src/share/vm/runtime/synchronizer.cpp

Fri, 22 Oct 2010 15:59:34 -0400

author
acorn
date
Fri, 22 Oct 2010 15:59:34 -0400
changeset 2233
fa83ab460c54
parent 1995
bfc89697cccb
child 2314
f95d63e2154a
permissions
-rw-r--r--

6988353: refactor contended sync subsystem
Summary: reduce complexity by factoring synchronizer.cpp
Reviewed-by: dholmes, never, coleenp

     1 /*
     2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_synchronizer.cpp.incl"
    28 #if defined(__GNUC__) && !defined(IA64)
    29   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    30   #define ATTR __attribute__((noinline))
    31 #else
    32   #define ATTR
    33 #endif
    35 // The "core" versions of monitor enter and exit reside in this file.
    36 // The interpreter and compilers contain specialized transliterated
    37 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    38 // for instance.  If you make changes here, make sure to modify the
    39 // interpreter, and both C1 and C2 fast-path inline locking code emission.
    40 //
    41 //
    42 // -----------------------------------------------------------------------------
    44 #ifdef DTRACE_ENABLED
    46 // Only bother with this argument setup if dtrace is available
    47 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    49 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
    50   jlong, uintptr_t, char*, int, long);
    51 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    52   jlong, uintptr_t, char*, int);
    54 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    55   char* bytes = NULL;                                                      \
    56   int len = 0;                                                             \
    57   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    58   symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
    59   if (klassname != NULL) {                                                 \
    60     bytes = (char*)klassname->bytes();                                     \
    61     len = klassname->utf8_length();                                        \
    62   }
    64 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
    65   {                                                                        \
    66     if (DTraceMonitorProbes) {                                            \
    67       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    68       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    69                        (monitor), bytes, len, (millis));                   \
    70     }                                                                      \
    71   }
    73 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
    74   {                                                                        \
    75     if (DTraceMonitorProbes) {                                            \
    76       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    77       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
    78                        (uintptr_t)(monitor), bytes, len);                  \
    79     }                                                                      \
    80   }
    82 #else //  ndef DTRACE_ENABLED
    84 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
    85 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
    87 #endif // ndef DTRACE_ENABLED
    89 // This exists only as a workaround of dtrace bug 6254741
    90 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
    91   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
    92   return 0;
    93 }
    95 #define NINFLATIONLOCKS 256
    96 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
    98 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
    99 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
   100 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
   101 int ObjectSynchronizer::gOmInUseCount = 0;
   102 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
   103 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
   104 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
   105 #define CHAINMARKER ((oop)-1)
   107 // -----------------------------------------------------------------------------
   108 //  Fast Monitor Enter/Exit
   109 // This the fast monitor enter. The interpreter and compiler use
   110 // some assembly copies of this code. Make sure update those code
   111 // if the following function is changed. The implementation is
   112 // extremely sensitive to race condition. Be careful.
   114 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
   115  if (UseBiasedLocking) {
   116     if (!SafepointSynchronize::is_at_safepoint()) {
   117       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
   118       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
   119         return;
   120       }
   121     } else {
   122       assert(!attempt_rebias, "can not rebias toward VM thread");
   123       BiasedLocking::revoke_at_safepoint(obj);
   124     }
   125     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   126  }
   128  slow_enter (obj, lock, THREAD) ;
   129 }
   131 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
   132   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
   133   // if displaced header is null, the previous enter is recursive enter, no-op
   134   markOop dhw = lock->displaced_header();
   135   markOop mark ;
   136   if (dhw == NULL) {
   137      // Recursive stack-lock.
   138      // Diagnostics -- Could be: stack-locked, inflating, inflated.
   139      mark = object->mark() ;
   140      assert (!mark->is_neutral(), "invariant") ;
   141      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
   142         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
   143      }
   144      if (mark->has_monitor()) {
   145         ObjectMonitor * m = mark->monitor() ;
   146         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
   147         assert(m->is_entered(THREAD), "invariant") ;
   148      }
   149      return ;
   150   }
   152   mark = object->mark() ;
   154   // If the object is stack-locked by the current thread, try to
   155   // swing the displaced header from the box back to the mark.
   156   if (mark == (markOop) lock) {
   157      assert (dhw->is_neutral(), "invariant") ;
   158      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
   159         TEVENT (fast_exit: release stacklock) ;
   160         return;
   161      }
   162   }
   164   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
   165 }
   167 // -----------------------------------------------------------------------------
   168 // Interpreter/Compiler Slow Case
   169 // This routine is used to handle interpreter/compiler slow case
   170 // We don't need to use fast path here, because it must have been
   171 // failed in the interpreter/compiler code.
   172 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
   173   markOop mark = obj->mark();
   174   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
   176   if (mark->is_neutral()) {
   177     // Anticipate successful CAS -- the ST of the displaced mark must
   178     // be visible <= the ST performed by the CAS.
   179     lock->set_displaced_header(mark);
   180     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
   181       TEVENT (slow_enter: release stacklock) ;
   182       return ;
   183     }
   184     // Fall through to inflate() ...
   185   } else
   186   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   187     assert(lock != mark->locker(), "must not re-lock the same lock");
   188     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
   189     lock->set_displaced_header(NULL);
   190     return;
   191   }
   193 #if 0
   194   // The following optimization isn't particularly useful.
   195   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
   196     lock->set_displaced_header (NULL) ;
   197     return ;
   198   }
   199 #endif
   201   // The object header will never be displaced to this lock,
   202   // so it does not matter what the value is, except that it
   203   // must be non-zero to avoid looking like a re-entrant lock,
   204   // and must not look locked either.
   205   lock->set_displaced_header(markOopDesc::unused_mark());
   206   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   207 }
   209 // This routine is used to handle interpreter/compiler slow case
   210 // We don't need to use fast path here, because it must have
   211 // failed in the interpreter/compiler code. Simply use the heavy
   212 // weight monitor should be ok, unless someone find otherwise.
   213 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
   214   fast_exit (object, lock, THREAD) ;
   215 }
   217 // -----------------------------------------------------------------------------
   218 // Class Loader  support to workaround deadlocks on the class loader lock objects
   219 // Also used by GC
   220 // complete_exit()/reenter() are used to wait on a nested lock
   221 // i.e. to give up an outer lock completely and then re-enter
   222 // Used when holding nested locks - lock acquisition order: lock1 then lock2
   223 //  1) complete_exit lock1 - saving recursion count
   224 //  2) wait on lock2
   225 //  3) when notified on lock2, unlock lock2
   226 //  4) reenter lock1 with original recursion count
   227 //  5) lock lock2
   228 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   229 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
   230   TEVENT (complete_exit) ;
   231   if (UseBiasedLocking) {
   232     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   233     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   234   }
   236   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   238   return monitor->complete_exit(THREAD);
   239 }
   241 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   242 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
   243   TEVENT (reenter) ;
   244   if (UseBiasedLocking) {
   245     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   246     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   247   }
   249   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   251   monitor->reenter(recursion, THREAD);
   252 }
   253 // -----------------------------------------------------------------------------
   254 // JNI locks on java objects
   255 // NOTE: must use heavy weight monitor to handle jni monitor enter
   256 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
   257   // the current locking is from JNI instead of Java code
   258   TEVENT (jni_enter) ;
   259   if (UseBiasedLocking) {
   260     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   261     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   262   }
   263   THREAD->set_current_pending_monitor_is_from_java(false);
   264   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   265   THREAD->set_current_pending_monitor_is_from_java(true);
   266 }
   268 // NOTE: must use heavy weight monitor to handle jni monitor enter
   269 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
   270   if (UseBiasedLocking) {
   271     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   272     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   273   }
   275   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
   276   return monitor->try_enter(THREAD);
   277 }
   280 // NOTE: must use heavy weight monitor to handle jni monitor exit
   281 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
   282   TEVENT (jni_exit) ;
   283   if (UseBiasedLocking) {
   284     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   285   }
   286   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   288   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
   289   // If this thread has locked the object, exit the monitor.  Note:  can't use
   290   // monitor->check(CHECK); must exit even if an exception is pending.
   291   if (monitor->check(THREAD)) {
   292      monitor->exit(THREAD);
   293   }
   294 }
   296 // -----------------------------------------------------------------------------
   297 // Internal VM locks on java objects
   298 // standard constructor, allows locking failures
   299 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   300   _dolock = doLock;
   301   _thread = thread;
   302   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   303   _obj = obj;
   305   if (_dolock) {
   306     TEVENT (ObjectLocker) ;
   308     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   309   }
   310 }
   312 ObjectLocker::~ObjectLocker() {
   313   if (_dolock) {
   314     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   315   }
   316 }
   319 // -----------------------------------------------------------------------------
   320 //  Wait/Notify/NotifyAll
   321 // NOTE: must use heavy weight monitor to handle wait()
   322 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
   323   if (UseBiasedLocking) {
   324     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   325     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   326   }
   327   if (millis < 0) {
   328     TEVENT (wait - throw IAX) ;
   329     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   330   }
   331   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   332   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
   333   monitor->wait(millis, true, THREAD);
   335   /* This dummy call is in place to get around dtrace bug 6254741.  Once
   336      that's fixed we can uncomment the following line and remove the call */
   337   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
   338   dtrace_waited_probe(monitor, obj, THREAD);
   339 }
   341 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
   342   if (UseBiasedLocking) {
   343     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   344     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   345   }
   346   if (millis < 0) {
   347     TEVENT (wait - throw IAX) ;
   348     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   349   }
   350   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
   351 }
   353 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
   354  if (UseBiasedLocking) {
   355     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   356     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   357   }
   359   markOop mark = obj->mark();
   360   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   361     return;
   362   }
   363   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
   364 }
   366 // NOTE: see comment of notify()
   367 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
   368   if (UseBiasedLocking) {
   369     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   370     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   371   }
   373   markOop mark = obj->mark();
   374   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   375     return;
   376   }
   377   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
   378 }
   380 // -----------------------------------------------------------------------------
   381 // Hash Code handling
   382 //
   383 // Performance concern:
   384 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   385 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   386 // Many threads STing into a common location causes considerable cache migration
   387 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
   388 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
   389 // latency on the executing processor -- is a better choice as it scales on SMP
   390 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
   391 // discussion of coherency costs.  Note that all our current reference platforms
   392 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
   393 //
   394 // As a general policy we use "volatile" to control compiler-based reordering
   395 // and explicit fences (barriers) to control for architectural reordering performed
   396 // by the CPU(s) or platform.
   398 static int  MBFence (int x) { OrderAccess::fence(); return x; }
   400 struct SharedGlobals {
   401     // These are highly shared mostly-read variables.
   402     // To avoid false-sharing they need to be the sole occupants of a $ line.
   403     double padPrefix [8];
   404     volatile int stwRandom ;
   405     volatile int stwCycle ;
   407     // Hot RW variables -- Sequester to avoid false-sharing
   408     double padSuffix [16];
   409     volatile int hcSequence ;
   410     double padFinal [8] ;
   411 } ;
   413 static SharedGlobals GVars ;
   414 static int MonitorScavengeThreshold = 1000000 ;
   415 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
   417 static markOop ReadStableMark (oop obj) {
   418   markOop mark = obj->mark() ;
   419   if (!mark->is_being_inflated()) {
   420     return mark ;       // normal fast-path return
   421   }
   423   int its = 0 ;
   424   for (;;) {
   425     markOop mark = obj->mark() ;
   426     if (!mark->is_being_inflated()) {
   427       return mark ;    // normal fast-path return
   428     }
   430     // The object is being inflated by some other thread.
   431     // The caller of ReadStableMark() must wait for inflation to complete.
   432     // Avoid live-lock
   433     // TODO: consider calling SafepointSynchronize::do_call_back() while
   434     // spinning to see if there's a safepoint pending.  If so, immediately
   435     // yielding or blocking would be appropriate.  Avoid spinning while
   436     // there is a safepoint pending.
   437     // TODO: add inflation contention performance counters.
   438     // TODO: restrict the aggregate number of spinners.
   440     ++its ;
   441     if (its > 10000 || !os::is_MP()) {
   442        if (its & 1) {
   443          os::NakedYield() ;
   444          TEVENT (Inflate: INFLATING - yield) ;
   445        } else {
   446          // Note that the following code attenuates the livelock problem but is not
   447          // a complete remedy.  A more complete solution would require that the inflating
   448          // thread hold the associated inflation lock.  The following code simply restricts
   449          // the number of spinners to at most one.  We'll have N-2 threads blocked
   450          // on the inflationlock, 1 thread holding the inflation lock and using
   451          // a yield/park strategy, and 1 thread in the midst of inflation.
   452          // A more refined approach would be to change the encoding of INFLATING
   453          // to allow encapsulation of a native thread pointer.  Threads waiting for
   454          // inflation to complete would use CAS to push themselves onto a singly linked
   455          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
   456          // and calling park().  When inflation was complete the thread that accomplished inflation
   457          // would detach the list and set the markword to inflated with a single CAS and
   458          // then for each thread on the list, set the flag and unpark() the thread.
   459          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
   460          // wakes at most one thread whereas we need to wake the entire list.
   461          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
   462          int YieldThenBlock = 0 ;
   463          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
   464          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
   465          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
   466          while (obj->mark() == markOopDesc::INFLATING()) {
   467            // Beware: NakedYield() is advisory and has almost no effect on some platforms
   468            // so we periodically call Self->_ParkEvent->park(1).
   469            // We use a mixed spin/yield/block mechanism.
   470            if ((YieldThenBlock++) >= 16) {
   471               Thread::current()->_ParkEvent->park(1) ;
   472            } else {
   473               os::NakedYield() ;
   474            }
   475          }
   476          Thread::muxRelease (InflationLocks + ix ) ;
   477          TEVENT (Inflate: INFLATING - yield/park) ;
   478        }
   479     } else {
   480        SpinPause() ;       // SMP-polite spinning
   481     }
   482   }
   483 }
   485 // hashCode() generation :
   486 //
   487 // Possibilities:
   488 // * MD5Digest of {obj,stwRandom}
   489 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
   490 // * A DES- or AES-style SBox[] mechanism
   491 // * One of the Phi-based schemes, such as:
   492 //   2654435761 = 2^32 * Phi (golden ratio)
   493 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
   494 // * A variation of Marsaglia's shift-xor RNG scheme.
   495 // * (obj ^ stwRandom) is appealing, but can result
   496 //   in undesirable regularity in the hashCode values of adjacent objects
   497 //   (objects allocated back-to-back, in particular).  This could potentially
   498 //   result in hashtable collisions and reduced hashtable efficiency.
   499 //   There are simple ways to "diffuse" the middle address bits over the
   500 //   generated hashCode values:
   501 //
   503 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
   504   intptr_t value = 0 ;
   505   if (hashCode == 0) {
   506      // This form uses an unguarded global Park-Miller RNG,
   507      // so it's possible for two threads to race and generate the same RNG.
   508      // On MP system we'll have lots of RW access to a global, so the
   509      // mechanism induces lots of coherency traffic.
   510      value = os::random() ;
   511   } else
   512   if (hashCode == 1) {
   513      // This variation has the property of being stable (idempotent)
   514      // between STW operations.  This can be useful in some of the 1-0
   515      // synchronization schemes.
   516      intptr_t addrBits = intptr_t(obj) >> 3 ;
   517      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   518   } else
   519   if (hashCode == 2) {
   520      value = 1 ;            // for sensitivity testing
   521   } else
   522   if (hashCode == 3) {
   523      value = ++GVars.hcSequence ;
   524   } else
   525   if (hashCode == 4) {
   526      value = intptr_t(obj) ;
   527   } else {
   528      // Marsaglia's xor-shift scheme with thread-specific state
   529      // This is probably the best overall implementation -- we'll
   530      // likely make this the default in future releases.
   531      unsigned t = Self->_hashStateX ;
   532      t ^= (t << 11) ;
   533      Self->_hashStateX = Self->_hashStateY ;
   534      Self->_hashStateY = Self->_hashStateZ ;
   535      Self->_hashStateZ = Self->_hashStateW ;
   536      unsigned v = Self->_hashStateW ;
   537      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
   538      Self->_hashStateW = v ;
   539      value = v ;
   540   }
   542   value &= markOopDesc::hash_mask;
   543   if (value == 0) value = 0xBAD ;
   544   assert (value != markOopDesc::no_hash, "invariant") ;
   545   TEVENT (hashCode: GENERATE) ;
   546   return value;
   547 }
   548 //
   549 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
   550   if (UseBiasedLocking) {
   551     // NOTE: many places throughout the JVM do not expect a safepoint
   552     // to be taken here, in particular most operations on perm gen
   553     // objects. However, we only ever bias Java instances and all of
   554     // the call sites of identity_hash that might revoke biases have
   555     // been checked to make sure they can handle a safepoint. The
   556     // added check of the bias pattern is to avoid useless calls to
   557     // thread-local storage.
   558     if (obj->mark()->has_bias_pattern()) {
   559       // Box and unbox the raw reference just in case we cause a STW safepoint.
   560       Handle hobj (Self, obj) ;
   561       // Relaxing assertion for bug 6320749.
   562       assert (Universe::verify_in_progress() ||
   563               !SafepointSynchronize::is_at_safepoint(),
   564              "biases should not be seen by VM thread here");
   565       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
   566       obj = hobj() ;
   567       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   568     }
   569   }
   571   // hashCode() is a heap mutator ...
   572   // Relaxing assertion for bug 6320749.
   573   assert (Universe::verify_in_progress() ||
   574           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
   575   assert (Universe::verify_in_progress() ||
   576           Self->is_Java_thread() , "invariant") ;
   577   assert (Universe::verify_in_progress() ||
   578          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   580   ObjectMonitor* monitor = NULL;
   581   markOop temp, test;
   582   intptr_t hash;
   583   markOop mark = ReadStableMark (obj);
   585   // object should remain ineligible for biased locking
   586   assert (!mark->has_bias_pattern(), "invariant") ;
   588   if (mark->is_neutral()) {
   589     hash = mark->hash();              // this is a normal header
   590     if (hash) {                       // if it has hash, just return it
   591       return hash;
   592     }
   593     hash = get_next_hash(Self, obj);  // allocate a new hash code
   594     temp = mark->copy_set_hash(hash); // merge the hash code into header
   595     // use (machine word version) atomic operation to install the hash
   596     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
   597     if (test == mark) {
   598       return hash;
   599     }
   600     // If atomic operation failed, we must inflate the header
   601     // into heavy weight monitor. We could add more code here
   602     // for fast path, but it does not worth the complexity.
   603   } else if (mark->has_monitor()) {
   604     monitor = mark->monitor();
   605     temp = monitor->header();
   606     assert (temp->is_neutral(), "invariant") ;
   607     hash = temp->hash();
   608     if (hash) {
   609       return hash;
   610     }
   611     // Skip to the following code to reduce code size
   612   } else if (Self->is_lock_owned((address)mark->locker())) {
   613     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
   614     assert (temp->is_neutral(), "invariant") ;
   615     hash = temp->hash();              // by current thread, check if the displaced
   616     if (hash) {                       // header contains hash code
   617       return hash;
   618     }
   619     // WARNING:
   620     //   The displaced header is strictly immutable.
   621     // It can NOT be changed in ANY cases. So we have
   622     // to inflate the header into heavyweight monitor
   623     // even the current thread owns the lock. The reason
   624     // is the BasicLock (stack slot) will be asynchronously
   625     // read by other threads during the inflate() function.
   626     // Any change to stack may not propagate to other threads
   627     // correctly.
   628   }
   630   // Inflate the monitor to set hash code
   631   monitor = ObjectSynchronizer::inflate(Self, obj);
   632   // Load displaced header and check it has hash code
   633   mark = monitor->header();
   634   assert (mark->is_neutral(), "invariant") ;
   635   hash = mark->hash();
   636   if (hash == 0) {
   637     hash = get_next_hash(Self, obj);
   638     temp = mark->copy_set_hash(hash); // merge hash code into header
   639     assert (temp->is_neutral(), "invariant") ;
   640     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
   641     if (test != mark) {
   642       // The only update to the header in the monitor (outside GC)
   643       // is install the hash code. If someone add new usage of
   644       // displaced header, please update this code
   645       hash = test->hash();
   646       assert (test->is_neutral(), "invariant") ;
   647       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
   648     }
   649   }
   650   // We finally get the hash
   651   return hash;
   652 }
   654 // Deprecated -- use FastHashCode() instead.
   656 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
   657   return FastHashCode (Thread::current(), obj()) ;
   658 }
   661 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
   662                                                    Handle h_obj) {
   663   if (UseBiasedLocking) {
   664     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
   665     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   666   }
   668   assert(thread == JavaThread::current(), "Can only be called on current thread");
   669   oop obj = h_obj();
   671   markOop mark = ReadStableMark (obj) ;
   673   // Uncontended case, header points to stack
   674   if (mark->has_locker()) {
   675     return thread->is_lock_owned((address)mark->locker());
   676   }
   677   // Contended case, header points to ObjectMonitor (tagged pointer)
   678   if (mark->has_monitor()) {
   679     ObjectMonitor* monitor = mark->monitor();
   680     return monitor->is_entered(thread) != 0 ;
   681   }
   682   // Unlocked case, header in place
   683   assert(mark->is_neutral(), "sanity check");
   684   return false;
   685 }
   687 // Be aware of this method could revoke bias of the lock object.
   688 // This method querys the ownership of the lock handle specified by 'h_obj'.
   689 // If the current thread owns the lock, it returns owner_self. If no
   690 // thread owns the lock, it returns owner_none. Otherwise, it will return
   691 // ower_other.
   692 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
   693 (JavaThread *self, Handle h_obj) {
   694   // The caller must beware this method can revoke bias, and
   695   // revocation can result in a safepoint.
   696   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   697   assert (self->thread_state() != _thread_blocked , "invariant") ;
   699   // Possible mark states: neutral, biased, stack-locked, inflated
   701   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
   702     // CASE: biased
   703     BiasedLocking::revoke_and_rebias(h_obj, false, self);
   704     assert(!h_obj->mark()->has_bias_pattern(),
   705            "biases should be revoked by now");
   706   }
   708   assert(self == JavaThread::current(), "Can only be called on current thread");
   709   oop obj = h_obj();
   710   markOop mark = ReadStableMark (obj) ;
   712   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
   713   if (mark->has_locker()) {
   714     return self->is_lock_owned((address)mark->locker()) ?
   715       owner_self : owner_other;
   716   }
   718   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
   719   // The Object:ObjectMonitor relationship is stable as long as we're
   720   // not at a safepoint.
   721   if (mark->has_monitor()) {
   722     void * owner = mark->monitor()->_owner ;
   723     if (owner == NULL) return owner_none ;
   724     return (owner == self ||
   725             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
   726   }
   728   // CASE: neutral
   729   assert(mark->is_neutral(), "sanity check");
   730   return owner_none ;           // it's unlocked
   731 }
   733 // FIXME: jvmti should call this
   734 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
   735   if (UseBiasedLocking) {
   736     if (SafepointSynchronize::is_at_safepoint()) {
   737       BiasedLocking::revoke_at_safepoint(h_obj);
   738     } else {
   739       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
   740     }
   741     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   742   }
   744   oop obj = h_obj();
   745   address owner = NULL;
   747   markOop mark = ReadStableMark (obj) ;
   749   // Uncontended case, header points to stack
   750   if (mark->has_locker()) {
   751     owner = (address) mark->locker();
   752   }
   754   // Contended case, header points to ObjectMonitor (tagged pointer)
   755   if (mark->has_monitor()) {
   756     ObjectMonitor* monitor = mark->monitor();
   757     assert(monitor != NULL, "monitor should be non-null");
   758     owner = (address) monitor->owner();
   759   }
   761   if (owner != NULL) {
   762     return Threads::owning_thread_from_monitor_owner(owner, doLock);
   763   }
   765   // Unlocked case, header in place
   766   // Cannot have assertion since this object may have been
   767   // locked by another thread when reaching here.
   768   // assert(mark->is_neutral(), "sanity check");
   770   return NULL;
   771 }
   772 // Visitors ...
   774 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
   775   ObjectMonitor* block = gBlockList;
   776   ObjectMonitor* mid;
   777   while (block) {
   778     assert(block->object() == CHAINMARKER, "must be a block header");
   779     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
   780       mid = block + i;
   781       oop object = (oop) mid->object();
   782       if (object != NULL) {
   783         closure->do_monitor(mid);
   784       }
   785     }
   786     block = (ObjectMonitor*) block->FreeNext;
   787   }
   788 }
   790 // Get the next block in the block list.
   791 static inline ObjectMonitor* next(ObjectMonitor* block) {
   792   assert(block->object() == CHAINMARKER, "must be a block header");
   793   block = block->FreeNext ;
   794   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
   795   return block;
   796 }
   799 void ObjectSynchronizer::oops_do(OopClosure* f) {
   800   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
   801   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
   802     assert(block->object() == CHAINMARKER, "must be a block header");
   803     for (int i = 1; i < _BLOCKSIZE; i++) {
   804       ObjectMonitor* mid = &block[i];
   805       if (mid->object() != NULL) {
   806         f->do_oop((oop*)mid->object_addr());
   807       }
   808     }
   809   }
   810 }
   813 // -----------------------------------------------------------------------------
   814 // ObjectMonitor Lifecycle
   815 // -----------------------
   816 // Inflation unlinks monitors from the global gFreeList and
   817 // associates them with objects.  Deflation -- which occurs at
   818 // STW-time -- disassociates idle monitors from objects.  Such
   819 // scavenged monitors are returned to the gFreeList.
   820 //
   821 // The global list is protected by ListLock.  All the critical sections
   822 // are short and operate in constant-time.
   823 //
   824 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
   825 //
   826 // Lifecycle:
   827 // --   unassigned and on the global free list
   828 // --   unassigned and on a thread's private omFreeList
   829 // --   assigned to an object.  The object is inflated and the mark refers
   830 //      to the objectmonitor.
   831 //
   834 // Constraining monitor pool growth via MonitorBound ...
   835 //
   836 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
   837 // the rate of scavenging is driven primarily by GC.  As such,  we can find
   838 // an inordinate number of monitors in circulation.
   839 // To avoid that scenario we can artificially induce a STW safepoint
   840 // if the pool appears to be growing past some reasonable bound.
   841 // Generally we favor time in space-time tradeoffs, but as there's no
   842 // natural back-pressure on the # of extant monitors we need to impose some
   843 // type of limit.  Beware that if MonitorBound is set to too low a value
   844 // we could just loop. In addition, if MonitorBound is set to a low value
   845 // we'll incur more safepoints, which are harmful to performance.
   846 // See also: GuaranteedSafepointInterval
   847 //
   848 // The current implementation uses asynchronous VM operations.
   849 //
   851 static void InduceScavenge (Thread * Self, const char * Whence) {
   852   // Induce STW safepoint to trim monitors
   853   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
   854   // More precisely, trigger an asynchronous STW safepoint as the number
   855   // of active monitors passes the specified threshold.
   856   // TODO: assert thread state is reasonable
   858   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
   859     if (ObjectMonitor::Knob_Verbose) {
   860       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   861       ::fflush(stdout) ;
   862     }
   863     // Induce a 'null' safepoint to scavenge monitors
   864     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
   865     // to the VMthread and have a lifespan longer than that of this activation record.
   866     // The VMThread will delete the op when completed.
   867     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
   869     if (ObjectMonitor::Knob_Verbose) {
   870       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   871       ::fflush(stdout) ;
   872     }
   873   }
   874 }
   875 /* Too slow for general assert or debug
   876 void ObjectSynchronizer::verifyInUse (Thread *Self) {
   877    ObjectMonitor* mid;
   878    int inusetally = 0;
   879    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
   880      inusetally ++;
   881    }
   882    assert(inusetally == Self->omInUseCount, "inuse count off");
   884    int freetally = 0;
   885    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
   886      freetally ++;
   887    }
   888    assert(freetally == Self->omFreeCount, "free count off");
   889 }
   890 */
   891 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
   892     // A large MAXPRIVATE value reduces both list lock contention
   893     // and list coherency traffic, but also tends to increase the
   894     // number of objectMonitors in circulation as well as the STW
   895     // scavenge costs.  As usual, we lean toward time in space-time
   896     // tradeoffs.
   897     const int MAXPRIVATE = 1024 ;
   898     for (;;) {
   899         ObjectMonitor * m ;
   901         // 1: try to allocate from the thread's local omFreeList.
   902         // Threads will attempt to allocate first from their local list, then
   903         // from the global list, and only after those attempts fail will the thread
   904         // attempt to instantiate new monitors.   Thread-local free lists take
   905         // heat off the ListLock and improve allocation latency, as well as reducing
   906         // coherency traffic on the shared global list.
   907         m = Self->omFreeList ;
   908         if (m != NULL) {
   909            Self->omFreeList = m->FreeNext ;
   910            Self->omFreeCount -- ;
   911            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
   912            guarantee (m->object() == NULL, "invariant") ;
   913            if (MonitorInUseLists) {
   914              m->FreeNext = Self->omInUseList;
   915              Self->omInUseList = m;
   916              Self->omInUseCount ++;
   917              // verifyInUse(Self);
   918            } else {
   919              m->FreeNext = NULL;
   920            }
   921            return m ;
   922         }
   924         // 2: try to allocate from the global gFreeList
   925         // CONSIDER: use muxTry() instead of muxAcquire().
   926         // If the muxTry() fails then drop immediately into case 3.
   927         // If we're using thread-local free lists then try
   928         // to reprovision the caller's free list.
   929         if (gFreeList != NULL) {
   930             // Reprovision the thread's omFreeList.
   931             // Use bulk transfers to reduce the allocation rate and heat
   932             // on various locks.
   933             Thread::muxAcquire (&ListLock, "omAlloc") ;
   934             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
   935                 MonitorFreeCount --;
   936                 ObjectMonitor * take = gFreeList ;
   937                 gFreeList = take->FreeNext ;
   938                 guarantee (take->object() == NULL, "invariant") ;
   939                 guarantee (!take->is_busy(), "invariant") ;
   940                 take->Recycle() ;
   941                 omRelease (Self, take, false) ;
   942             }
   943             Thread::muxRelease (&ListLock) ;
   944             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
   945             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
   946             TEVENT (omFirst - reprovision) ;
   948             const int mx = MonitorBound ;
   949             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
   950               // We can't safely induce a STW safepoint from omAlloc() as our thread
   951               // state may not be appropriate for such activities and callers may hold
   952               // naked oops, so instead we defer the action.
   953               InduceScavenge (Self, "omAlloc") ;
   954             }
   955             continue;
   956         }
   958         // 3: allocate a block of new ObjectMonitors
   959         // Both the local and global free lists are empty -- resort to malloc().
   960         // In the current implementation objectMonitors are TSM - immortal.
   961         assert (_BLOCKSIZE > 1, "invariant") ;
   962         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
   964         // NOTE: (almost) no way to recover if allocation failed.
   965         // We might be able to induce a STW safepoint and scavenge enough
   966         // objectMonitors to permit progress.
   967         if (temp == NULL) {
   968             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
   969         }
   971         // Format the block.
   972         // initialize the linked list, each monitor points to its next
   973         // forming the single linked free list, the very first monitor
   974         // will points to next block, which forms the block list.
   975         // The trick of using the 1st element in the block as gBlockList
   976         // linkage should be reconsidered.  A better implementation would
   977         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
   979         for (int i = 1; i < _BLOCKSIZE ; i++) {
   980            temp[i].FreeNext = &temp[i+1];
   981         }
   983         // terminate the last monitor as the end of list
   984         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
   986         // Element [0] is reserved for global list linkage
   987         temp[0].set_object(CHAINMARKER);
   989         // Consider carving out this thread's current request from the
   990         // block in hand.  This avoids some lock traffic and redundant
   991         // list activity.
   993         // Acquire the ListLock to manipulate BlockList and FreeList.
   994         // An Oyama-Taura-Yonezawa scheme might be more efficient.
   995         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
   996         MonitorPopulation += _BLOCKSIZE-1;
   997         MonitorFreeCount += _BLOCKSIZE-1;
   999         // Add the new block to the list of extant blocks (gBlockList).
  1000         // The very first objectMonitor in a block is reserved and dedicated.
  1001         // It serves as blocklist "next" linkage.
  1002         temp[0].FreeNext = gBlockList;
  1003         gBlockList = temp;
  1005         // Add the new string of objectMonitors to the global free list
  1006         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
  1007         gFreeList = temp + 1;
  1008         Thread::muxRelease (&ListLock) ;
  1009         TEVENT (Allocate block of monitors) ;
  1013 // Place "m" on the caller's private per-thread omFreeList.
  1014 // In practice there's no need to clamp or limit the number of
  1015 // monitors on a thread's omFreeList as the only time we'll call
  1016 // omRelease is to return a monitor to the free list after a CAS
  1017 // attempt failed.  This doesn't allow unbounded #s of monitors to
  1018 // accumulate on a thread's free list.
  1019 //
  1021 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
  1022     guarantee (m->object() == NULL, "invariant") ;
  1024     // Remove from omInUseList
  1025     if (MonitorInUseLists && fromPerThreadAlloc) {
  1026       ObjectMonitor* curmidinuse = NULL;
  1027       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
  1028        if (m == mid) {
  1029          // extract from per-thread in-use-list
  1030          if (mid == Self->omInUseList) {
  1031            Self->omInUseList = mid->FreeNext;
  1032          } else if (curmidinuse != NULL) {
  1033            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1035          Self->omInUseCount --;
  1036          // verifyInUse(Self);
  1037          break;
  1038        } else {
  1039          curmidinuse = mid;
  1040          mid = mid->FreeNext;
  1045   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
  1046   m->FreeNext = Self->omFreeList ;
  1047   Self->omFreeList = m ;
  1048   Self->omFreeCount ++ ;
  1051 // Return the monitors of a moribund thread's local free list to
  1052 // the global free list.  Typically a thread calls omFlush() when
  1053 // it's dying.  We could also consider having the VM thread steal
  1054 // monitors from threads that have not run java code over a few
  1055 // consecutive STW safepoints.  Relatedly, we might decay
  1056 // omFreeProvision at STW safepoints.
  1057 //
  1058 // Also return the monitors of a moribund thread"s omInUseList to
  1059 // a global gOmInUseList under the global list lock so these
  1060 // will continue to be scanned.
  1061 //
  1062 // We currently call omFlush() from the Thread:: dtor _after the thread
  1063 // has been excised from the thread list and is no longer a mutator.
  1064 // That means that omFlush() can run concurrently with a safepoint and
  1065 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
  1066 // be a better choice as we could safely reason that that the JVM is
  1067 // not at a safepoint at the time of the call, and thus there could
  1068 // be not inopportune interleavings between omFlush() and the scavenge
  1069 // operator.
  1071 void ObjectSynchronizer::omFlush (Thread * Self) {
  1072     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
  1073     Self->omFreeList = NULL ;
  1074     ObjectMonitor * Tail = NULL ;
  1075     int Tally = 0;
  1076     if (List != NULL) {
  1077       ObjectMonitor * s ;
  1078       for (s = List ; s != NULL ; s = s->FreeNext) {
  1079           Tally ++ ;
  1080           Tail = s ;
  1081           guarantee (s->object() == NULL, "invariant") ;
  1082           guarantee (!s->is_busy(), "invariant") ;
  1083           s->set_owner (NULL) ;   // redundant but good hygiene
  1084           TEVENT (omFlush - Move one) ;
  1086       guarantee (Tail != NULL && List != NULL, "invariant") ;
  1089     ObjectMonitor * InUseList = Self->omInUseList;
  1090     ObjectMonitor * InUseTail = NULL ;
  1091     int InUseTally = 0;
  1092     if (InUseList != NULL) {
  1093       Self->omInUseList = NULL;
  1094       ObjectMonitor *curom;
  1095       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
  1096         InUseTail = curom;
  1097         InUseTally++;
  1099 // TODO debug
  1100       assert(Self->omInUseCount == InUseTally, "inuse count off");
  1101       Self->omInUseCount = 0;
  1102       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
  1105     Thread::muxAcquire (&ListLock, "omFlush") ;
  1106     if (Tail != NULL) {
  1107       Tail->FreeNext = gFreeList ;
  1108       gFreeList = List ;
  1109       MonitorFreeCount += Tally;
  1112     if (InUseTail != NULL) {
  1113       InUseTail->FreeNext = gOmInUseList;
  1114       gOmInUseList = InUseList;
  1115       gOmInUseCount += InUseTally;
  1118     Thread::muxRelease (&ListLock) ;
  1119     TEVENT (omFlush) ;
  1122 // Fast path code shared by multiple functions
  1123 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  1124   markOop mark = obj->mark();
  1125   if (mark->has_monitor()) {
  1126     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
  1127     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
  1128     return mark->monitor();
  1130   return ObjectSynchronizer::inflate(Thread::current(), obj);
  1134 // Note that we could encounter some performance loss through false-sharing as
  1135 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1138 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1139   // Inflate mutates the heap ...
  1140   // Relaxing assertion for bug 6320749.
  1141   assert (Universe::verify_in_progress() ||
  1142           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1144   for (;;) {
  1145       const markOop mark = object->mark() ;
  1146       assert (!mark->has_bias_pattern(), "invariant") ;
  1148       // The mark can be in one of the following states:
  1149       // *  Inflated     - just return
  1150       // *  Stack-locked - coerce it to inflated
  1151       // *  INFLATING    - busy wait for conversion to complete
  1152       // *  Neutral      - aggressively inflate the object.
  1153       // *  BIASED       - Illegal.  We should never see this
  1155       // CASE: inflated
  1156       if (mark->has_monitor()) {
  1157           ObjectMonitor * inf = mark->monitor() ;
  1158           assert (inf->header()->is_neutral(), "invariant");
  1159           assert (inf->object() == object, "invariant") ;
  1160           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
  1161           return inf ;
  1164       // CASE: inflation in progress - inflating over a stack-lock.
  1165       // Some other thread is converting from stack-locked to inflated.
  1166       // Only that thread can complete inflation -- other threads must wait.
  1167       // The INFLATING value is transient.
  1168       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
  1169       // We could always eliminate polling by parking the thread on some auxiliary list.
  1170       if (mark == markOopDesc::INFLATING()) {
  1171          TEVENT (Inflate: spin while INFLATING) ;
  1172          ReadStableMark(object) ;
  1173          continue ;
  1176       // CASE: stack-locked
  1177       // Could be stack-locked either by this thread or by some other thread.
  1178       //
  1179       // Note that we allocate the objectmonitor speculatively, _before_ attempting
  1180       // to install INFLATING into the mark word.  We originally installed INFLATING,
  1181       // allocated the objectmonitor, and then finally STed the address of the
  1182       // objectmonitor into the mark.  This was correct, but artificially lengthened
  1183       // the interval in which INFLATED appeared in the mark, thus increasing
  1184       // the odds of inflation contention.
  1185       //
  1186       // We now use per-thread private objectmonitor free lists.
  1187       // These list are reprovisioned from the global free list outside the
  1188       // critical INFLATING...ST interval.  A thread can transfer
  1189       // multiple objectmonitors en-mass from the global free list to its local free list.
  1190       // This reduces coherency traffic and lock contention on the global free list.
  1191       // Using such local free lists, it doesn't matter if the omAlloc() call appears
  1192       // before or after the CAS(INFLATING) operation.
  1193       // See the comments in omAlloc().
  1195       if (mark->has_locker()) {
  1196           ObjectMonitor * m = omAlloc (Self) ;
  1197           // Optimistically prepare the objectmonitor - anticipate successful CAS
  1198           // We do this before the CAS in order to minimize the length of time
  1199           // in which INFLATING appears in the mark.
  1200           m->Recycle();
  1201           m->_Responsible  = NULL ;
  1202           m->OwnerIsThread = 0 ;
  1203           m->_recursions   = 0 ;
  1204           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
  1206           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1207           if (cmp != mark) {
  1208              omRelease (Self, m, true) ;
  1209              continue ;       // Interference -- just retry
  1212           // We've successfully installed INFLATING (0) into the mark-word.
  1213           // This is the only case where 0 will appear in a mark-work.
  1214           // Only the singular thread that successfully swings the mark-word
  1215           // to 0 can perform (or more precisely, complete) inflation.
  1216           //
  1217           // Why do we CAS a 0 into the mark-word instead of just CASing the
  1218           // mark-word from the stack-locked value directly to the new inflated state?
  1219           // Consider what happens when a thread unlocks a stack-locked object.
  1220           // It attempts to use CAS to swing the displaced header value from the
  1221           // on-stack basiclock back into the object header.  Recall also that the
  1222           // header value (hashcode, etc) can reside in (a) the object header, or
  1223           // (b) a displaced header associated with the stack-lock, or (c) a displaced
  1224           // header in an objectMonitor.  The inflate() routine must copy the header
  1225           // value from the basiclock on the owner's stack to the objectMonitor, all
  1226           // the while preserving the hashCode stability invariants.  If the owner
  1227           // decides to release the lock while the value is 0, the unlock will fail
  1228           // and control will eventually pass from slow_exit() to inflate.  The owner
  1229           // will then spin, waiting for the 0 value to disappear.   Put another way,
  1230           // the 0 causes the owner to stall if the owner happens to try to
  1231           // drop the lock (restoring the header from the basiclock to the object)
  1232           // while inflation is in-progress.  This protocol avoids races that might
  1233           // would otherwise permit hashCode values to change or "flicker" for an object.
  1234           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
  1235           // 0 serves as a "BUSY" inflate-in-progress indicator.
  1238           // fetch the displaced mark from the owner's stack.
  1239           // The owner can't die or unwind past the lock while our INFLATING
  1240           // object is in the mark.  Furthermore the owner can't complete
  1241           // an unlock on the object, either.
  1242           markOop dmw = mark->displaced_mark_helper() ;
  1243           assert (dmw->is_neutral(), "invariant") ;
  1245           // Setup monitor fields to proper values -- prepare the monitor
  1246           m->set_header(dmw) ;
  1248           // Optimization: if the mark->locker stack address is associated
  1249           // with this thread we could simply set m->_owner = Self and
  1250           // m->OwnerIsThread = 1. Note that a thread can inflate an object
  1251           // that it has stack-locked -- as might happen in wait() -- directly
  1252           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
  1253           m->set_owner(mark->locker());
  1254           m->set_object(object);
  1255           // TODO-FIXME: assert BasicLock->dhw != 0.
  1257           // Must preserve store ordering. The monitor state must
  1258           // be stable at the time of publishing the monitor address.
  1259           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
  1260           object->release_set_mark(markOopDesc::encode(m));
  1262           // Hopefully the performance counters are allocated on distinct cache lines
  1263           // to avoid false sharing on MP systems ...
  1264           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1265           TEVENT(Inflate: overwrite stacklock) ;
  1266           if (TraceMonitorInflation) {
  1267             if (object->is_instance()) {
  1268               ResourceMark rm;
  1269               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1270                 (intptr_t) object, (intptr_t) object->mark(),
  1271                 Klass::cast(object->klass())->external_name());
  1274           return m ;
  1277       // CASE: neutral
  1278       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
  1279       // If we know we're inflating for entry it's better to inflate by swinging a
  1280       // pre-locked objectMonitor pointer into the object header.   A successful
  1281       // CAS inflates the object *and* confers ownership to the inflating thread.
  1282       // In the current implementation we use a 2-step mechanism where we CAS()
  1283       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
  1284       // An inflateTry() method that we could call from fast_enter() and slow_enter()
  1285       // would be useful.
  1287       assert (mark->is_neutral(), "invariant");
  1288       ObjectMonitor * m = omAlloc (Self) ;
  1289       // prepare m for installation - set monitor to initial state
  1290       m->Recycle();
  1291       m->set_header(mark);
  1292       m->set_owner(NULL);
  1293       m->set_object(object);
  1294       m->OwnerIsThread = 1 ;
  1295       m->_recursions   = 0 ;
  1296       m->_Responsible  = NULL ;
  1297       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
  1299       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1300           m->set_object (NULL) ;
  1301           m->set_owner  (NULL) ;
  1302           m->OwnerIsThread = 0 ;
  1303           m->Recycle() ;
  1304           omRelease (Self, m, true) ;
  1305           m = NULL ;
  1306           continue ;
  1307           // interference - the markword changed - just retry.
  1308           // The state-transitions are one-way, so there's no chance of
  1309           // live-lock -- "Inflated" is an absorbing state.
  1312       // Hopefully the performance counters are allocated on distinct
  1313       // cache lines to avoid false sharing on MP systems ...
  1314       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1315       TEVENT(Inflate: overwrite neutral) ;
  1316       if (TraceMonitorInflation) {
  1317         if (object->is_instance()) {
  1318           ResourceMark rm;
  1319           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1320             (intptr_t) object, (intptr_t) object->mark(),
  1321             Klass::cast(object->klass())->external_name());
  1324       return m ;
  1328 // Note that we could encounter some performance loss through false-sharing as
  1329 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1332 // Deflate_idle_monitors() is called at all safepoints, immediately
  1333 // after all mutators are stopped, but before any objects have moved.
  1334 // It traverses the list of known monitors, deflating where possible.
  1335 // The scavenged monitor are returned to the monitor free list.
  1336 //
  1337 // Beware that we scavenge at *every* stop-the-world point.
  1338 // Having a large number of monitors in-circulation negatively
  1339 // impacts the performance of some applications (e.g., PointBase).
  1340 // Broadly, we want to minimize the # of monitors in circulation.
  1341 //
  1342 // We have added a flag, MonitorInUseLists, which creates a list
  1343 // of active monitors for each thread. deflate_idle_monitors()
  1344 // only scans the per-thread inuse lists. omAlloc() puts all
  1345 // assigned monitors on the per-thread list. deflate_idle_monitors()
  1346 // returns the non-busy monitors to the global free list.
  1347 // When a thread dies, omFlush() adds the list of active monitors for
  1348 // that thread to a global gOmInUseList acquiring the
  1349 // global list lock. deflate_idle_monitors() acquires the global
  1350 // list lock to scan for non-busy monitors to the global free list.
  1351 // An alternative could have used a single global inuse list. The
  1352 // downside would have been the additional cost of acquiring the global list lock
  1353 // for every omAlloc().
  1354 //
  1355 // Perversely, the heap size -- and thus the STW safepoint rate --
  1356 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
  1357 // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1358 // This is an unfortunate aspect of this design.
  1359 //
  1361 enum ManifestConstants {
  1362     ClearResponsibleAtSTW   = 0,
  1363     MaximumRecheckInterval  = 1000
  1364 } ;
  1366 // Deflate a single monitor if not in use
  1367 // Return true if deflated, false if in use
  1368 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
  1369                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1370   bool deflated;
  1371   // Normal case ... The monitor is associated with obj.
  1372   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  1373   guarantee (mid == obj->mark()->monitor(), "invariant");
  1374   guarantee (mid->header()->is_neutral(), "invariant");
  1376   if (mid->is_busy()) {
  1377      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
  1378      deflated = false;
  1379   } else {
  1380      // Deflate the monitor if it is no longer being used
  1381      // It's idle - scavenge and return to the global free list
  1382      // plain old deflation ...
  1383      TEVENT (deflate_idle_monitors - scavenge1) ;
  1384      if (TraceMonitorInflation) {
  1385        if (obj->is_instance()) {
  1386          ResourceMark rm;
  1387            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1388                 (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
  1392      // Restore the header back to obj
  1393      obj->release_set_mark(mid->header());
  1394      mid->clear();
  1396      assert (mid->object() == NULL, "invariant") ;
  1398      // Move the object to the working free list defined by FreeHead,FreeTail.
  1399      if (*FreeHeadp == NULL) *FreeHeadp = mid;
  1400      if (*FreeTailp != NULL) {
  1401        ObjectMonitor * prevtail = *FreeTailp;
  1402        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
  1403        prevtail->FreeNext = mid;
  1405      *FreeTailp = mid;
  1406      deflated = true;
  1408   return deflated;
  1411 // Caller acquires ListLock
  1412 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
  1413                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1414   ObjectMonitor* mid;
  1415   ObjectMonitor* next;
  1416   ObjectMonitor* curmidinuse = NULL;
  1417   int deflatedcount = 0;
  1419   for (mid = *listheadp; mid != NULL; ) {
  1420      oop obj = (oop) mid->object();
  1421      bool deflated = false;
  1422      if (obj != NULL) {
  1423        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
  1425      if (deflated) {
  1426        // extract from per-thread in-use-list
  1427        if (mid == *listheadp) {
  1428          *listheadp = mid->FreeNext;
  1429        } else if (curmidinuse != NULL) {
  1430          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1432        next = mid->FreeNext;
  1433        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
  1434        mid = next;
  1435        deflatedcount++;
  1436      } else {
  1437        curmidinuse = mid;
  1438        mid = mid->FreeNext;
  1441   return deflatedcount;
  1444 void ObjectSynchronizer::deflate_idle_monitors() {
  1445   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1446   int nInuse = 0 ;              // currently associated with objects
  1447   int nInCirculation = 0 ;      // extant
  1448   int nScavenged = 0 ;          // reclaimed
  1449   bool deflated = false;
  1451   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  1452   ObjectMonitor * FreeTail = NULL ;
  1454   TEVENT (deflate_idle_monitors) ;
  1455   // Prevent omFlush from changing mids in Thread dtor's during deflation
  1456   // And in case the vm thread is acquiring a lock during a safepoint
  1457   // See e.g. 6320749
  1458   Thread::muxAcquire (&ListLock, "scavenge - return") ;
  1460   if (MonitorInUseLists) {
  1461     int inUse = 0;
  1462     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
  1463       nInCirculation+= cur->omInUseCount;
  1464       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
  1465       cur->omInUseCount-= deflatedcount;
  1466       // verifyInUse(cur);
  1467       nScavenged += deflatedcount;
  1468       nInuse += cur->omInUseCount;
  1471    // For moribund threads, scan gOmInUseList
  1472    if (gOmInUseList) {
  1473      nInCirculation += gOmInUseCount;
  1474      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
  1475      gOmInUseCount-= deflatedcount;
  1476      nScavenged += deflatedcount;
  1477      nInuse += gOmInUseCount;
  1480   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1481   // Iterate over all extant monitors - Scavenge all idle monitors.
  1482     assert(block->object() == CHAINMARKER, "must be a block header");
  1483     nInCirculation += _BLOCKSIZE ;
  1484     for (int i = 1 ; i < _BLOCKSIZE; i++) {
  1485       ObjectMonitor* mid = &block[i];
  1486       oop obj = (oop) mid->object();
  1488       if (obj == NULL) {
  1489         // The monitor is not associated with an object.
  1490         // The monitor should either be a thread-specific private
  1491         // free list or the global free list.
  1492         // obj == NULL IMPLIES mid->is_busy() == 0
  1493         guarantee (!mid->is_busy(), "invariant") ;
  1494         continue ;
  1496       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
  1498       if (deflated) {
  1499         mid->FreeNext = NULL ;
  1500         nScavenged ++ ;
  1501       } else {
  1502         nInuse ++;
  1507   MonitorFreeCount += nScavenged;
  1509   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
  1511   if (ObjectMonitor::Knob_Verbose) {
  1512     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
  1513         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
  1514         MonitorPopulation, MonitorFreeCount) ;
  1515     ::fflush(stdout) ;
  1518   ForceMonitorScavenge = 0;    // Reset
  1520   // Move the scavenged monitors back to the global free list.
  1521   if (FreeHead != NULL) {
  1522      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
  1523      assert (FreeTail->FreeNext == NULL, "invariant") ;
  1524      // constant-time list splice - prepend scavenged segment to gFreeList
  1525      FreeTail->FreeNext = gFreeList ;
  1526      gFreeList = FreeHead ;
  1528   Thread::muxRelease (&ListLock) ;
  1530   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
  1531   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
  1533   // TODO: Add objectMonitor leak detection.
  1534   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  1535   GVars.stwRandom = os::random() ;
  1536   GVars.stwCycle ++ ;
  1539 // Monitor cleanup on JavaThread::exit
  1541 // Iterate through monitor cache and attempt to release thread's monitors
  1542 // Gives up on a particular monitor if an exception occurs, but continues
  1543 // the overall iteration, swallowing the exception.
  1544 class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1545 private:
  1546   TRAPS;
  1548 public:
  1549   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1550   void do_monitor(ObjectMonitor* mid) {
  1551     if (mid->owner() == THREAD) {
  1552       (void)mid->complete_exit(CHECK);
  1555 };
  1557 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1558 // ignored.  This is meant to be called during JNI thread detach which assumes
  1559 // all remaining monitors are heavyweight.  All exceptions are swallowed.
  1560 // Scanning the extant monitor list can be time consuming.
  1561 // A simple optimization is to add a per-thread flag that indicates a thread
  1562 // called jni_monitorenter() during its lifetime.
  1563 //
  1564 // Instead of No_Savepoint_Verifier it might be cheaper to
  1565 // use an idiom of the form:
  1566 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1567 //   <code that must not run at safepoint>
  1568 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1569 // Since the tests are extremely cheap we could leave them enabled
  1570 // for normal product builds.
  1572 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1573   assert(THREAD == JavaThread::current(), "must be current Java thread");
  1574   No_Safepoint_Verifier nsv ;
  1575   ReleaseJavaMonitorsClosure rjmc(THREAD);
  1576   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1577   ObjectSynchronizer::monitors_iterate(&rjmc);
  1578   Thread::muxRelease(&ListLock);
  1579   THREAD->clear_pending_exception();
  1582 //------------------------------------------------------------------------------
  1583 // Non-product code
  1585 #ifndef PRODUCT
  1587 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
  1588                                        bool is_method, bool is_locking) {
  1589   // Don't know what to do here
  1592 // Verify all monitors in the monitor cache, the verification is weak.
  1593 void ObjectSynchronizer::verify() {
  1594   ObjectMonitor* block = gBlockList;
  1595   ObjectMonitor* mid;
  1596   while (block) {
  1597     assert(block->object() == CHAINMARKER, "must be a block header");
  1598     for (int i = 1; i < _BLOCKSIZE; i++) {
  1599       mid = block + i;
  1600       oop object = (oop) mid->object();
  1601       if (object != NULL) {
  1602         mid->verify();
  1605     block = (ObjectMonitor*) block->FreeNext;
  1609 // Check if monitor belongs to the monitor cache
  1610 // The list is grow-only so it's *relatively* safe to traverse
  1611 // the list of extant blocks without taking a lock.
  1613 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  1614   ObjectMonitor* block = gBlockList;
  1616   while (block) {
  1617     assert(block->object() == CHAINMARKER, "must be a block header");
  1618     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
  1619       address mon = (address) monitor;
  1620       address blk = (address) block;
  1621       size_t diff = mon - blk;
  1622       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
  1623       return 1;
  1625     block = (ObjectMonitor*) block->FreeNext;
  1627   return 0;
  1630 #endif

mercurial