src/share/vm/opto/matcher.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2085
f55c4f82ab9d
child 2322
828eafbd85cc
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/type.hpp"
    38 #include "runtime/atomic.hpp"
    39 #include "runtime/hpi.hpp"
    40 #include "runtime/os.hpp"
    41 #ifdef TARGET_ARCH_MODEL_x86_32
    42 # include "adfiles/ad_x86_32.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_MODEL_x86_64
    45 # include "adfiles/ad_x86_64.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_MODEL_sparc
    48 # include "adfiles/ad_sparc.hpp"
    49 #endif
    50 #ifdef TARGET_ARCH_MODEL_zero
    51 # include "adfiles/ad_zero.hpp"
    52 #endif
    54 OptoReg::Name OptoReg::c_frame_pointer;
    58 const int Matcher::base2reg[Type::lastype] = {
    59   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
    60   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
    61   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
    62   0, 0/*abio*/,
    63   Op_RegP /* Return address */, 0, /* the memories */
    64   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
    65   0  /*bottom*/
    66 };
    68 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    69 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    70 RegMask Matcher::STACK_ONLY_mask;
    71 RegMask Matcher::c_frame_ptr_mask;
    72 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    73 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    75 //---------------------------Matcher-------------------------------------------
    76 Matcher::Matcher( Node_List &proj_list ) :
    77   PhaseTransform( Phase::Ins_Select ),
    78 #ifdef ASSERT
    79   _old2new_map(C->comp_arena()),
    80   _new2old_map(C->comp_arena()),
    81 #endif
    82   _shared_nodes(C->comp_arena()),
    83   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    84   _swallowed(swallowed),
    85   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    86   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    87   _must_clone(must_clone), _proj_list(proj_list),
    88   _register_save_policy(register_save_policy),
    89   _c_reg_save_policy(c_reg_save_policy),
    90   _register_save_type(register_save_type),
    91   _ruleName(ruleName),
    92   _allocation_started(false),
    93   _states_arena(Chunk::medium_size),
    94   _visited(&_states_arena),
    95   _shared(&_states_arena),
    96   _dontcare(&_states_arena) {
    97   C->set_matcher(this);
    99   idealreg2spillmask  [Op_RegI] = NULL;
   100   idealreg2spillmask  [Op_RegN] = NULL;
   101   idealreg2spillmask  [Op_RegL] = NULL;
   102   idealreg2spillmask  [Op_RegF] = NULL;
   103   idealreg2spillmask  [Op_RegD] = NULL;
   104   idealreg2spillmask  [Op_RegP] = NULL;
   106   idealreg2debugmask  [Op_RegI] = NULL;
   107   idealreg2debugmask  [Op_RegN] = NULL;
   108   idealreg2debugmask  [Op_RegL] = NULL;
   109   idealreg2debugmask  [Op_RegF] = NULL;
   110   idealreg2debugmask  [Op_RegD] = NULL;
   111   idealreg2debugmask  [Op_RegP] = NULL;
   113   idealreg2mhdebugmask[Op_RegI] = NULL;
   114   idealreg2mhdebugmask[Op_RegN] = NULL;
   115   idealreg2mhdebugmask[Op_RegL] = NULL;
   116   idealreg2mhdebugmask[Op_RegF] = NULL;
   117   idealreg2mhdebugmask[Op_RegD] = NULL;
   118   idealreg2mhdebugmask[Op_RegP] = NULL;
   120   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   121 }
   123 //------------------------------warp_incoming_stk_arg------------------------
   124 // This warps a VMReg into an OptoReg::Name
   125 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   126   OptoReg::Name warped;
   127   if( reg->is_stack() ) {  // Stack slot argument?
   128     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   129     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   130     if( warped >= _in_arg_limit )
   131       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   132     if (!RegMask::can_represent(warped)) {
   133       // the compiler cannot represent this method's calling sequence
   134       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   135       return OptoReg::Bad;
   136     }
   137     return warped;
   138   }
   139   return OptoReg::as_OptoReg(reg);
   140 }
   142 //---------------------------compute_old_SP------------------------------------
   143 OptoReg::Name Compile::compute_old_SP() {
   144   int fixed    = fixed_slots();
   145   int preserve = in_preserve_stack_slots();
   146   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   147 }
   151 #ifdef ASSERT
   152 void Matcher::verify_new_nodes_only(Node* xroot) {
   153   // Make sure that the new graph only references new nodes
   154   ResourceMark rm;
   155   Unique_Node_List worklist;
   156   VectorSet visited(Thread::current()->resource_area());
   157   worklist.push(xroot);
   158   while (worklist.size() > 0) {
   159     Node* n = worklist.pop();
   160     visited <<= n->_idx;
   161     assert(C->node_arena()->contains(n), "dead node");
   162     for (uint j = 0; j < n->req(); j++) {
   163       Node* in = n->in(j);
   164       if (in != NULL) {
   165         assert(C->node_arena()->contains(in), "dead node");
   166         if (!visited.test(in->_idx)) {
   167           worklist.push(in);
   168         }
   169       }
   170     }
   171   }
   172 }
   173 #endif
   176 //---------------------------match---------------------------------------------
   177 void Matcher::match( ) {
   178   if( MaxLabelRootDepth < 100 ) { // Too small?
   179     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   180     MaxLabelRootDepth = 100;
   181   }
   182   // One-time initialization of some register masks.
   183   init_spill_mask( C->root()->in(1) );
   184   _return_addr_mask = return_addr();
   185 #ifdef _LP64
   186   // Pointers take 2 slots in 64-bit land
   187   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   188 #endif
   190   // Map a Java-signature return type into return register-value
   191   // machine registers for 0, 1 and 2 returned values.
   192   const TypeTuple *range = C->tf()->range();
   193   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   194     // Get ideal-register return type
   195     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
   196     // Get machine return register
   197     uint sop = C->start()->Opcode();
   198     OptoRegPair regs = return_value(ireg, false);
   200     // And mask for same
   201     _return_value_mask = RegMask(regs.first());
   202     if( OptoReg::is_valid(regs.second()) )
   203       _return_value_mask.Insert(regs.second());
   204   }
   206   // ---------------
   207   // Frame Layout
   209   // Need the method signature to determine the incoming argument types,
   210   // because the types determine which registers the incoming arguments are
   211   // in, and this affects the matched code.
   212   const TypeTuple *domain = C->tf()->domain();
   213   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   214   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   215   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   216   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   217   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   218   uint i;
   219   for( i = 0; i<argcnt; i++ ) {
   220     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   221   }
   223   // Pass array of ideal registers and length to USER code (from the AD file)
   224   // that will convert this to an array of register numbers.
   225   const StartNode *start = C->start();
   226   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   227 #ifdef ASSERT
   228   // Sanity check users' calling convention.  Real handy while trying to
   229   // get the initial port correct.
   230   { for (uint i = 0; i<argcnt; i++) {
   231       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   232         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   233         _parm_regs[i].set_bad();
   234         continue;
   235       }
   236       VMReg parm_reg = vm_parm_regs[i].first();
   237       assert(parm_reg->is_valid(), "invalid arg?");
   238       if (parm_reg->is_reg()) {
   239         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   240         assert(can_be_java_arg(opto_parm_reg) ||
   241                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   242                opto_parm_reg == inline_cache_reg(),
   243                "parameters in register must be preserved by runtime stubs");
   244       }
   245       for (uint j = 0; j < i; j++) {
   246         assert(parm_reg != vm_parm_regs[j].first(),
   247                "calling conv. must produce distinct regs");
   248       }
   249     }
   250   }
   251 #endif
   253   // Do some initial frame layout.
   255   // Compute the old incoming SP (may be called FP) as
   256   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   257   _old_SP = C->compute_old_SP();
   258   assert( is_even(_old_SP), "must be even" );
   260   // Compute highest incoming stack argument as
   261   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   262   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   263   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   264   for( i = 0; i < argcnt; i++ ) {
   265     // Permit args to have no register
   266     _calling_convention_mask[i].Clear();
   267     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   268       continue;
   269     }
   270     // calling_convention returns stack arguments as a count of
   271     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   272     // the allocators point of view, taking into account all the
   273     // preserve area, locks & pad2.
   275     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   276     if( OptoReg::is_valid(reg1))
   277       _calling_convention_mask[i].Insert(reg1);
   279     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   280     if( OptoReg::is_valid(reg2))
   281       _calling_convention_mask[i].Insert(reg2);
   283     // Saved biased stack-slot register number
   284     _parm_regs[i].set_pair(reg2, reg1);
   285   }
   287   // Finally, make sure the incoming arguments take up an even number of
   288   // words, in case the arguments or locals need to contain doubleword stack
   289   // slots.  The rest of the system assumes that stack slot pairs (in
   290   // particular, in the spill area) which look aligned will in fact be
   291   // aligned relative to the stack pointer in the target machine.  Double
   292   // stack slots will always be allocated aligned.
   293   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   295   // Compute highest outgoing stack argument as
   296   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   297   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   298   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   300   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
   301     // the compiler cannot represent this method's calling sequence
   302     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   303   }
   305   if (C->failing())  return;  // bailed out on incoming arg failure
   307   // ---------------
   308   // Collect roots of matcher trees.  Every node for which
   309   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   310   // can be a valid interior of some tree.
   311   find_shared( C->root() );
   312   find_shared( C->top() );
   314   C->print_method("Before Matching");
   316   // Create new ideal node ConP #NULL even if it does exist in old space
   317   // to avoid false sharing if the corresponding mach node is not used.
   318   // The corresponding mach node is only used in rare cases for derived
   319   // pointers.
   320   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   322   // Swap out to old-space; emptying new-space
   323   Arena *old = C->node_arena()->move_contents(C->old_arena());
   325   // Save debug and profile information for nodes in old space:
   326   _old_node_note_array = C->node_note_array();
   327   if (_old_node_note_array != NULL) {
   328     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   329                            (C->comp_arena(), _old_node_note_array->length(),
   330                             0, NULL));
   331   }
   333   // Pre-size the new_node table to avoid the need for range checks.
   334   grow_new_node_array(C->unique());
   336   // Reset node counter so MachNodes start with _idx at 0
   337   int nodes = C->unique(); // save value
   338   C->set_unique(0);
   340   // Recursively match trees from old space into new space.
   341   // Correct leaves of new-space Nodes; they point to old-space.
   342   _visited.Clear();             // Clear visit bits for xform call
   343   C->set_cached_top_node(xform( C->top(), nodes ));
   344   if (!C->failing()) {
   345     Node* xroot =        xform( C->root(), 1 );
   346     if (xroot == NULL) {
   347       Matcher::soft_match_failure();  // recursive matching process failed
   348       C->record_method_not_compilable("instruction match failed");
   349     } else {
   350       // During matching shared constants were attached to C->root()
   351       // because xroot wasn't available yet, so transfer the uses to
   352       // the xroot.
   353       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   354         Node* n = C->root()->fast_out(j);
   355         if (C->node_arena()->contains(n)) {
   356           assert(n->in(0) == C->root(), "should be control user");
   357           n->set_req(0, xroot);
   358           --j;
   359           --jmax;
   360         }
   361       }
   363       // Generate new mach node for ConP #NULL
   364       assert(new_ideal_null != NULL, "sanity");
   365       _mach_null = match_tree(new_ideal_null);
   366       // Don't set control, it will confuse GCM since there are no uses.
   367       // The control will be set when this node is used first time
   368       // in find_base_for_derived().
   369       assert(_mach_null != NULL, "");
   371       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   373 #ifdef ASSERT
   374       verify_new_nodes_only(xroot);
   375 #endif
   376     }
   377   }
   378   if (C->top() == NULL || C->root() == NULL) {
   379     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   380   }
   381   if (C->failing()) {
   382     // delete old;
   383     old->destruct_contents();
   384     return;
   385   }
   386   assert( C->top(), "" );
   387   assert( C->root(), "" );
   388   validate_null_checks();
   390   // Now smoke old-space
   391   NOT_DEBUG( old->destruct_contents() );
   393   // ------------------------
   394   // Set up save-on-entry registers
   395   Fixup_Save_On_Entry( );
   396 }
   399 //------------------------------Fixup_Save_On_Entry----------------------------
   400 // The stated purpose of this routine is to take care of save-on-entry
   401 // registers.  However, the overall goal of the Match phase is to convert into
   402 // machine-specific instructions which have RegMasks to guide allocation.
   403 // So what this procedure really does is put a valid RegMask on each input
   404 // to the machine-specific variations of all Return, TailCall and Halt
   405 // instructions.  It also adds edgs to define the save-on-entry values (and of
   406 // course gives them a mask).
   408 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   409   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   410   // Do all the pre-defined register masks
   411   rms[TypeFunc::Control  ] = RegMask::Empty;
   412   rms[TypeFunc::I_O      ] = RegMask::Empty;
   413   rms[TypeFunc::Memory   ] = RegMask::Empty;
   414   rms[TypeFunc::ReturnAdr] = ret_adr;
   415   rms[TypeFunc::FramePtr ] = fp;
   416   return rms;
   417 }
   419 //---------------------------init_first_stack_mask-----------------------------
   420 // Create the initial stack mask used by values spilling to the stack.
   421 // Disallow any debug info in outgoing argument areas by setting the
   422 // initial mask accordingly.
   423 void Matcher::init_first_stack_mask() {
   425   // Allocate storage for spill masks as masks for the appropriate load type.
   426   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
   428   idealreg2spillmask  [Op_RegN] = &rms[0];
   429   idealreg2spillmask  [Op_RegI] = &rms[1];
   430   idealreg2spillmask  [Op_RegL] = &rms[2];
   431   idealreg2spillmask  [Op_RegF] = &rms[3];
   432   idealreg2spillmask  [Op_RegD] = &rms[4];
   433   idealreg2spillmask  [Op_RegP] = &rms[5];
   435   idealreg2debugmask  [Op_RegN] = &rms[6];
   436   idealreg2debugmask  [Op_RegI] = &rms[7];
   437   idealreg2debugmask  [Op_RegL] = &rms[8];
   438   idealreg2debugmask  [Op_RegF] = &rms[9];
   439   idealreg2debugmask  [Op_RegD] = &rms[10];
   440   idealreg2debugmask  [Op_RegP] = &rms[11];
   442   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   443   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   444   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   445   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   446   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   447   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   449   OptoReg::Name i;
   451   // At first, start with the empty mask
   452   C->FIRST_STACK_mask().Clear();
   454   // Add in the incoming argument area
   455   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   456   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   457     C->FIRST_STACK_mask().Insert(i);
   459   // Add in all bits past the outgoing argument area
   460   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
   461             "must be able to represent all call arguments in reg mask");
   462   init = _out_arg_limit;
   463   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   464     C->FIRST_STACK_mask().Insert(i);
   466   // Finally, set the "infinite stack" bit.
   467   C->FIRST_STACK_mask().set_AllStack();
   469   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   470 #ifdef _LP64
   471   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   472    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   473 #endif
   474   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   475    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   476   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   477    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
   478   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   479    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   480   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   481    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
   482   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   483    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   485    if (UseFPUForSpilling) {
   486      // This mask logic assumes that the spill operations are
   487      // symmetric and that the registers involved are the same size.
   488      // On sparc for instance we may have to use 64 bit moves will
   489      // kill 2 registers when used with F0-F31.
   490      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   491      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   492 #ifdef _LP64
   493      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   494      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   495      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   496      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   497 #else
   498      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   499 #endif
   500    }
   502   // Make up debug masks.  Any spill slot plus callee-save registers.
   503   // Caller-save registers are assumed to be trashable by the various
   504   // inline-cache fixup routines.
   505   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   506   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   507   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   508   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   509   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   510   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   512   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   513   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   514   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   515   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   516   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   517   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   519   // Prevent stub compilations from attempting to reference
   520   // callee-saved registers from debug info
   521   bool exclude_soe = !Compile::current()->is_method_compilation();
   523   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   524     // registers the caller has to save do not work
   525     if( _register_save_policy[i] == 'C' ||
   526         _register_save_policy[i] == 'A' ||
   527         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   528       idealreg2debugmask  [Op_RegN]->Remove(i);
   529       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   530       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   531       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   532       idealreg2debugmask  [Op_RegD]->Remove(i);
   533       idealreg2debugmask  [Op_RegP]->Remove(i);
   535       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   536       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   537       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   538       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   539       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   540       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   541     }
   542   }
   544   // Subtract the register we use to save the SP for MethodHandle
   545   // invokes to from the debug mask.
   546   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   547   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   548   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   549   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   550   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   551   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   552   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   553 }
   555 //---------------------------is_save_on_entry----------------------------------
   556 bool Matcher::is_save_on_entry( int reg ) {
   557   return
   558     _register_save_policy[reg] == 'E' ||
   559     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   560     // Also save argument registers in the trampolining stubs
   561     (C->save_argument_registers() && is_spillable_arg(reg));
   562 }
   564 //---------------------------Fixup_Save_On_Entry-------------------------------
   565 void Matcher::Fixup_Save_On_Entry( ) {
   566   init_first_stack_mask();
   568   Node *root = C->root();       // Short name for root
   569   // Count number of save-on-entry registers.
   570   uint soe_cnt = number_of_saved_registers();
   571   uint i;
   573   // Find the procedure Start Node
   574   StartNode *start = C->start();
   575   assert( start, "Expect a start node" );
   577   // Save argument registers in the trampolining stubs
   578   if( C->save_argument_registers() )
   579     for( i = 0; i < _last_Mach_Reg; i++ )
   580       if( is_spillable_arg(i) )
   581         soe_cnt++;
   583   // Input RegMask array shared by all Returns.
   584   // The type for doubles and longs has a count of 2, but
   585   // there is only 1 returned value
   586   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   587   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   588   // Returns have 0 or 1 returned values depending on call signature.
   589   // Return register is specified by return_value in the AD file.
   590   if (ret_edge_cnt > TypeFunc::Parms)
   591     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   593   // Input RegMask array shared by all Rethrows.
   594   uint reth_edge_cnt = TypeFunc::Parms+1;
   595   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   596   // Rethrow takes exception oop only, but in the argument 0 slot.
   597   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   598 #ifdef _LP64
   599   // Need two slots for ptrs in 64-bit land
   600   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   601 #endif
   603   // Input RegMask array shared by all TailCalls
   604   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   605   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   607   // Input RegMask array shared by all TailJumps
   608   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   609   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   611   // TailCalls have 2 returned values (target & moop), whose masks come
   612   // from the usual MachNode/MachOper mechanism.  Find a sample
   613   // TailCall to extract these masks and put the correct masks into
   614   // the tail_call_rms array.
   615   for( i=1; i < root->req(); i++ ) {
   616     MachReturnNode *m = root->in(i)->as_MachReturn();
   617     if( m->ideal_Opcode() == Op_TailCall ) {
   618       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   619       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   620       break;
   621     }
   622   }
   624   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   625   // from the usual MachNode/MachOper mechanism.  Find a sample
   626   // TailJump to extract these masks and put the correct masks into
   627   // the tail_jump_rms array.
   628   for( i=1; i < root->req(); i++ ) {
   629     MachReturnNode *m = root->in(i)->as_MachReturn();
   630     if( m->ideal_Opcode() == Op_TailJump ) {
   631       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   632       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   633       break;
   634     }
   635   }
   637   // Input RegMask array shared by all Halts
   638   uint halt_edge_cnt = TypeFunc::Parms;
   639   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   641   // Capture the return input masks into each exit flavor
   642   for( i=1; i < root->req(); i++ ) {
   643     MachReturnNode *exit = root->in(i)->as_MachReturn();
   644     switch( exit->ideal_Opcode() ) {
   645       case Op_Return   : exit->_in_rms = ret_rms;  break;
   646       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   647       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   648       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   649       case Op_Halt     : exit->_in_rms = halt_rms; break;
   650       default          : ShouldNotReachHere();
   651     }
   652   }
   654   // Next unused projection number from Start.
   655   int proj_cnt = C->tf()->domain()->cnt();
   657   // Do all the save-on-entry registers.  Make projections from Start for
   658   // them, and give them a use at the exit points.  To the allocator, they
   659   // look like incoming register arguments.
   660   for( i = 0; i < _last_Mach_Reg; i++ ) {
   661     if( is_save_on_entry(i) ) {
   663       // Add the save-on-entry to the mask array
   664       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   665       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   666       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   667       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   668       // Halts need the SOE registers, but only in the stack as debug info.
   669       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   670       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   672       Node *mproj;
   674       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   675       // into a single RegD.
   676       if( (i&1) == 0 &&
   677           _register_save_type[i  ] == Op_RegF &&
   678           _register_save_type[i+1] == Op_RegF &&
   679           is_save_on_entry(i+1) ) {
   680         // Add other bit for double
   681         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   682         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   683         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   684         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   685         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   686         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   687         proj_cnt += 2;          // Skip 2 for doubles
   688       }
   689       else if( (i&1) == 1 &&    // Else check for high half of double
   690                _register_save_type[i-1] == Op_RegF &&
   691                _register_save_type[i  ] == Op_RegF &&
   692                is_save_on_entry(i-1) ) {
   693         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   694         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   695         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   696         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   697         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   698         mproj = C->top();
   699       }
   700       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   701       // into a single RegL.
   702       else if( (i&1) == 0 &&
   703           _register_save_type[i  ] == Op_RegI &&
   704           _register_save_type[i+1] == Op_RegI &&
   705         is_save_on_entry(i+1) ) {
   706         // Add other bit for long
   707         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   708         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   709         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   710         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   711         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   712         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   713         proj_cnt += 2;          // Skip 2 for longs
   714       }
   715       else if( (i&1) == 1 &&    // Else check for high half of long
   716                _register_save_type[i-1] == Op_RegI &&
   717                _register_save_type[i  ] == Op_RegI &&
   718                is_save_on_entry(i-1) ) {
   719         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   720         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   721         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   722         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   723         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   724         mproj = C->top();
   725       } else {
   726         // Make a projection for it off the Start
   727         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   728       }
   730       ret_edge_cnt ++;
   731       reth_edge_cnt ++;
   732       tail_call_edge_cnt ++;
   733       tail_jump_edge_cnt ++;
   734       halt_edge_cnt ++;
   736       // Add a use of the SOE register to all exit paths
   737       for( uint j=1; j < root->req(); j++ )
   738         root->in(j)->add_req(mproj);
   739     } // End of if a save-on-entry register
   740   } // End of for all machine registers
   741 }
   743 //------------------------------init_spill_mask--------------------------------
   744 void Matcher::init_spill_mask( Node *ret ) {
   745   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   747   OptoReg::c_frame_pointer = c_frame_pointer();
   748   c_frame_ptr_mask = c_frame_pointer();
   749 #ifdef _LP64
   750   // pointers are twice as big
   751   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   752 #endif
   754   // Start at OptoReg::stack0()
   755   STACK_ONLY_mask.Clear();
   756   OptoReg::Name init = OptoReg::stack2reg(0);
   757   // STACK_ONLY_mask is all stack bits
   758   OptoReg::Name i;
   759   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   760     STACK_ONLY_mask.Insert(i);
   761   // Also set the "infinite stack" bit.
   762   STACK_ONLY_mask.set_AllStack();
   764   // Copy the register names over into the shared world
   765   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   766     // SharedInfo::regName[i] = regName[i];
   767     // Handy RegMasks per machine register
   768     mreg2regmask[i].Insert(i);
   769   }
   771   // Grab the Frame Pointer
   772   Node *fp  = ret->in(TypeFunc::FramePtr);
   773   Node *mem = ret->in(TypeFunc::Memory);
   774   const TypePtr* atp = TypePtr::BOTTOM;
   775   // Share frame pointer while making spill ops
   776   set_shared(fp);
   778   // Compute generic short-offset Loads
   779 #ifdef _LP64
   780   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   781 #endif
   782   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   783   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   784   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   785   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   786   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   787   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   788          spillD != NULL && spillP != NULL, "");
   790   // Get the ADLC notion of the right regmask, for each basic type.
   791 #ifdef _LP64
   792   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   793 #endif
   794   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   795   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   796   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   797   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   798   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   799 }
   801 #ifdef ASSERT
   802 static void match_alias_type(Compile* C, Node* n, Node* m) {
   803   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   804   const TypePtr* nat = n->adr_type();
   805   const TypePtr* mat = m->adr_type();
   806   int nidx = C->get_alias_index(nat);
   807   int midx = C->get_alias_index(mat);
   808   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   809   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   810     for (uint i = 1; i < n->req(); i++) {
   811       Node* n1 = n->in(i);
   812       const TypePtr* n1at = n1->adr_type();
   813       if (n1at != NULL) {
   814         nat = n1at;
   815         nidx = C->get_alias_index(n1at);
   816       }
   817     }
   818   }
   819   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   820   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   821     switch (n->Opcode()) {
   822     case Op_PrefetchRead:
   823     case Op_PrefetchWrite:
   824       nidx = Compile::AliasIdxRaw;
   825       nat = TypeRawPtr::BOTTOM;
   826       break;
   827     }
   828   }
   829   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   830     switch (n->Opcode()) {
   831     case Op_ClearArray:
   832       midx = Compile::AliasIdxRaw;
   833       mat = TypeRawPtr::BOTTOM;
   834       break;
   835     }
   836   }
   837   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   838     switch (n->Opcode()) {
   839     case Op_Return:
   840     case Op_Rethrow:
   841     case Op_Halt:
   842     case Op_TailCall:
   843     case Op_TailJump:
   844       nidx = Compile::AliasIdxBot;
   845       nat = TypePtr::BOTTOM;
   846       break;
   847     }
   848   }
   849   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   850     switch (n->Opcode()) {
   851     case Op_StrComp:
   852     case Op_StrEquals:
   853     case Op_StrIndexOf:
   854     case Op_AryEq:
   855     case Op_MemBarVolatile:
   856     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   857       nidx = Compile::AliasIdxTop;
   858       nat = NULL;
   859       break;
   860     }
   861   }
   862   if (nidx != midx) {
   863     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   864       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   865       n->dump();
   866       m->dump();
   867     }
   868     assert(C->subsume_loads() && C->must_alias(nat, midx),
   869            "must not lose alias info when matching");
   870   }
   871 }
   872 #endif
   875 //------------------------------MStack-----------------------------------------
   876 // State and MStack class used in xform() and find_shared() iterative methods.
   877 enum Node_State { Pre_Visit,  // node has to be pre-visited
   878                       Visit,  // visit node
   879                  Post_Visit,  // post-visit node
   880              Alt_Post_Visit   // alternative post-visit path
   881                 };
   883 class MStack: public Node_Stack {
   884   public:
   885     MStack(int size) : Node_Stack(size) { }
   887     void push(Node *n, Node_State ns) {
   888       Node_Stack::push(n, (uint)ns);
   889     }
   890     void push(Node *n, Node_State ns, Node *parent, int indx) {
   891       ++_inode_top;
   892       if ((_inode_top + 1) >= _inode_max) grow();
   893       _inode_top->node = parent;
   894       _inode_top->indx = (uint)indx;
   895       ++_inode_top;
   896       _inode_top->node = n;
   897       _inode_top->indx = (uint)ns;
   898     }
   899     Node *parent() {
   900       pop();
   901       return node();
   902     }
   903     Node_State state() const {
   904       return (Node_State)index();
   905     }
   906     void set_state(Node_State ns) {
   907       set_index((uint)ns);
   908     }
   909 };
   912 //------------------------------xform------------------------------------------
   913 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   914 // Node in new-space.  Given a new-space Node, recursively walk his children.
   915 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   916 Node *Matcher::xform( Node *n, int max_stack ) {
   917   // Use one stack to keep both: child's node/state and parent's node/index
   918   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   919   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   921   while (mstack.is_nonempty()) {
   922     n = mstack.node();          // Leave node on stack
   923     Node_State nstate = mstack.state();
   924     if (nstate == Visit) {
   925       mstack.set_state(Post_Visit);
   926       Node *oldn = n;
   927       // Old-space or new-space check
   928       if (!C->node_arena()->contains(n)) {
   929         // Old space!
   930         Node* m;
   931         if (has_new_node(n)) {  // Not yet Label/Reduced
   932           m = new_node(n);
   933         } else {
   934           if (!is_dontcare(n)) { // Matcher can match this guy
   935             // Calls match special.  They match alone with no children.
   936             // Their children, the incoming arguments, match normally.
   937             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
   938             if (C->failing())  return NULL;
   939             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
   940           } else {                  // Nothing the matcher cares about
   941             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
   942               // Convert to machine-dependent projection
   943               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
   944 #ifdef ASSERT
   945               _new2old_map.map(m->_idx, n);
   946 #endif
   947               if (m->in(0) != NULL) // m might be top
   948                 collect_null_checks(m, n);
   949             } else {                // Else just a regular 'ol guy
   950               m = n->clone();       // So just clone into new-space
   951 #ifdef ASSERT
   952               _new2old_map.map(m->_idx, n);
   953 #endif
   954               // Def-Use edges will be added incrementally as Uses
   955               // of this node are matched.
   956               assert(m->outcnt() == 0, "no Uses of this clone yet");
   957             }
   958           }
   960           set_new_node(n, m);       // Map old to new
   961           if (_old_node_note_array != NULL) {
   962             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
   963                                                   n->_idx);
   964             C->set_node_notes_at(m->_idx, nn);
   965           }
   966           debug_only(match_alias_type(C, n, m));
   967         }
   968         n = m;    // n is now a new-space node
   969         mstack.set_node(n);
   970       }
   972       // New space!
   973       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
   975       int i;
   976       // Put precedence edges on stack first (match them last).
   977       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
   978         Node *m = oldn->in(i);
   979         if (m == NULL) break;
   980         // set -1 to call add_prec() instead of set_req() during Step1
   981         mstack.push(m, Visit, n, -1);
   982       }
   984       // For constant debug info, I'd rather have unmatched constants.
   985       int cnt = n->req();
   986       JVMState* jvms = n->jvms();
   987       int debug_cnt = jvms ? jvms->debug_start() : cnt;
   989       // Now do only debug info.  Clone constants rather than matching.
   990       // Constants are represented directly in the debug info without
   991       // the need for executable machine instructions.
   992       // Monitor boxes are also represented directly.
   993       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
   994         Node *m = n->in(i);          // Get input
   995         int op = m->Opcode();
   996         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
   997         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
   998             op == Op_ConF || op == Op_ConD || op == Op_ConL
   999             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1000             ) {
  1001           m = m->clone();
  1002 #ifdef ASSERT
  1003           _new2old_map.map(m->_idx, n);
  1004 #endif
  1005           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1006           mstack.push(m->in(0), Visit, m, 0);
  1007         } else {
  1008           mstack.push(m, Visit, n, i);
  1012       // And now walk his children, and convert his inputs to new-space.
  1013       for( ; i >= 0; --i ) { // For all normal inputs do
  1014         Node *m = n->in(i);  // Get input
  1015         if(m != NULL)
  1016           mstack.push(m, Visit, n, i);
  1020     else if (nstate == Post_Visit) {
  1021       // Set xformed input
  1022       Node *p = mstack.parent();
  1023       if (p != NULL) { // root doesn't have parent
  1024         int i = (int)mstack.index();
  1025         if (i >= 0)
  1026           p->set_req(i, n); // required input
  1027         else if (i == -1)
  1028           p->add_prec(n);   // precedence input
  1029         else
  1030           ShouldNotReachHere();
  1032       mstack.pop(); // remove processed node from stack
  1034     else {
  1035       ShouldNotReachHere();
  1037   } // while (mstack.is_nonempty())
  1038   return n; // Return new-space Node
  1041 //------------------------------warp_outgoing_stk_arg------------------------
  1042 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1043   // Convert outgoing argument location to a pre-biased stack offset
  1044   if (reg->is_stack()) {
  1045     OptoReg::Name warped = reg->reg2stack();
  1046     // Adjust the stack slot offset to be the register number used
  1047     // by the allocator.
  1048     warped = OptoReg::add(begin_out_arg_area, warped);
  1049     // Keep track of the largest numbered stack slot used for an arg.
  1050     // Largest used slot per call-site indicates the amount of stack
  1051     // that is killed by the call.
  1052     if( warped >= out_arg_limit_per_call )
  1053       out_arg_limit_per_call = OptoReg::add(warped,1);
  1054     if (!RegMask::can_represent(warped)) {
  1055       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1056       return OptoReg::Bad;
  1058     return warped;
  1060   return OptoReg::as_OptoReg(reg);
  1064 //------------------------------match_sfpt-------------------------------------
  1065 // Helper function to match call instructions.  Calls match special.
  1066 // They match alone with no children.  Their children, the incoming
  1067 // arguments, match normally.
  1068 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1069   MachSafePointNode *msfpt = NULL;
  1070   MachCallNode      *mcall = NULL;
  1071   uint               cnt;
  1072   // Split out case for SafePoint vs Call
  1073   CallNode *call;
  1074   const TypeTuple *domain;
  1075   ciMethod*        method = NULL;
  1076   bool             is_method_handle_invoke = false;  // for special kill effects
  1077   if( sfpt->is_Call() ) {
  1078     call = sfpt->as_Call();
  1079     domain = call->tf()->domain();
  1080     cnt = domain->cnt();
  1082     // Match just the call, nothing else
  1083     MachNode *m = match_tree(call);
  1084     if (C->failing())  return NULL;
  1085     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1087     // Copy data from the Ideal SafePoint to the machine version
  1088     mcall = m->as_MachCall();
  1090     mcall->set_tf(         call->tf());
  1091     mcall->set_entry_point(call->entry_point());
  1092     mcall->set_cnt(        call->cnt());
  1094     if( mcall->is_MachCallJava() ) {
  1095       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1096       const CallJavaNode *call_java =  call->as_CallJava();
  1097       method = call_java->method();
  1098       mcall_java->_method = method;
  1099       mcall_java->_bci = call_java->_bci;
  1100       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1101       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1102       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1103       if( mcall_java->is_MachCallStaticJava() )
  1104         mcall_java->as_MachCallStaticJava()->_name =
  1105          call_java->as_CallStaticJava()->_name;
  1106       if( mcall_java->is_MachCallDynamicJava() )
  1107         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1108          call_java->as_CallDynamicJava()->_vtable_index;
  1110     else if( mcall->is_MachCallRuntime() ) {
  1111       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1113     msfpt = mcall;
  1115   // This is a non-call safepoint
  1116   else {
  1117     call = NULL;
  1118     domain = NULL;
  1119     MachNode *mn = match_tree(sfpt);
  1120     if (C->failing())  return NULL;
  1121     msfpt = mn->as_MachSafePoint();
  1122     cnt = TypeFunc::Parms;
  1125   // Advertise the correct memory effects (for anti-dependence computation).
  1126   msfpt->set_adr_type(sfpt->adr_type());
  1128   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1129   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1130   // Empty them all.
  1131   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1133   // Do all the pre-defined non-Empty register masks
  1134   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1135   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1137   // Place first outgoing argument can possibly be put.
  1138   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1139   assert( is_even(begin_out_arg_area), "" );
  1140   // Compute max outgoing register number per call site.
  1141   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1142   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1143   // These are usually backing store for register arguments for varargs.
  1144   if( call != NULL && call->is_CallRuntime() )
  1145     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1148   // Do the normal argument list (parameters) register masks
  1149   int argcnt = cnt - TypeFunc::Parms;
  1150   if( argcnt > 0 ) {          // Skip it all if we have no args
  1151     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1152     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1153     int i;
  1154     for( i = 0; i < argcnt; i++ ) {
  1155       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1157     // V-call to pick proper calling convention
  1158     call->calling_convention( sig_bt, parm_regs, argcnt );
  1160 #ifdef ASSERT
  1161     // Sanity check users' calling convention.  Really handy during
  1162     // the initial porting effort.  Fairly expensive otherwise.
  1163     { for (int i = 0; i<argcnt; i++) {
  1164       if( !parm_regs[i].first()->is_valid() &&
  1165           !parm_regs[i].second()->is_valid() ) continue;
  1166       VMReg reg1 = parm_regs[i].first();
  1167       VMReg reg2 = parm_regs[i].second();
  1168       for (int j = 0; j < i; j++) {
  1169         if( !parm_regs[j].first()->is_valid() &&
  1170             !parm_regs[j].second()->is_valid() ) continue;
  1171         VMReg reg3 = parm_regs[j].first();
  1172         VMReg reg4 = parm_regs[j].second();
  1173         if( !reg1->is_valid() ) {
  1174           assert( !reg2->is_valid(), "valid halvsies" );
  1175         } else if( !reg3->is_valid() ) {
  1176           assert( !reg4->is_valid(), "valid halvsies" );
  1177         } else {
  1178           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1179           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1180           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1181           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1182           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1183           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1188 #endif
  1190     // Visit each argument.  Compute its outgoing register mask.
  1191     // Return results now can have 2 bits returned.
  1192     // Compute max over all outgoing arguments both per call-site
  1193     // and over the entire method.
  1194     for( i = 0; i < argcnt; i++ ) {
  1195       // Address of incoming argument mask to fill in
  1196       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1197       if( !parm_regs[i].first()->is_valid() &&
  1198           !parm_regs[i].second()->is_valid() ) {
  1199         continue;               // Avoid Halves
  1201       // Grab first register, adjust stack slots and insert in mask.
  1202       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1203       if (OptoReg::is_valid(reg1))
  1204         rm->Insert( reg1 );
  1205       // Grab second register (if any), adjust stack slots and insert in mask.
  1206       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1207       if (OptoReg::is_valid(reg2))
  1208         rm->Insert( reg2 );
  1209     } // End of for all arguments
  1211     // Compute number of stack slots needed to restore stack in case of
  1212     // Pascal-style argument popping.
  1213     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1216   if (is_method_handle_invoke) {
  1217     // Kill some extra stack space in case method handles want to do
  1218     // a little in-place argument insertion.
  1219     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
  1220     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
  1221     // Do not update mcall->_argsize because (a) the extra space is not
  1222     // pushed as arguments and (b) _argsize is dead (not used anywhere).
  1225   // Compute the max stack slot killed by any call.  These will not be
  1226   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1227   // after all call sites have been visited.
  1228   if( _out_arg_limit < out_arg_limit_per_call)
  1229     _out_arg_limit = out_arg_limit_per_call;
  1231   if (mcall) {
  1232     // Kill the outgoing argument area, including any non-argument holes and
  1233     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1234     // Since the max-per-method covers the max-per-call-site and debug info
  1235     // is excluded on the max-per-method basis, debug info cannot land in
  1236     // this killed area.
  1237     uint r_cnt = mcall->tf()->range()->cnt();
  1238     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1239     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
  1240       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1241     } else {
  1242       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1243         proj->_rout.Insert(OptoReg::Name(i));
  1245     if( proj->_rout.is_NotEmpty() )
  1246       _proj_list.push(proj);
  1248   // Transfer the safepoint information from the call to the mcall
  1249   // Move the JVMState list
  1250   msfpt->set_jvms(sfpt->jvms());
  1251   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1252     jvms->set_map(sfpt);
  1255   // Debug inputs begin just after the last incoming parameter
  1256   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1257           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1259   // Move the OopMap
  1260   msfpt->_oop_map = sfpt->_oop_map;
  1262   // Registers killed by the call are set in the local scheduling pass
  1263   // of Global Code Motion.
  1264   return msfpt;
  1267 //---------------------------match_tree----------------------------------------
  1268 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1269 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1270 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1271 // a Load's result RegMask for memoization in idealreg2regmask[]
  1272 MachNode *Matcher::match_tree( const Node *n ) {
  1273   assert( n->Opcode() != Op_Phi, "cannot match" );
  1274   assert( !n->is_block_start(), "cannot match" );
  1275   // Set the mark for all locally allocated State objects.
  1276   // When this call returns, the _states_arena arena will be reset
  1277   // freeing all State objects.
  1278   ResourceMark rm( &_states_arena );
  1280   LabelRootDepth = 0;
  1282   // StoreNodes require their Memory input to match any LoadNodes
  1283   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1284 #ifdef ASSERT
  1285   Node* save_mem_node = _mem_node;
  1286   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1287 #endif
  1288   // State object for root node of match tree
  1289   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1290   State *s = new (&_states_arena) State;
  1291   s->_kids[0] = NULL;
  1292   s->_kids[1] = NULL;
  1293   s->_leaf = (Node*)n;
  1294   // Label the input tree, allocating labels from top-level arena
  1295   Label_Root( n, s, n->in(0), mem );
  1296   if (C->failing())  return NULL;
  1298   // The minimum cost match for the whole tree is found at the root State
  1299   uint mincost = max_juint;
  1300   uint cost = max_juint;
  1301   uint i;
  1302   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1303     if( s->valid(i) &&                // valid entry and
  1304         s->_cost[i] < cost &&         // low cost and
  1305         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1306       cost = s->_cost[mincost=i];
  1308   if (mincost == max_juint) {
  1309 #ifndef PRODUCT
  1310     tty->print("No matching rule for:");
  1311     s->dump();
  1312 #endif
  1313     Matcher::soft_match_failure();
  1314     return NULL;
  1316   // Reduce input tree based upon the state labels to machine Nodes
  1317   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1318 #ifdef ASSERT
  1319   _old2new_map.map(n->_idx, m);
  1320   _new2old_map.map(m->_idx, (Node*)n);
  1321 #endif
  1323   // Add any Matcher-ignored edges
  1324   uint cnt = n->req();
  1325   uint start = 1;
  1326   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1327   if( n->is_AddP() ) {
  1328     assert( mem == (Node*)1, "" );
  1329     start = AddPNode::Base+1;
  1331   for( i = start; i < cnt; i++ ) {
  1332     if( !n->match_edge(i) ) {
  1333       if( i < m->req() )
  1334         m->ins_req( i, n->in(i) );
  1335       else
  1336         m->add_req( n->in(i) );
  1340   debug_only( _mem_node = save_mem_node; )
  1341   return m;
  1345 //------------------------------match_into_reg---------------------------------
  1346 // Choose to either match this Node in a register or part of the current
  1347 // match tree.  Return true for requiring a register and false for matching
  1348 // as part of the current match tree.
  1349 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1351   const Type *t = m->bottom_type();
  1353   if( t->singleton() ) {
  1354     // Never force constants into registers.  Allow them to match as
  1355     // constants or registers.  Copies of the same value will share
  1356     // the same register.  See find_shared_node.
  1357     return false;
  1358   } else {                      // Not a constant
  1359     // Stop recursion if they have different Controls.
  1360     // Slot 0 of constants is not really a Control.
  1361     if( control && m->in(0) && control != m->in(0) ) {
  1363       // Actually, we can live with the most conservative control we
  1364       // find, if it post-dominates the others.  This allows us to
  1365       // pick up load/op/store trees where the load can float a little
  1366       // above the store.
  1367       Node *x = control;
  1368       const uint max_scan = 6;   // Arbitrary scan cutoff
  1369       uint j;
  1370       for( j=0; j<max_scan; j++ ) {
  1371         if( x->is_Region() )    // Bail out at merge points
  1372           return true;
  1373         x = x->in(0);
  1374         if( x == m->in(0) )     // Does 'control' post-dominate
  1375           break;                // m->in(0)?  If so, we can use it
  1377       if( j == max_scan )       // No post-domination before scan end?
  1378         return true;            // Then break the match tree up
  1380     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
  1381       // These are commonly used in address expressions and can
  1382       // efficiently fold into them on X64 in some cases.
  1383       return false;
  1387   // Not forceable cloning.  If shared, put it into a register.
  1388   return shared;
  1392 //------------------------------Instruction Selection--------------------------
  1393 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1394 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1395 // things the Matcher does not match (e.g., Memory), and things with different
  1396 // Controls (hence forced into different blocks).  We pass in the Control
  1397 // selected for this entire State tree.
  1399 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1400 // Store and the Load must have identical Memories (as well as identical
  1401 // pointers).  Since the Matcher does not have anything for Memory (and
  1402 // does not handle DAGs), I have to match the Memory input myself.  If the
  1403 // Tree root is a Store, I require all Loads to have the identical memory.
  1404 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1405   // Since Label_Root is a recursive function, its possible that we might run
  1406   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1407   LabelRootDepth++;
  1408   if (LabelRootDepth > MaxLabelRootDepth) {
  1409     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1410     return NULL;
  1412   uint care = 0;                // Edges matcher cares about
  1413   uint cnt = n->req();
  1414   uint i = 0;
  1416   // Examine children for memory state
  1417   // Can only subsume a child into your match-tree if that child's memory state
  1418   // is not modified along the path to another input.
  1419   // It is unsafe even if the other inputs are separate roots.
  1420   Node *input_mem = NULL;
  1421   for( i = 1; i < cnt; i++ ) {
  1422     if( !n->match_edge(i) ) continue;
  1423     Node *m = n->in(i);         // Get ith input
  1424     assert( m, "expect non-null children" );
  1425     if( m->is_Load() ) {
  1426       if( input_mem == NULL ) {
  1427         input_mem = m->in(MemNode::Memory);
  1428       } else if( input_mem != m->in(MemNode::Memory) ) {
  1429         input_mem = NodeSentinel;
  1434   for( i = 1; i < cnt; i++ ){// For my children
  1435     if( !n->match_edge(i) ) continue;
  1436     Node *m = n->in(i);         // Get ith input
  1437     // Allocate states out of a private arena
  1438     State *s = new (&_states_arena) State;
  1439     svec->_kids[care++] = s;
  1440     assert( care <= 2, "binary only for now" );
  1442     // Recursively label the State tree.
  1443     s->_kids[0] = NULL;
  1444     s->_kids[1] = NULL;
  1445     s->_leaf = m;
  1447     // Check for leaves of the State Tree; things that cannot be a part of
  1448     // the current tree.  If it finds any, that value is matched as a
  1449     // register operand.  If not, then the normal matching is used.
  1450     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1451         //
  1452         // Stop recursion if this is LoadNode and the root of this tree is a
  1453         // StoreNode and the load & store have different memories.
  1454         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1455         // Can NOT include the match of a subtree when its memory state
  1456         // is used by any of the other subtrees
  1457         (input_mem == NodeSentinel) ) {
  1458 #ifndef PRODUCT
  1459       // Print when we exclude matching due to different memory states at input-loads
  1460       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1461         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1462         tty->print_cr("invalid input_mem");
  1464 #endif
  1465       // Switch to a register-only opcode; this value must be in a register
  1466       // and cannot be subsumed as part of a larger instruction.
  1467       s->DFA( m->ideal_reg(), m );
  1469     } else {
  1470       // If match tree has no control and we do, adopt it for entire tree
  1471       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1472         control = m->in(0);         // Pick up control
  1473       // Else match as a normal part of the match tree.
  1474       control = Label_Root(m,s,control,mem);
  1475       if (C->failing()) return NULL;
  1480   // Call DFA to match this node, and return
  1481   svec->DFA( n->Opcode(), n );
  1483 #ifdef ASSERT
  1484   uint x;
  1485   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1486     if( svec->valid(x) )
  1487       break;
  1489   if (x >= _LAST_MACH_OPER) {
  1490     n->dump();
  1491     svec->dump();
  1492     assert( false, "bad AD file" );
  1494 #endif
  1495   return control;
  1499 // Con nodes reduced using the same rule can share their MachNode
  1500 // which reduces the number of copies of a constant in the final
  1501 // program.  The register allocator is free to split uses later to
  1502 // split live ranges.
  1503 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1504   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
  1506   // See if this Con has already been reduced using this rule.
  1507   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1508   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1509   if (last != NULL && rule == last->rule()) {
  1510     // Don't expect control change for DecodeN
  1511     if (leaf->is_DecodeN())
  1512       return last;
  1513     // Get the new space root.
  1514     Node* xroot = new_node(C->root());
  1515     if (xroot == NULL) {
  1516       // This shouldn't happen give the order of matching.
  1517       return NULL;
  1520     // Shared constants need to have their control be root so they
  1521     // can be scheduled properly.
  1522     Node* control = last->in(0);
  1523     if (control != xroot) {
  1524       if (control == NULL || control == C->root()) {
  1525         last->set_req(0, xroot);
  1526       } else {
  1527         assert(false, "unexpected control");
  1528         return NULL;
  1531     return last;
  1533   return NULL;
  1537 //------------------------------ReduceInst-------------------------------------
  1538 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1539 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1540 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1541 // Each MachNode has a number of complicated MachOper operands; each
  1542 // MachOper also covers a further tree of Ideal Nodes.
  1544 // The root of the Ideal match tree is always an instruction, so we enter
  1545 // the recursion here.  After building the MachNode, we need to recurse
  1546 // the tree checking for these cases:
  1547 // (1) Child is an instruction -
  1548 //     Build the instruction (recursively), add it as an edge.
  1549 //     Build a simple operand (register) to hold the result of the instruction.
  1550 // (2) Child is an interior part of an instruction -
  1551 //     Skip over it (do nothing)
  1552 // (3) Child is the start of a operand -
  1553 //     Build the operand, place it inside the instruction
  1554 //     Call ReduceOper.
  1555 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1556   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1558   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1559   if (shared_node != NULL) {
  1560     return shared_node;
  1563   // Build the object to represent this state & prepare for recursive calls
  1564   MachNode *mach = s->MachNodeGenerator( rule, C );
  1565   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1566   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1567   Node *leaf = s->_leaf;
  1568   // Check for instruction or instruction chain rule
  1569   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1570     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1571            "duplicating node that's already been matched");
  1572     // Instruction
  1573     mach->add_req( leaf->in(0) ); // Set initial control
  1574     // Reduce interior of complex instruction
  1575     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1576   } else {
  1577     // Instruction chain rules are data-dependent on their inputs
  1578     mach->add_req(0);             // Set initial control to none
  1579     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1582   // If a Memory was used, insert a Memory edge
  1583   if( mem != (Node*)1 ) {
  1584     mach->ins_req(MemNode::Memory,mem);
  1585 #ifdef ASSERT
  1586     // Verify adr type after matching memory operation
  1587     const MachOper* oper = mach->memory_operand();
  1588     if (oper != NULL && oper != (MachOper*)-1) {
  1589       // It has a unique memory operand.  Find corresponding ideal mem node.
  1590       Node* m = NULL;
  1591       if (leaf->is_Mem()) {
  1592         m = leaf;
  1593       } else {
  1594         m = _mem_node;
  1595         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1597       const Type* mach_at = mach->adr_type();
  1598       // DecodeN node consumed by an address may have different type
  1599       // then its input. Don't compare types for such case.
  1600       if (m->adr_type() != mach_at &&
  1601           (m->in(MemNode::Address)->is_DecodeN() ||
  1602            m->in(MemNode::Address)->is_AddP() &&
  1603            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
  1604            m->in(MemNode::Address)->is_AddP() &&
  1605            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1606            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
  1607         mach_at = m->adr_type();
  1609       if (m->adr_type() != mach_at) {
  1610         m->dump();
  1611         tty->print_cr("mach:");
  1612         mach->dump(1);
  1614       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1616 #endif
  1619   // If the _leaf is an AddP, insert the base edge
  1620   if( leaf->is_AddP() )
  1621     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1623   uint num_proj = _proj_list.size();
  1625   // Perform any 1-to-many expansions required
  1626   MachNode *ex = mach->Expand(s,_proj_list, mem);
  1627   if( ex != mach ) {
  1628     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1629     if( ex->in(1)->is_Con() )
  1630       ex->in(1)->set_req(0, C->root());
  1631     // Remove old node from the graph
  1632     for( uint i=0; i<mach->req(); i++ ) {
  1633       mach->set_req(i,NULL);
  1635 #ifdef ASSERT
  1636     _new2old_map.map(ex->_idx, s->_leaf);
  1637 #endif
  1640   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1641   // via the matcher.  By the time, nodes have been wired into the CFG,
  1642   // and any further nodes generated by expand rules will be left hanging
  1643   // in space, and will not get emitted as output code.  Catch this.
  1644   // Also, catch any new register allocation constraints ("projections")
  1645   // generated belatedly during spill code generation.
  1646   if (_allocation_started) {
  1647     guarantee(ex == mach, "no expand rules during spill generation");
  1648     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1651   if (leaf->is_Con() || leaf->is_DecodeN()) {
  1652     // Record the con for sharing
  1653     _shared_nodes.map(leaf->_idx, ex);
  1656   return ex;
  1659 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1660   // 'op' is what I am expecting to receive
  1661   int op = _leftOp[rule];
  1662   // Operand type to catch childs result
  1663   // This is what my child will give me.
  1664   int opnd_class_instance = s->_rule[op];
  1665   // Choose between operand class or not.
  1666   // This is what I will receive.
  1667   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1668   // New rule for child.  Chase operand classes to get the actual rule.
  1669   int newrule = s->_rule[catch_op];
  1671   if( newrule < NUM_OPERANDS ) {
  1672     // Chain from operand or operand class, may be output of shared node
  1673     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1674             "Bad AD file: Instruction chain rule must chain from operand");
  1675     // Insert operand into array of operands for this instruction
  1676     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1678     ReduceOper( s, newrule, mem, mach );
  1679   } else {
  1680     // Chain from the result of an instruction
  1681     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1682     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1683     Node *mem1 = (Node*)1;
  1684     debug_only(Node *save_mem_node = _mem_node;)
  1685     mach->add_req( ReduceInst(s, newrule, mem1) );
  1686     debug_only(_mem_node = save_mem_node;)
  1688   return;
  1692 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1693   if( s->_leaf->is_Load() ) {
  1694     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1695     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1696     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1697     mem = mem2;
  1699   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1700     if( mach->in(0) == NULL )
  1701       mach->set_req(0, s->_leaf->in(0));
  1704   // Now recursively walk the state tree & add operand list.
  1705   for( uint i=0; i<2; i++ ) {   // binary tree
  1706     State *newstate = s->_kids[i];
  1707     if( newstate == NULL ) break;      // Might only have 1 child
  1708     // 'op' is what I am expecting to receive
  1709     int op;
  1710     if( i == 0 ) {
  1711       op = _leftOp[rule];
  1712     } else {
  1713       op = _rightOp[rule];
  1715     // Operand type to catch childs result
  1716     // This is what my child will give me.
  1717     int opnd_class_instance = newstate->_rule[op];
  1718     // Choose between operand class or not.
  1719     // This is what I will receive.
  1720     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1721     // New rule for child.  Chase operand classes to get the actual rule.
  1722     int newrule = newstate->_rule[catch_op];
  1724     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1725       // Operand/operandClass
  1726       // Insert operand into array of operands for this instruction
  1727       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1728       ReduceOper( newstate, newrule, mem, mach );
  1730     } else {                    // Child is internal operand or new instruction
  1731       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1732         // internal operand --> call ReduceInst_Interior
  1733         // Interior of complex instruction.  Do nothing but recurse.
  1734         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1735       } else {
  1736         // instruction --> call build operand(  ) to catch result
  1737         //             --> ReduceInst( newrule )
  1738         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1739         Node *mem1 = (Node*)1;
  1740         debug_only(Node *save_mem_node = _mem_node;)
  1741         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1742         debug_only(_mem_node = save_mem_node;)
  1745     assert( mach->_opnds[num_opnds-1], "" );
  1747   return num_opnds;
  1750 // This routine walks the interior of possible complex operands.
  1751 // At each point we check our children in the match tree:
  1752 // (1) No children -
  1753 //     We are a leaf; add _leaf field as an input to the MachNode
  1754 // (2) Child is an internal operand -
  1755 //     Skip over it ( do nothing )
  1756 // (3) Child is an instruction -
  1757 //     Call ReduceInst recursively and
  1758 //     and instruction as an input to the MachNode
  1759 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1760   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1761   State *kid = s->_kids[0];
  1762   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1764   // Leaf?  And not subsumed?
  1765   if( kid == NULL && !_swallowed[rule] ) {
  1766     mach->add_req( s->_leaf );  // Add leaf pointer
  1767     return;                     // Bail out
  1770   if( s->_leaf->is_Load() ) {
  1771     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1772     mem = s->_leaf->in(MemNode::Memory);
  1773     debug_only(_mem_node = s->_leaf;)
  1775   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1776     if( !mach->in(0) )
  1777       mach->set_req(0,s->_leaf->in(0));
  1778     else {
  1779       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1783   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1784     int newrule;
  1785     if( i == 0 )
  1786       newrule = kid->_rule[_leftOp[rule]];
  1787     else
  1788       newrule = kid->_rule[_rightOp[rule]];
  1790     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1791       // Internal operand; recurse but do nothing else
  1792       ReduceOper( kid, newrule, mem, mach );
  1794     } else {                    // Child is a new instruction
  1795       // Reduce the instruction, and add a direct pointer from this
  1796       // machine instruction to the newly reduced one.
  1797       Node *mem1 = (Node*)1;
  1798       debug_only(Node *save_mem_node = _mem_node;)
  1799       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1800       debug_only(_mem_node = save_mem_node;)
  1806 // -------------------------------------------------------------------------
  1807 // Java-Java calling convention
  1808 // (what you use when Java calls Java)
  1810 //------------------------------find_receiver----------------------------------
  1811 // For a given signature, return the OptoReg for parameter 0.
  1812 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1813   VMRegPair regs;
  1814   BasicType sig_bt = T_OBJECT;
  1815   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1816   // Return argument 0 register.  In the LP64 build pointers
  1817   // take 2 registers, but the VM wants only the 'main' name.
  1818   return OptoReg::as_OptoReg(regs.first());
  1821 // A method-klass-holder may be passed in the inline_cache_reg
  1822 // and then expanded into the inline_cache_reg and a method_oop register
  1823 //   defined in ad_<arch>.cpp
  1826 //------------------------------find_shared------------------------------------
  1827 // Set bits if Node is shared or otherwise a root
  1828 void Matcher::find_shared( Node *n ) {
  1829   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1830   MStack mstack(C->unique() * 2);
  1831   // Mark nodes as address_visited if they are inputs to an address expression
  1832   VectorSet address_visited(Thread::current()->resource_area());
  1833   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1834   while (mstack.is_nonempty()) {
  1835     n = mstack.node();       // Leave node on stack
  1836     Node_State nstate = mstack.state();
  1837     uint nop = n->Opcode();
  1838     if (nstate == Pre_Visit) {
  1839       if (address_visited.test(n->_idx)) { // Visited in address already?
  1840         // Flag as visited and shared now.
  1841         set_visited(n);
  1843       if (is_visited(n)) {   // Visited already?
  1844         // Node is shared and has no reason to clone.  Flag it as shared.
  1845         // This causes it to match into a register for the sharing.
  1846         set_shared(n);       // Flag as shared and
  1847         mstack.pop();        // remove node from stack
  1848         continue;
  1850       nstate = Visit; // Not already visited; so visit now
  1852     if (nstate == Visit) {
  1853       mstack.set_state(Post_Visit);
  1854       set_visited(n);   // Flag as visited now
  1855       bool mem_op = false;
  1857       switch( nop ) {  // Handle some opcodes special
  1858       case Op_Phi:             // Treat Phis as shared roots
  1859       case Op_Parm:
  1860       case Op_Proj:            // All handled specially during matching
  1861       case Op_SafePointScalarObject:
  1862         set_shared(n);
  1863         set_dontcare(n);
  1864         break;
  1865       case Op_If:
  1866       case Op_CountedLoopEnd:
  1867         mstack.set_state(Alt_Post_Visit); // Alternative way
  1868         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1869         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1870         // Bool and CmpX side-by-side, because it can only get at constants
  1871         // that are at the leaves of Match trees, and the Bool's condition acts
  1872         // as a constant here.
  1873         mstack.push(n->in(1), Visit);         // Clone the Bool
  1874         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1875         continue; // while (mstack.is_nonempty())
  1876       case Op_ConvI2D:         // These forms efficiently match with a prior
  1877       case Op_ConvI2F:         //   Load but not a following Store
  1878         if( n->in(1)->is_Load() &&        // Prior load
  1879             n->outcnt() == 1 &&           // Not already shared
  1880             n->unique_out()->is_Store() ) // Following store
  1881           set_shared(n);       // Force it to be a root
  1882         break;
  1883       case Op_ReverseBytesI:
  1884       case Op_ReverseBytesL:
  1885         if( n->in(1)->is_Load() &&        // Prior load
  1886             n->outcnt() == 1 )            // Not already shared
  1887           set_shared(n);                  // Force it to be a root
  1888         break;
  1889       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1890       case Op_IfFalse:
  1891       case Op_IfTrue:
  1892       case Op_MachProj:
  1893       case Op_MergeMem:
  1894       case Op_Catch:
  1895       case Op_CatchProj:
  1896       case Op_CProj:
  1897       case Op_JumpProj:
  1898       case Op_JProj:
  1899       case Op_NeverBranch:
  1900         set_dontcare(n);
  1901         break;
  1902       case Op_Jump:
  1903         mstack.push(n->in(1), Visit);         // Switch Value
  1904         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1905         continue;                             // while (mstack.is_nonempty())
  1906       case Op_StrComp:
  1907       case Op_StrEquals:
  1908       case Op_StrIndexOf:
  1909       case Op_AryEq:
  1910         set_shared(n); // Force result into register (it will be anyways)
  1911         break;
  1912       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1913         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1914         const TypePtr* tp = tn->type()->is_ptr();
  1915         if (tp->_ptr == TypePtr::AnyNull) {
  1916           tn->set_type(TypePtr::NULL_PTR);
  1918         break;
  1920       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1921         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1922         const TypePtr* tp = tn->type()->make_ptr();
  1923         if (tp && tp->_ptr == TypePtr::AnyNull) {
  1924           tn->set_type(TypeNarrowOop::NULL_PTR);
  1926         break;
  1928       case Op_Binary:         // These are introduced in the Post_Visit state.
  1929         ShouldNotReachHere();
  1930         break;
  1931       case Op_ClearArray:
  1932       case Op_SafePoint:
  1933         mem_op = true;
  1934         break;
  1935       default:
  1936         if( n->is_Store() ) {
  1937           // Do match stores, despite no ideal reg
  1938           mem_op = true;
  1939           break;
  1941         if( n->is_Mem() ) { // Loads and LoadStores
  1942           mem_op = true;
  1943           // Loads must be root of match tree due to prior load conflict
  1944           if( C->subsume_loads() == false )
  1945             set_shared(n);
  1947         // Fall into default case
  1948         if( !n->ideal_reg() )
  1949           set_dontcare(n);  // Unmatchable Nodes
  1950       } // end_switch
  1952       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  1953         Node *m = n->in(i); // Get ith input
  1954         if (m == NULL) continue;  // Ignore NULLs
  1955         uint mop = m->Opcode();
  1957         // Must clone all producers of flags, or we will not match correctly.
  1958         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  1959         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  1960         // are also there, so we may match a float-branch to int-flags and
  1961         // expect the allocator to haul the flags from the int-side to the
  1962         // fp-side.  No can do.
  1963         if( _must_clone[mop] ) {
  1964           mstack.push(m, Visit);
  1965           continue; // for(int i = ...)
  1968         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
  1969           // Bases used in addresses must be shared but since
  1970           // they are shared through a DecodeN they may appear
  1971           // to have a single use so force sharing here.
  1972           set_shared(m->in(AddPNode::Base)->in(1));
  1975         // Clone addressing expressions as they are "free" in memory access instructions
  1976         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  1977           // Some inputs for address expression are not put on stack
  1978           // to avoid marking them as shared and forcing them into register
  1979           // if they are used only in address expressions.
  1980           // But they should be marked as shared if there are other uses
  1981           // besides address expressions.
  1983           Node *off = m->in(AddPNode::Offset);
  1984           if( off->is_Con() &&
  1985               // When there are other uses besides address expressions
  1986               // put it on stack and mark as shared.
  1987               !is_visited(m) ) {
  1988             address_visited.test_set(m->_idx); // Flag as address_visited
  1989             Node *adr = m->in(AddPNode::Address);
  1991             // Intel, ARM and friends can handle 2 adds in addressing mode
  1992             if( clone_shift_expressions && adr->is_AddP() &&
  1993                 // AtomicAdd is not an addressing expression.
  1994                 // Cheap to find it by looking for screwy base.
  1995                 !adr->in(AddPNode::Base)->is_top() &&
  1996                 // Are there other uses besides address expressions?
  1997                 !is_visited(adr) ) {
  1998               address_visited.set(adr->_idx); // Flag as address_visited
  1999               Node *shift = adr->in(AddPNode::Offset);
  2000               // Check for shift by small constant as well
  2001               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2002                   shift->in(2)->get_int() <= 3 &&
  2003                   // Are there other uses besides address expressions?
  2004                   !is_visited(shift) ) {
  2005                 address_visited.set(shift->_idx); // Flag as address_visited
  2006                 mstack.push(shift->in(2), Visit);
  2007                 Node *conv = shift->in(1);
  2008 #ifdef _LP64
  2009                 // Allow Matcher to match the rule which bypass
  2010                 // ConvI2L operation for an array index on LP64
  2011                 // if the index value is positive.
  2012                 if( conv->Opcode() == Op_ConvI2L &&
  2013                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2014                     // Are there other uses besides address expressions?
  2015                     !is_visited(conv) ) {
  2016                   address_visited.set(conv->_idx); // Flag as address_visited
  2017                   mstack.push(conv->in(1), Pre_Visit);
  2018                 } else
  2019 #endif
  2020                 mstack.push(conv, Pre_Visit);
  2021               } else {
  2022                 mstack.push(shift, Pre_Visit);
  2024               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2025               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2026             } else {  // Sparc, Alpha, PPC and friends
  2027               mstack.push(adr, Pre_Visit);
  2030             // Clone X+offset as it also folds into most addressing expressions
  2031             mstack.push(off, Visit);
  2032             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2033             continue; // for(int i = ...)
  2034           } // if( off->is_Con() )
  2035         }   // if( mem_op &&
  2036         mstack.push(m, Pre_Visit);
  2037       }     // for(int i = ...)
  2039     else if (nstate == Alt_Post_Visit) {
  2040       mstack.pop(); // Remove node from stack
  2041       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2042       // shared and all users of the Bool need to move the Cmp in parallel.
  2043       // This leaves both the Bool and the If pointing at the Cmp.  To
  2044       // prevent the Matcher from trying to Match the Cmp along both paths
  2045       // BoolNode::match_edge always returns a zero.
  2047       // We reorder the Op_If in a pre-order manner, so we can visit without
  2048       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2049       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2051     else if (nstate == Post_Visit) {
  2052       mstack.pop(); // Remove node from stack
  2054       // Now hack a few special opcodes
  2055       switch( n->Opcode() ) {       // Handle some opcodes special
  2056       case Op_StorePConditional:
  2057       case Op_StoreIConditional:
  2058       case Op_StoreLConditional:
  2059       case Op_CompareAndSwapI:
  2060       case Op_CompareAndSwapL:
  2061       case Op_CompareAndSwapP:
  2062       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2063         Node *newval = n->in(MemNode::ValueIn );
  2064         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  2065         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  2066         n->set_req(MemNode::ValueIn,pair);
  2067         n->del_req(LoadStoreNode::ExpectedIn);
  2068         break;
  2070       case Op_CMoveD:              // Convert trinary to binary-tree
  2071       case Op_CMoveF:
  2072       case Op_CMoveI:
  2073       case Op_CMoveL:
  2074       case Op_CMoveN:
  2075       case Op_CMoveP: {
  2076         // Restructure into a binary tree for Matching.  It's possible that
  2077         // we could move this code up next to the graph reshaping for IfNodes
  2078         // or vice-versa, but I do not want to debug this for Ladybird.
  2079         // 10/2/2000 CNC.
  2080         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  2081         n->set_req(1,pair1);
  2082         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2083         n->set_req(2,pair2);
  2084         n->del_req(3);
  2085         break;
  2087       case Op_StrEquals: {
  2088         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2089         n->set_req(2,pair1);
  2090         n->set_req(3,n->in(4));
  2091         n->del_req(4);
  2092         break;
  2094       case Op_StrComp:
  2095       case Op_StrIndexOf: {
  2096         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2097         n->set_req(2,pair1);
  2098         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
  2099         n->set_req(3,pair2);
  2100         n->del_req(5);
  2101         n->del_req(4);
  2102         break;
  2104       default:
  2105         break;
  2108     else {
  2109       ShouldNotReachHere();
  2111   } // end of while (mstack.is_nonempty())
  2114 #ifdef ASSERT
  2115 // machine-independent root to machine-dependent root
  2116 void Matcher::dump_old2new_map() {
  2117   _old2new_map.dump();
  2119 #endif
  2121 //---------------------------collect_null_checks-------------------------------
  2122 // Find null checks in the ideal graph; write a machine-specific node for
  2123 // it.  Used by later implicit-null-check handling.  Actually collects
  2124 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2125 // value being tested.
  2126 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2127   Node *iff = proj->in(0);
  2128   if( iff->Opcode() == Op_If ) {
  2129     // During matching If's have Bool & Cmp side-by-side
  2130     BoolNode *b = iff->in(1)->as_Bool();
  2131     Node *cmp = iff->in(2);
  2132     int opc = cmp->Opcode();
  2133     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2135     const Type* ct = cmp->in(2)->bottom_type();
  2136     if (ct == TypePtr::NULL_PTR ||
  2137         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2139       bool push_it = false;
  2140       if( proj->Opcode() == Op_IfTrue ) {
  2141         extern int all_null_checks_found;
  2142         all_null_checks_found++;
  2143         if( b->_test._test == BoolTest::ne ) {
  2144           push_it = true;
  2146       } else {
  2147         assert( proj->Opcode() == Op_IfFalse, "" );
  2148         if( b->_test._test == BoolTest::eq ) {
  2149           push_it = true;
  2152       if( push_it ) {
  2153         _null_check_tests.push(proj);
  2154         Node* val = cmp->in(1);
  2155 #ifdef _LP64
  2156         if (val->bottom_type()->isa_narrowoop() &&
  2157             !Matcher::narrow_oop_use_complex_address()) {
  2158           //
  2159           // Look for DecodeN node which should be pinned to orig_proj.
  2160           // On platforms (Sparc) which can not handle 2 adds
  2161           // in addressing mode we have to keep a DecodeN node and
  2162           // use it to do implicit NULL check in address.
  2163           //
  2164           // DecodeN node was pinned to non-null path (orig_proj) during
  2165           // CastPP transformation in final_graph_reshaping_impl().
  2166           //
  2167           uint cnt = orig_proj->outcnt();
  2168           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2169             Node* d = orig_proj->raw_out(i);
  2170             if (d->is_DecodeN() && d->in(1) == val) {
  2171               val = d;
  2172               val->set_req(0, NULL); // Unpin now.
  2173               // Mark this as special case to distinguish from
  2174               // a regular case: CmpP(DecodeN, NULL).
  2175               val = (Node*)(((intptr_t)val) | 1);
  2176               break;
  2180 #endif
  2181         _null_check_tests.push(val);
  2187 //---------------------------validate_null_checks------------------------------
  2188 // Its possible that the value being NULL checked is not the root of a match
  2189 // tree.  If so, I cannot use the value in an implicit null check.
  2190 void Matcher::validate_null_checks( ) {
  2191   uint cnt = _null_check_tests.size();
  2192   for( uint i=0; i < cnt; i+=2 ) {
  2193     Node *test = _null_check_tests[i];
  2194     Node *val = _null_check_tests[i+1];
  2195     bool is_decoden = ((intptr_t)val) & 1;
  2196     val = (Node*)(((intptr_t)val) & ~1);
  2197     if (has_new_node(val)) {
  2198       Node* new_val = new_node(val);
  2199       if (is_decoden) {
  2200         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
  2201         // Note: new_val may have a control edge if
  2202         // the original ideal node DecodeN was matched before
  2203         // it was unpinned in Matcher::collect_null_checks().
  2204         // Unpin the mach node and mark it.
  2205         new_val->set_req(0, NULL);
  2206         new_val = (Node*)(((intptr_t)new_val) | 1);
  2208       // Is a match-tree root, so replace with the matched value
  2209       _null_check_tests.map(i+1, new_val);
  2210     } else {
  2211       // Yank from candidate list
  2212       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2213       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2214       _null_check_tests.pop();
  2215       _null_check_tests.pop();
  2216       i-=2;
  2222 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
  2223 // acting as an Acquire and thus we don't need an Acquire here.  We
  2224 // retain the Node to act as a compiler ordering barrier.
  2225 bool Matcher::prior_fast_lock( const Node *acq ) {
  2226   Node *r = acq->in(0);
  2227   if( !r->is_Region() || r->req() <= 1 ) return false;
  2228   Node *proj = r->in(1);
  2229   if( !proj->is_Proj() ) return false;
  2230   Node *call = proj->in(0);
  2231   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
  2232     return false;
  2234   return true;
  2237 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
  2238 // acting as a Release and thus we don't need a Release here.  We
  2239 // retain the Node to act as a compiler ordering barrier.
  2240 bool Matcher::post_fast_unlock( const Node *rel ) {
  2241   Compile *C = Compile::current();
  2242   assert( rel->Opcode() == Op_MemBarRelease, "" );
  2243   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
  2244   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2245   Node *ctrl = NULL;
  2246   while( true ) {
  2247     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2248     assert( ctrl->is_Proj(), "only projections here" );
  2249     ProjNode *proj = (ProjNode*)ctrl;
  2250     if( proj->_con == TypeFunc::Control &&
  2251         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2252       break;
  2253     i++;
  2255   Node *iff = NULL;
  2256   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2257     Node *x = ctrl->fast_out(j);
  2258     if( x->is_If() && x->req() > 1 &&
  2259         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2260       iff = x;
  2261       break;
  2264   if( !iff ) return false;
  2265   Node *bol = iff->in(1);
  2266   // The iff might be some random subclass of If or bol might be Con-Top
  2267   if (!bol->is_Bool())  return false;
  2268   assert( bol->req() > 1, "" );
  2269   return (bol->in(1)->Opcode() == Op_FastUnlock);
  2272 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2273 // atomic instruction acting as a store_load barrier without any
  2274 // intervening volatile load, and thus we don't need a barrier here.
  2275 // We retain the Node to act as a compiler ordering barrier.
  2276 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2277   Compile *C = Compile::current();
  2278   assert( vmb->is_MemBar(), "" );
  2279   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2280   const MemBarNode *mem = (const MemBarNode*)vmb;
  2282   // Get the Proj node, ctrl, that can be used to iterate forward
  2283   Node *ctrl = NULL;
  2284   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2285   while( true ) {
  2286     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2287     assert( ctrl->is_Proj(), "only projections here" );
  2288     ProjNode *proj = (ProjNode*)ctrl;
  2289     if( proj->_con == TypeFunc::Control &&
  2290         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2291       break;
  2292     i++;
  2295   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2296     Node *x = ctrl->fast_out(j);
  2297     int xop = x->Opcode();
  2299     // We don't need current barrier if we see another or a lock
  2300     // before seeing volatile load.
  2301     //
  2302     // Op_Fastunlock previously appeared in the Op_* list below.
  2303     // With the advent of 1-0 lock operations we're no longer guaranteed
  2304     // that a monitor exit operation contains a serializing instruction.
  2306     if (xop == Op_MemBarVolatile ||
  2307         xop == Op_FastLock ||
  2308         xop == Op_CompareAndSwapL ||
  2309         xop == Op_CompareAndSwapP ||
  2310         xop == Op_CompareAndSwapN ||
  2311         xop == Op_CompareAndSwapI)
  2312       return true;
  2314     if (x->is_MemBar()) {
  2315       // We must retain this membar if there is an upcoming volatile
  2316       // load, which will be preceded by acquire membar.
  2317       if (xop == Op_MemBarAcquire)
  2318         return false;
  2319       // For other kinds of barriers, check by pretending we
  2320       // are them, and seeing if we can be removed.
  2321       else
  2322         return post_store_load_barrier((const MemBarNode*)x);
  2325     // Delicate code to detect case of an upcoming fastlock block
  2326     if( x->is_If() && x->req() > 1 &&
  2327         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2328       Node *iff = x;
  2329       Node *bol = iff->in(1);
  2330       // The iff might be some random subclass of If or bol might be Con-Top
  2331       if (!bol->is_Bool())  return false;
  2332       assert( bol->req() > 1, "" );
  2333       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2335     // probably not necessary to check for these
  2336     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2337       return false;
  2339   return false;
  2342 //=============================================================================
  2343 //---------------------------State---------------------------------------------
  2344 State::State(void) {
  2345 #ifdef ASSERT
  2346   _id = 0;
  2347   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2348   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2349   //memset(_cost, -1, sizeof(_cost));
  2350   //memset(_rule, -1, sizeof(_rule));
  2351 #endif
  2352   memset(_valid, 0, sizeof(_valid));
  2355 #ifdef ASSERT
  2356 State::~State() {
  2357   _id = 99;
  2358   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2359   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2360   memset(_cost, -3, sizeof(_cost));
  2361   memset(_rule, -3, sizeof(_rule));
  2363 #endif
  2365 #ifndef PRODUCT
  2366 //---------------------------dump----------------------------------------------
  2367 void State::dump() {
  2368   tty->print("\n");
  2369   dump(0);
  2372 void State::dump(int depth) {
  2373   for( int j = 0; j < depth; j++ )
  2374     tty->print("   ");
  2375   tty->print("--N: ");
  2376   _leaf->dump();
  2377   uint i;
  2378   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2379     // Check for valid entry
  2380     if( valid(i) ) {
  2381       for( int j = 0; j < depth; j++ )
  2382         tty->print("   ");
  2383         assert(_cost[i] != max_juint, "cost must be a valid value");
  2384         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2385         tty->print_cr("%s  %d  %s",
  2386                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2388   tty->print_cr("");
  2390   for( i=0; i<2; i++ )
  2391     if( _kids[i] )
  2392       _kids[i]->dump(depth+1);
  2394 #endif

mercurial