src/share/vm/opto/matcher.cpp

Thu, 19 Aug 2010 14:51:47 -0700

author
never
date
Thu, 19 Aug 2010 14:51:47 -0700
changeset 2085
f55c4f82ab9d
parent 1934
e9ff18c4ace7
child 2314
f95d63e2154a
permissions
-rw-r--r--

6978249: spill between cpu and fpu registers when those moves are fast
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_matcher.cpp.incl"
    28 OptoReg::Name OptoReg::c_frame_pointer;
    32 const int Matcher::base2reg[Type::lastype] = {
    33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
    34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
    35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
    36   0, 0/*abio*/,
    37   Op_RegP /* Return address */, 0, /* the memories */
    38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
    39   0  /*bottom*/
    40 };
    42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    44 RegMask Matcher::STACK_ONLY_mask;
    45 RegMask Matcher::c_frame_ptr_mask;
    46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    49 //---------------------------Matcher-------------------------------------------
    50 Matcher::Matcher( Node_List &proj_list ) :
    51   PhaseTransform( Phase::Ins_Select ),
    52 #ifdef ASSERT
    53   _old2new_map(C->comp_arena()),
    54   _new2old_map(C->comp_arena()),
    55 #endif
    56   _shared_nodes(C->comp_arena()),
    57   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    58   _swallowed(swallowed),
    59   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    60   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    61   _must_clone(must_clone), _proj_list(proj_list),
    62   _register_save_policy(register_save_policy),
    63   _c_reg_save_policy(c_reg_save_policy),
    64   _register_save_type(register_save_type),
    65   _ruleName(ruleName),
    66   _allocation_started(false),
    67   _states_arena(Chunk::medium_size),
    68   _visited(&_states_arena),
    69   _shared(&_states_arena),
    70   _dontcare(&_states_arena) {
    71   C->set_matcher(this);
    73   idealreg2spillmask  [Op_RegI] = NULL;
    74   idealreg2spillmask  [Op_RegN] = NULL;
    75   idealreg2spillmask  [Op_RegL] = NULL;
    76   idealreg2spillmask  [Op_RegF] = NULL;
    77   idealreg2spillmask  [Op_RegD] = NULL;
    78   idealreg2spillmask  [Op_RegP] = NULL;
    80   idealreg2debugmask  [Op_RegI] = NULL;
    81   idealreg2debugmask  [Op_RegN] = NULL;
    82   idealreg2debugmask  [Op_RegL] = NULL;
    83   idealreg2debugmask  [Op_RegF] = NULL;
    84   idealreg2debugmask  [Op_RegD] = NULL;
    85   idealreg2debugmask  [Op_RegP] = NULL;
    87   idealreg2mhdebugmask[Op_RegI] = NULL;
    88   idealreg2mhdebugmask[Op_RegN] = NULL;
    89   idealreg2mhdebugmask[Op_RegL] = NULL;
    90   idealreg2mhdebugmask[Op_RegF] = NULL;
    91   idealreg2mhdebugmask[Op_RegD] = NULL;
    92   idealreg2mhdebugmask[Op_RegP] = NULL;
    94   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
    95 }
    97 //------------------------------warp_incoming_stk_arg------------------------
    98 // This warps a VMReg into an OptoReg::Name
    99 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   100   OptoReg::Name warped;
   101   if( reg->is_stack() ) {  // Stack slot argument?
   102     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   103     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   104     if( warped >= _in_arg_limit )
   105       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   106     if (!RegMask::can_represent(warped)) {
   107       // the compiler cannot represent this method's calling sequence
   108       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   109       return OptoReg::Bad;
   110     }
   111     return warped;
   112   }
   113   return OptoReg::as_OptoReg(reg);
   114 }
   116 //---------------------------compute_old_SP------------------------------------
   117 OptoReg::Name Compile::compute_old_SP() {
   118   int fixed    = fixed_slots();
   119   int preserve = in_preserve_stack_slots();
   120   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   121 }
   125 #ifdef ASSERT
   126 void Matcher::verify_new_nodes_only(Node* xroot) {
   127   // Make sure that the new graph only references new nodes
   128   ResourceMark rm;
   129   Unique_Node_List worklist;
   130   VectorSet visited(Thread::current()->resource_area());
   131   worklist.push(xroot);
   132   while (worklist.size() > 0) {
   133     Node* n = worklist.pop();
   134     visited <<= n->_idx;
   135     assert(C->node_arena()->contains(n), "dead node");
   136     for (uint j = 0; j < n->req(); j++) {
   137       Node* in = n->in(j);
   138       if (in != NULL) {
   139         assert(C->node_arena()->contains(in), "dead node");
   140         if (!visited.test(in->_idx)) {
   141           worklist.push(in);
   142         }
   143       }
   144     }
   145   }
   146 }
   147 #endif
   150 //---------------------------match---------------------------------------------
   151 void Matcher::match( ) {
   152   if( MaxLabelRootDepth < 100 ) { // Too small?
   153     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   154     MaxLabelRootDepth = 100;
   155   }
   156   // One-time initialization of some register masks.
   157   init_spill_mask( C->root()->in(1) );
   158   _return_addr_mask = return_addr();
   159 #ifdef _LP64
   160   // Pointers take 2 slots in 64-bit land
   161   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   162 #endif
   164   // Map a Java-signature return type into return register-value
   165   // machine registers for 0, 1 and 2 returned values.
   166   const TypeTuple *range = C->tf()->range();
   167   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   168     // Get ideal-register return type
   169     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
   170     // Get machine return register
   171     uint sop = C->start()->Opcode();
   172     OptoRegPair regs = return_value(ireg, false);
   174     // And mask for same
   175     _return_value_mask = RegMask(regs.first());
   176     if( OptoReg::is_valid(regs.second()) )
   177       _return_value_mask.Insert(regs.second());
   178   }
   180   // ---------------
   181   // Frame Layout
   183   // Need the method signature to determine the incoming argument types,
   184   // because the types determine which registers the incoming arguments are
   185   // in, and this affects the matched code.
   186   const TypeTuple *domain = C->tf()->domain();
   187   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   188   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   189   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   190   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   191   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   192   uint i;
   193   for( i = 0; i<argcnt; i++ ) {
   194     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   195   }
   197   // Pass array of ideal registers and length to USER code (from the AD file)
   198   // that will convert this to an array of register numbers.
   199   const StartNode *start = C->start();
   200   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   201 #ifdef ASSERT
   202   // Sanity check users' calling convention.  Real handy while trying to
   203   // get the initial port correct.
   204   { for (uint i = 0; i<argcnt; i++) {
   205       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   206         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   207         _parm_regs[i].set_bad();
   208         continue;
   209       }
   210       VMReg parm_reg = vm_parm_regs[i].first();
   211       assert(parm_reg->is_valid(), "invalid arg?");
   212       if (parm_reg->is_reg()) {
   213         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   214         assert(can_be_java_arg(opto_parm_reg) ||
   215                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   216                opto_parm_reg == inline_cache_reg(),
   217                "parameters in register must be preserved by runtime stubs");
   218       }
   219       for (uint j = 0; j < i; j++) {
   220         assert(parm_reg != vm_parm_regs[j].first(),
   221                "calling conv. must produce distinct regs");
   222       }
   223     }
   224   }
   225 #endif
   227   // Do some initial frame layout.
   229   // Compute the old incoming SP (may be called FP) as
   230   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   231   _old_SP = C->compute_old_SP();
   232   assert( is_even(_old_SP), "must be even" );
   234   // Compute highest incoming stack argument as
   235   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   236   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   237   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   238   for( i = 0; i < argcnt; i++ ) {
   239     // Permit args to have no register
   240     _calling_convention_mask[i].Clear();
   241     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   242       continue;
   243     }
   244     // calling_convention returns stack arguments as a count of
   245     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   246     // the allocators point of view, taking into account all the
   247     // preserve area, locks & pad2.
   249     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   250     if( OptoReg::is_valid(reg1))
   251       _calling_convention_mask[i].Insert(reg1);
   253     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   254     if( OptoReg::is_valid(reg2))
   255       _calling_convention_mask[i].Insert(reg2);
   257     // Saved biased stack-slot register number
   258     _parm_regs[i].set_pair(reg2, reg1);
   259   }
   261   // Finally, make sure the incoming arguments take up an even number of
   262   // words, in case the arguments or locals need to contain doubleword stack
   263   // slots.  The rest of the system assumes that stack slot pairs (in
   264   // particular, in the spill area) which look aligned will in fact be
   265   // aligned relative to the stack pointer in the target machine.  Double
   266   // stack slots will always be allocated aligned.
   267   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   269   // Compute highest outgoing stack argument as
   270   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   271   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   272   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   274   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
   275     // the compiler cannot represent this method's calling sequence
   276     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   277   }
   279   if (C->failing())  return;  // bailed out on incoming arg failure
   281   // ---------------
   282   // Collect roots of matcher trees.  Every node for which
   283   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   284   // can be a valid interior of some tree.
   285   find_shared( C->root() );
   286   find_shared( C->top() );
   288   C->print_method("Before Matching");
   290   // Create new ideal node ConP #NULL even if it does exist in old space
   291   // to avoid false sharing if the corresponding mach node is not used.
   292   // The corresponding mach node is only used in rare cases for derived
   293   // pointers.
   294   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   296   // Swap out to old-space; emptying new-space
   297   Arena *old = C->node_arena()->move_contents(C->old_arena());
   299   // Save debug and profile information for nodes in old space:
   300   _old_node_note_array = C->node_note_array();
   301   if (_old_node_note_array != NULL) {
   302     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   303                            (C->comp_arena(), _old_node_note_array->length(),
   304                             0, NULL));
   305   }
   307   // Pre-size the new_node table to avoid the need for range checks.
   308   grow_new_node_array(C->unique());
   310   // Reset node counter so MachNodes start with _idx at 0
   311   int nodes = C->unique(); // save value
   312   C->set_unique(0);
   314   // Recursively match trees from old space into new space.
   315   // Correct leaves of new-space Nodes; they point to old-space.
   316   _visited.Clear();             // Clear visit bits for xform call
   317   C->set_cached_top_node(xform( C->top(), nodes ));
   318   if (!C->failing()) {
   319     Node* xroot =        xform( C->root(), 1 );
   320     if (xroot == NULL) {
   321       Matcher::soft_match_failure();  // recursive matching process failed
   322       C->record_method_not_compilable("instruction match failed");
   323     } else {
   324       // During matching shared constants were attached to C->root()
   325       // because xroot wasn't available yet, so transfer the uses to
   326       // the xroot.
   327       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   328         Node* n = C->root()->fast_out(j);
   329         if (C->node_arena()->contains(n)) {
   330           assert(n->in(0) == C->root(), "should be control user");
   331           n->set_req(0, xroot);
   332           --j;
   333           --jmax;
   334         }
   335       }
   337       // Generate new mach node for ConP #NULL
   338       assert(new_ideal_null != NULL, "sanity");
   339       _mach_null = match_tree(new_ideal_null);
   340       // Don't set control, it will confuse GCM since there are no uses.
   341       // The control will be set when this node is used first time
   342       // in find_base_for_derived().
   343       assert(_mach_null != NULL, "");
   345       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   347 #ifdef ASSERT
   348       verify_new_nodes_only(xroot);
   349 #endif
   350     }
   351   }
   352   if (C->top() == NULL || C->root() == NULL) {
   353     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   354   }
   355   if (C->failing()) {
   356     // delete old;
   357     old->destruct_contents();
   358     return;
   359   }
   360   assert( C->top(), "" );
   361   assert( C->root(), "" );
   362   validate_null_checks();
   364   // Now smoke old-space
   365   NOT_DEBUG( old->destruct_contents() );
   367   // ------------------------
   368   // Set up save-on-entry registers
   369   Fixup_Save_On_Entry( );
   370 }
   373 //------------------------------Fixup_Save_On_Entry----------------------------
   374 // The stated purpose of this routine is to take care of save-on-entry
   375 // registers.  However, the overall goal of the Match phase is to convert into
   376 // machine-specific instructions which have RegMasks to guide allocation.
   377 // So what this procedure really does is put a valid RegMask on each input
   378 // to the machine-specific variations of all Return, TailCall and Halt
   379 // instructions.  It also adds edgs to define the save-on-entry values (and of
   380 // course gives them a mask).
   382 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   383   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   384   // Do all the pre-defined register masks
   385   rms[TypeFunc::Control  ] = RegMask::Empty;
   386   rms[TypeFunc::I_O      ] = RegMask::Empty;
   387   rms[TypeFunc::Memory   ] = RegMask::Empty;
   388   rms[TypeFunc::ReturnAdr] = ret_adr;
   389   rms[TypeFunc::FramePtr ] = fp;
   390   return rms;
   391 }
   393 //---------------------------init_first_stack_mask-----------------------------
   394 // Create the initial stack mask used by values spilling to the stack.
   395 // Disallow any debug info in outgoing argument areas by setting the
   396 // initial mask accordingly.
   397 void Matcher::init_first_stack_mask() {
   399   // Allocate storage for spill masks as masks for the appropriate load type.
   400   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
   402   idealreg2spillmask  [Op_RegN] = &rms[0];
   403   idealreg2spillmask  [Op_RegI] = &rms[1];
   404   idealreg2spillmask  [Op_RegL] = &rms[2];
   405   idealreg2spillmask  [Op_RegF] = &rms[3];
   406   idealreg2spillmask  [Op_RegD] = &rms[4];
   407   idealreg2spillmask  [Op_RegP] = &rms[5];
   409   idealreg2debugmask  [Op_RegN] = &rms[6];
   410   idealreg2debugmask  [Op_RegI] = &rms[7];
   411   idealreg2debugmask  [Op_RegL] = &rms[8];
   412   idealreg2debugmask  [Op_RegF] = &rms[9];
   413   idealreg2debugmask  [Op_RegD] = &rms[10];
   414   idealreg2debugmask  [Op_RegP] = &rms[11];
   416   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   417   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   418   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   419   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   420   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   421   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   423   OptoReg::Name i;
   425   // At first, start with the empty mask
   426   C->FIRST_STACK_mask().Clear();
   428   // Add in the incoming argument area
   429   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   430   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   431     C->FIRST_STACK_mask().Insert(i);
   433   // Add in all bits past the outgoing argument area
   434   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
   435             "must be able to represent all call arguments in reg mask");
   436   init = _out_arg_limit;
   437   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   438     C->FIRST_STACK_mask().Insert(i);
   440   // Finally, set the "infinite stack" bit.
   441   C->FIRST_STACK_mask().set_AllStack();
   443   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   444 #ifdef _LP64
   445   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   446    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   447 #endif
   448   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   449    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   450   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   451    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
   452   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   453    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   454   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   455    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
   456   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   457    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   459    if (UseFPUForSpilling) {
   460      // This mask logic assumes that the spill operations are
   461      // symmetric and that the registers involved are the same size.
   462      // On sparc for instance we may have to use 64 bit moves will
   463      // kill 2 registers when used with F0-F31.
   464      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   465      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   466 #ifdef _LP64
   467      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   468      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   469      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   470      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   471 #else
   472      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   473 #endif
   474    }
   476   // Make up debug masks.  Any spill slot plus callee-save registers.
   477   // Caller-save registers are assumed to be trashable by the various
   478   // inline-cache fixup routines.
   479   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   480   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   481   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   482   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   483   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   484   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   486   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   487   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   488   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   489   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   490   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   491   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   493   // Prevent stub compilations from attempting to reference
   494   // callee-saved registers from debug info
   495   bool exclude_soe = !Compile::current()->is_method_compilation();
   497   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   498     // registers the caller has to save do not work
   499     if( _register_save_policy[i] == 'C' ||
   500         _register_save_policy[i] == 'A' ||
   501         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   502       idealreg2debugmask  [Op_RegN]->Remove(i);
   503       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   504       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   505       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   506       idealreg2debugmask  [Op_RegD]->Remove(i);
   507       idealreg2debugmask  [Op_RegP]->Remove(i);
   509       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   510       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   511       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   512       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   513       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   514       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   515     }
   516   }
   518   // Subtract the register we use to save the SP for MethodHandle
   519   // invokes to from the debug mask.
   520   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   521   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   522   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   523   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   524   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   525   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   526   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   527 }
   529 //---------------------------is_save_on_entry----------------------------------
   530 bool Matcher::is_save_on_entry( int reg ) {
   531   return
   532     _register_save_policy[reg] == 'E' ||
   533     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   534     // Also save argument registers in the trampolining stubs
   535     (C->save_argument_registers() && is_spillable_arg(reg));
   536 }
   538 //---------------------------Fixup_Save_On_Entry-------------------------------
   539 void Matcher::Fixup_Save_On_Entry( ) {
   540   init_first_stack_mask();
   542   Node *root = C->root();       // Short name for root
   543   // Count number of save-on-entry registers.
   544   uint soe_cnt = number_of_saved_registers();
   545   uint i;
   547   // Find the procedure Start Node
   548   StartNode *start = C->start();
   549   assert( start, "Expect a start node" );
   551   // Save argument registers in the trampolining stubs
   552   if( C->save_argument_registers() )
   553     for( i = 0; i < _last_Mach_Reg; i++ )
   554       if( is_spillable_arg(i) )
   555         soe_cnt++;
   557   // Input RegMask array shared by all Returns.
   558   // The type for doubles and longs has a count of 2, but
   559   // there is only 1 returned value
   560   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   561   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   562   // Returns have 0 or 1 returned values depending on call signature.
   563   // Return register is specified by return_value in the AD file.
   564   if (ret_edge_cnt > TypeFunc::Parms)
   565     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   567   // Input RegMask array shared by all Rethrows.
   568   uint reth_edge_cnt = TypeFunc::Parms+1;
   569   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   570   // Rethrow takes exception oop only, but in the argument 0 slot.
   571   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   572 #ifdef _LP64
   573   // Need two slots for ptrs in 64-bit land
   574   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   575 #endif
   577   // Input RegMask array shared by all TailCalls
   578   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   579   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   581   // Input RegMask array shared by all TailJumps
   582   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   583   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   585   // TailCalls have 2 returned values (target & moop), whose masks come
   586   // from the usual MachNode/MachOper mechanism.  Find a sample
   587   // TailCall to extract these masks and put the correct masks into
   588   // the tail_call_rms array.
   589   for( i=1; i < root->req(); i++ ) {
   590     MachReturnNode *m = root->in(i)->as_MachReturn();
   591     if( m->ideal_Opcode() == Op_TailCall ) {
   592       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   593       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   594       break;
   595     }
   596   }
   598   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   599   // from the usual MachNode/MachOper mechanism.  Find a sample
   600   // TailJump to extract these masks and put the correct masks into
   601   // the tail_jump_rms array.
   602   for( i=1; i < root->req(); i++ ) {
   603     MachReturnNode *m = root->in(i)->as_MachReturn();
   604     if( m->ideal_Opcode() == Op_TailJump ) {
   605       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   606       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   607       break;
   608     }
   609   }
   611   // Input RegMask array shared by all Halts
   612   uint halt_edge_cnt = TypeFunc::Parms;
   613   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   615   // Capture the return input masks into each exit flavor
   616   for( i=1; i < root->req(); i++ ) {
   617     MachReturnNode *exit = root->in(i)->as_MachReturn();
   618     switch( exit->ideal_Opcode() ) {
   619       case Op_Return   : exit->_in_rms = ret_rms;  break;
   620       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   621       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   622       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   623       case Op_Halt     : exit->_in_rms = halt_rms; break;
   624       default          : ShouldNotReachHere();
   625     }
   626   }
   628   // Next unused projection number from Start.
   629   int proj_cnt = C->tf()->domain()->cnt();
   631   // Do all the save-on-entry registers.  Make projections from Start for
   632   // them, and give them a use at the exit points.  To the allocator, they
   633   // look like incoming register arguments.
   634   for( i = 0; i < _last_Mach_Reg; i++ ) {
   635     if( is_save_on_entry(i) ) {
   637       // Add the save-on-entry to the mask array
   638       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   639       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   640       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   641       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   642       // Halts need the SOE registers, but only in the stack as debug info.
   643       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   644       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   646       Node *mproj;
   648       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   649       // into a single RegD.
   650       if( (i&1) == 0 &&
   651           _register_save_type[i  ] == Op_RegF &&
   652           _register_save_type[i+1] == Op_RegF &&
   653           is_save_on_entry(i+1) ) {
   654         // Add other bit for double
   655         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   656         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   657         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   658         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   659         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   660         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   661         proj_cnt += 2;          // Skip 2 for doubles
   662       }
   663       else if( (i&1) == 1 &&    // Else check for high half of double
   664                _register_save_type[i-1] == Op_RegF &&
   665                _register_save_type[i  ] == Op_RegF &&
   666                is_save_on_entry(i-1) ) {
   667         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   668         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   669         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   670         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   671         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   672         mproj = C->top();
   673       }
   674       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   675       // into a single RegL.
   676       else if( (i&1) == 0 &&
   677           _register_save_type[i  ] == Op_RegI &&
   678           _register_save_type[i+1] == Op_RegI &&
   679         is_save_on_entry(i+1) ) {
   680         // Add other bit for long
   681         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   682         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   683         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   684         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   685         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   686         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   687         proj_cnt += 2;          // Skip 2 for longs
   688       }
   689       else if( (i&1) == 1 &&    // Else check for high half of long
   690                _register_save_type[i-1] == Op_RegI &&
   691                _register_save_type[i  ] == Op_RegI &&
   692                is_save_on_entry(i-1) ) {
   693         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   694         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   695         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   696         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   697         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   698         mproj = C->top();
   699       } else {
   700         // Make a projection for it off the Start
   701         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   702       }
   704       ret_edge_cnt ++;
   705       reth_edge_cnt ++;
   706       tail_call_edge_cnt ++;
   707       tail_jump_edge_cnt ++;
   708       halt_edge_cnt ++;
   710       // Add a use of the SOE register to all exit paths
   711       for( uint j=1; j < root->req(); j++ )
   712         root->in(j)->add_req(mproj);
   713     } // End of if a save-on-entry register
   714   } // End of for all machine registers
   715 }
   717 //------------------------------init_spill_mask--------------------------------
   718 void Matcher::init_spill_mask( Node *ret ) {
   719   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   721   OptoReg::c_frame_pointer = c_frame_pointer();
   722   c_frame_ptr_mask = c_frame_pointer();
   723 #ifdef _LP64
   724   // pointers are twice as big
   725   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   726 #endif
   728   // Start at OptoReg::stack0()
   729   STACK_ONLY_mask.Clear();
   730   OptoReg::Name init = OptoReg::stack2reg(0);
   731   // STACK_ONLY_mask is all stack bits
   732   OptoReg::Name i;
   733   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   734     STACK_ONLY_mask.Insert(i);
   735   // Also set the "infinite stack" bit.
   736   STACK_ONLY_mask.set_AllStack();
   738   // Copy the register names over into the shared world
   739   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   740     // SharedInfo::regName[i] = regName[i];
   741     // Handy RegMasks per machine register
   742     mreg2regmask[i].Insert(i);
   743   }
   745   // Grab the Frame Pointer
   746   Node *fp  = ret->in(TypeFunc::FramePtr);
   747   Node *mem = ret->in(TypeFunc::Memory);
   748   const TypePtr* atp = TypePtr::BOTTOM;
   749   // Share frame pointer while making spill ops
   750   set_shared(fp);
   752   // Compute generic short-offset Loads
   753 #ifdef _LP64
   754   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   755 #endif
   756   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   757   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   758   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   759   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   760   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   761   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   762          spillD != NULL && spillP != NULL, "");
   764   // Get the ADLC notion of the right regmask, for each basic type.
   765 #ifdef _LP64
   766   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   767 #endif
   768   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   769   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   770   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   771   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   772   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   773 }
   775 #ifdef ASSERT
   776 static void match_alias_type(Compile* C, Node* n, Node* m) {
   777   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   778   const TypePtr* nat = n->adr_type();
   779   const TypePtr* mat = m->adr_type();
   780   int nidx = C->get_alias_index(nat);
   781   int midx = C->get_alias_index(mat);
   782   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   783   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   784     for (uint i = 1; i < n->req(); i++) {
   785       Node* n1 = n->in(i);
   786       const TypePtr* n1at = n1->adr_type();
   787       if (n1at != NULL) {
   788         nat = n1at;
   789         nidx = C->get_alias_index(n1at);
   790       }
   791     }
   792   }
   793   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   794   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   795     switch (n->Opcode()) {
   796     case Op_PrefetchRead:
   797     case Op_PrefetchWrite:
   798       nidx = Compile::AliasIdxRaw;
   799       nat = TypeRawPtr::BOTTOM;
   800       break;
   801     }
   802   }
   803   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   804     switch (n->Opcode()) {
   805     case Op_ClearArray:
   806       midx = Compile::AliasIdxRaw;
   807       mat = TypeRawPtr::BOTTOM;
   808       break;
   809     }
   810   }
   811   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   812     switch (n->Opcode()) {
   813     case Op_Return:
   814     case Op_Rethrow:
   815     case Op_Halt:
   816     case Op_TailCall:
   817     case Op_TailJump:
   818       nidx = Compile::AliasIdxBot;
   819       nat = TypePtr::BOTTOM;
   820       break;
   821     }
   822   }
   823   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   824     switch (n->Opcode()) {
   825     case Op_StrComp:
   826     case Op_StrEquals:
   827     case Op_StrIndexOf:
   828     case Op_AryEq:
   829     case Op_MemBarVolatile:
   830     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   831       nidx = Compile::AliasIdxTop;
   832       nat = NULL;
   833       break;
   834     }
   835   }
   836   if (nidx != midx) {
   837     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   838       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   839       n->dump();
   840       m->dump();
   841     }
   842     assert(C->subsume_loads() && C->must_alias(nat, midx),
   843            "must not lose alias info when matching");
   844   }
   845 }
   846 #endif
   849 //------------------------------MStack-----------------------------------------
   850 // State and MStack class used in xform() and find_shared() iterative methods.
   851 enum Node_State { Pre_Visit,  // node has to be pre-visited
   852                       Visit,  // visit node
   853                  Post_Visit,  // post-visit node
   854              Alt_Post_Visit   // alternative post-visit path
   855                 };
   857 class MStack: public Node_Stack {
   858   public:
   859     MStack(int size) : Node_Stack(size) { }
   861     void push(Node *n, Node_State ns) {
   862       Node_Stack::push(n, (uint)ns);
   863     }
   864     void push(Node *n, Node_State ns, Node *parent, int indx) {
   865       ++_inode_top;
   866       if ((_inode_top + 1) >= _inode_max) grow();
   867       _inode_top->node = parent;
   868       _inode_top->indx = (uint)indx;
   869       ++_inode_top;
   870       _inode_top->node = n;
   871       _inode_top->indx = (uint)ns;
   872     }
   873     Node *parent() {
   874       pop();
   875       return node();
   876     }
   877     Node_State state() const {
   878       return (Node_State)index();
   879     }
   880     void set_state(Node_State ns) {
   881       set_index((uint)ns);
   882     }
   883 };
   886 //------------------------------xform------------------------------------------
   887 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   888 // Node in new-space.  Given a new-space Node, recursively walk his children.
   889 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   890 Node *Matcher::xform( Node *n, int max_stack ) {
   891   // Use one stack to keep both: child's node/state and parent's node/index
   892   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   893   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   895   while (mstack.is_nonempty()) {
   896     n = mstack.node();          // Leave node on stack
   897     Node_State nstate = mstack.state();
   898     if (nstate == Visit) {
   899       mstack.set_state(Post_Visit);
   900       Node *oldn = n;
   901       // Old-space or new-space check
   902       if (!C->node_arena()->contains(n)) {
   903         // Old space!
   904         Node* m;
   905         if (has_new_node(n)) {  // Not yet Label/Reduced
   906           m = new_node(n);
   907         } else {
   908           if (!is_dontcare(n)) { // Matcher can match this guy
   909             // Calls match special.  They match alone with no children.
   910             // Their children, the incoming arguments, match normally.
   911             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
   912             if (C->failing())  return NULL;
   913             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
   914           } else {                  // Nothing the matcher cares about
   915             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
   916               // Convert to machine-dependent projection
   917               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
   918 #ifdef ASSERT
   919               _new2old_map.map(m->_idx, n);
   920 #endif
   921               if (m->in(0) != NULL) // m might be top
   922                 collect_null_checks(m, n);
   923             } else {                // Else just a regular 'ol guy
   924               m = n->clone();       // So just clone into new-space
   925 #ifdef ASSERT
   926               _new2old_map.map(m->_idx, n);
   927 #endif
   928               // Def-Use edges will be added incrementally as Uses
   929               // of this node are matched.
   930               assert(m->outcnt() == 0, "no Uses of this clone yet");
   931             }
   932           }
   934           set_new_node(n, m);       // Map old to new
   935           if (_old_node_note_array != NULL) {
   936             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
   937                                                   n->_idx);
   938             C->set_node_notes_at(m->_idx, nn);
   939           }
   940           debug_only(match_alias_type(C, n, m));
   941         }
   942         n = m;    // n is now a new-space node
   943         mstack.set_node(n);
   944       }
   946       // New space!
   947       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
   949       int i;
   950       // Put precedence edges on stack first (match them last).
   951       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
   952         Node *m = oldn->in(i);
   953         if (m == NULL) break;
   954         // set -1 to call add_prec() instead of set_req() during Step1
   955         mstack.push(m, Visit, n, -1);
   956       }
   958       // For constant debug info, I'd rather have unmatched constants.
   959       int cnt = n->req();
   960       JVMState* jvms = n->jvms();
   961       int debug_cnt = jvms ? jvms->debug_start() : cnt;
   963       // Now do only debug info.  Clone constants rather than matching.
   964       // Constants are represented directly in the debug info without
   965       // the need for executable machine instructions.
   966       // Monitor boxes are also represented directly.
   967       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
   968         Node *m = n->in(i);          // Get input
   969         int op = m->Opcode();
   970         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
   971         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
   972             op == Op_ConF || op == Op_ConD || op == Op_ConL
   973             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
   974             ) {
   975           m = m->clone();
   976 #ifdef ASSERT
   977           _new2old_map.map(m->_idx, n);
   978 #endif
   979           mstack.push(m, Post_Visit, n, i); // Don't need to visit
   980           mstack.push(m->in(0), Visit, m, 0);
   981         } else {
   982           mstack.push(m, Visit, n, i);
   983         }
   984       }
   986       // And now walk his children, and convert his inputs to new-space.
   987       for( ; i >= 0; --i ) { // For all normal inputs do
   988         Node *m = n->in(i);  // Get input
   989         if(m != NULL)
   990           mstack.push(m, Visit, n, i);
   991       }
   993     }
   994     else if (nstate == Post_Visit) {
   995       // Set xformed input
   996       Node *p = mstack.parent();
   997       if (p != NULL) { // root doesn't have parent
   998         int i = (int)mstack.index();
   999         if (i >= 0)
  1000           p->set_req(i, n); // required input
  1001         else if (i == -1)
  1002           p->add_prec(n);   // precedence input
  1003         else
  1004           ShouldNotReachHere();
  1006       mstack.pop(); // remove processed node from stack
  1008     else {
  1009       ShouldNotReachHere();
  1011   } // while (mstack.is_nonempty())
  1012   return n; // Return new-space Node
  1015 //------------------------------warp_outgoing_stk_arg------------------------
  1016 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1017   // Convert outgoing argument location to a pre-biased stack offset
  1018   if (reg->is_stack()) {
  1019     OptoReg::Name warped = reg->reg2stack();
  1020     // Adjust the stack slot offset to be the register number used
  1021     // by the allocator.
  1022     warped = OptoReg::add(begin_out_arg_area, warped);
  1023     // Keep track of the largest numbered stack slot used for an arg.
  1024     // Largest used slot per call-site indicates the amount of stack
  1025     // that is killed by the call.
  1026     if( warped >= out_arg_limit_per_call )
  1027       out_arg_limit_per_call = OptoReg::add(warped,1);
  1028     if (!RegMask::can_represent(warped)) {
  1029       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1030       return OptoReg::Bad;
  1032     return warped;
  1034   return OptoReg::as_OptoReg(reg);
  1038 //------------------------------match_sfpt-------------------------------------
  1039 // Helper function to match call instructions.  Calls match special.
  1040 // They match alone with no children.  Their children, the incoming
  1041 // arguments, match normally.
  1042 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1043   MachSafePointNode *msfpt = NULL;
  1044   MachCallNode      *mcall = NULL;
  1045   uint               cnt;
  1046   // Split out case for SafePoint vs Call
  1047   CallNode *call;
  1048   const TypeTuple *domain;
  1049   ciMethod*        method = NULL;
  1050   bool             is_method_handle_invoke = false;  // for special kill effects
  1051   if( sfpt->is_Call() ) {
  1052     call = sfpt->as_Call();
  1053     domain = call->tf()->domain();
  1054     cnt = domain->cnt();
  1056     // Match just the call, nothing else
  1057     MachNode *m = match_tree(call);
  1058     if (C->failing())  return NULL;
  1059     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1061     // Copy data from the Ideal SafePoint to the machine version
  1062     mcall = m->as_MachCall();
  1064     mcall->set_tf(         call->tf());
  1065     mcall->set_entry_point(call->entry_point());
  1066     mcall->set_cnt(        call->cnt());
  1068     if( mcall->is_MachCallJava() ) {
  1069       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1070       const CallJavaNode *call_java =  call->as_CallJava();
  1071       method = call_java->method();
  1072       mcall_java->_method = method;
  1073       mcall_java->_bci = call_java->_bci;
  1074       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1075       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1076       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1077       if( mcall_java->is_MachCallStaticJava() )
  1078         mcall_java->as_MachCallStaticJava()->_name =
  1079          call_java->as_CallStaticJava()->_name;
  1080       if( mcall_java->is_MachCallDynamicJava() )
  1081         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1082          call_java->as_CallDynamicJava()->_vtable_index;
  1084     else if( mcall->is_MachCallRuntime() ) {
  1085       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1087     msfpt = mcall;
  1089   // This is a non-call safepoint
  1090   else {
  1091     call = NULL;
  1092     domain = NULL;
  1093     MachNode *mn = match_tree(sfpt);
  1094     if (C->failing())  return NULL;
  1095     msfpt = mn->as_MachSafePoint();
  1096     cnt = TypeFunc::Parms;
  1099   // Advertise the correct memory effects (for anti-dependence computation).
  1100   msfpt->set_adr_type(sfpt->adr_type());
  1102   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1103   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1104   // Empty them all.
  1105   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1107   // Do all the pre-defined non-Empty register masks
  1108   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1109   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1111   // Place first outgoing argument can possibly be put.
  1112   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1113   assert( is_even(begin_out_arg_area), "" );
  1114   // Compute max outgoing register number per call site.
  1115   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1116   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1117   // These are usually backing store for register arguments for varargs.
  1118   if( call != NULL && call->is_CallRuntime() )
  1119     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1122   // Do the normal argument list (parameters) register masks
  1123   int argcnt = cnt - TypeFunc::Parms;
  1124   if( argcnt > 0 ) {          // Skip it all if we have no args
  1125     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1126     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1127     int i;
  1128     for( i = 0; i < argcnt; i++ ) {
  1129       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1131     // V-call to pick proper calling convention
  1132     call->calling_convention( sig_bt, parm_regs, argcnt );
  1134 #ifdef ASSERT
  1135     // Sanity check users' calling convention.  Really handy during
  1136     // the initial porting effort.  Fairly expensive otherwise.
  1137     { for (int i = 0; i<argcnt; i++) {
  1138       if( !parm_regs[i].first()->is_valid() &&
  1139           !parm_regs[i].second()->is_valid() ) continue;
  1140       VMReg reg1 = parm_regs[i].first();
  1141       VMReg reg2 = parm_regs[i].second();
  1142       for (int j = 0; j < i; j++) {
  1143         if( !parm_regs[j].first()->is_valid() &&
  1144             !parm_regs[j].second()->is_valid() ) continue;
  1145         VMReg reg3 = parm_regs[j].first();
  1146         VMReg reg4 = parm_regs[j].second();
  1147         if( !reg1->is_valid() ) {
  1148           assert( !reg2->is_valid(), "valid halvsies" );
  1149         } else if( !reg3->is_valid() ) {
  1150           assert( !reg4->is_valid(), "valid halvsies" );
  1151         } else {
  1152           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1153           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1154           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1155           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1156           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1157           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1162 #endif
  1164     // Visit each argument.  Compute its outgoing register mask.
  1165     // Return results now can have 2 bits returned.
  1166     // Compute max over all outgoing arguments both per call-site
  1167     // and over the entire method.
  1168     for( i = 0; i < argcnt; i++ ) {
  1169       // Address of incoming argument mask to fill in
  1170       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1171       if( !parm_regs[i].first()->is_valid() &&
  1172           !parm_regs[i].second()->is_valid() ) {
  1173         continue;               // Avoid Halves
  1175       // Grab first register, adjust stack slots and insert in mask.
  1176       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1177       if (OptoReg::is_valid(reg1))
  1178         rm->Insert( reg1 );
  1179       // Grab second register (if any), adjust stack slots and insert in mask.
  1180       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1181       if (OptoReg::is_valid(reg2))
  1182         rm->Insert( reg2 );
  1183     } // End of for all arguments
  1185     // Compute number of stack slots needed to restore stack in case of
  1186     // Pascal-style argument popping.
  1187     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1190   if (is_method_handle_invoke) {
  1191     // Kill some extra stack space in case method handles want to do
  1192     // a little in-place argument insertion.
  1193     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
  1194     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
  1195     // Do not update mcall->_argsize because (a) the extra space is not
  1196     // pushed as arguments and (b) _argsize is dead (not used anywhere).
  1199   // Compute the max stack slot killed by any call.  These will not be
  1200   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1201   // after all call sites have been visited.
  1202   if( _out_arg_limit < out_arg_limit_per_call)
  1203     _out_arg_limit = out_arg_limit_per_call;
  1205   if (mcall) {
  1206     // Kill the outgoing argument area, including any non-argument holes and
  1207     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1208     // Since the max-per-method covers the max-per-call-site and debug info
  1209     // is excluded on the max-per-method basis, debug info cannot land in
  1210     // this killed area.
  1211     uint r_cnt = mcall->tf()->range()->cnt();
  1212     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1213     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
  1214       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1215     } else {
  1216       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1217         proj->_rout.Insert(OptoReg::Name(i));
  1219     if( proj->_rout.is_NotEmpty() )
  1220       _proj_list.push(proj);
  1222   // Transfer the safepoint information from the call to the mcall
  1223   // Move the JVMState list
  1224   msfpt->set_jvms(sfpt->jvms());
  1225   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1226     jvms->set_map(sfpt);
  1229   // Debug inputs begin just after the last incoming parameter
  1230   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1231           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1233   // Move the OopMap
  1234   msfpt->_oop_map = sfpt->_oop_map;
  1236   // Registers killed by the call are set in the local scheduling pass
  1237   // of Global Code Motion.
  1238   return msfpt;
  1241 //---------------------------match_tree----------------------------------------
  1242 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1243 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1244 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1245 // a Load's result RegMask for memoization in idealreg2regmask[]
  1246 MachNode *Matcher::match_tree( const Node *n ) {
  1247   assert( n->Opcode() != Op_Phi, "cannot match" );
  1248   assert( !n->is_block_start(), "cannot match" );
  1249   // Set the mark for all locally allocated State objects.
  1250   // When this call returns, the _states_arena arena will be reset
  1251   // freeing all State objects.
  1252   ResourceMark rm( &_states_arena );
  1254   LabelRootDepth = 0;
  1256   // StoreNodes require their Memory input to match any LoadNodes
  1257   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1258 #ifdef ASSERT
  1259   Node* save_mem_node = _mem_node;
  1260   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1261 #endif
  1262   // State object for root node of match tree
  1263   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1264   State *s = new (&_states_arena) State;
  1265   s->_kids[0] = NULL;
  1266   s->_kids[1] = NULL;
  1267   s->_leaf = (Node*)n;
  1268   // Label the input tree, allocating labels from top-level arena
  1269   Label_Root( n, s, n->in(0), mem );
  1270   if (C->failing())  return NULL;
  1272   // The minimum cost match for the whole tree is found at the root State
  1273   uint mincost = max_juint;
  1274   uint cost = max_juint;
  1275   uint i;
  1276   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1277     if( s->valid(i) &&                // valid entry and
  1278         s->_cost[i] < cost &&         // low cost and
  1279         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1280       cost = s->_cost[mincost=i];
  1282   if (mincost == max_juint) {
  1283 #ifndef PRODUCT
  1284     tty->print("No matching rule for:");
  1285     s->dump();
  1286 #endif
  1287     Matcher::soft_match_failure();
  1288     return NULL;
  1290   // Reduce input tree based upon the state labels to machine Nodes
  1291   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1292 #ifdef ASSERT
  1293   _old2new_map.map(n->_idx, m);
  1294   _new2old_map.map(m->_idx, (Node*)n);
  1295 #endif
  1297   // Add any Matcher-ignored edges
  1298   uint cnt = n->req();
  1299   uint start = 1;
  1300   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1301   if( n->is_AddP() ) {
  1302     assert( mem == (Node*)1, "" );
  1303     start = AddPNode::Base+1;
  1305   for( i = start; i < cnt; i++ ) {
  1306     if( !n->match_edge(i) ) {
  1307       if( i < m->req() )
  1308         m->ins_req( i, n->in(i) );
  1309       else
  1310         m->add_req( n->in(i) );
  1314   debug_only( _mem_node = save_mem_node; )
  1315   return m;
  1319 //------------------------------match_into_reg---------------------------------
  1320 // Choose to either match this Node in a register or part of the current
  1321 // match tree.  Return true for requiring a register and false for matching
  1322 // as part of the current match tree.
  1323 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1325   const Type *t = m->bottom_type();
  1327   if( t->singleton() ) {
  1328     // Never force constants into registers.  Allow them to match as
  1329     // constants or registers.  Copies of the same value will share
  1330     // the same register.  See find_shared_node.
  1331     return false;
  1332   } else {                      // Not a constant
  1333     // Stop recursion if they have different Controls.
  1334     // Slot 0 of constants is not really a Control.
  1335     if( control && m->in(0) && control != m->in(0) ) {
  1337       // Actually, we can live with the most conservative control we
  1338       // find, if it post-dominates the others.  This allows us to
  1339       // pick up load/op/store trees where the load can float a little
  1340       // above the store.
  1341       Node *x = control;
  1342       const uint max_scan = 6;   // Arbitrary scan cutoff
  1343       uint j;
  1344       for( j=0; j<max_scan; j++ ) {
  1345         if( x->is_Region() )    // Bail out at merge points
  1346           return true;
  1347         x = x->in(0);
  1348         if( x == m->in(0) )     // Does 'control' post-dominate
  1349           break;                // m->in(0)?  If so, we can use it
  1351       if( j == max_scan )       // No post-domination before scan end?
  1352         return true;            // Then break the match tree up
  1354     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
  1355       // These are commonly used in address expressions and can
  1356       // efficiently fold into them on X64 in some cases.
  1357       return false;
  1361   // Not forceable cloning.  If shared, put it into a register.
  1362   return shared;
  1366 //------------------------------Instruction Selection--------------------------
  1367 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1368 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1369 // things the Matcher does not match (e.g., Memory), and things with different
  1370 // Controls (hence forced into different blocks).  We pass in the Control
  1371 // selected for this entire State tree.
  1373 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1374 // Store and the Load must have identical Memories (as well as identical
  1375 // pointers).  Since the Matcher does not have anything for Memory (and
  1376 // does not handle DAGs), I have to match the Memory input myself.  If the
  1377 // Tree root is a Store, I require all Loads to have the identical memory.
  1378 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1379   // Since Label_Root is a recursive function, its possible that we might run
  1380   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1381   LabelRootDepth++;
  1382   if (LabelRootDepth > MaxLabelRootDepth) {
  1383     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1384     return NULL;
  1386   uint care = 0;                // Edges matcher cares about
  1387   uint cnt = n->req();
  1388   uint i = 0;
  1390   // Examine children for memory state
  1391   // Can only subsume a child into your match-tree if that child's memory state
  1392   // is not modified along the path to another input.
  1393   // It is unsafe even if the other inputs are separate roots.
  1394   Node *input_mem = NULL;
  1395   for( i = 1; i < cnt; i++ ) {
  1396     if( !n->match_edge(i) ) continue;
  1397     Node *m = n->in(i);         // Get ith input
  1398     assert( m, "expect non-null children" );
  1399     if( m->is_Load() ) {
  1400       if( input_mem == NULL ) {
  1401         input_mem = m->in(MemNode::Memory);
  1402       } else if( input_mem != m->in(MemNode::Memory) ) {
  1403         input_mem = NodeSentinel;
  1408   for( i = 1; i < cnt; i++ ){// For my children
  1409     if( !n->match_edge(i) ) continue;
  1410     Node *m = n->in(i);         // Get ith input
  1411     // Allocate states out of a private arena
  1412     State *s = new (&_states_arena) State;
  1413     svec->_kids[care++] = s;
  1414     assert( care <= 2, "binary only for now" );
  1416     // Recursively label the State tree.
  1417     s->_kids[0] = NULL;
  1418     s->_kids[1] = NULL;
  1419     s->_leaf = m;
  1421     // Check for leaves of the State Tree; things that cannot be a part of
  1422     // the current tree.  If it finds any, that value is matched as a
  1423     // register operand.  If not, then the normal matching is used.
  1424     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1425         //
  1426         // Stop recursion if this is LoadNode and the root of this tree is a
  1427         // StoreNode and the load & store have different memories.
  1428         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1429         // Can NOT include the match of a subtree when its memory state
  1430         // is used by any of the other subtrees
  1431         (input_mem == NodeSentinel) ) {
  1432 #ifndef PRODUCT
  1433       // Print when we exclude matching due to different memory states at input-loads
  1434       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1435         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1436         tty->print_cr("invalid input_mem");
  1438 #endif
  1439       // Switch to a register-only opcode; this value must be in a register
  1440       // and cannot be subsumed as part of a larger instruction.
  1441       s->DFA( m->ideal_reg(), m );
  1443     } else {
  1444       // If match tree has no control and we do, adopt it for entire tree
  1445       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1446         control = m->in(0);         // Pick up control
  1447       // Else match as a normal part of the match tree.
  1448       control = Label_Root(m,s,control,mem);
  1449       if (C->failing()) return NULL;
  1454   // Call DFA to match this node, and return
  1455   svec->DFA( n->Opcode(), n );
  1457 #ifdef ASSERT
  1458   uint x;
  1459   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1460     if( svec->valid(x) )
  1461       break;
  1463   if (x >= _LAST_MACH_OPER) {
  1464     n->dump();
  1465     svec->dump();
  1466     assert( false, "bad AD file" );
  1468 #endif
  1469   return control;
  1473 // Con nodes reduced using the same rule can share their MachNode
  1474 // which reduces the number of copies of a constant in the final
  1475 // program.  The register allocator is free to split uses later to
  1476 // split live ranges.
  1477 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1478   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
  1480   // See if this Con has already been reduced using this rule.
  1481   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1482   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1483   if (last != NULL && rule == last->rule()) {
  1484     // Don't expect control change for DecodeN
  1485     if (leaf->is_DecodeN())
  1486       return last;
  1487     // Get the new space root.
  1488     Node* xroot = new_node(C->root());
  1489     if (xroot == NULL) {
  1490       // This shouldn't happen give the order of matching.
  1491       return NULL;
  1494     // Shared constants need to have their control be root so they
  1495     // can be scheduled properly.
  1496     Node* control = last->in(0);
  1497     if (control != xroot) {
  1498       if (control == NULL || control == C->root()) {
  1499         last->set_req(0, xroot);
  1500       } else {
  1501         assert(false, "unexpected control");
  1502         return NULL;
  1505     return last;
  1507   return NULL;
  1511 //------------------------------ReduceInst-------------------------------------
  1512 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1513 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1514 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1515 // Each MachNode has a number of complicated MachOper operands; each
  1516 // MachOper also covers a further tree of Ideal Nodes.
  1518 // The root of the Ideal match tree is always an instruction, so we enter
  1519 // the recursion here.  After building the MachNode, we need to recurse
  1520 // the tree checking for these cases:
  1521 // (1) Child is an instruction -
  1522 //     Build the instruction (recursively), add it as an edge.
  1523 //     Build a simple operand (register) to hold the result of the instruction.
  1524 // (2) Child is an interior part of an instruction -
  1525 //     Skip over it (do nothing)
  1526 // (3) Child is the start of a operand -
  1527 //     Build the operand, place it inside the instruction
  1528 //     Call ReduceOper.
  1529 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1530   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1532   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1533   if (shared_node != NULL) {
  1534     return shared_node;
  1537   // Build the object to represent this state & prepare for recursive calls
  1538   MachNode *mach = s->MachNodeGenerator( rule, C );
  1539   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1540   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1541   Node *leaf = s->_leaf;
  1542   // Check for instruction or instruction chain rule
  1543   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1544     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1545            "duplicating node that's already been matched");
  1546     // Instruction
  1547     mach->add_req( leaf->in(0) ); // Set initial control
  1548     // Reduce interior of complex instruction
  1549     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1550   } else {
  1551     // Instruction chain rules are data-dependent on their inputs
  1552     mach->add_req(0);             // Set initial control to none
  1553     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1556   // If a Memory was used, insert a Memory edge
  1557   if( mem != (Node*)1 ) {
  1558     mach->ins_req(MemNode::Memory,mem);
  1559 #ifdef ASSERT
  1560     // Verify adr type after matching memory operation
  1561     const MachOper* oper = mach->memory_operand();
  1562     if (oper != NULL && oper != (MachOper*)-1) {
  1563       // It has a unique memory operand.  Find corresponding ideal mem node.
  1564       Node* m = NULL;
  1565       if (leaf->is_Mem()) {
  1566         m = leaf;
  1567       } else {
  1568         m = _mem_node;
  1569         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1571       const Type* mach_at = mach->adr_type();
  1572       // DecodeN node consumed by an address may have different type
  1573       // then its input. Don't compare types for such case.
  1574       if (m->adr_type() != mach_at &&
  1575           (m->in(MemNode::Address)->is_DecodeN() ||
  1576            m->in(MemNode::Address)->is_AddP() &&
  1577            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
  1578            m->in(MemNode::Address)->is_AddP() &&
  1579            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1580            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
  1581         mach_at = m->adr_type();
  1583       if (m->adr_type() != mach_at) {
  1584         m->dump();
  1585         tty->print_cr("mach:");
  1586         mach->dump(1);
  1588       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1590 #endif
  1593   // If the _leaf is an AddP, insert the base edge
  1594   if( leaf->is_AddP() )
  1595     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1597   uint num_proj = _proj_list.size();
  1599   // Perform any 1-to-many expansions required
  1600   MachNode *ex = mach->Expand(s,_proj_list, mem);
  1601   if( ex != mach ) {
  1602     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1603     if( ex->in(1)->is_Con() )
  1604       ex->in(1)->set_req(0, C->root());
  1605     // Remove old node from the graph
  1606     for( uint i=0; i<mach->req(); i++ ) {
  1607       mach->set_req(i,NULL);
  1609 #ifdef ASSERT
  1610     _new2old_map.map(ex->_idx, s->_leaf);
  1611 #endif
  1614   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1615   // via the matcher.  By the time, nodes have been wired into the CFG,
  1616   // and any further nodes generated by expand rules will be left hanging
  1617   // in space, and will not get emitted as output code.  Catch this.
  1618   // Also, catch any new register allocation constraints ("projections")
  1619   // generated belatedly during spill code generation.
  1620   if (_allocation_started) {
  1621     guarantee(ex == mach, "no expand rules during spill generation");
  1622     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1625   if (leaf->is_Con() || leaf->is_DecodeN()) {
  1626     // Record the con for sharing
  1627     _shared_nodes.map(leaf->_idx, ex);
  1630   return ex;
  1633 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1634   // 'op' is what I am expecting to receive
  1635   int op = _leftOp[rule];
  1636   // Operand type to catch childs result
  1637   // This is what my child will give me.
  1638   int opnd_class_instance = s->_rule[op];
  1639   // Choose between operand class or not.
  1640   // This is what I will receive.
  1641   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1642   // New rule for child.  Chase operand classes to get the actual rule.
  1643   int newrule = s->_rule[catch_op];
  1645   if( newrule < NUM_OPERANDS ) {
  1646     // Chain from operand or operand class, may be output of shared node
  1647     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1648             "Bad AD file: Instruction chain rule must chain from operand");
  1649     // Insert operand into array of operands for this instruction
  1650     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1652     ReduceOper( s, newrule, mem, mach );
  1653   } else {
  1654     // Chain from the result of an instruction
  1655     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1656     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1657     Node *mem1 = (Node*)1;
  1658     debug_only(Node *save_mem_node = _mem_node;)
  1659     mach->add_req( ReduceInst(s, newrule, mem1) );
  1660     debug_only(_mem_node = save_mem_node;)
  1662   return;
  1666 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1667   if( s->_leaf->is_Load() ) {
  1668     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1669     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1670     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1671     mem = mem2;
  1673   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1674     if( mach->in(0) == NULL )
  1675       mach->set_req(0, s->_leaf->in(0));
  1678   // Now recursively walk the state tree & add operand list.
  1679   for( uint i=0; i<2; i++ ) {   // binary tree
  1680     State *newstate = s->_kids[i];
  1681     if( newstate == NULL ) break;      // Might only have 1 child
  1682     // 'op' is what I am expecting to receive
  1683     int op;
  1684     if( i == 0 ) {
  1685       op = _leftOp[rule];
  1686     } else {
  1687       op = _rightOp[rule];
  1689     // Operand type to catch childs result
  1690     // This is what my child will give me.
  1691     int opnd_class_instance = newstate->_rule[op];
  1692     // Choose between operand class or not.
  1693     // This is what I will receive.
  1694     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1695     // New rule for child.  Chase operand classes to get the actual rule.
  1696     int newrule = newstate->_rule[catch_op];
  1698     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1699       // Operand/operandClass
  1700       // Insert operand into array of operands for this instruction
  1701       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1702       ReduceOper( newstate, newrule, mem, mach );
  1704     } else {                    // Child is internal operand or new instruction
  1705       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1706         // internal operand --> call ReduceInst_Interior
  1707         // Interior of complex instruction.  Do nothing but recurse.
  1708         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1709       } else {
  1710         // instruction --> call build operand(  ) to catch result
  1711         //             --> ReduceInst( newrule )
  1712         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1713         Node *mem1 = (Node*)1;
  1714         debug_only(Node *save_mem_node = _mem_node;)
  1715         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1716         debug_only(_mem_node = save_mem_node;)
  1719     assert( mach->_opnds[num_opnds-1], "" );
  1721   return num_opnds;
  1724 // This routine walks the interior of possible complex operands.
  1725 // At each point we check our children in the match tree:
  1726 // (1) No children -
  1727 //     We are a leaf; add _leaf field as an input to the MachNode
  1728 // (2) Child is an internal operand -
  1729 //     Skip over it ( do nothing )
  1730 // (3) Child is an instruction -
  1731 //     Call ReduceInst recursively and
  1732 //     and instruction as an input to the MachNode
  1733 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1734   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1735   State *kid = s->_kids[0];
  1736   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1738   // Leaf?  And not subsumed?
  1739   if( kid == NULL && !_swallowed[rule] ) {
  1740     mach->add_req( s->_leaf );  // Add leaf pointer
  1741     return;                     // Bail out
  1744   if( s->_leaf->is_Load() ) {
  1745     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1746     mem = s->_leaf->in(MemNode::Memory);
  1747     debug_only(_mem_node = s->_leaf;)
  1749   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1750     if( !mach->in(0) )
  1751       mach->set_req(0,s->_leaf->in(0));
  1752     else {
  1753       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1757   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1758     int newrule;
  1759     if( i == 0 )
  1760       newrule = kid->_rule[_leftOp[rule]];
  1761     else
  1762       newrule = kid->_rule[_rightOp[rule]];
  1764     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1765       // Internal operand; recurse but do nothing else
  1766       ReduceOper( kid, newrule, mem, mach );
  1768     } else {                    // Child is a new instruction
  1769       // Reduce the instruction, and add a direct pointer from this
  1770       // machine instruction to the newly reduced one.
  1771       Node *mem1 = (Node*)1;
  1772       debug_only(Node *save_mem_node = _mem_node;)
  1773       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1774       debug_only(_mem_node = save_mem_node;)
  1780 // -------------------------------------------------------------------------
  1781 // Java-Java calling convention
  1782 // (what you use when Java calls Java)
  1784 //------------------------------find_receiver----------------------------------
  1785 // For a given signature, return the OptoReg for parameter 0.
  1786 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1787   VMRegPair regs;
  1788   BasicType sig_bt = T_OBJECT;
  1789   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1790   // Return argument 0 register.  In the LP64 build pointers
  1791   // take 2 registers, but the VM wants only the 'main' name.
  1792   return OptoReg::as_OptoReg(regs.first());
  1795 // A method-klass-holder may be passed in the inline_cache_reg
  1796 // and then expanded into the inline_cache_reg and a method_oop register
  1797 //   defined in ad_<arch>.cpp
  1800 //------------------------------find_shared------------------------------------
  1801 // Set bits if Node is shared or otherwise a root
  1802 void Matcher::find_shared( Node *n ) {
  1803   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1804   MStack mstack(C->unique() * 2);
  1805   // Mark nodes as address_visited if they are inputs to an address expression
  1806   VectorSet address_visited(Thread::current()->resource_area());
  1807   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1808   while (mstack.is_nonempty()) {
  1809     n = mstack.node();       // Leave node on stack
  1810     Node_State nstate = mstack.state();
  1811     uint nop = n->Opcode();
  1812     if (nstate == Pre_Visit) {
  1813       if (address_visited.test(n->_idx)) { // Visited in address already?
  1814         // Flag as visited and shared now.
  1815         set_visited(n);
  1817       if (is_visited(n)) {   // Visited already?
  1818         // Node is shared and has no reason to clone.  Flag it as shared.
  1819         // This causes it to match into a register for the sharing.
  1820         set_shared(n);       // Flag as shared and
  1821         mstack.pop();        // remove node from stack
  1822         continue;
  1824       nstate = Visit; // Not already visited; so visit now
  1826     if (nstate == Visit) {
  1827       mstack.set_state(Post_Visit);
  1828       set_visited(n);   // Flag as visited now
  1829       bool mem_op = false;
  1831       switch( nop ) {  // Handle some opcodes special
  1832       case Op_Phi:             // Treat Phis as shared roots
  1833       case Op_Parm:
  1834       case Op_Proj:            // All handled specially during matching
  1835       case Op_SafePointScalarObject:
  1836         set_shared(n);
  1837         set_dontcare(n);
  1838         break;
  1839       case Op_If:
  1840       case Op_CountedLoopEnd:
  1841         mstack.set_state(Alt_Post_Visit); // Alternative way
  1842         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1843         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1844         // Bool and CmpX side-by-side, because it can only get at constants
  1845         // that are at the leaves of Match trees, and the Bool's condition acts
  1846         // as a constant here.
  1847         mstack.push(n->in(1), Visit);         // Clone the Bool
  1848         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1849         continue; // while (mstack.is_nonempty())
  1850       case Op_ConvI2D:         // These forms efficiently match with a prior
  1851       case Op_ConvI2F:         //   Load but not a following Store
  1852         if( n->in(1)->is_Load() &&        // Prior load
  1853             n->outcnt() == 1 &&           // Not already shared
  1854             n->unique_out()->is_Store() ) // Following store
  1855           set_shared(n);       // Force it to be a root
  1856         break;
  1857       case Op_ReverseBytesI:
  1858       case Op_ReverseBytesL:
  1859         if( n->in(1)->is_Load() &&        // Prior load
  1860             n->outcnt() == 1 )            // Not already shared
  1861           set_shared(n);                  // Force it to be a root
  1862         break;
  1863       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1864       case Op_IfFalse:
  1865       case Op_IfTrue:
  1866       case Op_MachProj:
  1867       case Op_MergeMem:
  1868       case Op_Catch:
  1869       case Op_CatchProj:
  1870       case Op_CProj:
  1871       case Op_JumpProj:
  1872       case Op_JProj:
  1873       case Op_NeverBranch:
  1874         set_dontcare(n);
  1875         break;
  1876       case Op_Jump:
  1877         mstack.push(n->in(1), Visit);         // Switch Value
  1878         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1879         continue;                             // while (mstack.is_nonempty())
  1880       case Op_StrComp:
  1881       case Op_StrEquals:
  1882       case Op_StrIndexOf:
  1883       case Op_AryEq:
  1884         set_shared(n); // Force result into register (it will be anyways)
  1885         break;
  1886       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1887         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1888         const TypePtr* tp = tn->type()->is_ptr();
  1889         if (tp->_ptr == TypePtr::AnyNull) {
  1890           tn->set_type(TypePtr::NULL_PTR);
  1892         break;
  1894       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1895         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1896         const TypePtr* tp = tn->type()->make_ptr();
  1897         if (tp && tp->_ptr == TypePtr::AnyNull) {
  1898           tn->set_type(TypeNarrowOop::NULL_PTR);
  1900         break;
  1902       case Op_Binary:         // These are introduced in the Post_Visit state.
  1903         ShouldNotReachHere();
  1904         break;
  1905       case Op_ClearArray:
  1906       case Op_SafePoint:
  1907         mem_op = true;
  1908         break;
  1909       default:
  1910         if( n->is_Store() ) {
  1911           // Do match stores, despite no ideal reg
  1912           mem_op = true;
  1913           break;
  1915         if( n->is_Mem() ) { // Loads and LoadStores
  1916           mem_op = true;
  1917           // Loads must be root of match tree due to prior load conflict
  1918           if( C->subsume_loads() == false )
  1919             set_shared(n);
  1921         // Fall into default case
  1922         if( !n->ideal_reg() )
  1923           set_dontcare(n);  // Unmatchable Nodes
  1924       } // end_switch
  1926       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  1927         Node *m = n->in(i); // Get ith input
  1928         if (m == NULL) continue;  // Ignore NULLs
  1929         uint mop = m->Opcode();
  1931         // Must clone all producers of flags, or we will not match correctly.
  1932         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  1933         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  1934         // are also there, so we may match a float-branch to int-flags and
  1935         // expect the allocator to haul the flags from the int-side to the
  1936         // fp-side.  No can do.
  1937         if( _must_clone[mop] ) {
  1938           mstack.push(m, Visit);
  1939           continue; // for(int i = ...)
  1942         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
  1943           // Bases used in addresses must be shared but since
  1944           // they are shared through a DecodeN they may appear
  1945           // to have a single use so force sharing here.
  1946           set_shared(m->in(AddPNode::Base)->in(1));
  1949         // Clone addressing expressions as they are "free" in memory access instructions
  1950         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  1951           // Some inputs for address expression are not put on stack
  1952           // to avoid marking them as shared and forcing them into register
  1953           // if they are used only in address expressions.
  1954           // But they should be marked as shared if there are other uses
  1955           // besides address expressions.
  1957           Node *off = m->in(AddPNode::Offset);
  1958           if( off->is_Con() &&
  1959               // When there are other uses besides address expressions
  1960               // put it on stack and mark as shared.
  1961               !is_visited(m) ) {
  1962             address_visited.test_set(m->_idx); // Flag as address_visited
  1963             Node *adr = m->in(AddPNode::Address);
  1965             // Intel, ARM and friends can handle 2 adds in addressing mode
  1966             if( clone_shift_expressions && adr->is_AddP() &&
  1967                 // AtomicAdd is not an addressing expression.
  1968                 // Cheap to find it by looking for screwy base.
  1969                 !adr->in(AddPNode::Base)->is_top() &&
  1970                 // Are there other uses besides address expressions?
  1971                 !is_visited(adr) ) {
  1972               address_visited.set(adr->_idx); // Flag as address_visited
  1973               Node *shift = adr->in(AddPNode::Offset);
  1974               // Check for shift by small constant as well
  1975               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  1976                   shift->in(2)->get_int() <= 3 &&
  1977                   // Are there other uses besides address expressions?
  1978                   !is_visited(shift) ) {
  1979                 address_visited.set(shift->_idx); // Flag as address_visited
  1980                 mstack.push(shift->in(2), Visit);
  1981                 Node *conv = shift->in(1);
  1982 #ifdef _LP64
  1983                 // Allow Matcher to match the rule which bypass
  1984                 // ConvI2L operation for an array index on LP64
  1985                 // if the index value is positive.
  1986                 if( conv->Opcode() == Op_ConvI2L &&
  1987                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  1988                     // Are there other uses besides address expressions?
  1989                     !is_visited(conv) ) {
  1990                   address_visited.set(conv->_idx); // Flag as address_visited
  1991                   mstack.push(conv->in(1), Pre_Visit);
  1992                 } else
  1993 #endif
  1994                 mstack.push(conv, Pre_Visit);
  1995               } else {
  1996                 mstack.push(shift, Pre_Visit);
  1998               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  1999               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2000             } else {  // Sparc, Alpha, PPC and friends
  2001               mstack.push(adr, Pre_Visit);
  2004             // Clone X+offset as it also folds into most addressing expressions
  2005             mstack.push(off, Visit);
  2006             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2007             continue; // for(int i = ...)
  2008           } // if( off->is_Con() )
  2009         }   // if( mem_op &&
  2010         mstack.push(m, Pre_Visit);
  2011       }     // for(int i = ...)
  2013     else if (nstate == Alt_Post_Visit) {
  2014       mstack.pop(); // Remove node from stack
  2015       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2016       // shared and all users of the Bool need to move the Cmp in parallel.
  2017       // This leaves both the Bool and the If pointing at the Cmp.  To
  2018       // prevent the Matcher from trying to Match the Cmp along both paths
  2019       // BoolNode::match_edge always returns a zero.
  2021       // We reorder the Op_If in a pre-order manner, so we can visit without
  2022       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2023       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2025     else if (nstate == Post_Visit) {
  2026       mstack.pop(); // Remove node from stack
  2028       // Now hack a few special opcodes
  2029       switch( n->Opcode() ) {       // Handle some opcodes special
  2030       case Op_StorePConditional:
  2031       case Op_StoreIConditional:
  2032       case Op_StoreLConditional:
  2033       case Op_CompareAndSwapI:
  2034       case Op_CompareAndSwapL:
  2035       case Op_CompareAndSwapP:
  2036       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2037         Node *newval = n->in(MemNode::ValueIn );
  2038         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  2039         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  2040         n->set_req(MemNode::ValueIn,pair);
  2041         n->del_req(LoadStoreNode::ExpectedIn);
  2042         break;
  2044       case Op_CMoveD:              // Convert trinary to binary-tree
  2045       case Op_CMoveF:
  2046       case Op_CMoveI:
  2047       case Op_CMoveL:
  2048       case Op_CMoveN:
  2049       case Op_CMoveP: {
  2050         // Restructure into a binary tree for Matching.  It's possible that
  2051         // we could move this code up next to the graph reshaping for IfNodes
  2052         // or vice-versa, but I do not want to debug this for Ladybird.
  2053         // 10/2/2000 CNC.
  2054         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  2055         n->set_req(1,pair1);
  2056         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2057         n->set_req(2,pair2);
  2058         n->del_req(3);
  2059         break;
  2061       case Op_StrEquals: {
  2062         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2063         n->set_req(2,pair1);
  2064         n->set_req(3,n->in(4));
  2065         n->del_req(4);
  2066         break;
  2068       case Op_StrComp:
  2069       case Op_StrIndexOf: {
  2070         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2071         n->set_req(2,pair1);
  2072         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
  2073         n->set_req(3,pair2);
  2074         n->del_req(5);
  2075         n->del_req(4);
  2076         break;
  2078       default:
  2079         break;
  2082     else {
  2083       ShouldNotReachHere();
  2085   } // end of while (mstack.is_nonempty())
  2088 #ifdef ASSERT
  2089 // machine-independent root to machine-dependent root
  2090 void Matcher::dump_old2new_map() {
  2091   _old2new_map.dump();
  2093 #endif
  2095 //---------------------------collect_null_checks-------------------------------
  2096 // Find null checks in the ideal graph; write a machine-specific node for
  2097 // it.  Used by later implicit-null-check handling.  Actually collects
  2098 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2099 // value being tested.
  2100 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2101   Node *iff = proj->in(0);
  2102   if( iff->Opcode() == Op_If ) {
  2103     // During matching If's have Bool & Cmp side-by-side
  2104     BoolNode *b = iff->in(1)->as_Bool();
  2105     Node *cmp = iff->in(2);
  2106     int opc = cmp->Opcode();
  2107     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2109     const Type* ct = cmp->in(2)->bottom_type();
  2110     if (ct == TypePtr::NULL_PTR ||
  2111         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2113       bool push_it = false;
  2114       if( proj->Opcode() == Op_IfTrue ) {
  2115         extern int all_null_checks_found;
  2116         all_null_checks_found++;
  2117         if( b->_test._test == BoolTest::ne ) {
  2118           push_it = true;
  2120       } else {
  2121         assert( proj->Opcode() == Op_IfFalse, "" );
  2122         if( b->_test._test == BoolTest::eq ) {
  2123           push_it = true;
  2126       if( push_it ) {
  2127         _null_check_tests.push(proj);
  2128         Node* val = cmp->in(1);
  2129 #ifdef _LP64
  2130         if (val->bottom_type()->isa_narrowoop() &&
  2131             !Matcher::narrow_oop_use_complex_address()) {
  2132           //
  2133           // Look for DecodeN node which should be pinned to orig_proj.
  2134           // On platforms (Sparc) which can not handle 2 adds
  2135           // in addressing mode we have to keep a DecodeN node and
  2136           // use it to do implicit NULL check in address.
  2137           //
  2138           // DecodeN node was pinned to non-null path (orig_proj) during
  2139           // CastPP transformation in final_graph_reshaping_impl().
  2140           //
  2141           uint cnt = orig_proj->outcnt();
  2142           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2143             Node* d = orig_proj->raw_out(i);
  2144             if (d->is_DecodeN() && d->in(1) == val) {
  2145               val = d;
  2146               val->set_req(0, NULL); // Unpin now.
  2147               // Mark this as special case to distinguish from
  2148               // a regular case: CmpP(DecodeN, NULL).
  2149               val = (Node*)(((intptr_t)val) | 1);
  2150               break;
  2154 #endif
  2155         _null_check_tests.push(val);
  2161 //---------------------------validate_null_checks------------------------------
  2162 // Its possible that the value being NULL checked is not the root of a match
  2163 // tree.  If so, I cannot use the value in an implicit null check.
  2164 void Matcher::validate_null_checks( ) {
  2165   uint cnt = _null_check_tests.size();
  2166   for( uint i=0; i < cnt; i+=2 ) {
  2167     Node *test = _null_check_tests[i];
  2168     Node *val = _null_check_tests[i+1];
  2169     bool is_decoden = ((intptr_t)val) & 1;
  2170     val = (Node*)(((intptr_t)val) & ~1);
  2171     if (has_new_node(val)) {
  2172       Node* new_val = new_node(val);
  2173       if (is_decoden) {
  2174         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
  2175         // Note: new_val may have a control edge if
  2176         // the original ideal node DecodeN was matched before
  2177         // it was unpinned in Matcher::collect_null_checks().
  2178         // Unpin the mach node and mark it.
  2179         new_val->set_req(0, NULL);
  2180         new_val = (Node*)(((intptr_t)new_val) | 1);
  2182       // Is a match-tree root, so replace with the matched value
  2183       _null_check_tests.map(i+1, new_val);
  2184     } else {
  2185       // Yank from candidate list
  2186       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2187       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2188       _null_check_tests.pop();
  2189       _null_check_tests.pop();
  2190       i-=2;
  2196 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
  2197 // acting as an Acquire and thus we don't need an Acquire here.  We
  2198 // retain the Node to act as a compiler ordering barrier.
  2199 bool Matcher::prior_fast_lock( const Node *acq ) {
  2200   Node *r = acq->in(0);
  2201   if( !r->is_Region() || r->req() <= 1 ) return false;
  2202   Node *proj = r->in(1);
  2203   if( !proj->is_Proj() ) return false;
  2204   Node *call = proj->in(0);
  2205   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
  2206     return false;
  2208   return true;
  2211 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
  2212 // acting as a Release and thus we don't need a Release here.  We
  2213 // retain the Node to act as a compiler ordering barrier.
  2214 bool Matcher::post_fast_unlock( const Node *rel ) {
  2215   Compile *C = Compile::current();
  2216   assert( rel->Opcode() == Op_MemBarRelease, "" );
  2217   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
  2218   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2219   Node *ctrl = NULL;
  2220   while( true ) {
  2221     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2222     assert( ctrl->is_Proj(), "only projections here" );
  2223     ProjNode *proj = (ProjNode*)ctrl;
  2224     if( proj->_con == TypeFunc::Control &&
  2225         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2226       break;
  2227     i++;
  2229   Node *iff = NULL;
  2230   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2231     Node *x = ctrl->fast_out(j);
  2232     if( x->is_If() && x->req() > 1 &&
  2233         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2234       iff = x;
  2235       break;
  2238   if( !iff ) return false;
  2239   Node *bol = iff->in(1);
  2240   // The iff might be some random subclass of If or bol might be Con-Top
  2241   if (!bol->is_Bool())  return false;
  2242   assert( bol->req() > 1, "" );
  2243   return (bol->in(1)->Opcode() == Op_FastUnlock);
  2246 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2247 // atomic instruction acting as a store_load barrier without any
  2248 // intervening volatile load, and thus we don't need a barrier here.
  2249 // We retain the Node to act as a compiler ordering barrier.
  2250 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2251   Compile *C = Compile::current();
  2252   assert( vmb->is_MemBar(), "" );
  2253   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2254   const MemBarNode *mem = (const MemBarNode*)vmb;
  2256   // Get the Proj node, ctrl, that can be used to iterate forward
  2257   Node *ctrl = NULL;
  2258   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2259   while( true ) {
  2260     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2261     assert( ctrl->is_Proj(), "only projections here" );
  2262     ProjNode *proj = (ProjNode*)ctrl;
  2263     if( proj->_con == TypeFunc::Control &&
  2264         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2265       break;
  2266     i++;
  2269   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2270     Node *x = ctrl->fast_out(j);
  2271     int xop = x->Opcode();
  2273     // We don't need current barrier if we see another or a lock
  2274     // before seeing volatile load.
  2275     //
  2276     // Op_Fastunlock previously appeared in the Op_* list below.
  2277     // With the advent of 1-0 lock operations we're no longer guaranteed
  2278     // that a monitor exit operation contains a serializing instruction.
  2280     if (xop == Op_MemBarVolatile ||
  2281         xop == Op_FastLock ||
  2282         xop == Op_CompareAndSwapL ||
  2283         xop == Op_CompareAndSwapP ||
  2284         xop == Op_CompareAndSwapN ||
  2285         xop == Op_CompareAndSwapI)
  2286       return true;
  2288     if (x->is_MemBar()) {
  2289       // We must retain this membar if there is an upcoming volatile
  2290       // load, which will be preceded by acquire membar.
  2291       if (xop == Op_MemBarAcquire)
  2292         return false;
  2293       // For other kinds of barriers, check by pretending we
  2294       // are them, and seeing if we can be removed.
  2295       else
  2296         return post_store_load_barrier((const MemBarNode*)x);
  2299     // Delicate code to detect case of an upcoming fastlock block
  2300     if( x->is_If() && x->req() > 1 &&
  2301         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2302       Node *iff = x;
  2303       Node *bol = iff->in(1);
  2304       // The iff might be some random subclass of If or bol might be Con-Top
  2305       if (!bol->is_Bool())  return false;
  2306       assert( bol->req() > 1, "" );
  2307       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2309     // probably not necessary to check for these
  2310     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2311       return false;
  2313   return false;
  2316 //=============================================================================
  2317 //---------------------------State---------------------------------------------
  2318 State::State(void) {
  2319 #ifdef ASSERT
  2320   _id = 0;
  2321   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2322   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2323   //memset(_cost, -1, sizeof(_cost));
  2324   //memset(_rule, -1, sizeof(_rule));
  2325 #endif
  2326   memset(_valid, 0, sizeof(_valid));
  2329 #ifdef ASSERT
  2330 State::~State() {
  2331   _id = 99;
  2332   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2333   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2334   memset(_cost, -3, sizeof(_cost));
  2335   memset(_rule, -3, sizeof(_rule));
  2337 #endif
  2339 #ifndef PRODUCT
  2340 //---------------------------dump----------------------------------------------
  2341 void State::dump() {
  2342   tty->print("\n");
  2343   dump(0);
  2346 void State::dump(int depth) {
  2347   for( int j = 0; j < depth; j++ )
  2348     tty->print("   ");
  2349   tty->print("--N: ");
  2350   _leaf->dump();
  2351   uint i;
  2352   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2353     // Check for valid entry
  2354     if( valid(i) ) {
  2355       for( int j = 0; j < depth; j++ )
  2356         tty->print("   ");
  2357         assert(_cost[i] != max_juint, "cost must be a valid value");
  2358         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2359         tty->print_cr("%s  %d  %s",
  2360                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2362   tty->print_cr("");
  2364   for( i=0; i<2; i++ )
  2365     if( _kids[i] )
  2366       _kids[i]->dump(depth+1);
  2368 #endif

mercurial