------------------------Effect-----------------------------------------
  1699 static int effect_lookup(const char *name) {
  1700   if(!strcmp(name, "USE")) return Component::USE;
  1701   if(!strcmp(name, "DEF")) return Component::DEF;
  1702   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1703   if(!strcmp(name, "KILL")) return Component::KILL;
  1704   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1705   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1706   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1707   assert( false,"Invalid effect name specified\n");
  1708   return Component::INVALID;
  1711 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1712   _ftype = Form::EFF;
  1714 Effect::~Effect() {
  1717 // Dynamic type check
  1718 Effect *Effect::is_effect() const {
  1719   return (Effect*)this;
  1723 // True if this component is equal to the parameter.
  1724 bool Effect::is(int use_def_kill_enum) const {
  1725   return (_use_def == use_def_kill_enum ? true : false);
  1727 // True if this component is used/def'd/kill'd as the parameter suggests.
  1728 bool Effect::isa(int use_def_kill_enum) const {
  1729   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1732 void Effect::dump() {
  1733   output(stderr);
  1736 void Effect::output(FILE *fp) {          // Write info to output files
  1737   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1740 //------------------------------ExpandRule-------------------------------------
  1741 ExpandRule::ExpandRule() : _expand_instrs(),
  1742                            _newopconst(cmpstr, hashstr, Form::arena) {
  1743   _ftype = Form::EXP;
  1746 ExpandRule::~ExpandRule() {                  // Destructor
  1749 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1750   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1753 void ExpandRule::reset_instructions() {
  1754   _expand_instrs.reset();
  1757 NameAndList* ExpandRule::iter_instructions() {
  1758   return (NameAndList*)_expand_instrs.iter();
  1762 void ExpandRule::dump() {
  1763   output(stderr);
  1766 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1767   NameAndList *expand_instr = NULL;
  1768   const char *opid = NULL;
  1770   fprintf(fp,"\nExpand Rule:\n");
  1772   // Iterate over the instructions 'node' expands into
  1773   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1774     fprintf(fp,"%s(", expand_instr->name());
  1776     // iterate over the operand list
  1777     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1778       fprintf(fp,"%s ", opid);
  1780     fprintf(fp,");\n");
  1784 //------------------------------RewriteRule------------------------------------
  1785 RewriteRule::RewriteRule(char* params, char* block)
  1786   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1787 RewriteRule::~RewriteRule() {                 // Destructor
  1790 void RewriteRule::dump() {
  1791   output(stderr);
  1794 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1795   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1796           (_tempParams?_tempParams:""),
  1797           (_tempBlock?_tempBlock:""));
  1801 //==============================MachNodes======================================
  1802 //------------------------------MachNodeForm-----------------------------------
  1803 MachNodeForm::MachNodeForm(char *id)
  1804   : _ident(id) {
  1807 MachNodeForm::~MachNodeForm() {
  1810 MachNodeForm *MachNodeForm::is_machnode() const {
  1811   return (MachNodeForm*)this;
  1814 //==============================Operand Classes================================
  1815 //------------------------------OpClassForm------------------------------------
  1816 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1817   _ftype = Form::OPCLASS;
  1820 OpClassForm::~OpClassForm() {
  1823 bool OpClassForm::ideal_only() const { return 0; }
  1825 OpClassForm *OpClassForm::is_opclass() const {
  1826   return (OpClassForm*)this;
  1829 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1830   if( _oplst.count() == 0 ) return Form::no_interface;
  1832   // Check that my operands have the same interface type
  1833   Form::InterfaceType  interface;
  1834   bool  first = true;
  1835   NameList &op_list = (NameList &)_oplst;
  1836   op_list.reset();
  1837   const char *op_name;
  1838   while( (op_name = op_list.iter()) != NULL ) {
  1839     const Form  *form    = globals[op_name];
  1840     OperandForm *operand = form->is_operand();
  1841     assert( operand, "Entry in operand class that is not an operand");
  1842     if( first ) {
  1843       first     = false;
  1844       interface = operand->interface_type(globals);
  1845     } else {
  1846       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1849   return interface;
  1852 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1853   if( _oplst.count() == 0 ) return false;  // how?
  1855   NameList &op_list = (NameList &)_oplst;
  1856   op_list.reset();
  1857   const char *op_name;
  1858   while( (op_name = op_list.iter()) != NULL ) {
  1859     const Form  *form    = globals[op_name];
  1860     OperandForm *operand = form->is_operand();
  1861     assert( operand, "Entry in operand class that is not an operand");
  1862     if( !operand->stack_slots_only(globals) )  return false;
  1864   return true;
  1868 void OpClassForm::dump() {
  1869   output(stderr);
  1872 void OpClassForm::output(FILE *fp) {
  1873   const char *name;
  1874   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1875   fprintf(fp,"\nCount = %d\n", _oplst.count());
  1876   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  1877     fprintf(fp,"%s, ",name);
  1879   fprintf(fp,"\n");
  1883 //==============================Operands=======================================
  1884 //------------------------------OperandForm------------------------------------
  1885 OperandForm::OperandForm(const char* id)
  1886   : OpClassForm(id), _ideal_only(false),
  1887     _localNames(cmpstr, hashstr, Form::arena) {
  1888       _ftype = Form::OPER;
  1890       _matrule   = NULL;
  1891       _interface = NULL;
  1892       _attribs   = NULL;
  1893       _predicate = NULL;
  1894       _constraint= NULL;
  1895       _construct = NULL;
  1896       _format    = NULL;
  1898 OperandForm::OperandForm(const char* id, bool ideal_only)
  1899   : OpClassForm(id), _ideal_only(ideal_only),
  1900     _localNames(cmpstr, hashstr, Form::arena) {
  1901       _ftype = Form::OPER;
  1903       _matrule   = NULL;
  1904       _interface = NULL;
  1905       _attribs   = NULL;
  1906       _predicate = NULL;
  1907       _constraint= NULL;
  1908       _construct = NULL;
  1909       _format    = NULL;
  1911 OperandForm::~OperandForm() {
  1915 OperandForm *OperandForm::is_operand() const {
  1916   return (OperandForm*)this;
  1919 bool OperandForm::ideal_only() const {
  1920   return _ideal_only;
  1923 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  1924   if( _interface == NULL )  return Form::no_interface;
  1926   return _interface->interface_type(globals);
  1930 bool OperandForm::stack_slots_only(FormDict &globals) const {
  1931   if( _constraint == NULL )  return false;
  1932   return _constraint->stack_slots_only();
  1936 // Access op_cost attribute or return NULL.
  1937 const char* OperandForm::cost() {
  1938   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  1939     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  1940       return cur->_val;
  1943   return NULL;
  1946 // Return the number of leaves below this complex operand
  1947 uint OperandForm::num_leaves() const {
  1948   if ( ! _matrule) return 0;
  1950   int num_leaves = _matrule->_numleaves;
  1951   return num_leaves;
  1954 // Return the number of constants contained within this complex operand
  1955 uint OperandForm::num_consts(FormDict &globals) const {
  1956   if ( ! _matrule) return 0;
  1958   // This is a recursive invocation on all operands in the matchrule
  1959   return _matrule->num_consts(globals);
  1962 // Return the number of constants in match rule with specified type
  1963 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  1964   if ( ! _matrule) return 0;
  1966   // This is a recursive invocation on all operands in the matchrule
  1967   return _matrule->num_consts(globals, type);
  1970 // Return the number of pointer constants contained within this complex operand
  1971 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  1972   if ( ! _matrule) return 0;
  1974   // This is a recursive invocation on all operands in the matchrule
  1975   return _matrule->num_const_ptrs(globals);
  1978 uint OperandForm::num_edges(FormDict &globals) const {
  1979   uint edges  = 0;
  1980   uint leaves = num_leaves();
  1981   uint consts = num_consts(globals);
  1983   // If we are matching a constant directly, there are no leaves.
  1984   edges = ( leaves > consts ) ? leaves - consts : 0;
  1986   // !!!!!
  1987   // Special case operands that do not have a corresponding ideal node.
  1988   if( (edges == 0) && (consts == 0) ) {
  1989     if( constrained_reg_class() != NULL ) {
  1990       edges = 1;
  1991     } else {
  1992       if( _matrule
  1993           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  1994         const Form *form = globals[_matrule->_opType];
  1995         OperandForm *oper = form ? form->is_operand() : NULL;
  1996         if( oper ) {
  1997           return oper->num_edges(globals);
  2003   return edges;
  2007 // Check if this operand is usable for cisc-spilling
  2008 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2009   const char *ideal = ideal_type(globals);
  2010   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2011   return is_cisc_reg;
  2014 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2015   Form::InterfaceType my_interface = interface_type(globals);
  2016   return (my_interface == memory_interface);
  2020 // node matches ideal 'Bool'
  2021 bool OperandForm::is_ideal_bool() const {
  2022   if( _matrule == NULL ) return false;
  2024   return _matrule->is_ideal_bool();
  2027 // Require user's name for an sRegX to be stackSlotX
  2028 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2029   DataType data_type = none;
  2030   if( _ident != NULL ) {
  2031     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2032     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2033     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2034     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2035     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2037   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2039   return data_type;
  2043 // Return ideal type, if there is a single ideal type for this operand
  2044 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2045   const char *type = NULL;
  2046   if (ideal_only()) type = _ident;
  2047   else if( _matrule == NULL ) {
  2048     // Check for condition code register
  2049     const char *rc_name = constrained_reg_class();
  2050     // !!!!!
  2051     if (rc_name == NULL) return NULL;
  2052     // !!!!! !!!!!
  2053     // Check constraints on result's register class
  2054     if( registers ) {
  2055       RegClass *reg_class  = registers->getRegClass(rc_name);
  2056       assert( reg_class != NULL, "Register class is not defined");
  2058       // Check for ideal type of entries in register class, all are the same type
  2059       reg_class->reset();
  2060       RegDef *reg_def = reg_class->RegDef_iter();
  2061       assert( reg_def != NULL, "No entries in register class");
  2062       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2063       // Return substring that names the register's ideal type
  2064       type = reg_def->_idealtype + 3;
  2065       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2066       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2067       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2070   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2071     // This operand matches a single type, at the top level.
  2072     // Check for ideal type
  2073     type = _matrule->_opType;
  2074     if( strcmp(type,"Bool") == 0 )
  2075       return "Bool";
  2076     // transitive lookup
  2077     const Form *frm = globals[type];
  2078     OperandForm *op = frm->is_operand();
  2079     type = op->ideal_type(globals, registers);
  2081   return type;
  2085 // If there is a single ideal type for this interface field, return it.
  2086 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2087                                               const char *field) const {
  2088   const char  *ideal_type = NULL;
  2089   const char  *value      = NULL;
  2091   // Check if "field" is valid for this operand's interface
  2092   if ( ! is_interface_field(field, value) )   return ideal_type;
  2094   // !!!!! !!!!! !!!!!
  2095   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2097   // Else, lookup type of field's replacement variable
  2099   return ideal_type;
  2103 RegClass* OperandForm::get_RegClass() const {
  2104   if (_interface && !_interface->is_RegInterface()) return NULL;
  2105   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2109 bool OperandForm::is_bound_register() const {
  2110   RegClass *reg_class  = get_RegClass();
  2111   if (reg_class == NULL) return false;
  2113   const char * name = ideal_type(globalAD->globalNames());
  2114   if (name == NULL) return false;
  2116   int size = 0;
  2117   if (strcmp(name,"RegFlags")==0) size =  1;
  2118   if (strcmp(name,"RegI")==0) size =  1;
  2119   if (strcmp(name,"RegF")==0) size =  1;
  2120   if (strcmp(name,"RegD")==0) size =  2;
  2121   if (strcmp(name,"RegL")==0) size =  2;
  2122   if (strcmp(name,"RegN")==0) size =  1;
  2123   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2124   if (size == 0) return false;
  2125   return size == reg_class->size();
  2129 // Check if this is a valid field for this operand,
  2130 // Return 'true' if valid, and set the value to the string the user provided.
  2131 bool  OperandForm::is_interface_field(const char *field,
  2132                                       const char * &value) const {
  2133   return false;
  2137 // Return register class name if a constraint specifies the register class.
  2138 const char *OperandForm::constrained_reg_class() const {
  2139   const char *reg_class  = NULL;
  2140   if ( _constraint ) {
  2141     // !!!!!
  2142     Constraint *constraint = _constraint;
  2143     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2144       reg_class = _constraint->_arg;
  2148   return reg_class;
  2152 // Return the register class associated with 'leaf'.
  2153 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2154   const char *reg_class = NULL; // "RegMask::Empty";
  2156   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2157     reg_class = constrained_reg_class();
  2158     return reg_class;
  2160   const char *result   = NULL;
  2161   const char *name     = NULL;
  2162   const char *type     = NULL;
  2163   // iterate through all base operands
  2164   // until we reach the register that corresponds to "leaf"
  2165   // This function is not looking for an ideal type.  It needs the first
  2166   // level user type associated with the leaf.
  2167   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2168     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2169     OperandForm *oper = form ? form->is_operand() : NULL;
  2170     if( oper ) {
  2171       reg_class = oper->constrained_reg_class();
  2172       if( reg_class ) {
  2173         reg_class = reg_class;
  2174       } else {
  2175         // ShouldNotReachHere();
  2177     } else {
  2178       // ShouldNotReachHere();
  2181     // Increment our target leaf position if current leaf is not a candidate.
  2182     if( reg_class == NULL)    ++leaf;
  2183     // Exit the loop with the value of reg_class when at the correct index
  2184     if( idx == leaf )         break;
  2185     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2187   return reg_class;
  2191 // Recursive call to construct list of top-level operands.
  2192 // Implementation does not modify state of internal structures
  2193 void OperandForm::build_components() {
  2194   if (_matrule)  _matrule->append_components(_localNames, _components);
  2196   // Add parameters that "do not appear in match rule".
  2197   const char *name;
  2198   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2199     OperandForm *opForm = (OperandForm*)_localNames[name];
  2201     if ( _components.operand_position(name) == -1 ) {
  2202       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2206   return;
  2209 int OperandForm::operand_position(const char *name, int usedef) {
  2210   return _components.operand_position(name, usedef);
  2214 // Return zero-based position in component list, only counting constants;
  2215 // Return -1 if not in list.
  2216 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2217   // Iterate through components and count constants preceding 'constant'
  2218   int position = 0;
  2219   Component *comp;
  2220   _components.reset();
  2221   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2222     // Special case for operands that take a single user-defined operand
  2223     // Skip the initial definition in the component list.
  2224     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2226     const char *type = comp->_type;
  2227     // Lookup operand form for replacement variable's type
  2228     const Form *form = globals[type];
  2229     assert( form != NULL, "Component's type not found");
  2230     OperandForm *oper = form ? form->is_operand() : NULL;
  2231     if( oper ) {
  2232       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2233         ++position;
  2238   // Check for being passed a component that was not in the list
  2239   if( comp != last )  position = -1;
  2241   return position;
  2243 // Provide position of constant by "name"
  2244 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2245   const Component *comp = _components.search(name);
  2246   int idx = constant_position( globals, comp );
  2248   return idx;
  2252 // Return zero-based position in component list, only counting constants;
  2253 // Return -1 if not in list.
  2254 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2255   // Iterate through components and count registers preceding 'last'
  2256   uint  position = 0;
  2257   Component *comp;
  2258   _components.reset();
  2259   while( (comp = _components.iter()) != NULL
  2260          && (strcmp(comp->_name,reg_name) != 0) ) {
  2261     // Special case for operands that take a single user-defined operand
  2262     // Skip the initial definition in the component list.
  2263     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2265     const char *type = comp->_type;
  2266     // Lookup operand form for component's type
  2267     const Form *form = globals[type];
  2268     assert( form != NULL, "Component's type not found");
  2269     OperandForm *oper = form ? form->is_operand() : NULL;
  2270     if( oper ) {
  2271       if( oper->_matrule->is_base_register(globals) ) {
  2272         ++position;
  2277   return position;
  2281 const char *OperandForm::reduce_result()  const {
  2282   return _ident;
  2284 // Return the name of the operand on the right hand side of the binary match
  2285 // Return NULL if there is no right hand side
  2286 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2287   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2290 // Similar for left
  2291 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2292   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2296 // --------------------------- FILE *output_routines
  2297 //
  2298 // Output code for disp_is_oop, if true.
  2299 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2300   //  Check it is a memory interface with a non-user-constant disp field
  2301   if ( this->_interface == NULL ) return;
  2302   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2303   if ( mem_interface == NULL )    return;
  2304   const char   *disp  = mem_interface->_disp;
  2305   if ( *disp != '$' )             return;
  2307   // Lookup replacement variable in operand's component list
  2308   const char   *rep_var = disp + 1;
  2309   const Component *comp = this->_components.search(rep_var);
  2310   assert( comp != NULL, "Replacement variable not found in components");
  2311   // Lookup operand form for replacement variable's type
  2312   const char      *type = comp->_type;
  2313   Form            *form = (Form*)globals[type];
  2314   assert( form != NULL, "Replacement variable's type not found");
  2315   OperandForm     *op   = form->is_operand();
  2316   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2317   // Check if this is a ConP, which may require relocation
  2318   if ( op->is_base_constant(globals) == Form::idealP ) {
  2319     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2320     uint idx  = op->constant_position( globals, rep_var);
  2321     fprintf(fp,"  virtual bool disp_is_oop() const {");
  2322     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
  2323     fprintf(fp, " }\n");
  2327 // Generate code for internal and external format methods
  2328 //
  2329 // internal access to reg# node->_idx
  2330 // access to subsumed constant _c0, _c1,
  2331 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2332   Form::DataType dtype;
  2333   if (_matrule && (_matrule->is_base_register(globals) ||
  2334                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2335     // !!!!! !!!!!
  2336     fprintf(fp,    "{ char reg_str[128];\n");
  2337     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2338     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2339     fprintf(fp,"    }\n");
  2340   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2341     format_constant( fp, index, dtype );
  2342   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2343     // Special format for Stack Slot Register
  2344     fprintf(fp,    "{ char reg_str[128];\n");
  2345     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2346     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2347     fprintf(fp,"    }\n");
  2348   } else {
  2349     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2350     fflush(fp);
  2351     fprintf(stderr,"No format defined for %s\n", _ident);
  2352     dump();
  2353     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2357 // Similar to "int_format" but for cases where data is external to operand
  2358 // external access to reg# node->in(idx)->_idx,
  2359 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2360   Form::DataType dtype;
  2361   if (_matrule && (_matrule->is_base_register(globals) ||
  2362                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2363     fprintf(fp,    "{ char reg_str[128];\n");
  2364     fprintf(fp,"      ra->dump_register(node->in(idx");
  2365     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2366     fprintf(fp,                                       "),reg_str);\n");
  2367     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2368     fprintf(fp,"    }\n");
  2369   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2370     format_constant( fp, index, dtype );
  2371   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2372     // Special format for Stack Slot Register
  2373     fprintf(fp,    "{ char reg_str[128];\n");
  2374     fprintf(fp,"      ra->dump_register(node->in(idx");
  2375     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2376     fprintf(fp,                                       "),reg_str);\n");
  2377     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2378     fprintf(fp,"    }\n");
  2379   } else {
  2380     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2381     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2385 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2386   switch(const_type) {
  2387   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
  2388   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2389   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2390   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2391   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2392   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2393   default:
  2394     assert( false, "ShouldNotReachHere()");
  2398 // Return the operand form corresponding to the given index, else NULL.
  2399 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2400                                            uint      index) {
  2401   // !!!!!
  2402   // Check behavior on complex operands
  2403   uint n_consts = num_consts(globals);
  2404   if( n_consts > 0 ) {
  2405     uint i = 0;
  2406     const char *type;
  2407     Component  *comp;
  2408     _components.reset();
  2409     if ((comp = _components.iter()) == NULL) {
  2410       assert(n_consts == 1, "Bad component list detected.\n");
  2411       // Current operand is THE operand
  2412       if ( index == 0 ) {
  2413         return this;
  2415     } // end if NULL
  2416     else {
  2417       // Skip the first component, it can not be a DEF of a constant
  2418       do {
  2419         type = comp->base_type(globals);
  2420         // Check that "type" is a 'ConI', 'ConP', ...
  2421         if ( ideal_to_const_type(type) != Form::none ) {
  2422           // When at correct component, get corresponding Operand
  2423           if ( index == 0 ) {
  2424             return globals[comp->_type]->is_operand();
  2426           // Decrement number of constants to go
  2427           --index;
  2429       } while((comp = _components.iter()) != NULL);
  2433   // Did not find a constant for this index.
  2434   return NULL;
  2437 // If this operand has a single ideal type, return its type
  2438 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2439   const char *type_name = ideal_type(globals);
  2440   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2441                                     : Form::none;
  2442   return type;
  2445 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2446   if ( _matrule == NULL )    return Form::none;
  2448   return _matrule->is_base_constant(globals);
  2451 // "true" if this operand is a simple type that is swallowed
  2452 bool  OperandForm::swallowed(FormDict &globals) const {
  2453   Form::DataType type   = simple_type(globals);
  2454   if( type != Form::none ) {
  2455     return true;
  2458   return false;
  2461 // Output code to access the value of the index'th constant
  2462 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2463                                   uint const_index) {
  2464   OperandForm *oper = constant_operand(globals, const_index);
  2465   assert( oper, "Index exceeds number of constants in operand");
  2466   Form::DataType dtype = oper->is_base_constant(globals);
  2468   switch(dtype) {
  2469   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2470   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2471   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2472   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2473   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2474   default:
  2475     assert( false, "ShouldNotReachHere()");
  2480 void OperandForm::dump() {
  2481   output(stderr);
  2484 void OperandForm::output(FILE *fp) {
  2485   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2486   if (_matrule)    _matrule->dump();
  2487   if (_interface)  _interface->dump();
  2488   if (_attribs)    _attribs->dump();
  2489   if (_predicate)  _predicate->dump();
  2490   if (_constraint) _constraint->dump();
  2491   if (_construct)  _construct->dump();
  2492   if (_format)     _format->dump();
  2495 //------------------------------Constraint-------------------------------------
  2496 Constraint::Constraint(const char *func, const char *arg)
  2497   : _func(func), _arg(arg) {
  2499 Constraint::~Constraint() { /* not owner of char* */
  2502 bool Constraint::stack_slots_only() const {
  2503   return strcmp(_func, "ALLOC_IN_RC") == 0
  2504       && strcmp(_arg,  "stack_slots") == 0;
  2507 void Constraint::dump() {
  2508   output(stderr);
  2511 void Constraint::output(FILE *fp) {           // Write info to output files
  2512   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2513   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2516 //------------------------------Predicate--------------------------------------
  2517 Predicate::Predicate(char *pr)
  2518   : _pred(pr) {
  2520 Predicate::~Predicate() {
  2523 void Predicate::dump() {
  2524   output(stderr);
  2527 void Predicate::output(FILE *fp) {
  2528   fprintf(fp,"Predicate");  // Write to output files
  2530 //------------------------------Interface--------------------------------------
  2531 Interface::Interface(const char *name) : _name(name) {
  2533 Interface::~Interface() {
  2536 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2537   Interface *thsi = (Interface*)this;
  2538   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2539   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2540   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2541   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2543   return Form::no_interface;
  2546 RegInterface   *Interface::is_RegInterface() {
  2547   if ( strcmp(_name,"REG_INTER") != 0 )
  2548     return NULL;
  2549   return (RegInterface*)this;
  2551 MemInterface   *Interface::is_MemInterface() {
  2552   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2553   return (MemInterface*)this;
  2555 ConstInterface *Interface::is_ConstInterface() {
  2556   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2557   return (ConstInterface*)this;
  2559 CondInterface  *Interface::is_CondInterface() {
  2560   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2561   return (CondInterface*)this;
  2565 void Interface::dump() {
  2566   output(stderr);
  2569 // Write info to output files
  2570 void Interface::output(FILE *fp) {
  2571   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2574 //------------------------------RegInterface-----------------------------------
  2575 RegInterface::RegInterface() : Interface("REG_INTER") {
  2577 RegInterface::~RegInterface() {
  2580 void RegInterface::dump() {
  2581   output(stderr);
  2584 // Write info to output files
  2585 void RegInterface::output(FILE *fp) {
  2586   Interface::output(fp);
  2589 //------------------------------ConstInterface---------------------------------
  2590 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2592 ConstInterface::~ConstInterface() {
  2595 void ConstInterface::dump() {
  2596   output(stderr);
  2599 // Write info to output files
  2600 void ConstInterface::output(FILE *fp) {
  2601   Interface::output(fp);
  2604 //------------------------------MemInterface-----------------------------------
  2605 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2606   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2608 MemInterface::~MemInterface() {
  2609   // not owner of any character arrays
  2612 void MemInterface::dump() {
  2613   output(stderr);
  2616 // Write info to output files
  2617 void MemInterface::output(FILE *fp) {
  2618   Interface::output(fp);
  2619   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2620   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2621   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2622   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2623   // fprintf(fp,"\n");
  2626 //------------------------------CondInterface----------------------------------
  2627 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2628                              const char* not_equal,     const char* not_equal_format,
  2629                              const char* less,          const char* less_format,
  2630                              const char* greater_equal, const char* greater_equal_format,
  2631                              const char* less_equal,    const char* less_equal_format,
  2632                              const char* greater,       const char* greater_format)
  2633   : Interface("COND_INTER"),
  2634     _equal(equal),                 _equal_format(equal_format),
  2635     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2636     _less(less),                   _less_format(less_format),
  2637     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2638     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2639     _greater(greater),             _greater_format(greater_format) {
  2641 CondInterface::~CondInterface() {
  2642   // not owner of any character arrays
  2645 void CondInterface::dump() {
  2646   output(stderr);
  2649 // Write info to output files
  2650 void CondInterface::output(FILE *fp) {
  2651   Interface::output(fp);
  2652   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
  2653   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
  2654   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
  2655   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
  2656   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
  2657   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
  2658   // fprintf(fp,"\n");
  2661 //------------------------------ConstructRule----------------------------------
  2662 ConstructRule::ConstructRule(char *cnstr)
  2663   : _construct(cnstr) {
  2665 ConstructRule::~ConstructRule() {
  2668 void ConstructRule::dump() {
  2669   output(stderr);
  2672 void ConstructRule::output(FILE *fp) {
  2673   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2677 //==============================Shared Forms===================================
  2678 //------------------------------AttributeForm----------------------------------
  2679 int         AttributeForm::_insId   = 0;           // start counter at 0
  2680 int         AttributeForm::_opId    = 0;           // start counter at 0
  2681 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2682 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
  2683 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2685 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2686   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2687     if (type==OP_ATTR) {
  2688       id = ++_opId;
  2690     else if (type==INS_ATTR) {
  2691       id = ++_insId;
  2693     else assert( false,"");
  2695 AttributeForm::~AttributeForm() {
  2698 // Dynamic type check
  2699 AttributeForm *AttributeForm::is_attribute() const {
  2700   return (AttributeForm*)this;
  2704 // inlined  // int  AttributeForm::type() { return id;}
  2706 void AttributeForm::dump() {
  2707   output(stderr);
  2710 void AttributeForm::output(FILE *fp) {
  2711   if( _attrname && _attrdef ) {
  2712     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2713             _attrname, _attrdef);
  2715   else {
  2716     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2717             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2721 //------------------------------Component--------------------------------------
  2722 Component::Component(const char *name, const char *type, int usedef)
  2723   : _name(name), _type(type), _usedef(usedef) {
  2724     _ftype = Form::COMP;
  2726 Component::~Component() {
  2729 // True if this component is equal to the parameter.
  2730 bool Component::is(int use_def_kill_enum) const {
  2731   return (_usedef == use_def_kill_enum ? true : false);
  2733 // True if this component is used/def'd/kill'd as the parameter suggests.
  2734 bool Component::isa(int use_def_kill_enum) const {
  2735   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2738 // Extend this component with additional use/def/kill behavior
  2739 int Component::promote_use_def_info(int new_use_def) {
  2740   _usedef |= new_use_def;
  2742   return _usedef;
  2745 // Check the base type of this component, if it has one
  2746 const char *Component::base_type(FormDict &globals) {
  2747   const Form *frm = globals[_type];
  2748   if (frm == NULL) return NULL;
  2749   OperandForm *op = frm->is_operand();
  2750   if (op == NULL) return NULL;
  2751   if (op->ideal_only()) return op->_ident;
  2752   return (char *)op->ideal_type(globals);
  2755 void Component::dump() {
  2756   output(stderr);
  2759 void Component::output(FILE *fp) {
  2760   fprintf(fp,"Component:");  // Write to output files
  2761   fprintf(fp, "  name = %s", _name);
  2762   fprintf(fp, ", type = %s", _type);
  2763   const char * usedef = "Undefined Use/Def info";
  2764   switch (_usedef) {
  2765     case USE:      usedef = "USE";      break;
  2766     case USE_DEF:  usedef = "USE_DEF";  break;
  2767     case USE_KILL: usedef = "USE_KILL"; break;
  2768     case KILL:     usedef = "KILL";     break;
  2769     case TEMP:     usedef = "TEMP";     break;
  2770     case DEF:      usedef = "DEF";      break;
  2771     default: assert(false, "unknown effect");
  2773   fprintf(fp, ", use/def = %s\n", usedef);
  2777 //------------------------------ComponentList---------------------------------
  2778 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2780 ComponentList::~ComponentList() {
  2781   // // This list may not own its elements if copied via assignment
  2782   // Component *component;
  2783   // for (reset(); (component = iter()) != NULL;) {
  2784   //   delete component;
  2785   // }
  2788 void   ComponentList::insert(Component *component, bool mflag) {
  2789   NameList::addName((char *)component);
  2790   if(mflag) _matchcnt++;
  2792 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2793                              bool mflag) {
  2794   Component * component = new Component(name, opType, usedef);
  2795   insert(component, mflag);
  2797 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2798 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2799 Component *ComponentList::match_iter() {
  2800   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2801   return NULL;
  2803 Component *ComponentList::post_match_iter() {
  2804   Component *comp = iter();
  2805   // At end of list?
  2806   if ( comp == NULL ) {
  2807     return comp;
  2809   // In post-match components?
  2810   if (_iter > match_count()-1) {
  2811     return comp;
  2814   return post_match_iter();
  2817 void       ComponentList::reset()   { NameList::reset(); }
  2818 int        ComponentList::count()   { return NameList::count(); }
  2820 Component *ComponentList::operator[](int position) {
  2821   // Shortcut complete iteration if there are not enough entries
  2822   if (position >= count()) return NULL;
  2824   int        index     = 0;
  2825   Component *component = NULL;
  2826   for (reset(); (component = iter()) != NULL;) {
  2827     if (index == position) {
  2828       return component;
  2830     ++index;
  2833   return NULL;
  2836 const Component *ComponentList::search(const char *name) {
  2837   PreserveIter pi(this);
  2838   reset();
  2839   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2840     if( strcmp(comp->_name,name) == 0 ) return comp;
  2843   return NULL;
  2846 // Return number of USEs + number of DEFs
  2847 // When there are no components, or the first component is a USE,
  2848 // then we add '1' to hold a space for the 'result' operand.
  2849 int ComponentList::num_operands() {
  2850   PreserveIter pi(this);
  2851   uint       count = 1;           // result operand
  2852   uint       position = 0;
  2854   Component *component  = NULL;
  2855   for( reset(); (component = iter()) != NULL; ++position ) {
  2856     if( component->isa(Component::USE) ||
  2857         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2858       ++count;
  2862   return count;
  2865 // Return zero-based position in list;  -1 if not in list.
  2866 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2867 int ComponentList::operand_position(const char *name, int usedef) {
  2868   PreserveIter pi(this);
  2869   int position = 0;
  2870   int num_opnds = num_operands();
  2871   Component *component;
  2872   Component* preceding_non_use = NULL;
  2873   Component* first_def = NULL;
  2874   for (reset(); (component = iter()) != NULL; ++position) {
  2875     // When the first component is not a DEF,
  2876     // leave space for the result operand!
  2877     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2878       ++position;
  2879       ++num_opnds;
  2881     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  2882       // When the first entry in the component list is a DEF and a USE
  2883       // Treat them as being separate, a DEF first, then a USE
  2884       if( position==0
  2885           && usedef==Component::USE && component->isa(Component::DEF) ) {
  2886         assert(position+1 < num_opnds, "advertised index in bounds");
  2887         return position+1;
  2888       } else {
  2889         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  2890           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
  2892         if( position >= num_opnds ) {
  2893           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
  2895         assert(position < num_opnds, "advertised index in bounds");
  2896         return position;
  2899     if( component->isa(Component::DEF)
  2900         && component->isa(Component::USE) ) {
  2901       ++position;
  2902       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2904     if( component->isa(Component::DEF) && !first_def ) {
  2905       first_def = component;
  2907     if( !component->isa(Component::USE) && component != first_def ) {
  2908       preceding_non_use = component;
  2909     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  2910       preceding_non_use = NULL;
  2913   return Not_in_list;
  2916 // Find position for this name, regardless of use/def information
  2917 int ComponentList::operand_position(const char *name) {
  2918   PreserveIter pi(this);
  2919   int position = 0;
  2920   Component *component;
  2921   for (reset(); (component = iter()) != NULL; ++position) {
  2922     // When the first component is not a DEF,
  2923     // leave space for the result operand!
  2924     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2925       ++position;
  2927     if (strcmp(name, component->_name)==0) {
  2928       return position;
  2930     if( component->isa(Component::DEF)
  2931         && component->isa(Component::USE) ) {
  2932       ++position;
  2933       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2936   return Not_in_list;
  2939 int ComponentList::operand_position_format(const char *name) {
  2940   PreserveIter pi(this);
  2941   int  first_position = operand_position(name);
  2942   int  use_position   = operand_position(name, Component::USE);
  2944   return ((first_position < use_position) ? use_position : first_position);
  2947 int ComponentList::label_position() {
  2948   PreserveIter pi(this);
  2949   int position = 0;
  2950   reset();
  2951   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2952     // When the first component is not a DEF,
  2953     // leave space for the result operand!
  2954     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2955       ++position;
  2957     if (strcmp(comp->_type, "label")==0) {
  2958       return position;
  2960     if( comp->isa(Component::DEF)
  2961         && comp->isa(Component::USE) ) {
  2962       ++position;
  2963       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2967   return -1;
  2970 int ComponentList::method_position() {
  2971   PreserveIter pi(this);
  2972   int position = 0;
  2973   reset();
  2974   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2975     // When the first component is not a DEF,
  2976     // leave space for the result operand!
  2977     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2978       ++position;
  2980     if (strcmp(comp->_type, "method")==0) {
  2981       return position;
  2983     if( comp->isa(Component::DEF)
  2984         && comp->isa(Component::USE) ) {
  2985       ++position;
  2986       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2990   return -1;
  2993 void ComponentList::dump() { output(stderr); }
  2995 void ComponentList::output(FILE *fp) {
  2996   PreserveIter pi(this);
  2997   fprintf(fp, "\n");
  2998   Component *component;
  2999   for (reset(); (component = iter()) != NULL;) {
  3000     component->output(fp);
  3002   fprintf(fp, "\n");
  3005 //------------------------------MatchNode--------------------------------------
  3006 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3007                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3008   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3009     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3010     _commutative_id(0) {
  3011   _numleaves = (lChild ? lChild->_numleaves : 0)
  3012                + (rChild ? rChild->_numleaves : 0);
  3015 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3016   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3017     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3018     _internalop(0), _numleaves(mnode._numleaves),
  3019     _commutative_id(mnode._commutative_id) {
  3022 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3023   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3024     _opType(mnode._opType),
  3025     _internalop(0), _numleaves(mnode._numleaves),
  3026     _commutative_id(mnode._commutative_id) {
  3027   if (mnode._lChild) {
  3028     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3029   } else {
  3030     _lChild = NULL;
  3032   if (mnode._rChild) {
  3033     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3034   } else {
  3035     _rChild = NULL;
  3039 MatchNode::~MatchNode() {
  3040   // // This node may not own its children if copied via assignment
  3041   // if( _lChild ) delete _lChild;
  3042   // if( _rChild ) delete _rChild;
  3045 bool  MatchNode::find_type(const char *type, int &position) const {
  3046   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3047   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3049   if (strcmp(type,_opType)==0)  {
  3050     return true;
  3051   } else {
  3052     ++position;
  3054   return false;
  3057 // Recursive call collecting info on top-level operands, not transitive.
  3058 // Implementation does not modify state of internal structures.
  3059 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3060                                   bool def_flag) const {
  3061   int usedef = def_flag ? Component::DEF : Component::USE;
  3062   FormDict &globals = _AD.globalNames();
  3064   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3065   // Base case
  3066   if (_lChild==NULL && _rChild==NULL) {
  3067     // If _opType is not an operation, do not build a component for it #####
  3068     const Form *f = globals[_opType];
  3069     if( f != NULL ) {
  3070       // Add non-ideals that are operands, operand-classes,
  3071       if( ! f->ideal_only()
  3072           && (f->is_opclass() || f->is_operand()) ) {
  3073         components.insert(_name, _opType, usedef, true);
  3076     return;
  3078   // Promote results of "Set" to DEF
  3079   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3080   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3081   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3082   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3085 // Find the n'th base-operand in the match node,
  3086 // recursively investigates match rules of user-defined operands.
  3087 //
  3088 // Implementation does not modify state of internal structures since they
  3089 // can be shared.
  3090 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3091                              const char * &result, const char * &name,
  3092                              const char * &opType) const {
  3093   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3094   // Base case
  3095   if (_lChild==NULL && _rChild==NULL) {
  3096     // Check for special case: "Universe", "label"
  3097     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3098       if (position == 0) {
  3099         result = _result;
  3100         name   = _name;
  3101         opType = _opType;
  3102         return 1;
  3103       } else {
  3104         -- position;
  3105         return 0;
  3109     const Form *form = globals[_opType];
  3110     MatchNode *matchNode = NULL;
  3111     // Check for user-defined type
  3112     if (form) {
  3113       // User operand or instruction?
  3114       OperandForm  *opForm = form->is_operand();
  3115       InstructForm *inForm = form->is_instruction();
  3116       if ( opForm ) {
  3117         matchNode = (MatchNode*)opForm->_matrule;
  3118       } else if ( inForm ) {
  3119         matchNode = (MatchNode*)inForm->_matrule;
  3122     // if this is user-defined, recurse on match rule
  3123     // User-defined operand and instruction forms have a match-rule.
  3124     if (matchNode) {
  3125       return (matchNode->base_operand(position,globals,result,name,opType));
  3126     } else {
  3127       // Either not a form, or a system-defined form (no match rule).
  3128       if (position==0) {
  3129         result = _result;
  3130         name   = _name;
  3131         opType = _opType;
  3132         return 1;
  3133       } else {
  3134         --position;
  3135         return 0;
  3139   } else {
  3140     // Examine the left child and right child as well
  3141     if (_lChild) {
  3142       if (_lChild->base_operand(position, globals, result, name, opType))
  3143         return 1;
  3146     if (_rChild) {
  3147       if (_rChild->base_operand(position, globals, result, name, opType))
  3148         return 1;
  3152   return 0;
  3155 // Recursive call on all operands' match rules in my match rule.
  3156 uint  MatchNode::num_consts(FormDict &globals) const {
  3157   uint        index      = 0;
  3158   uint        num_consts = 0;
  3159   const char *result;
  3160   const char *name;
  3161   const char *opType;
  3163   for (uint position = index;
  3164        base_operand(position,globals,result,name,opType); position = index) {
  3165     ++index;
  3166     if( ideal_to_const_type(opType) )        num_consts++;
  3169   return num_consts;
  3172 // Recursive call on all operands' match rules in my match rule.
  3173 // Constants in match rule subtree with specified type
  3174 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3175   uint        index      = 0;
  3176   uint        num_consts = 0;
  3177   const char *result;
  3178   const char *name;
  3179   const char *opType;
  3181   for (uint position = index;
  3182        base_operand(position,globals,result,name,opType); position = index) {
  3183     ++index;
  3184     if( ideal_to_const_type(opType) == type ) num_consts++;
  3187   return num_consts;
  3190 // Recursive call on all operands' match rules in my match rule.
  3191 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3192   return  num_consts( globals, Form::idealP );
  3195 bool  MatchNode::sets_result() const {
  3196   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3199 const char *MatchNode::reduce_right(FormDict &globals) const {
  3200   // If there is no right reduction, return NULL.
  3201   const char      *rightStr    = NULL;
  3203   // If we are a "Set", start from the right child.
  3204   const MatchNode *const mnode = sets_result() ?
  3205     (const MatchNode *const)this->_rChild :
  3206     (const MatchNode *const)this;
  3208   // If our right child exists, it is the right reduction
  3209   if ( mnode->_rChild ) {
  3210     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3211       : mnode->_rChild->_opType;
  3213   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3214   return rightStr;
  3217 const char *MatchNode::reduce_left(FormDict &globals) const {
  3218   // If there is no left reduction, return NULL.
  3219   const char  *leftStr  = NULL;
  3221   // If we are a "Set", start from the right child.
  3222   const MatchNode *const mnode = sets_result() ?
  3223     (const MatchNode *const)this->_rChild :
  3224     (const MatchNode *const)this;
  3226   // If our left child exists, it is the left reduction
  3227   if ( mnode->_lChild ) {
  3228     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3229       : mnode->_lChild->_opType;
  3230   } else {
  3231     // May be simple chain rule: (Set dst operand_form_source)
  3232     if ( sets_result() ) {
  3233       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3234       if( oper ) {
  3235         leftStr = mnode->_opType;
  3239   return leftStr;
  3242 //------------------------------count_instr_names------------------------------
  3243 // Count occurrences of operands names in the leaves of the instruction
  3244 // match rule.
  3245 void MatchNode::count_instr_names( Dict &names ) {
  3246   if( !this ) return;
  3247   if( _lChild ) _lChild->count_instr_names(names);
  3248   if( _rChild ) _rChild->count_instr_names(names);
  3249   if( !_lChild && !_rChild ) {
  3250     uintptr_t cnt = (uintptr_t)names[_name];
  3251     cnt++;                      // One more name found
  3252     names.Insert(_name,(void*)cnt);
  3256 //------------------------------build_instr_pred-------------------------------
  3257 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3258 // can skip some leading instances of 'name'.
  3259 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3260   if( _lChild ) {
  3261     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3262     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3263     if( cnt < 0 ) return cnt;   // Found it, all done
  3265   if( _rChild ) {
  3266     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3267     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3268     if( cnt < 0 ) return cnt;   // Found it, all done
  3270   if( !_lChild && !_rChild ) {  // Found a leaf
  3271     // Wrong name?  Give up...
  3272     if( strcmp(name,_name) ) return cnt;
  3273     if( !cnt ) strcpy(buf,"_leaf");
  3274     return cnt-1;
  3276   return cnt;
  3280 //------------------------------build_internalop-------------------------------
  3281 // Build string representation of subtree
  3282 void MatchNode::build_internalop( ) {
  3283   char *iop, *subtree;
  3284   const char *lstr, *rstr;
  3285   // Build string representation of subtree
  3286   // Operation lchildType rchildType
  3287   int len = (int)strlen(_opType) + 4;
  3288   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3289                        _lChild->_internalop : _lChild->_opType) : "";
  3290   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3291                        _rChild->_internalop : _rChild->_opType) : "";
  3292   len += (int)strlen(lstr) + (int)strlen(rstr);
  3293   subtree = (char *)malloc(len);
  3294   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3295   // Hash the subtree string in _internalOps; if a name exists, use it
  3296   iop = (char *)_AD._internalOps[subtree];
  3297   // Else create a unique name, and add it to the hash table
  3298   if (iop == NULL) {
  3299     iop = subtree;
  3300     _AD._internalOps.Insert(subtree, iop);
  3301     _AD._internalOpNames.addName(iop);
  3302     _AD._internalMatch.Insert(iop, this);
  3304   // Add the internal operand name to the MatchNode
  3305   _internalop = iop;
  3306   _result = iop;
  3310 void MatchNode::dump() {
  3311   output(stderr);
  3314 void MatchNode::output(FILE *fp) {
  3315   if (_lChild==0 && _rChild==0) {
  3316     fprintf(fp," %s",_name);    // operand
  3318   else {
  3319     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3320     if(_lChild) _lChild->output(fp); //               left operand
  3321     if(_rChild) _rChild->output(fp); //                    right operand
  3322     fprintf(fp,")");                 //                                 ")"
  3326 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3327   static const char *needs_ideal_memory_list[] = {
  3328     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
  3329     "StoreB","StoreC","Store" ,"StoreFP",
  3330     "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3331     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load"   ,
  3332     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
  3333     "Store8B","Store4B","Store8C","Store4C","Store2C",
  3334     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
  3335     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
  3336     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3337     "LoadPLocked", "LoadLLocked",
  3338     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3339     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3340     "StoreCM",
  3341     "ClearArray"
  3342   };
  3343   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3344   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
  3345     return 1;
  3346   if( _lChild ) {
  3347     const char *opType = _lChild->_opType;
  3348     for( int i=0; i<cnt; i++ )
  3349       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3350         return 1;
  3351     if( _lChild->needs_ideal_memory_edge(globals) )
  3352       return 1;
  3354   if( _rChild ) {
  3355     const char *opType = _rChild->_opType;
  3356     for( int i=0; i<cnt; i++ )
  3357       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3358         return 1;
  3359     if( _rChild->needs_ideal_memory_edge(globals) )
  3360       return 1;
  3363   return 0;
  3366 // TRUE if defines a derived oop, and so needs a base oop edge present
  3367 // post-matching.
  3368 int MatchNode::needs_base_oop_edge() const {
  3369   if( !strcmp(_opType,"AddP") ) return 1;
  3370   if( strcmp(_opType,"Set") ) return 0;
  3371   return !strcmp(_rChild->_opType,"AddP");
  3374 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3375   if( is_simple_chain_rule(globals) ) {
  3376     const char *src = _matrule->_rChild->_opType;
  3377     OperandForm *src_op = globals[src]->is_operand();
  3378     assert( src_op, "Not operand class of chain rule" );
  3379     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3380   }                             // Else check instruction
  3382   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3386 //-------------------------cisc spilling methods-------------------------------
  3387 // helper routines and methods for detecting cisc-spilling instructions
  3388 //-------------------------cisc_spill_merge------------------------------------
  3389 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3390   int cisc_spillable  = Maybe_cisc_spillable;
  3392   // Combine results of left and right checks
  3393   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3394     // neither side is spillable, nor prevents cisc spilling
  3395     cisc_spillable = Maybe_cisc_spillable;
  3397   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3398     // right side is spillable
  3399     cisc_spillable = right_spillable;
  3401   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3402     // left side is spillable
  3403     cisc_spillable = left_spillable;
  3405   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3406     // left or right prevents cisc spilling this instruction
  3407     cisc_spillable = Not_cisc_spillable;
  3409   else {
  3410     // Only allow one to spill
  3411     cisc_spillable = Not_cisc_spillable;
  3414   return cisc_spillable;
  3417 //-------------------------root_ops_match--------------------------------------
  3418 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3419   // Base Case: check that the current operands/operations match
  3420   assert( op1, "Must have op's name");
  3421   assert( op2, "Must have op's name");
  3422   const Form *form1 = globals[op1];
  3423   const Form *form2 = globals[op2];
  3425   return (form1 == form2);
  3428 //-------------------------cisc_spill_match_node-------------------------------
  3429 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3430 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3431   int cisc_spillable  = Maybe_cisc_spillable;
  3432   int left_spillable  = Maybe_cisc_spillable;
  3433   int right_spillable = Maybe_cisc_spillable;
  3435   // Check that each has same number of operands at this level
  3436   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3437     return Not_cisc_spillable;
  3439   // Base Case: check that the current operands/operations match
  3440   // or are CISC spillable
  3441   assert( _opType, "Must have _opType");
  3442   assert( mRule2->_opType, "Must have _opType");
  3443   const Form *form  = globals[_opType];
  3444   const Form *form2 = globals[mRule2->_opType];
  3445   if( form == form2 ) {
  3446     cisc_spillable = Maybe_cisc_spillable;
  3447   } else {
  3448     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3449     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3450     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3451     DataType data_type = Form::none;
  3452     if (form->is_operand()) {
  3453       // Make sure the loadX matches the type of the reg
  3454       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3456     // Detect reg vs (loadX memory)
  3457     if( form->is_cisc_reg(globals)
  3458         && form2_inst
  3459         && data_type != Form::none
  3460         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3461         && (name_left != NULL)       // NOT (load)
  3462         && (name_right == NULL) ) {  // NOT (load memory foo)
  3463       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3464       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3465         cisc_spillable = Is_cisc_spillable;
  3466         operand        = _name;
  3467         reg_type       = _result;
  3468         return Is_cisc_spillable;
  3469       } else {
  3470         cisc_spillable = Not_cisc_spillable;
  3473     // Detect reg vs memory
  3474     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3475       cisc_spillable = Is_cisc_spillable;
  3476       operand        = _name;
  3477       reg_type       = _result;
  3478       return Is_cisc_spillable;
  3479     } else {
  3480       cisc_spillable = Not_cisc_spillable;
  3484   // If cisc is still possible, check rest of tree
  3485   if( cisc_spillable == Maybe_cisc_spillable ) {
  3486     // Check that each has same number of operands at this level
  3487     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3489     // Check left operands
  3490     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3491       left_spillable = Maybe_cisc_spillable;
  3492     } else {
  3493       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3496     // Check right operands
  3497     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3498       right_spillable =  Maybe_cisc_spillable;
  3499     } else {
  3500       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3503     // Combine results of left and right checks
  3504     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3507   return cisc_spillable;
  3510 //---------------------------cisc_spill_match_rule------------------------------
  3511 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3512 // This method handles the root of Match tree,
  3513 // general recursive checks done in MatchNode
  3514 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3515                                            MatchRule* mRule2, const char* &operand,
  3516                                            const char* &reg_type) {
  3517   int cisc_spillable  = Maybe_cisc_spillable;
  3518   int left_spillable  = Maybe_cisc_spillable;
  3519   int right_spillable = Maybe_cisc_spillable;
  3521   // Check that each sets a result
  3522   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3523   // Check that each has same number of operands at this level
  3524   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3526   // Check left operands: at root, must be target of 'Set'
  3527   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3528     left_spillable = Not_cisc_spillable;
  3529   } else {
  3530     // Do not support cisc-spilling instruction's target location
  3531     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3532       left_spillable = Maybe_cisc_spillable;
  3533     } else {
  3534       left_spillable = Not_cisc_spillable;
  3538   // Check right operands: recursive walk to identify reg->mem operand
  3539   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3540     right_spillable =  Maybe_cisc_spillable;
  3541   } else {
  3542     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3545   // Combine results of left and right checks
  3546   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3548   return cisc_spillable;
  3551 //----------------------------- equivalent ------------------------------------
  3552 // Recursively check to see if two match rules are equivalent.
  3553 // This rule handles the root.
  3554 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3555   // Check that each sets a result
  3556   if (sets_result() != mRule2->sets_result()) {
  3557     return false;
  3560   // Check that the current operands/operations match
  3561   assert( _opType, "Must have _opType");
  3562   assert( mRule2->_opType, "Must have _opType");
  3563   const Form *form  = globals[_opType];
  3564   const Form *form2 = globals[mRule2->_opType];
  3565   if( form != form2 ) {
  3566     return false;
  3569   if (_lChild ) {
  3570     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3571       return false;
  3572   } else if (mRule2->_lChild) {
  3573     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3576   if (_rChild ) {
  3577     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3578       return false;
  3579   } else if (mRule2->_rChild) {
  3580     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3583   // We've made it through the gauntlet.
  3584   return true;
  3587 //----------------------------- equivalent ------------------------------------
  3588 // Recursively check to see if two match rules are equivalent.
  3589 // This rule handles the operands.
  3590 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3591   if( !mNode2 )
  3592     return false;
  3594   // Check that the current operands/operations match
  3595   assert( _opType, "Must have _opType");
  3596   assert( mNode2->_opType, "Must have _opType");
  3597   const Form *form  = globals[_opType];
  3598   const Form *form2 = globals[mNode2->_opType];
  3599   return (form == form2);
  3602 //-------------------------- has_commutative_op -------------------------------
  3603 // Recursively check for commutative operations with subtree operands
  3604 // which could be swapped.
  3605 void MatchNode::count_commutative_op(int& count) {
  3606   static const char *commut_op_list[] = {
  3607     "AddI","AddL","AddF","AddD",
  3608     "AndI","AndL",
  3609     "MaxI","MinI",
  3610     "MulI","MulL","MulF","MulD",
  3611     "OrI" ,"OrL" ,
  3612     "XorI","XorL"
  3613   };
  3614   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3616   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3617     // Don't swap if right operand is an immediate constant.
  3618     bool is_const = false;
  3619     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3620       FormDict &globals = _AD.globalNames();
  3621       const Form *form = globals[_rChild->_opType];
  3622       if ( form ) {
  3623         OperandForm  *oper = form->is_operand();
  3624         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3625           is_const = true;
  3628     if( !is_const ) {
  3629       for( int i=0; i<cnt; i++ ) {
  3630         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3631           count++;
  3632           _commutative_id = count; // id should be > 0
  3633           break;
  3638   if( _lChild )
  3639     _lChild->count_commutative_op(count);
  3640   if( _rChild )
  3641     _rChild->count_commutative_op(count);
  3644 //-------------------------- swap_commutative_op ------------------------------
  3645 // Recursively swap specified commutative operation with subtree operands.
  3646 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3647   if( _commutative_id == id ) { // id should be > 0
  3648     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3649             "not swappable operation");
  3650     MatchNode* tmp = _lChild;
  3651     _lChild = _rChild;
  3652     _rChild = tmp;
  3653     // Don't exit here since we need to build internalop.
  3656   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3657   if( _lChild )
  3658     _lChild->swap_commutative_op(is_set, id);
  3659   if( _rChild )
  3660     _rChild->swap_commutative_op(is_set, id);
  3662   // If not the root, reduce this subtree to an internal operand
  3663   if( !atroot && (_lChild || _rChild) ) {
  3664     build_internalop();
  3668 //-------------------------- swap_commutative_op ------------------------------
  3669 // Recursively swap specified commutative operation with subtree operands.
  3670 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3671   assert(match_rules_cnt < 100," too many match rule clones");
  3672   // Clone
  3673   MatchRule* clone = new MatchRule(_AD, this);
  3674   // Swap operands of commutative operation
  3675   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3676   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3677   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3678   clone->_result = buf;
  3680   clone->_next = this->_next;
  3681   this-> _next = clone;
  3682   if( (--count) > 0 ) {
  3683     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3684     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3688 //------------------------------MatchRule--------------------------------------
  3689 MatchRule::MatchRule(ArchDesc &ad)
  3690   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3691     _next = NULL;
  3694 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3695   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3696     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3697     _next = NULL;
  3700 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3701                      int numleaves)
  3702   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3703     _numchilds(0) {
  3704       _next = NULL;
  3705       mroot->_lChild = NULL;
  3706       mroot->_rChild = NULL;
  3707       delete mroot;
  3708       _numleaves = numleaves;
  3709       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3711 MatchRule::~MatchRule() {
  3714 // Recursive call collecting info on top-level operands, not transitive.
  3715 // Implementation does not modify state of internal structures.
  3716 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3717   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3719   MatchNode::append_components(locals, components,
  3720                                false /* not necessarily a def */);
  3723 // Recursive call on all operands' match rules in my match rule.
  3724 // Implementation does not modify state of internal structures  since they
  3725 // can be shared.
  3726 // The MatchNode that is called first treats its
  3727 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3728                              const char *&result, const char * &name,
  3729                              const char * &opType)const{
  3730   uint position = position0;
  3732   return (MatchNode::base_operand( position, globals, result, name, opType));
  3736 bool MatchRule::is_base_register(FormDict &globals) const {
  3737   uint   position = 1;
  3738   const char  *result   = NULL;
  3739   const char  *name     = NULL;
  3740   const char  *opType   = NULL;
  3741   if (!base_operand(position, globals, result, name, opType)) {
  3742     position = 0;
  3743     if( base_operand(position, globals, result, name, opType) &&
  3744         (strcmp(opType,"RegI")==0 ||
  3745          strcmp(opType,"RegP")==0 ||
  3746          strcmp(opType,"RegN")==0 ||
  3747          strcmp(opType,"RegL")==0 ||
  3748          strcmp(opType,"RegF")==0 ||
  3749          strcmp(opType,"RegD")==0 ||
  3750          strcmp(opType,"Reg" )==0) ) {
  3751       return 1;
  3754   return 0;
  3757 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3758   uint         position = 1;
  3759   const char  *result   = NULL;
  3760   const char  *name     = NULL;
  3761   const char  *opType   = NULL;
  3762   if (!base_operand(position, globals, result, name, opType)) {
  3763     position = 0;
  3764     if (base_operand(position, globals, result, name, opType)) {
  3765       return ideal_to_const_type(opType);
  3768   return Form::none;
  3771 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3773   // Check for chain rule, and do not generate a match list for it
  3774   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3775     const Form *form = globals[_opType];
  3776     // If this is ideal, then it is a base match, not a chain rule.
  3777     if ( form && form->is_operand() && (!form->ideal_only())) {
  3778       return true;
  3781   // Check for "Set" form of chain rule, and do not generate a match list
  3782   if (_rChild) {
  3783     const char *rch = _rChild->_opType;
  3784     const Form *form = globals[rch];
  3785     if ((!strcmp(_opType,"Set") &&
  3786          ((form) && form->is_operand()))) {
  3787       return true;
  3790   return false;
  3793 int MatchRule::is_ideal_copy() const {
  3794   if( _rChild ) {
  3795     const char  *opType = _rChild->_opType;
  3796 #if 1
  3797     if( strcmp(opType,"CastIP")==0 )
  3798       return 1;
  3799 #else
  3800     if( strcmp(opType,"CastII")==0 )
  3801       return 1;
  3802     // Do not treat *CastPP this way, because it
  3803     // may transfer a raw pointer to an oop.
  3804     // If the register allocator were to coalesce this
  3805     // into a single LRG, the GC maps would be incorrect.
  3806     //if( strcmp(opType,"CastPP")==0 )
  3807     //  return 1;
  3808     //if( strcmp(opType,"CheckCastPP")==0 )
  3809     //  return 1;
  3810     //
  3811     // Do not treat CastX2P or CastP2X this way, because
  3812     // raw pointers and int types are treated differently
  3813     // when saving local & stack info for safepoints in
  3814     // Output().
  3815     //if( strcmp(opType,"CastX2P")==0 )
  3816     //  return 1;
  3817     //if( strcmp(opType,"CastP2X")==0 )
  3818     //  return 1;
  3819 #endif
  3821   if( is_chain_rule(_AD.globalNames()) &&
  3822       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3823     return 1;
  3824   return 0;
  3828 int MatchRule::is_expensive() const {
  3829   if( _rChild ) {
  3830     const char  *opType = _rChild->_opType;
  3831     if( strcmp(opType,"AtanD")==0 ||
  3832         strcmp(opType,"CosD")==0 ||
  3833         strcmp(opType,"DivD")==0 ||
  3834         strcmp(opType,"DivF")==0 ||
  3835         strcmp(opType,"DivI")==0 ||
  3836         strcmp(opType,"ExpD")==0 ||
  3837         strcmp(opType,"LogD")==0 ||
  3838         strcmp(opType,"Log10D")==0 ||
  3839         strcmp(opType,"ModD")==0 ||
  3840         strcmp(opType,"ModF")==0 ||
  3841         strcmp(opType,"ModI")==0 ||
  3842         strcmp(opType,"PowD")==0 ||
  3843         strcmp(opType,"SinD")==0 ||
  3844         strcmp(opType,"SqrtD")==0 ||
  3845         strcmp(opType,"TanD")==0 ||
  3846         strcmp(opType,"ConvD2F")==0 ||
  3847         strcmp(opType,"ConvD2I")==0 ||
  3848         strcmp(opType,"ConvD2L")==0 ||
  3849         strcmp(opType,"ConvF2D")==0 ||
  3850         strcmp(opType,"ConvF2I")==0 ||
  3851         strcmp(opType,"ConvF2L")==0 ||
  3852         strcmp(opType,"ConvI2D")==0 ||
  3853         strcmp(opType,"ConvI2F")==0 ||
  3854         strcmp(opType,"ConvI2L")==0 ||
  3855         strcmp(opType,"ConvL2D")==0 ||
  3856         strcmp(opType,"ConvL2F")==0 ||
  3857         strcmp(opType,"ConvL2I")==0 ||
  3858         strcmp(opType,"DecodeN")==0 ||
  3859         strcmp(opType,"EncodeP")==0 ||
  3860         strcmp(opType,"RoundDouble")==0 ||
  3861         strcmp(opType,"RoundFloat")==0 ||
  3862         strcmp(opType,"ReverseBytesI")==0 ||
  3863         strcmp(opType,"ReverseBytesL")==0 ||
  3864         strcmp(opType,"ReverseBytesUS")==0 ||
  3865         strcmp(opType,"ReverseBytesS")==0 ||
  3866         strcmp(opType,"Replicate16B")==0 ||
  3867         strcmp(opType,"Replicate8B")==0 ||
  3868         strcmp(opType,"Replicate4B")==0 ||
  3869         strcmp(opType,"Replicate8C")==0 ||
  3870         strcmp(opType,"Replicate4C")==0 ||
  3871         strcmp(opType,"Replicate8S")==0 ||
  3872         strcmp(opType,"Replicate4S")==0 ||
  3873         strcmp(opType,"Replicate4I")==0 ||
  3874         strcmp(opType,"Replicate2I")==0 ||
  3875         strcmp(opType,"Replicate2L")==0 ||
  3876         strcmp(opType,"Replicate4F")==0 ||
  3877         strcmp(opType,"Replicate2F")==0 ||
  3878         strcmp(opType,"Replicate2D")==0 ||
  3879         0 /* 0 to line up columns nicely */ )
  3880       return 1;
  3882   return 0;
  3885 bool MatchRule::is_ideal_unlock() const {
  3886   if( !_opType ) return false;
  3887   return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
  3891 bool MatchRule::is_ideal_call_leaf() const {
  3892   if( !_opType ) return false;
  3893   return !strcmp(_opType,"CallLeaf")     ||
  3894          !strcmp(_opType,"CallLeafNoFP");
  3898 bool MatchRule::is_ideal_if() const {
  3899   if( !_opType ) return false;
  3900   return
  3901     !strcmp(_opType,"If"            ) ||
  3902     !strcmp(_opType,"CountedLoopEnd");
  3905 bool MatchRule::is_ideal_fastlock() const {
  3906   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3907     return (strcmp(_rChild->_opType,"FastLock") == 0);
  3909   return false;
  3912 bool MatchRule::is_ideal_membar() const {
  3913   if( !_opType ) return false;
  3914   return
  3915     !strcmp(_opType,"MemBarAcquire"  ) ||
  3916     !strcmp(_opType,"MemBarRelease"  ) ||
  3917     !strcmp(_opType,"MemBarVolatile" ) ||
  3918     !strcmp(_opType,"MemBarCPUOrder" ) ;
  3921 bool MatchRule::is_ideal_loadPC() const {
  3922   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3923     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  3925   return false;
  3928 bool MatchRule::is_ideal_box() const {
  3929   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3930     return (strcmp(_rChild->_opType,"Box") == 0);
  3932   return false;
  3935 bool MatchRule::is_ideal_goto() const {
  3936   bool   ideal_goto = false;
  3938   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  3939     ideal_goto = true;
  3941   return ideal_goto;
  3944 bool MatchRule::is_ideal_jump() const {
  3945   if( _opType ) {
  3946     if( !strcmp(_opType,"Jump") )
  3947       return true;
  3949   return false;
  3952 bool MatchRule::is_ideal_bool() const {
  3953   if( _opType ) {
  3954     if( !strcmp(_opType,"Bool") )
  3955       return true;
  3957   return false;
  3961 Form::DataType MatchRule::is_ideal_load() const {
  3962   Form::DataType ideal_load = Form::none;
  3964   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3965     const char *opType = _rChild->_opType;
  3966     ideal_load = is_load_from_memory(opType);
  3969   return ideal_load;
  3973 bool MatchRule::skip_antidep_check() const {
  3974   // Some loads operate on what is effectively immutable memory so we
  3975   // should skip the anti dep computations.  For some of these nodes
  3976   // the rewritable field keeps the anti dep logic from triggering but
  3977   // for certain kinds of LoadKlass it does not since they are
  3978   // actually reading memory which could be rewritten by the runtime,
  3979   // though never by generated code.  This disables it uniformly for
  3980   // the nodes that behave like this: LoadKlass, LoadNKlass and
  3981   // LoadRange.
  3982   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3983     const char *opType = _rChild->_opType;
  3984     if (strcmp("LoadKlass", opType) == 0 ||
  3985         strcmp("LoadNKlass", opType) == 0 ||
  3986         strcmp("LoadRange", opType) == 0) {
  3987       return true;
  3991   return false;
  3995 Form::DataType MatchRule::is_ideal_store() const {
  3996   Form::DataType ideal_store = Form::none;
  3998   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3999     const char *opType = _rChild->_opType;
  4000     ideal_store = is_store_to_memory(opType);
  4003   return ideal_store;
  4007 void MatchRule::dump() {
  4008   output(stderr);
  4011 void MatchRule::output(FILE *fp) {
  4012   fprintf(fp,"MatchRule: ( %s",_name);
  4013   if (_lChild) _lChild->output(fp);
  4014   if (_rChild) _rChild->output(fp);
  4015   fprintf(fp," )\n");
  4016   fprintf(fp,"   nesting depth = %d\n", _depth);
  4017   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4018   fprintf(fp,"\n");
  4021 //------------------------------Attribute--------------------------------------
  4022 Attribute::Attribute(char *id, char* val, int type)
  4023   : _ident(id), _val(val), _atype(type) {
  4025 Attribute::~Attribute() {
  4028 int Attribute::int_val(ArchDesc &ad) {
  4029   // Make sure it is an integer constant:
  4030   int result = 0;
  4031   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4032     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4033                   _ident, _val ? _val : "");
  4035   return result;
  4038 void Attribute::dump() {
  4039   output(stderr);
  4040 } // Debug printer
  4042 // Write to output files
  4043 void Attribute::output(FILE *fp) {
  4044   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4047 //------------------------------FormatRule----------------------------------
  4048 FormatRule::FormatRule(char *temp)
  4049   : _temp(temp) {
  4051 FormatRule::~FormatRule() {
  4054 void FormatRule::dump() {
  4055   output(stderr);
  4058 // Write to output files
  4059 void FormatRule::output(FILE *fp) {
  4060   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4061   fprintf(fp,"\n");

mercurial