src/share/vm/runtime/synchronizer.cpp

changeset 2233
fa83ab460c54
parent 1995
bfc89697cccb
child 2314
f95d63e2154a
     1.1 --- a/src/share/vm/runtime/synchronizer.cpp	Mon Oct 18 09:33:24 2010 -0700
     1.2 +++ b/src/share/vm/runtime/synchronizer.cpp	Fri Oct 22 15:59:34 2010 -0400
     1.3 @@ -32,15 +32,12 @@
     1.4    #define ATTR
     1.5  #endif
     1.6  
     1.7 -// Native markword accessors for synchronization and hashCode().
     1.8 -//
     1.9  // The "core" versions of monitor enter and exit reside in this file.
    1.10  // The interpreter and compilers contain specialized transliterated
    1.11  // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    1.12  // for instance.  If you make changes here, make sure to modify the
    1.13  // interpreter, and both C1 and C2 fast-path inline locking code emission.
    1.14  //
    1.15 -// TODO: merge the objectMonitor and synchronizer classes.
    1.16  //
    1.17  // -----------------------------------------------------------------------------
    1.18  
    1.19 @@ -53,16 +50,6 @@
    1.20    jlong, uintptr_t, char*, int, long);
    1.21  HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    1.22    jlong, uintptr_t, char*, int);
    1.23 -HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    1.24 -  jlong, uintptr_t, char*, int);
    1.25 -HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    1.26 -  jlong, uintptr_t, char*, int);
    1.27 -HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    1.28 -  jlong, uintptr_t, char*, int);
    1.29 -HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    1.30 -  jlong, uintptr_t, char*, int);
    1.31 -HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    1.32 -  jlong, uintptr_t, char*, int);
    1.33  
    1.34  #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    1.35    char* bytes = NULL;                                                      \
    1.36 @@ -99,61 +86,300 @@
    1.37  
    1.38  #endif // ndef DTRACE_ENABLED
    1.39  
    1.40 -// ObjectWaiter serves as a "proxy" or surrogate thread.
    1.41 -// TODO-FIXME: Eliminate ObjectWaiter and use the thread-specific
    1.42 -// ParkEvent instead.  Beware, however, that the JVMTI code
    1.43 -// knows about ObjectWaiters, so we'll have to reconcile that code.
    1.44 -// See next_waiter(), first_waiter(), etc.
    1.45 +// This exists only as a workaround of dtrace bug 6254741
    1.46 +int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
    1.47 +  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
    1.48 +  return 0;
    1.49 +}
    1.50  
    1.51 -class ObjectWaiter : public StackObj {
    1.52 - public:
    1.53 -  enum TStates { TS_UNDEF, TS_READY, TS_RUN, TS_WAIT, TS_ENTER, TS_CXQ } ;
    1.54 -  enum Sorted  { PREPEND, APPEND, SORTED } ;
    1.55 -  ObjectWaiter * volatile _next;
    1.56 -  ObjectWaiter * volatile _prev;
    1.57 -  Thread*       _thread;
    1.58 -  ParkEvent *   _event;
    1.59 -  volatile int  _notified ;
    1.60 -  volatile TStates TState ;
    1.61 -  Sorted        _Sorted ;           // List placement disposition
    1.62 -  bool          _active ;           // Contention monitoring is enabled
    1.63 - public:
    1.64 -  ObjectWaiter(Thread* thread) {
    1.65 -    _next     = NULL;
    1.66 -    _prev     = NULL;
    1.67 -    _notified = 0;
    1.68 -    TState    = TS_RUN ;
    1.69 -    _thread   = thread;
    1.70 -    _event    = thread->_ParkEvent ;
    1.71 -    _active   = false;
    1.72 -    assert (_event != NULL, "invariant") ;
    1.73 +#define NINFLATIONLOCKS 256
    1.74 +static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
    1.75 +
    1.76 +ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
    1.77 +ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
    1.78 +ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
    1.79 +int ObjectSynchronizer::gOmInUseCount = 0;
    1.80 +static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
    1.81 +static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
    1.82 +static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
    1.83 +#define CHAINMARKER ((oop)-1)
    1.84 +
    1.85 +// -----------------------------------------------------------------------------
    1.86 +//  Fast Monitor Enter/Exit
    1.87 +// This the fast monitor enter. The interpreter and compiler use
    1.88 +// some assembly copies of this code. Make sure update those code
    1.89 +// if the following function is changed. The implementation is
    1.90 +// extremely sensitive to race condition. Be careful.
    1.91 +
    1.92 +void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
    1.93 + if (UseBiasedLocking) {
    1.94 +    if (!SafepointSynchronize::is_at_safepoint()) {
    1.95 +      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
    1.96 +      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
    1.97 +        return;
    1.98 +      }
    1.99 +    } else {
   1.100 +      assert(!attempt_rebias, "can not rebias toward VM thread");
   1.101 +      BiasedLocking::revoke_at_safepoint(obj);
   1.102 +    }
   1.103 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.104 + }
   1.105 +
   1.106 + slow_enter (obj, lock, THREAD) ;
   1.107 +}
   1.108 +
   1.109 +void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
   1.110 +  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
   1.111 +  // if displaced header is null, the previous enter is recursive enter, no-op
   1.112 +  markOop dhw = lock->displaced_header();
   1.113 +  markOop mark ;
   1.114 +  if (dhw == NULL) {
   1.115 +     // Recursive stack-lock.
   1.116 +     // Diagnostics -- Could be: stack-locked, inflating, inflated.
   1.117 +     mark = object->mark() ;
   1.118 +     assert (!mark->is_neutral(), "invariant") ;
   1.119 +     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
   1.120 +        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
   1.121 +     }
   1.122 +     if (mark->has_monitor()) {
   1.123 +        ObjectMonitor * m = mark->monitor() ;
   1.124 +        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
   1.125 +        assert(m->is_entered(THREAD), "invariant") ;
   1.126 +     }
   1.127 +     return ;
   1.128    }
   1.129  
   1.130 -  void wait_reenter_begin(ObjectMonitor *mon) {
   1.131 -    JavaThread *jt = (JavaThread *)this->_thread;
   1.132 -    _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
   1.133 +  mark = object->mark() ;
   1.134 +
   1.135 +  // If the object is stack-locked by the current thread, try to
   1.136 +  // swing the displaced header from the box back to the mark.
   1.137 +  if (mark == (markOop) lock) {
   1.138 +     assert (dhw->is_neutral(), "invariant") ;
   1.139 +     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
   1.140 +        TEVENT (fast_exit: release stacklock) ;
   1.141 +        return;
   1.142 +     }
   1.143    }
   1.144  
   1.145 -  void wait_reenter_end(ObjectMonitor *mon) {
   1.146 -    JavaThread *jt = (JavaThread *)this->_thread;
   1.147 -    JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
   1.148 +  ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
   1.149 +}
   1.150 +
   1.151 +// -----------------------------------------------------------------------------
   1.152 +// Interpreter/Compiler Slow Case
   1.153 +// This routine is used to handle interpreter/compiler slow case
   1.154 +// We don't need to use fast path here, because it must have been
   1.155 +// failed in the interpreter/compiler code.
   1.156 +void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
   1.157 +  markOop mark = obj->mark();
   1.158 +  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
   1.159 +
   1.160 +  if (mark->is_neutral()) {
   1.161 +    // Anticipate successful CAS -- the ST of the displaced mark must
   1.162 +    // be visible <= the ST performed by the CAS.
   1.163 +    lock->set_displaced_header(mark);
   1.164 +    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
   1.165 +      TEVENT (slow_enter: release stacklock) ;
   1.166 +      return ;
   1.167 +    }
   1.168 +    // Fall through to inflate() ...
   1.169 +  } else
   1.170 +  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   1.171 +    assert(lock != mark->locker(), "must not re-lock the same lock");
   1.172 +    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
   1.173 +    lock->set_displaced_header(NULL);
   1.174 +    return;
   1.175    }
   1.176 -};
   1.177  
   1.178 -enum ManifestConstants {
   1.179 -    ClearResponsibleAtSTW   = 0,
   1.180 -    MaximumRecheckInterval  = 1000
   1.181 -} ;
   1.182 +#if 0
   1.183 +  // The following optimization isn't particularly useful.
   1.184 +  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
   1.185 +    lock->set_displaced_header (NULL) ;
   1.186 +    return ;
   1.187 +  }
   1.188 +#endif
   1.189  
   1.190 +  // The object header will never be displaced to this lock,
   1.191 +  // so it does not matter what the value is, except that it
   1.192 +  // must be non-zero to avoid looking like a re-entrant lock,
   1.193 +  // and must not look locked either.
   1.194 +  lock->set_displaced_header(markOopDesc::unused_mark());
   1.195 +  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   1.196 +}
   1.197  
   1.198 -#undef TEVENT
   1.199 -#define TEVENT(nom) {if (SyncVerbose) FEVENT(nom); }
   1.200 +// This routine is used to handle interpreter/compiler slow case
   1.201 +// We don't need to use fast path here, because it must have
   1.202 +// failed in the interpreter/compiler code. Simply use the heavy
   1.203 +// weight monitor should be ok, unless someone find otherwise.
   1.204 +void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
   1.205 +  fast_exit (object, lock, THREAD) ;
   1.206 +}
   1.207  
   1.208 -#define FEVENT(nom) { static volatile int ctr = 0 ; int v = ++ctr ; if ((v & (v-1)) == 0) { ::printf (#nom " : %d \n", v); ::fflush(stdout); }}
   1.209 +// -----------------------------------------------------------------------------
   1.210 +// Class Loader  support to workaround deadlocks on the class loader lock objects
   1.211 +// Also used by GC
   1.212 +// complete_exit()/reenter() are used to wait on a nested lock
   1.213 +// i.e. to give up an outer lock completely and then re-enter
   1.214 +// Used when holding nested locks - lock acquisition order: lock1 then lock2
   1.215 +//  1) complete_exit lock1 - saving recursion count
   1.216 +//  2) wait on lock2
   1.217 +//  3) when notified on lock2, unlock lock2
   1.218 +//  4) reenter lock1 with original recursion count
   1.219 +//  5) lock lock2
   1.220 +// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   1.221 +intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
   1.222 +  TEVENT (complete_exit) ;
   1.223 +  if (UseBiasedLocking) {
   1.224 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.225 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.226 +  }
   1.227  
   1.228 -#undef  TEVENT
   1.229 -#define TEVENT(nom) {;}
   1.230 +  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   1.231  
   1.232 +  return monitor->complete_exit(THREAD);
   1.233 +}
   1.234 +
   1.235 +// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   1.236 +void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
   1.237 +  TEVENT (reenter) ;
   1.238 +  if (UseBiasedLocking) {
   1.239 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.240 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.241 +  }
   1.242 +
   1.243 +  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   1.244 +
   1.245 +  monitor->reenter(recursion, THREAD);
   1.246 +}
   1.247 +// -----------------------------------------------------------------------------
   1.248 +// JNI locks on java objects
   1.249 +// NOTE: must use heavy weight monitor to handle jni monitor enter
   1.250 +void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
   1.251 +  // the current locking is from JNI instead of Java code
   1.252 +  TEVENT (jni_enter) ;
   1.253 +  if (UseBiasedLocking) {
   1.254 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.255 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.256 +  }
   1.257 +  THREAD->set_current_pending_monitor_is_from_java(false);
   1.258 +  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   1.259 +  THREAD->set_current_pending_monitor_is_from_java(true);
   1.260 +}
   1.261 +
   1.262 +// NOTE: must use heavy weight monitor to handle jni monitor enter
   1.263 +bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
   1.264 +  if (UseBiasedLocking) {
   1.265 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.266 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.267 +  }
   1.268 +
   1.269 +  ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
   1.270 +  return monitor->try_enter(THREAD);
   1.271 +}
   1.272 +
   1.273 +
   1.274 +// NOTE: must use heavy weight monitor to handle jni monitor exit
   1.275 +void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
   1.276 +  TEVENT (jni_exit) ;
   1.277 +  if (UseBiasedLocking) {
   1.278 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.279 +  }
   1.280 +  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.281 +
   1.282 +  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
   1.283 +  // If this thread has locked the object, exit the monitor.  Note:  can't use
   1.284 +  // monitor->check(CHECK); must exit even if an exception is pending.
   1.285 +  if (monitor->check(THREAD)) {
   1.286 +     monitor->exit(THREAD);
   1.287 +  }
   1.288 +}
   1.289 +
   1.290 +// -----------------------------------------------------------------------------
   1.291 +// Internal VM locks on java objects
   1.292 +// standard constructor, allows locking failures
   1.293 +ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   1.294 +  _dolock = doLock;
   1.295 +  _thread = thread;
   1.296 +  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   1.297 +  _obj = obj;
   1.298 +
   1.299 +  if (_dolock) {
   1.300 +    TEVENT (ObjectLocker) ;
   1.301 +
   1.302 +    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   1.303 +  }
   1.304 +}
   1.305 +
   1.306 +ObjectLocker::~ObjectLocker() {
   1.307 +  if (_dolock) {
   1.308 +    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   1.309 +  }
   1.310 +}
   1.311 +
   1.312 +
   1.313 +// -----------------------------------------------------------------------------
   1.314 +//  Wait/Notify/NotifyAll
   1.315 +// NOTE: must use heavy weight monitor to handle wait()
   1.316 +void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
   1.317 +  if (UseBiasedLocking) {
   1.318 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.319 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.320 +  }
   1.321 +  if (millis < 0) {
   1.322 +    TEVENT (wait - throw IAX) ;
   1.323 +    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   1.324 +  }
   1.325 +  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   1.326 +  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
   1.327 +  monitor->wait(millis, true, THREAD);
   1.328 +
   1.329 +  /* This dummy call is in place to get around dtrace bug 6254741.  Once
   1.330 +     that's fixed we can uncomment the following line and remove the call */
   1.331 +  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
   1.332 +  dtrace_waited_probe(monitor, obj, THREAD);
   1.333 +}
   1.334 +
   1.335 +void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
   1.336 +  if (UseBiasedLocking) {
   1.337 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.338 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.339 +  }
   1.340 +  if (millis < 0) {
   1.341 +    TEVENT (wait - throw IAX) ;
   1.342 +    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   1.343 +  }
   1.344 +  ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
   1.345 +}
   1.346 +
   1.347 +void ObjectSynchronizer::notify(Handle obj, TRAPS) {
   1.348 + if (UseBiasedLocking) {
   1.349 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.350 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.351 +  }
   1.352 +
   1.353 +  markOop mark = obj->mark();
   1.354 +  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   1.355 +    return;
   1.356 +  }
   1.357 +  ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
   1.358 +}
   1.359 +
   1.360 +// NOTE: see comment of notify()
   1.361 +void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
   1.362 +  if (UseBiasedLocking) {
   1.363 +    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   1.364 +    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.365 +  }
   1.366 +
   1.367 +  markOop mark = obj->mark();
   1.368 +  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   1.369 +    return;
   1.370 +  }
   1.371 +  ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
   1.372 +}
   1.373 +
   1.374 +// -----------------------------------------------------------------------------
   1.375 +// Hash Code handling
   1.376 +//
   1.377  // Performance concern:
   1.378  // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   1.379  // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   1.380 @@ -188,44 +414,73 @@
   1.381  static int MonitorScavengeThreshold = 1000000 ;
   1.382  static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
   1.383  
   1.384 +static markOop ReadStableMark (oop obj) {
   1.385 +  markOop mark = obj->mark() ;
   1.386 +  if (!mark->is_being_inflated()) {
   1.387 +    return mark ;       // normal fast-path return
   1.388 +  }
   1.389  
   1.390 -// Tunables ...
   1.391 -// The knob* variables are effectively final.  Once set they should
   1.392 -// never be modified hence.  Consider using __read_mostly with GCC.
   1.393 +  int its = 0 ;
   1.394 +  for (;;) {
   1.395 +    markOop mark = obj->mark() ;
   1.396 +    if (!mark->is_being_inflated()) {
   1.397 +      return mark ;    // normal fast-path return
   1.398 +    }
   1.399  
   1.400 -static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   1.401 -static int Knob_HandOff            = 0 ;
   1.402 -static int Knob_Verbose            = 0 ;
   1.403 -static int Knob_ReportSettings     = 0 ;
   1.404 +    // The object is being inflated by some other thread.
   1.405 +    // The caller of ReadStableMark() must wait for inflation to complete.
   1.406 +    // Avoid live-lock
   1.407 +    // TODO: consider calling SafepointSynchronize::do_call_back() while
   1.408 +    // spinning to see if there's a safepoint pending.  If so, immediately
   1.409 +    // yielding or blocking would be appropriate.  Avoid spinning while
   1.410 +    // there is a safepoint pending.
   1.411 +    // TODO: add inflation contention performance counters.
   1.412 +    // TODO: restrict the aggregate number of spinners.
   1.413  
   1.414 -static int Knob_SpinLimit          = 5000 ;    // derived by an external tool -
   1.415 -static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   1.416 -static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   1.417 -static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   1.418 -static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   1.419 -static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   1.420 -static int Knob_SpinEarly          = 1 ;
   1.421 -static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   1.422 -static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   1.423 -static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   1.424 -static int Knob_Bonus              = 100 ;     // spin success bonus
   1.425 -static int Knob_BonusB             = 100 ;     // spin success bonus
   1.426 -static int Knob_Penalty            = 200 ;     // spin failure penalty
   1.427 -static int Knob_Poverty            = 1000 ;
   1.428 -static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   1.429 -static int Knob_FixedSpin          = 0 ;
   1.430 -static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   1.431 -static int Knob_UsePause           = 1 ;
   1.432 -static int Knob_ExitPolicy         = 0 ;
   1.433 -static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   1.434 -static int Knob_ResetEvent         = 0 ;
   1.435 -static int BackOffMask             = 0 ;
   1.436 -
   1.437 -static int Knob_FastHSSEC          = 0 ;
   1.438 -static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   1.439 -static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   1.440 -static volatile int InitDone       = 0 ;
   1.441 -
   1.442 +    ++its ;
   1.443 +    if (its > 10000 || !os::is_MP()) {
   1.444 +       if (its & 1) {
   1.445 +         os::NakedYield() ;
   1.446 +         TEVENT (Inflate: INFLATING - yield) ;
   1.447 +       } else {
   1.448 +         // Note that the following code attenuates the livelock problem but is not
   1.449 +         // a complete remedy.  A more complete solution would require that the inflating
   1.450 +         // thread hold the associated inflation lock.  The following code simply restricts
   1.451 +         // the number of spinners to at most one.  We'll have N-2 threads blocked
   1.452 +         // on the inflationlock, 1 thread holding the inflation lock and using
   1.453 +         // a yield/park strategy, and 1 thread in the midst of inflation.
   1.454 +         // A more refined approach would be to change the encoding of INFLATING
   1.455 +         // to allow encapsulation of a native thread pointer.  Threads waiting for
   1.456 +         // inflation to complete would use CAS to push themselves onto a singly linked
   1.457 +         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
   1.458 +         // and calling park().  When inflation was complete the thread that accomplished inflation
   1.459 +         // would detach the list and set the markword to inflated with a single CAS and
   1.460 +         // then for each thread on the list, set the flag and unpark() the thread.
   1.461 +         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
   1.462 +         // wakes at most one thread whereas we need to wake the entire list.
   1.463 +         int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
   1.464 +         int YieldThenBlock = 0 ;
   1.465 +         assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
   1.466 +         assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
   1.467 +         Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
   1.468 +         while (obj->mark() == markOopDesc::INFLATING()) {
   1.469 +           // Beware: NakedYield() is advisory and has almost no effect on some platforms
   1.470 +           // so we periodically call Self->_ParkEvent->park(1).
   1.471 +           // We use a mixed spin/yield/block mechanism.
   1.472 +           if ((YieldThenBlock++) >= 16) {
   1.473 +              Thread::current()->_ParkEvent->park(1) ;
   1.474 +           } else {
   1.475 +              os::NakedYield() ;
   1.476 +           }
   1.477 +         }
   1.478 +         Thread::muxRelease (InflationLocks + ix ) ;
   1.479 +         TEVENT (Inflate: INFLATING - yield/park) ;
   1.480 +       }
   1.481 +    } else {
   1.482 +       SpinPause() ;       // SMP-polite spinning
   1.483 +    }
   1.484 +  }
   1.485 +}
   1.486  
   1.487  // hashCode() generation :
   1.488  //
   1.489 @@ -290,416 +545,272 @@
   1.490    TEVENT (hashCode: GENERATE) ;
   1.491    return value;
   1.492  }
   1.493 +//
   1.494 +intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
   1.495 +  if (UseBiasedLocking) {
   1.496 +    // NOTE: many places throughout the JVM do not expect a safepoint
   1.497 +    // to be taken here, in particular most operations on perm gen
   1.498 +    // objects. However, we only ever bias Java instances and all of
   1.499 +    // the call sites of identity_hash that might revoke biases have
   1.500 +    // been checked to make sure they can handle a safepoint. The
   1.501 +    // added check of the bias pattern is to avoid useless calls to
   1.502 +    // thread-local storage.
   1.503 +    if (obj->mark()->has_bias_pattern()) {
   1.504 +      // Box and unbox the raw reference just in case we cause a STW safepoint.
   1.505 +      Handle hobj (Self, obj) ;
   1.506 +      // Relaxing assertion for bug 6320749.
   1.507 +      assert (Universe::verify_in_progress() ||
   1.508 +              !SafepointSynchronize::is_at_safepoint(),
   1.509 +             "biases should not be seen by VM thread here");
   1.510 +      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
   1.511 +      obj = hobj() ;
   1.512 +      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.513 +    }
   1.514 +  }
   1.515  
   1.516 -void BasicLock::print_on(outputStream* st) const {
   1.517 -  st->print("monitor");
   1.518 +  // hashCode() is a heap mutator ...
   1.519 +  // Relaxing assertion for bug 6320749.
   1.520 +  assert (Universe::verify_in_progress() ||
   1.521 +          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
   1.522 +  assert (Universe::verify_in_progress() ||
   1.523 +          Self->is_Java_thread() , "invariant") ;
   1.524 +  assert (Universe::verify_in_progress() ||
   1.525 +         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   1.526 +
   1.527 +  ObjectMonitor* monitor = NULL;
   1.528 +  markOop temp, test;
   1.529 +  intptr_t hash;
   1.530 +  markOop mark = ReadStableMark (obj);
   1.531 +
   1.532 +  // object should remain ineligible for biased locking
   1.533 +  assert (!mark->has_bias_pattern(), "invariant") ;
   1.534 +
   1.535 +  if (mark->is_neutral()) {
   1.536 +    hash = mark->hash();              // this is a normal header
   1.537 +    if (hash) {                       // if it has hash, just return it
   1.538 +      return hash;
   1.539 +    }
   1.540 +    hash = get_next_hash(Self, obj);  // allocate a new hash code
   1.541 +    temp = mark->copy_set_hash(hash); // merge the hash code into header
   1.542 +    // use (machine word version) atomic operation to install the hash
   1.543 +    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
   1.544 +    if (test == mark) {
   1.545 +      return hash;
   1.546 +    }
   1.547 +    // If atomic operation failed, we must inflate the header
   1.548 +    // into heavy weight monitor. We could add more code here
   1.549 +    // for fast path, but it does not worth the complexity.
   1.550 +  } else if (mark->has_monitor()) {
   1.551 +    monitor = mark->monitor();
   1.552 +    temp = monitor->header();
   1.553 +    assert (temp->is_neutral(), "invariant") ;
   1.554 +    hash = temp->hash();
   1.555 +    if (hash) {
   1.556 +      return hash;
   1.557 +    }
   1.558 +    // Skip to the following code to reduce code size
   1.559 +  } else if (Self->is_lock_owned((address)mark->locker())) {
   1.560 +    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
   1.561 +    assert (temp->is_neutral(), "invariant") ;
   1.562 +    hash = temp->hash();              // by current thread, check if the displaced
   1.563 +    if (hash) {                       // header contains hash code
   1.564 +      return hash;
   1.565 +    }
   1.566 +    // WARNING:
   1.567 +    //   The displaced header is strictly immutable.
   1.568 +    // It can NOT be changed in ANY cases. So we have
   1.569 +    // to inflate the header into heavyweight monitor
   1.570 +    // even the current thread owns the lock. The reason
   1.571 +    // is the BasicLock (stack slot) will be asynchronously
   1.572 +    // read by other threads during the inflate() function.
   1.573 +    // Any change to stack may not propagate to other threads
   1.574 +    // correctly.
   1.575 +  }
   1.576 +
   1.577 +  // Inflate the monitor to set hash code
   1.578 +  monitor = ObjectSynchronizer::inflate(Self, obj);
   1.579 +  // Load displaced header and check it has hash code
   1.580 +  mark = monitor->header();
   1.581 +  assert (mark->is_neutral(), "invariant") ;
   1.582 +  hash = mark->hash();
   1.583 +  if (hash == 0) {
   1.584 +    hash = get_next_hash(Self, obj);
   1.585 +    temp = mark->copy_set_hash(hash); // merge hash code into header
   1.586 +    assert (temp->is_neutral(), "invariant") ;
   1.587 +    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
   1.588 +    if (test != mark) {
   1.589 +      // The only update to the header in the monitor (outside GC)
   1.590 +      // is install the hash code. If someone add new usage of
   1.591 +      // displaced header, please update this code
   1.592 +      hash = test->hash();
   1.593 +      assert (test->is_neutral(), "invariant") ;
   1.594 +      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
   1.595 +    }
   1.596 +  }
   1.597 +  // We finally get the hash
   1.598 +  return hash;
   1.599  }
   1.600  
   1.601 -void BasicLock::move_to(oop obj, BasicLock* dest) {
   1.602 -  // Check to see if we need to inflate the lock. This is only needed
   1.603 -  // if an object is locked using "this" lightweight monitor. In that
   1.604 -  // case, the displaced_header() is unlocked, because the
   1.605 -  // displaced_header() contains the header for the originally unlocked
   1.606 -  // object. However the object could have already been inflated. But it
   1.607 -  // does not matter, the inflation will just a no-op. For other cases,
   1.608 -  // the displaced header will be either 0x0 or 0x3, which are location
   1.609 -  // independent, therefore the BasicLock is free to move.
   1.610 -  //
   1.611 -  // During OSR we may need to relocate a BasicLock (which contains a
   1.612 -  // displaced word) from a location in an interpreter frame to a
   1.613 -  // new location in a compiled frame.  "this" refers to the source
   1.614 -  // basiclock in the interpreter frame.  "dest" refers to the destination
   1.615 -  // basiclock in the new compiled frame.  We *always* inflate in move_to().
   1.616 -  // The always-Inflate policy works properly, but in 1.5.0 it can sometimes
   1.617 -  // cause performance problems in code that makes heavy use of a small # of
   1.618 -  // uncontended locks.   (We'd inflate during OSR, and then sync performance
   1.619 -  // would subsequently plummet because the thread would be forced thru the slow-path).
   1.620 -  // This problem has been made largely moot on IA32 by inlining the inflated fast-path
   1.621 -  // operations in Fast_Lock and Fast_Unlock in i486.ad.
   1.622 -  //
   1.623 -  // Note that there is a way to safely swing the object's markword from
   1.624 -  // one stack location to another.  This avoids inflation.  Obviously,
   1.625 -  // we need to ensure that both locations refer to the current thread's stack.
   1.626 -  // There are some subtle concurrency issues, however, and since the benefit is
   1.627 -  // is small (given the support for inflated fast-path locking in the fast_lock, etc)
   1.628 -  // we'll leave that optimization for another time.
   1.629 +// Deprecated -- use FastHashCode() instead.
   1.630  
   1.631 -  if (displaced_header()->is_neutral()) {
   1.632 -    ObjectSynchronizer::inflate_helper(obj);
   1.633 -    // WARNING: We can not put check here, because the inflation
   1.634 -    // will not update the displaced header. Once BasicLock is inflated,
   1.635 -    // no one should ever look at its content.
   1.636 -  } else {
   1.637 -    // Typically the displaced header will be 0 (recursive stack lock) or
   1.638 -    // unused_mark.  Naively we'd like to assert that the displaced mark
   1.639 -    // value is either 0, neutral, or 3.  But with the advent of the
   1.640 -    // store-before-CAS avoidance in fast_lock/compiler_lock_object
   1.641 -    // we can find any flavor mark in the displaced mark.
   1.642 -  }
   1.643 -// [RGV] The next line appears to do nothing!
   1.644 -  intptr_t dh = (intptr_t) displaced_header();
   1.645 -  dest->set_displaced_header(displaced_header());
   1.646 +intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
   1.647 +  return FastHashCode (Thread::current(), obj()) ;
   1.648  }
   1.649  
   1.650 -// -----------------------------------------------------------------------------
   1.651  
   1.652 -// standard constructor, allows locking failures
   1.653 -ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   1.654 -  _dolock = doLock;
   1.655 -  _thread = thread;
   1.656 -  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   1.657 -  _obj = obj;
   1.658 +bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
   1.659 +                                                   Handle h_obj) {
   1.660 +  if (UseBiasedLocking) {
   1.661 +    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
   1.662 +    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.663 +  }
   1.664  
   1.665 -  if (_dolock) {
   1.666 -    TEVENT (ObjectLocker) ;
   1.667 +  assert(thread == JavaThread::current(), "Can only be called on current thread");
   1.668 +  oop obj = h_obj();
   1.669  
   1.670 -    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   1.671 +  markOop mark = ReadStableMark (obj) ;
   1.672 +
   1.673 +  // Uncontended case, header points to stack
   1.674 +  if (mark->has_locker()) {
   1.675 +    return thread->is_lock_owned((address)mark->locker());
   1.676 +  }
   1.677 +  // Contended case, header points to ObjectMonitor (tagged pointer)
   1.678 +  if (mark->has_monitor()) {
   1.679 +    ObjectMonitor* monitor = mark->monitor();
   1.680 +    return monitor->is_entered(thread) != 0 ;
   1.681 +  }
   1.682 +  // Unlocked case, header in place
   1.683 +  assert(mark->is_neutral(), "sanity check");
   1.684 +  return false;
   1.685 +}
   1.686 +
   1.687 +// Be aware of this method could revoke bias of the lock object.
   1.688 +// This method querys the ownership of the lock handle specified by 'h_obj'.
   1.689 +// If the current thread owns the lock, it returns owner_self. If no
   1.690 +// thread owns the lock, it returns owner_none. Otherwise, it will return
   1.691 +// ower_other.
   1.692 +ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
   1.693 +(JavaThread *self, Handle h_obj) {
   1.694 +  // The caller must beware this method can revoke bias, and
   1.695 +  // revocation can result in a safepoint.
   1.696 +  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   1.697 +  assert (self->thread_state() != _thread_blocked , "invariant") ;
   1.698 +
   1.699 +  // Possible mark states: neutral, biased, stack-locked, inflated
   1.700 +
   1.701 +  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
   1.702 +    // CASE: biased
   1.703 +    BiasedLocking::revoke_and_rebias(h_obj, false, self);
   1.704 +    assert(!h_obj->mark()->has_bias_pattern(),
   1.705 +           "biases should be revoked by now");
   1.706 +  }
   1.707 +
   1.708 +  assert(self == JavaThread::current(), "Can only be called on current thread");
   1.709 +  oop obj = h_obj();
   1.710 +  markOop mark = ReadStableMark (obj) ;
   1.711 +
   1.712 +  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
   1.713 +  if (mark->has_locker()) {
   1.714 +    return self->is_lock_owned((address)mark->locker()) ?
   1.715 +      owner_self : owner_other;
   1.716 +  }
   1.717 +
   1.718 +  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
   1.719 +  // The Object:ObjectMonitor relationship is stable as long as we're
   1.720 +  // not at a safepoint.
   1.721 +  if (mark->has_monitor()) {
   1.722 +    void * owner = mark->monitor()->_owner ;
   1.723 +    if (owner == NULL) return owner_none ;
   1.724 +    return (owner == self ||
   1.725 +            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
   1.726 +  }
   1.727 +
   1.728 +  // CASE: neutral
   1.729 +  assert(mark->is_neutral(), "sanity check");
   1.730 +  return owner_none ;           // it's unlocked
   1.731 +}
   1.732 +
   1.733 +// FIXME: jvmti should call this
   1.734 +JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
   1.735 +  if (UseBiasedLocking) {
   1.736 +    if (SafepointSynchronize::is_at_safepoint()) {
   1.737 +      BiasedLocking::revoke_at_safepoint(h_obj);
   1.738 +    } else {
   1.739 +      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
   1.740 +    }
   1.741 +    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   1.742 +  }
   1.743 +
   1.744 +  oop obj = h_obj();
   1.745 +  address owner = NULL;
   1.746 +
   1.747 +  markOop mark = ReadStableMark (obj) ;
   1.748 +
   1.749 +  // Uncontended case, header points to stack
   1.750 +  if (mark->has_locker()) {
   1.751 +    owner = (address) mark->locker();
   1.752 +  }
   1.753 +
   1.754 +  // Contended case, header points to ObjectMonitor (tagged pointer)
   1.755 +  if (mark->has_monitor()) {
   1.756 +    ObjectMonitor* monitor = mark->monitor();
   1.757 +    assert(monitor != NULL, "monitor should be non-null");
   1.758 +    owner = (address) monitor->owner();
   1.759 +  }
   1.760 +
   1.761 +  if (owner != NULL) {
   1.762 +    return Threads::owning_thread_from_monitor_owner(owner, doLock);
   1.763 +  }
   1.764 +
   1.765 +  // Unlocked case, header in place
   1.766 +  // Cannot have assertion since this object may have been
   1.767 +  // locked by another thread when reaching here.
   1.768 +  // assert(mark->is_neutral(), "sanity check");
   1.769 +
   1.770 +  return NULL;
   1.771 +}
   1.772 +// Visitors ...
   1.773 +
   1.774 +void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
   1.775 +  ObjectMonitor* block = gBlockList;
   1.776 +  ObjectMonitor* mid;
   1.777 +  while (block) {
   1.778 +    assert(block->object() == CHAINMARKER, "must be a block header");
   1.779 +    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
   1.780 +      mid = block + i;
   1.781 +      oop object = (oop) mid->object();
   1.782 +      if (object != NULL) {
   1.783 +        closure->do_monitor(mid);
   1.784 +      }
   1.785 +    }
   1.786 +    block = (ObjectMonitor*) block->FreeNext;
   1.787    }
   1.788  }
   1.789  
   1.790 -ObjectLocker::~ObjectLocker() {
   1.791 -  if (_dolock) {
   1.792 -    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   1.793 -  }
   1.794 +// Get the next block in the block list.
   1.795 +static inline ObjectMonitor* next(ObjectMonitor* block) {
   1.796 +  assert(block->object() == CHAINMARKER, "must be a block header");
   1.797 +  block = block->FreeNext ;
   1.798 +  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
   1.799 +  return block;
   1.800  }
   1.801  
   1.802 -// -----------------------------------------------------------------------------
   1.803  
   1.804 -
   1.805 -PerfCounter * ObjectSynchronizer::_sync_Inflations                  = NULL ;
   1.806 -PerfCounter * ObjectSynchronizer::_sync_Deflations                  = NULL ;
   1.807 -PerfCounter * ObjectSynchronizer::_sync_ContendedLockAttempts       = NULL ;
   1.808 -PerfCounter * ObjectSynchronizer::_sync_FutileWakeups               = NULL ;
   1.809 -PerfCounter * ObjectSynchronizer::_sync_Parks                       = NULL ;
   1.810 -PerfCounter * ObjectSynchronizer::_sync_EmptyNotifications          = NULL ;
   1.811 -PerfCounter * ObjectSynchronizer::_sync_Notifications               = NULL ;
   1.812 -PerfCounter * ObjectSynchronizer::_sync_PrivateA                    = NULL ;
   1.813 -PerfCounter * ObjectSynchronizer::_sync_PrivateB                    = NULL ;
   1.814 -PerfCounter * ObjectSynchronizer::_sync_SlowExit                    = NULL ;
   1.815 -PerfCounter * ObjectSynchronizer::_sync_SlowEnter                   = NULL ;
   1.816 -PerfCounter * ObjectSynchronizer::_sync_SlowNotify                  = NULL ;
   1.817 -PerfCounter * ObjectSynchronizer::_sync_SlowNotifyAll               = NULL ;
   1.818 -PerfCounter * ObjectSynchronizer::_sync_FailedSpins                 = NULL ;
   1.819 -PerfCounter * ObjectSynchronizer::_sync_SuccessfulSpins             = NULL ;
   1.820 -PerfCounter * ObjectSynchronizer::_sync_MonInCirculation            = NULL ;
   1.821 -PerfCounter * ObjectSynchronizer::_sync_MonScavenged                = NULL ;
   1.822 -PerfLongVariable * ObjectSynchronizer::_sync_MonExtant              = NULL ;
   1.823 -
   1.824 -// One-shot global initialization for the sync subsystem.
   1.825 -// We could also defer initialization and initialize on-demand
   1.826 -// the first time we call inflate().  Initialization would
   1.827 -// be protected - like so many things - by the MonitorCache_lock.
   1.828 -
   1.829 -void ObjectSynchronizer::Initialize () {
   1.830 -  static int InitializationCompleted = 0 ;
   1.831 -  assert (InitializationCompleted == 0, "invariant") ;
   1.832 -  InitializationCompleted = 1 ;
   1.833 -  if (UsePerfData) {
   1.834 -      EXCEPTION_MARK ;
   1.835 -      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
   1.836 -      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
   1.837 -      NEWPERFCOUNTER(_sync_Inflations) ;
   1.838 -      NEWPERFCOUNTER(_sync_Deflations) ;
   1.839 -      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
   1.840 -      NEWPERFCOUNTER(_sync_FutileWakeups) ;
   1.841 -      NEWPERFCOUNTER(_sync_Parks) ;
   1.842 -      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
   1.843 -      NEWPERFCOUNTER(_sync_Notifications) ;
   1.844 -      NEWPERFCOUNTER(_sync_SlowEnter) ;
   1.845 -      NEWPERFCOUNTER(_sync_SlowExit) ;
   1.846 -      NEWPERFCOUNTER(_sync_SlowNotify) ;
   1.847 -      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
   1.848 -      NEWPERFCOUNTER(_sync_FailedSpins) ;
   1.849 -      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
   1.850 -      NEWPERFCOUNTER(_sync_PrivateA) ;
   1.851 -      NEWPERFCOUNTER(_sync_PrivateB) ;
   1.852 -      NEWPERFCOUNTER(_sync_MonInCirculation) ;
   1.853 -      NEWPERFCOUNTER(_sync_MonScavenged) ;
   1.854 -      NEWPERFVARIABLE(_sync_MonExtant) ;
   1.855 -      #undef NEWPERFCOUNTER
   1.856 -  }
   1.857 -}
   1.858 -
   1.859 -// Compile-time asserts
   1.860 -// When possible, it's better to catch errors deterministically at
   1.861 -// compile-time than at runtime.  The down-side to using compile-time
   1.862 -// asserts is that error message -- often something about negative array
   1.863 -// indices -- is opaque.
   1.864 -
   1.865 -#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
   1.866 -
   1.867 -void ObjectMonitor::ctAsserts() {
   1.868 -  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
   1.869 -}
   1.870 -
   1.871 -static int Adjust (volatile int * adr, int dx) {
   1.872 -  int v ;
   1.873 -  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
   1.874 -  return v ;
   1.875 -}
   1.876 -
   1.877 -// Ad-hoc mutual exclusion primitives: SpinLock and Mux
   1.878 -//
   1.879 -// We employ SpinLocks _only for low-contention, fixed-length
   1.880 -// short-duration critical sections where we're concerned
   1.881 -// about native mutex_t or HotSpot Mutex:: latency.
   1.882 -// The mux construct provides a spin-then-block mutual exclusion
   1.883 -// mechanism.
   1.884 -//
   1.885 -// Testing has shown that contention on the ListLock guarding gFreeList
   1.886 -// is common.  If we implement ListLock as a simple SpinLock it's common
   1.887 -// for the JVM to devolve to yielding with little progress.  This is true
   1.888 -// despite the fact that the critical sections protected by ListLock are
   1.889 -// extremely short.
   1.890 -//
   1.891 -// TODO-FIXME: ListLock should be of type SpinLock.
   1.892 -// We should make this a 1st-class type, integrated into the lock
   1.893 -// hierarchy as leaf-locks.  Critically, the SpinLock structure
   1.894 -// should have sufficient padding to avoid false-sharing and excessive
   1.895 -// cache-coherency traffic.
   1.896 -
   1.897 -
   1.898 -typedef volatile int SpinLockT ;
   1.899 -
   1.900 -void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
   1.901 -  if (Atomic::cmpxchg (1, adr, 0) == 0) {
   1.902 -     return ;   // normal fast-path return
   1.903 -  }
   1.904 -
   1.905 -  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
   1.906 -  TEVENT (SpinAcquire - ctx) ;
   1.907 -  int ctr = 0 ;
   1.908 -  int Yields = 0 ;
   1.909 -  for (;;) {
   1.910 -     while (*adr != 0) {
   1.911 -        ++ctr ;
   1.912 -        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
   1.913 -           if (Yields > 5) {
   1.914 -             // Consider using a simple NakedSleep() instead.
   1.915 -             // Then SpinAcquire could be called by non-JVM threads
   1.916 -             Thread::current()->_ParkEvent->park(1) ;
   1.917 -           } else {
   1.918 -             os::NakedYield() ;
   1.919 -             ++Yields ;
   1.920 -           }
   1.921 -        } else {
   1.922 -           SpinPause() ;
   1.923 -        }
   1.924 -     }
   1.925 -     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
   1.926 -  }
   1.927 -}
   1.928 -
   1.929 -void Thread::SpinRelease (volatile int * adr) {
   1.930 -  assert (*adr != 0, "invariant") ;
   1.931 -  OrderAccess::fence() ;      // guarantee at least release consistency.
   1.932 -  // Roach-motel semantics.
   1.933 -  // It's safe if subsequent LDs and STs float "up" into the critical section,
   1.934 -  // but prior LDs and STs within the critical section can't be allowed
   1.935 -  // to reorder or float past the ST that releases the lock.
   1.936 -  *adr = 0 ;
   1.937 -}
   1.938 -
   1.939 -// muxAcquire and muxRelease:
   1.940 -//
   1.941 -// *  muxAcquire and muxRelease support a single-word lock-word construct.
   1.942 -//    The LSB of the word is set IFF the lock is held.
   1.943 -//    The remainder of the word points to the head of a singly-linked list
   1.944 -//    of threads blocked on the lock.
   1.945 -//
   1.946 -// *  The current implementation of muxAcquire-muxRelease uses its own
   1.947 -//    dedicated Thread._MuxEvent instance.  If we're interested in
   1.948 -//    minimizing the peak number of extant ParkEvent instances then
   1.949 -//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
   1.950 -//    as certain invariants were satisfied.  Specifically, care would need
   1.951 -//    to be taken with regards to consuming unpark() "permits".
   1.952 -//    A safe rule of thumb is that a thread would never call muxAcquire()
   1.953 -//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
   1.954 -//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
   1.955 -//    consume an unpark() permit intended for monitorenter, for instance.
   1.956 -//    One way around this would be to widen the restricted-range semaphore
   1.957 -//    implemented in park().  Another alternative would be to provide
   1.958 -//    multiple instances of the PlatformEvent() for each thread.  One
   1.959 -//    instance would be dedicated to muxAcquire-muxRelease, for instance.
   1.960 -//
   1.961 -// *  Usage:
   1.962 -//    -- Only as leaf locks
   1.963 -//    -- for short-term locking only as muxAcquire does not perform
   1.964 -//       thread state transitions.
   1.965 -//
   1.966 -// Alternatives:
   1.967 -// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
   1.968 -//    but with parking or spin-then-park instead of pure spinning.
   1.969 -// *  Use Taura-Oyama-Yonenzawa locks.
   1.970 -// *  It's possible to construct a 1-0 lock if we encode the lockword as
   1.971 -//    (List,LockByte).  Acquire will CAS the full lockword while Release
   1.972 -//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
   1.973 -//    acquiring threads use timers (ParkTimed) to detect and recover from
   1.974 -//    the stranding window.  Thread/Node structures must be aligned on 256-byte
   1.975 -//    boundaries by using placement-new.
   1.976 -// *  Augment MCS with advisory back-link fields maintained with CAS().
   1.977 -//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
   1.978 -//    The validity of the backlinks must be ratified before we trust the value.
   1.979 -//    If the backlinks are invalid the exiting thread must back-track through the
   1.980 -//    the forward links, which are always trustworthy.
   1.981 -// *  Add a successor indication.  The LockWord is currently encoded as
   1.982 -//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
   1.983 -//    to provide the usual futile-wakeup optimization.
   1.984 -//    See RTStt for details.
   1.985 -// *  Consider schedctl.sc_nopreempt to cover the critical section.
   1.986 -//
   1.987 -
   1.988 -
   1.989 -typedef volatile intptr_t MutexT ;      // Mux Lock-word
   1.990 -enum MuxBits { LOCKBIT = 1 } ;
   1.991 -
   1.992 -void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
   1.993 -  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
   1.994 -  if (w == 0) return ;
   1.995 -  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   1.996 -     return ;
   1.997 -  }
   1.998 -
   1.999 -  TEVENT (muxAcquire - Contention) ;
  1.1000 -  ParkEvent * const Self = Thread::current()->_MuxEvent ;
  1.1001 -  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  1.1002 -  for (;;) {
  1.1003 -     int its = (os::is_MP() ? 100 : 0) + 1 ;
  1.1004 -
  1.1005 -     // Optional spin phase: spin-then-park strategy
  1.1006 -     while (--its >= 0) {
  1.1007 -       w = *Lock ;
  1.1008 -       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  1.1009 -          return ;
  1.1010 -       }
  1.1011 -     }
  1.1012 -
  1.1013 -     Self->reset() ;
  1.1014 -     Self->OnList = intptr_t(Lock) ;
  1.1015 -     // The following fence() isn't _strictly necessary as the subsequent
  1.1016 -     // CAS() both serializes execution and ratifies the fetched *Lock value.
  1.1017 -     OrderAccess::fence();
  1.1018 -     for (;;) {
  1.1019 -        w = *Lock ;
  1.1020 -        if ((w & LOCKBIT) == 0) {
  1.1021 -            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  1.1022 -                Self->OnList = 0 ;   // hygiene - allows stronger asserts
  1.1023 -                return ;
  1.1024 -            }
  1.1025 -            continue ;      // Interference -- *Lock changed -- Just retry
  1.1026 -        }
  1.1027 -        assert (w & LOCKBIT, "invariant") ;
  1.1028 -        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  1.1029 -        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  1.1030 -     }
  1.1031 -
  1.1032 -     while (Self->OnList != 0) {
  1.1033 -        Self->park() ;
  1.1034 -     }
  1.1035 -  }
  1.1036 -}
  1.1037 -
  1.1038 -void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  1.1039 -  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  1.1040 -  if (w == 0) return ;
  1.1041 -  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  1.1042 -    return ;
  1.1043 -  }
  1.1044 -
  1.1045 -  TEVENT (muxAcquire - Contention) ;
  1.1046 -  ParkEvent * ReleaseAfter = NULL ;
  1.1047 -  if (ev == NULL) {
  1.1048 -    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  1.1049 -  }
  1.1050 -  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  1.1051 -  for (;;) {
  1.1052 -    guarantee (ev->OnList == 0, "invariant") ;
  1.1053 -    int its = (os::is_MP() ? 100 : 0) + 1 ;
  1.1054 -
  1.1055 -    // Optional spin phase: spin-then-park strategy
  1.1056 -    while (--its >= 0) {
  1.1057 -      w = *Lock ;
  1.1058 -      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  1.1059 -        if (ReleaseAfter != NULL) {
  1.1060 -          ParkEvent::Release (ReleaseAfter) ;
  1.1061 -        }
  1.1062 -        return ;
  1.1063 +void ObjectSynchronizer::oops_do(OopClosure* f) {
  1.1064 +  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1.1065 +  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1.1066 +    assert(block->object() == CHAINMARKER, "must be a block header");
  1.1067 +    for (int i = 1; i < _BLOCKSIZE; i++) {
  1.1068 +      ObjectMonitor* mid = &block[i];
  1.1069 +      if (mid->object() != NULL) {
  1.1070 +        f->do_oop((oop*)mid->object_addr());
  1.1071        }
  1.1072      }
  1.1073 -
  1.1074 -    ev->reset() ;
  1.1075 -    ev->OnList = intptr_t(Lock) ;
  1.1076 -    // The following fence() isn't _strictly necessary as the subsequent
  1.1077 -    // CAS() both serializes execution and ratifies the fetched *Lock value.
  1.1078 -    OrderAccess::fence();
  1.1079 -    for (;;) {
  1.1080 -      w = *Lock ;
  1.1081 -      if ((w & LOCKBIT) == 0) {
  1.1082 -        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  1.1083 -          ev->OnList = 0 ;
  1.1084 -          // We call ::Release while holding the outer lock, thus
  1.1085 -          // artificially lengthening the critical section.
  1.1086 -          // Consider deferring the ::Release() until the subsequent unlock(),
  1.1087 -          // after we've dropped the outer lock.
  1.1088 -          if (ReleaseAfter != NULL) {
  1.1089 -            ParkEvent::Release (ReleaseAfter) ;
  1.1090 -          }
  1.1091 -          return ;
  1.1092 -        }
  1.1093 -        continue ;      // Interference -- *Lock changed -- Just retry
  1.1094 -      }
  1.1095 -      assert (w & LOCKBIT, "invariant") ;
  1.1096 -      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  1.1097 -      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  1.1098 -    }
  1.1099 -
  1.1100 -    while (ev->OnList != 0) {
  1.1101 -      ev->park() ;
  1.1102 -    }
  1.1103    }
  1.1104  }
  1.1105  
  1.1106 -// Release() must extract a successor from the list and then wake that thread.
  1.1107 -// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  1.1108 -// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  1.1109 -// Release() would :
  1.1110 -// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  1.1111 -// (B) Extract a successor from the private list "in-hand"
  1.1112 -// (C) attempt to CAS() the residual back into *Lock over null.
  1.1113 -//     If there were any newly arrived threads and the CAS() would fail.
  1.1114 -//     In that case Release() would detach the RATs, re-merge the list in-hand
  1.1115 -//     with the RATs and repeat as needed.  Alternately, Release() might
  1.1116 -//     detach and extract a successor, but then pass the residual list to the wakee.
  1.1117 -//     The wakee would be responsible for reattaching and remerging before it
  1.1118 -//     competed for the lock.
  1.1119 -//
  1.1120 -// Both "pop" and DMR are immune from ABA corruption -- there can be
  1.1121 -// multiple concurrent pushers, but only one popper or detacher.
  1.1122 -// This implementation pops from the head of the list.  This is unfair,
  1.1123 -// but tends to provide excellent throughput as hot threads remain hot.
  1.1124 -// (We wake recently run threads first).
  1.1125  
  1.1126 -void Thread::muxRelease (volatile intptr_t * Lock)  {
  1.1127 -  for (;;) {
  1.1128 -    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  1.1129 -    assert (w & LOCKBIT, "invariant") ;
  1.1130 -    if (w == LOCKBIT) return ;
  1.1131 -    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  1.1132 -    assert (List != NULL, "invariant") ;
  1.1133 -    assert (List->OnList == intptr_t(Lock), "invariant") ;
  1.1134 -    ParkEvent * nxt = List->ListNext ;
  1.1135 -
  1.1136 -    // The following CAS() releases the lock and pops the head element.
  1.1137 -    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  1.1138 -      continue ;
  1.1139 -    }
  1.1140 -    List->OnList = 0 ;
  1.1141 -    OrderAccess::fence() ;
  1.1142 -    List->unpark () ;
  1.1143 -    return ;
  1.1144 -  }
  1.1145 -}
  1.1146 -
  1.1147 +// -----------------------------------------------------------------------------
  1.1148  // ObjectMonitor Lifecycle
  1.1149  // -----------------------
  1.1150  // Inflation unlinks monitors from the global gFreeList and
  1.1151 @@ -718,41 +829,7 @@
  1.1152  // --   assigned to an object.  The object is inflated and the mark refers
  1.1153  //      to the objectmonitor.
  1.1154  //
  1.1155 -// TODO-FIXME:
  1.1156 -//
  1.1157 -// *  We currently protect the gFreeList with a simple lock.
  1.1158 -//    An alternate lock-free scheme would be to pop elements from the gFreeList
  1.1159 -//    with CAS.  This would be safe from ABA corruption as long we only
  1.1160 -//    recycled previously appearing elements onto the list in deflate_idle_monitors()
  1.1161 -//    at STW-time.  Completely new elements could always be pushed onto the gFreeList
  1.1162 -//    with CAS.  Elements that appeared previously on the list could only
  1.1163 -//    be installed at STW-time.
  1.1164 -//
  1.1165 -// *  For efficiency and to help reduce the store-before-CAS penalty
  1.1166 -//    the objectmonitors on gFreeList or local free lists should be ready to install
  1.1167 -//    with the exception of _header and _object.  _object can be set after inflation.
  1.1168 -//    In particular, keep all objectMonitors on a thread's private list in ready-to-install
  1.1169 -//    state with m.Owner set properly.
  1.1170 -//
  1.1171 -// *  We could all diffuse contention by using multiple global (FreeList, Lock)
  1.1172 -//    pairs -- threads could use trylock() and a cyclic-scan strategy to search for
  1.1173 -//    an unlocked free list.
  1.1174 -//
  1.1175 -// *  Add lifecycle tags and assert()s.
  1.1176 -//
  1.1177 -// *  Be more consistent about when we clear an objectmonitor's fields:
  1.1178 -//    A.  After extracting the objectmonitor from a free list.
  1.1179 -//    B.  After adding an objectmonitor to a free list.
  1.1180 -//
  1.1181  
  1.1182 -ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
  1.1183 -ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
  1.1184 -ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
  1.1185 -int ObjectSynchronizer::gOmInUseCount = 0;
  1.1186 -static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
  1.1187 -static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
  1.1188 -static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
  1.1189 -#define CHAINMARKER ((oop)-1)
  1.1190  
  1.1191  // Constraining monitor pool growth via MonitorBound ...
  1.1192  //
  1.1193 @@ -768,41 +845,8 @@
  1.1194  // we'll incur more safepoints, which are harmful to performance.
  1.1195  // See also: GuaranteedSafepointInterval
  1.1196  //
  1.1197 -// As noted elsewhere, the correct long-term solution is to deflate at
  1.1198 -// monitorexit-time, in which case the number of inflated objects is bounded
  1.1199 -// by the number of threads.  That policy obviates the need for scavenging at
  1.1200 -// STW safepoint time.   As an aside, scavenging can be time-consuming when the
  1.1201 -// # of extant monitors is large.   Unfortunately there's a day-1 assumption baked
  1.1202 -// into much HotSpot code that the object::monitor relationship, once established
  1.1203 -// or observed, will remain stable except over potential safepoints.
  1.1204 -//
  1.1205 -// We can use either a blocking synchronous VM operation or an async VM operation.
  1.1206 -// -- If we use a blocking VM operation :
  1.1207 -//    Calls to ScavengeCheck() should be inserted only into 'safe' locations in paths
  1.1208 -//    that lead to ::inflate() or ::omAlloc().
  1.1209 -//    Even though the safepoint will not directly induce GC, a GC might
  1.1210 -//    piggyback on the safepoint operation, so the caller should hold no naked oops.
  1.1211 -//    Furthermore, monitor::object relationships are NOT necessarily stable over this call
  1.1212 -//    unless the caller has made provisions to "pin" the object to the monitor, say
  1.1213 -//    by incrementing the monitor's _count field.
  1.1214 -// -- If we use a non-blocking asynchronous VM operation :
  1.1215 -//    the constraints above don't apply.  The safepoint will fire in the future
  1.1216 -//    at a more convenient time.  On the other hand the latency between posting and
  1.1217 -//    running the safepoint introduces or admits "slop" or laxity during which the
  1.1218 -//    monitor population can climb further above the threshold.  The monitor population,
  1.1219 -//    however, tends to converge asymptotically over time to a count that's slightly
  1.1220 -//    above the target value specified by MonitorBound.   That is, we avoid unbounded
  1.1221 -//    growth, albeit with some imprecision.
  1.1222 -//
  1.1223  // The current implementation uses asynchronous VM operations.
  1.1224  //
  1.1225 -// Ideally we'd check if (MonitorPopulation > MonitorBound) in omAlloc()
  1.1226 -// immediately before trying to grow the global list via allocation.
  1.1227 -// If the predicate was true then we'd induce a synchronous safepoint, wait
  1.1228 -// for the safepoint to complete, and then again to allocate from the global
  1.1229 -// free list.  This approach is much simpler and precise, admitting no "slop".
  1.1230 -// Unfortunately we can't safely safepoint in the midst of omAlloc(), so
  1.1231 -// instead we use asynchronous safepoints.
  1.1232  
  1.1233  static void InduceScavenge (Thread * Self, const char * Whence) {
  1.1234    // Induce STW safepoint to trim monitors
  1.1235 @@ -812,7 +856,7 @@
  1.1236    // TODO: assert thread state is reasonable
  1.1237  
  1.1238    if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
  1.1239 -    if (Knob_Verbose) {
  1.1240 +    if (ObjectMonitor::Knob_Verbose) {
  1.1241        ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
  1.1242        ::fflush(stdout) ;
  1.1243      }
  1.1244 @@ -822,7 +866,7 @@
  1.1245      // The VMThread will delete the op when completed.
  1.1246      VMThread::execute (new VM_ForceAsyncSafepoint()) ;
  1.1247  
  1.1248 -    if (Knob_Verbose) {
  1.1249 +    if (ObjectMonitor::Knob_Verbose) {
  1.1250        ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
  1.1251        ::fflush(stdout) ;
  1.1252      }
  1.1253 @@ -844,7 +888,6 @@
  1.1254     assert(freetally == Self->omFreeCount, "free count off");
  1.1255  }
  1.1256  */
  1.1257 -
  1.1258  ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
  1.1259      // A large MAXPRIVATE value reduces both list lock contention
  1.1260      // and list coherency traffic, but also tends to increase the
  1.1261 @@ -974,12 +1017,6 @@
  1.1262  // attempt failed.  This doesn't allow unbounded #s of monitors to
  1.1263  // accumulate on a thread's free list.
  1.1264  //
  1.1265 -// In the future the usage of omRelease() might change and monitors
  1.1266 -// could migrate between free lists.  In that case to avoid excessive
  1.1267 -// accumulation we could  limit omCount to (omProvision*2), otherwise return
  1.1268 -// the objectMonitor to the global list.  We should drain (return) in reasonable chunks.
  1.1269 -// That is, *not* one-at-a-time.
  1.1270 -
  1.1271  
  1.1272  void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
  1.1273      guarantee (m->object() == NULL, "invariant") ;
  1.1274 @@ -1082,15 +1119,6 @@
  1.1275      TEVENT (omFlush) ;
  1.1276  }
  1.1277  
  1.1278 -
  1.1279 -// Get the next block in the block list.
  1.1280 -static inline ObjectMonitor* next(ObjectMonitor* block) {
  1.1281 -  assert(block->object() == CHAINMARKER, "must be a block header");
  1.1282 -  block = block->FreeNext ;
  1.1283 -  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
  1.1284 -  return block;
  1.1285 -}
  1.1286 -
  1.1287  // Fast path code shared by multiple functions
  1.1288  ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  1.1289    markOop mark = obj->mark();
  1.1290 @@ -1102,79 +1130,10 @@
  1.1291    return ObjectSynchronizer::inflate(Thread::current(), obj);
  1.1292  }
  1.1293  
  1.1294 +
  1.1295  // Note that we could encounter some performance loss through false-sharing as
  1.1296  // multiple locks occupy the same $ line.  Padding might be appropriate.
  1.1297  
  1.1298 -#define NINFLATIONLOCKS 256
  1.1299 -static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
  1.1300 -
  1.1301 -static markOop ReadStableMark (oop obj) {
  1.1302 -  markOop mark = obj->mark() ;
  1.1303 -  if (!mark->is_being_inflated()) {
  1.1304 -    return mark ;       // normal fast-path return
  1.1305 -  }
  1.1306 -
  1.1307 -  int its = 0 ;
  1.1308 -  for (;;) {
  1.1309 -    markOop mark = obj->mark() ;
  1.1310 -    if (!mark->is_being_inflated()) {
  1.1311 -      return mark ;    // normal fast-path return
  1.1312 -    }
  1.1313 -
  1.1314 -    // The object is being inflated by some other thread.
  1.1315 -    // The caller of ReadStableMark() must wait for inflation to complete.
  1.1316 -    // Avoid live-lock
  1.1317 -    // TODO: consider calling SafepointSynchronize::do_call_back() while
  1.1318 -    // spinning to see if there's a safepoint pending.  If so, immediately
  1.1319 -    // yielding or blocking would be appropriate.  Avoid spinning while
  1.1320 -    // there is a safepoint pending.
  1.1321 -    // TODO: add inflation contention performance counters.
  1.1322 -    // TODO: restrict the aggregate number of spinners.
  1.1323 -
  1.1324 -    ++its ;
  1.1325 -    if (its > 10000 || !os::is_MP()) {
  1.1326 -       if (its & 1) {
  1.1327 -         os::NakedYield() ;
  1.1328 -         TEVENT (Inflate: INFLATING - yield) ;
  1.1329 -       } else {
  1.1330 -         // Note that the following code attenuates the livelock problem but is not
  1.1331 -         // a complete remedy.  A more complete solution would require that the inflating
  1.1332 -         // thread hold the associated inflation lock.  The following code simply restricts
  1.1333 -         // the number of spinners to at most one.  We'll have N-2 threads blocked
  1.1334 -         // on the inflationlock, 1 thread holding the inflation lock and using
  1.1335 -         // a yield/park strategy, and 1 thread in the midst of inflation.
  1.1336 -         // A more refined approach would be to change the encoding of INFLATING
  1.1337 -         // to allow encapsulation of a native thread pointer.  Threads waiting for
  1.1338 -         // inflation to complete would use CAS to push themselves onto a singly linked
  1.1339 -         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
  1.1340 -         // and calling park().  When inflation was complete the thread that accomplished inflation
  1.1341 -         // would detach the list and set the markword to inflated with a single CAS and
  1.1342 -         // then for each thread on the list, set the flag and unpark() the thread.
  1.1343 -         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
  1.1344 -         // wakes at most one thread whereas we need to wake the entire list.
  1.1345 -         int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
  1.1346 -         int YieldThenBlock = 0 ;
  1.1347 -         assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
  1.1348 -         assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
  1.1349 -         Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
  1.1350 -         while (obj->mark() == markOopDesc::INFLATING()) {
  1.1351 -           // Beware: NakedYield() is advisory and has almost no effect on some platforms
  1.1352 -           // so we periodically call Self->_ParkEvent->park(1).
  1.1353 -           // We use a mixed spin/yield/block mechanism.
  1.1354 -           if ((YieldThenBlock++) >= 16) {
  1.1355 -              Thread::current()->_ParkEvent->park(1) ;
  1.1356 -           } else {
  1.1357 -              os::NakedYield() ;
  1.1358 -           }
  1.1359 -         }
  1.1360 -         Thread::muxRelease (InflationLocks + ix ) ;
  1.1361 -         TEVENT (Inflate: INFLATING - yield/park) ;
  1.1362 -       }
  1.1363 -    } else {
  1.1364 -       SpinPause() ;       // SMP-polite spinning
  1.1365 -    }
  1.1366 -  }
  1.1367 -}
  1.1368  
  1.1369  ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1.1370    // Inflate mutates the heap ...
  1.1371 @@ -1242,7 +1201,7 @@
  1.1372            m->_Responsible  = NULL ;
  1.1373            m->OwnerIsThread = 0 ;
  1.1374            m->_recursions   = 0 ;
  1.1375 -          m->_SpinDuration = Knob_SpinLimit ;   // Consider: maintain by type/class
  1.1376 +          m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
  1.1377  
  1.1378            markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1.1379            if (cmp != mark) {
  1.1380 @@ -1302,7 +1261,7 @@
  1.1381  
  1.1382            // Hopefully the performance counters are allocated on distinct cache lines
  1.1383            // to avoid false sharing on MP systems ...
  1.1384 -          if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
  1.1385 +          if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1.1386            TEVENT(Inflate: overwrite stacklock) ;
  1.1387            if (TraceMonitorInflation) {
  1.1388              if (object->is_instance()) {
  1.1389 @@ -1335,7 +1294,7 @@
  1.1390        m->OwnerIsThread = 1 ;
  1.1391        m->_recursions   = 0 ;
  1.1392        m->_Responsible  = NULL ;
  1.1393 -      m->_SpinDuration = Knob_SpinLimit ;       // consider: keep metastats by type/class
  1.1394 +      m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
  1.1395  
  1.1396        if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1.1397            m->set_object (NULL) ;
  1.1398 @@ -1352,7 +1311,7 @@
  1.1399  
  1.1400        // Hopefully the performance counters are allocated on distinct
  1.1401        // cache lines to avoid false sharing on MP systems ...
  1.1402 -      if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
  1.1403 +      if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1.1404        TEVENT(Inflate: overwrite neutral) ;
  1.1405        if (TraceMonitorInflation) {
  1.1406          if (object->is_instance()) {
  1.1407 @@ -1366,547 +1325,9 @@
  1.1408    }
  1.1409  }
  1.1410  
  1.1411 +// Note that we could encounter some performance loss through false-sharing as
  1.1412 +// multiple locks occupy the same $ line.  Padding might be appropriate.
  1.1413  
  1.1414 -// This the fast monitor enter. The interpreter and compiler use
  1.1415 -// some assembly copies of this code. Make sure update those code
  1.1416 -// if the following function is changed. The implementation is
  1.1417 -// extremely sensitive to race condition. Be careful.
  1.1418 -
  1.1419 -void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
  1.1420 - if (UseBiasedLocking) {
  1.1421 -    if (!SafepointSynchronize::is_at_safepoint()) {
  1.1422 -      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
  1.1423 -      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
  1.1424 -        return;
  1.1425 -      }
  1.1426 -    } else {
  1.1427 -      assert(!attempt_rebias, "can not rebias toward VM thread");
  1.1428 -      BiasedLocking::revoke_at_safepoint(obj);
  1.1429 -    }
  1.1430 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1431 - }
  1.1432 -
  1.1433 - slow_enter (obj, lock, THREAD) ;
  1.1434 -}
  1.1435 -
  1.1436 -void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
  1.1437 -  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
  1.1438 -  // if displaced header is null, the previous enter is recursive enter, no-op
  1.1439 -  markOop dhw = lock->displaced_header();
  1.1440 -  markOop mark ;
  1.1441 -  if (dhw == NULL) {
  1.1442 -     // Recursive stack-lock.
  1.1443 -     // Diagnostics -- Could be: stack-locked, inflating, inflated.
  1.1444 -     mark = object->mark() ;
  1.1445 -     assert (!mark->is_neutral(), "invariant") ;
  1.1446 -     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
  1.1447 -        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
  1.1448 -     }
  1.1449 -     if (mark->has_monitor()) {
  1.1450 -        ObjectMonitor * m = mark->monitor() ;
  1.1451 -        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
  1.1452 -        assert(m->is_entered(THREAD), "invariant") ;
  1.1453 -     }
  1.1454 -     return ;
  1.1455 -  }
  1.1456 -
  1.1457 -  mark = object->mark() ;
  1.1458 -
  1.1459 -  // If the object is stack-locked by the current thread, try to
  1.1460 -  // swing the displaced header from the box back to the mark.
  1.1461 -  if (mark == (markOop) lock) {
  1.1462 -     assert (dhw->is_neutral(), "invariant") ;
  1.1463 -     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
  1.1464 -        TEVENT (fast_exit: release stacklock) ;
  1.1465 -        return;
  1.1466 -     }
  1.1467 -  }
  1.1468 -
  1.1469 -  ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
  1.1470 -}
  1.1471 -
  1.1472 -// This routine is used to handle interpreter/compiler slow case
  1.1473 -// We don't need to use fast path here, because it must have been
  1.1474 -// failed in the interpreter/compiler code.
  1.1475 -void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  1.1476 -  markOop mark = obj->mark();
  1.1477 -  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
  1.1478 -
  1.1479 -  if (mark->is_neutral()) {
  1.1480 -    // Anticipate successful CAS -- the ST of the displaced mark must
  1.1481 -    // be visible <= the ST performed by the CAS.
  1.1482 -    lock->set_displaced_header(mark);
  1.1483 -    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
  1.1484 -      TEVENT (slow_enter: release stacklock) ;
  1.1485 -      return ;
  1.1486 -    }
  1.1487 -    // Fall through to inflate() ...
  1.1488 -  } else
  1.1489 -  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1.1490 -    assert(lock != mark->locker(), "must not re-lock the same lock");
  1.1491 -    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
  1.1492 -    lock->set_displaced_header(NULL);
  1.1493 -    return;
  1.1494 -  }
  1.1495 -
  1.1496 -#if 0
  1.1497 -  // The following optimization isn't particularly useful.
  1.1498 -  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
  1.1499 -    lock->set_displaced_header (NULL) ;
  1.1500 -    return ;
  1.1501 -  }
  1.1502 -#endif
  1.1503 -
  1.1504 -  // The object header will never be displaced to this lock,
  1.1505 -  // so it does not matter what the value is, except that it
  1.1506 -  // must be non-zero to avoid looking like a re-entrant lock,
  1.1507 -  // and must not look locked either.
  1.1508 -  lock->set_displaced_header(markOopDesc::unused_mark());
  1.1509 -  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
  1.1510 -}
  1.1511 -
  1.1512 -// This routine is used to handle interpreter/compiler slow case
  1.1513 -// We don't need to use fast path here, because it must have
  1.1514 -// failed in the interpreter/compiler code. Simply use the heavy
  1.1515 -// weight monitor should be ok, unless someone find otherwise.
  1.1516 -void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
  1.1517 -  fast_exit (object, lock, THREAD) ;
  1.1518 -}
  1.1519 -
  1.1520 -// NOTE: must use heavy weight monitor to handle jni monitor enter
  1.1521 -void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
  1.1522 -  // the current locking is from JNI instead of Java code
  1.1523 -  TEVENT (jni_enter) ;
  1.1524 -  if (UseBiasedLocking) {
  1.1525 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1526 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1527 -  }
  1.1528 -  THREAD->set_current_pending_monitor_is_from_java(false);
  1.1529 -  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
  1.1530 -  THREAD->set_current_pending_monitor_is_from_java(true);
  1.1531 -}
  1.1532 -
  1.1533 -// NOTE: must use heavy weight monitor to handle jni monitor enter
  1.1534 -bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
  1.1535 -  if (UseBiasedLocking) {
  1.1536 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1537 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1538 -  }
  1.1539 -
  1.1540 -  ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
  1.1541 -  return monitor->try_enter(THREAD);
  1.1542 -}
  1.1543 -
  1.1544 -
  1.1545 -// NOTE: must use heavy weight monitor to handle jni monitor exit
  1.1546 -void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
  1.1547 -  TEVENT (jni_exit) ;
  1.1548 -  if (UseBiasedLocking) {
  1.1549 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1550 -  }
  1.1551 -  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1552 -
  1.1553 -  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
  1.1554 -  // If this thread has locked the object, exit the monitor.  Note:  can't use
  1.1555 -  // monitor->check(CHECK); must exit even if an exception is pending.
  1.1556 -  if (monitor->check(THREAD)) {
  1.1557 -     monitor->exit(THREAD);
  1.1558 -  }
  1.1559 -}
  1.1560 -
  1.1561 -// complete_exit()/reenter() are used to wait on a nested lock
  1.1562 -// i.e. to give up an outer lock completely and then re-enter
  1.1563 -// Used when holding nested locks - lock acquisition order: lock1 then lock2
  1.1564 -//  1) complete_exit lock1 - saving recursion count
  1.1565 -//  2) wait on lock2
  1.1566 -//  3) when notified on lock2, unlock lock2
  1.1567 -//  4) reenter lock1 with original recursion count
  1.1568 -//  5) lock lock2
  1.1569 -// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
  1.1570 -intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
  1.1571 -  TEVENT (complete_exit) ;
  1.1572 -  if (UseBiasedLocking) {
  1.1573 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1574 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1575 -  }
  1.1576 -
  1.1577 -  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1.1578 -
  1.1579 -  return monitor->complete_exit(THREAD);
  1.1580 -}
  1.1581 -
  1.1582 -// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
  1.1583 -void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
  1.1584 -  TEVENT (reenter) ;
  1.1585 -  if (UseBiasedLocking) {
  1.1586 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1587 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1588 -  }
  1.1589 -
  1.1590 -  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1.1591 -
  1.1592 -  monitor->reenter(recursion, THREAD);
  1.1593 -}
  1.1594 -
  1.1595 -// This exists only as a workaround of dtrace bug 6254741
  1.1596 -int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
  1.1597 -  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
  1.1598 -  return 0;
  1.1599 -}
  1.1600 -
  1.1601 -// NOTE: must use heavy weight monitor to handle wait()
  1.1602 -void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
  1.1603 -  if (UseBiasedLocking) {
  1.1604 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1605 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1606 -  }
  1.1607 -  if (millis < 0) {
  1.1608 -    TEVENT (wait - throw IAX) ;
  1.1609 -    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  1.1610 -  }
  1.1611 -  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1.1612 -  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
  1.1613 -  monitor->wait(millis, true, THREAD);
  1.1614 -
  1.1615 -  /* This dummy call is in place to get around dtrace bug 6254741.  Once
  1.1616 -     that's fixed we can uncomment the following line and remove the call */
  1.1617 -  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
  1.1618 -  dtrace_waited_probe(monitor, obj, THREAD);
  1.1619 -}
  1.1620 -
  1.1621 -void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
  1.1622 -  if (UseBiasedLocking) {
  1.1623 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1624 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1625 -  }
  1.1626 -  if (millis < 0) {
  1.1627 -    TEVENT (wait - throw IAX) ;
  1.1628 -    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  1.1629 -  }
  1.1630 -  ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
  1.1631 -}
  1.1632 -
  1.1633 -void ObjectSynchronizer::notify(Handle obj, TRAPS) {
  1.1634 - if (UseBiasedLocking) {
  1.1635 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1636 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1637 -  }
  1.1638 -
  1.1639 -  markOop mark = obj->mark();
  1.1640 -  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1.1641 -    return;
  1.1642 -  }
  1.1643 -  ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
  1.1644 -}
  1.1645 -
  1.1646 -// NOTE: see comment of notify()
  1.1647 -void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
  1.1648 -  if (UseBiasedLocking) {
  1.1649 -    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1.1650 -    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1651 -  }
  1.1652 -
  1.1653 -  markOop mark = obj->mark();
  1.1654 -  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1.1655 -    return;
  1.1656 -  }
  1.1657 -  ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
  1.1658 -}
  1.1659 -
  1.1660 -intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
  1.1661 -  if (UseBiasedLocking) {
  1.1662 -    // NOTE: many places throughout the JVM do not expect a safepoint
  1.1663 -    // to be taken here, in particular most operations on perm gen
  1.1664 -    // objects. However, we only ever bias Java instances and all of
  1.1665 -    // the call sites of identity_hash that might revoke biases have
  1.1666 -    // been checked to make sure they can handle a safepoint. The
  1.1667 -    // added check of the bias pattern is to avoid useless calls to
  1.1668 -    // thread-local storage.
  1.1669 -    if (obj->mark()->has_bias_pattern()) {
  1.1670 -      // Box and unbox the raw reference just in case we cause a STW safepoint.
  1.1671 -      Handle hobj (Self, obj) ;
  1.1672 -      // Relaxing assertion for bug 6320749.
  1.1673 -      assert (Universe::verify_in_progress() ||
  1.1674 -              !SafepointSynchronize::is_at_safepoint(),
  1.1675 -             "biases should not be seen by VM thread here");
  1.1676 -      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
  1.1677 -      obj = hobj() ;
  1.1678 -      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1679 -    }
  1.1680 -  }
  1.1681 -
  1.1682 -  // hashCode() is a heap mutator ...
  1.1683 -  // Relaxing assertion for bug 6320749.
  1.1684 -  assert (Universe::verify_in_progress() ||
  1.1685 -          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1.1686 -  assert (Universe::verify_in_progress() ||
  1.1687 -          Self->is_Java_thread() , "invariant") ;
  1.1688 -  assert (Universe::verify_in_progress() ||
  1.1689 -         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
  1.1690 -
  1.1691 -  ObjectMonitor* monitor = NULL;
  1.1692 -  markOop temp, test;
  1.1693 -  intptr_t hash;
  1.1694 -  markOop mark = ReadStableMark (obj);
  1.1695 -
  1.1696 -  // object should remain ineligible for biased locking
  1.1697 -  assert (!mark->has_bias_pattern(), "invariant") ;
  1.1698 -
  1.1699 -  if (mark->is_neutral()) {
  1.1700 -    hash = mark->hash();              // this is a normal header
  1.1701 -    if (hash) {                       // if it has hash, just return it
  1.1702 -      return hash;
  1.1703 -    }
  1.1704 -    hash = get_next_hash(Self, obj);  // allocate a new hash code
  1.1705 -    temp = mark->copy_set_hash(hash); // merge the hash code into header
  1.1706 -    // use (machine word version) atomic operation to install the hash
  1.1707 -    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
  1.1708 -    if (test == mark) {
  1.1709 -      return hash;
  1.1710 -    }
  1.1711 -    // If atomic operation failed, we must inflate the header
  1.1712 -    // into heavy weight monitor. We could add more code here
  1.1713 -    // for fast path, but it does not worth the complexity.
  1.1714 -  } else if (mark->has_monitor()) {
  1.1715 -    monitor = mark->monitor();
  1.1716 -    temp = monitor->header();
  1.1717 -    assert (temp->is_neutral(), "invariant") ;
  1.1718 -    hash = temp->hash();
  1.1719 -    if (hash) {
  1.1720 -      return hash;
  1.1721 -    }
  1.1722 -    // Skip to the following code to reduce code size
  1.1723 -  } else if (Self->is_lock_owned((address)mark->locker())) {
  1.1724 -    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
  1.1725 -    assert (temp->is_neutral(), "invariant") ;
  1.1726 -    hash = temp->hash();              // by current thread, check if the displaced
  1.1727 -    if (hash) {                       // header contains hash code
  1.1728 -      return hash;
  1.1729 -    }
  1.1730 -    // WARNING:
  1.1731 -    //   The displaced header is strictly immutable.
  1.1732 -    // It can NOT be changed in ANY cases. So we have
  1.1733 -    // to inflate the header into heavyweight monitor
  1.1734 -    // even the current thread owns the lock. The reason
  1.1735 -    // is the BasicLock (stack slot) will be asynchronously
  1.1736 -    // read by other threads during the inflate() function.
  1.1737 -    // Any change to stack may not propagate to other threads
  1.1738 -    // correctly.
  1.1739 -  }
  1.1740 -
  1.1741 -  // Inflate the monitor to set hash code
  1.1742 -  monitor = ObjectSynchronizer::inflate(Self, obj);
  1.1743 -  // Load displaced header and check it has hash code
  1.1744 -  mark = monitor->header();
  1.1745 -  assert (mark->is_neutral(), "invariant") ;
  1.1746 -  hash = mark->hash();
  1.1747 -  if (hash == 0) {
  1.1748 -    hash = get_next_hash(Self, obj);
  1.1749 -    temp = mark->copy_set_hash(hash); // merge hash code into header
  1.1750 -    assert (temp->is_neutral(), "invariant") ;
  1.1751 -    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
  1.1752 -    if (test != mark) {
  1.1753 -      // The only update to the header in the monitor (outside GC)
  1.1754 -      // is install the hash code. If someone add new usage of
  1.1755 -      // displaced header, please update this code
  1.1756 -      hash = test->hash();
  1.1757 -      assert (test->is_neutral(), "invariant") ;
  1.1758 -      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
  1.1759 -    }
  1.1760 -  }
  1.1761 -  // We finally get the hash
  1.1762 -  return hash;
  1.1763 -}
  1.1764 -
  1.1765 -// Deprecated -- use FastHashCode() instead.
  1.1766 -
  1.1767 -intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
  1.1768 -  return FastHashCode (Thread::current(), obj()) ;
  1.1769 -}
  1.1770 -
  1.1771 -bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
  1.1772 -                                                   Handle h_obj) {
  1.1773 -  if (UseBiasedLocking) {
  1.1774 -    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
  1.1775 -    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1776 -  }
  1.1777 -
  1.1778 -  assert(thread == JavaThread::current(), "Can only be called on current thread");
  1.1779 -  oop obj = h_obj();
  1.1780 -
  1.1781 -  markOop mark = ReadStableMark (obj) ;
  1.1782 -
  1.1783 -  // Uncontended case, header points to stack
  1.1784 -  if (mark->has_locker()) {
  1.1785 -    return thread->is_lock_owned((address)mark->locker());
  1.1786 -  }
  1.1787 -  // Contended case, header points to ObjectMonitor (tagged pointer)
  1.1788 -  if (mark->has_monitor()) {
  1.1789 -    ObjectMonitor* monitor = mark->monitor();
  1.1790 -    return monitor->is_entered(thread) != 0 ;
  1.1791 -  }
  1.1792 -  // Unlocked case, header in place
  1.1793 -  assert(mark->is_neutral(), "sanity check");
  1.1794 -  return false;
  1.1795 -}
  1.1796 -
  1.1797 -// Be aware of this method could revoke bias of the lock object.
  1.1798 -// This method querys the ownership of the lock handle specified by 'h_obj'.
  1.1799 -// If the current thread owns the lock, it returns owner_self. If no
  1.1800 -// thread owns the lock, it returns owner_none. Otherwise, it will return
  1.1801 -// ower_other.
  1.1802 -ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
  1.1803 -(JavaThread *self, Handle h_obj) {
  1.1804 -  // The caller must beware this method can revoke bias, and
  1.1805 -  // revocation can result in a safepoint.
  1.1806 -  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1.1807 -  assert (self->thread_state() != _thread_blocked , "invariant") ;
  1.1808 -
  1.1809 -  // Possible mark states: neutral, biased, stack-locked, inflated
  1.1810 -
  1.1811 -  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
  1.1812 -    // CASE: biased
  1.1813 -    BiasedLocking::revoke_and_rebias(h_obj, false, self);
  1.1814 -    assert(!h_obj->mark()->has_bias_pattern(),
  1.1815 -           "biases should be revoked by now");
  1.1816 -  }
  1.1817 -
  1.1818 -  assert(self == JavaThread::current(), "Can only be called on current thread");
  1.1819 -  oop obj = h_obj();
  1.1820 -  markOop mark = ReadStableMark (obj) ;
  1.1821 -
  1.1822 -  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
  1.1823 -  if (mark->has_locker()) {
  1.1824 -    return self->is_lock_owned((address)mark->locker()) ?
  1.1825 -      owner_self : owner_other;
  1.1826 -  }
  1.1827 -
  1.1828 -  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
  1.1829 -  // The Object:ObjectMonitor relationship is stable as long as we're
  1.1830 -  // not at a safepoint.
  1.1831 -  if (mark->has_monitor()) {
  1.1832 -    void * owner = mark->monitor()->_owner ;
  1.1833 -    if (owner == NULL) return owner_none ;
  1.1834 -    return (owner == self ||
  1.1835 -            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
  1.1836 -  }
  1.1837 -
  1.1838 -  // CASE: neutral
  1.1839 -  assert(mark->is_neutral(), "sanity check");
  1.1840 -  return owner_none ;           // it's unlocked
  1.1841 -}
  1.1842 -
  1.1843 -// FIXME: jvmti should call this
  1.1844 -JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
  1.1845 -  if (UseBiasedLocking) {
  1.1846 -    if (SafepointSynchronize::is_at_safepoint()) {
  1.1847 -      BiasedLocking::revoke_at_safepoint(h_obj);
  1.1848 -    } else {
  1.1849 -      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
  1.1850 -    }
  1.1851 -    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1.1852 -  }
  1.1853 -
  1.1854 -  oop obj = h_obj();
  1.1855 -  address owner = NULL;
  1.1856 -
  1.1857 -  markOop mark = ReadStableMark (obj) ;
  1.1858 -
  1.1859 -  // Uncontended case, header points to stack
  1.1860 -  if (mark->has_locker()) {
  1.1861 -    owner = (address) mark->locker();
  1.1862 -  }
  1.1863 -
  1.1864 -  // Contended case, header points to ObjectMonitor (tagged pointer)
  1.1865 -  if (mark->has_monitor()) {
  1.1866 -    ObjectMonitor* monitor = mark->monitor();
  1.1867 -    assert(monitor != NULL, "monitor should be non-null");
  1.1868 -    owner = (address) monitor->owner();
  1.1869 -  }
  1.1870 -
  1.1871 -  if (owner != NULL) {
  1.1872 -    return Threads::owning_thread_from_monitor_owner(owner, doLock);
  1.1873 -  }
  1.1874 -
  1.1875 -  // Unlocked case, header in place
  1.1876 -  // Cannot have assertion since this object may have been
  1.1877 -  // locked by another thread when reaching here.
  1.1878 -  // assert(mark->is_neutral(), "sanity check");
  1.1879 -
  1.1880 -  return NULL;
  1.1881 -}
  1.1882 -
  1.1883 -// Iterate through monitor cache and attempt to release thread's monitors
  1.1884 -// Gives up on a particular monitor if an exception occurs, but continues
  1.1885 -// the overall iteration, swallowing the exception.
  1.1886 -class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1.1887 -private:
  1.1888 -  TRAPS;
  1.1889 -
  1.1890 -public:
  1.1891 -  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1.1892 -  void do_monitor(ObjectMonitor* mid) {
  1.1893 -    if (mid->owner() == THREAD) {
  1.1894 -      (void)mid->complete_exit(CHECK);
  1.1895 -    }
  1.1896 -  }
  1.1897 -};
  1.1898 -
  1.1899 -// Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1.1900 -// ignored.  This is meant to be called during JNI thread detach which assumes
  1.1901 -// all remaining monitors are heavyweight.  All exceptions are swallowed.
  1.1902 -// Scanning the extant monitor list can be time consuming.
  1.1903 -// A simple optimization is to add a per-thread flag that indicates a thread
  1.1904 -// called jni_monitorenter() during its lifetime.
  1.1905 -//
  1.1906 -// Instead of No_Savepoint_Verifier it might be cheaper to
  1.1907 -// use an idiom of the form:
  1.1908 -//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1.1909 -//   <code that must not run at safepoint>
  1.1910 -//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1.1911 -// Since the tests are extremely cheap we could leave them enabled
  1.1912 -// for normal product builds.
  1.1913 -
  1.1914 -void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1.1915 -  assert(THREAD == JavaThread::current(), "must be current Java thread");
  1.1916 -  No_Safepoint_Verifier nsv ;
  1.1917 -  ReleaseJavaMonitorsClosure rjmc(THREAD);
  1.1918 -  Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1.1919 -  ObjectSynchronizer::monitors_iterate(&rjmc);
  1.1920 -  Thread::muxRelease(&ListLock);
  1.1921 -  THREAD->clear_pending_exception();
  1.1922 -}
  1.1923 -
  1.1924 -// Visitors ...
  1.1925 -
  1.1926 -void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
  1.1927 -  ObjectMonitor* block = gBlockList;
  1.1928 -  ObjectMonitor* mid;
  1.1929 -  while (block) {
  1.1930 -    assert(block->object() == CHAINMARKER, "must be a block header");
  1.1931 -    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
  1.1932 -      mid = block + i;
  1.1933 -      oop object = (oop) mid->object();
  1.1934 -      if (object != NULL) {
  1.1935 -        closure->do_monitor(mid);
  1.1936 -      }
  1.1937 -    }
  1.1938 -    block = (ObjectMonitor*) block->FreeNext;
  1.1939 -  }
  1.1940 -}
  1.1941 -
  1.1942 -void ObjectSynchronizer::oops_do(OopClosure* f) {
  1.1943 -  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1.1944 -  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1.1945 -    assert(block->object() == CHAINMARKER, "must be a block header");
  1.1946 -    for (int i = 1; i < _BLOCKSIZE; i++) {
  1.1947 -      ObjectMonitor* mid = &block[i];
  1.1948 -      if (mid->object() != NULL) {
  1.1949 -        f->do_oop((oop*)mid->object_addr());
  1.1950 -      }
  1.1951 -    }
  1.1952 -  }
  1.1953 -}
  1.1954  
  1.1955  // Deflate_idle_monitors() is called at all safepoints, immediately
  1.1956  // after all mutators are stopped, but before any objects have moved.
  1.1957 @@ -1936,12 +1357,11 @@
  1.1958  // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1.1959  // This is an unfortunate aspect of this design.
  1.1960  //
  1.1961 -// Another refinement would be to refrain from calling deflate_idle_monitors()
  1.1962 -// except at stop-the-world points associated with garbage collections.
  1.1963 -//
  1.1964 -// An even better solution would be to deflate on-the-fly, aggressively,
  1.1965 -// at monitorexit-time as is done in EVM's metalock or Relaxed Locks.
  1.1966  
  1.1967 +enum ManifestConstants {
  1.1968 +    ClearResponsibleAtSTW   = 0,
  1.1969 +    MaximumRecheckInterval  = 1000
  1.1970 +} ;
  1.1971  
  1.1972  // Deflate a single monitor if not in use
  1.1973  // Return true if deflated, false if in use
  1.1974 @@ -2088,7 +1508,7 @@
  1.1975  
  1.1976    // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
  1.1977  
  1.1978 -  if (Knob_Verbose) {
  1.1979 +  if (ObjectMonitor::Knob_Verbose) {
  1.1980      ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
  1.1981          nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
  1.1982          MonitorPopulation, MonitorFreeCount) ;
  1.1983 @@ -2107,8 +1527,8 @@
  1.1984    }
  1.1985    Thread::muxRelease (&ListLock) ;
  1.1986  
  1.1987 -  if (_sync_Deflations != NULL) _sync_Deflations->inc(nScavenged) ;
  1.1988 -  if (_sync_MonExtant  != NULL) _sync_MonExtant ->set_value(nInCirculation);
  1.1989 +  if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
  1.1990 +  if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
  1.1991  
  1.1992    // TODO: Add objectMonitor leak detection.
  1.1993    // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  1.1994 @@ -2116,2810 +1536,49 @@
  1.1995    GVars.stwCycle ++ ;
  1.1996  }
  1.1997  
  1.1998 -// A macro is used below because there may already be a pending
  1.1999 -// exception which should not abort the execution of the routines
  1.2000 -// which use this (which is why we don't put this into check_slow and
  1.2001 -// call it with a CHECK argument).
  1.2002 +// Monitor cleanup on JavaThread::exit
  1.2003  
  1.2004 -#define CHECK_OWNER()                                                             \
  1.2005 -  do {                                                                            \
  1.2006 -    if (THREAD != _owner) {                                                       \
  1.2007 -      if (THREAD->is_lock_owned((address) _owner)) {                              \
  1.2008 -        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1.2009 -        _recursions = 0;                                                          \
  1.2010 -        OwnerIsThread = 1 ;                                                       \
  1.2011 -      } else {                                                                    \
  1.2012 -        TEVENT (Throw IMSX) ;                                                     \
  1.2013 -        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1.2014 -      }                                                                           \
  1.2015 -    }                                                                             \
  1.2016 -  } while (false)
  1.2017 +// Iterate through monitor cache and attempt to release thread's monitors
  1.2018 +// Gives up on a particular monitor if an exception occurs, but continues
  1.2019 +// the overall iteration, swallowing the exception.
  1.2020 +class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1.2021 +private:
  1.2022 +  TRAPS;
  1.2023  
  1.2024 -// TODO-FIXME: eliminate ObjectWaiters.  Replace this visitor/enumerator
  1.2025 -// interface with a simple FirstWaitingThread(), NextWaitingThread() interface.
  1.2026 -
  1.2027 -ObjectWaiter* ObjectMonitor::first_waiter() {
  1.2028 -  return _WaitSet;
  1.2029 -}
  1.2030 -
  1.2031 -ObjectWaiter* ObjectMonitor::next_waiter(ObjectWaiter* o) {
  1.2032 -  return o->_next;
  1.2033 -}
  1.2034 -
  1.2035 -Thread* ObjectMonitor::thread_of_waiter(ObjectWaiter* o) {
  1.2036 -  return o->_thread;
  1.2037 -}
  1.2038 -
  1.2039 -// initialize the monitor, exception the semaphore, all other fields
  1.2040 -// are simple integers or pointers
  1.2041 -ObjectMonitor::ObjectMonitor() {
  1.2042 -  _header       = NULL;
  1.2043 -  _count        = 0;
  1.2044 -  _waiters      = 0,
  1.2045 -  _recursions   = 0;
  1.2046 -  _object       = NULL;
  1.2047 -  _owner        = NULL;
  1.2048 -  _WaitSet      = NULL;
  1.2049 -  _WaitSetLock  = 0 ;
  1.2050 -  _Responsible  = NULL ;
  1.2051 -  _succ         = NULL ;
  1.2052 -  _cxq          = NULL ;
  1.2053 -  FreeNext      = NULL ;
  1.2054 -  _EntryList    = NULL ;
  1.2055 -  _SpinFreq     = 0 ;
  1.2056 -  _SpinClock    = 0 ;
  1.2057 -  OwnerIsThread = 0 ;
  1.2058 -}
  1.2059 -
  1.2060 -ObjectMonitor::~ObjectMonitor() {
  1.2061 -   // TODO: Add asserts ...
  1.2062 -   // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
  1.2063 -   // _count == 0 _EntryList  == NULL etc
  1.2064 -}
  1.2065 -
  1.2066 -intptr_t ObjectMonitor::is_busy() const {
  1.2067 -  // TODO-FIXME: merge _count and _waiters.
  1.2068 -  // TODO-FIXME: assert _owner == null implies _recursions = 0
  1.2069 -  // TODO-FIXME: assert _WaitSet != null implies _count > 0
  1.2070 -  return _count|_waiters|intptr_t(_owner)|intptr_t(_cxq)|intptr_t(_EntryList ) ;
  1.2071 -}
  1.2072 -
  1.2073 -void ObjectMonitor::Recycle () {
  1.2074 -  // TODO: add stronger asserts ...
  1.2075 -  // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
  1.2076 -  // _count == 0 EntryList  == NULL
  1.2077 -  // _recursions == 0 _WaitSet == NULL
  1.2078 -  // TODO: assert (is_busy()|_recursions) == 0
  1.2079 -  _succ          = NULL ;
  1.2080 -  _EntryList     = NULL ;
  1.2081 -  _cxq           = NULL ;
  1.2082 -  _WaitSet       = NULL ;
  1.2083 -  _recursions    = 0 ;
  1.2084 -  _SpinFreq      = 0 ;
  1.2085 -  _SpinClock     = 0 ;
  1.2086 -  OwnerIsThread  = 0 ;
  1.2087 -}
  1.2088 -
  1.2089 -// WaitSet management ...
  1.2090 -
  1.2091 -inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  1.2092 -  assert(node != NULL, "should not dequeue NULL node");
  1.2093 -  assert(node->_prev == NULL, "node already in list");
  1.2094 -  assert(node->_next == NULL, "node already in list");
  1.2095 -  // put node at end of queue (circular doubly linked list)
  1.2096 -  if (_WaitSet == NULL) {
  1.2097 -    _WaitSet = node;
  1.2098 -    node->_prev = node;
  1.2099 -    node->_next = node;
  1.2100 -  } else {
  1.2101 -    ObjectWaiter* head = _WaitSet ;
  1.2102 -    ObjectWaiter* tail = head->_prev;
  1.2103 -    assert(tail->_next == head, "invariant check");
  1.2104 -    tail->_next = node;
  1.2105 -    head->_prev = node;
  1.2106 -    node->_next = head;
  1.2107 -    node->_prev = tail;
  1.2108 -  }
  1.2109 -}
  1.2110 -
  1.2111 -inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  1.2112 -  // dequeue the very first waiter
  1.2113 -  ObjectWaiter* waiter = _WaitSet;
  1.2114 -  if (waiter) {
  1.2115 -    DequeueSpecificWaiter(waiter);
  1.2116 -  }
  1.2117 -  return waiter;
  1.2118 -}
  1.2119 -
  1.2120 -inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  1.2121 -  assert(node != NULL, "should not dequeue NULL node");
  1.2122 -  assert(node->_prev != NULL, "node already removed from list");
  1.2123 -  assert(node->_next != NULL, "node already removed from list");
  1.2124 -  // when the waiter has woken up because of interrupt,
  1.2125 -  // timeout or other spurious wake-up, dequeue the
  1.2126 -  // waiter from waiting list
  1.2127 -  ObjectWaiter* next = node->_next;
  1.2128 -  if (next == node) {
  1.2129 -    assert(node->_prev == node, "invariant check");
  1.2130 -    _WaitSet = NULL;
  1.2131 -  } else {
  1.2132 -    ObjectWaiter* prev = node->_prev;
  1.2133 -    assert(prev->_next == node, "invariant check");
  1.2134 -    assert(next->_prev == node, "invariant check");
  1.2135 -    next->_prev = prev;
  1.2136 -    prev->_next = next;
  1.2137 -    if (_WaitSet == node) {
  1.2138 -      _WaitSet = next;
  1.2139 +public:
  1.2140 +  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1.2141 +  void do_monitor(ObjectMonitor* mid) {
  1.2142 +    if (mid->owner() == THREAD) {
  1.2143 +      (void)mid->complete_exit(CHECK);
  1.2144      }
  1.2145    }
  1.2146 -  node->_next = NULL;
  1.2147 -  node->_prev = NULL;
  1.2148 +};
  1.2149 +
  1.2150 +// Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1.2151 +// ignored.  This is meant to be called during JNI thread detach which assumes
  1.2152 +// all remaining monitors are heavyweight.  All exceptions are swallowed.
  1.2153 +// Scanning the extant monitor list can be time consuming.
  1.2154 +// A simple optimization is to add a per-thread flag that indicates a thread
  1.2155 +// called jni_monitorenter() during its lifetime.
  1.2156 +//
  1.2157 +// Instead of No_Savepoint_Verifier it might be cheaper to
  1.2158 +// use an idiom of the form:
  1.2159 +//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1.2160 +//   <code that must not run at safepoint>
  1.2161 +//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1.2162 +// Since the tests are extremely cheap we could leave them enabled
  1.2163 +// for normal product builds.
  1.2164 +
  1.2165 +void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1.2166 +  assert(THREAD == JavaThread::current(), "must be current Java thread");
  1.2167 +  No_Safepoint_Verifier nsv ;
  1.2168 +  ReleaseJavaMonitorsClosure rjmc(THREAD);
  1.2169 +  Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1.2170 +  ObjectSynchronizer::monitors_iterate(&rjmc);
  1.2171 +  Thread::muxRelease(&ListLock);
  1.2172 +  THREAD->clear_pending_exception();
  1.2173  }
  1.2174  
  1.2175 -static char * kvGet (char * kvList, const char * Key) {
  1.2176 -    if (kvList == NULL) return NULL ;
  1.2177 -    size_t n = strlen (Key) ;
  1.2178 -    char * Search ;
  1.2179 -    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  1.2180 -        if (strncmp (Search, Key, n) == 0) {
  1.2181 -            if (Search[n] == '=') return Search + n + 1 ;
  1.2182 -            if (Search[n] == 0)   return (char *) "1" ;
  1.2183 -        }
  1.2184 -    }
  1.2185 -    return NULL ;
  1.2186 -}
  1.2187 -
  1.2188 -static int kvGetInt (char * kvList, const char * Key, int Default) {
  1.2189 -    char * v = kvGet (kvList, Key) ;
  1.2190 -    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  1.2191 -    if (Knob_ReportSettings && v != NULL) {
  1.2192 -        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  1.2193 -        ::fflush (stdout) ;
  1.2194 -    }
  1.2195 -    return rslt ;
  1.2196 -}
  1.2197 -
  1.2198 -// By convention we unlink a contending thread from EntryList|cxq immediately
  1.2199 -// after the thread acquires the lock in ::enter().  Equally, we could defer
  1.2200 -// unlinking the thread until ::exit()-time.
  1.2201 -
  1.2202 -void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
  1.2203 -{
  1.2204 -    assert (_owner == Self, "invariant") ;
  1.2205 -    assert (SelfNode->_thread == Self, "invariant") ;
  1.2206 -
  1.2207 -    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
  1.2208 -        // Normal case: remove Self from the DLL EntryList .
  1.2209 -        // This is a constant-time operation.
  1.2210 -        ObjectWaiter * nxt = SelfNode->_next ;
  1.2211 -        ObjectWaiter * prv = SelfNode->_prev ;
  1.2212 -        if (nxt != NULL) nxt->_prev = prv ;
  1.2213 -        if (prv != NULL) prv->_next = nxt ;
  1.2214 -        if (SelfNode == _EntryList ) _EntryList = nxt ;
  1.2215 -        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1.2216 -        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1.2217 -        TEVENT (Unlink from EntryList) ;
  1.2218 -    } else {
  1.2219 -        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1.2220 -        // Inopportune interleaving -- Self is still on the cxq.
  1.2221 -        // This usually means the enqueue of self raced an exiting thread.
  1.2222 -        // Normally we'll find Self near the front of the cxq, so
  1.2223 -        // dequeueing is typically fast.  If needbe we can accelerate
  1.2224 -        // this with some MCS/CHL-like bidirectional list hints and advisory
  1.2225 -        // back-links so dequeueing from the interior will normally operate
  1.2226 -        // in constant-time.
  1.2227 -        // Dequeue Self from either the head (with CAS) or from the interior
  1.2228 -        // with a linear-time scan and normal non-atomic memory operations.
  1.2229 -        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
  1.2230 -        // and then unlink Self from EntryList.  We have to drain eventually,
  1.2231 -        // so it might as well be now.
  1.2232 -
  1.2233 -        ObjectWaiter * v = _cxq ;
  1.2234 -        assert (v != NULL, "invariant") ;
  1.2235 -        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
  1.2236 -            // The CAS above can fail from interference IFF a "RAT" arrived.
  1.2237 -            // In that case Self must be in the interior and can no longer be
  1.2238 -            // at the head of cxq.
  1.2239 -            if (v == SelfNode) {
  1.2240 -                assert (_cxq != v, "invariant") ;
  1.2241 -                v = _cxq ;          // CAS above failed - start scan at head of list
  1.2242 -            }
  1.2243 -            ObjectWaiter * p ;
  1.2244 -            ObjectWaiter * q = NULL ;
  1.2245 -            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
  1.2246 -                q = p ;
  1.2247 -                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1.2248 -            }
  1.2249 -            assert (v != SelfNode,  "invariant") ;
  1.2250 -            assert (p == SelfNode,  "Node not found on cxq") ;
  1.2251 -            assert (p != _cxq,      "invariant") ;
  1.2252 -            assert (q != NULL,      "invariant") ;
  1.2253 -            assert (q->_next == p,  "invariant") ;
  1.2254 -            q->_next = p->_next ;
  1.2255 -        }
  1.2256 -        TEVENT (Unlink from cxq) ;
  1.2257 -    }
  1.2258 -
  1.2259 -    // Diagnostic hygiene ...
  1.2260 -    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
  1.2261 -    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
  1.2262 -    SelfNode->TState = ObjectWaiter::TS_RUN ;
  1.2263 -}
  1.2264 -
  1.2265 -// Caveat: TryLock() is not necessarily serializing if it returns failure.
  1.2266 -// Callers must compensate as needed.
  1.2267 -
  1.2268 -int ObjectMonitor::TryLock (Thread * Self) {
  1.2269 -   for (;;) {
  1.2270 -      void * own = _owner ;
  1.2271 -      if (own != NULL) return 0 ;
  1.2272 -      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  1.2273 -         // Either guarantee _recursions == 0 or set _recursions = 0.
  1.2274 -         assert (_recursions == 0, "invariant") ;
  1.2275 -         assert (_owner == Self, "invariant") ;
  1.2276 -         // CONSIDER: set or assert that OwnerIsThread == 1
  1.2277 -         return 1 ;
  1.2278 -      }
  1.2279 -      // The lock had been free momentarily, but we lost the race to the lock.
  1.2280 -      // Interference -- the CAS failed.
  1.2281 -      // We can either return -1 or retry.
  1.2282 -      // Retry doesn't make as much sense because the lock was just acquired.
  1.2283 -      if (true) return -1 ;
  1.2284 -   }
  1.2285 -}
  1.2286 -
  1.2287 -// NotRunnable() -- informed spinning
  1.2288 -//
  1.2289 -// Don't bother spinning if the owner is not eligible to drop the lock.
  1.2290 -// Peek at the owner's schedctl.sc_state and Thread._thread_values and
  1.2291 -// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  1.2292 -// The thread must be runnable in order to drop the lock in timely fashion.
  1.2293 -// If the _owner is not runnable then spinning will not likely be
  1.2294 -// successful (profitable).
  1.2295 -//
  1.2296 -// Beware -- the thread referenced by _owner could have died
  1.2297 -// so a simply fetch from _owner->_thread_state might trap.
  1.2298 -// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  1.2299 -// Because of the lifecycle issues the schedctl and _thread_state values
  1.2300 -// observed by NotRunnable() might be garbage.  NotRunnable must
  1.2301 -// tolerate this and consider the observed _thread_state value
  1.2302 -// as advisory.
  1.2303 -//
  1.2304 -// Beware too, that _owner is sometimes a BasicLock address and sometimes
  1.2305 -// a thread pointer.  We differentiate the two cases with OwnerIsThread.
  1.2306 -// Alternately, we might tag the type (thread pointer vs basiclock pointer)
  1.2307 -// with the LSB of _owner.  Another option would be to probablistically probe
  1.2308 -// the putative _owner->TypeTag value.
  1.2309 -//
  1.2310 -// Checking _thread_state isn't perfect.  Even if the thread is
  1.2311 -// in_java it might be blocked on a page-fault or have been preempted
  1.2312 -// and sitting on a ready/dispatch queue.  _thread state in conjunction
  1.2313 -// with schedctl.sc_state gives us a good picture of what the
  1.2314 -// thread is doing, however.
  1.2315 -//
  1.2316 -// TODO: check schedctl.sc_state.
  1.2317 -// We'll need to use SafeFetch32() to read from the schedctl block.
  1.2318 -// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  1.2319 -//
  1.2320 -// The return value from NotRunnable() is *advisory* -- the
  1.2321 -// result is based on sampling and is not necessarily coherent.
  1.2322 -// The caller must tolerate false-negative and false-positive errors.
  1.2323 -// Spinning, in general, is probabilistic anyway.
  1.2324 -
  1.2325 -
  1.2326 -int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  1.2327 -    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  1.2328 -    if (!OwnerIsThread) return 0 ;
  1.2329 -
  1.2330 -    if (ox == NULL) return 0 ;
  1.2331 -
  1.2332 -    // Avoid transitive spinning ...
  1.2333 -    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  1.2334 -    // Immediately after T1 acquires L it's possible that T2, also
  1.2335 -    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  1.2336 -    // This occurs transiently after T1 acquired L but before
  1.2337 -    // T1 managed to clear T1.Stalled.  T2 does not need to abort
  1.2338 -    // its spin in this circumstance.
  1.2339 -    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  1.2340 -
  1.2341 -    if (BlockedOn == 1) return 1 ;
  1.2342 -    if (BlockedOn != 0) {
  1.2343 -      return BlockedOn != intptr_t(this) && _owner == ox ;
  1.2344 -    }
  1.2345 -
  1.2346 -    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  1.2347 -    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  1.2348 -    // consider also: jst != _thread_in_Java -- but that's overspecific.
  1.2349 -    return jst == _thread_blocked || jst == _thread_in_native ;
  1.2350 -}
  1.2351 -
  1.2352 -
  1.2353 -// Adaptive spin-then-block - rational spinning
  1.2354 -//
  1.2355 -// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  1.2356 -// algorithm.  On high order SMP systems it would be better to start with
  1.2357 -// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  1.2358 -// a contending thread could enqueue itself on the cxq and then spin locally
  1.2359 -// on a thread-specific variable such as its ParkEvent._Event flag.
  1.2360 -// That's left as an exercise for the reader.  Note that global spinning is
  1.2361 -// not problematic on Niagara, as the L2$ serves the interconnect and has both
  1.2362 -// low latency and massive bandwidth.
  1.2363 -//
  1.2364 -// Broadly, we can fix the spin frequency -- that is, the % of contended lock
  1.2365 -// acquisition attempts where we opt to spin --  at 100% and vary the spin count
  1.2366 -// (duration) or we can fix the count at approximately the duration of
  1.2367 -// a context switch and vary the frequency.   Of course we could also
  1.2368 -// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  1.2369 -// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  1.2370 -//
  1.2371 -// This implementation varies the duration "D", where D varies with
  1.2372 -// the success rate of recent spin attempts. (D is capped at approximately
  1.2373 -// length of a round-trip context switch).  The success rate for recent
  1.2374 -// spin attempts is a good predictor of the success rate of future spin
  1.2375 -// attempts.  The mechanism adapts automatically to varying critical
  1.2376 -// section length (lock modality), system load and degree of parallelism.
  1.2377 -// D is maintained per-monitor in _SpinDuration and is initialized
  1.2378 -// optimistically.  Spin frequency is fixed at 100%.
  1.2379 -//
  1.2380 -// Note that _SpinDuration is volatile, but we update it without locks
  1.2381 -// or atomics.  The code is designed so that _SpinDuration stays within
  1.2382 -// a reasonable range even in the presence of races.  The arithmetic
  1.2383 -// operations on _SpinDuration are closed over the domain of legal values,
  1.2384 -// so at worst a race will install and older but still legal value.
  1.2385 -// At the very worst this introduces some apparent non-determinism.
  1.2386 -// We might spin when we shouldn't or vice-versa, but since the spin
  1.2387 -// count are relatively short, even in the worst case, the effect is harmless.
  1.2388 -//
  1.2389 -// Care must be taken that a low "D" value does not become an
  1.2390 -// an absorbing state.  Transient spinning failures -- when spinning
  1.2391 -// is overall profitable -- should not cause the system to converge
  1.2392 -// on low "D" values.  We want spinning to be stable and predictable
  1.2393 -// and fairly responsive to change and at the same time we don't want
  1.2394 -// it to oscillate, become metastable, be "too" non-deterministic,
  1.2395 -// or converge on or enter undesirable stable absorbing states.
  1.2396 -//
  1.2397 -// We implement a feedback-based control system -- using past behavior
  1.2398 -// to predict future behavior.  We face two issues: (a) if the
  1.2399 -// input signal is random then the spin predictor won't provide optimal
  1.2400 -// results, and (b) if the signal frequency is too high then the control
  1.2401 -// system, which has some natural response lag, will "chase" the signal.
  1.2402 -// (b) can arise from multimodal lock hold times.  Transient preemption
  1.2403 -// can also result in apparent bimodal lock hold times.
  1.2404 -// Although sub-optimal, neither condition is particularly harmful, as
  1.2405 -// in the worst-case we'll spin when we shouldn't or vice-versa.
  1.2406 -// The maximum spin duration is rather short so the failure modes aren't bad.
  1.2407 -// To be conservative, I've tuned the gain in system to bias toward
  1.2408 -// _not spinning.  Relatedly, the system can sometimes enter a mode where it
  1.2409 -// "rings" or oscillates between spinning and not spinning.  This happens
  1.2410 -// when spinning is just on the cusp of profitability, however, so the
  1.2411 -// situation is not dire.  The state is benign -- there's no need to add
  1.2412 -// hysteresis control to damp the transition rate between spinning and
  1.2413 -// not spinning.
  1.2414 -//
  1.2415 -// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  1.2416 -//
  1.2417 -// Spin-then-block strategies ...
  1.2418 -//
  1.2419 -// Thoughts on ways to improve spinning :
  1.2420 -//
  1.2421 -// *  Periodically call {psr_}getloadavg() while spinning, and
  1.2422 -//    permit unbounded spinning if the load average is <
  1.2423 -//    the number of processors.  Beware, however, that getloadavg()
  1.2424 -//    is exceptionally fast on solaris (about 1/10 the cost of a full
  1.2425 -//    spin cycle, but quite expensive on linux.  Beware also, that
  1.2426 -//    multiple JVMs could "ring" or oscillate in a feedback loop.
  1.2427 -//    Sufficient damping would solve that problem.
  1.2428 -//
  1.2429 -// *  We currently use spin loops with iteration counters to approximate
  1.2430 -//    spinning for some interval.  Given the availability of high-precision
  1.2431 -//    time sources such as gethrtime(), %TICK, %STICK, RDTSC, etc., we should
  1.2432 -//    someday reimplement the spin loops to duration-based instead of iteration-based.
  1.2433 -//
  1.2434 -// *  Don't spin if there are more than N = (CPUs/2) threads
  1.2435 -//        currently spinning on the monitor (or globally).
  1.2436 -//    That is, limit the number of concurrent spinners.
  1.2437 -//    We might also limit the # of spinners in the JVM, globally.
  1.2438 -//
  1.2439 -// *  If a spinning thread observes _owner change hands it should
  1.2440 -//    abort the spin (and park immediately) or at least debit
  1.2441 -//    the spin counter by a large "penalty".
  1.2442 -//
  1.2443 -// *  Classically, the spin count is either K*(CPUs-1) or is a
  1.2444 -//        simple constant that approximates the length of a context switch.
  1.2445 -//    We currently use a value -- computed by a special utility -- that
  1.2446 -//    approximates round-trip context switch times.
  1.2447 -//
  1.2448 -// *  Normally schedctl_start()/_stop() is used to advise the kernel
  1.2449 -//    to avoid preempting threads that are running in short, bounded
  1.2450 -//    critical sections.  We could use the schedctl hooks in an inverted
  1.2451 -//    sense -- spinners would set the nopreempt flag, but poll the preempt
  1.2452 -//    pending flag.  If a spinner observed a pending preemption it'd immediately
  1.2453 -//    abort the spin and park.   As such, the schedctl service acts as
  1.2454 -//    a preemption warning mechanism.
  1.2455 -//
  1.2456 -// *  In lieu of spinning, if the system is running below saturation
  1.2457 -//    (that is, loadavg() << #cpus), we can instead suppress futile
  1.2458 -//    wakeup throttling, or even wake more than one successor at exit-time.
  1.2459 -//    The net effect is largely equivalent to spinning.  In both cases,
  1.2460 -//    contending threads go ONPROC and opportunistically attempt to acquire
  1.2461 -//    the lock, decreasing lock handover latency at the expense of wasted
  1.2462 -//    cycles and context switching.
  1.2463 -//
  1.2464 -// *  We might to spin less after we've parked as the thread will
  1.2465 -//    have less $ and TLB affinity with the processor.
  1.2466 -//    Likewise, we might spin less if we come ONPROC on a different
  1.2467 -//    processor or after a long period (>> rechose_interval).
  1.2468 -//
  1.2469 -// *  A table-driven state machine similar to Solaris' dispadmin scheduling
  1.2470 -//    tables might be a better design.  Instead of encoding information in
  1.2471 -//    _SpinDuration, _SpinFreq and _SpinClock we'd just use explicit,
  1.2472 -//    discrete states.   Success or failure during a spin would drive
  1.2473 -//    state transitions, and each state node would contain a spin count.
  1.2474 -//
  1.2475 -// *  If the processor is operating in a mode intended to conserve power
  1.2476 -//    (such as Intel's SpeedStep) or to reduce thermal output (thermal
  1.2477 -//    step-down mode) then the Java synchronization subsystem should
  1.2478 -//    forgo spinning.
  1.2479 -//
  1.2480 -// *  The minimum spin duration should be approximately the worst-case
  1.2481 -//    store propagation latency on the platform.  That is, the time
  1.2482 -//    it takes a store on CPU A to become visible on CPU B, where A and
  1.2483 -//    B are "distant".
  1.2484 -//
  1.2485 -// *  We might want to factor a thread's priority in the spin policy.
  1.2486 -//    Threads with a higher priority might spin for slightly longer.
  1.2487 -//    Similarly, if we use back-off in the TATAS loop, lower priority
  1.2488 -//    threads might back-off longer.  We don't currently use a
  1.2489 -//    thread's priority when placing it on the entry queue.  We may
  1.2490 -//    want to consider doing so in future releases.
  1.2491 -//
  1.2492 -// *  We might transiently drop a thread's scheduling priority while it spins.
  1.2493 -//    SCHED_BATCH on linux and FX scheduling class at priority=0 on Solaris
  1.2494 -//    would suffice.  We could even consider letting the thread spin indefinitely at
  1.2495 -//    a depressed or "idle" priority.  This brings up fairness issues, however --
  1.2496 -//    in a saturated system a thread would with a reduced priority could languish
  1.2497 -//    for extended periods on the ready queue.
  1.2498 -//
  1.2499 -// *  While spinning try to use the otherwise wasted time to help the VM make
  1.2500 -//    progress:
  1.2501 -//
  1.2502 -//    -- YieldTo() the owner, if the owner is OFFPROC but ready
  1.2503 -//       Done our remaining quantum directly to the ready thread.
  1.2504 -//       This helps "push" the lock owner through the critical section.
  1.2505 -//       It also tends to improve affinity/locality as the lock
  1.2506 -//       "migrates" less frequently between CPUs.
  1.2507 -//    -- Walk our own stack in anticipation of blocking.  Memoize the roots.
  1.2508 -//    -- Perform strand checking for other thread.  Unpark potential strandees.
  1.2509 -//    -- Help GC: trace or mark -- this would need to be a bounded unit of work.
  1.2510 -//       Unfortunately this will pollute our $ and TLBs.  Recall that we
  1.2511 -//       spin to avoid context switching -- context switching has an
  1.2512 -//       immediate cost in latency, a disruptive cost to other strands on a CMT
  1.2513 -//       processor, and an amortized cost because of the D$ and TLB cache
  1.2514 -//       reload transient when the thread comes back ONPROC and repopulates
  1.2515 -//       $s and TLBs.
  1.2516 -//    -- call getloadavg() to see if the system is saturated.  It'd probably
  1.2517 -//       make sense to call getloadavg() half way through the spin.
  1.2518 -//       If the system isn't at full capacity the we'd simply reset
  1.2519 -//       the spin counter to and extend the spin attempt.
  1.2520 -//    -- Doug points out that we should use the same "helping" policy
  1.2521 -//       in thread.yield().
  1.2522 -//
  1.2523 -// *  Try MONITOR-MWAIT on systems that support those instructions.
  1.2524 -//
  1.2525 -// *  The spin statistics that drive spin decisions & frequency are
  1.2526 -//    maintained in the objectmonitor structure so if we deflate and reinflate
  1.2527 -//    we lose spin state.  In practice this is not usually a concern
  1.2528 -//    as the default spin state after inflation is aggressive (optimistic)
  1.2529 -//    and tends toward spinning.  So in the worst case for a lock where
  1.2530 -//    spinning is not profitable we may spin unnecessarily for a brief
  1.2531 -//    period.  But then again, if a lock is contended it'll tend not to deflate
  1.2532 -//    in the first place.
  1.2533 -
  1.2534 -
  1.2535 -intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  1.2536 -int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  1.2537 -
  1.2538 -// Spinning: Fixed frequency (100%), vary duration
  1.2539 -
  1.2540 -int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  1.2541 -
  1.2542 -    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  1.2543 -    int ctr = Knob_FixedSpin ;
  1.2544 -    if (ctr != 0) {
  1.2545 -        while (--ctr >= 0) {
  1.2546 -            if (TryLock (Self) > 0) return 1 ;
  1.2547 -            SpinPause () ;
  1.2548 -        }
  1.2549 -        return 0 ;
  1.2550 -    }
  1.2551 -
  1.2552 -    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  1.2553 -      if (TryLock(Self) > 0) {
  1.2554 -        // Increase _SpinDuration ...
  1.2555 -        // Note that we don't clamp SpinDuration precisely at SpinLimit.
  1.2556 -        // Raising _SpurDuration to the poverty line is key.
  1.2557 -        int x = _SpinDuration ;
  1.2558 -        if (x < Knob_SpinLimit) {
  1.2559 -           if (x < Knob_Poverty) x = Knob_Poverty ;
  1.2560 -           _SpinDuration = x + Knob_BonusB ;
  1.2561 -        }
  1.2562 -        return 1 ;
  1.2563 -      }
  1.2564 -      SpinPause () ;
  1.2565 -    }
  1.2566 -
  1.2567 -    // Admission control - verify preconditions for spinning
  1.2568 -    //
  1.2569 -    // We always spin a little bit, just to prevent _SpinDuration == 0 from
  1.2570 -    // becoming an absorbing state.  Put another way, we spin briefly to
  1.2571 -    // sample, just in case the system load, parallelism, contention, or lock
  1.2572 -    // modality changed.
  1.2573 -    //
  1.2574 -    // Consider the following alternative:
  1.2575 -    // Periodically set _SpinDuration = _SpinLimit and try a long/full
  1.2576 -    // spin attempt.  "Periodically" might mean after a tally of
  1.2577 -    // the # of failed spin attempts (or iterations) reaches some threshold.
  1.2578 -    // This takes us into the realm of 1-out-of-N spinning, where we
  1.2579 -    // hold the duration constant but vary the frequency.
  1.2580 -
  1.2581 -    ctr = _SpinDuration  ;
  1.2582 -    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  1.2583 -    if (ctr <= 0) return 0 ;
  1.2584 -
  1.2585 -    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  1.2586 -    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  1.2587 -       TEVENT (Spin abort - notrunnable [TOP]);
  1.2588 -       return 0 ;
  1.2589 -    }
  1.2590 -
  1.2591 -    int MaxSpin = Knob_MaxSpinners ;
  1.2592 -    if (MaxSpin >= 0) {
  1.2593 -       if (_Spinner > MaxSpin) {
  1.2594 -          TEVENT (Spin abort -- too many spinners) ;
  1.2595 -          return 0 ;
  1.2596 -       }
  1.2597 -       // Slighty racy, but benign ...
  1.2598 -       Adjust (&_Spinner, 1) ;
  1.2599 -    }
  1.2600 -
  1.2601 -    // We're good to spin ... spin ingress.
  1.2602 -    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  1.2603 -    // when preparing to LD...CAS _owner, etc and the CAS is likely
  1.2604 -    // to succeed.
  1.2605 -    int hits    = 0 ;
  1.2606 -    int msk     = 0 ;
  1.2607 -    int caspty  = Knob_CASPenalty ;
  1.2608 -    int oxpty   = Knob_OXPenalty ;
  1.2609 -    int sss     = Knob_SpinSetSucc ;
  1.2610 -    if (sss && _succ == NULL ) _succ = Self ;
  1.2611 -    Thread * prv = NULL ;
  1.2612 -
  1.2613 -    // There are three ways to exit the following loop:
  1.2614 -    // 1.  A successful spin where this thread has acquired the lock.
  1.2615 -    // 2.  Spin failure with prejudice
  1.2616 -    // 3.  Spin failure without prejudice
  1.2617 -
  1.2618 -    while (--ctr >= 0) {
  1.2619 -
  1.2620 -      // Periodic polling -- Check for pending GC
  1.2621 -      // Threads may spin while they're unsafe.
  1.2622 -      // We don't want spinning threads to delay the JVM from reaching
  1.2623 -      // a stop-the-world safepoint or to steal cycles from GC.
  1.2624 -      // If we detect a pending safepoint we abort in order that
  1.2625 -      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  1.2626 -      // this thread, if safe, doesn't steal cycles from GC.
  1.2627 -      // This is in keeping with the "no loitering in runtime" rule.
  1.2628 -      // We periodically check to see if there's a safepoint pending.
  1.2629 -      if ((ctr & 0xFF) == 0) {
  1.2630 -         if (SafepointSynchronize::do_call_back()) {
  1.2631 -            TEVENT (Spin: safepoint) ;
  1.2632 -            goto Abort ;           // abrupt spin egress
  1.2633 -         }
  1.2634 -         if (Knob_UsePause & 1) SpinPause () ;
  1.2635 -
  1.2636 -         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  1.2637 -         if (hits > 50 && scb != NULL) {
  1.2638 -            int abend = (*scb)(SpinCallbackArgument, 0) ;
  1.2639 -         }
  1.2640 -      }
  1.2641 -
  1.2642 -      if (Knob_UsePause & 2) SpinPause() ;
  1.2643 -
  1.2644 -      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  1.2645 -      // This is useful on classic SMP systems, but is of less utility on
  1.2646 -      // N1-style CMT platforms.
  1.2647 -      //
  1.2648 -      // Trade-off: lock acquisition latency vs coherency bandwidth.
  1.2649 -      // Lock hold times are typically short.  A histogram
  1.2650 -      // of successful spin attempts shows that we usually acquire
  1.2651 -      // the lock early in the spin.  That suggests we want to
  1.2652 -      // sample _owner frequently in the early phase of the spin,
  1.2653 -      // but then back-off and sample less frequently as the spin
  1.2654 -      // progresses.  The back-off makes a good citizen on SMP big
  1.2655 -      // SMP systems.  Oversampling _owner can consume excessive
  1.2656 -      // coherency bandwidth.  Relatedly, if we _oversample _owner we
  1.2657 -      // can inadvertently interfere with the the ST m->owner=null.
  1.2658 -      // executed by the lock owner.
  1.2659 -      if (ctr & msk) continue ;
  1.2660 -      ++hits ;
  1.2661 -      if ((hits & 0xF) == 0) {
  1.2662 -        // The 0xF, above, corresponds to the exponent.
  1.2663 -        // Consider: (msk+1)|msk
  1.2664 -        msk = ((msk << 2)|3) & BackOffMask ;
  1.2665 -      }
  1.2666 -
  1.2667 -      // Probe _owner with TATAS
  1.2668 -      // If this thread observes the monitor transition or flicker
  1.2669 -      // from locked to unlocked to locked, then the odds that this
  1.2670 -      // thread will acquire the lock in this spin attempt go down
  1.2671 -      // considerably.  The same argument applies if the CAS fails
  1.2672 -      // or if we observe _owner change from one non-null value to
  1.2673 -      // another non-null value.   In such cases we might abort
  1.2674 -      // the spin without prejudice or apply a "penalty" to the
  1.2675 -      // spin count-down variable "ctr", reducing it by 100, say.
  1.2676 -
  1.2677 -      Thread * ox = (Thread *) _owner ;
  1.2678 -      if (ox == NULL) {
  1.2679 -         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  1.2680 -         if (ox == NULL) {
  1.2681 -            // The CAS succeeded -- this thread acquired ownership
  1.2682 -            // Take care of some bookkeeping to exit spin state.
  1.2683 -            if (sss && _succ == Self) {
  1.2684 -               _succ = NULL ;
  1.2685 -            }
  1.2686 -            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  1.2687 -
  1.2688 -            // Increase _SpinDuration :
  1.2689 -            // The spin was successful (profitable) so we tend toward
  1.2690 -            // longer spin attempts in the future.
  1.2691 -            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  1.2692 -            // If we acquired the lock early in the spin cycle it
  1.2693 -            // makes sense to increase _SpinDuration proportionally.
  1.2694 -            // Note that we don't clamp SpinDuration precisely at SpinLimit.
  1.2695 -            int x = _SpinDuration ;
  1.2696 -            if (x < Knob_SpinLimit) {
  1.2697 -                if (x < Knob_Poverty) x = Knob_Poverty ;
  1.2698 -                _SpinDuration = x + Knob_Bonus ;
  1.2699 -            }
  1.2700 -            return 1 ;
  1.2701 -         }
  1.2702 -
  1.2703 -         // The CAS failed ... we can take any of the following actions:
  1.2704 -         // * penalize: ctr -= Knob_CASPenalty
  1.2705 -         // * exit spin with prejudice -- goto Abort;
  1.2706 -         // * exit spin without prejudice.
  1.2707 -         // * Since CAS is high-latency, retry again immediately.
  1.2708 -         prv = ox ;
  1.2709 -         TEVENT (Spin: cas failed) ;
  1.2710 -         if (caspty == -2) break ;
  1.2711 -         if (caspty == -1) goto Abort ;
  1.2712 -         ctr -= caspty ;
  1.2713 -         continue ;
  1.2714 -      }
  1.2715 -
  1.2716 -      // Did lock ownership change hands ?
  1.2717 -      if (ox != prv && prv != NULL ) {
  1.2718 -          TEVENT (spin: Owner changed)
  1.2719 -          if (oxpty == -2) break ;
  1.2720 -          if (oxpty == -1) goto Abort ;
  1.2721 -          ctr -= oxpty ;
  1.2722 -      }
  1.2723 -      prv = ox ;
  1.2724 -
  1.2725 -      // Abort the spin if the owner is not executing.
  1.2726 -      // The owner must be executing in order to drop the lock.
  1.2727 -      // Spinning while the owner is OFFPROC is idiocy.
  1.2728 -      // Consider: ctr -= RunnablePenalty ;
  1.2729 -      if (Knob_OState && NotRunnable (Self, ox)) {
  1.2730 -         TEVENT (Spin abort - notrunnable);
  1.2731 -         goto Abort ;
  1.2732 -      }
  1.2733 -      if (sss && _succ == NULL ) _succ = Self ;
  1.2734 -   }
  1.2735 -
  1.2736 -   // Spin failed with prejudice -- reduce _SpinDuration.
  1.2737 -   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  1.2738 -   // AIMD is globally stable.
  1.2739 -   TEVENT (Spin failure) ;
  1.2740 -   {
  1.2741 -     int x = _SpinDuration ;
  1.2742 -     if (x > 0) {
  1.2743 -        // Consider an AIMD scheme like: x -= (x >> 3) + 100
  1.2744 -        // This is globally sample and tends to damp the response.
  1.2745 -        x -= Knob_Penalty ;
  1.2746 -        if (x < 0) x = 0 ;
  1.2747 -        _SpinDuration = x ;
  1.2748 -     }
  1.2749 -   }
  1.2750 -
  1.2751 - Abort:
  1.2752 -   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  1.2753 -   if (sss && _succ == Self) {
  1.2754 -      _succ = NULL ;
  1.2755 -      // Invariant: after setting succ=null a contending thread
  1.2756 -      // must recheck-retry _owner before parking.  This usually happens
  1.2757 -      // in the normal usage of TrySpin(), but it's safest
  1.2758 -      // to make TrySpin() as foolproof as possible.
  1.2759 -      OrderAccess::fence() ;
  1.2760 -      if (TryLock(Self) > 0) return 1 ;
  1.2761 -   }
  1.2762 -   return 0 ;
  1.2763 -}
  1.2764 -
  1.2765 -#define TrySpin TrySpin_VaryDuration
  1.2766 -
  1.2767 -static void DeferredInitialize () {
  1.2768 -  if (InitDone > 0) return ;
  1.2769 -  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  1.2770 -      while (InitDone != 1) ;
  1.2771 -      return ;
  1.2772 -  }
  1.2773 -
  1.2774 -  // One-shot global initialization ...
  1.2775 -  // The initialization is idempotent, so we don't need locks.
  1.2776 -  // In the future consider doing this via os::init_2().
  1.2777 -  // SyncKnobs consist of <Key>=<Value> pairs in the style
  1.2778 -  // of environment variables.  Start by converting ':' to NUL.
  1.2779 -
  1.2780 -  if (SyncKnobs == NULL) SyncKnobs = "" ;
  1.2781 -
  1.2782 -  size_t sz = strlen (SyncKnobs) ;
  1.2783 -  char * knobs = (char *) malloc (sz + 2) ;
  1.2784 -  if (knobs == NULL) {
  1.2785 -     vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
  1.2786 -     guarantee (0, "invariant") ;
  1.2787 -  }
  1.2788 -  strcpy (knobs, SyncKnobs) ;
  1.2789 -  knobs[sz+1] = 0 ;
  1.2790 -  for (char * p = knobs ; *p ; p++) {
  1.2791 -     if (*p == ':') *p = 0 ;
  1.2792 -  }
  1.2793 -
  1.2794 -  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  1.2795 -  SETKNOB(ReportSettings) ;
  1.2796 -  SETKNOB(Verbose) ;
  1.2797 -  SETKNOB(FixedSpin) ;
  1.2798 -  SETKNOB(SpinLimit) ;
  1.2799 -  SETKNOB(SpinBase) ;
  1.2800 -  SETKNOB(SpinBackOff);
  1.2801 -  SETKNOB(CASPenalty) ;
  1.2802 -  SETKNOB(OXPenalty) ;
  1.2803 -  SETKNOB(LogSpins) ;
  1.2804 -  SETKNOB(SpinSetSucc) ;
  1.2805 -  SETKNOB(SuccEnabled) ;
  1.2806 -  SETKNOB(SuccRestrict) ;
  1.2807 -  SETKNOB(Penalty) ;
  1.2808 -  SETKNOB(Bonus) ;
  1.2809 -  SETKNOB(BonusB) ;
  1.2810 -  SETKNOB(Poverty) ;
  1.2811 -  SETKNOB(SpinAfterFutile) ;
  1.2812 -  SETKNOB(UsePause) ;
  1.2813 -  SETKNOB(SpinEarly) ;
  1.2814 -  SETKNOB(OState) ;
  1.2815 -  SETKNOB(MaxSpinners) ;
  1.2816 -  SETKNOB(PreSpin) ;
  1.2817 -  SETKNOB(ExitPolicy) ;
  1.2818 -  SETKNOB(QMode);
  1.2819 -  SETKNOB(ResetEvent) ;
  1.2820 -  SETKNOB(MoveNotifyee) ;
  1.2821 -  SETKNOB(FastHSSEC) ;
  1.2822 -  #undef SETKNOB
  1.2823 -
  1.2824 -  if (os::is_MP()) {
  1.2825 -     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  1.2826 -     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  1.2827 -     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  1.2828 -  } else {
  1.2829 -     Knob_SpinLimit = 0 ;
  1.2830 -     Knob_SpinBase  = 0 ;
  1.2831 -     Knob_PreSpin   = 0 ;
  1.2832 -     Knob_FixedSpin = -1 ;
  1.2833 -  }
  1.2834 -
  1.2835 -  if (Knob_LogSpins == 0) {
  1.2836 -     ObjectSynchronizer::_sync_FailedSpins = NULL ;
  1.2837 -  }
  1.2838 -
  1.2839 -  free (knobs) ;
  1.2840 -  OrderAccess::fence() ;
  1.2841 -  InitDone = 1 ;
  1.2842 -}
  1.2843 -
  1.2844 -// Theory of operations -- Monitors lists, thread residency, etc:
  1.2845 -//
  1.2846 -// * A thread acquires ownership of a monitor by successfully
  1.2847 -//   CAS()ing the _owner field from null to non-null.
  1.2848 -//
  1.2849 -// * Invariant: A thread appears on at most one monitor list --
  1.2850 -//   cxq, EntryList or WaitSet -- at any one time.
  1.2851 -//
  1.2852 -// * Contending threads "push" themselves onto the cxq with CAS
  1.2853 -//   and then spin/park.
  1.2854 -//
  1.2855 -// * After a contending thread eventually acquires the lock it must
  1.2856 -//   dequeue itself from either the EntryList or the cxq.
  1.2857 -//
  1.2858 -// * The exiting thread identifies and unparks an "heir presumptive"
  1.2859 -//   tentative successor thread on the EntryList.  Critically, the
  1.2860 -//   exiting thread doesn't unlink the successor thread from the EntryList.
  1.2861 -//   After having been unparked, the wakee will recontend for ownership of
  1.2862 -//   the monitor.   The successor (wakee) will either acquire the lock or
  1.2863 -//   re-park itself.
  1.2864 -//
  1.2865 -//   Succession is provided for by a policy of competitive handoff.
  1.2866 -//   The exiting thread does _not_ grant or pass ownership to the
  1.2867 -//   successor thread.  (This is also referred to as "handoff" succession").
  1.2868 -//   Instead the exiting thread releases ownership and possibly wakes
  1.2869 -//   a successor, so the successor can (re)compete for ownership of the lock.
  1.2870 -//   If the EntryList is empty but the cxq is populated the exiting
  1.2871 -//   thread will drain the cxq into the EntryList.  It does so by
  1.2872 -//   by detaching the cxq (installing null with CAS) and folding
  1.2873 -//   the threads from the cxq into the EntryList.  The EntryList is
  1.2874 -//   doubly linked, while the cxq is singly linked because of the
  1.2875 -//   CAS-based "push" used to enqueue recently arrived threads (RATs).
  1.2876 -//
  1.2877 -// * Concurrency invariants:
  1.2878 -//
  1.2879 -//   -- only the monitor owner may access or mutate the EntryList.
  1.2880 -//      The mutex property of the monitor itself protects the EntryList
  1.2881 -//      from concurrent interference.
  1.2882 -//   -- Only the monitor owner may detach the cxq.
  1.2883 -//
  1.2884 -// * The monitor entry list operations avoid locks, but strictly speaking
  1.2885 -//   they're not lock-free.  Enter is lock-free, exit is not.
  1.2886 -//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
  1.2887 -//
  1.2888 -// * The cxq can have multiple concurrent "pushers" but only one concurrent
  1.2889 -//   detaching thread.  This mechanism is immune from the ABA corruption.
  1.2890 -//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
  1.2891 -//
  1.2892 -// * Taken together, the cxq and the EntryList constitute or form a
  1.2893 -//   single logical queue of threads stalled trying to acquire the lock.
  1.2894 -//   We use two distinct lists to improve the odds of a constant-time
  1.2895 -//   dequeue operation after acquisition (in the ::enter() epilog) and
  1.2896 -//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
  1.2897 -//   A key desideratum is to minimize queue & monitor metadata manipulation
  1.2898 -//   that occurs while holding the monitor lock -- that is, we want to
  1.2899 -//   minimize monitor lock holds times.  Note that even a small amount of
  1.2900 -//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
  1.2901 -//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
  1.2902 -//   locks and monitor metadata.
  1.2903 -//
  1.2904 -//   Cxq points to the the set of Recently Arrived Threads attempting entry.
  1.2905 -//   Because we push threads onto _cxq with CAS, the RATs must take the form of
  1.2906 -//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
  1.2907 -//   the unlocking thread notices that EntryList is null but _cxq is != null.
  1.2908 -//
  1.2909 -//   The EntryList is ordered by the prevailing queue discipline and
  1.2910 -//   can be organized in any convenient fashion, such as a doubly-linked list or
  1.2911 -//   a circular doubly-linked list.  Critically, we want insert and delete operations
  1.2912 -//   to operate in constant-time.  If we need a priority queue then something akin
  1.2913 -//   to Solaris' sleepq would work nicely.  Viz.,
  1.2914 -//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
  1.2915 -//   Queue discipline is enforced at ::exit() time, when the unlocking thread
  1.2916 -//   drains the cxq into the EntryList, and orders or reorders the threads on the
  1.2917 -//   EntryList accordingly.
  1.2918 -//
  1.2919 -//   Barring "lock barging", this mechanism provides fair cyclic ordering,
  1.2920 -//   somewhat similar to an elevator-scan.
  1.2921 -//
  1.2922 -// * The monitor synchronization subsystem avoids the use of native
  1.2923 -//   synchronization primitives except for the narrow platform-specific
  1.2924 -//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
  1.2925 -//   the semantics of park-unpark.  Put another way, this monitor implementation
  1.2926 -//   depends only on atomic operations and park-unpark.  The monitor subsystem
  1.2927 -//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
  1.2928 -//   underlying OS manages the READY<->RUN transitions.
  1.2929 -//
  1.2930 -// * Waiting threads reside on the WaitSet list -- wait() puts
  1.2931 -//   the caller onto the WaitSet.
  1.2932 -//
  1.2933 -// * notify() or notifyAll() simply transfers threads from the WaitSet to
  1.2934 -//   either the EntryList or cxq.  Subsequent exit() operations will
  1.2935 -//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
  1.2936 -//   it's likely the notifyee would simply impale itself on the lock held
  1.2937 -//   by the notifier.
  1.2938 -//
  1.2939 -// * An interesting alternative is to encode cxq as (List,LockByte) where
  1.2940 -//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
  1.2941 -//   variable, like _recursions, in the scheme.  The threads or Events that form
  1.2942 -//   the list would have to be aligned in 256-byte addresses.  A thread would
  1.2943 -//   try to acquire the lock or enqueue itself with CAS, but exiting threads
  1.2944 -//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
  1.2945 -//   Note that is is *not* word-tearing, but it does presume that full-word
  1.2946 -//   CAS operations are coherent with intermix with STB operations.  That's true
  1.2947 -//   on most common processors.
  1.2948 -//
  1.2949 -// * See also http://blogs.sun.com/dave
  1.2950 -
  1.2951 -
  1.2952 -void ATTR ObjectMonitor::EnterI (TRAPS) {
  1.2953 -    Thread * Self = THREAD ;
  1.2954 -    assert (Self->is_Java_thread(), "invariant") ;
  1.2955 -    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
  1.2956 -
  1.2957 -    // Try the lock - TATAS
  1.2958 -    if (TryLock (Self) > 0) {
  1.2959 -        assert (_succ != Self              , "invariant") ;
  1.2960 -        assert (_owner == Self             , "invariant") ;
  1.2961 -        assert (_Responsible != Self       , "invariant") ;
  1.2962 -        return ;
  1.2963 -    }
  1.2964 -
  1.2965 -    DeferredInitialize () ;
  1.2966 -
  1.2967 -    // We try one round of spinning *before* enqueueing Self.
  1.2968 -    //
  1.2969 -    // If the _owner is ready but OFFPROC we could use a YieldTo()
  1.2970 -    // operation to donate the remainder of this thread's quantum
  1.2971 -    // to the owner.  This has subtle but beneficial affinity
  1.2972 -    // effects.
  1.2973 -
  1.2974 -    if (TrySpin (Self) > 0) {
  1.2975 -        assert (_owner == Self        , "invariant") ;
  1.2976 -        assert (_succ != Self         , "invariant") ;
  1.2977 -        assert (_Responsible != Self  , "invariant") ;
  1.2978 -        return ;
  1.2979 -    }
  1.2980 -
  1.2981 -    // The Spin failed -- Enqueue and park the thread ...
  1.2982 -    assert (_succ  != Self            , "invariant") ;
  1.2983 -    assert (_owner != Self            , "invariant") ;
  1.2984 -    assert (_Responsible != Self      , "invariant") ;
  1.2985 -
  1.2986 -    // Enqueue "Self" on ObjectMonitor's _cxq.
  1.2987 -    //
  1.2988 -    // Node acts as a proxy for Self.
  1.2989 -    // As an aside, if were to ever rewrite the synchronization code mostly
  1.2990 -    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
  1.2991 -    // Java objects.  This would avoid awkward lifecycle and liveness issues,
  1.2992 -    // as well as eliminate a subset of ABA issues.
  1.2993 -    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
  1.2994 -    //
  1.2995 -
  1.2996 -    ObjectWaiter node(Self) ;
  1.2997 -    Self->_ParkEvent->reset() ;
  1.2998 -    node._prev   = (ObjectWaiter *) 0xBAD ;
  1.2999 -    node.TState  = ObjectWaiter::TS_CXQ ;
  1.3000 -
  1.3001 -    // Push "Self" onto the front of the _cxq.
  1.3002 -    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
  1.3003 -    // Note that spinning tends to reduce the rate at which threads
  1.3004 -    // enqueue and dequeue on EntryList|cxq.
  1.3005 -    ObjectWaiter * nxt ;
  1.3006 -    for (;;) {
  1.3007 -        node._next = nxt = _cxq ;
  1.3008 -        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
  1.3009 -
  1.3010 -        // Interference - the CAS failed because _cxq changed.  Just retry.
  1.3011 -        // As an optional optimization we retry the lock.
  1.3012 -        if (TryLock (Self) > 0) {
  1.3013 -            assert (_succ != Self         , "invariant") ;
  1.3014 -            assert (_owner == Self        , "invariant") ;
  1.3015 -            assert (_Responsible != Self  , "invariant") ;
  1.3016 -            return ;
  1.3017 -        }
  1.3018 -    }
  1.3019 -
  1.3020 -    // Check for cxq|EntryList edge transition to non-null.  This indicates
  1.3021 -    // the onset of contention.  While contention persists exiting threads
  1.3022 -    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
  1.3023 -    // operations revert to the faster 1-0 mode.  This enter operation may interleave
  1.3024 -    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
  1.3025 -    // arrange for one of the contending thread to use a timed park() operations
  1.3026 -    // to detect and recover from the race.  (Stranding is form of progress failure
  1.3027 -    // where the monitor is unlocked but all the contending threads remain parked).
  1.3028 -    // That is, at least one of the contended threads will periodically poll _owner.
  1.3029 -    // One of the contending threads will become the designated "Responsible" thread.
  1.3030 -    // The Responsible thread uses a timed park instead of a normal indefinite park
  1.3031 -    // operation -- it periodically wakes and checks for and recovers from potential
  1.3032 -    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
  1.3033 -    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
  1.3034 -    // be responsible for a monitor.
  1.3035 -    //
  1.3036 -    // Currently, one of the contended threads takes on the added role of "Responsible".
  1.3037 -    // A viable alternative would be to use a dedicated "stranding checker" thread
  1.3038 -    // that periodically iterated over all the threads (or active monitors) and unparked
  1.3039 -    // successors where there was risk of stranding.  This would help eliminate the
  1.3040 -    // timer scalability issues we see on some platforms as we'd only have one thread
  1.3041 -    // -- the checker -- parked on a timer.
  1.3042 -
  1.3043 -    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
  1.3044 -        // Try to assume the role of responsible thread for the monitor.
  1.3045 -        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
  1.3046 -        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
  1.3047 -    }
  1.3048 -
  1.3049 -    // The lock have been released while this thread was occupied queueing
  1.3050 -    // itself onto _cxq.  To close the race and avoid "stranding" and
  1.3051 -    // progress-liveness failure we must resample-retry _owner before parking.
  1.3052 -    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
  1.3053 -    // In this case the ST-MEMBAR is accomplished with CAS().
  1.3054 -    //
  1.3055 -    // TODO: Defer all thread state transitions until park-time.
  1.3056 -    // Since state transitions are heavy and inefficient we'd like
  1.3057 -    // to defer the state transitions until absolutely necessary,
  1.3058 -    // and in doing so avoid some transitions ...
  1.3059 -
  1.3060 -    TEVENT (Inflated enter - Contention) ;
  1.3061 -    int nWakeups = 0 ;
  1.3062 -    int RecheckInterval = 1 ;
  1.3063 -
  1.3064 -    for (;;) {
  1.3065 -
  1.3066 -        if (TryLock (Self) > 0) break ;
  1.3067 -        assert (_owner != Self, "invariant") ;
  1.3068 -
  1.3069 -        if ((SyncFlags & 2) && _Responsible == NULL) {
  1.3070 -           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
  1.3071 -        }
  1.3072 -
  1.3073 -        // park self
  1.3074 -        if (_Responsible == Self || (SyncFlags & 1)) {
  1.3075 -            TEVENT (Inflated enter - park TIMED) ;
  1.3076 -            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
  1.3077 -            // Increase the RecheckInterval, but clamp the value.
  1.3078 -            RecheckInterval *= 8 ;
  1.3079 -            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
  1.3080 -        } else {
  1.3081 -            TEVENT (Inflated enter - park UNTIMED) ;
  1.3082 -            Self->_ParkEvent->park() ;
  1.3083 -        }
  1.3084 -
  1.3085 -        if (TryLock(Self) > 0) break ;
  1.3086 -
  1.3087 -        // The lock is still contested.
  1.3088 -        // Keep a tally of the # of futile wakeups.
  1.3089 -        // Note that the counter is not protected by a lock or updated by atomics.
  1.3090 -        // That is by design - we trade "lossy" counters which are exposed to
  1.3091 -        // races during updates for a lower probe effect.
  1.3092 -        TEVENT (Inflated enter - Futile wakeup) ;
  1.3093 -        if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
  1.3094 -           ObjectSynchronizer::_sync_FutileWakeups->inc() ;
  1.3095 -        }
  1.3096 -        ++ nWakeups ;
  1.3097 -
  1.3098 -        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
  1.3099 -        // We can defer clearing _succ until after the spin completes
  1.3100 -        // TrySpin() must tolerate being called with _succ == Self.
  1.3101 -        // Try yet another round of adaptive spinning.
  1.3102 -        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
  1.3103 -
  1.3104 -        // We can find that we were unpark()ed and redesignated _succ while
  1.3105 -        // we were spinning.  That's harmless.  If we iterate and call park(),
  1.3106 -        // park() will consume the event and return immediately and we'll
  1.3107 -        // just spin again.  This pattern can repeat, leaving _succ to simply
  1.3108 -        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
  1.3109 -        // Alternately, we can sample fired() here, and if set, forgo spinning
  1.3110 -        // in the next iteration.
  1.3111 -
  1.3112 -        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
  1.3113 -           Self->_ParkEvent->reset() ;
  1.3114 -           OrderAccess::fence() ;
  1.3115 -        }
  1.3116 -        if (_succ == Self) _succ = NULL ;
  1.3117 -
  1.3118 -        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
  1.3119 -        OrderAccess::fence() ;
  1.3120 -    }
  1.3121 -
  1.3122 -    // Egress :
  1.3123 -    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
  1.3124 -    // Normally we'll find Self on the EntryList .
  1.3125 -    // From the perspective of the lock owner (this thread), the
  1.3126 -    // EntryList is stable and cxq is prepend-only.
  1.3127 -    // The head of cxq is volatile but the interior is stable.
  1.3128 -    // In addition, Self.TState is stable.
  1.3129 -
  1.3130 -    assert (_owner == Self      , "invariant") ;
  1.3131 -    assert (object() != NULL    , "invariant") ;
  1.3132 -    // I'd like to write:
  1.3133 -    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1.3134 -    // but as we're at a safepoint that's not safe.
  1.3135 -
  1.3136 -    UnlinkAfterAcquire (Self, &node) ;
  1.3137 -    if (_succ == Self) _succ = NULL ;
  1.3138 -
  1.3139 -    assert (_succ != Self, "invariant") ;
  1.3140 -    if (_Responsible == Self) {
  1.3141 -        _Responsible = NULL ;
  1.3142 -        // Dekker pivot-point.
  1.3143 -        // Consider OrderAccess::storeload() here
  1.3144 -
  1.3145 -        // We may leave threads on cxq|EntryList without a designated
  1.3146 -        // "Responsible" thread.  This is benign.  When this thread subsequently
  1.3147 -        // exits the monitor it can "see" such preexisting "old" threads --
  1.3148 -        // threads that arrived on the cxq|EntryList before the fence, above --
  1.3149 -        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
  1.3150 -        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
  1.3151 -        // non-null and elect a new "Responsible" timer thread.
  1.3152 -        //
  1.3153 -        // This thread executes:
  1.3154 -        //    ST Responsible=null; MEMBAR    (in enter epilog - here)
  1.3155 -        //    LD cxq|EntryList               (in subsequent exit)
  1.3156 -        //
  1.3157 -        // Entering threads in the slow/contended path execute:
  1.3158 -        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
  1.3159 -        //    The (ST cxq; MEMBAR) is accomplished with CAS().
  1.3160 -        //
  1.3161 -        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
  1.3162 -        // exit operation from floating above the ST Responsible=null.
  1.3163 -        //
  1.3164 -        // In *practice* however, EnterI() is always followed by some atomic
  1.3165 -        // operation such as the decrement of _count in ::enter().  Those atomics
  1.3166 -        // obviate the need for the explicit MEMBAR, above.
  1.3167 -    }
  1.3168 -
  1.3169 -    // We've acquired ownership with CAS().
  1.3170 -    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
  1.3171 -    // But since the CAS() this thread may have also stored into _succ,
  1.3172 -    // EntryList, cxq or Responsible.  These meta-data updates must be
  1.3173 -    // visible __before this thread subsequently drops the lock.
  1.3174 -    // Consider what could occur if we didn't enforce this constraint --
  1.3175 -    // STs to monitor meta-data and user-data could reorder with (become
  1.3176 -    // visible after) the ST in exit that drops ownership of the lock.
  1.3177 -    // Some other thread could then acquire the lock, but observe inconsistent
  1.3178 -    // or old monitor meta-data and heap data.  That violates the JMM.
  1.3179 -    // To that end, the 1-0 exit() operation must have at least STST|LDST
  1.3180 -    // "release" barrier semantics.  Specifically, there must be at least a
  1.3181 -    // STST|LDST barrier in exit() before the ST of null into _owner that drops
  1.3182 -    // the lock.   The barrier ensures that changes to monitor meta-data and data
  1.3183 -    // protected by the lock will be visible before we release the lock, and
  1.3184 -    // therefore before some other thread (CPU) has a chance to acquire the lock.
  1.3185 -    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  1.3186 -    //
  1.3187 -    // Critically, any prior STs to _succ or EntryList must be visible before
  1.3188 -    // the ST of null into _owner in the *subsequent* (following) corresponding
  1.3189 -    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
  1.3190 -    // execute a serializing instruction.
  1.3191 -
  1.3192 -    if (SyncFlags & 8) {
  1.3193 -       OrderAccess::fence() ;
  1.3194 -    }
  1.3195 -    return ;
  1.3196 -}
  1.3197 -
  1.3198 -// ExitSuspendEquivalent:
  1.3199 -// A faster alternate to handle_special_suspend_equivalent_condition()
  1.3200 -//
  1.3201 -// handle_special_suspend_equivalent_condition() unconditionally
  1.3202 -// acquires the SR_lock.  On some platforms uncontended MutexLocker()
  1.3203 -// operations have high latency.  Note that in ::enter() we call HSSEC
  1.3204 -// while holding the monitor, so we effectively lengthen the critical sections.
  1.3205 -//
  1.3206 -// There are a number of possible solutions:
  1.3207 -//
  1.3208 -// A.  To ameliorate the problem we might also defer state transitions
  1.3209 -//     to as late as possible -- just prior to parking.
  1.3210 -//     Given that, we'd call HSSEC after having returned from park(),
  1.3211 -//     but before attempting to acquire the monitor.  This is only a
  1.3212 -//     partial solution.  It avoids calling HSSEC while holding the
  1.3213 -//     monitor (good), but it still increases successor reacquisition latency --
  1.3214 -//     the interval between unparking a successor and the time the successor
  1.3215 -//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  1.3216 -//     If we use this technique we can also avoid EnterI()-exit() loop
  1.3217 -//     in ::enter() where we iteratively drop the lock and then attempt
  1.3218 -//     to reacquire it after suspending.
  1.3219 -//
  1.3220 -// B.  In the future we might fold all the suspend bits into a
  1.3221 -//     composite per-thread suspend flag and then update it with CAS().
  1.3222 -//     Alternately, a Dekker-like mechanism with multiple variables
  1.3223 -//     would suffice:
  1.3224 -//       ST Self->_suspend_equivalent = false
  1.3225 -//       MEMBAR
  1.3226 -//       LD Self_>_suspend_flags
  1.3227 -//
  1.3228 -
  1.3229 -
  1.3230 -bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  1.3231 -   int Mode = Knob_FastHSSEC ;
  1.3232 -   if (Mode && !jSelf->is_external_suspend()) {
  1.3233 -      assert (jSelf->is_suspend_equivalent(), "invariant") ;
  1.3234 -      jSelf->clear_suspend_equivalent() ;
  1.3235 -      if (2 == Mode) OrderAccess::storeload() ;
  1.3236 -      if (!jSelf->is_external_suspend()) return false ;
  1.3237 -      // We raced a suspension -- fall thru into the slow path
  1.3238 -      TEVENT (ExitSuspendEquivalent - raced) ;
  1.3239 -      jSelf->set_suspend_equivalent() ;
  1.3240 -   }
  1.3241 -   return jSelf->handle_special_suspend_equivalent_condition() ;
  1.3242 -}
  1.3243 -
  1.3244 -
  1.3245 -// ReenterI() is a specialized inline form of the latter half of the
  1.3246 -// contended slow-path from EnterI().  We use ReenterI() only for
  1.3247 -// monitor reentry in wait().
  1.3248 -//
  1.3249 -// In the future we should reconcile EnterI() and ReenterI(), adding
  1.3250 -// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
  1.3251 -// loop accordingly.
  1.3252 -
  1.3253 -void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
  1.3254 -    assert (Self != NULL                , "invariant") ;
  1.3255 -    assert (SelfNode != NULL            , "invariant") ;
  1.3256 -    assert (SelfNode->_thread == Self   , "invariant") ;
  1.3257 -    assert (_waiters > 0                , "invariant") ;
  1.3258 -    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
  1.3259 -    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
  1.3260 -    JavaThread * jt = (JavaThread *) Self ;
  1.3261 -
  1.3262 -    int nWakeups = 0 ;
  1.3263 -    for (;;) {
  1.3264 -        ObjectWaiter::TStates v = SelfNode->TState ;
  1.3265 -        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1.3266 -        assert    (_owner != Self, "invariant") ;
  1.3267 -
  1.3268 -        if (TryLock (Self) > 0) break ;
  1.3269 -        if (TrySpin (Self) > 0) break ;
  1.3270 -
  1.3271 -        TEVENT (Wait Reentry - parking) ;
  1.3272 -
  1.3273 -        // State transition wrappers around park() ...
  1.3274 -        // ReenterI() wisely defers state transitions until
  1.3275 -        // it's clear we must park the thread.
  1.3276 -        {
  1.3277 -           OSThreadContendState osts(Self->osthread());
  1.3278 -           ThreadBlockInVM tbivm(jt);
  1.3279 -
  1.3280 -           // cleared by handle_special_suspend_equivalent_condition()
  1.3281 -           // or java_suspend_self()
  1.3282 -           jt->set_suspend_equivalent();
  1.3283 -           if (SyncFlags & 1) {
  1.3284 -              Self->_ParkEvent->park ((jlong)1000) ;
  1.3285 -           } else {
  1.3286 -              Self->_ParkEvent->park () ;
  1.3287 -           }
  1.3288 -
  1.3289 -           // were we externally suspended while we were waiting?
  1.3290 -           for (;;) {
  1.3291 -              if (!ExitSuspendEquivalent (jt)) break ;
  1.3292 -              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
  1.3293 -              jt->java_suspend_self();
  1.3294 -              jt->set_suspend_equivalent();
  1.3295 -           }
  1.3296 -        }
  1.3297 -
  1.3298 -        // Try again, but just so we distinguish between futile wakeups and
  1.3299 -        // successful wakeups.  The following test isn't algorithmically
  1.3300 -        // necessary, but it helps us maintain sensible statistics.
  1.3301 -        if (TryLock(Self) > 0) break ;
  1.3302 -
  1.3303 -        // The lock is still contested.
  1.3304 -        // Keep a tally of the # of futile wakeups.
  1.3305 -        // Note that the counter is not protected by a lock or updated by atomics.
  1.3306 -        // That is by design - we trade "lossy" counters which are exposed to
  1.3307 -        // races during updates for a lower probe effect.
  1.3308 -        TEVENT (Wait Reentry - futile wakeup) ;
  1.3309 -        ++ nWakeups ;
  1.3310 -
  1.3311 -        // Assuming this is not a spurious wakeup we'll normally
  1.3312 -        // find that _succ == Self.
  1.3313 -        if (_succ == Self) _succ = NULL ;
  1.3314 -
  1.3315 -        // Invariant: after clearing _succ a contending thread
  1.3316 -        // *must* retry  _owner before parking.
  1.3317 -        OrderAccess::fence() ;
  1.3318 -
  1.3319 -        if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
  1.3320 -          ObjectSynchronizer::_sync_FutileWakeups->inc() ;
  1.3321 -        }
  1.3322 -    }
  1.3323 -
  1.3324 -    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
  1.3325 -    // Normally we'll find Self on the EntryList.
  1.3326 -    // Unlinking from the EntryList is constant-time and atomic-free.
  1.3327 -    // From the perspective of the lock owner (this thread), the
  1.3328 -    // EntryList is stable and cxq is prepend-only.
  1.3329 -    // The head of cxq is volatile but the interior is stable.
  1.3330 -    // In addition, Self.TState is stable.
  1.3331 -
  1.3332 -    assert (_owner == Self, "invariant") ;
  1.3333 -    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1.3334 -    UnlinkAfterAcquire (Self, SelfNode) ;
  1.3335 -    if (_succ == Self) _succ = NULL ;
  1.3336 -    assert (_succ != Self, "invariant") ;
  1.3337 -    SelfNode->TState = ObjectWaiter::TS_RUN ;
  1.3338 -    OrderAccess::fence() ;      // see comments at the end of EnterI()
  1.3339 -}
  1.3340 -
  1.3341 -bool ObjectMonitor::try_enter(Thread* THREAD) {
  1.3342 -  if (THREAD != _owner) {
  1.3343 -    if (THREAD->is_lock_owned ((address)_owner)) {
  1.3344 -       assert(_recursions == 0, "internal state error");
  1.3345 -       _owner = THREAD ;
  1.3346 -       _recursions = 1 ;
  1.3347 -       OwnerIsThread = 1 ;
  1.3348 -       return true;
  1.3349 -    }
  1.3350 -    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1.3351 -      return false;
  1.3352 -    }
  1.3353 -    return true;
  1.3354 -  } else {
  1.3355 -    _recursions++;
  1.3356 -    return true;
  1.3357 -  }
  1.3358 -}
  1.3359 -
  1.3360 -void ATTR ObjectMonitor::enter(TRAPS) {
  1.3361 -  // The following code is ordered to check the most common cases first
  1.3362 -  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
  1.3363 -  Thread * const Self = THREAD ;
  1.3364 -  void * cur ;
  1.3365 -
  1.3366 -  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  1.3367 -  if (cur == NULL) {
  1.3368 -     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
  1.3369 -     assert (_recursions == 0   , "invariant") ;
  1.3370 -     assert (_owner      == Self, "invariant") ;
  1.3371 -     // CONSIDER: set or assert OwnerIsThread == 1
  1.3372 -     return ;
  1.3373 -  }
  1.3374 -
  1.3375 -  if (cur == Self) {
  1.3376 -     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
  1.3377 -     _recursions ++ ;
  1.3378 -     return ;
  1.3379 -  }
  1.3380 -
  1.3381 -  if (Self->is_lock_owned ((address)cur)) {
  1.3382 -    assert (_recursions == 0, "internal state error");
  1.3383 -    _recursions = 1 ;
  1.3384 -    // Commute owner from a thread-specific on-stack BasicLockObject address to
  1.3385 -    // a full-fledged "Thread *".
  1.3386 -    _owner = Self ;
  1.3387 -    OwnerIsThread = 1 ;
  1.3388 -    return ;
  1.3389 -  }
  1.3390 -
  1.3391 -  // We've encountered genuine contention.
  1.3392 -  assert (Self->_Stalled == 0, "invariant") ;
  1.3393 -  Self->_Stalled = intptr_t(this) ;
  1.3394 -
  1.3395 -  // Try one round of spinning *before* enqueueing Self
  1.3396 -  // and before going through the awkward and expensive state
  1.3397 -  // transitions.  The following spin is strictly optional ...
  1.3398 -  // Note that if we acquire the monitor from an initial spin
  1.3399 -  // we forgo posting JVMTI events and firing DTRACE probes.
  1.3400 -  if (Knob_SpinEarly && TrySpin (Self) > 0) {
  1.3401 -     assert (_owner == Self      , "invariant") ;
  1.3402 -     assert (_recursions == 0    , "invariant") ;
  1.3403 -     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1.3404 -     Self->_Stalled = 0 ;
  1.3405 -     return ;
  1.3406 -  }
  1.3407 -
  1.3408 -  assert (_owner != Self          , "invariant") ;
  1.3409 -  assert (_succ  != Self          , "invariant") ;
  1.3410 -  assert (Self->is_Java_thread()  , "invariant") ;
  1.3411 -  JavaThread * jt = (JavaThread *) Self ;
  1.3412 -  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1.3413 -  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
  1.3414 -  assert (this->object() != NULL  , "invariant") ;
  1.3415 -  assert (_count >= 0, "invariant") ;
  1.3416 -
  1.3417 -  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
  1.3418 -  // Ensure the object-monitor relationship remains stable while there's contention.
  1.3419 -  Atomic::inc_ptr(&_count);
  1.3420 -
  1.3421 -  { // Change java thread status to indicate blocked on monitor enter.
  1.3422 -    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
  1.3423 -
  1.3424 -    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
  1.3425 -    if (JvmtiExport::should_post_monitor_contended_enter()) {
  1.3426 -      JvmtiExport::post_monitor_contended_enter(jt, this);
  1.3427 -    }
  1.3428 -
  1.3429 -    OSThreadContendState osts(Self->osthread());
  1.3430 -    ThreadBlockInVM tbivm(jt);
  1.3431 -
  1.3432 -    Self->set_current_pending_monitor(this);
  1.3433 -
  1.3434 -    // TODO-FIXME: change the following for(;;) loop to straight-line code.
  1.3435 -    for (;;) {
  1.3436 -      jt->set_suspend_equivalent();
  1.3437 -      // cleared by handle_special_suspend_equivalent_condition()
  1.3438 -      // or java_suspend_self()
  1.3439 -
  1.3440 -      EnterI (THREAD) ;
  1.3441 -
  1.3442 -      if (!ExitSuspendEquivalent(jt)) break ;
  1.3443 -
  1.3444 -      //
  1.3445 -      // We have acquired the contended monitor, but while we were
  1.3446 -      // waiting another thread suspended us. We don't want to enter
  1.3447 -      // the monitor while suspended because that would surprise the
  1.3448 -      // thread that suspended us.
  1.3449 -      //
  1.3450 -          _recursions = 0 ;
  1.3451 -      _succ = NULL ;
  1.3452 -      exit (Self) ;
  1.3453 -
  1.3454 -      jt->java_suspend_self();
  1.3455 -    }
  1.3456 -    Self->set_current_pending_monitor(NULL);
  1.3457 -  }
  1.3458 -
  1.3459 -  Atomic::dec_ptr(&_count);
  1.3460 -  assert (_count >= 0, "invariant") ;
  1.3461 -  Self->_Stalled = 0 ;
  1.3462 -
  1.3463 -  // Must either set _recursions = 0 or ASSERT _recursions == 0.
  1.3464 -  assert (_recursions == 0     , "invariant") ;
  1.3465 -  assert (_owner == Self       , "invariant") ;
  1.3466 -  assert (_succ  != Self       , "invariant") ;
  1.3467 -  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1.3468 -
  1.3469 -  // The thread -- now the owner -- is back in vm mode.
  1.3470 -  // Report the glorious news via TI,DTrace and jvmstat.
  1.3471 -  // The probe effect is non-trivial.  All the reportage occurs
  1.3472 -  // while we hold the monitor, increasing the length of the critical
  1.3473 -  // section.  Amdahl's parallel speedup law comes vividly into play.
  1.3474 -  //
  1.3475 -  // Another option might be to aggregate the events (thread local or
  1.3476 -  // per-monitor aggregation) and defer reporting until a more opportune
  1.3477 -  // time -- such as next time some thread encounters contention but has
  1.3478 -  // yet to acquire the lock.  While spinning that thread could
  1.3479 -  // spinning we could increment JVMStat counters, etc.
  1.3480 -
  1.3481 -  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
  1.3482 -  if (JvmtiExport::should_post_monitor_contended_entered()) {
  1.3483 -    JvmtiExport::post_monitor_contended_entered(jt, this);
  1.3484 -  }
  1.3485 -  if (ObjectSynchronizer::_sync_ContendedLockAttempts != NULL) {
  1.3486 -     ObjectSynchronizer::_sync_ContendedLockAttempts->inc() ;
  1.3487 -  }
  1.3488 -}
  1.3489 -
  1.3490 -void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  1.3491 -   assert (_owner == Self, "invariant") ;
  1.3492 -
  1.3493 -   // Exit protocol:
  1.3494 -   // 1. ST _succ = wakee
  1.3495 -   // 2. membar #loadstore|#storestore;
  1.3496 -   // 2. ST _owner = NULL
  1.3497 -   // 3. unpark(wakee)
  1.3498 -
  1.3499 -   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  1.3500 -   ParkEvent * Trigger = Wakee->_event ;
  1.3501 -
  1.3502 -   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  1.3503 -   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  1.3504 -   // out-of-scope (non-extant).
  1.3505 -   Wakee  = NULL ;
  1.3506 -
  1.3507 -   // Drop the lock
  1.3508 -   OrderAccess::release_store_ptr (&_owner, NULL) ;
  1.3509 -   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  1.3510 -
  1.3511 -   // TODO-FIXME:
  1.3512 -   // If there's a safepoint pending the best policy would be to
  1.3513 -   // get _this thread to a safepoint and only wake the successor
  1.3514 -   // after the safepoint completed.  monitorexit uses a "leaf"
  1.3515 -   // state transition, however, so this thread can't become
  1.3516 -   // safe at this point in time.  (Its stack isn't walkable).
  1.3517 -   // The next best thing is to defer waking the successor by
  1.3518 -   // adding to a list of thread to be unparked after at the
  1.3519 -   // end of the forthcoming STW).
  1.3520 -   if (SafepointSynchronize::do_call_back()) {
  1.3521 -      TEVENT (unpark before SAFEPOINT) ;
  1.3522 -   }
  1.3523 -
  1.3524 -   // Possible optimizations ...
  1.3525 -   //
  1.3526 -   // * Consider: set Wakee->UnparkTime = timeNow()
  1.3527 -   //   When the thread wakes up it'll compute (timeNow() - Self->UnparkTime()).
  1.3528 -   //   By measuring recent ONPROC latency we can approximate the
  1.3529 -   //   system load.  In turn, we can feed that information back
  1.3530 -   //   into the spinning & succession policies.
  1.3531 -   //   (ONPROC latency correlates strongly with load).
  1.3532 -   //
  1.3533 -   // * Pull affinity:
  1.3534 -   //   If the wakee is cold then transiently setting it's affinity
  1.3535 -   //   to the current CPU is a good idea.
  1.3536 -   //   See http://j2se.east/~dice/PERSIST/050624-PullAffinity.txt
  1.3537 -   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  1.3538 -   Trigger->unpark() ;
  1.3539 -
  1.3540 -   // Maintain stats and report events to JVMTI
  1.3541 -   if (ObjectSynchronizer::_sync_Parks != NULL) {
  1.3542 -      ObjectSynchronizer::_sync_Parks->inc() ;
  1.3543 -   }
  1.3544 -}
  1.3545 -
  1.3546 -
  1.3547 -// exit()
  1.3548 -// ~~~~~~
  1.3549 -// Note that the collector can't reclaim the objectMonitor or deflate
  1.3550 -// the object out from underneath the thread calling ::exit() as the
  1.3551 -// thread calling ::exit() never transitions to a stable state.
  1.3552 -// This inhibits GC, which in turn inhibits asynchronous (and
  1.3553 -// inopportune) reclamation of "this".
  1.3554 -//
  1.3555 -// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
  1.3556 -// There's one exception to the claim above, however.  EnterI() can call
  1.3557 -// exit() to drop a lock if the acquirer has been externally suspended.
  1.3558 -// In that case exit() is called with _thread_state as _thread_blocked,
  1.3559 -// but the monitor's _count field is > 0, which inhibits reclamation.
  1.3560 -//
  1.3561 -// 1-0 exit
  1.3562 -// ~~~~~~~~
  1.3563 -// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
  1.3564 -// the fast-path operators have been optimized so the common ::exit()
  1.3565 -// operation is 1-0.  See i486.ad fast_unlock(), for instance.
  1.3566 -// The code emitted by fast_unlock() elides the usual MEMBAR.  This
  1.3567 -// greatly improves latency -- MEMBAR and CAS having considerable local
  1.3568 -// latency on modern processors -- but at the cost of "stranding".  Absent the
  1.3569 -// MEMBAR, a thread in fast_unlock() can race a thread in the slow
  1.3570 -// ::enter() path, resulting in the entering thread being stranding
  1.3571 -// and a progress-liveness failure.   Stranding is extremely rare.
  1.3572 -// We use timers (timed park operations) & periodic polling to detect
  1.3573 -// and recover from stranding.  Potentially stranded threads periodically
  1.3574 -// wake up and poll the lock.  See the usage of the _Responsible variable.
  1.3575 -//
  1.3576 -// The CAS() in enter provides for safety and exclusion, while the CAS or
  1.3577 -// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
  1.3578 -// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
  1.3579 -// We detect and recover from stranding with timers.
  1.3580 -//
  1.3581 -// If a thread transiently strands it'll park until (a) another
  1.3582 -// thread acquires the lock and then drops the lock, at which time the
  1.3583 -// exiting thread will notice and unpark the stranded thread, or, (b)
  1.3584 -// the timer expires.  If the lock is high traffic then the stranding latency
  1.3585 -// will be low due to (a).  If the lock is low traffic then the odds of
  1.3586 -// stranding are lower, although the worst-case stranding latency
  1.3587 -// is longer.  Critically, we don't want to put excessive load in the
  1.3588 -// platform's timer subsystem.  We want to minimize both the timer injection
  1.3589 -// rate (timers created/sec) as well as the number of timers active at
  1.3590 -// any one time.  (more precisely, we want to minimize timer-seconds, which is
  1.3591 -// the integral of the # of active timers at any instant over time).
  1.3592 -// Both impinge on OS scalability.  Given that, at most one thread parked on
  1.3593 -// a monitor will use a timer.
  1.3594 -
  1.3595 -void ATTR ObjectMonitor::exit(TRAPS) {
  1.3596 -   Thread * Self = THREAD ;
  1.3597 -   if (THREAD != _owner) {
  1.3598 -     if (THREAD->is_lock_owned((address) _owner)) {
  1.3599 -       // Transmute _owner from a BasicLock pointer to a Thread address.
  1.3600 -       // We don't need to hold _mutex for this transition.
  1.3601 -       // Non-null to Non-null is safe as long as all readers can
  1.3602 -       // tolerate either flavor.
  1.3603 -       assert (_recursions == 0, "invariant") ;
  1.3604 -       _owner = THREAD ;
  1.3605 -       _recursions = 0 ;
  1.3606 -       OwnerIsThread = 1 ;
  1.3607 -     } else {
  1.3608 -       // NOTE: we need to handle unbalanced monitor enter/exit
  1.3609 -       // in native code by throwing an exception.
  1.3610 -       // TODO: Throw an IllegalMonitorStateException ?
  1.3611 -       TEVENT (Exit - Throw IMSX) ;
  1.3612 -       assert(false, "Non-balanced monitor enter/exit!");
  1.3613 -       if (false) {
  1.3614 -          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
  1.3615 -       }
  1.3616 -       return;
  1.3617 -     }
  1.3618 -   }
  1.3619 -
  1.3620 -   if (_recursions != 0) {
  1.3621 -     _recursions--;        // this is simple recursive enter
  1.3622 -     TEVENT (Inflated exit - recursive) ;
  1.3623 -     return ;
  1.3624 -   }
  1.3625 -
  1.3626 -   // Invariant: after setting Responsible=null an thread must execute
  1.3627 -   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
  1.3628 -   if ((SyncFlags & 4) == 0) {
  1.3629 -      _Responsible = NULL ;
  1.3630 -   }
  1.3631 -
  1.3632 -   for (;;) {
  1.3633 -      assert (THREAD == _owner, "invariant") ;
  1.3634 -
  1.3635 -      // Fast-path monitor exit:
  1.3636 -      //
  1.3637 -      // Observe the Dekker/Lamport duality:
  1.3638 -      // A thread in ::exit() executes:
  1.3639 -      //   ST Owner=null; MEMBAR; LD EntryList|cxq.
  1.3640 -      // A thread in the contended ::enter() path executes the complementary:
  1.3641 -      //   ST EntryList|cxq = nonnull; MEMBAR; LD Owner.
  1.3642 -      //
  1.3643 -      // Note that there's a benign race in the exit path.  We can drop the
  1.3644 -      // lock, another thread can reacquire the lock immediately, and we can
  1.3645 -      // then wake a thread unnecessarily (yet another flavor of futile wakeup).
  1.3646 -      // This is benign, and we've structured the code so the windows are short
  1.3647 -      // and the frequency of such futile wakeups is low.
  1.3648 -      //
  1.3649 -      // We could eliminate the race by encoding both the "LOCKED" state and
  1.3650 -      // the queue head in a single word.  Exit would then use either CAS to
  1.3651 -      // clear the LOCKED bit/byte.  This precludes the desirable 1-0 optimization,
  1.3652 -      // however.
  1.3653 -      //
  1.3654 -      // Possible fast-path ::exit() optimization:
  1.3655 -      // The current fast-path exit implementation fetches both cxq and EntryList.
  1.3656 -      // See also i486.ad fast_unlock().  Testing has shown that two LDs
  1.3657 -      // isn't measurably slower than a single LD on any platforms.
  1.3658 -      // Still, we could reduce the 2 LDs to one or zero by one of the following:
  1.3659 -      //
  1.3660 -      // - Use _count instead of cxq|EntryList
  1.3661 -      //   We intend to eliminate _count, however, when we switch
  1.3662 -      //   to on-the-fly deflation in ::exit() as is used in
  1.3663 -      //   Metalocks and RelaxedLocks.
  1.3664 -      //
  1.3665 -      // - Establish the invariant that cxq == null implies EntryList == null.
  1.3666 -      //   set cxq == EMPTY (1) to encode the state where cxq is empty
  1.3667 -      //   by EntryList != null.  EMPTY is a distinguished value.
  1.3668 -      //   The fast-path exit() would fetch cxq but not EntryList.
  1.3669 -      //
  1.3670 -      // - Encode succ as follows:
  1.3671 -      //   succ = t :  Thread t is the successor -- t is ready or is spinning.
  1.3672 -      //               Exiting thread does not need to wake a successor.
  1.3673 -      //   succ = 0 :  No successor required -> (EntryList|cxq) == null
  1.3674 -      //               Exiting thread does not need to wake a successor
  1.3675 -      //   succ = 1 :  Successor required    -> (EntryList|cxq) != null and
  1.3676 -      //               logically succ == null.
  1.3677 -      //               Exiting thread must wake a successor.
  1.3678 -      //
  1.3679 -      //   The 1-1 fast-exit path would appear as :
  1.3680 -      //     _owner = null ; membar ;
  1.3681 -      //     if (_succ == 1 && CAS (&_owner, null, Self) == null) goto SlowPath
  1.3682 -      //     goto FastPathDone ;
  1.3683 -      //
  1.3684 -      //   and the 1-0 fast-exit path would appear as:
  1.3685 -      //      if (_succ == 1) goto SlowPath
  1.3686 -      //      Owner = null ;
  1.3687 -      //      goto FastPathDone
  1.3688 -      //
  1.3689 -      // - Encode the LSB of _owner as 1 to indicate that exit()
  1.3690 -      //   must use the slow-path and make a successor ready.
  1.3691 -      //   (_owner & 1) == 0 IFF succ != null || (EntryList|cxq) == null
  1.3692 -      //   (_owner & 1) == 0 IFF succ == null && (EntryList|cxq) != null (obviously)
  1.3693 -      //   The 1-0 fast exit path would read:
  1.3694 -      //      if (_owner != Self) goto SlowPath
  1.3695 -      //      _owner = null
  1.3696 -      //      goto FastPathDone
  1.3697 -
  1.3698 -      if (Knob_ExitPolicy == 0) {
  1.3699 -         // release semantics: prior loads and stores from within the critical section
  1.3700 -         // must not float (reorder) past the following store that drops the lock.
  1.3701 -         // On SPARC that requires MEMBAR #loadstore|#storestore.
  1.3702 -         // But of course in TSO #loadstore|#storestore is not required.
  1.3703 -         // I'd like to write one of the following:
  1.3704 -         // A.  OrderAccess::release() ; _owner = NULL
  1.3705 -         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
  1.3706 -         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
  1.3707 -         // store into a _dummy variable.  That store is not needed, but can result
  1.3708 -         // in massive wasteful coherency traffic on classic SMP systems.
  1.3709 -         // Instead, I use release_store(), which is implemented as just a simple
  1.3710 -         // ST on x64, x86 and SPARC.
  1.3711 -         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1.3712 -         OrderAccess::storeload() ;                         // See if we need to wake a successor
  1.3713 -         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1.3714 -            TEVENT (Inflated exit - simple egress) ;
  1.3715 -            return ;
  1.3716 -         }
  1.3717 -         TEVENT (Inflated exit - complex egress) ;
  1.3718 -
  1.3719 -         // Normally the exiting thread is responsible for ensuring succession,
  1.3720 -         // but if other successors are ready or other entering threads are spinning
  1.3721 -         // then this thread can simply store NULL into _owner and exit without
  1.3722 -         // waking a successor.  The existence of spinners or ready successors
  1.3723 -         // guarantees proper succession (liveness).  Responsibility passes to the
  1.3724 -         // ready or running successors.  The exiting thread delegates the duty.
  1.3725 -         // More precisely, if a successor already exists this thread is absolved
  1.3726 -         // of the responsibility of waking (unparking) one.
  1.3727 -         //
  1.3728 -         // The _succ variable is critical to reducing futile wakeup frequency.
  1.3729 -         // _succ identifies the "heir presumptive" thread that has been made
  1.3730 -         // ready (unparked) but that has not yet run.  We need only one such
  1.3731 -         // successor thread to guarantee progress.
  1.3732 -         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  1.3733 -         // section 3.3 "Futile Wakeup Throttling" for details.
  1.3734 -         //
  1.3735 -         // Note that spinners in Enter() also set _succ non-null.
  1.3736 -         // In the current implementation spinners opportunistically set
  1.3737 -         // _succ so that exiting threads might avoid waking a successor.
  1.3738 -         // Another less appealing alternative would be for the exiting thread
  1.3739 -         // to drop the lock and then spin briefly to see if a spinner managed
  1.3740 -         // to acquire the lock.  If so, the exiting thread could exit
  1.3741 -         // immediately without waking a successor, otherwise the exiting
  1.3742 -         // thread would need to dequeue and wake a successor.
  1.3743 -         // (Note that we'd need to make the post-drop spin short, but no
  1.3744 -         // shorter than the worst-case round-trip cache-line migration time.
  1.3745 -         // The dropped lock needs to become visible to the spinner, and then
  1.3746 -         // the acquisition of the lock by the spinner must become visible to
  1.3747 -         // the exiting thread).
  1.3748 -         //
  1.3749 -
  1.3750 -         // It appears that an heir-presumptive (successor) must be made ready.
  1.3751 -         // Only the current lock owner can manipulate the EntryList or
  1.3752 -         // drain _cxq, so we need to reacquire the lock.  If we fail
  1.3753 -         // to reacquire the lock the responsibility for ensuring succession
  1.3754 -         // falls to the new owner.
  1.3755 -         //
  1.3756 -         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1.3757 -            return ;
  1.3758 -         }
  1.3759 -         TEVENT (Exit - Reacquired) ;
  1.3760 -      } else {
  1.3761 -         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1.3762 -            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1.3763 -            OrderAccess::storeload() ;
  1.3764 -            // Ratify the previously observed values.
  1.3765 -            if (_cxq == NULL || _succ != NULL) {
  1.3766 -                TEVENT (Inflated exit - simple egress) ;
  1.3767 -                return ;
  1.3768 -            }
  1.3769 -
  1.3770 -            // inopportune interleaving -- the exiting thread (this thread)
  1.3771 -            // in the fast-exit path raced an entering thread in the slow-enter
  1.3772 -            // path.
  1.3773 -            // We have two choices:
  1.3774 -            // A.  Try to reacquire the lock.
  1.3775 -            //     If the CAS() fails return immediately, otherwise
  1.3776 -            //     we either restart/rerun the exit operation, or simply
  1.3777 -            //     fall-through into the code below which wakes a successor.
  1.3778 -            // B.  If the elements forming the EntryList|cxq are TSM
  1.3779 -            //     we could simply unpark() the lead thread and return
  1.3780 -            //     without having set _succ.
  1.3781 -            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1.3782 -               TEVENT (Inflated exit - reacquired succeeded) ;
  1.3783 -               return ;
  1.3784 -            }
  1.3785 -            TEVENT (Inflated exit - reacquired failed) ;
  1.3786 -         } else {
  1.3787 -            TEVENT (Inflated exit - complex egress) ;
  1.3788 -         }
  1.3789 -      }
  1.3790 -
  1.3791 -      guarantee (_owner == THREAD, "invariant") ;
  1.3792 -
  1.3793 -      // Select an appropriate successor ("heir presumptive") from the EntryList
  1.3794 -      // and make it ready.  Generally we just wake the head of EntryList .
  1.3795 -      // There's no algorithmic constraint that we use the head - it's just
  1.3796 -      // a policy decision.   Note that the thread at head of the EntryList
  1.3797 -      // remains at the head until it acquires the lock.  This means we'll
  1.3798 -      // repeatedly wake the same thread until it manages to grab the lock.
  1.3799 -      // This is generally a good policy - if we're seeing lots of futile wakeups
  1.3800 -      // at least we're waking/rewaking a thread that's like to be hot or warm
  1.3801 -      // (have residual D$ and TLB affinity).
  1.3802 -      //
  1.3803 -      // "Wakeup locality" optimization:
  1.3804 -      // http://j2se.east/~dice/PERSIST/040825-WakeLocality.txt
  1.3805 -      // In the future we'll try to bias the selection mechanism
  1.3806 -      // to preferentially pick a thread that recently ran on
  1.3807 -      // a processor element that shares cache with the CPU on which
  1.3808 -      // the exiting thread is running.   We need access to Solaris'
  1.3809 -      // schedctl.sc_cpu to make that work.
  1.3810 -      //
  1.3811 -      ObjectWaiter * w = NULL ;
  1.3812 -      int QMode = Knob_QMode ;
  1.3813 -
  1.3814 -      if (QMode == 2 && _cxq != NULL) {
  1.3815 -          // QMode == 2 : cxq has precedence over EntryList.
  1.3816 -          // Try to directly wake a successor from the cxq.
  1.3817 -          // If successful, the successor will need to unlink itself from cxq.
  1.3818 -          w = _cxq ;
  1.3819 -          assert (w != NULL, "invariant") ;
  1.3820 -          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1.3821 -          ExitEpilog (Self, w) ;
  1.3822 -          return ;
  1.3823 -      }
  1.3824 -
  1.3825 -      if (QMode == 3 && _cxq != NULL) {
  1.3826 -          // Aggressively drain cxq into EntryList at the first opportunity.
  1.3827 -          // This policy ensure that recently-run threads live at the head of EntryList.
  1.3828 -          // Drain _cxq into EntryList - bulk transfer.
  1.3829 -          // First, detach _cxq.
  1.3830 -          // The following loop is tantamount to: w = swap (&cxq, NULL)
  1.3831 -          w = _cxq ;
  1.3832 -          for (;;) {
  1.3833 -             assert (w != NULL, "Invariant") ;
  1.3834 -             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1.3835 -             if (u == w) break ;
  1.3836 -             w = u ;
  1.3837 -          }
  1.3838 -          assert (w != NULL              , "invariant") ;
  1.3839 -
  1.3840 -          ObjectWaiter * q = NULL ;
  1.3841 -          ObjectWaiter * p ;
  1.3842 -          for (p = w ; p != NULL ; p = p->_next) {
  1.3843 -              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1.3844 -              p->TState = ObjectWaiter::TS_ENTER ;
  1.3845 -              p->_prev = q ;
  1.3846 -              q = p ;
  1.3847 -          }
  1.3848 -
  1.3849 -          // Append the RATs to the EntryList
  1.3850 -          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  1.3851 -          ObjectWaiter * Tail ;
  1.3852 -          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  1.3853 -          if (Tail == NULL) {
  1.3854 -              _EntryList = w ;
  1.3855 -          } else {
  1.3856 -              Tail->_next = w ;
  1.3857 -              w->_prev = Tail ;
  1.3858 -          }
  1.3859 -
  1.3860 -          // Fall thru into code that tries to wake a successor from EntryList
  1.3861 -      }
  1.3862 -
  1.3863 -      if (QMode == 4 && _cxq != NULL) {
  1.3864 -          // Aggressively drain cxq into EntryList at the first opportunity.
  1.3865 -          // This policy ensure that recently-run threads live at the head of EntryList.
  1.3866 -
  1.3867 -          // Drain _cxq into EntryList - bulk transfer.
  1.3868 -          // First, detach _cxq.
  1.3869 -          // The following loop is tantamount to: w = swap (&cxq, NULL)
  1.3870 -          w = _cxq ;
  1.3871 -          for (;;) {
  1.3872 -             assert (w != NULL, "Invariant") ;
  1.3873 -             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1.3874 -             if (u == w) break ;
  1.3875 -             w = u ;
  1.3876 -          }
  1.3877 -          assert (w != NULL              , "invariant") ;
  1.3878 -
  1.3879 -          ObjectWaiter * q = NULL ;
  1.3880 -          ObjectWaiter * p ;
  1.3881 -          for (p = w ; p != NULL ; p = p->_next) {
  1.3882 -              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1.3883 -              p->TState = ObjectWaiter::TS_ENTER ;
  1.3884 -              p->_prev = q ;
  1.3885 -              q = p ;
  1.3886 -          }
  1.3887 -
  1.3888 -          // Prepend the RATs to the EntryList
  1.3889 -          if (_EntryList != NULL) {
  1.3890 -              q->_next = _EntryList ;
  1.3891 -              _EntryList->_prev = q ;
  1.3892 -          }
  1.3893 -          _EntryList = w ;
  1.3894 -
  1.3895 -          // Fall thru into code that tries to wake a successor from EntryList
  1.3896 -      }
  1.3897 -
  1.3898 -      w = _EntryList  ;
  1.3899 -      if (w != NULL) {
  1.3900 -          // I'd like to write: guarantee (w->_thread != Self).
  1.3901 -          // But in practice an exiting thread may find itself on the EntryList.
  1.3902 -          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  1.3903 -          // then calls exit().  Exit release the lock by setting O._owner to NULL.
  1.3904 -          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  1.3905 -          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  1.3906 -          // release the lock "O".  T2 resumes immediately after the ST of null into
  1.3907 -          // _owner, above.  T2 notices that the EntryList is populated, so it
  1.3908 -          // reacquires the lock and then finds itself on the EntryList.
  1.3909 -          // Given all that, we have to tolerate the circumstance where "w" is
  1.3910 -          // associated with Self.
  1.3911 -          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1.3912 -          ExitEpilog (Self, w) ;
  1.3913 -          return ;
  1.3914 -      }
  1.3915 -
  1.3916 -      // If we find that both _cxq and EntryList are null then just
  1.3917 -      // re-run the exit protocol from the top.
  1.3918 -      w = _cxq ;
  1.3919 -      if (w == NULL) continue ;
  1.3920 -
  1.3921 -      // Drain _cxq into EntryList - bulk transfer.
  1.3922 -      // First, detach _cxq.
  1.3923 -      // The following loop is tantamount to: w = swap (&cxq, NULL)
  1.3924 -      for (;;) {
  1.3925 -          assert (w != NULL, "Invariant") ;
  1.3926 -          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1.3927 -          if (u == w) break ;
  1.3928 -          w = u ;
  1.3929 -      }
  1.3930 -      TEVENT (Inflated exit - drain cxq into EntryList) ;
  1.3931 -
  1.3932 -      assert (w != NULL              , "invariant") ;
  1.3933 -      assert (_EntryList  == NULL    , "invariant") ;
  1.3934 -
  1.3935 -      // Convert the LIFO SLL anchored by _cxq into a DLL.
  1.3936 -      // The list reorganization step operates in O(LENGTH(w)) time.
  1.3937 -      // It's critical that this step operate quickly as
  1.3938 -      // "Self" still holds the outer-lock, restricting parallelism
  1.3939 -      // and effectively lengthening the critical section.
  1.3940 -      // Invariant: s chases t chases u.
  1.3941 -      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  1.3942 -      // we have faster access to the tail.
  1.3943 -
  1.3944 -      if (QMode == 1) {
  1.3945 -         // QMode == 1 : drain cxq to EntryList, reversing order
  1.3946 -         // We also reverse the order of the list.
  1.3947 -         ObjectWaiter * s = NULL ;
  1.3948 -         ObjectWaiter * t = w ;
  1.3949 -         ObjectWaiter * u = NULL ;
  1.3950 -         while (t != NULL) {
  1.3951 -             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1.3952 -             t->TState = ObjectWaiter::TS_ENTER ;
  1.3953 -             u = t->_next ;
  1.3954 -             t->_prev = u ;
  1.3955 -             t->_next = s ;
  1.3956 -             s = t;
  1.3957 -             t = u ;
  1.3958 -         }
  1.3959 -         _EntryList  = s ;
  1.3960 -         assert (s != NULL, "invariant") ;
  1.3961 -      } else {
  1.3962 -         // QMode == 0 or QMode == 2
  1.3963 -         _EntryList = w ;
  1.3964 -         ObjectWaiter * q = NULL ;
  1.3965 -         ObjectWaiter * p ;
  1.3966 -         for (p = w ; p != NULL ; p = p->_next) {
  1.3967 -             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1.3968 -             p->TState = ObjectWaiter::TS_ENTER ;
  1.3969 -             p->_prev = q ;
  1.3970 -             q = p ;
  1.3971 -         }
  1.3972 -      }
  1.3973 -
  1.3974 -      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  1.3975 -      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  1.3976 -
  1.3977 -      // See if we can abdicate to a spinner instead of waking a thread.
  1.3978 -      // A primary goal of the implementation is to reduce the
  1.3979 -      // context-switch rate.
  1.3980 -      if (_succ != NULL) continue;
  1.3981 -
  1.3982 -      w = _EntryList  ;
  1.3983 -      if (w != NULL) {
  1.3984 -          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1.3985 -          ExitEpilog (Self, w) ;
  1.3986 -          return ;
  1.3987 -      }
  1.3988 -   }
  1.3989 -}
  1.3990 -// complete_exit exits a lock returning recursion count
  1.3991 -// complete_exit/reenter operate as a wait without waiting
  1.3992 -// complete_exit requires an inflated monitor
  1.3993 -// The _owner field is not always the Thread addr even with an
  1.3994 -// inflated monitor, e.g. the monitor can be inflated by a non-owning
  1.3995 -// thread due to contention.
  1.3996 -intptr_t ObjectMonitor::complete_exit(TRAPS) {
  1.3997 -   Thread * const Self = THREAD;
  1.3998 -   assert(Self->is_Java_thread(), "Must be Java thread!");
  1.3999 -   JavaThread *jt = (JavaThread *)THREAD;
  1.4000 -
  1.4001 -   DeferredInitialize();
  1.4002 -
  1.4003 -   if (THREAD != _owner) {
  1.4004 -    if (THREAD->is_lock_owned ((address)_owner)) {
  1.4005 -       assert(_recursions == 0, "internal state error");
  1.4006 -       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  1.4007 -       _recursions = 0 ;
  1.4008 -       OwnerIsThread = 1 ;
  1.4009 -    }
  1.4010 -   }
  1.4011 -
  1.4012 -   guarantee(Self == _owner, "complete_exit not owner");
  1.4013 -   intptr_t save = _recursions; // record the old recursion count
  1.4014 -   _recursions = 0;        // set the recursion level to be 0
  1.4015 -   exit (Self) ;           // exit the monitor
  1.4016 -   guarantee (_owner != Self, "invariant");
  1.4017 -   return save;
  1.4018 -}
  1.4019 -
  1.4020 -// reenter() enters a lock and sets recursion count
  1.4021 -// complete_exit/reenter operate as a wait without waiting
  1.4022 -void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  1.4023 -   Thread * const Self = THREAD;
  1.4024 -   assert(Self->is_Java_thread(), "Must be Java thread!");
  1.4025 -   JavaThread *jt = (JavaThread *)THREAD;
  1.4026 -
  1.4027 -   guarantee(_owner != Self, "reenter already owner");
  1.4028 -   enter (THREAD);       // enter the monitor
  1.4029 -   guarantee (_recursions == 0, "reenter recursion");
  1.4030 -   _recursions = recursions;
  1.4031 -   return;
  1.4032 -}
  1.4033 -
  1.4034 -// Note: a subset of changes to ObjectMonitor::wait()
  1.4035 -// will need to be replicated in complete_exit above
  1.4036 -void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  1.4037 -   Thread * const Self = THREAD ;
  1.4038 -   assert(Self->is_Java_thread(), "Must be Java thread!");
  1.4039 -   JavaThread *jt = (JavaThread *)THREAD;
  1.4040 -
  1.4041 -   DeferredInitialize () ;
  1.4042 -
  1.4043 -   // Throw IMSX or IEX.
  1.4044 -   CHECK_OWNER();
  1.4045 -
  1.4046 -   // check for a pending interrupt
  1.4047 -   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1.4048 -     // post monitor waited event.  Note that this is past-tense, we are done waiting.
  1.4049 -     if (JvmtiExport::should_post_monitor_waited()) {
  1.4050 -        // Note: 'false' parameter is passed here because the
  1.4051 -        // wait was not timed out due to thread interrupt.
  1.4052 -        JvmtiExport::post_monitor_waited(jt, this, false);
  1.4053 -     }
  1.4054 -     TEVENT (Wait - Throw IEX) ;
  1.4055 -     THROW(vmSymbols::java_lang_InterruptedException());
  1.4056 -     return ;
  1.4057 -   }
  1.4058 -   TEVENT (Wait) ;
  1.4059 -
  1.4060 -   assert (Self->_Stalled == 0, "invariant") ;
  1.4061 -   Self->_Stalled = intptr_t(this) ;
  1.4062 -   jt->set_current_waiting_monitor(this);
  1.4063 -
  1.4064 -   // create a node to be put into the queue
  1.4065 -   // Critically, after we reset() the event but prior to park(), we must check
  1.4066 -   // for a pending interrupt.
  1.4067 -   ObjectWaiter node(Self);
  1.4068 -   node.TState = ObjectWaiter::TS_WAIT ;
  1.4069 -   Self->_ParkEvent->reset() ;
  1.4070 -   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  1.4071 -
  1.4072 -   // Enter the waiting queue, which is a circular doubly linked list in this case
  1.4073 -   // but it could be a priority queue or any data structure.
  1.4074 -   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  1.4075 -   // by the the owner of the monitor *except* in the case where park()
  1.4076 -   // returns because of a timeout of interrupt.  Contention is exceptionally rare
  1.4077 -   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  1.4078 -
  1.4079 -   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  1.4080 -   AddWaiter (&node) ;
  1.4081 -   Thread::SpinRelease (&_WaitSetLock) ;
  1.4082 -
  1.4083 -   if ((SyncFlags & 4) == 0) {
  1.4084 -      _Responsible = NULL ;
  1.4085 -   }
  1.4086 -   intptr_t save = _recursions; // record the old recursion count
  1.4087 -   _waiters++;                  // increment the number of waiters
  1.4088 -   _recursions = 0;             // set the recursion level to be 1
  1.4089 -   exit (Self) ;                    // exit the monitor
  1.4090 -   guarantee (_owner != Self, "invariant") ;
  1.4091 -
  1.4092 -   // As soon as the ObjectMonitor's ownership is dropped in the exit()
  1.4093 -   // call above, another thread can enter() the ObjectMonitor, do the
  1.4094 -   // notify(), and exit() the ObjectMonitor. If the other thread's
  1.4095 -   // exit() call chooses this thread as the successor and the unpark()
  1.4096 -   // call happens to occur while this thread is posting a
  1.4097 -   // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
  1.4098 -   // handler using RawMonitors and consuming the unpark().
  1.4099 -   //
  1.4100 -   // To avoid the problem, we re-post the event. This does no harm
  1.4101 -   // even if the original unpark() was not consumed because we are the
  1.4102 -   // chosen successor for this monitor.
  1.4103 -   if (node._notified != 0 && _succ == Self) {
  1.4104 -      node._event->unpark();
  1.4105 -   }
  1.4106 -
  1.4107 -   // The thread is on the WaitSet list - now park() it.
  1.4108 -   // On MP systems it's conceivable that a brief spin before we park
  1.4109 -   // could be profitable.
  1.4110 -   //
  1.4111 -   // TODO-FIXME: change the following logic to a loop of the form
  1.4112 -   //   while (!timeout && !interrupted && _notified == 0) park()
  1.4113 -
  1.4114 -   int ret = OS_OK ;
  1.4115 -   int WasNotified = 0 ;
  1.4116 -   { // State transition wrappers
  1.4117 -     OSThread* osthread = Self->osthread();
  1.4118 -     OSThreadWaitState osts(osthread, true);
  1.4119 -     {
  1.4120 -       ThreadBlockInVM tbivm(jt);
  1.4121 -       // Thread is in thread_blocked state and oop access is unsafe.
  1.4122 -       jt->set_suspend_equivalent();
  1.4123 -
  1.4124 -       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  1.4125 -           // Intentionally empty
  1.4126 -       } else
  1.4127 -       if (node._notified == 0) {
  1.4128 -         if (millis <= 0) {
  1.4129 -            Self->_ParkEvent->park () ;
  1.4130 -         } else {
  1.4131 -            ret = Self->_ParkEvent->park (millis) ;
  1.4132 -         }
  1.4133 -       }
  1.4134 -
  1.4135 -       // were we externally suspended while we were waiting?
  1.4136 -       if (ExitSuspendEquivalent (jt)) {
  1.4137 -          // TODO-FIXME: add -- if succ == Self then succ = null.
  1.4138 -          jt->java_suspend_self();
  1.4139 -       }
  1.4140 -
  1.4141 -     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  1.4142 -
  1.4143 -
  1.4144 -     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  1.4145 -     // from the WaitSet to the EntryList.
  1.4146 -     // See if we need to remove Node from the WaitSet.
  1.4147 -     // We use double-checked locking to avoid grabbing _WaitSetLock
  1.4148 -     // if the thread is not on the wait queue.
  1.4149 -     //
  1.4150 -     // Note that we don't need a fence before the fetch of TState.
  1.4151 -     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  1.4152 -     // written by the is thread. (perhaps the fetch might even be satisfied
  1.4153 -     // by a look-aside into the processor's own store buffer, although given
  1.4154 -     // the length of the code path between the prior ST and this load that's
  1.4155 -     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  1.4156 -     // then we'll acquire the lock and then re-fetch a fresh TState value.
  1.4157 -     // That is, we fail toward safety.
  1.4158 -
  1.4159 -     if (node.TState == ObjectWaiter::TS_WAIT) {
  1.4160 -         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  1.4161 -         if (node.TState == ObjectWaiter::TS_WAIT) {
  1.4162 -            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  1.4163 -            assert(node._notified == 0, "invariant");
  1.4164 -            node.TState = ObjectWaiter::TS_RUN ;
  1.4165 -         }
  1.4166 -         Thread::SpinRelease (&_WaitSetLock) ;
  1.4167 -     }
  1.4168 -
  1.4169 -     // The thread is now either on off-list (TS_RUN),
  1.4170 -     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  1.4171 -     // The Node's TState variable is stable from the perspective of this thread.
  1.4172 -     // No other threads will asynchronously modify TState.
  1.4173 -     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  1.4174 -     OrderAccess::loadload() ;
  1.4175 -     if (_succ == Self) _succ = NULL ;
  1.4176 -     WasNotified = node._notified ;
  1.4177 -
  1.4178 -     // Reentry phase -- reacquire the monitor.
  1.4179 -     // re-enter contended monitor after object.wait().
  1.4180 -     // retain OBJECT_WAIT state until re-enter successfully completes
  1.4181 -     // Thread state is thread_in_vm and oop access is again safe,
  1.4182 -     // although the raw address of the object may have changed.
  1.4183 -     // (Don't cache naked oops over safepoints, of course).
  1.4184 -
  1.4185 -     // post monitor waited event. Note that this is past-tense, we are done waiting.
  1.4186 -     if (JvmtiExport::should_post_monitor_waited()) {
  1.4187 -       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  1.4188 -     }
  1.4189 -     OrderAccess::fence() ;
  1.4190 -
  1.4191 -     assert (Self->_Stalled != 0, "invariant") ;
  1.4192 -     Self->_Stalled = 0 ;
  1.4193 -
  1.4194 -     assert (_owner != Self, "invariant") ;
  1.4195 -     ObjectWaiter::TStates v = node.TState ;
  1.4196 -     if (v == ObjectWaiter::TS_RUN) {
  1.4197 -         enter (Self) ;
  1.4198 -     } else {
  1.4199 -         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1.4200 -         ReenterI (Self, &node) ;
  1.4201 -         node.wait_reenter_end(this);
  1.4202 -     }
  1.4203 -
  1.4204 -     // Self has reacquired the lock.
  1.4205 -     // Lifecycle - the node representing Self must not appear on any queues.
  1.4206 -     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  1.4207 -     // want residual elements associated with this thread left on any lists.
  1.4208 -     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1.4209 -     assert    (_owner == Self, "invariant") ;
  1.4210 -     assert    (_succ != Self , "invariant") ;
  1.4211 -   } // OSThreadWaitState()
  1.4212 -
  1.4213 -   jt->set_current_waiting_monitor(NULL);
  1.4214 -
  1.4215 -   guarantee (_recursions == 0, "invariant") ;
  1.4216 -   _recursions = save;     // restore the old recursion count
  1.4217 -   _waiters--;             // decrement the number of waiters
  1.4218 -
  1.4219 -   // Verify a few postconditions
  1.4220 -   assert (_owner == Self       , "invariant") ;
  1.4221 -   assert (_succ  != Self       , "invariant") ;
  1.4222 -   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1.4223 -
  1.4224 -   if (SyncFlags & 32) {
  1.4225 -      OrderAccess::fence() ;
  1.4226 -   }
  1.4227 -
  1.4228 -   // check if the notification happened
  1.4229 -   if (!WasNotified) {
  1.4230 -     // no, it could be timeout or Thread.interrupt() or both
  1.4231 -     // check for interrupt event, otherwise it is timeout
  1.4232 -     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1.4233 -       TEVENT (Wait - throw IEX from epilog) ;
  1.4234 -       THROW(vmSymbols::java_lang_InterruptedException());
  1.4235 -     }
  1.4236 -   }
  1.4237 -
  1.4238 -   // NOTE: Spurious wake up will be consider as timeout.
  1.4239 -   // Monitor notify has precedence over thread interrupt.
  1.4240 -}
  1.4241 -
  1.4242 -
  1.4243 -// Consider:
  1.4244 -// If the lock is cool (cxq == null && succ == null) and we're on an MP system
  1.4245 -// then instead of transferring a thread from the WaitSet to the EntryList
  1.4246 -// we might just dequeue a thread from the WaitSet and directly unpark() it.
  1.4247 -
  1.4248 -void ObjectMonitor::notify(TRAPS) {
  1.4249 -  CHECK_OWNER();
  1.4250 -  if (_WaitSet == NULL) {
  1.4251 -     TEVENT (Empty-Notify) ;
  1.4252 -     return ;
  1.4253 -  }
  1.4254 -  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  1.4255 -
  1.4256 -  int Policy = Knob_MoveNotifyee ;
  1.4257 -
  1.4258 -  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  1.4259 -  ObjectWaiter * iterator = DequeueWaiter() ;
  1.4260 -  if (iterator != NULL) {
  1.4261 -     TEVENT (Notify1 - Transfer) ;
  1.4262 -     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1.4263 -     guarantee (iterator->_notified == 0, "invariant") ;
  1.4264 -     // Disposition - what might we do with iterator ?
  1.4265 -     // a.  add it directly to the EntryList - either tail or head.
  1.4266 -     // b.  push it onto the front of the _cxq.
  1.4267 -     // For now we use (a).
  1.4268 -     if (Policy != 4) {
  1.4269 -        iterator->TState = ObjectWaiter::TS_ENTER ;
  1.4270 -     }
  1.4271 -     iterator->_notified = 1 ;
  1.4272 -
  1.4273 -     ObjectWaiter * List = _EntryList ;
  1.4274 -     if (List != NULL) {
  1.4275 -        assert (List->_prev == NULL, "invariant") ;
  1.4276 -        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1.4277 -        assert (List != iterator, "invariant") ;
  1.4278 -     }
  1.4279 -
  1.4280 -     if (Policy == 0) {       // prepend to EntryList
  1.4281 -         if (List == NULL) {
  1.4282 -             iterator->_next = iterator->_prev = NULL ;
  1.4283 -             _EntryList = iterator ;
  1.4284 -         } else {
  1.4285 -             List->_prev = iterator ;
  1.4286 -             iterator->_next = List ;
  1.4287 -             iterator->_prev = NULL ;
  1.4288 -             _EntryList = iterator ;
  1.4289 -        }
  1.4290 -     } else
  1.4291 -     if (Policy == 1) {      // append to EntryList
  1.4292 -         if (List == NULL) {
  1.4293 -             iterator->_next = iterator->_prev = NULL ;
  1.4294 -             _EntryList = iterator ;
  1.4295 -         } else {
  1.4296 -            // CONSIDER:  finding the tail currently requires a linear-time walk of
  1.4297 -            // the EntryList.  We can make tail access constant-time by converting to
  1.4298 -            // a CDLL instead of using our current DLL.
  1.4299 -            ObjectWaiter * Tail ;
  1.4300 -            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1.4301 -            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1.4302 -            Tail->_next = iterator ;
  1.4303 -            iterator->_prev = Tail ;
  1.4304 -            iterator->_next = NULL ;
  1.4305 -        }
  1.4306 -     } else
  1.4307 -     if (Policy == 2) {      // prepend to cxq
  1.4308 -         // prepend to cxq
  1.4309 -         if (List == NULL) {
  1.4310 -             iterator->_next = iterator->_prev = NULL ;
  1.4311 -             _EntryList = iterator ;
  1.4312 -         } else {
  1.4313 -            iterator->TState = ObjectWaiter::TS_CXQ ;
  1.4314 -            for (;;) {
  1.4315 -                ObjectWaiter * Front = _cxq ;
  1.4316 -                iterator->_next = Front ;
  1.4317 -                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1.4318 -                    break ;
  1.4319 -                }
  1.4320 -            }
  1.4321 -         }
  1.4322 -     } else
  1.4323 -     if (Policy == 3) {      // append to cxq
  1.4324 -        iterator->TState = ObjectWaiter::TS_CXQ ;
  1.4325 -        for (;;) {
  1.4326 -            ObjectWaiter * Tail ;
  1.4327 -            Tail = _cxq ;
  1.4328 -            if (Tail == NULL) {
  1.4329 -                iterator->_next = NULL ;
  1.4330 -                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1.4331 -                   break ;
  1.4332 -                }
  1.4333 -            } else {
  1.4334 -                while (Tail->_next != NULL) Tail = Tail->_next ;
  1.4335 -                Tail->_next = iterator ;
  1.4336 -                iterator->_prev = Tail ;
  1.4337 -                iterator->_next = NULL ;
  1.4338 -                break ;
  1.4339 -            }
  1.4340 -        }
  1.4341 -     } else {
  1.4342 -        ParkEvent * ev = iterator->_event ;
  1.4343 -        iterator->TState = ObjectWaiter::TS_RUN ;
  1.4344 -        OrderAccess::fence() ;
  1.4345 -        ev->unpark() ;
  1.4346 -     }
  1.4347 -
  1.4348 -     if (Policy < 4) {
  1.4349 -       iterator->wait_reenter_begin(this);
  1.4350 -     }
  1.4351 -
  1.4352 -     // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1.4353 -     // move the add-to-EntryList operation, above, outside the critical section
  1.4354 -     // protected by _WaitSetLock.  In practice that's not useful.  With the
  1.4355 -     // exception of  wait() timeouts and interrupts the monitor owner
  1.4356 -     // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1.4357 -     // on _WaitSetLock so it's not profitable to reduce the length of the
  1.4358 -     // critical section.
  1.4359 -  }
  1.4360 -
  1.4361 -  Thread::SpinRelease (&_WaitSetLock) ;
  1.4362 -
  1.4363 -  if (iterator != NULL && ObjectSynchronizer::_sync_Notifications != NULL) {
  1.4364 -     ObjectSynchronizer::_sync_Notifications->inc() ;
  1.4365 -  }
  1.4366 -}
  1.4367 -
  1.4368 -
  1.4369 -void ObjectMonitor::notifyAll(TRAPS) {
  1.4370 -  CHECK_OWNER();
  1.4371 -  ObjectWaiter* iterator;
  1.4372 -  if (_WaitSet == NULL) {
  1.4373 -      TEVENT (Empty-NotifyAll) ;
  1.4374 -      return ;
  1.4375 -  }
  1.4376 -  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  1.4377 -
  1.4378 -  int Policy = Knob_MoveNotifyee ;
  1.4379 -  int Tally = 0 ;
  1.4380 -  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  1.4381 -
  1.4382 -  for (;;) {
  1.4383 -     iterator = DequeueWaiter () ;
  1.4384 -     if (iterator == NULL) break ;
  1.4385 -     TEVENT (NotifyAll - Transfer1) ;
  1.4386 -     ++Tally ;
  1.4387 -
  1.4388 -     // Disposition - what might we do with iterator ?
  1.4389 -     // a.  add it directly to the EntryList - either tail or head.
  1.4390 -     // b.  push it onto the front of the _cxq.
  1.4391 -     // For now we use (a).
  1.4392 -     //
  1.4393 -     // TODO-FIXME: currently notifyAll() transfers the waiters one-at-a-time from the waitset
  1.4394 -     // to the EntryList.  This could be done more efficiently with a single bulk transfer,
  1.4395 -     // but in practice it's not time-critical.  Beware too, that in prepend-mode we invert the
  1.4396 -     // order of the waiters.  Lets say that the waitset is "ABCD" and the EntryList is "XYZ".
  1.4397 -     // After a notifyAll() in prepend mode the waitset will be empty and the EntryList will
  1.4398 -     // be "DCBAXYZ".
  1.4399 -
  1.4400 -     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1.4401 -     guarantee (iterator->_notified == 0, "invariant") ;
  1.4402 -     iterator->_notified = 1 ;
  1.4403 -     if (Policy != 4) {
  1.4404 -        iterator->TState = ObjectWaiter::TS_ENTER ;
  1.4405 -     }
  1.4406 -
  1.4407 -     ObjectWaiter * List = _EntryList ;
  1.4408 -     if (List != NULL) {
  1.4409 -        assert (List->_prev == NULL, "invariant") ;
  1.4410 -        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1.4411 -        assert (List != iterator, "invariant") ;
  1.4412 -     }
  1.4413 -
  1.4414 -     if (Policy == 0) {       // prepend to EntryList
  1.4415 -         if (List == NULL) {
  1.4416 -             iterator->_next = iterator->_prev = NULL ;
  1.4417 -             _EntryList = iterator ;
  1.4418 -         } else {
  1.4419 -             List->_prev = iterator ;
  1.4420 -             iterator->_next = List ;
  1.4421 -             iterator->_prev = NULL ;
  1.4422 -             _EntryList = iterator ;
  1.4423 -        }
  1.4424 -     } else
  1.4425 -     if (Policy == 1) {      // append to EntryList
  1.4426 -         if (List == NULL) {
  1.4427 -             iterator->_next = iterator->_prev = NULL ;
  1.4428 -             _EntryList = iterator ;
  1.4429 -         } else {
  1.4430 -            // CONSIDER:  finding the tail currently requires a linear-time walk of
  1.4431 -            // the EntryList.  We can make tail access constant-time by converting to
  1.4432 -            // a CDLL instead of using our current DLL.
  1.4433 -            ObjectWaiter * Tail ;
  1.4434 -            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1.4435 -            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1.4436 -            Tail->_next = iterator ;
  1.4437 -            iterator->_prev = Tail ;
  1.4438 -            iterator->_next = NULL ;
  1.4439 -        }
  1.4440 -     } else
  1.4441 -     if (Policy == 2) {      // prepend to cxq
  1.4442 -         // prepend to cxq
  1.4443 -         iterator->TState = ObjectWaiter::TS_CXQ ;
  1.4444 -         for (;;) {
  1.4445 -             ObjectWaiter * Front = _cxq ;
  1.4446 -             iterator->_next = Front ;
  1.4447 -             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1.4448 -                 break ;
  1.4449 -             }
  1.4450 -         }
  1.4451 -     } else
  1.4452 -     if (Policy == 3) {      // append to cxq
  1.4453 -        iterator->TState = ObjectWaiter::TS_CXQ ;
  1.4454 -        for (;;) {
  1.4455 -            ObjectWaiter * Tail ;
  1.4456 -            Tail = _cxq ;
  1.4457 -            if (Tail == NULL) {
  1.4458 -                iterator->_next = NULL ;
  1.4459 -                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1.4460 -                   break ;
  1.4461 -                }
  1.4462 -            } else {
  1.4463 -                while (Tail->_next != NULL) Tail = Tail->_next ;
  1.4464 -                Tail->_next = iterator ;
  1.4465 -                iterator->_prev = Tail ;
  1.4466 -                iterator->_next = NULL ;
  1.4467 -                break ;
  1.4468 -            }
  1.4469 -        }
  1.4470 -     } else {
  1.4471 -        ParkEvent * ev = iterator->_event ;
  1.4472 -        iterator->TState = ObjectWaiter::TS_RUN ;
  1.4473 -        OrderAccess::fence() ;
  1.4474 -        ev->unpark() ;
  1.4475 -     }
  1.4476 -
  1.4477 -     if (Policy < 4) {
  1.4478 -       iterator->wait_reenter_begin(this);
  1.4479 -     }
  1.4480 -
  1.4481 -     // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1.4482 -     // move the add-to-EntryList operation, above, outside the critical section
  1.4483 -     // protected by _WaitSetLock.  In practice that's not useful.  With the
  1.4484 -     // exception of  wait() timeouts and interrupts the monitor owner
  1.4485 -     // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1.4486 -     // on _WaitSetLock so it's not profitable to reduce the length of the
  1.4487 -     // critical section.
  1.4488 -  }
  1.4489 -
  1.4490 -  Thread::SpinRelease (&_WaitSetLock) ;
  1.4491 -
  1.4492 -  if (Tally != 0 && ObjectSynchronizer::_sync_Notifications != NULL) {
  1.4493 -     ObjectSynchronizer::_sync_Notifications->inc(Tally) ;
  1.4494 -  }
  1.4495 -}
  1.4496 -
  1.4497 -// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  1.4498 -// TODO-FIXME: remove check_slow() -- it's likely dead.
  1.4499 -
  1.4500 -void ObjectMonitor::check_slow(TRAPS) {
  1.4501 -  TEVENT (check_slow - throw IMSX) ;
  1.4502 -  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  1.4503 -  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  1.4504 -}
  1.4505 -
  1.4506 -
  1.4507 -// -------------------------------------------------------------------------
  1.4508 -// The raw monitor subsystem is entirely distinct from normal
  1.4509 -// java-synchronization or jni-synchronization.  raw monitors are not
  1.4510 -// associated with objects.  They can be implemented in any manner
  1.4511 -// that makes sense.  The original implementors decided to piggy-back
  1.4512 -// the raw-monitor implementation on the existing Java objectMonitor mechanism.
  1.4513 -// This flaw needs to fixed.  We should reimplement raw monitors as sui-generis.
  1.4514 -// Specifically, we should not implement raw monitors via java monitors.
  1.4515 -// Time permitting, we should disentangle and deconvolve the two implementations
  1.4516 -// and move the resulting raw monitor implementation over to the JVMTI directories.
  1.4517 -// Ideally, the raw monitor implementation would be built on top of
  1.4518 -// park-unpark and nothing else.
  1.4519 -//
  1.4520 -// raw monitors are used mainly by JVMTI
  1.4521 -// The raw monitor implementation borrows the ObjectMonitor structure,
  1.4522 -// but the operators are degenerate and extremely simple.
  1.4523 -//
  1.4524 -// Mixed use of a single objectMonitor instance -- as both a raw monitor
  1.4525 -// and a normal java monitor -- is not permissible.
  1.4526 -//
  1.4527 -// Note that we use the single RawMonitor_lock to protect queue operations for
  1.4528 -// _all_ raw monitors.  This is a scalability impediment, but since raw monitor usage
  1.4529 -// is deprecated and rare, this is not of concern.  The RawMonitor_lock can not
  1.4530 -// be held indefinitely.  The critical sections must be short and bounded.
  1.4531 -//
  1.4532 -// -------------------------------------------------------------------------
  1.4533 -
  1.4534 -int ObjectMonitor::SimpleEnter (Thread * Self) {
  1.4535 -  for (;;) {
  1.4536 -    if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  1.4537 -       return OS_OK ;
  1.4538 -    }
  1.4539 -
  1.4540 -    ObjectWaiter Node (Self) ;
  1.4541 -    Self->_ParkEvent->reset() ;     // strictly optional
  1.4542 -    Node.TState = ObjectWaiter::TS_ENTER ;
  1.4543 -
  1.4544 -    RawMonitor_lock->lock_without_safepoint_check() ;
  1.4545 -    Node._next  = _EntryList ;
  1.4546 -    _EntryList  = &Node ;
  1.4547 -    OrderAccess::fence() ;
  1.4548 -    if (_owner == NULL && Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  1.4549 -        _EntryList = Node._next ;
  1.4550 -        RawMonitor_lock->unlock() ;
  1.4551 -        return OS_OK ;
  1.4552 -    }
  1.4553 -    RawMonitor_lock->unlock() ;
  1.4554 -    while (Node.TState == ObjectWaiter::TS_ENTER) {
  1.4555 -       Self->_ParkEvent->park() ;
  1.4556 -    }
  1.4557 -  }
  1.4558 -}
  1.4559 -
  1.4560 -int ObjectMonitor::SimpleExit (Thread * Self) {
  1.4561 -  guarantee (_owner == Self, "invariant") ;
  1.4562 -  OrderAccess::release_store_ptr (&_owner, NULL) ;
  1.4563 -  OrderAccess::fence() ;
  1.4564 -  if (_EntryList == NULL) return OS_OK ;
  1.4565 -  ObjectWaiter * w ;
  1.4566 -
  1.4567 -  RawMonitor_lock->lock_without_safepoint_check() ;
  1.4568 -  w = _EntryList ;
  1.4569 -  if (w != NULL) {
  1.4570 -      _EntryList = w->_next ;
  1.4571 -  }
  1.4572 -  RawMonitor_lock->unlock() ;
  1.4573 -  if (w != NULL) {
  1.4574 -      guarantee (w ->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1.4575 -      ParkEvent * ev = w->_event ;
  1.4576 -      w->TState = ObjectWaiter::TS_RUN ;
  1.4577 -      OrderAccess::fence() ;
  1.4578 -      ev->unpark() ;
  1.4579 -  }
  1.4580 -  return OS_OK ;
  1.4581 -}
  1.4582 -
  1.4583 -int ObjectMonitor::SimpleWait (Thread * Self, jlong millis) {
  1.4584 -  guarantee (_owner == Self  , "invariant") ;
  1.4585 -  guarantee (_recursions == 0, "invariant") ;
  1.4586 -
  1.4587 -  ObjectWaiter Node (Self) ;
  1.4588 -  Node._notified = 0 ;
  1.4589 -  Node.TState    = ObjectWaiter::TS_WAIT ;
  1.4590 -
  1.4591 -  RawMonitor_lock->lock_without_safepoint_check() ;
  1.4592 -  Node._next     = _WaitSet ;
  1.4593 -  _WaitSet       = &Node ;
  1.4594 -  RawMonitor_lock->unlock() ;
  1.4595 -
  1.4596 -  SimpleExit (Self) ;
  1.4597 -  guarantee (_owner != Self, "invariant") ;
  1.4598 -
  1.4599 -  int ret = OS_OK ;
  1.4600 -  if (millis <= 0) {
  1.4601 -    Self->_ParkEvent->park();
  1.4602 -  } else {
  1.4603 -    ret = Self->_ParkEvent->park(millis);
  1.4604 -  }
  1.4605 -
  1.4606 -  // If thread still resides on the waitset then unlink it.
  1.4607 -  // Double-checked locking -- the usage is safe in this context
  1.4608 -  // as we TState is volatile and the lock-unlock operators are
  1.4609 -  // serializing (barrier-equivalent).
  1.4610 -
  1.4611 -  if (Node.TState == ObjectWaiter::TS_WAIT) {
  1.4612 -    RawMonitor_lock->lock_without_safepoint_check() ;
  1.4613 -    if (Node.TState == ObjectWaiter::TS_WAIT) {
  1.4614 -      // Simple O(n) unlink, but performance isn't critical here.
  1.4615 -      ObjectWaiter * p ;
  1.4616 -      ObjectWaiter * q = NULL ;
  1.4617 -      for (p = _WaitSet ; p != &Node; p = p->_next) {
  1.4618 -         q = p ;
  1.4619 -      }
  1.4620 -      guarantee (p == &Node, "invariant") ;
  1.4621 -      if (q == NULL) {
  1.4622 -        guarantee (p == _WaitSet, "invariant") ;
  1.4623 -        _WaitSet = p->_next ;
  1.4624 -      } else {
  1.4625 -        guarantee (p == q->_next, "invariant") ;
  1.4626 -        q->_next = p->_next ;
  1.4627 -      }
  1.4628 -      Node.TState = ObjectWaiter::TS_RUN ;
  1.4629 -    }
  1.4630 -    RawMonitor_lock->unlock() ;
  1.4631 -  }
  1.4632 -
  1.4633 -  guarantee (Node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1.4634 -  SimpleEnter (Self) ;
  1.4635 -
  1.4636 -  guarantee (_owner == Self, "invariant") ;
  1.4637 -  guarantee (_recursions == 0, "invariant") ;
  1.4638 -  return ret ;
  1.4639 -}
  1.4640 -
  1.4641 -int ObjectMonitor::SimpleNotify (Thread * Self, bool All) {
  1.4642 -  guarantee (_owner == Self, "invariant") ;
  1.4643 -  if (_WaitSet == NULL) return OS_OK ;
  1.4644 -
  1.4645 -  // We have two options:
  1.4646 -  // A. Transfer the threads from the WaitSet to the EntryList
  1.4647 -  // B. Remove the thread from the WaitSet and unpark() it.
  1.4648 -  //
  1.4649 -  // We use (B), which is crude and results in lots of futile
  1.4650 -  // context switching.  In particular (B) induces lots of contention.
  1.4651 -
  1.4652 -  ParkEvent * ev = NULL ;       // consider using a small auto array ...
  1.4653 -  RawMonitor_lock->lock_without_safepoint_check() ;
  1.4654 -  for (;;) {
  1.4655 -      ObjectWaiter * w = _WaitSet ;
  1.4656 -      if (w == NULL) break ;
  1.4657 -      _WaitSet = w->_next ;
  1.4658 -      if (ev != NULL) { ev->unpark(); ev = NULL; }
  1.4659 -      ev = w->_event ;
  1.4660 -      OrderAccess::loadstore() ;
  1.4661 -      w->TState = ObjectWaiter::TS_RUN ;
  1.4662 -      OrderAccess::storeload();
  1.4663 -      if (!All) break ;
  1.4664 -  }
  1.4665 -  RawMonitor_lock->unlock() ;
  1.4666 -  if (ev != NULL) ev->unpark();
  1.4667 -  return OS_OK ;
  1.4668 -}
  1.4669 -
  1.4670 -// Any JavaThread will enter here with state _thread_blocked
  1.4671 -int ObjectMonitor::raw_enter(TRAPS) {
  1.4672 -  TEVENT (raw_enter) ;
  1.4673 -  void * Contended ;
  1.4674 -
  1.4675 -  // don't enter raw monitor if thread is being externally suspended, it will
  1.4676 -  // surprise the suspender if a "suspended" thread can still enter monitor
  1.4677 -  JavaThread * jt = (JavaThread *)THREAD;
  1.4678 -  if (THREAD->is_Java_thread()) {
  1.4679 -    jt->SR_lock()->lock_without_safepoint_check();
  1.4680 -    while (jt->is_external_suspend()) {
  1.4681 -      jt->SR_lock()->unlock();
  1.4682 -      jt->java_suspend_self();
  1.4683 -      jt->SR_lock()->lock_without_safepoint_check();
  1.4684 -    }
  1.4685 -    // guarded by SR_lock to avoid racing with new external suspend requests.
  1.4686 -    Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
  1.4687 -    jt->SR_lock()->unlock();
  1.4688 -  } else {
  1.4689 -    Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
  1.4690 -  }
  1.4691 -
  1.4692 -  if (Contended == THREAD) {
  1.4693 -     _recursions ++ ;
  1.4694 -     return OM_OK ;
  1.4695 -  }
  1.4696 -
  1.4697 -  if (Contended == NULL) {
  1.4698 -     guarantee (_owner == THREAD, "invariant") ;
  1.4699 -     guarantee (_recursions == 0, "invariant") ;
  1.4700 -     return OM_OK ;
  1.4701 -  }
  1.4702 -
  1.4703 -  THREAD->set_current_pending_monitor(this);
  1.4704 -
  1.4705 -  if (!THREAD->is_Java_thread()) {
  1.4706 -     // No other non-Java threads besides VM thread would acquire
  1.4707 -     // a raw monitor.
  1.4708 -     assert(THREAD->is_VM_thread(), "must be VM thread");
  1.4709 -     SimpleEnter (THREAD) ;
  1.4710 -   } else {
  1.4711 -     guarantee (jt->thread_state() == _thread_blocked, "invariant") ;
  1.4712 -     for (;;) {
  1.4713 -       jt->set_suspend_equivalent();
  1.4714 -       // cleared by handle_special_suspend_equivalent_condition() or
  1.4715 -       // java_suspend_self()
  1.4716 -       SimpleEnter (THREAD) ;
  1.4717 -
  1.4718 -       // were we externally suspended while we were waiting?
  1.4719 -       if (!jt->handle_special_suspend_equivalent_condition()) break ;
  1.4720 -
  1.4721 -       // This thread was externally suspended
  1.4722 -       //
  1.4723 -       // This logic isn't needed for JVMTI raw monitors,
  1.4724 -       // but doesn't hurt just in case the suspend rules change. This
  1.4725 -           // logic is needed for the ObjectMonitor.wait() reentry phase.
  1.4726 -           // We have reentered the contended monitor, but while we were
  1.4727 -           // waiting another thread suspended us. We don't want to reenter
  1.4728 -           // the monitor while suspended because that would surprise the
  1.4729 -           // thread that suspended us.
  1.4730 -           //
  1.4731 -           // Drop the lock -
  1.4732 -       SimpleExit (THREAD) ;
  1.4733 -
  1.4734 -           jt->java_suspend_self();
  1.4735 -         }
  1.4736 -
  1.4737 -     assert(_owner == THREAD, "Fatal error with monitor owner!");
  1.4738 -     assert(_recursions == 0, "Fatal error with monitor recursions!");
  1.4739 -  }
  1.4740 -
  1.4741 -  THREAD->set_current_pending_monitor(NULL);
  1.4742 -  guarantee (_recursions == 0, "invariant") ;
  1.4743 -  return OM_OK;
  1.4744 -}
  1.4745 -
  1.4746 -// Used mainly for JVMTI raw monitor implementation
  1.4747 -// Also used for ObjectMonitor::wait().
  1.4748 -int ObjectMonitor::raw_exit(TRAPS) {
  1.4749 -  TEVENT (raw_exit) ;
  1.4750 -  if (THREAD != _owner) {
  1.4751 -    return OM_ILLEGAL_MONITOR_STATE;
  1.4752 -  }
  1.4753 -  if (_recursions > 0) {
  1.4754 -    --_recursions ;
  1.4755 -    return OM_OK ;
  1.4756 -  }
  1.4757 -
  1.4758 -  void * List = _EntryList ;
  1.4759 -  SimpleExit (THREAD) ;
  1.4760 -
  1.4761 -  return OM_OK;
  1.4762 -}
  1.4763 -
  1.4764 -// Used for JVMTI raw monitor implementation.
  1.4765 -// All JavaThreads will enter here with state _thread_blocked
  1.4766 -
  1.4767 -int ObjectMonitor::raw_wait(jlong millis, bool interruptible, TRAPS) {
  1.4768 -  TEVENT (raw_wait) ;
  1.4769 -  if (THREAD != _owner) {
  1.4770 -    return OM_ILLEGAL_MONITOR_STATE;
  1.4771 -  }
  1.4772 -
  1.4773 -  // To avoid spurious wakeups we reset the parkevent -- This is strictly optional.
  1.4774 -  // The caller must be able to tolerate spurious returns from raw_wait().
  1.4775 -  THREAD->_ParkEvent->reset() ;
  1.4776 -  OrderAccess::fence() ;
  1.4777 -
  1.4778 -  // check interrupt event
  1.4779 -  if (interruptible && Thread::is_interrupted(THREAD, true)) {
  1.4780 -    return OM_INTERRUPTED;
  1.4781 -  }
  1.4782 -
  1.4783 -  intptr_t save = _recursions ;
  1.4784 -  _recursions = 0 ;
  1.4785 -  _waiters ++ ;
  1.4786 -  if (THREAD->is_Java_thread()) {
  1.4787 -    guarantee (((JavaThread *) THREAD)->thread_state() == _thread_blocked, "invariant") ;
  1.4788 -    ((JavaThread *)THREAD)->set_suspend_equivalent();
  1.4789 -  }
  1.4790 -  int rv = SimpleWait (THREAD, millis) ;
  1.4791 -  _recursions = save ;
  1.4792 -  _waiters -- ;
  1.4793 -
  1.4794 -  guarantee (THREAD == _owner, "invariant") ;
  1.4795 -  if (THREAD->is_Java_thread()) {
  1.4796 -     JavaThread * jSelf = (JavaThread *) THREAD ;
  1.4797 -     for (;;) {
  1.4798 -        if (!jSelf->handle_special_suspend_equivalent_condition()) break ;
  1.4799 -        SimpleExit (THREAD) ;
  1.4800 -        jSelf->java_suspend_self();
  1.4801 -        SimpleEnter (THREAD) ;
  1.4802 -        jSelf->set_suspend_equivalent() ;
  1.4803 -     }
  1.4804 -  }
  1.4805 -  guarantee (THREAD == _owner, "invariant") ;
  1.4806 -
  1.4807 -  if (interruptible && Thread::is_interrupted(THREAD, true)) {
  1.4808 -    return OM_INTERRUPTED;
  1.4809 -  }
  1.4810 -  return OM_OK ;
  1.4811 -}
  1.4812 -
  1.4813 -int ObjectMonitor::raw_notify(TRAPS) {
  1.4814 -  TEVENT (raw_notify) ;
  1.4815 -  if (THREAD != _owner) {
  1.4816 -    return OM_ILLEGAL_MONITOR_STATE;
  1.4817 -  }
  1.4818 -  SimpleNotify (THREAD, false) ;
  1.4819 -  return OM_OK;
  1.4820 -}
  1.4821 -
  1.4822 -int ObjectMonitor::raw_notifyAll(TRAPS) {
  1.4823 -  TEVENT (raw_notifyAll) ;
  1.4824 -  if (THREAD != _owner) {
  1.4825 -    return OM_ILLEGAL_MONITOR_STATE;
  1.4826 -  }
  1.4827 -  SimpleNotify (THREAD, true) ;
  1.4828 -  return OM_OK;
  1.4829 -}
  1.4830 -
  1.4831 -#ifndef PRODUCT
  1.4832 -void ObjectMonitor::verify() {
  1.4833 -}
  1.4834 -
  1.4835 -void ObjectMonitor::print() {
  1.4836 -}
  1.4837 -#endif
  1.4838 -
  1.4839  //------------------------------------------------------------------------------
  1.4840  // Non-product code
  1.4841  

mercurial