src/share/vm/opto/regmask.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 1907
c18cbe5936b8
child 2508
b92c45f2bc75
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_REGMASK_HPP
    26 #define SHARE_VM_OPTO_REGMASK_HPP
    28 #include "code/vmreg.hpp"
    29 #include "libadt/port.hpp"
    30 #include "opto/optoreg.hpp"
    31 #ifdef TARGET_ARCH_MODEL_x86_32
    32 # include "adfiles/adGlobals_x86_32.hpp"
    33 #endif
    34 #ifdef TARGET_ARCH_MODEL_x86_64
    35 # include "adfiles/adGlobals_x86_64.hpp"
    36 #endif
    37 #ifdef TARGET_ARCH_MODEL_sparc
    38 # include "adfiles/adGlobals_sparc.hpp"
    39 #endif
    40 #ifdef TARGET_ARCH_MODEL_zero
    41 # include "adfiles/adGlobals_zero.hpp"
    42 #endif
    44 // Some fun naming (textual) substitutions:
    45 //
    46 // RegMask::get_low_elem() ==> RegMask::find_first_elem()
    47 // RegMask::Special        ==> RegMask::Empty
    48 // RegMask::_flags         ==> RegMask::is_AllStack()
    49 // RegMask::operator<<=()  ==> RegMask::Insert()
    50 // RegMask::operator>>=()  ==> RegMask::Remove()
    51 // RegMask::Union()        ==> RegMask::OR
    52 // RegMask::Inter()        ==> RegMask::AND
    53 //
    54 // OptoRegister::RegName   ==> OptoReg::Name
    55 //
    56 // OptoReg::stack0()       ==> _last_Mach_Reg  or ZERO in core version
    57 //
    58 // numregs in chaitin      ==> proper degree in chaitin
    60 //-------------Non-zero bit search methods used by RegMask---------------------
    61 // Find lowest 1, or return 32 if empty
    62 int find_lowest_bit( uint32 mask );
    63 // Find highest 1, or return 32 if empty
    64 int find_hihghest_bit( uint32 mask );
    66 //------------------------------RegMask----------------------------------------
    67 // The ADL file describes how to print the machine-specific registers, as well
    68 // as any notion of register classes.  We provide a register mask, which is
    69 // just a collection of Register numbers.
    71 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
    72 // RM_SIZE is the size of a register mask in words.
    73 // FORALL_BODY replicates a BODY macro once per word in the register mask.
    74 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
    75 // However, it means the ADLC can redefine the unroll macro and all loops
    76 // over register masks will be unrolled by the correct amount.
    78 class RegMask VALUE_OBJ_CLASS_SPEC {
    79   union {
    80     double _dummy_force_double_alignment[RM_SIZE>>1];
    81     // Array of Register Mask bits.  This array is large enough to cover
    82     // all the machine registers and all parameters that need to be passed
    83     // on the stack (stack registers) up to some interesting limit.  Methods
    84     // that need more parameters will NOT be compiled.  On Intel, the limit
    85     // is something like 90+ parameters.
    86     int _A[RM_SIZE];
    87   };
    89   enum {
    90     _WordBits    = BitsPerInt,
    91     _LogWordBits = LogBitsPerInt,
    92     _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
    93   };
    95 public:
    96   enum { CHUNK_SIZE = RM_SIZE*_WordBits };
    98   // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
    99   // Also, consider the maximum alignment size for a normally allocated
   100   // value.  Since we allocate register pairs but not register quads (at
   101   // present), this alignment is SlotsPerLong (== 2).  A normally
   102   // aligned allocated register is either a single register, or a pair
   103   // of adjacent registers, the lower-numbered being even.
   104   // See also is_aligned_Pairs() below, and the padding added before
   105   // Matcher::_new_SP to keep allocated pairs aligned properly.
   106   // If we ever go to quad-word allocations, SlotsPerQuad will become
   107   // the controlling alignment constraint.  Note that this alignment
   108   // requirement is internal to the allocator, and independent of any
   109   // particular platform.
   110   enum { SlotsPerLong = 2 };
   112   // A constructor only used by the ADLC output.  All mask fields are filled
   113   // in directly.  Calls to this look something like RM(1,2,3,4);
   114   RegMask(
   115 #   define BODY(I) int a##I,
   116     FORALL_BODY
   117 #   undef BODY
   118     int dummy = 0 ) {
   119 #   define BODY(I) _A[I] = a##I;
   120     FORALL_BODY
   121 #   undef BODY
   122   }
   124   // Handy copying constructor
   125   RegMask( RegMask *rm ) {
   126 #   define BODY(I) _A[I] = rm->_A[I];
   127     FORALL_BODY
   128 #   undef BODY
   129   }
   131   // Construct an empty mask
   132   RegMask( ) { Clear(); }
   134   // Construct a mask with a single bit
   135   RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
   137   // Check for register being in mask
   138   int Member( OptoReg::Name reg ) const {
   139     assert( reg < CHUNK_SIZE, "" );
   140     return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
   141   }
   143   // The last bit in the register mask indicates that the mask should repeat
   144   // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
   145   // unbounded in size.  Returns FALSE if mask is finite size.
   146   int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
   148   // Work around an -xO3 optimization problme in WS6U1. The old way:
   149   //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
   150   // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
   151   // follows an Insert() loop, like the one found in init_spill_mask(). Using
   152   // Insert() instead works because the index into _A in computed instead of
   153   // constant.  See bug 4665841.
   154   void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
   156   // Test for being a not-empty mask.
   157   int is_NotEmpty( ) const {
   158     int tmp = 0;
   159 #   define BODY(I) tmp |= _A[I];
   160     FORALL_BODY
   161 #   undef BODY
   162     return tmp;
   163   }
   165   // Find lowest-numbered register from mask, or BAD if mask is empty.
   166   OptoReg::Name find_first_elem() const {
   167     int base, bits;
   168 #   define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
   169     FORALL_BODY
   170 #   undef BODY
   171       { base = OptoReg::Bad; bits = 1<<0; }
   172     return OptoReg::Name(base + find_lowest_bit(bits));
   173   }
   174   // Get highest-numbered register from mask, or BAD if mask is empty.
   175   OptoReg::Name find_last_elem() const {
   176     int base, bits;
   177 #   define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
   178     FORALL_BODY
   179 #   undef BODY
   180       { base = OptoReg::Bad; bits = 1<<0; }
   181     return OptoReg::Name(base + find_hihghest_bit(bits));
   182   }
   184   // Find the lowest-numbered register pair in the mask.  Return the
   185   // HIGHEST register number in the pair, or BAD if no pairs.
   186   // Assert that the mask contains only bit pairs.
   187   OptoReg::Name find_first_pair() const;
   189   // Clear out partial bits; leave only aligned adjacent bit pairs.
   190   void ClearToPairs();
   191   // Smear out partial bits; leave only aligned adjacent bit pairs.
   192   void SmearToPairs();
   193   // Verify that the mask contains only aligned adjacent bit pairs
   194   void VerifyPairs() const { assert( is_aligned_Pairs(), "mask is not aligned, adjacent pairs" ); }
   195   // Test that the mask contains only aligned adjacent bit pairs
   196   bool is_aligned_Pairs() const;
   198   // mask is a pair of misaligned registers
   199   bool is_misaligned_Pair() const { return Size()==2 && !is_aligned_Pairs();}
   200   // Test for single register
   201   int is_bound1() const;
   202   // Test for a single adjacent pair
   203   int is_bound2() const;
   205   // Fast overlap test.  Non-zero if any registers in common.
   206   int overlap( const RegMask &rm ) const {
   207     return
   208 #   define BODY(I) (_A[I] & rm._A[I]) |
   209     FORALL_BODY
   210 #   undef BODY
   211     0 ;
   212   }
   214   // Special test for register pressure based splitting
   215   // UP means register only, Register plus stack, or stack only is DOWN
   216   bool is_UP() const;
   218   // Clear a register mask
   219   void Clear( ) {
   220 #   define BODY(I) _A[I] = 0;
   221     FORALL_BODY
   222 #   undef BODY
   223   }
   225   // Fill a register mask with 1's
   226   void Set_All( ) {
   227 #   define BODY(I) _A[I] = -1;
   228     FORALL_BODY
   229 #   undef BODY
   230   }
   232   // Insert register into mask
   233   void Insert( OptoReg::Name reg ) {
   234     assert( reg < CHUNK_SIZE, "" );
   235     _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
   236   }
   238   // Remove register from mask
   239   void Remove( OptoReg::Name reg ) {
   240     assert( reg < CHUNK_SIZE, "" );
   241     _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
   242   }
   244   // OR 'rm' into 'this'
   245   void OR( const RegMask &rm ) {
   246 #   define BODY(I) this->_A[I] |= rm._A[I];
   247     FORALL_BODY
   248 #   undef BODY
   249   }
   251   // AND 'rm' into 'this'
   252   void AND( const RegMask &rm ) {
   253 #   define BODY(I) this->_A[I] &= rm._A[I];
   254     FORALL_BODY
   255 #   undef BODY
   256   }
   258   // Subtract 'rm' from 'this'
   259   void SUBTRACT( const RegMask &rm ) {
   260 #   define BODY(I) _A[I] &= ~rm._A[I];
   261     FORALL_BODY
   262 #   undef BODY
   263   }
   265   // Compute size of register mask: number of bits
   266   uint Size() const;
   268 #ifndef PRODUCT
   269   void print() const { dump(); }
   270   void dump() const;            // Print a mask
   271 #endif
   273   static const RegMask Empty;   // Common empty mask
   275   static bool can_represent(OptoReg::Name reg) {
   276     // NOTE: -1 in computation reflects the usage of the last
   277     //       bit of the regmask as an infinite stack flag.
   278     return (int)reg < (int)(CHUNK_SIZE-1);
   279   }
   280 };
   282 // Do not use this constant directly in client code!
   283 #undef RM_SIZE
   285 #endif // SHARE_VM_OPTO_REGMASK_HPP

mercurial