src/share/vm/adlc/formssel.cpp

Tue, 18 May 2010 23:58:32 -0700

author
never
date
Tue, 18 May 2010 23:58:32 -0700
changeset 1896
b5fdf39b9749
parent 1831
d7f654633cfe
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6953576: bottom_type for matched AddPNodes doesn't always agree with ideal
Reviewed-by: kvn

     1 /*
     2  * Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena) {
    34       _ftype = Form::INS;
    36       _matrule   = NULL;
    37       _insencode = NULL;
    38       _opcode    = NULL;
    39       _size      = NULL;
    40       _attribs   = NULL;
    41       _predicate = NULL;
    42       _exprule   = NULL;
    43       _rewrule   = NULL;
    44       _format    = NULL;
    45       _peephole  = NULL;
    46       _ins_pipe  = NULL;
    47       _uniq_idx  = NULL;
    48       _num_uniq  = 0;
    49       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    50       _cisc_spill_alternate = NULL;            // possible cisc replacement
    51       _cisc_reg_mask_name = NULL;
    52       _is_cisc_alternate = false;
    53       _is_short_branch = false;
    54       _short_branch_form = NULL;
    55       _alignment = 1;
    56 }
    58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    59   : _ident(id), _ideal_only(false),
    60     _localNames(instr->_localNames),
    61     _effects(instr->_effects) {
    62       _ftype = Form::INS;
    64       _matrule   = rule;
    65       _insencode = instr->_insencode;
    66       _opcode    = instr->_opcode;
    67       _size      = instr->_size;
    68       _attribs   = instr->_attribs;
    69       _predicate = instr->_predicate;
    70       _exprule   = instr->_exprule;
    71       _rewrule   = instr->_rewrule;
    72       _format    = instr->_format;
    73       _peephole  = instr->_peephole;
    74       _ins_pipe  = instr->_ins_pipe;
    75       _uniq_idx  = instr->_uniq_idx;
    76       _num_uniq  = instr->_num_uniq;
    77       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    78       _cisc_spill_alternate = NULL;            // possible cisc replacement
    79       _cisc_reg_mask_name = NULL;
    80       _is_cisc_alternate = false;
    81       _is_short_branch = false;
    82       _short_branch_form = NULL;
    83       _alignment = 1;
    84      // Copy parameters
    85      const char *name;
    86      instr->_parameters.reset();
    87      for (; (name = instr->_parameters.iter()) != NULL;)
    88        _parameters.addName(name);
    89 }
    91 InstructForm::~InstructForm() {
    92 }
    94 InstructForm *InstructForm::is_instruction() const {
    95   return (InstructForm*)this;
    96 }
    98 bool InstructForm::ideal_only() const {
    99   return _ideal_only;
   100 }
   102 bool InstructForm::sets_result() const {
   103   return (_matrule != NULL && _matrule->sets_result());
   104 }
   106 bool InstructForm::needs_projections() {
   107   _components.reset();
   108   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   109     if (comp->isa(Component::KILL)) {
   110       return true;
   111     }
   112   }
   113   return false;
   114 }
   117 bool InstructForm::has_temps() {
   118   if (_matrule) {
   119     // Examine each component to see if it is a TEMP
   120     _components.reset();
   121     // Skip the first component, if already handled as (SET dst (...))
   122     Component *comp = NULL;
   123     if (sets_result())  comp = _components.iter();
   124     while ((comp = _components.iter()) != NULL) {
   125       if (comp->isa(Component::TEMP)) {
   126         return true;
   127       }
   128     }
   129   }
   131   return false;
   132 }
   134 uint InstructForm::num_defs_or_kills() {
   135   uint   defs_or_kills = 0;
   137   _components.reset();
   138   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   139     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   140       ++defs_or_kills;
   141     }
   142   }
   144   return  defs_or_kills;
   145 }
   147 // This instruction has an expand rule?
   148 bool InstructForm::expands() const {
   149   return ( _exprule != NULL );
   150 }
   152 // This instruction has a peephole rule?
   153 Peephole *InstructForm::peepholes() const {
   154   return _peephole;
   155 }
   157 // This instruction has a peephole rule?
   158 void InstructForm::append_peephole(Peephole *peephole) {
   159   if( _peephole == NULL ) {
   160     _peephole = peephole;
   161   } else {
   162     _peephole->append_peephole(peephole);
   163   }
   164 }
   167 // ideal opcode enumeration
   168 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   169   if( !_matrule ) return "Node"; // Something weird
   170   // Chain rules do not really have ideal Opcodes; use their source
   171   // operand ideal Opcode instead.
   172   if( is_simple_chain_rule(globalNames) ) {
   173     const char *src = _matrule->_rChild->_opType;
   174     OperandForm *src_op = globalNames[src]->is_operand();
   175     assert( src_op, "Not operand class of chain rule" );
   176     if( !src_op->_matrule ) return "Node";
   177     return src_op->_matrule->_opType;
   178   }
   179   // Operand chain rules do not really have ideal Opcodes
   180   if( _matrule->is_chain_rule(globalNames) )
   181     return "Node";
   182   return strcmp(_matrule->_opType,"Set")
   183     ? _matrule->_opType
   184     : _matrule->_rChild->_opType;
   185 }
   187 // Recursive check on all operands' match rules in my match rule
   188 bool InstructForm::is_pinned(FormDict &globals) {
   189   if ( ! _matrule)  return false;
   191   int  index   = 0;
   192   if (_matrule->find_type("Goto",          index)) return true;
   193   if (_matrule->find_type("If",            index)) return true;
   194   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   195   if (_matrule->find_type("Return",        index)) return true;
   196   if (_matrule->find_type("Rethrow",       index)) return true;
   197   if (_matrule->find_type("TailCall",      index)) return true;
   198   if (_matrule->find_type("TailJump",      index)) return true;
   199   if (_matrule->find_type("Halt",          index)) return true;
   200   if (_matrule->find_type("Jump",          index)) return true;
   202   return is_parm(globals);
   203 }
   205 // Recursive check on all operands' match rules in my match rule
   206 bool InstructForm::is_projection(FormDict &globals) {
   207   if ( ! _matrule)  return false;
   209   int  index   = 0;
   210   if (_matrule->find_type("Goto",    index)) return true;
   211   if (_matrule->find_type("Return",  index)) return true;
   212   if (_matrule->find_type("Rethrow", index)) return true;
   213   if (_matrule->find_type("TailCall",index)) return true;
   214   if (_matrule->find_type("TailJump",index)) return true;
   215   if (_matrule->find_type("Halt",    index)) return true;
   217   return false;
   218 }
   220 // Recursive check on all operands' match rules in my match rule
   221 bool InstructForm::is_parm(FormDict &globals) {
   222   if ( ! _matrule)  return false;
   224   int  index   = 0;
   225   if (_matrule->find_type("Parm",index)) return true;
   227   return false;
   228 }
   231 // Return 'true' if this instruction matches an ideal 'Copy*' node
   232 int InstructForm::is_ideal_copy() const {
   233   return _matrule ? _matrule->is_ideal_copy() : 0;
   234 }
   236 // Return 'true' if this instruction is too complex to rematerialize.
   237 int InstructForm::is_expensive() const {
   238   // We can prove it is cheap if it has an empty encoding.
   239   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   240   if (is_empty_encoding())
   241     return 0;
   243   if (is_tls_instruction())
   244     return 1;
   246   if (_matrule == NULL)  return 0;
   248   return _matrule->is_expensive();
   249 }
   251 // Has an empty encoding if _size is a constant zero or there
   252 // are no ins_encode tokens.
   253 int InstructForm::is_empty_encoding() const {
   254   if (_insencode != NULL) {
   255     _insencode->reset();
   256     if (_insencode->encode_class_iter() == NULL) {
   257       return 1;
   258     }
   259   }
   260   if (_size != NULL && strcmp(_size, "0") == 0) {
   261     return 1;
   262   }
   263   return 0;
   264 }
   266 int InstructForm::is_tls_instruction() const {
   267   if (_ident != NULL &&
   268       ( ! strcmp( _ident,"tlsLoadP") ||
   269         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   270     return 1;
   271   }
   273   if (_matrule != NULL && _insencode != NULL) {
   274     const char* opType = _matrule->_opType;
   275     if (strcmp(opType, "Set")==0)
   276       opType = _matrule->_rChild->_opType;
   277     if (strcmp(opType,"ThreadLocal")==0) {
   278       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   279               (_ident == NULL ? "NULL" : _ident));
   280       return 1;
   281     }
   282   }
   284   return 0;
   285 }
   288 // Return 'true' if this instruction matches an ideal 'Copy*' node
   289 bool InstructForm::is_ideal_unlock() const {
   290   return _matrule ? _matrule->is_ideal_unlock() : false;
   291 }
   293 bool InstructForm::is_ideal_call_leaf() const {
   294   return _matrule ? _matrule->is_ideal_call_leaf() : false;
   295 }
   297 // Return 'true' if this instruction matches an ideal 'If' node
   298 bool InstructForm::is_ideal_if() const {
   299   if( _matrule == NULL ) return false;
   301   return _matrule->is_ideal_if();
   302 }
   304 // Return 'true' if this instruction matches an ideal 'FastLock' node
   305 bool InstructForm::is_ideal_fastlock() const {
   306   if( _matrule == NULL ) return false;
   308   return _matrule->is_ideal_fastlock();
   309 }
   311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   312 bool InstructForm::is_ideal_membar() const {
   313   if( _matrule == NULL ) return false;
   315   return _matrule->is_ideal_membar();
   316 }
   318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   319 bool InstructForm::is_ideal_loadPC() const {
   320   if( _matrule == NULL ) return false;
   322   return _matrule->is_ideal_loadPC();
   323 }
   325 // Return 'true' if this instruction matches an ideal 'Box' node
   326 bool InstructForm::is_ideal_box() const {
   327   if( _matrule == NULL ) return false;
   329   return _matrule->is_ideal_box();
   330 }
   332 // Return 'true' if this instruction matches an ideal 'Goto' node
   333 bool InstructForm::is_ideal_goto() const {
   334   if( _matrule == NULL ) return false;
   336   return _matrule->is_ideal_goto();
   337 }
   339 // Return 'true' if this instruction matches an ideal 'Jump' node
   340 bool InstructForm::is_ideal_jump() const {
   341   if( _matrule == NULL ) return false;
   343   return _matrule->is_ideal_jump();
   344 }
   346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
   347 //                    'CountedLoopEnd' | 'Jump'
   348 bool InstructForm::is_ideal_branch() const {
   349   if( _matrule == NULL ) return false;
   351   return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
   352 }
   355 // Return 'true' if this instruction matches an ideal 'Return' node
   356 bool InstructForm::is_ideal_return() const {
   357   if( _matrule == NULL ) return false;
   359   // Check MatchRule to see if the first entry is the ideal "Return" node
   360   int  index   = 0;
   361   if (_matrule->find_type("Return",index)) return true;
   362   if (_matrule->find_type("Rethrow",index)) return true;
   363   if (_matrule->find_type("TailCall",index)) return true;
   364   if (_matrule->find_type("TailJump",index)) return true;
   366   return false;
   367 }
   369 // Return 'true' if this instruction matches an ideal 'Halt' node
   370 bool InstructForm::is_ideal_halt() const {
   371   int  index   = 0;
   372   return _matrule && _matrule->find_type("Halt",index);
   373 }
   375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   376 bool InstructForm::is_ideal_safepoint() const {
   377   int  index   = 0;
   378   return _matrule && _matrule->find_type("SafePoint",index);
   379 }
   381 // Return 'true' if this instruction matches an ideal 'Nop' node
   382 bool InstructForm::is_ideal_nop() const {
   383   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   384 }
   386 bool InstructForm::is_ideal_control() const {
   387   if ( ! _matrule)  return false;
   389   return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
   390 }
   392 // Return 'true' if this instruction matches an ideal 'Call' node
   393 Form::CallType InstructForm::is_ideal_call() const {
   394   if( _matrule == NULL ) return Form::invalid_type;
   396   // Check MatchRule to see if the first entry is the ideal "Call" node
   397   int  idx   = 0;
   398   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   399   idx = 0;
   400   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   401   idx = 0;
   402   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   403   idx = 0;
   404   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   405   idx = 0;
   406   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   407   idx = 0;
   408   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   409   idx = 0;
   410   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   411   idx = 0;
   413   return Form::invalid_type;
   414 }
   416 // Return 'true' if this instruction matches an ideal 'Load?' node
   417 Form::DataType InstructForm::is_ideal_load() const {
   418   if( _matrule == NULL ) return Form::none;
   420   return  _matrule->is_ideal_load();
   421 }
   423 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   424 bool InstructForm::skip_antidep_check() const {
   425   if( _matrule == NULL ) return false;
   427   return  _matrule->skip_antidep_check();
   428 }
   430 // Return 'true' if this instruction matches an ideal 'Load?' node
   431 Form::DataType InstructForm::is_ideal_store() const {
   432   if( _matrule == NULL ) return Form::none;
   434   return  _matrule->is_ideal_store();
   435 }
   437 // Return the input register that must match the output register
   438 // If this is not required, return 0
   439 uint InstructForm::two_address(FormDict &globals) {
   440   uint  matching_input = 0;
   441   if(_components.count() == 0) return 0;
   443   _components.reset();
   444   Component *comp = _components.iter();
   445   // Check if there is a DEF
   446   if( comp->isa(Component::DEF) ) {
   447     // Check that this is a register
   448     const char  *def_type = comp->_type;
   449     const Form  *form     = globals[def_type];
   450     OperandForm *op       = form->is_operand();
   451     if( op ) {
   452       if( op->constrained_reg_class() != NULL &&
   453           op->interface_type(globals) == Form::register_interface ) {
   454         // Remember the local name for equality test later
   455         const char *def_name = comp->_name;
   456         // Check if a component has the same name and is a USE
   457         do {
   458           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   459             return operand_position_format(def_name);
   460           }
   461         } while( (comp = _components.iter()) != NULL);
   462       }
   463     }
   464   }
   466   return 0;
   467 }
   470 // when chaining a constant to an instruction, returns 'true' and sets opType
   471 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   472   const char *dummy  = NULL;
   473   const char *dummy2 = NULL;
   474   return is_chain_of_constant(globals, dummy, dummy2);
   475 }
   476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   477                 const char * &opTypeParam) {
   478   const char *result = NULL;
   480   return is_chain_of_constant(globals, opTypeParam, result);
   481 }
   483 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   484                 const char * &opTypeParam, const char * &resultParam) {
   485   Form::DataType  data_type = Form::none;
   486   if ( ! _matrule)  return data_type;
   488   // !!!!!
   489   // The source of the chain rule is 'position = 1'
   490   uint         position = 1;
   491   const char  *result   = NULL;
   492   const char  *name     = NULL;
   493   const char  *opType   = NULL;
   494   // Here base_operand is looking for an ideal type to be returned (opType).
   495   if ( _matrule->is_chain_rule(globals)
   496        && _matrule->base_operand(position, globals, result, name, opType) ) {
   497     data_type = ideal_to_const_type(opType);
   499     // if it isn't an ideal constant type, just return
   500     if ( data_type == Form::none ) return data_type;
   502     // Ideal constant types also adjust the opType parameter.
   503     resultParam = result;
   504     opTypeParam = opType;
   505     return data_type;
   506   }
   508   return data_type;
   509 }
   511 // Check if a simple chain rule
   512 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   513   if( _matrule && _matrule->sets_result()
   514       && _matrule->_rChild->_lChild == NULL
   515       && globals[_matrule->_rChild->_opType]
   516       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   517     return true;
   518   }
   519   return false;
   520 }
   522 // check for structural rematerialization
   523 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   524   bool   rematerialize = false;
   526   Form::DataType data_type = is_chain_of_constant(globals);
   527   if( data_type != Form::none )
   528     rematerialize = true;
   530   // Constants
   531   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   532     rematerialize = true;
   534   // Pseudo-constants (values easily available to the runtime)
   535   if (is_empty_encoding() && is_tls_instruction())
   536     rematerialize = true;
   538   // 1-input, 1-output, such as copies or increments.
   539   if( _components.count() == 2 &&
   540       _components[0]->is(Component::DEF) &&
   541       _components[1]->isa(Component::USE) )
   542     rematerialize = true;
   544   // Check for an ideal 'Load?' and eliminate rematerialize option
   545   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   546        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   547        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   548     rematerialize = false;
   549   }
   551   // Always rematerialize the flags.  They are more expensive to save &
   552   // restore than to recompute (and possibly spill the compare's inputs).
   553   if( _components.count() >= 1 ) {
   554     Component *c = _components[0];
   555     const Form *form = globals[c->_type];
   556     OperandForm *opform = form->is_operand();
   557     if( opform ) {
   558       // Avoid the special stack_slots register classes
   559       const char *rc_name = opform->constrained_reg_class();
   560       if( rc_name ) {
   561         if( strcmp(rc_name,"stack_slots") ) {
   562           // Check for ideal_type of RegFlags
   563           const char *type = opform->ideal_type( globals, registers );
   564           if( !strcmp(type,"RegFlags") )
   565             rematerialize = true;
   566         } else
   567           rematerialize = false; // Do not rematerialize things target stk
   568       }
   569     }
   570   }
   572   return rematerialize;
   573 }
   575 // loads from memory, so must check for anti-dependence
   576 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   577   if ( skip_antidep_check() ) return false;
   579   // Machine independent loads must be checked for anti-dependences
   580   if( is_ideal_load() != Form::none )  return true;
   582   // !!!!! !!!!! !!!!!
   583   // TEMPORARY
   584   // if( is_simple_chain_rule(globals) )  return false;
   586   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   587   // but writes none
   588   if( _matrule && _matrule->_rChild &&
   589       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   590         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   591         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   592         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   593     return true;
   595   // Check if instruction has a USE of a memory operand class, but no defs
   596   bool USE_of_memory  = false;
   597   bool DEF_of_memory  = false;
   598   Component     *comp = NULL;
   599   ComponentList &components = (ComponentList &)_components;
   601   components.reset();
   602   while( (comp = components.iter()) != NULL ) {
   603     const Form  *form = globals[comp->_type];
   604     if( !form ) continue;
   605     OpClassForm *op   = form->is_opclass();
   606     if( !op ) continue;
   607     if( form->interface_type(globals) == Form::memory_interface ) {
   608       if( comp->isa(Component::USE) ) USE_of_memory = true;
   609       if( comp->isa(Component::DEF) ) {
   610         OperandForm *oper = form->is_operand();
   611         if( oper && oper->is_user_name_for_sReg() ) {
   612           // Stack slots are unaliased memory handled by allocator
   613           oper = oper;  // debug stopping point !!!!!
   614         } else {
   615           DEF_of_memory = true;
   616         }
   617       }
   618     }
   619   }
   620   return (USE_of_memory && !DEF_of_memory);
   621 }
   624 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   625   if( _matrule == NULL ) return false;
   626   if( !_matrule->_opType ) return false;
   628   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   629   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   631   return false;
   632 }
   634 int InstructForm::memory_operand(FormDict &globals) const {
   635   // Machine independent loads must be checked for anti-dependences
   636   // Check if instruction has a USE of a memory operand class, or a def.
   637   int USE_of_memory  = 0;
   638   int DEF_of_memory  = 0;
   639   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   640   Component     *unique          = NULL;
   641   Component     *comp            = NULL;
   642   ComponentList &components      = (ComponentList &)_components;
   644   components.reset();
   645   while( (comp = components.iter()) != NULL ) {
   646     const Form  *form = globals[comp->_type];
   647     if( !form ) continue;
   648     OpClassForm *op   = form->is_opclass();
   649     if( !op ) continue;
   650     if( op->stack_slots_only(globals) )  continue;
   651     if( form->interface_type(globals) == Form::memory_interface ) {
   652       if( comp->isa(Component::DEF) ) {
   653         last_memory_DEF = comp->_name;
   654         DEF_of_memory++;
   655         unique = comp;
   656       } else if( comp->isa(Component::USE) ) {
   657         if( last_memory_DEF != NULL ) {
   658           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   659           last_memory_DEF = NULL;
   660         }
   661         USE_of_memory++;
   662         if (DEF_of_memory == 0)  // defs take precedence
   663           unique = comp;
   664       } else {
   665         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   666       }
   667     }
   668   }
   669   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   670   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   671   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   672   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   673     if( is_simple_chain_rule(globals) ) {
   674       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   675       //((InstructForm*)this)->dump();
   676       // Preceding code prints nothing on sparc and these insns on intel:
   677       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   678       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   679       return NO_MEMORY_OPERAND;
   680     }
   682     if( DEF_of_memory == 1 ) {
   683       assert(unique != NULL, "");
   684       if( USE_of_memory == 0 ) {
   685         // unique def, no uses
   686       } else {
   687         // // unique def, some uses
   688         // // must return bottom unless all uses match def
   689         // unique = NULL;
   690       }
   691     } else if( DEF_of_memory > 0 ) {
   692       // multiple defs, don't care about uses
   693       unique = NULL;
   694     } else if( USE_of_memory == 1) {
   695       // unique use, no defs
   696       assert(unique != NULL, "");
   697     } else if( USE_of_memory > 0 ) {
   698       // multiple uses, no defs
   699       unique = NULL;
   700     } else {
   701       assert(false, "bad case analysis");
   702     }
   703     // process the unique DEF or USE, if there is one
   704     if( unique == NULL ) {
   705       return MANY_MEMORY_OPERANDS;
   706     } else {
   707       int pos = components.operand_position(unique->_name);
   708       if( unique->isa(Component::DEF) ) {
   709         pos += 1;                // get corresponding USE from DEF
   710       }
   711       assert(pos >= 1, "I was just looking at it!");
   712       return pos;
   713     }
   714   }
   716   // missed the memory op??
   717   if( true ) {  // %%% should not be necessary
   718     if( is_ideal_store() != Form::none ) {
   719       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   720       ((InstructForm*)this)->dump();
   721       // pretend it has multiple defs and uses
   722       return MANY_MEMORY_OPERANDS;
   723     }
   724     if( is_ideal_load()  != Form::none ) {
   725       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   726       ((InstructForm*)this)->dump();
   727       // pretend it has multiple uses and no defs
   728       return MANY_MEMORY_OPERANDS;
   729     }
   730   }
   732   return NO_MEMORY_OPERAND;
   733 }
   736 // This instruction captures the machine-independent bottom_type
   737 // Expected use is for pointer vs oop determination for LoadP
   738 bool InstructForm::captures_bottom_type(FormDict &globals) const {
   739   if( _matrule && _matrule->_rChild &&
   740        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
   741         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
   742         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
   743         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
   744         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
   745         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
   746         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
   747         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
   748   else if ( is_ideal_load() == Form::idealP )                return true;
   749   else if ( is_ideal_store() != Form::none  )                return true;
   751   if (needs_base_oop_edge(globals)) return true;
   753   return  false;
   754 }
   757 // Access instr_cost attribute or return NULL.
   758 const char* InstructForm::cost() {
   759   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   760     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   761       return cur->_val;
   762     }
   763   }
   764   return NULL;
   765 }
   767 // Return count of top-level operands.
   768 uint InstructForm::num_opnds() {
   769   int  num_opnds = _components.num_operands();
   771   // Need special handling for matching some ideal nodes
   772   // i.e. Matching a return node
   773   /*
   774   if( _matrule ) {
   775     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   776         strcmp(_matrule->_opType,"Halt"     )==0 )
   777       return 3;
   778   }
   779     */
   780   return num_opnds;
   781 }
   783 // Return count of unmatched operands.
   784 uint InstructForm::num_post_match_opnds() {
   785   uint  num_post_match_opnds = _components.count();
   786   uint  num_match_opnds = _components.match_count();
   787   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   789   return num_post_match_opnds;
   790 }
   792 // Return the number of leaves below this complex operand
   793 uint InstructForm::num_consts(FormDict &globals) const {
   794   if ( ! _matrule) return 0;
   796   // This is a recursive invocation on all operands in the matchrule
   797   return _matrule->num_consts(globals);
   798 }
   800 // Constants in match rule with specified type
   801 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   802   if ( ! _matrule) return 0;
   804   // This is a recursive invocation on all operands in the matchrule
   805   return _matrule->num_consts(globals, type);
   806 }
   809 // Return the register class associated with 'leaf'.
   810 const char *InstructForm::out_reg_class(FormDict &globals) {
   811   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   813   return NULL;
   814 }
   818 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   819 uint InstructForm::oper_input_base(FormDict &globals) {
   820   if( !_matrule ) return 1;     // Skip control for most nodes
   822   // Need special handling for matching some ideal nodes
   823   // i.e. Matching a return node
   824   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   825       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   826       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   827       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   828       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   829       strcmp(_matrule->_opType,"Halt"      )==0 )
   830     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   832   if( _matrule->_rChild &&
   833       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   834         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   835         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   836         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
   837         // String.(compareTo/equals/indexOf) and Arrays.equals
   838         // take 1 control and 1 memory edges.
   839     return 2;
   840   }
   842   // Check for handling of 'Memory' input/edge in the ideal world.
   843   // The AD file writer is shielded from knowledge of these edges.
   844   int base = 1;                 // Skip control
   845   base += _matrule->needs_ideal_memory_edge(globals);
   847   // Also skip the base-oop value for uses of derived oops.
   848   // The AD file writer is shielded from knowledge of these edges.
   849   base += needs_base_oop_edge(globals);
   851   return base;
   852 }
   854 // Implementation does not modify state of internal structures
   855 void InstructForm::build_components() {
   856   // Add top-level operands to the components
   857   if (_matrule)  _matrule->append_components(_localNames, _components);
   859   // Add parameters that "do not appear in match rule".
   860   bool has_temp = false;
   861   const char *name;
   862   const char *kill_name = NULL;
   863   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   864     OperandForm *opForm = (OperandForm*)_localNames[name];
   866     Effect* e = NULL;
   867     {
   868       const Form* form = _effects[name];
   869       e = form ? form->is_effect() : NULL;
   870     }
   872     if (e != NULL) {
   873       has_temp |= e->is(Component::TEMP);
   875       // KILLs must be declared after any TEMPs because TEMPs are real
   876       // uses so their operand numbering must directly follow the real
   877       // inputs from the match rule.  Fixing the numbering seems
   878       // complex so simply enforce the restriction during parse.
   879       if (kill_name != NULL &&
   880           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   881         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   882         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   883                              _ident, kill->_ident, kill_name);
   884       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   885         kill_name = name;
   886       }
   887     }
   889     const Component *component  = _components.search(name);
   890     if ( component  == NULL ) {
   891       if (e) {
   892         _components.insert(name, opForm->_ident, e->_use_def, false);
   893         component = _components.search(name);
   894         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   895           const Form *form = globalAD->globalNames()[component->_type];
   896           assert( form, "component type must be a defined form");
   897           OperandForm *op   = form->is_operand();
   898           if (op->_interface && op->_interface->is_RegInterface()) {
   899             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   900                                  _ident, opForm->_ident, name);
   901           }
   902         }
   903       } else {
   904         // This would be a nice warning but it triggers in a few places in a benign way
   905         // if (_matrule != NULL && !expands()) {
   906         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   907         //                        _ident, opForm->_ident, name);
   908         // }
   909         _components.insert(name, opForm->_ident, Component::INVALID, false);
   910       }
   911     }
   912     else if (e) {
   913       // Component was found in the list
   914       // Check if there is a new effect that requires an extra component.
   915       // This happens when adding 'USE' to a component that is not yet one.
   916       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   917         if (component->isa(Component::USE) && _matrule) {
   918           const Form *form = globalAD->globalNames()[component->_type];
   919           assert( form, "component type must be a defined form");
   920           OperandForm *op   = form->is_operand();
   921           if (op->_interface && op->_interface->is_RegInterface()) {
   922             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   923                                  _ident, opForm->_ident, name);
   924           }
   925         }
   926         _components.insert(name, opForm->_ident, e->_use_def, false);
   927       } else {
   928         Component  *comp = (Component*)component;
   929         comp->promote_use_def_info(e->_use_def);
   930       }
   931       // Component positions are zero based.
   932       int  pos  = _components.operand_position(name);
   933       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   934               "Component::DEF can only occur in the first position");
   935     }
   936   }
   938   // Resolving the interactions between expand rules and TEMPs would
   939   // be complex so simply disallow it.
   940   if (_matrule == NULL && has_temp) {
   941     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   942   }
   944   return;
   945 }
   947 // Return zero-based position in component list;  -1 if not in list.
   948 int   InstructForm::operand_position(const char *name, int usedef) {
   949   return unique_opnds_idx(_components.operand_position(name, usedef));
   950 }
   952 int   InstructForm::operand_position_format(const char *name) {
   953   return unique_opnds_idx(_components.operand_position_format(name));
   954 }
   956 // Return zero-based position in component list; -1 if not in list.
   957 int   InstructForm::label_position() {
   958   return unique_opnds_idx(_components.label_position());
   959 }
   961 int   InstructForm::method_position() {
   962   return unique_opnds_idx(_components.method_position());
   963 }
   965 // Return number of relocation entries needed for this instruction.
   966 uint  InstructForm::reloc(FormDict &globals) {
   967   uint reloc_entries  = 0;
   968   // Check for "Call" nodes
   969   if ( is_ideal_call() )      ++reloc_entries;
   970   if ( is_ideal_return() )    ++reloc_entries;
   971   if ( is_ideal_safepoint() ) ++reloc_entries;
   974   // Check if operands MAYBE oop pointers, by checking for ConP elements
   975   // Proceed through the leaves of the match-tree and check for ConPs
   976   if ( _matrule != NULL ) {
   977     uint         position = 0;
   978     const char  *result   = NULL;
   979     const char  *name     = NULL;
   980     const char  *opType   = NULL;
   981     while (_matrule->base_operand(position, globals, result, name, opType)) {
   982       if ( strcmp(opType,"ConP") == 0 ) {
   983 #ifdef SPARC
   984         reloc_entries += 2; // 1 for sethi + 1 for setlo
   985 #else
   986         ++reloc_entries;
   987 #endif
   988       }
   989       ++position;
   990     }
   991   }
   993   // Above is only a conservative estimate
   994   // because it did not check contents of operand classes.
   995   // !!!!! !!!!!
   996   // Add 1 to reloc info for each operand class in the component list.
   997   Component  *comp;
   998   _components.reset();
   999   while ( (comp = _components.iter()) != NULL ) {
  1000     const Form        *form = globals[comp->_type];
  1001     assert( form, "Did not find component's type in global names");
  1002     const OpClassForm *opc  = form->is_opclass();
  1003     const OperandForm *oper = form->is_operand();
  1004     if ( opc && (oper == NULL) ) {
  1005       ++reloc_entries;
  1006     } else if ( oper ) {
  1007       // floats and doubles loaded out of method's constant pool require reloc info
  1008       Form::DataType type = oper->is_base_constant(globals);
  1009       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1010         ++reloc_entries;
  1015   // Float and Double constants may come from the CodeBuffer table
  1016   // and require relocatable addresses for access
  1017   // !!!!!
  1018   // Check for any component being an immediate float or double.
  1019   Form::DataType data_type = is_chain_of_constant(globals);
  1020   if( data_type==idealD || data_type==idealF ) {
  1021 #ifdef SPARC
  1022     // sparc required more relocation entries for floating constants
  1023     // (expires 9/98)
  1024     reloc_entries += 6;
  1025 #else
  1026     reloc_entries++;
  1027 #endif
  1030   return reloc_entries;
  1033 // Utility function defined in archDesc.cpp
  1034 extern bool is_def(int usedef);
  1036 // Return the result of reducing an instruction
  1037 const char *InstructForm::reduce_result() {
  1038   const char* result = "Universe";  // default
  1039   _components.reset();
  1040   Component *comp = _components.iter();
  1041   if (comp != NULL && comp->isa(Component::DEF)) {
  1042     result = comp->_type;
  1043     // Override this if the rule is a store operation:
  1044     if (_matrule && _matrule->_rChild &&
  1045         is_store_to_memory(_matrule->_rChild->_opType))
  1046       result = "Universe";
  1048   return result;
  1051 // Return the name of the operand on the right hand side of the binary match
  1052 // Return NULL if there is no right hand side
  1053 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1054   if( _matrule == NULL ) return NULL;
  1055   return  _matrule->reduce_right(globals);
  1058 // Similar for left
  1059 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1060   if( _matrule == NULL ) return NULL;
  1061   return  _matrule->reduce_left(globals);
  1065 // Base class for this instruction, MachNode except for calls
  1066 const char *InstructForm::mach_base_class(FormDict &globals)  const {
  1067   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1068     return "MachCallStaticJavaNode";
  1070   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1071     return "MachCallDynamicJavaNode";
  1073   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1074     return "MachCallRuntimeNode";
  1076   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1077     return "MachCallLeafNode";
  1079   else if (is_ideal_return()) {
  1080     return "MachReturnNode";
  1082   else if (is_ideal_halt()) {
  1083     return "MachHaltNode";
  1085   else if (is_ideal_safepoint()) {
  1086     return "MachSafePointNode";
  1088   else if (is_ideal_if()) {
  1089     return "MachIfNode";
  1091   else if (is_ideal_fastlock()) {
  1092     return "MachFastLockNode";
  1094   else if (is_ideal_nop()) {
  1095     return "MachNopNode";
  1097   else if (captures_bottom_type(globals)) {
  1098     return "MachTypeNode";
  1099   } else {
  1100     return "MachNode";
  1102   assert( false, "ShouldNotReachHere()");
  1103   return NULL;
  1106 // Compare the instruction predicates for textual equality
  1107 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1108   const Predicate *pred1  = instr1->_predicate;
  1109   const Predicate *pred2  = instr2->_predicate;
  1110   if( pred1 == NULL && pred2 == NULL ) {
  1111     // no predicates means they are identical
  1112     return true;
  1114   if( pred1 != NULL && pred2 != NULL ) {
  1115     // compare the predicates
  1116     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1117       return true;
  1121   return false;
  1124 // Check if this instruction can cisc-spill to 'alternate'
  1125 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1126   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1127   // Do not replace if a cisc-version has been found.
  1128   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1130   int         cisc_spill_operand = Maybe_cisc_spillable;
  1131   char       *result             = NULL;
  1132   char       *result2            = NULL;
  1133   const char *op_name            = NULL;
  1134   const char *reg_type           = NULL;
  1135   FormDict   &globals            = AD.globalNames();
  1136   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1137   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1138     cisc_spill_operand = operand_position(op_name, Component::USE);
  1139     int def_oper  = operand_position(op_name, Component::DEF);
  1140     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1141       // Do not support cisc-spilling for destination operands and
  1142       // make sure they have the same number of operands.
  1143       _cisc_spill_alternate = instr;
  1144       instr->set_cisc_alternate(true);
  1145       if( AD._cisc_spill_debug ) {
  1146         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1147         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1149       // Record that a stack-version of the reg_mask is needed
  1150       // !!!!!
  1151       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1152       assert( oper != NULL, "cisc-spilling non operand");
  1153       const char *reg_class_name = oper->constrained_reg_class();
  1154       AD.set_stack_or_reg(reg_class_name);
  1155       const char *reg_mask_name  = AD.reg_mask(*oper);
  1156       set_cisc_reg_mask_name(reg_mask_name);
  1157       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1158     } else {
  1159       cisc_spill_operand = Not_cisc_spillable;
  1161   } else {
  1162     cisc_spill_operand = Not_cisc_spillable;
  1165   set_cisc_spill_operand(cisc_spill_operand);
  1166   return (cisc_spill_operand != Not_cisc_spillable);
  1169 // Check to see if this instruction can be replaced with the short branch
  1170 // instruction `short-branch'
  1171 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1172   if (_matrule != NULL &&
  1173       this != short_branch &&   // Don't match myself
  1174       !is_short_branch() &&     // Don't match another short branch variant
  1175       reduce_result() != NULL &&
  1176       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1177       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1178     // The instructions are equivalent.
  1179     if (AD._short_branch_debug) {
  1180       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1182     _short_branch_form = short_branch;
  1183     return true;
  1185   return false;
  1189 // --------------------------- FILE *output_routines
  1190 //
  1191 // Generate the format call for the replacement variable
  1192 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1193   // Find replacement variable's type
  1194   const Form *form   = _localNames[rep_var];
  1195   if (form == NULL) {
  1196     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
  1197     assert(false, "ShouldNotReachHere()");
  1199   OpClassForm *opc   = form->is_opclass();
  1200   assert( opc, "replacement variable was not found in local names");
  1201   // Lookup the index position of the replacement variable
  1202   int idx  = operand_position_format(rep_var);
  1203   if ( idx == -1 ) {
  1204     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
  1205     assert( false, "ShouldNotReachHere()");
  1208   if (is_noninput_operand(idx)) {
  1209     // This component isn't in the input array.  Print out the static
  1210     // name of the register.
  1211     OperandForm* oper = form->is_operand();
  1212     if (oper != NULL && oper->is_bound_register()) {
  1213       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1214       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
  1215     } else {
  1216       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1218   } else {
  1219     // Output the format call for this operand
  1220     fprintf(fp,"opnd_array(%d)->",idx);
  1221     if (idx == 0)
  1222       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1223     else
  1224       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1228 // Seach through operands to determine parameters unique positions.
  1229 void InstructForm::set_unique_opnds() {
  1230   uint* uniq_idx = NULL;
  1231   int  nopnds = num_opnds();
  1232   uint  num_uniq = nopnds;
  1233   int i;
  1234   _uniq_idx_length = 0;
  1235   if ( nopnds > 0 ) {
  1236     // Allocate index array.  Worst case we're mapping from each
  1237     // component back to an index and any DEF always goes at 0 so the
  1238     // length of the array has to be the number of components + 1.
  1239     _uniq_idx_length = _components.count() + 1;
  1240     uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
  1241     for( i = 0; i < _uniq_idx_length; i++ ) {
  1242       uniq_idx[i] = i;
  1245   // Do it only if there is a match rule and no expand rule.  With an
  1246   // expand rule it is done by creating new mach node in Expand()
  1247   // method.
  1248   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
  1249     const char *name;
  1250     uint count;
  1251     bool has_dupl_use = false;
  1253     _parameters.reset();
  1254     while( (name = _parameters.iter()) != NULL ) {
  1255       count = 0;
  1256       int position = 0;
  1257       int uniq_position = 0;
  1258       _components.reset();
  1259       Component *comp = NULL;
  1260       if( sets_result() ) {
  1261         comp = _components.iter();
  1262         position++;
  1264       // The next code is copied from the method operand_position().
  1265       for (; (comp = _components.iter()) != NULL; ++position) {
  1266         // When the first component is not a DEF,
  1267         // leave space for the result operand!
  1268         if ( position==0 && (! comp->isa(Component::DEF)) ) {
  1269           ++position;
  1271         if( strcmp(name, comp->_name)==0 ) {
  1272           if( ++count > 1 ) {
  1273             assert(position < _uniq_idx_length, "out of bounds");
  1274             uniq_idx[position] = uniq_position;
  1275             has_dupl_use = true;
  1276           } else {
  1277             uniq_position = position;
  1280         if( comp->isa(Component::DEF)
  1281             && comp->isa(Component::USE) ) {
  1282           ++position;
  1283           if( position != 1 )
  1284             --position;   // only use two slots for the 1st USE_DEF
  1288     if( has_dupl_use ) {
  1289       for( i = 1; i < nopnds; i++ )
  1290         if( i != uniq_idx[i] )
  1291           break;
  1292       int  j = i;
  1293       for( ; i < nopnds; i++ )
  1294         if( i == uniq_idx[i] )
  1295           uniq_idx[i] = j++;
  1296       num_uniq = j;
  1299   _uniq_idx = uniq_idx;
  1300   _num_uniq = num_uniq;
  1303 // Generate index values needed for determining the operand position
  1304 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1305   uint  idx = 0;                  // position of operand in match rule
  1306   int   cur_num_opnds = num_opnds();
  1308   // Compute the index into vector of operand pointers:
  1309   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1310   // idx1 starts at oper_input_base()
  1311   if ( cur_num_opnds >= 1 ) {
  1312     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
  1313     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1314     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
  1316     // Generate starting points for other unique operands if they exist
  1317     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1318       if( *receiver == 0 ) {
  1319         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
  1320                 prefix, idx, prefix, idx-1, idx-1 );
  1321       } else {
  1322         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
  1323                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1327   if( *receiver != 0 ) {
  1328     // This value is used by generate_peepreplace when copying a node.
  1329     // Don't emit it in other cases since it can hide bugs with the
  1330     // use invalid idx's.
  1331     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1336 // ---------------------------
  1337 bool InstructForm::verify() {
  1338   // !!!!! !!!!!
  1339   // Check that a "label" operand occurs last in the operand list, if present
  1340   return true;
  1343 void InstructForm::dump() {
  1344   output(stderr);
  1347 void InstructForm::output(FILE *fp) {
  1348   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1349   if (_matrule)   _matrule->output(fp);
  1350   if (_insencode) _insencode->output(fp);
  1351   if (_opcode)    _opcode->output(fp);
  1352   if (_attribs)   _attribs->output(fp);
  1353   if (_predicate) _predicate->output(fp);
  1354   if (_effects.Size()) {
  1355     fprintf(fp,"Effects\n");
  1356     _effects.dump();
  1358   if (_exprule)   _exprule->output(fp);
  1359   if (_rewrule)   _rewrule->output(fp);
  1360   if (_format)    _format->output(fp);
  1361   if (_peephole)  _peephole->output(fp);
  1364 void MachNodeForm::dump() {
  1365   output(stderr);
  1368 void MachNodeForm::output(FILE *fp) {
  1369   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1372 //------------------------------build_predicate--------------------------------
  1373 // Build instruction predicates.  If the user uses the same operand name
  1374 // twice, we need to check that the operands are pointer-eequivalent in
  1375 // the DFA during the labeling process.
  1376 Predicate *InstructForm::build_predicate() {
  1377   char buf[1024], *s=buf;
  1378   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1380   MatchNode *mnode =
  1381     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1382   mnode->count_instr_names(names);
  1384   uint first = 1;
  1385   // Start with the predicate supplied in the .ad file.
  1386   if( _predicate ) {
  1387     if( first ) first=0;
  1388     strcpy(s,"("); s += strlen(s);
  1389     strcpy(s,_predicate->_pred);
  1390     s += strlen(s);
  1391     strcpy(s,")"); s += strlen(s);
  1393   for( DictI i(&names); i.test(); ++i ) {
  1394     uintptr_t cnt = (uintptr_t)i._value;
  1395     if( cnt > 1 ) {             // Need a predicate at all?
  1396       assert( cnt == 2, "Unimplemented" );
  1397       // Handle many pairs
  1398       if( first ) first=0;
  1399       else {                    // All tests must pass, so use '&&'
  1400         strcpy(s," && ");
  1401         s += strlen(s);
  1403       // Add predicate to working buffer
  1404       sprintf(s,"/*%s*/(",(char*)i._key);
  1405       s += strlen(s);
  1406       mnode->build_instr_pred(s,(char*)i._key,0);
  1407       s += strlen(s);
  1408       strcpy(s," == "); s += strlen(s);
  1409       mnode->build_instr_pred(s,(char*)i._key,1);
  1410       s += strlen(s);
  1411       strcpy(s,")"); s += strlen(s);
  1414   if( s == buf ) s = NULL;
  1415   else {
  1416     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1417     s = strdup(buf);
  1419   return new Predicate(s);
  1422 //------------------------------EncodeForm-------------------------------------
  1423 // Constructor
  1424 EncodeForm::EncodeForm()
  1425   : _encClass(cmpstr,hashstr, Form::arena) {
  1427 EncodeForm::~EncodeForm() {
  1430 // record a new register class
  1431 EncClass *EncodeForm::add_EncClass(const char *className) {
  1432   EncClass *encClass = new EncClass(className);
  1433   _eclasses.addName(className);
  1434   _encClass.Insert(className,encClass);
  1435   return encClass;
  1438 // Lookup the function body for an encoding class
  1439 EncClass  *EncodeForm::encClass(const char *className) {
  1440   assert( className != NULL, "Must provide a defined encoding name");
  1442   EncClass *encClass = (EncClass*)_encClass[className];
  1443   return encClass;
  1446 // Lookup the function body for an encoding class
  1447 const char *EncodeForm::encClassBody(const char *className) {
  1448   if( className == NULL ) return NULL;
  1450   EncClass *encClass = (EncClass*)_encClass[className];
  1451   assert( encClass != NULL, "Encode Class is missing.");
  1452   encClass->_code.reset();
  1453   const char *code = (const char*)encClass->_code.iter();
  1454   assert( code != NULL, "Found an empty encode class body.");
  1456   return code;
  1459 // Lookup the function body for an encoding class
  1460 const char *EncodeForm::encClassPrototype(const char *className) {
  1461   assert( className != NULL, "Encode class name must be non NULL.");
  1463   return className;
  1466 void EncodeForm::dump() {                  // Debug printer
  1467   output(stderr);
  1470 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1471   const char *name;
  1472   fprintf(fp,"\n");
  1473   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1474   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1475     ((EncClass*)_encClass[name])->output(fp);
  1477   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1479 //------------------------------EncClass---------------------------------------
  1480 EncClass::EncClass(const char *name)
  1481   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1483 EncClass::~EncClass() {
  1486 // Add a parameter <type,name> pair
  1487 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1488   _parameter_type.addName( parameter_type );
  1489   _parameter_name.addName( parameter_name );
  1492 // Verify operand types in parameter list
  1493 bool EncClass::check_parameter_types(FormDict &globals) {
  1494   // !!!!!
  1495   return false;
  1498 // Add the decomposed "code" sections of an encoding's code-block
  1499 void EncClass::add_code(const char *code) {
  1500   _code.addName(code);
  1503 // Add the decomposed "replacement variables" of an encoding's code-block
  1504 void EncClass::add_rep_var(char *replacement_var) {
  1505   _code.addName(NameList::_signal);
  1506   _rep_vars.addName(replacement_var);
  1509 // Lookup the function body for an encoding class
  1510 int EncClass::rep_var_index(const char *rep_var) {
  1511   uint        position = 0;
  1512   const char *name     = NULL;
  1514   _parameter_name.reset();
  1515   while ( (name = _parameter_name.iter()) != NULL ) {
  1516     if ( strcmp(rep_var,name) == 0 ) return position;
  1517     ++position;
  1520   return -1;
  1523 // Check after parsing
  1524 bool EncClass::verify() {
  1525   // 1!!!!
  1526   // Check that each replacement variable, '$name' in architecture description
  1527   // is actually a local variable for this encode class, or a reserved name
  1528   // "primary, secondary, tertiary"
  1529   return true;
  1532 void EncClass::dump() {
  1533   output(stderr);
  1536 // Write info to output files
  1537 void EncClass::output(FILE *fp) {
  1538   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1540   // Output the parameter list
  1541   _parameter_type.reset();
  1542   _parameter_name.reset();
  1543   const char *type = _parameter_type.iter();
  1544   const char *name = _parameter_name.iter();
  1545   fprintf(fp, " ( ");
  1546   for ( ; (type != NULL) && (name != NULL);
  1547         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1548     fprintf(fp, " %s %s,", type, name);
  1550   fprintf(fp, " ) ");
  1552   // Output the code block
  1553   _code.reset();
  1554   _rep_vars.reset();
  1555   const char *code;
  1556   while ( (code = _code.iter()) != NULL ) {
  1557     if ( _code.is_signal(code) ) {
  1558       // A replacement variable
  1559       const char *rep_var = _rep_vars.iter();
  1560       fprintf(fp,"($%s)", rep_var);
  1561     } else {
  1562       // A section of code
  1563       fprintf(fp,"%s", code);
  1569 //------------------------------Opcode-----------------------------------------
  1570 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1571   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1574 Opcode::~Opcode() {
  1577 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1578   if( strcmp(param,"primary") == 0 ) {
  1579     return Opcode::PRIMARY;
  1581   else if( strcmp(param,"secondary") == 0 ) {
  1582     return Opcode::SECONDARY;
  1584   else if( strcmp(param,"tertiary") == 0 ) {
  1585     return Opcode::TERTIARY;
  1587   return Opcode::NOT_AN_OPCODE;
  1590 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1591   // Default values previously provided by MachNode::primary()...
  1592   const char *description = NULL;
  1593   const char *value       = NULL;
  1594   // Check if user provided any opcode definitions
  1595   if( this != NULL ) {
  1596     // Update 'value' if user provided a definition in the instruction
  1597     switch (desired_opcode) {
  1598     case PRIMARY:
  1599       description = "primary()";
  1600       if( _primary   != NULL)  { value = _primary;     }
  1601       break;
  1602     case SECONDARY:
  1603       description = "secondary()";
  1604       if( _secondary != NULL ) { value = _secondary;   }
  1605       break;
  1606     case TERTIARY:
  1607       description = "tertiary()";
  1608       if( _tertiary  != NULL ) { value = _tertiary;    }
  1609       break;
  1610     default:
  1611       assert( false, "ShouldNotReachHere();");
  1612       break;
  1615   if (value != NULL) {
  1616     fprintf(fp, "(%s /*%s*/)", value, description);
  1618   return value != NULL;
  1621 void Opcode::dump() {
  1622   output(stderr);
  1625 // Write info to output files
  1626 void Opcode::output(FILE *fp) {
  1627   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1628   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1629   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1632 //------------------------------InsEncode--------------------------------------
  1633 InsEncode::InsEncode() {
  1635 InsEncode::~InsEncode() {
  1638 // Add "encode class name" and its parameters
  1639 NameAndList *InsEncode::add_encode(char *encoding) {
  1640   assert( encoding != NULL, "Must provide name for encoding");
  1642   // add_parameter(NameList::_signal);
  1643   NameAndList *encode = new NameAndList(encoding);
  1644   _encoding.addName((char*)encode);
  1646   return encode;
  1649 // Access the list of encodings
  1650 void InsEncode::reset() {
  1651   _encoding.reset();
  1652   // _parameter.reset();
  1654 const char* InsEncode::encode_class_iter() {
  1655   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1656   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1658 // Obtain parameter name from zero based index
  1659 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1660   NameAndList *params = (NameAndList*)_encoding.current();
  1661   assert( params != NULL, "Internal Error");
  1662   const char *param = (*params)[param_no];
  1664   // Remove '$' if parser placed it there.
  1665   return ( param != NULL && *param == '$') ? (param+1) : param;
  1668 void InsEncode::dump() {
  1669   output(stderr);
  1672 // Write info to output files
  1673 void InsEncode::output(FILE *fp) {
  1674   NameAndList *encoding  = NULL;
  1675   const char  *parameter = NULL;
  1677   fprintf(fp,"InsEncode: ");
  1678   _encoding.reset();
  1680   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1681     // Output the encoding being used
  1682     fprintf(fp,"%s(", encoding->name() );
  1684     // Output its parameter list, if any
  1685     bool first_param = true;
  1686     encoding->reset();
  1687     while (  (parameter = encoding->iter()) != 0 ) {
  1688       // Output the ',' between parameters
  1689       if ( ! first_param )  fprintf(fp,", ");
  1690       first_param = false;
  1691       // Output the parameter
  1692       fprintf(fp,"%s", parameter);
  1693     } // done with parameters
  1694     fprintf(fp,")  ");
  1695   } // done with encodings
  1697   fprintf(fp,"\n");
  1700 //------------------------------Effect-----------------------------------------
  1701 static int effect_lookup(const char *name) {
  1702   if(!strcmp(name, "USE")) return Component::USE;
  1703   if(!strcmp(name, "DEF")) return Component::DEF;
  1704   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1705   if(!strcmp(name, "KILL")) return Component::KILL;
  1706   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1707   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1708   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1709   assert( false,"Invalid effect name specified\n");
  1710   return Component::INVALID;
  1713 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1714   _ftype = Form::EFF;
  1716 Effect::~Effect() {
  1719 // Dynamic type check
  1720 Effect *Effect::is_effect() const {
  1721   return (Effect*)this;
  1725 // True if this component is equal to the parameter.
  1726 bool Effect::is(int use_def_kill_enum) const {
  1727   return (_use_def == use_def_kill_enum ? true : false);
  1729 // True if this component is used/def'd/kill'd as the parameter suggests.
  1730 bool Effect::isa(int use_def_kill_enum) const {
  1731   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1734 void Effect::dump() {
  1735   output(stderr);
  1738 void Effect::output(FILE *fp) {          // Write info to output files
  1739   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1742 //------------------------------ExpandRule-------------------------------------
  1743 ExpandRule::ExpandRule() : _expand_instrs(),
  1744                            _newopconst(cmpstr, hashstr, Form::arena) {
  1745   _ftype = Form::EXP;
  1748 ExpandRule::~ExpandRule() {                  // Destructor
  1751 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1752   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1755 void ExpandRule::reset_instructions() {
  1756   _expand_instrs.reset();
  1759 NameAndList* ExpandRule::iter_instructions() {
  1760   return (NameAndList*)_expand_instrs.iter();
  1764 void ExpandRule::dump() {
  1765   output(stderr);
  1768 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1769   NameAndList *expand_instr = NULL;
  1770   const char *opid = NULL;
  1772   fprintf(fp,"\nExpand Rule:\n");
  1774   // Iterate over the instructions 'node' expands into
  1775   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1776     fprintf(fp,"%s(", expand_instr->name());
  1778     // iterate over the operand list
  1779     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1780       fprintf(fp,"%s ", opid);
  1782     fprintf(fp,");\n");
  1786 //------------------------------RewriteRule------------------------------------
  1787 RewriteRule::RewriteRule(char* params, char* block)
  1788   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1789 RewriteRule::~RewriteRule() {                 // Destructor
  1792 void RewriteRule::dump() {
  1793   output(stderr);
  1796 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1797   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1798           (_tempParams?_tempParams:""),
  1799           (_tempBlock?_tempBlock:""));
  1803 //==============================MachNodes======================================
  1804 //------------------------------MachNodeForm-----------------------------------
  1805 MachNodeForm::MachNodeForm(char *id)
  1806   : _ident(id) {
  1809 MachNodeForm::~MachNodeForm() {
  1812 MachNodeForm *MachNodeForm::is_machnode() const {
  1813   return (MachNodeForm*)this;
  1816 //==============================Operand Classes================================
  1817 //------------------------------OpClassForm------------------------------------
  1818 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1819   _ftype = Form::OPCLASS;
  1822 OpClassForm::~OpClassForm() {
  1825 bool OpClassForm::ideal_only() const { return 0; }
  1827 OpClassForm *OpClassForm::is_opclass() const {
  1828   return (OpClassForm*)this;
  1831 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1832   if( _oplst.count() == 0 ) return Form::no_interface;
  1834   // Check that my operands have the same interface type
  1835   Form::InterfaceType  interface;
  1836   bool  first = true;
  1837   NameList &op_list = (NameList &)_oplst;
  1838   op_list.reset();
  1839   const char *op_name;
  1840   while( (op_name = op_list.iter()) != NULL ) {
  1841     const Form  *form    = globals[op_name];
  1842     OperandForm *operand = form->is_operand();
  1843     assert( operand, "Entry in operand class that is not an operand");
  1844     if( first ) {
  1845       first     = false;
  1846       interface = operand->interface_type(globals);
  1847     } else {
  1848       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1851   return interface;
  1854 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1855   if( _oplst.count() == 0 ) return false;  // how?
  1857   NameList &op_list = (NameList &)_oplst;
  1858   op_list.reset();
  1859   const char *op_name;
  1860   while( (op_name = op_list.iter()) != NULL ) {
  1861     const Form  *form    = globals[op_name];
  1862     OperandForm *operand = form->is_operand();
  1863     assert( operand, "Entry in operand class that is not an operand");
  1864     if( !operand->stack_slots_only(globals) )  return false;
  1866   return true;
  1870 void OpClassForm::dump() {
  1871   output(stderr);
  1874 void OpClassForm::output(FILE *fp) {
  1875   const char *name;
  1876   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1877   fprintf(fp,"\nCount = %d\n", _oplst.count());
  1878   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  1879     fprintf(fp,"%s, ",name);
  1881   fprintf(fp,"\n");
  1885 //==============================Operands=======================================
  1886 //------------------------------OperandForm------------------------------------
  1887 OperandForm::OperandForm(const char* id)
  1888   : OpClassForm(id), _ideal_only(false),
  1889     _localNames(cmpstr, hashstr, Form::arena) {
  1890       _ftype = Form::OPER;
  1892       _matrule   = NULL;
  1893       _interface = NULL;
  1894       _attribs   = NULL;
  1895       _predicate = NULL;
  1896       _constraint= NULL;
  1897       _construct = NULL;
  1898       _format    = NULL;
  1900 OperandForm::OperandForm(const char* id, bool ideal_only)
  1901   : OpClassForm(id), _ideal_only(ideal_only),
  1902     _localNames(cmpstr, hashstr, Form::arena) {
  1903       _ftype = Form::OPER;
  1905       _matrule   = NULL;
  1906       _interface = NULL;
  1907       _attribs   = NULL;
  1908       _predicate = NULL;
  1909       _constraint= NULL;
  1910       _construct = NULL;
  1911       _format    = NULL;
  1913 OperandForm::~OperandForm() {
  1917 OperandForm *OperandForm::is_operand() const {
  1918   return (OperandForm*)this;
  1921 bool OperandForm::ideal_only() const {
  1922   return _ideal_only;
  1925 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  1926   if( _interface == NULL )  return Form::no_interface;
  1928   return _interface->interface_type(globals);
  1932 bool OperandForm::stack_slots_only(FormDict &globals) const {
  1933   if( _constraint == NULL )  return false;
  1934   return _constraint->stack_slots_only();
  1938 // Access op_cost attribute or return NULL.
  1939 const char* OperandForm::cost() {
  1940   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  1941     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  1942       return cur->_val;
  1945   return NULL;
  1948 // Return the number of leaves below this complex operand
  1949 uint OperandForm::num_leaves() const {
  1950   if ( ! _matrule) return 0;
  1952   int num_leaves = _matrule->_numleaves;
  1953   return num_leaves;
  1956 // Return the number of constants contained within this complex operand
  1957 uint OperandForm::num_consts(FormDict &globals) const {
  1958   if ( ! _matrule) return 0;
  1960   // This is a recursive invocation on all operands in the matchrule
  1961   return _matrule->num_consts(globals);
  1964 // Return the number of constants in match rule with specified type
  1965 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  1966   if ( ! _matrule) return 0;
  1968   // This is a recursive invocation on all operands in the matchrule
  1969   return _matrule->num_consts(globals, type);
  1972 // Return the number of pointer constants contained within this complex operand
  1973 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  1974   if ( ! _matrule) return 0;
  1976   // This is a recursive invocation on all operands in the matchrule
  1977   return _matrule->num_const_ptrs(globals);
  1980 uint OperandForm::num_edges(FormDict &globals) const {
  1981   uint edges  = 0;
  1982   uint leaves = num_leaves();
  1983   uint consts = num_consts(globals);
  1985   // If we are matching a constant directly, there are no leaves.
  1986   edges = ( leaves > consts ) ? leaves - consts : 0;
  1988   // !!!!!
  1989   // Special case operands that do not have a corresponding ideal node.
  1990   if( (edges == 0) && (consts == 0) ) {
  1991     if( constrained_reg_class() != NULL ) {
  1992       edges = 1;
  1993     } else {
  1994       if( _matrule
  1995           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  1996         const Form *form = globals[_matrule->_opType];
  1997         OperandForm *oper = form ? form->is_operand() : NULL;
  1998         if( oper ) {
  1999           return oper->num_edges(globals);
  2005   return edges;
  2009 // Check if this operand is usable for cisc-spilling
  2010 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2011   const char *ideal = ideal_type(globals);
  2012   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2013   return is_cisc_reg;
  2016 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2017   Form::InterfaceType my_interface = interface_type(globals);
  2018   return (my_interface == memory_interface);
  2022 // node matches ideal 'Bool'
  2023 bool OperandForm::is_ideal_bool() const {
  2024   if( _matrule == NULL ) return false;
  2026   return _matrule->is_ideal_bool();
  2029 // Require user's name for an sRegX to be stackSlotX
  2030 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2031   DataType data_type = none;
  2032   if( _ident != NULL ) {
  2033     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2034     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2035     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2036     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2037     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2039   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2041   return data_type;
  2045 // Return ideal type, if there is a single ideal type for this operand
  2046 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2047   const char *type = NULL;
  2048   if (ideal_only()) type = _ident;
  2049   else if( _matrule == NULL ) {
  2050     // Check for condition code register
  2051     const char *rc_name = constrained_reg_class();
  2052     // !!!!!
  2053     if (rc_name == NULL) return NULL;
  2054     // !!!!! !!!!!
  2055     // Check constraints on result's register class
  2056     if( registers ) {
  2057       RegClass *reg_class  = registers->getRegClass(rc_name);
  2058       assert( reg_class != NULL, "Register class is not defined");
  2060       // Check for ideal type of entries in register class, all are the same type
  2061       reg_class->reset();
  2062       RegDef *reg_def = reg_class->RegDef_iter();
  2063       assert( reg_def != NULL, "No entries in register class");
  2064       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2065       // Return substring that names the register's ideal type
  2066       type = reg_def->_idealtype + 3;
  2067       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2068       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2069       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2072   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2073     // This operand matches a single type, at the top level.
  2074     // Check for ideal type
  2075     type = _matrule->_opType;
  2076     if( strcmp(type,"Bool") == 0 )
  2077       return "Bool";
  2078     // transitive lookup
  2079     const Form *frm = globals[type];
  2080     OperandForm *op = frm->is_operand();
  2081     type = op->ideal_type(globals, registers);
  2083   return type;
  2087 // If there is a single ideal type for this interface field, return it.
  2088 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2089                                               const char *field) const {
  2090   const char  *ideal_type = NULL;
  2091   const char  *value      = NULL;
  2093   // Check if "field" is valid for this operand's interface
  2094   if ( ! is_interface_field(field, value) )   return ideal_type;
  2096   // !!!!! !!!!! !!!!!
  2097   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2099   // Else, lookup type of field's replacement variable
  2101   return ideal_type;
  2105 RegClass* OperandForm::get_RegClass() const {
  2106   if (_interface && !_interface->is_RegInterface()) return NULL;
  2107   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2111 bool OperandForm::is_bound_register() const {
  2112   RegClass *reg_class  = get_RegClass();
  2113   if (reg_class == NULL) return false;
  2115   const char * name = ideal_type(globalAD->globalNames());
  2116   if (name == NULL) return false;
  2118   int size = 0;
  2119   if (strcmp(name,"RegFlags")==0) size =  1;
  2120   if (strcmp(name,"RegI")==0) size =  1;
  2121   if (strcmp(name,"RegF")==0) size =  1;
  2122   if (strcmp(name,"RegD")==0) size =  2;
  2123   if (strcmp(name,"RegL")==0) size =  2;
  2124   if (strcmp(name,"RegN")==0) size =  1;
  2125   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2126   if (size == 0) return false;
  2127   return size == reg_class->size();
  2131 // Check if this is a valid field for this operand,
  2132 // Return 'true' if valid, and set the value to the string the user provided.
  2133 bool  OperandForm::is_interface_field(const char *field,
  2134                                       const char * &value) const {
  2135   return false;
  2139 // Return register class name if a constraint specifies the register class.
  2140 const char *OperandForm::constrained_reg_class() const {
  2141   const char *reg_class  = NULL;
  2142   if ( _constraint ) {
  2143     // !!!!!
  2144     Constraint *constraint = _constraint;
  2145     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2146       reg_class = _constraint->_arg;
  2150   return reg_class;
  2154 // Return the register class associated with 'leaf'.
  2155 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2156   const char *reg_class = NULL; // "RegMask::Empty";
  2158   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2159     reg_class = constrained_reg_class();
  2160     return reg_class;
  2162   const char *result   = NULL;
  2163   const char *name     = NULL;
  2164   const char *type     = NULL;
  2165   // iterate through all base operands
  2166   // until we reach the register that corresponds to "leaf"
  2167   // This function is not looking for an ideal type.  It needs the first
  2168   // level user type associated with the leaf.
  2169   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2170     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2171     OperandForm *oper = form ? form->is_operand() : NULL;
  2172     if( oper ) {
  2173       reg_class = oper->constrained_reg_class();
  2174       if( reg_class ) {
  2175         reg_class = reg_class;
  2176       } else {
  2177         // ShouldNotReachHere();
  2179     } else {
  2180       // ShouldNotReachHere();
  2183     // Increment our target leaf position if current leaf is not a candidate.
  2184     if( reg_class == NULL)    ++leaf;
  2185     // Exit the loop with the value of reg_class when at the correct index
  2186     if( idx == leaf )         break;
  2187     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2189   return reg_class;
  2193 // Recursive call to construct list of top-level operands.
  2194 // Implementation does not modify state of internal structures
  2195 void OperandForm::build_components() {
  2196   if (_matrule)  _matrule->append_components(_localNames, _components);
  2198   // Add parameters that "do not appear in match rule".
  2199   const char *name;
  2200   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2201     OperandForm *opForm = (OperandForm*)_localNames[name];
  2203     if ( _components.operand_position(name) == -1 ) {
  2204       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2208   return;
  2211 int OperandForm::operand_position(const char *name, int usedef) {
  2212   return _components.operand_position(name, usedef);
  2216 // Return zero-based position in component list, only counting constants;
  2217 // Return -1 if not in list.
  2218 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2219   // Iterate through components and count constants preceding 'constant'
  2220   int position = 0;
  2221   Component *comp;
  2222   _components.reset();
  2223   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2224     // Special case for operands that take a single user-defined operand
  2225     // Skip the initial definition in the component list.
  2226     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2228     const char *type = comp->_type;
  2229     // Lookup operand form for replacement variable's type
  2230     const Form *form = globals[type];
  2231     assert( form != NULL, "Component's type not found");
  2232     OperandForm *oper = form ? form->is_operand() : NULL;
  2233     if( oper ) {
  2234       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2235         ++position;
  2240   // Check for being passed a component that was not in the list
  2241   if( comp != last )  position = -1;
  2243   return position;
  2245 // Provide position of constant by "name"
  2246 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2247   const Component *comp = _components.search(name);
  2248   int idx = constant_position( globals, comp );
  2250   return idx;
  2254 // Return zero-based position in component list, only counting constants;
  2255 // Return -1 if not in list.
  2256 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2257   // Iterate through components and count registers preceding 'last'
  2258   uint  position = 0;
  2259   Component *comp;
  2260   _components.reset();
  2261   while( (comp = _components.iter()) != NULL
  2262          && (strcmp(comp->_name,reg_name) != 0) ) {
  2263     // Special case for operands that take a single user-defined operand
  2264     // Skip the initial definition in the component list.
  2265     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2267     const char *type = comp->_type;
  2268     // Lookup operand form for component's type
  2269     const Form *form = globals[type];
  2270     assert( form != NULL, "Component's type not found");
  2271     OperandForm *oper = form ? form->is_operand() : NULL;
  2272     if( oper ) {
  2273       if( oper->_matrule->is_base_register(globals) ) {
  2274         ++position;
  2279   return position;
  2283 const char *OperandForm::reduce_result()  const {
  2284   return _ident;
  2286 // Return the name of the operand on the right hand side of the binary match
  2287 // Return NULL if there is no right hand side
  2288 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2289   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2292 // Similar for left
  2293 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2294   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2298 // --------------------------- FILE *output_routines
  2299 //
  2300 // Output code for disp_is_oop, if true.
  2301 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2302   //  Check it is a memory interface with a non-user-constant disp field
  2303   if ( this->_interface == NULL ) return;
  2304   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2305   if ( mem_interface == NULL )    return;
  2306   const char   *disp  = mem_interface->_disp;
  2307   if ( *disp != '$' )             return;
  2309   // Lookup replacement variable in operand's component list
  2310   const char   *rep_var = disp + 1;
  2311   const Component *comp = this->_components.search(rep_var);
  2312   assert( comp != NULL, "Replacement variable not found in components");
  2313   // Lookup operand form for replacement variable's type
  2314   const char      *type = comp->_type;
  2315   Form            *form = (Form*)globals[type];
  2316   assert( form != NULL, "Replacement variable's type not found");
  2317   OperandForm     *op   = form->is_operand();
  2318   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2319   // Check if this is a ConP, which may require relocation
  2320   if ( op->is_base_constant(globals) == Form::idealP ) {
  2321     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2322     uint idx  = op->constant_position( globals, rep_var);
  2323     fprintf(fp,"  virtual bool disp_is_oop() const {");
  2324     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
  2325     fprintf(fp, " }\n");
  2329 // Generate code for internal and external format methods
  2330 //
  2331 // internal access to reg# node->_idx
  2332 // access to subsumed constant _c0, _c1,
  2333 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2334   Form::DataType dtype;
  2335   if (_matrule && (_matrule->is_base_register(globals) ||
  2336                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2337     // !!!!! !!!!!
  2338     fprintf(fp,    "{ char reg_str[128];\n");
  2339     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2340     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2341     fprintf(fp,"    }\n");
  2342   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2343     format_constant( fp, index, dtype );
  2344   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2345     // Special format for Stack Slot Register
  2346     fprintf(fp,    "{ char reg_str[128];\n");
  2347     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2348     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2349     fprintf(fp,"    }\n");
  2350   } else {
  2351     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2352     fflush(fp);
  2353     fprintf(stderr,"No format defined for %s\n", _ident);
  2354     dump();
  2355     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2359 // Similar to "int_format" but for cases where data is external to operand
  2360 // external access to reg# node->in(idx)->_idx,
  2361 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2362   Form::DataType dtype;
  2363   if (_matrule && (_matrule->is_base_register(globals) ||
  2364                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2365     fprintf(fp,    "{ char reg_str[128];\n");
  2366     fprintf(fp,"      ra->dump_register(node->in(idx");
  2367     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2368     fprintf(fp,                                       "),reg_str);\n");
  2369     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2370     fprintf(fp,"    }\n");
  2371   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2372     format_constant( fp, index, dtype );
  2373   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2374     // Special format for Stack Slot Register
  2375     fprintf(fp,    "{ char reg_str[128];\n");
  2376     fprintf(fp,"      ra->dump_register(node->in(idx");
  2377     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2378     fprintf(fp,                                       "),reg_str);\n");
  2379     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2380     fprintf(fp,"    }\n");
  2381   } else {
  2382     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2383     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2387 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2388   switch(const_type) {
  2389   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
  2390   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2391   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2392   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2393   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2394   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2395   default:
  2396     assert( false, "ShouldNotReachHere()");
  2400 // Return the operand form corresponding to the given index, else NULL.
  2401 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2402                                            uint      index) {
  2403   // !!!!!
  2404   // Check behavior on complex operands
  2405   uint n_consts = num_consts(globals);
  2406   if( n_consts > 0 ) {
  2407     uint i = 0;
  2408     const char *type;
  2409     Component  *comp;
  2410     _components.reset();
  2411     if ((comp = _components.iter()) == NULL) {
  2412       assert(n_consts == 1, "Bad component list detected.\n");
  2413       // Current operand is THE operand
  2414       if ( index == 0 ) {
  2415         return this;
  2417     } // end if NULL
  2418     else {
  2419       // Skip the first component, it can not be a DEF of a constant
  2420       do {
  2421         type = comp->base_type(globals);
  2422         // Check that "type" is a 'ConI', 'ConP', ...
  2423         if ( ideal_to_const_type(type) != Form::none ) {
  2424           // When at correct component, get corresponding Operand
  2425           if ( index == 0 ) {
  2426             return globals[comp->_type]->is_operand();
  2428           // Decrement number of constants to go
  2429           --index;
  2431       } while((comp = _components.iter()) != NULL);
  2435   // Did not find a constant for this index.
  2436   return NULL;
  2439 // If this operand has a single ideal type, return its type
  2440 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2441   const char *type_name = ideal_type(globals);
  2442   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2443                                     : Form::none;
  2444   return type;
  2447 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2448   if ( _matrule == NULL )    return Form::none;
  2450   return _matrule->is_base_constant(globals);
  2453 // "true" if this operand is a simple type that is swallowed
  2454 bool  OperandForm::swallowed(FormDict &globals) const {
  2455   Form::DataType type   = simple_type(globals);
  2456   if( type != Form::none ) {
  2457     return true;
  2460   return false;
  2463 // Output code to access the value of the index'th constant
  2464 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2465                                   uint const_index) {
  2466   OperandForm *oper = constant_operand(globals, const_index);
  2467   assert( oper, "Index exceeds number of constants in operand");
  2468   Form::DataType dtype = oper->is_base_constant(globals);
  2470   switch(dtype) {
  2471   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2472   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2473   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2474   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2475   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2476   default:
  2477     assert( false, "ShouldNotReachHere()");
  2482 void OperandForm::dump() {
  2483   output(stderr);
  2486 void OperandForm::output(FILE *fp) {
  2487   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2488   if (_matrule)    _matrule->dump();
  2489   if (_interface)  _interface->dump();
  2490   if (_attribs)    _attribs->dump();
  2491   if (_predicate)  _predicate->dump();
  2492   if (_constraint) _constraint->dump();
  2493   if (_construct)  _construct->dump();
  2494   if (_format)     _format->dump();
  2497 //------------------------------Constraint-------------------------------------
  2498 Constraint::Constraint(const char *func, const char *arg)
  2499   : _func(func), _arg(arg) {
  2501 Constraint::~Constraint() { /* not owner of char* */
  2504 bool Constraint::stack_slots_only() const {
  2505   return strcmp(_func, "ALLOC_IN_RC") == 0
  2506       && strcmp(_arg,  "stack_slots") == 0;
  2509 void Constraint::dump() {
  2510   output(stderr);
  2513 void Constraint::output(FILE *fp) {           // Write info to output files
  2514   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2515   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2518 //------------------------------Predicate--------------------------------------
  2519 Predicate::Predicate(char *pr)
  2520   : _pred(pr) {
  2522 Predicate::~Predicate() {
  2525 void Predicate::dump() {
  2526   output(stderr);
  2529 void Predicate::output(FILE *fp) {
  2530   fprintf(fp,"Predicate");  // Write to output files
  2532 //------------------------------Interface--------------------------------------
  2533 Interface::Interface(const char *name) : _name(name) {
  2535 Interface::~Interface() {
  2538 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2539   Interface *thsi = (Interface*)this;
  2540   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2541   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2542   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2543   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2545   return Form::no_interface;
  2548 RegInterface   *Interface::is_RegInterface() {
  2549   if ( strcmp(_name,"REG_INTER") != 0 )
  2550     return NULL;
  2551   return (RegInterface*)this;
  2553 MemInterface   *Interface::is_MemInterface() {
  2554   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2555   return (MemInterface*)this;
  2557 ConstInterface *Interface::is_ConstInterface() {
  2558   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2559   return (ConstInterface*)this;
  2561 CondInterface  *Interface::is_CondInterface() {
  2562   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2563   return (CondInterface*)this;
  2567 void Interface::dump() {
  2568   output(stderr);
  2571 // Write info to output files
  2572 void Interface::output(FILE *fp) {
  2573   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2576 //------------------------------RegInterface-----------------------------------
  2577 RegInterface::RegInterface() : Interface("REG_INTER") {
  2579 RegInterface::~RegInterface() {
  2582 void RegInterface::dump() {
  2583   output(stderr);
  2586 // Write info to output files
  2587 void RegInterface::output(FILE *fp) {
  2588   Interface::output(fp);
  2591 //------------------------------ConstInterface---------------------------------
  2592 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2594 ConstInterface::~ConstInterface() {
  2597 void ConstInterface::dump() {
  2598   output(stderr);
  2601 // Write info to output files
  2602 void ConstInterface::output(FILE *fp) {
  2603   Interface::output(fp);
  2606 //------------------------------MemInterface-----------------------------------
  2607 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2608   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2610 MemInterface::~MemInterface() {
  2611   // not owner of any character arrays
  2614 void MemInterface::dump() {
  2615   output(stderr);
  2618 // Write info to output files
  2619 void MemInterface::output(FILE *fp) {
  2620   Interface::output(fp);
  2621   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2622   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2623   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2624   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2625   // fprintf(fp,"\n");
  2628 //------------------------------CondInterface----------------------------------
  2629 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2630                              const char* not_equal,     const char* not_equal_format,
  2631                              const char* less,          const char* less_format,
  2632                              const char* greater_equal, const char* greater_equal_format,
  2633                              const char* less_equal,    const char* less_equal_format,
  2634                              const char* greater,       const char* greater_format)
  2635   : Interface("COND_INTER"),
  2636     _equal(equal),                 _equal_format(equal_format),
  2637     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2638     _less(less),                   _less_format(less_format),
  2639     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2640     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2641     _greater(greater),             _greater_format(greater_format) {
  2643 CondInterface::~CondInterface() {
  2644   // not owner of any character arrays
  2647 void CondInterface::dump() {
  2648   output(stderr);
  2651 // Write info to output files
  2652 void CondInterface::output(FILE *fp) {
  2653   Interface::output(fp);
  2654   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
  2655   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
  2656   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
  2657   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
  2658   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
  2659   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
  2660   // fprintf(fp,"\n");
  2663 //------------------------------ConstructRule----------------------------------
  2664 ConstructRule::ConstructRule(char *cnstr)
  2665   : _construct(cnstr) {
  2667 ConstructRule::~ConstructRule() {
  2670 void ConstructRule::dump() {
  2671   output(stderr);
  2674 void ConstructRule::output(FILE *fp) {
  2675   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2679 //==============================Shared Forms===================================
  2680 //------------------------------AttributeForm----------------------------------
  2681 int         AttributeForm::_insId   = 0;           // start counter at 0
  2682 int         AttributeForm::_opId    = 0;           // start counter at 0
  2683 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2684 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
  2685 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2687 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2688   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2689     if (type==OP_ATTR) {
  2690       id = ++_opId;
  2692     else if (type==INS_ATTR) {
  2693       id = ++_insId;
  2695     else assert( false,"");
  2697 AttributeForm::~AttributeForm() {
  2700 // Dynamic type check
  2701 AttributeForm *AttributeForm::is_attribute() const {
  2702   return (AttributeForm*)this;
  2706 // inlined  // int  AttributeForm::type() { return id;}
  2708 void AttributeForm::dump() {
  2709   output(stderr);
  2712 void AttributeForm::output(FILE *fp) {
  2713   if( _attrname && _attrdef ) {
  2714     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2715             _attrname, _attrdef);
  2717   else {
  2718     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2719             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2723 //------------------------------Component--------------------------------------
  2724 Component::Component(const char *name, const char *type, int usedef)
  2725   : _name(name), _type(type), _usedef(usedef) {
  2726     _ftype = Form::COMP;
  2728 Component::~Component() {
  2731 // True if this component is equal to the parameter.
  2732 bool Component::is(int use_def_kill_enum) const {
  2733   return (_usedef == use_def_kill_enum ? true : false);
  2735 // True if this component is used/def'd/kill'd as the parameter suggests.
  2736 bool Component::isa(int use_def_kill_enum) const {
  2737   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2740 // Extend this component with additional use/def/kill behavior
  2741 int Component::promote_use_def_info(int new_use_def) {
  2742   _usedef |= new_use_def;
  2744   return _usedef;
  2747 // Check the base type of this component, if it has one
  2748 const char *Component::base_type(FormDict &globals) {
  2749   const Form *frm = globals[_type];
  2750   if (frm == NULL) return NULL;
  2751   OperandForm *op = frm->is_operand();
  2752   if (op == NULL) return NULL;
  2753   if (op->ideal_only()) return op->_ident;
  2754   return (char *)op->ideal_type(globals);
  2757 void Component::dump() {
  2758   output(stderr);
  2761 void Component::output(FILE *fp) {
  2762   fprintf(fp,"Component:");  // Write to output files
  2763   fprintf(fp, "  name = %s", _name);
  2764   fprintf(fp, ", type = %s", _type);
  2765   const char * usedef = "Undefined Use/Def info";
  2766   switch (_usedef) {
  2767     case USE:      usedef = "USE";      break;
  2768     case USE_DEF:  usedef = "USE_DEF";  break;
  2769     case USE_KILL: usedef = "USE_KILL"; break;
  2770     case KILL:     usedef = "KILL";     break;
  2771     case TEMP:     usedef = "TEMP";     break;
  2772     case DEF:      usedef = "DEF";      break;
  2773     default: assert(false, "unknown effect");
  2775   fprintf(fp, ", use/def = %s\n", usedef);
  2779 //------------------------------ComponentList---------------------------------
  2780 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2782 ComponentList::~ComponentList() {
  2783   // // This list may not own its elements if copied via assignment
  2784   // Component *component;
  2785   // for (reset(); (component = iter()) != NULL;) {
  2786   //   delete component;
  2787   // }
  2790 void   ComponentList::insert(Component *component, bool mflag) {
  2791   NameList::addName((char *)component);
  2792   if(mflag) _matchcnt++;
  2794 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2795                              bool mflag) {
  2796   Component * component = new Component(name, opType, usedef);
  2797   insert(component, mflag);
  2799 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2800 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2801 Component *ComponentList::match_iter() {
  2802   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2803   return NULL;
  2805 Component *ComponentList::post_match_iter() {
  2806   Component *comp = iter();
  2807   // At end of list?
  2808   if ( comp == NULL ) {
  2809     return comp;
  2811   // In post-match components?
  2812   if (_iter > match_count()-1) {
  2813     return comp;
  2816   return post_match_iter();
  2819 void       ComponentList::reset()   { NameList::reset(); }
  2820 int        ComponentList::count()   { return NameList::count(); }
  2822 Component *ComponentList::operator[](int position) {
  2823   // Shortcut complete iteration if there are not enough entries
  2824   if (position >= count()) return NULL;
  2826   int        index     = 0;
  2827   Component *component = NULL;
  2828   for (reset(); (component = iter()) != NULL;) {
  2829     if (index == position) {
  2830       return component;
  2832     ++index;
  2835   return NULL;
  2838 const Component *ComponentList::search(const char *name) {
  2839   PreserveIter pi(this);
  2840   reset();
  2841   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2842     if( strcmp(comp->_name,name) == 0 ) return comp;
  2845   return NULL;
  2848 // Return number of USEs + number of DEFs
  2849 // When there are no components, or the first component is a USE,
  2850 // then we add '1' to hold a space for the 'result' operand.
  2851 int ComponentList::num_operands() {
  2852   PreserveIter pi(this);
  2853   uint       count = 1;           // result operand
  2854   uint       position = 0;
  2856   Component *component  = NULL;
  2857   for( reset(); (component = iter()) != NULL; ++position ) {
  2858     if( component->isa(Component::USE) ||
  2859         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2860       ++count;
  2864   return count;
  2867 // Return zero-based position in list;  -1 if not in list.
  2868 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2869 int ComponentList::operand_position(const char *name, int usedef) {
  2870   PreserveIter pi(this);
  2871   int position = 0;
  2872   int num_opnds = num_operands();
  2873   Component *component;
  2874   Component* preceding_non_use = NULL;
  2875   Component* first_def = NULL;
  2876   for (reset(); (component = iter()) != NULL; ++position) {
  2877     // When the first component is not a DEF,
  2878     // leave space for the result operand!
  2879     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2880       ++position;
  2881       ++num_opnds;
  2883     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  2884       // When the first entry in the component list is a DEF and a USE
  2885       // Treat them as being separate, a DEF first, then a USE
  2886       if( position==0
  2887           && usedef==Component::USE && component->isa(Component::DEF) ) {
  2888         assert(position+1 < num_opnds, "advertised index in bounds");
  2889         return position+1;
  2890       } else {
  2891         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  2892           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
  2894         if( position >= num_opnds ) {
  2895           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
  2897         assert(position < num_opnds, "advertised index in bounds");
  2898         return position;
  2901     if( component->isa(Component::DEF)
  2902         && component->isa(Component::USE) ) {
  2903       ++position;
  2904       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2906     if( component->isa(Component::DEF) && !first_def ) {
  2907       first_def = component;
  2909     if( !component->isa(Component::USE) && component != first_def ) {
  2910       preceding_non_use = component;
  2911     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  2912       preceding_non_use = NULL;
  2915   return Not_in_list;
  2918 // Find position for this name, regardless of use/def information
  2919 int ComponentList::operand_position(const char *name) {
  2920   PreserveIter pi(this);
  2921   int position = 0;
  2922   Component *component;
  2923   for (reset(); (component = iter()) != NULL; ++position) {
  2924     // When the first component is not a DEF,
  2925     // leave space for the result operand!
  2926     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2927       ++position;
  2929     if (strcmp(name, component->_name)==0) {
  2930       return position;
  2932     if( component->isa(Component::DEF)
  2933         && component->isa(Component::USE) ) {
  2934       ++position;
  2935       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2938   return Not_in_list;
  2941 int ComponentList::operand_position_format(const char *name) {
  2942   PreserveIter pi(this);
  2943   int  first_position = operand_position(name);
  2944   int  use_position   = operand_position(name, Component::USE);
  2946   return ((first_position < use_position) ? use_position : first_position);
  2949 int ComponentList::label_position() {
  2950   PreserveIter pi(this);
  2951   int position = 0;
  2952   reset();
  2953   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2954     // When the first component is not a DEF,
  2955     // leave space for the result operand!
  2956     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2957       ++position;
  2959     if (strcmp(comp->_type, "label")==0) {
  2960       return position;
  2962     if( comp->isa(Component::DEF)
  2963         && comp->isa(Component::USE) ) {
  2964       ++position;
  2965       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2969   return -1;
  2972 int ComponentList::method_position() {
  2973   PreserveIter pi(this);
  2974   int position = 0;
  2975   reset();
  2976   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2977     // When the first component is not a DEF,
  2978     // leave space for the result operand!
  2979     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2980       ++position;
  2982     if (strcmp(comp->_type, "method")==0) {
  2983       return position;
  2985     if( comp->isa(Component::DEF)
  2986         && comp->isa(Component::USE) ) {
  2987       ++position;
  2988       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2992   return -1;
  2995 void ComponentList::dump() { output(stderr); }
  2997 void ComponentList::output(FILE *fp) {
  2998   PreserveIter pi(this);
  2999   fprintf(fp, "\n");
  3000   Component *component;
  3001   for (reset(); (component = iter()) != NULL;) {
  3002     component->output(fp);
  3004   fprintf(fp, "\n");
  3007 //------------------------------MatchNode--------------------------------------
  3008 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3009                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3010   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3011     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3012     _commutative_id(0) {
  3013   _numleaves = (lChild ? lChild->_numleaves : 0)
  3014                + (rChild ? rChild->_numleaves : 0);
  3017 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3018   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3019     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3020     _internalop(0), _numleaves(mnode._numleaves),
  3021     _commutative_id(mnode._commutative_id) {
  3024 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3025   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3026     _opType(mnode._opType),
  3027     _internalop(0), _numleaves(mnode._numleaves),
  3028     _commutative_id(mnode._commutative_id) {
  3029   if (mnode._lChild) {
  3030     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3031   } else {
  3032     _lChild = NULL;
  3034   if (mnode._rChild) {
  3035     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3036   } else {
  3037     _rChild = NULL;
  3041 MatchNode::~MatchNode() {
  3042   // // This node may not own its children if copied via assignment
  3043   // if( _lChild ) delete _lChild;
  3044   // if( _rChild ) delete _rChild;
  3047 bool  MatchNode::find_type(const char *type, int &position) const {
  3048   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3049   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3051   if (strcmp(type,_opType)==0)  {
  3052     return true;
  3053   } else {
  3054     ++position;
  3056   return false;
  3059 // Recursive call collecting info on top-level operands, not transitive.
  3060 // Implementation does not modify state of internal structures.
  3061 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3062                                   bool def_flag) const {
  3063   int usedef = def_flag ? Component::DEF : Component::USE;
  3064   FormDict &globals = _AD.globalNames();
  3066   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3067   // Base case
  3068   if (_lChild==NULL && _rChild==NULL) {
  3069     // If _opType is not an operation, do not build a component for it #####
  3070     const Form *f = globals[_opType];
  3071     if( f != NULL ) {
  3072       // Add non-ideals that are operands, operand-classes,
  3073       if( ! f->ideal_only()
  3074           && (f->is_opclass() || f->is_operand()) ) {
  3075         components.insert(_name, _opType, usedef, true);
  3078     return;
  3080   // Promote results of "Set" to DEF
  3081   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3082   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3083   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3084   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3087 // Find the n'th base-operand in the match node,
  3088 // recursively investigates match rules of user-defined operands.
  3089 //
  3090 // Implementation does not modify state of internal structures since they
  3091 // can be shared.
  3092 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3093                              const char * &result, const char * &name,
  3094                              const char * &opType) const {
  3095   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3096   // Base case
  3097   if (_lChild==NULL && _rChild==NULL) {
  3098     // Check for special case: "Universe", "label"
  3099     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3100       if (position == 0) {
  3101         result = _result;
  3102         name   = _name;
  3103         opType = _opType;
  3104         return 1;
  3105       } else {
  3106         -- position;
  3107         return 0;
  3111     const Form *form = globals[_opType];
  3112     MatchNode *matchNode = NULL;
  3113     // Check for user-defined type
  3114     if (form) {
  3115       // User operand or instruction?
  3116       OperandForm  *opForm = form->is_operand();
  3117       InstructForm *inForm = form->is_instruction();
  3118       if ( opForm ) {
  3119         matchNode = (MatchNode*)opForm->_matrule;
  3120       } else if ( inForm ) {
  3121         matchNode = (MatchNode*)inForm->_matrule;
  3124     // if this is user-defined, recurse on match rule
  3125     // User-defined operand and instruction forms have a match-rule.
  3126     if (matchNode) {
  3127       return (matchNode->base_operand(position,globals,result,name,opType));
  3128     } else {
  3129       // Either not a form, or a system-defined form (no match rule).
  3130       if (position==0) {
  3131         result = _result;
  3132         name   = _name;
  3133         opType = _opType;
  3134         return 1;
  3135       } else {
  3136         --position;
  3137         return 0;
  3141   } else {
  3142     // Examine the left child and right child as well
  3143     if (_lChild) {
  3144       if (_lChild->base_operand(position, globals, result, name, opType))
  3145         return 1;
  3148     if (_rChild) {
  3149       if (_rChild->base_operand(position, globals, result, name, opType))
  3150         return 1;
  3154   return 0;
  3157 // Recursive call on all operands' match rules in my match rule.
  3158 uint  MatchNode::num_consts(FormDict &globals) const {
  3159   uint        index      = 0;
  3160   uint        num_consts = 0;
  3161   const char *result;
  3162   const char *name;
  3163   const char *opType;
  3165   for (uint position = index;
  3166        base_operand(position,globals,result,name,opType); position = index) {
  3167     ++index;
  3168     if( ideal_to_const_type(opType) )        num_consts++;
  3171   return num_consts;
  3174 // Recursive call on all operands' match rules in my match rule.
  3175 // Constants in match rule subtree with specified type
  3176 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3177   uint        index      = 0;
  3178   uint        num_consts = 0;
  3179   const char *result;
  3180   const char *name;
  3181   const char *opType;
  3183   for (uint position = index;
  3184        base_operand(position,globals,result,name,opType); position = index) {
  3185     ++index;
  3186     if( ideal_to_const_type(opType) == type ) num_consts++;
  3189   return num_consts;
  3192 // Recursive call on all operands' match rules in my match rule.
  3193 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3194   return  num_consts( globals, Form::idealP );
  3197 bool  MatchNode::sets_result() const {
  3198   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3201 const char *MatchNode::reduce_right(FormDict &globals) const {
  3202   // If there is no right reduction, return NULL.
  3203   const char      *rightStr    = NULL;
  3205   // If we are a "Set", start from the right child.
  3206   const MatchNode *const mnode = sets_result() ?
  3207     (const MatchNode *const)this->_rChild :
  3208     (const MatchNode *const)this;
  3210   // If our right child exists, it is the right reduction
  3211   if ( mnode->_rChild ) {
  3212     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3213       : mnode->_rChild->_opType;
  3215   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3216   return rightStr;
  3219 const char *MatchNode::reduce_left(FormDict &globals) const {
  3220   // If there is no left reduction, return NULL.
  3221   const char  *leftStr  = NULL;
  3223   // If we are a "Set", start from the right child.
  3224   const MatchNode *const mnode = sets_result() ?
  3225     (const MatchNode *const)this->_rChild :
  3226     (const MatchNode *const)this;
  3228   // If our left child exists, it is the left reduction
  3229   if ( mnode->_lChild ) {
  3230     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3231       : mnode->_lChild->_opType;
  3232   } else {
  3233     // May be simple chain rule: (Set dst operand_form_source)
  3234     if ( sets_result() ) {
  3235       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3236       if( oper ) {
  3237         leftStr = mnode->_opType;
  3241   return leftStr;
  3244 //------------------------------count_instr_names------------------------------
  3245 // Count occurrences of operands names in the leaves of the instruction
  3246 // match rule.
  3247 void MatchNode::count_instr_names( Dict &names ) {
  3248   if( !this ) return;
  3249   if( _lChild ) _lChild->count_instr_names(names);
  3250   if( _rChild ) _rChild->count_instr_names(names);
  3251   if( !_lChild && !_rChild ) {
  3252     uintptr_t cnt = (uintptr_t)names[_name];
  3253     cnt++;                      // One more name found
  3254     names.Insert(_name,(void*)cnt);
  3258 //------------------------------build_instr_pred-------------------------------
  3259 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3260 // can skip some leading instances of 'name'.
  3261 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3262   if( _lChild ) {
  3263     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3264     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3265     if( cnt < 0 ) return cnt;   // Found it, all done
  3267   if( _rChild ) {
  3268     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3269     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3270     if( cnt < 0 ) return cnt;   // Found it, all done
  3272   if( !_lChild && !_rChild ) {  // Found a leaf
  3273     // Wrong name?  Give up...
  3274     if( strcmp(name,_name) ) return cnt;
  3275     if( !cnt ) strcpy(buf,"_leaf");
  3276     return cnt-1;
  3278   return cnt;
  3282 //------------------------------build_internalop-------------------------------
  3283 // Build string representation of subtree
  3284 void MatchNode::build_internalop( ) {
  3285   char *iop, *subtree;
  3286   const char *lstr, *rstr;
  3287   // Build string representation of subtree
  3288   // Operation lchildType rchildType
  3289   int len = (int)strlen(_opType) + 4;
  3290   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3291                        _lChild->_internalop : _lChild->_opType) : "";
  3292   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3293                        _rChild->_internalop : _rChild->_opType) : "";
  3294   len += (int)strlen(lstr) + (int)strlen(rstr);
  3295   subtree = (char *)malloc(len);
  3296   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3297   // Hash the subtree string in _internalOps; if a name exists, use it
  3298   iop = (char *)_AD._internalOps[subtree];
  3299   // Else create a unique name, and add it to the hash table
  3300   if (iop == NULL) {
  3301     iop = subtree;
  3302     _AD._internalOps.Insert(subtree, iop);
  3303     _AD._internalOpNames.addName(iop);
  3304     _AD._internalMatch.Insert(iop, this);
  3306   // Add the internal operand name to the MatchNode
  3307   _internalop = iop;
  3308   _result = iop;
  3312 void MatchNode::dump() {
  3313   output(stderr);
  3316 void MatchNode::output(FILE *fp) {
  3317   if (_lChild==0 && _rChild==0) {
  3318     fprintf(fp," %s",_name);    // operand
  3320   else {
  3321     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3322     if(_lChild) _lChild->output(fp); //               left operand
  3323     if(_rChild) _rChild->output(fp); //                    right operand
  3324     fprintf(fp,")");                 //                                 ")"
  3328 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3329   static const char *needs_ideal_memory_list[] = {
  3330     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
  3331     "StoreB","StoreC","Store" ,"StoreFP",
  3332     "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3333     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load"   ,
  3334     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
  3335     "Store8B","Store4B","Store8C","Store4C","Store2C",
  3336     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
  3337     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
  3338     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3339     "LoadPLocked", "LoadLLocked",
  3340     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3341     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3342     "StoreCM",
  3343     "ClearArray"
  3344   };
  3345   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3346   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
  3347     return 1;
  3348   if( _lChild ) {
  3349     const char *opType = _lChild->_opType;
  3350     for( int i=0; i<cnt; i++ )
  3351       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3352         return 1;
  3353     if( _lChild->needs_ideal_memory_edge(globals) )
  3354       return 1;
  3356   if( _rChild ) {
  3357     const char *opType = _rChild->_opType;
  3358     for( int i=0; i<cnt; i++ )
  3359       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3360         return 1;
  3361     if( _rChild->needs_ideal_memory_edge(globals) )
  3362       return 1;
  3365   return 0;
  3368 // TRUE if defines a derived oop, and so needs a base oop edge present
  3369 // post-matching.
  3370 int MatchNode::needs_base_oop_edge() const {
  3371   if( !strcmp(_opType,"AddP") ) return 1;
  3372   if( strcmp(_opType,"Set") ) return 0;
  3373   return !strcmp(_rChild->_opType,"AddP");
  3376 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3377   if( is_simple_chain_rule(globals) ) {
  3378     const char *src = _matrule->_rChild->_opType;
  3379     OperandForm *src_op = globals[src]->is_operand();
  3380     assert( src_op, "Not operand class of chain rule" );
  3381     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3382   }                             // Else check instruction
  3384   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3388 //-------------------------cisc spilling methods-------------------------------
  3389 // helper routines and methods for detecting cisc-spilling instructions
  3390 //-------------------------cisc_spill_merge------------------------------------
  3391 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3392   int cisc_spillable  = Maybe_cisc_spillable;
  3394   // Combine results of left and right checks
  3395   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3396     // neither side is spillable, nor prevents cisc spilling
  3397     cisc_spillable = Maybe_cisc_spillable;
  3399   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3400     // right side is spillable
  3401     cisc_spillable = right_spillable;
  3403   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3404     // left side is spillable
  3405     cisc_spillable = left_spillable;
  3407   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3408     // left or right prevents cisc spilling this instruction
  3409     cisc_spillable = Not_cisc_spillable;
  3411   else {
  3412     // Only allow one to spill
  3413     cisc_spillable = Not_cisc_spillable;
  3416   return cisc_spillable;
  3419 //-------------------------root_ops_match--------------------------------------
  3420 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3421   // Base Case: check that the current operands/operations match
  3422   assert( op1, "Must have op's name");
  3423   assert( op2, "Must have op's name");
  3424   const Form *form1 = globals[op1];
  3425   const Form *form2 = globals[op2];
  3427   return (form1 == form2);
  3430 //-------------------------cisc_spill_match_node-------------------------------
  3431 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3432 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3433   int cisc_spillable  = Maybe_cisc_spillable;
  3434   int left_spillable  = Maybe_cisc_spillable;
  3435   int right_spillable = Maybe_cisc_spillable;
  3437   // Check that each has same number of operands at this level
  3438   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3439     return Not_cisc_spillable;
  3441   // Base Case: check that the current operands/operations match
  3442   // or are CISC spillable
  3443   assert( _opType, "Must have _opType");
  3444   assert( mRule2->_opType, "Must have _opType");
  3445   const Form *form  = globals[_opType];
  3446   const Form *form2 = globals[mRule2->_opType];
  3447   if( form == form2 ) {
  3448     cisc_spillable = Maybe_cisc_spillable;
  3449   } else {
  3450     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3451     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3452     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3453     DataType data_type = Form::none;
  3454     if (form->is_operand()) {
  3455       // Make sure the loadX matches the type of the reg
  3456       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3458     // Detect reg vs (loadX memory)
  3459     if( form->is_cisc_reg(globals)
  3460         && form2_inst
  3461         && data_type != Form::none
  3462         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3463         && (name_left != NULL)       // NOT (load)
  3464         && (name_right == NULL) ) {  // NOT (load memory foo)
  3465       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3466       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3467         cisc_spillable = Is_cisc_spillable;
  3468         operand        = _name;
  3469         reg_type       = _result;
  3470         return Is_cisc_spillable;
  3471       } else {
  3472         cisc_spillable = Not_cisc_spillable;
  3475     // Detect reg vs memory
  3476     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3477       cisc_spillable = Is_cisc_spillable;
  3478       operand        = _name;
  3479       reg_type       = _result;
  3480       return Is_cisc_spillable;
  3481     } else {
  3482       cisc_spillable = Not_cisc_spillable;
  3486   // If cisc is still possible, check rest of tree
  3487   if( cisc_spillable == Maybe_cisc_spillable ) {
  3488     // Check that each has same number of operands at this level
  3489     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3491     // Check left operands
  3492     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3493       left_spillable = Maybe_cisc_spillable;
  3494     } else {
  3495       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3498     // Check right operands
  3499     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3500       right_spillable =  Maybe_cisc_spillable;
  3501     } else {
  3502       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3505     // Combine results of left and right checks
  3506     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3509   return cisc_spillable;
  3512 //---------------------------cisc_spill_match_rule------------------------------
  3513 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3514 // This method handles the root of Match tree,
  3515 // general recursive checks done in MatchNode
  3516 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3517                                            MatchRule* mRule2, const char* &operand,
  3518                                            const char* &reg_type) {
  3519   int cisc_spillable  = Maybe_cisc_spillable;
  3520   int left_spillable  = Maybe_cisc_spillable;
  3521   int right_spillable = Maybe_cisc_spillable;
  3523   // Check that each sets a result
  3524   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3525   // Check that each has same number of operands at this level
  3526   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3528   // Check left operands: at root, must be target of 'Set'
  3529   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3530     left_spillable = Not_cisc_spillable;
  3531   } else {
  3532     // Do not support cisc-spilling instruction's target location
  3533     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3534       left_spillable = Maybe_cisc_spillable;
  3535     } else {
  3536       left_spillable = Not_cisc_spillable;
  3540   // Check right operands: recursive walk to identify reg->mem operand
  3541   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3542     right_spillable =  Maybe_cisc_spillable;
  3543   } else {
  3544     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3547   // Combine results of left and right checks
  3548   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3550   return cisc_spillable;
  3553 //----------------------------- equivalent ------------------------------------
  3554 // Recursively check to see if two match rules are equivalent.
  3555 // This rule handles the root.
  3556 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3557   // Check that each sets a result
  3558   if (sets_result() != mRule2->sets_result()) {
  3559     return false;
  3562   // Check that the current operands/operations match
  3563   assert( _opType, "Must have _opType");
  3564   assert( mRule2->_opType, "Must have _opType");
  3565   const Form *form  = globals[_opType];
  3566   const Form *form2 = globals[mRule2->_opType];
  3567   if( form != form2 ) {
  3568     return false;
  3571   if (_lChild ) {
  3572     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3573       return false;
  3574   } else if (mRule2->_lChild) {
  3575     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3578   if (_rChild ) {
  3579     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3580       return false;
  3581   } else if (mRule2->_rChild) {
  3582     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3585   // We've made it through the gauntlet.
  3586   return true;
  3589 //----------------------------- equivalent ------------------------------------
  3590 // Recursively check to see if two match rules are equivalent.
  3591 // This rule handles the operands.
  3592 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3593   if( !mNode2 )
  3594     return false;
  3596   // Check that the current operands/operations match
  3597   assert( _opType, "Must have _opType");
  3598   assert( mNode2->_opType, "Must have _opType");
  3599   const Form *form  = globals[_opType];
  3600   const Form *form2 = globals[mNode2->_opType];
  3601   return (form == form2);
  3604 //-------------------------- has_commutative_op -------------------------------
  3605 // Recursively check for commutative operations with subtree operands
  3606 // which could be swapped.
  3607 void MatchNode::count_commutative_op(int& count) {
  3608   static const char *commut_op_list[] = {
  3609     "AddI","AddL","AddF","AddD",
  3610     "AndI","AndL",
  3611     "MaxI","MinI",
  3612     "MulI","MulL","MulF","MulD",
  3613     "OrI" ,"OrL" ,
  3614     "XorI","XorL"
  3615   };
  3616   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3618   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3619     // Don't swap if right operand is an immediate constant.
  3620     bool is_const = false;
  3621     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3622       FormDict &globals = _AD.globalNames();
  3623       const Form *form = globals[_rChild->_opType];
  3624       if ( form ) {
  3625         OperandForm  *oper = form->is_operand();
  3626         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3627           is_const = true;
  3630     if( !is_const ) {
  3631       for( int i=0; i<cnt; i++ ) {
  3632         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3633           count++;
  3634           _commutative_id = count; // id should be > 0
  3635           break;
  3640   if( _lChild )
  3641     _lChild->count_commutative_op(count);
  3642   if( _rChild )
  3643     _rChild->count_commutative_op(count);
  3646 //-------------------------- swap_commutative_op ------------------------------
  3647 // Recursively swap specified commutative operation with subtree operands.
  3648 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3649   if( _commutative_id == id ) { // id should be > 0
  3650     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3651             "not swappable operation");
  3652     MatchNode* tmp = _lChild;
  3653     _lChild = _rChild;
  3654     _rChild = tmp;
  3655     // Don't exit here since we need to build internalop.
  3658   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3659   if( _lChild )
  3660     _lChild->swap_commutative_op(is_set, id);
  3661   if( _rChild )
  3662     _rChild->swap_commutative_op(is_set, id);
  3664   // If not the root, reduce this subtree to an internal operand
  3665   if( !atroot && (_lChild || _rChild) ) {
  3666     build_internalop();
  3670 //-------------------------- swap_commutative_op ------------------------------
  3671 // Recursively swap specified commutative operation with subtree operands.
  3672 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3673   assert(match_rules_cnt < 100," too many match rule clones");
  3674   // Clone
  3675   MatchRule* clone = new MatchRule(_AD, this);
  3676   // Swap operands of commutative operation
  3677   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3678   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3679   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3680   clone->_result = buf;
  3682   clone->_next = this->_next;
  3683   this-> _next = clone;
  3684   if( (--count) > 0 ) {
  3685     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3686     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3690 //------------------------------MatchRule--------------------------------------
  3691 MatchRule::MatchRule(ArchDesc &ad)
  3692   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3693     _next = NULL;
  3696 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3697   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3698     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3699     _next = NULL;
  3702 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3703                      int numleaves)
  3704   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3705     _numchilds(0) {
  3706       _next = NULL;
  3707       mroot->_lChild = NULL;
  3708       mroot->_rChild = NULL;
  3709       delete mroot;
  3710       _numleaves = numleaves;
  3711       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3713 MatchRule::~MatchRule() {
  3716 // Recursive call collecting info on top-level operands, not transitive.
  3717 // Implementation does not modify state of internal structures.
  3718 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3719   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3721   MatchNode::append_components(locals, components,
  3722                                false /* not necessarily a def */);
  3725 // Recursive call on all operands' match rules in my match rule.
  3726 // Implementation does not modify state of internal structures  since they
  3727 // can be shared.
  3728 // The MatchNode that is called first treats its
  3729 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3730                              const char *&result, const char * &name,
  3731                              const char * &opType)const{
  3732   uint position = position0;
  3734   return (MatchNode::base_operand( position, globals, result, name, opType));
  3738 bool MatchRule::is_base_register(FormDict &globals) const {
  3739   uint   position = 1;
  3740   const char  *result   = NULL;
  3741   const char  *name     = NULL;
  3742   const char  *opType   = NULL;
  3743   if (!base_operand(position, globals, result, name, opType)) {
  3744     position = 0;
  3745     if( base_operand(position, globals, result, name, opType) &&
  3746         (strcmp(opType,"RegI")==0 ||
  3747          strcmp(opType,"RegP")==0 ||
  3748          strcmp(opType,"RegN")==0 ||
  3749          strcmp(opType,"RegL")==0 ||
  3750          strcmp(opType,"RegF")==0 ||
  3751          strcmp(opType,"RegD")==0 ||
  3752          strcmp(opType,"Reg" )==0) ) {
  3753       return 1;
  3756   return 0;
  3759 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3760   uint         position = 1;
  3761   const char  *result   = NULL;
  3762   const char  *name     = NULL;
  3763   const char  *opType   = NULL;
  3764   if (!base_operand(position, globals, result, name, opType)) {
  3765     position = 0;
  3766     if (base_operand(position, globals, result, name, opType)) {
  3767       return ideal_to_const_type(opType);
  3770   return Form::none;
  3773 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3775   // Check for chain rule, and do not generate a match list for it
  3776   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3777     const Form *form = globals[_opType];
  3778     // If this is ideal, then it is a base match, not a chain rule.
  3779     if ( form && form->is_operand() && (!form->ideal_only())) {
  3780       return true;
  3783   // Check for "Set" form of chain rule, and do not generate a match list
  3784   if (_rChild) {
  3785     const char *rch = _rChild->_opType;
  3786     const Form *form = globals[rch];
  3787     if ((!strcmp(_opType,"Set") &&
  3788          ((form) && form->is_operand()))) {
  3789       return true;
  3792   return false;
  3795 int MatchRule::is_ideal_copy() const {
  3796   if( _rChild ) {
  3797     const char  *opType = _rChild->_opType;
  3798 #if 1
  3799     if( strcmp(opType,"CastIP")==0 )
  3800       return 1;
  3801 #else
  3802     if( strcmp(opType,"CastII")==0 )
  3803       return 1;
  3804     // Do not treat *CastPP this way, because it
  3805     // may transfer a raw pointer to an oop.
  3806     // If the register allocator were to coalesce this
  3807     // into a single LRG, the GC maps would be incorrect.
  3808     //if( strcmp(opType,"CastPP")==0 )
  3809     //  return 1;
  3810     //if( strcmp(opType,"CheckCastPP")==0 )
  3811     //  return 1;
  3812     //
  3813     // Do not treat CastX2P or CastP2X this way, because
  3814     // raw pointers and int types are treated differently
  3815     // when saving local & stack info for safepoints in
  3816     // Output().
  3817     //if( strcmp(opType,"CastX2P")==0 )
  3818     //  return 1;
  3819     //if( strcmp(opType,"CastP2X")==0 )
  3820     //  return 1;
  3821 #endif
  3823   if( is_chain_rule(_AD.globalNames()) &&
  3824       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3825     return 1;
  3826   return 0;
  3830 int MatchRule::is_expensive() const {
  3831   if( _rChild ) {
  3832     const char  *opType = _rChild->_opType;
  3833     if( strcmp(opType,"AtanD")==0 ||
  3834         strcmp(opType,"CosD")==0 ||
  3835         strcmp(opType,"DivD")==0 ||
  3836         strcmp(opType,"DivF")==0 ||
  3837         strcmp(opType,"DivI")==0 ||
  3838         strcmp(opType,"ExpD")==0 ||
  3839         strcmp(opType,"LogD")==0 ||
  3840         strcmp(opType,"Log10D")==0 ||
  3841         strcmp(opType,"ModD")==0 ||
  3842         strcmp(opType,"ModF")==0 ||
  3843         strcmp(opType,"ModI")==0 ||
  3844         strcmp(opType,"PowD")==0 ||
  3845         strcmp(opType,"SinD")==0 ||
  3846         strcmp(opType,"SqrtD")==0 ||
  3847         strcmp(opType,"TanD")==0 ||
  3848         strcmp(opType,"ConvD2F")==0 ||
  3849         strcmp(opType,"ConvD2I")==0 ||
  3850         strcmp(opType,"ConvD2L")==0 ||
  3851         strcmp(opType,"ConvF2D")==0 ||
  3852         strcmp(opType,"ConvF2I")==0 ||
  3853         strcmp(opType,"ConvF2L")==0 ||
  3854         strcmp(opType,"ConvI2D")==0 ||
  3855         strcmp(opType,"ConvI2F")==0 ||
  3856         strcmp(opType,"ConvI2L")==0 ||
  3857         strcmp(opType,"ConvL2D")==0 ||
  3858         strcmp(opType,"ConvL2F")==0 ||
  3859         strcmp(opType,"ConvL2I")==0 ||
  3860         strcmp(opType,"DecodeN")==0 ||
  3861         strcmp(opType,"EncodeP")==0 ||
  3862         strcmp(opType,"RoundDouble")==0 ||
  3863         strcmp(opType,"RoundFloat")==0 ||
  3864         strcmp(opType,"ReverseBytesI")==0 ||
  3865         strcmp(opType,"ReverseBytesL")==0 ||
  3866         strcmp(opType,"ReverseBytesUS")==0 ||
  3867         strcmp(opType,"ReverseBytesS")==0 ||
  3868         strcmp(opType,"Replicate16B")==0 ||
  3869         strcmp(opType,"Replicate8B")==0 ||
  3870         strcmp(opType,"Replicate4B")==0 ||
  3871         strcmp(opType,"Replicate8C")==0 ||
  3872         strcmp(opType,"Replicate4C")==0 ||
  3873         strcmp(opType,"Replicate8S")==0 ||
  3874         strcmp(opType,"Replicate4S")==0 ||
  3875         strcmp(opType,"Replicate4I")==0 ||
  3876         strcmp(opType,"Replicate2I")==0 ||
  3877         strcmp(opType,"Replicate2L")==0 ||
  3878         strcmp(opType,"Replicate4F")==0 ||
  3879         strcmp(opType,"Replicate2F")==0 ||
  3880         strcmp(opType,"Replicate2D")==0 ||
  3881         0 /* 0 to line up columns nicely */ )
  3882       return 1;
  3884   return 0;
  3887 bool MatchRule::is_ideal_unlock() const {
  3888   if( !_opType ) return false;
  3889   return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
  3893 bool MatchRule::is_ideal_call_leaf() const {
  3894   if( !_opType ) return false;
  3895   return !strcmp(_opType,"CallLeaf")     ||
  3896          !strcmp(_opType,"CallLeafNoFP");
  3900 bool MatchRule::is_ideal_if() const {
  3901   if( !_opType ) return false;
  3902   return
  3903     !strcmp(_opType,"If"            ) ||
  3904     !strcmp(_opType,"CountedLoopEnd");
  3907 bool MatchRule::is_ideal_fastlock() const {
  3908   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3909     return (strcmp(_rChild->_opType,"FastLock") == 0);
  3911   return false;
  3914 bool MatchRule::is_ideal_membar() const {
  3915   if( !_opType ) return false;
  3916   return
  3917     !strcmp(_opType,"MemBarAcquire"  ) ||
  3918     !strcmp(_opType,"MemBarRelease"  ) ||
  3919     !strcmp(_opType,"MemBarVolatile" ) ||
  3920     !strcmp(_opType,"MemBarCPUOrder" ) ;
  3923 bool MatchRule::is_ideal_loadPC() const {
  3924   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3925     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  3927   return false;
  3930 bool MatchRule::is_ideal_box() const {
  3931   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3932     return (strcmp(_rChild->_opType,"Box") == 0);
  3934   return false;
  3937 bool MatchRule::is_ideal_goto() const {
  3938   bool   ideal_goto = false;
  3940   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  3941     ideal_goto = true;
  3943   return ideal_goto;
  3946 bool MatchRule::is_ideal_jump() const {
  3947   if( _opType ) {
  3948     if( !strcmp(_opType,"Jump") )
  3949       return true;
  3951   return false;
  3954 bool MatchRule::is_ideal_bool() const {
  3955   if( _opType ) {
  3956     if( !strcmp(_opType,"Bool") )
  3957       return true;
  3959   return false;
  3963 Form::DataType MatchRule::is_ideal_load() const {
  3964   Form::DataType ideal_load = Form::none;
  3966   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3967     const char *opType = _rChild->_opType;
  3968     ideal_load = is_load_from_memory(opType);
  3971   return ideal_load;
  3975 bool MatchRule::skip_antidep_check() const {
  3976   // Some loads operate on what is effectively immutable memory so we
  3977   // should skip the anti dep computations.  For some of these nodes
  3978   // the rewritable field keeps the anti dep logic from triggering but
  3979   // for certain kinds of LoadKlass it does not since they are
  3980   // actually reading memory which could be rewritten by the runtime,
  3981   // though never by generated code.  This disables it uniformly for
  3982   // the nodes that behave like this: LoadKlass, LoadNKlass and
  3983   // LoadRange.
  3984   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3985     const char *opType = _rChild->_opType;
  3986     if (strcmp("LoadKlass", opType) == 0 ||
  3987         strcmp("LoadNKlass", opType) == 0 ||
  3988         strcmp("LoadRange", opType) == 0) {
  3989       return true;
  3993   return false;
  3997 Form::DataType MatchRule::is_ideal_store() const {
  3998   Form::DataType ideal_store = Form::none;
  4000   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4001     const char *opType = _rChild->_opType;
  4002     ideal_store = is_store_to_memory(opType);
  4005   return ideal_store;
  4009 void MatchRule::dump() {
  4010   output(stderr);
  4013 void MatchRule::output(FILE *fp) {
  4014   fprintf(fp,"MatchRule: ( %s",_name);
  4015   if (_lChild) _lChild->output(fp);
  4016   if (_rChild) _rChild->output(fp);
  4017   fprintf(fp," )\n");
  4018   fprintf(fp,"   nesting depth = %d\n", _depth);
  4019   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4020   fprintf(fp,"\n");
  4023 //------------------------------Attribute--------------------------------------
  4024 Attribute::Attribute(char *id, char* val, int type)
  4025   : _ident(id), _val(val), _atype(type) {
  4027 Attribute::~Attribute() {
  4030 int Attribute::int_val(ArchDesc &ad) {
  4031   // Make sure it is an integer constant:
  4032   int result = 0;
  4033   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4034     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4035                   _ident, _val ? _val : "");
  4037   return result;
  4040 void Attribute::dump() {
  4041   output(stderr);
  4042 } // Debug printer
  4044 // Write to output files
  4045 void Attribute::output(FILE *fp) {
  4046   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4049 //------------------------------FormatRule----------------------------------
  4050 FormatRule::FormatRule(char *temp)
  4051   : _temp(temp) {
  4053 FormatRule::~FormatRule() {
  4056 void FormatRule::dump() {
  4057   output(stderr);
  4060 // Write to output files
  4061 void FormatRule::output(FILE *fp) {
  4062   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4063   fprintf(fp,"\n");

mercurial