src/share/vm/opto/regmask.hpp

Wed, 02 Feb 2011 11:35:26 -0500

author
bobv
date
Wed, 02 Feb 2011 11:35:26 -0500
changeset 2508
b92c45f2bc75
parent 2314
f95d63e2154a
child 2708
1d1603768966
permissions
-rw-r--r--

7016023: Enable building ARM and PPC from src/closed repository
Reviewed-by: dholmes, bdelsart

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_REGMASK_HPP
    26 #define SHARE_VM_OPTO_REGMASK_HPP
    28 #include "code/vmreg.hpp"
    29 #include "libadt/port.hpp"
    30 #include "opto/optoreg.hpp"
    31 #ifdef TARGET_ARCH_MODEL_x86_32
    32 # include "adfiles/adGlobals_x86_32.hpp"
    33 #endif
    34 #ifdef TARGET_ARCH_MODEL_x86_64
    35 # include "adfiles/adGlobals_x86_64.hpp"
    36 #endif
    37 #ifdef TARGET_ARCH_MODEL_sparc
    38 # include "adfiles/adGlobals_sparc.hpp"
    39 #endif
    40 #ifdef TARGET_ARCH_MODEL_zero
    41 # include "adfiles/adGlobals_zero.hpp"
    42 #endif
    43 #ifdef TARGET_ARCH_MODEL_arm
    44 # include "adfiles/adGlobals_arm.hpp"
    45 #endif
    46 #ifdef TARGET_ARCH_MODEL_ppc
    47 # include "adfiles/adGlobals_ppc.hpp"
    48 #endif
    50 // Some fun naming (textual) substitutions:
    51 //
    52 // RegMask::get_low_elem() ==> RegMask::find_first_elem()
    53 // RegMask::Special        ==> RegMask::Empty
    54 // RegMask::_flags         ==> RegMask::is_AllStack()
    55 // RegMask::operator<<=()  ==> RegMask::Insert()
    56 // RegMask::operator>>=()  ==> RegMask::Remove()
    57 // RegMask::Union()        ==> RegMask::OR
    58 // RegMask::Inter()        ==> RegMask::AND
    59 //
    60 // OptoRegister::RegName   ==> OptoReg::Name
    61 //
    62 // OptoReg::stack0()       ==> _last_Mach_Reg  or ZERO in core version
    63 //
    64 // numregs in chaitin      ==> proper degree in chaitin
    66 //-------------Non-zero bit search methods used by RegMask---------------------
    67 // Find lowest 1, or return 32 if empty
    68 int find_lowest_bit( uint32 mask );
    69 // Find highest 1, or return 32 if empty
    70 int find_hihghest_bit( uint32 mask );
    72 //------------------------------RegMask----------------------------------------
    73 // The ADL file describes how to print the machine-specific registers, as well
    74 // as any notion of register classes.  We provide a register mask, which is
    75 // just a collection of Register numbers.
    77 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
    78 // RM_SIZE is the size of a register mask in words.
    79 // FORALL_BODY replicates a BODY macro once per word in the register mask.
    80 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
    81 // However, it means the ADLC can redefine the unroll macro and all loops
    82 // over register masks will be unrolled by the correct amount.
    84 class RegMask VALUE_OBJ_CLASS_SPEC {
    85   union {
    86     double _dummy_force_double_alignment[RM_SIZE>>1];
    87     // Array of Register Mask bits.  This array is large enough to cover
    88     // all the machine registers and all parameters that need to be passed
    89     // on the stack (stack registers) up to some interesting limit.  Methods
    90     // that need more parameters will NOT be compiled.  On Intel, the limit
    91     // is something like 90+ parameters.
    92     int _A[RM_SIZE];
    93   };
    95   enum {
    96     _WordBits    = BitsPerInt,
    97     _LogWordBits = LogBitsPerInt,
    98     _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
    99   };
   101 public:
   102   enum { CHUNK_SIZE = RM_SIZE*_WordBits };
   104   // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
   105   // Also, consider the maximum alignment size for a normally allocated
   106   // value.  Since we allocate register pairs but not register quads (at
   107   // present), this alignment is SlotsPerLong (== 2).  A normally
   108   // aligned allocated register is either a single register, or a pair
   109   // of adjacent registers, the lower-numbered being even.
   110   // See also is_aligned_Pairs() below, and the padding added before
   111   // Matcher::_new_SP to keep allocated pairs aligned properly.
   112   // If we ever go to quad-word allocations, SlotsPerQuad will become
   113   // the controlling alignment constraint.  Note that this alignment
   114   // requirement is internal to the allocator, and independent of any
   115   // particular platform.
   116   enum { SlotsPerLong = 2 };
   118   // A constructor only used by the ADLC output.  All mask fields are filled
   119   // in directly.  Calls to this look something like RM(1,2,3,4);
   120   RegMask(
   121 #   define BODY(I) int a##I,
   122     FORALL_BODY
   123 #   undef BODY
   124     int dummy = 0 ) {
   125 #   define BODY(I) _A[I] = a##I;
   126     FORALL_BODY
   127 #   undef BODY
   128   }
   130   // Handy copying constructor
   131   RegMask( RegMask *rm ) {
   132 #   define BODY(I) _A[I] = rm->_A[I];
   133     FORALL_BODY
   134 #   undef BODY
   135   }
   137   // Construct an empty mask
   138   RegMask( ) { Clear(); }
   140   // Construct a mask with a single bit
   141   RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
   143   // Check for register being in mask
   144   int Member( OptoReg::Name reg ) const {
   145     assert( reg < CHUNK_SIZE, "" );
   146     return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
   147   }
   149   // The last bit in the register mask indicates that the mask should repeat
   150   // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
   151   // unbounded in size.  Returns FALSE if mask is finite size.
   152   int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
   154   // Work around an -xO3 optimization problme in WS6U1. The old way:
   155   //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
   156   // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
   157   // follows an Insert() loop, like the one found in init_spill_mask(). Using
   158   // Insert() instead works because the index into _A in computed instead of
   159   // constant.  See bug 4665841.
   160   void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
   162   // Test for being a not-empty mask.
   163   int is_NotEmpty( ) const {
   164     int tmp = 0;
   165 #   define BODY(I) tmp |= _A[I];
   166     FORALL_BODY
   167 #   undef BODY
   168     return tmp;
   169   }
   171   // Find lowest-numbered register from mask, or BAD if mask is empty.
   172   OptoReg::Name find_first_elem() const {
   173     int base, bits;
   174 #   define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
   175     FORALL_BODY
   176 #   undef BODY
   177       { base = OptoReg::Bad; bits = 1<<0; }
   178     return OptoReg::Name(base + find_lowest_bit(bits));
   179   }
   180   // Get highest-numbered register from mask, or BAD if mask is empty.
   181   OptoReg::Name find_last_elem() const {
   182     int base, bits;
   183 #   define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
   184     FORALL_BODY
   185 #   undef BODY
   186       { base = OptoReg::Bad; bits = 1<<0; }
   187     return OptoReg::Name(base + find_hihghest_bit(bits));
   188   }
   190   // Find the lowest-numbered register pair in the mask.  Return the
   191   // HIGHEST register number in the pair, or BAD if no pairs.
   192   // Assert that the mask contains only bit pairs.
   193   OptoReg::Name find_first_pair() const;
   195   // Clear out partial bits; leave only aligned adjacent bit pairs.
   196   void ClearToPairs();
   197   // Smear out partial bits; leave only aligned adjacent bit pairs.
   198   void SmearToPairs();
   199   // Verify that the mask contains only aligned adjacent bit pairs
   200   void VerifyPairs() const { assert( is_aligned_Pairs(), "mask is not aligned, adjacent pairs" ); }
   201   // Test that the mask contains only aligned adjacent bit pairs
   202   bool is_aligned_Pairs() const;
   204   // mask is a pair of misaligned registers
   205   bool is_misaligned_Pair() const { return Size()==2 && !is_aligned_Pairs();}
   206   // Test for single register
   207   int is_bound1() const;
   208   // Test for a single adjacent pair
   209   int is_bound2() const;
   211   // Fast overlap test.  Non-zero if any registers in common.
   212   int overlap( const RegMask &rm ) const {
   213     return
   214 #   define BODY(I) (_A[I] & rm._A[I]) |
   215     FORALL_BODY
   216 #   undef BODY
   217     0 ;
   218   }
   220   // Special test for register pressure based splitting
   221   // UP means register only, Register plus stack, or stack only is DOWN
   222   bool is_UP() const;
   224   // Clear a register mask
   225   void Clear( ) {
   226 #   define BODY(I) _A[I] = 0;
   227     FORALL_BODY
   228 #   undef BODY
   229   }
   231   // Fill a register mask with 1's
   232   void Set_All( ) {
   233 #   define BODY(I) _A[I] = -1;
   234     FORALL_BODY
   235 #   undef BODY
   236   }
   238   // Insert register into mask
   239   void Insert( OptoReg::Name reg ) {
   240     assert( reg < CHUNK_SIZE, "" );
   241     _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
   242   }
   244   // Remove register from mask
   245   void Remove( OptoReg::Name reg ) {
   246     assert( reg < CHUNK_SIZE, "" );
   247     _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
   248   }
   250   // OR 'rm' into 'this'
   251   void OR( const RegMask &rm ) {
   252 #   define BODY(I) this->_A[I] |= rm._A[I];
   253     FORALL_BODY
   254 #   undef BODY
   255   }
   257   // AND 'rm' into 'this'
   258   void AND( const RegMask &rm ) {
   259 #   define BODY(I) this->_A[I] &= rm._A[I];
   260     FORALL_BODY
   261 #   undef BODY
   262   }
   264   // Subtract 'rm' from 'this'
   265   void SUBTRACT( const RegMask &rm ) {
   266 #   define BODY(I) _A[I] &= ~rm._A[I];
   267     FORALL_BODY
   268 #   undef BODY
   269   }
   271   // Compute size of register mask: number of bits
   272   uint Size() const;
   274 #ifndef PRODUCT
   275   void print() const { dump(); }
   276   void dump() const;            // Print a mask
   277 #endif
   279   static const RegMask Empty;   // Common empty mask
   281   static bool can_represent(OptoReg::Name reg) {
   282     // NOTE: -1 in computation reflects the usage of the last
   283     //       bit of the regmask as an infinite stack flag.
   284     return (int)reg < (int)(CHUNK_SIZE-1);
   285   }
   286 };
   288 // Do not use this constant directly in client code!
   289 #undef RM_SIZE
   291 #endif // SHARE_VM_OPTO_REGMASK_HPP

mercurial