src/share/vm/opto/block.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2040
0e35fa8ebccd
child 3040
c7b60b601eb4
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/chaitin.hpp"
    31 #include "opto/loopnode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "utilities/copy.hpp"
    38 // Optimization - Graph Style
    41 //-----------------------------------------------------------------------------
    42 void Block_Array::grow( uint i ) {
    43   assert(i >= Max(), "must be an overflow");
    44   debug_only(_limit = i+1);
    45   if( i < _size )  return;
    46   if( !_size ) {
    47     _size = 1;
    48     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    49     _blocks[0] = NULL;
    50   }
    51   uint old = _size;
    52   while( i >= _size ) _size <<= 1;      // Double to fit
    53   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    54   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    55 }
    57 //=============================================================================
    58 void Block_List::remove(uint i) {
    59   assert(i < _cnt, "index out of bounds");
    60   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    61   pop(); // shrink list by one block
    62 }
    64 void Block_List::insert(uint i, Block *b) {
    65   push(b); // grow list by one block
    66   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    67   _blocks[i] = b;
    68 }
    70 #ifndef PRODUCT
    71 void Block_List::print() {
    72   for (uint i=0; i < size(); i++) {
    73     tty->print("B%d ", _blocks[i]->_pre_order);
    74   }
    75   tty->print("size = %d\n", size());
    76 }
    77 #endif
    79 //=============================================================================
    81 uint Block::code_alignment() {
    82   // Check for Root block
    83   if( _pre_order == 0 ) return CodeEntryAlignment;
    84   // Check for Start block
    85   if( _pre_order == 1 ) return InteriorEntryAlignment;
    86   // Check for loop alignment
    87   if (has_loop_alignment())  return loop_alignment();
    89   return 1;                     // no particular alignment
    90 }
    92 uint Block::compute_loop_alignment() {
    93   Node *h = head();
    94   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
    95     // Pre- and post-loops have low trip count so do not bother with
    96     // NOPs for align loop head.  The constants are hidden from tuning
    97     // but only because my "divide by 4" heuristic surely gets nearly
    98     // all possible gain (a "do not align at all" heuristic has a
    99     // chance of getting a really tiny gain).
   100     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
   101                                 h->as_CountedLoop()->is_post_loop()) )
   102       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
   103     // Loops with low backedge frequency should not be aligned.
   104     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
   105     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
   106       return 1;             // Loop does not loop, more often than not!
   107     }
   108     return OptoLoopAlignment; // Otherwise align loop head
   109   }
   111   return 1;                     // no particular alignment
   112 }
   114 //-----------------------------------------------------------------------------
   115 // Compute the size of first 'inst_cnt' instructions in this block.
   116 // Return the number of instructions left to compute if the block has
   117 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
   118 // exceeds OptoLoopAlignment.
   119 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
   120                                     PhaseRegAlloc* ra) {
   121   uint last_inst = _nodes.size();
   122   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
   123     uint inst_size = _nodes[j]->size(ra);
   124     if( inst_size > 0 ) {
   125       inst_cnt--;
   126       uint sz = sum_size + inst_size;
   127       if( sz <= (uint)OptoLoopAlignment ) {
   128         // Compute size of instructions which fit into fetch buffer only
   129         // since all inst_cnt instructions will not fit even if we align them.
   130         sum_size = sz;
   131       } else {
   132         return 0;
   133       }
   134     }
   135   }
   136   return inst_cnt;
   137 }
   139 //-----------------------------------------------------------------------------
   140 uint Block::find_node( const Node *n ) const {
   141   for( uint i = 0; i < _nodes.size(); i++ ) {
   142     if( _nodes[i] == n )
   143       return i;
   144   }
   145   ShouldNotReachHere();
   146   return 0;
   147 }
   149 // Find and remove n from block list
   150 void Block::find_remove( const Node *n ) {
   151   _nodes.remove(find_node(n));
   152 }
   154 //------------------------------is_Empty---------------------------------------
   155 // Return empty status of a block.  Empty blocks contain only the head, other
   156 // ideal nodes, and an optional trailing goto.
   157 int Block::is_Empty() const {
   159   // Root or start block is not considered empty
   160   if (head()->is_Root() || head()->is_Start()) {
   161     return not_empty;
   162   }
   164   int success_result = completely_empty;
   165   int end_idx = _nodes.size()-1;
   167   // Check for ending goto
   168   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
   169     success_result = empty_with_goto;
   170     end_idx--;
   171   }
   173   // Unreachable blocks are considered empty
   174   if (num_preds() <= 1) {
   175     return success_result;
   176   }
   178   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   179   // turn directly into code, because only MachNodes have non-trivial
   180   // emit() functions.
   181   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
   182     end_idx--;
   183   }
   185   // No room for any interesting instructions?
   186   if (end_idx == 0) {
   187     return success_result;
   188   }
   190   return not_empty;
   191 }
   193 //------------------------------has_uncommon_code------------------------------
   194 // Return true if the block's code implies that it is likely to be
   195 // executed infrequently.  Check to see if the block ends in a Halt or
   196 // a low probability call.
   197 bool Block::has_uncommon_code() const {
   198   Node* en = end();
   200   if (en->is_Goto())
   201     en = en->in(0);
   202   if (en->is_Catch())
   203     en = en->in(0);
   204   if (en->is_Proj() && en->in(0)->is_MachCall()) {
   205     MachCallNode* call = en->in(0)->as_MachCall();
   206     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   207       // This is true for slow-path stubs like new_{instance,array},
   208       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   209       // The magic number corresponds to the probability of an uncommon_trap,
   210       // even though it is a count not a probability.
   211       return true;
   212     }
   213   }
   215   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   216   return op == Op_Halt;
   217 }
   219 //------------------------------is_uncommon------------------------------------
   220 // True if block is low enough frequency or guarded by a test which
   221 // mostly does not go here.
   222 bool Block::is_uncommon( Block_Array &bbs ) const {
   223   // Initial blocks must never be moved, so are never uncommon.
   224   if (head()->is_Root() || head()->is_Start())  return false;
   226   // Check for way-low freq
   227   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   229   // Look for code shape indicating uncommon_trap or slow path
   230   if (has_uncommon_code()) return true;
   232   const float epsilon = 0.05f;
   233   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   234   uint uncommon_preds = 0;
   235   uint freq_preds = 0;
   236   uint uncommon_for_freq_preds = 0;
   238   for( uint i=1; i<num_preds(); i++ ) {
   239     Block* guard = bbs[pred(i)->_idx];
   240     // Check to see if this block follows its guard 1 time out of 10000
   241     // or less.
   242     //
   243     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   244     // we intend to be "uncommon", such as slow-path TLE allocation,
   245     // predicted call failure, and uncommon trap triggers.
   246     //
   247     // Use an epsilon value of 5% to allow for variability in frequency
   248     // predictions and floating point calculations. The net effect is
   249     // that guard_factor is set to 9500.
   250     //
   251     // Ignore low-frequency blocks.
   252     // The next check is (guard->_freq < 1.e-5 * 9500.).
   253     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   254       uncommon_preds++;
   255     } else {
   256       freq_preds++;
   257       if( _freq < guard->_freq * guard_factor ) {
   258         uncommon_for_freq_preds++;
   259       }
   260     }
   261   }
   262   if( num_preds() > 1 &&
   263       // The block is uncommon if all preds are uncommon or
   264       (uncommon_preds == (num_preds()-1) ||
   265       // it is uncommon for all frequent preds.
   266        uncommon_for_freq_preds == freq_preds) ) {
   267     return true;
   268   }
   269   return false;
   270 }
   272 //------------------------------dump-------------------------------------------
   273 #ifndef PRODUCT
   274 void Block::dump_bidx(const Block* orig) const {
   275   if (_pre_order) tty->print("B%d",_pre_order);
   276   else tty->print("N%d", head()->_idx);
   278   if (Verbose && orig != this) {
   279     // Dump the original block's idx
   280     tty->print(" (");
   281     orig->dump_bidx(orig);
   282     tty->print(")");
   283   }
   284 }
   286 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
   287   if (is_connector()) {
   288     for (uint i=1; i<num_preds(); i++) {
   289       Block *p = ((*bbs)[pred(i)->_idx]);
   290       p->dump_pred(bbs, orig);
   291     }
   292   } else {
   293     dump_bidx(orig);
   294     tty->print(" ");
   295   }
   296 }
   298 void Block::dump_head( const Block_Array *bbs ) const {
   299   // Print the basic block
   300   dump_bidx(this);
   301   tty->print(": #\t");
   303   // Print the incoming CFG edges and the outgoing CFG edges
   304   for( uint i=0; i<_num_succs; i++ ) {
   305     non_connector_successor(i)->dump_bidx(_succs[i]);
   306     tty->print(" ");
   307   }
   308   tty->print("<- ");
   309   if( head()->is_block_start() ) {
   310     for (uint i=1; i<num_preds(); i++) {
   311       Node *s = pred(i);
   312       if (bbs) {
   313         Block *p = (*bbs)[s->_idx];
   314         p->dump_pred(bbs, p);
   315       } else {
   316         while (!s->is_block_start())
   317           s = s->in(0);
   318         tty->print("N%d ", s->_idx );
   319       }
   320     }
   321   } else
   322     tty->print("BLOCK HEAD IS JUNK  ");
   324   // Print loop, if any
   325   const Block *bhead = this;    // Head of self-loop
   326   Node *bh = bhead->head();
   327   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
   328     LoopNode *loop = bh->as_Loop();
   329     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
   330     while (bx->is_connector()) {
   331       bx = (*bbs)[bx->pred(1)->_idx];
   332     }
   333     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   334     // Dump any loop-specific bits, especially for CountedLoops.
   335     loop->dump_spec(tty);
   336   } else if (has_loop_alignment()) {
   337     tty->print(" top-of-loop");
   338   }
   339   tty->print(" Freq: %g",_freq);
   340   if( Verbose || WizardMode ) {
   341     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   342     tty->print(" RegPressure: %d",_reg_pressure);
   343     tty->print(" IHRP Index: %d",_ihrp_index);
   344     tty->print(" FRegPressure: %d",_freg_pressure);
   345     tty->print(" FHRP Index: %d",_fhrp_index);
   346   }
   347   tty->print_cr("");
   348 }
   350 void Block::dump() const { dump(0); }
   352 void Block::dump( const Block_Array *bbs ) const {
   353   dump_head(bbs);
   354   uint cnt = _nodes.size();
   355   for( uint i=0; i<cnt; i++ )
   356     _nodes[i]->dump();
   357   tty->print("\n");
   358 }
   359 #endif
   361 //=============================================================================
   362 //------------------------------PhaseCFG---------------------------------------
   363 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
   364   Phase(CFG),
   365   _bbs(a),
   366   _root(r),
   367   _node_latency(NULL)
   368 #ifndef PRODUCT
   369   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   370 #endif
   371 #ifdef ASSERT
   372   , _raw_oops(a)
   373 #endif
   374 {
   375   ResourceMark rm;
   376   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   377   // then Match it into a machine-specific Node.  Then clone the machine
   378   // Node on demand.
   379   Node *x = new (C, 1) GotoNode(NULL);
   380   x->init_req(0, x);
   381   _goto = m.match_tree(x);
   382   assert(_goto != NULL, "");
   383   _goto->set_req(0,_goto);
   385   // Build the CFG in Reverse Post Order
   386   _num_blocks = build_cfg();
   387   _broot = _bbs[_root->_idx];
   388 }
   390 //------------------------------build_cfg--------------------------------------
   391 // Build a proper looking CFG.  Make every block begin with either a StartNode
   392 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   393 // The RootNode both starts and ends it's own block.  Do this with a recursive
   394 // backwards walk over the control edges.
   395 uint PhaseCFG::build_cfg() {
   396   Arena *a = Thread::current()->resource_area();
   397   VectorSet visited(a);
   399   // Allocate stack with enough space to avoid frequent realloc
   400   Node_Stack nstack(a, C->unique() >> 1);
   401   nstack.push(_root, 0);
   402   uint sum = 0;                 // Counter for blocks
   404   while (nstack.is_nonempty()) {
   405     // node and in's index from stack's top
   406     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   407     // only nodes which point to the start of basic block (see below).
   408     Node *np = nstack.node();
   409     // idx > 0, except for the first node (_root) pushed on stack
   410     // at the beginning when idx == 0.
   411     // We will use the condition (idx == 0) later to end the build.
   412     uint idx = nstack.index();
   413     Node *proj = np->in(idx);
   414     const Node *x = proj->is_block_proj();
   415     // Does the block end with a proper block-ending Node?  One of Return,
   416     // If or Goto? (This check should be done for visited nodes also).
   417     if (x == NULL) {                    // Does not end right...
   418       Node *g = _goto->clone(); // Force it to end in a Goto
   419       g->set_req(0, proj);
   420       np->set_req(idx, g);
   421       x = proj = g;
   422     }
   423     if (!visited.test_set(x->_idx)) { // Visit this block once
   424       // Skip any control-pinned middle'in stuff
   425       Node *p = proj;
   426       do {
   427         proj = p;                   // Update pointer to last Control
   428         p = p->in(0);               // Move control forward
   429       } while( !p->is_block_proj() &&
   430                !p->is_block_start() );
   431       // Make the block begin with one of Region or StartNode.
   432       if( !p->is_block_start() ) {
   433         RegionNode *r = new (C, 2) RegionNode( 2 );
   434         r->init_req(1, p);         // Insert RegionNode in the way
   435         proj->set_req(0, r);        // Insert RegionNode in the way
   436         p = r;
   437       }
   438       // 'p' now points to the start of this basic block
   440       // Put self in array of basic blocks
   441       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
   442       _bbs.map(p->_idx,bb);
   443       _bbs.map(x->_idx,bb);
   444       if( x != p )                  // Only for root is x == p
   445         bb->_nodes.push((Node*)x);
   447       // Now handle predecessors
   448       ++sum;                        // Count 1 for self block
   449       uint cnt = bb->num_preds();
   450       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   451         Node *prevproj = p->in(i);  // Get prior input
   452         assert( !prevproj->is_Con(), "dead input not removed" );
   453         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   454         // i.e., it splits at the source (via an IF or SWITCH) and merges
   455         // at the destination (via a many-input Region).
   456         // This breaks critical edges.  The RegionNode to start the block
   457         // will be added when <p,i> is pulled off the node stack
   458         if ( cnt > 2 ) {             // Merging many things?
   459           assert( prevproj== bb->pred(i),"");
   460           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   461             // Force a block on the control-dependent edge
   462             Node *g = _goto->clone();       // Force it to end in a Goto
   463             g->set_req(0,prevproj);
   464             p->set_req(i,g);
   465           }
   466         }
   467         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   468       }
   469     } else { // Post-processing visited nodes
   470       nstack.pop();                 // remove node from stack
   471       // Check if it the fist node pushed on stack at the beginning.
   472       if (idx == 0) break;          // end of the build
   473       // Find predecessor basic block
   474       Block *pb = _bbs[x->_idx];
   475       // Insert into nodes array, if not already there
   476       if( !_bbs.lookup(proj->_idx) ) {
   477         assert( x != proj, "" );
   478         // Map basic block of projection
   479         _bbs.map(proj->_idx,pb);
   480         pb->_nodes.push(proj);
   481       }
   482       // Insert self as a child of my predecessor block
   483       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
   484       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
   485               "too many control users, not a CFG?" );
   486     }
   487   }
   488   // Return number of basic blocks for all children and self
   489   return sum;
   490 }
   492 //------------------------------insert_goto_at---------------------------------
   493 // Inserts a goto & corresponding basic block between
   494 // block[block_no] and its succ_no'th successor block
   495 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   496   // get block with block_no
   497   assert(block_no < _num_blocks, "illegal block number");
   498   Block* in  = _blocks[block_no];
   499   // get successor block succ_no
   500   assert(succ_no < in->_num_succs, "illegal successor number");
   501   Block* out = in->_succs[succ_no];
   502   // Compute frequency of the new block. Do this before inserting
   503   // new block in case succ_prob() needs to infer the probability from
   504   // surrounding blocks.
   505   float freq = in->_freq * in->succ_prob(succ_no);
   506   // get ProjNode corresponding to the succ_no'th successor of the in block
   507   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
   508   // create region for basic block
   509   RegionNode* region = new (C, 2) RegionNode(2);
   510   region->init_req(1, proj);
   511   // setup corresponding basic block
   512   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
   513   _bbs.map(region->_idx, block);
   514   C->regalloc()->set_bad(region->_idx);
   515   // add a goto node
   516   Node* gto = _goto->clone(); // get a new goto node
   517   gto->set_req(0, region);
   518   // add it to the basic block
   519   block->_nodes.push(gto);
   520   _bbs.map(gto->_idx, block);
   521   C->regalloc()->set_bad(gto->_idx);
   522   // hook up successor block
   523   block->_succs.map(block->_num_succs++, out);
   524   // remap successor's predecessors if necessary
   525   for (uint i = 1; i < out->num_preds(); i++) {
   526     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   527   }
   528   // remap predecessor's successor to new block
   529   in->_succs.map(succ_no, block);
   530   // Set the frequency of the new block
   531   block->_freq = freq;
   532   // add new basic block to basic block list
   533   _blocks.insert(block_no + 1, block);
   534   _num_blocks++;
   535 }
   537 //------------------------------no_flip_branch---------------------------------
   538 // Does this block end in a multiway branch that cannot have the default case
   539 // flipped for another case?
   540 static bool no_flip_branch( Block *b ) {
   541   int branch_idx = b->_nodes.size() - b->_num_succs-1;
   542   if( branch_idx < 1 ) return false;
   543   Node *bra = b->_nodes[branch_idx];
   544   if( bra->is_Catch() )
   545     return true;
   546   if( bra->is_Mach() ) {
   547     if( bra->is_MachNullCheck() )
   548       return true;
   549     int iop = bra->as_Mach()->ideal_Opcode();
   550     if( iop == Op_FastLock || iop == Op_FastUnlock )
   551       return true;
   552   }
   553   return false;
   554 }
   556 //------------------------------convert_NeverBranch_to_Goto--------------------
   557 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   558 // true target.  NeverBranch are treated as a conditional branch that always
   559 // goes the same direction for most of the optimizer and are used to give a
   560 // fake exit path to infinite loops.  At this late stage they need to turn
   561 // into Goto's so that when you enter the infinite loop you indeed hang.
   562 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   563   // Find true target
   564   int end_idx = b->end_idx();
   565   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
   566   Block *succ = b->_succs[idx];
   567   Node* gto = _goto->clone(); // get a new goto node
   568   gto->set_req(0, b->head());
   569   Node *bp = b->_nodes[end_idx];
   570   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
   571   _bbs.map(gto->_idx, b);
   572   C->regalloc()->set_bad(gto->_idx);
   573   b->_nodes.pop();              // Yank projections
   574   b->_nodes.pop();              // Yank projections
   575   b->_succs.map(0,succ);        // Map only successor
   576   b->_num_succs = 1;
   577   // remap successor's predecessors if necessary
   578   uint j;
   579   for( j = 1; j < succ->num_preds(); j++)
   580     if( succ->pred(j)->in(0) == bp )
   581       succ->head()->set_req(j, gto);
   582   // Kill alternate exit path
   583   Block *dead = b->_succs[1-idx];
   584   for( j = 1; j < dead->num_preds(); j++)
   585     if( dead->pred(j)->in(0) == bp )
   586       break;
   587   // Scan through block, yanking dead path from
   588   // all regions and phis.
   589   dead->head()->del_req(j);
   590   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
   591     dead->_nodes[k]->del_req(j);
   592 }
   594 //------------------------------move_to_next-----------------------------------
   595 // Helper function to move block bx to the slot following b_index. Return
   596 // true if the move is successful, otherwise false
   597 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
   598   if (bx == NULL) return false;
   600   // Return false if bx is already scheduled.
   601   uint bx_index = bx->_pre_order;
   602   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
   603     return false;
   604   }
   606   // Find the current index of block bx on the block list
   607   bx_index = b_index + 1;
   608   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
   609   assert(_blocks[bx_index] == bx, "block not found");
   611   // If the previous block conditionally falls into bx, return false,
   612   // because moving bx will create an extra jump.
   613   for(uint k = 1; k < bx->num_preds(); k++ ) {
   614     Block* pred = _bbs[bx->pred(k)->_idx];
   615     if (pred == _blocks[bx_index-1]) {
   616       if (pred->_num_succs != 1) {
   617         return false;
   618       }
   619     }
   620   }
   622   // Reinsert bx just past block 'b'
   623   _blocks.remove(bx_index);
   624   _blocks.insert(b_index + 1, bx);
   625   return true;
   626 }
   628 //------------------------------move_to_end------------------------------------
   629 // Move empty and uncommon blocks to the end.
   630 void PhaseCFG::move_to_end(Block *b, uint i) {
   631   int e = b->is_Empty();
   632   if (e != Block::not_empty) {
   633     if (e == Block::empty_with_goto) {
   634       // Remove the goto, but leave the block.
   635       b->_nodes.pop();
   636     }
   637     // Mark this block as a connector block, which will cause it to be
   638     // ignored in certain functions such as non_connector_successor().
   639     b->set_connector();
   640   }
   641   // Move the empty block to the end, and don't recheck.
   642   _blocks.remove(i);
   643   _blocks.push(b);
   644 }
   646 //---------------------------set_loop_alignment--------------------------------
   647 // Set loop alignment for every block
   648 void PhaseCFG::set_loop_alignment() {
   649   uint last = _num_blocks;
   650   assert( _blocks[0] == _broot, "" );
   652   for (uint i = 1; i < last; i++ ) {
   653     Block *b = _blocks[i];
   654     if (b->head()->is_Loop()) {
   655       b->set_loop_alignment(b);
   656     }
   657   }
   658 }
   660 //-----------------------------remove_empty------------------------------------
   661 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
   662 // to the end.
   663 void PhaseCFG::remove_empty() {
   664   // Move uncommon blocks to the end
   665   uint last = _num_blocks;
   666   assert( _blocks[0] == _broot, "" );
   668   for (uint i = 1; i < last; i++) {
   669     Block *b = _blocks[i];
   670     if (b->is_connector()) break;
   672     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   673     // true target.  NeverBranch are treated as a conditional branch that
   674     // always goes the same direction for most of the optimizer and are used
   675     // to give a fake exit path to infinite loops.  At this late stage they
   676     // need to turn into Goto's so that when you enter the infinite loop you
   677     // indeed hang.
   678     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
   679       convert_NeverBranch_to_Goto(b);
   681     // Look for uncommon blocks and move to end.
   682     if (!C->do_freq_based_layout()) {
   683       if( b->is_uncommon(_bbs) ) {
   684         move_to_end(b, i);
   685         last--;                   // No longer check for being uncommon!
   686         if( no_flip_branch(b) ) { // Fall-thru case must follow?
   687           b = _blocks[i];         // Find the fall-thru block
   688           move_to_end(b, i);
   689           last--;
   690         }
   691         i--;                      // backup block counter post-increment
   692       }
   693     }
   694   }
   696   // Move empty blocks to the end
   697   last = _num_blocks;
   698   for (uint i = 1; i < last; i++) {
   699     Block *b = _blocks[i];
   700     if (b->is_Empty() != Block::not_empty) {
   701       move_to_end(b, i);
   702       last--;
   703       i--;
   704     }
   705   } // End of for all blocks
   706 }
   708 //-----------------------------fixup_flow--------------------------------------
   709 // Fix up the final control flow for basic blocks.
   710 void PhaseCFG::fixup_flow() {
   711   // Fixup final control flow for the blocks.  Remove jump-to-next
   712   // block.  If neither arm of a IF follows the conditional branch, we
   713   // have to add a second jump after the conditional.  We place the
   714   // TRUE branch target in succs[0] for both GOTOs and IFs.
   715   for (uint i=0; i < _num_blocks; i++) {
   716     Block *b = _blocks[i];
   717     b->_pre_order = i;          // turn pre-order into block-index
   719     // Connector blocks need no further processing.
   720     if (b->is_connector()) {
   721       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
   722              "All connector blocks should sink to the end");
   723       continue;
   724     }
   725     assert(b->is_Empty() != Block::completely_empty,
   726            "Empty blocks should be connectors");
   728     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
   729     Block *bs0 = b->non_connector_successor(0);
   731     // Check for multi-way branches where I cannot negate the test to
   732     // exchange the true and false targets.
   733     if( no_flip_branch( b ) ) {
   734       // Find fall through case - if must fall into its target
   735       int branch_idx = b->_nodes.size() - b->_num_succs;
   736       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
   737         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
   738         if (p->_con == 0) {
   739           // successor j2 is fall through case
   740           if (b->non_connector_successor(j2) != bnext) {
   741             // but it is not the next block => insert a goto
   742             insert_goto_at(i, j2);
   743           }
   744           // Put taken branch in slot 0
   745           if( j2 == 0 && b->_num_succs == 2) {
   746             // Flip targets in succs map
   747             Block *tbs0 = b->_succs[0];
   748             Block *tbs1 = b->_succs[1];
   749             b->_succs.map( 0, tbs1 );
   750             b->_succs.map( 1, tbs0 );
   751           }
   752           break;
   753         }
   754       }
   755       // Remove all CatchProjs
   756       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
   758     } else if (b->_num_succs == 1) {
   759       // Block ends in a Goto?
   760       if (bnext == bs0) {
   761         // We fall into next block; remove the Goto
   762         b->_nodes.pop();
   763       }
   765     } else if( b->_num_succs == 2 ) { // Block ends in a If?
   766       // Get opcode of 1st projection (matches _succs[0])
   767       // Note: Since this basic block has 2 exits, the last 2 nodes must
   768       //       be projections (in any order), the 3rd last node must be
   769       //       the IfNode (we have excluded other 2-way exits such as
   770       //       CatchNodes already).
   771       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
   772       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
   773       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
   775       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   776       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
   777       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
   779       Block *bs1 = b->non_connector_successor(1);
   781       // Check for neither successor block following the current
   782       // block ending in a conditional. If so, move one of the
   783       // successors after the current one, provided that the
   784       // successor was previously unscheduled, but moveable
   785       // (i.e., all paths to it involve a branch).
   786       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
   787         // Choose the more common successor based on the probability
   788         // of the conditional branch.
   789         Block *bx = bs0;
   790         Block *by = bs1;
   792         // _prob is the probability of taking the true path. Make
   793         // p the probability of taking successor #1.
   794         float p = iff->as_MachIf()->_prob;
   795         if( proj0->Opcode() == Op_IfTrue ) {
   796           p = 1.0 - p;
   797         }
   799         // Prefer successor #1 if p > 0.5
   800         if (p > PROB_FAIR) {
   801           bx = bs1;
   802           by = bs0;
   803         }
   805         // Attempt the more common successor first
   806         if (move_to_next(bx, i)) {
   807           bnext = bx;
   808         } else if (move_to_next(by, i)) {
   809           bnext = by;
   810         }
   811       }
   813       // Check for conditional branching the wrong way.  Negate
   814       // conditional, if needed, so it falls into the following block
   815       // and branches to the not-following block.
   817       // Check for the next block being in succs[0].  We are going to branch
   818       // to succs[0], so we want the fall-thru case as the next block in
   819       // succs[1].
   820       if (bnext == bs0) {
   821         // Fall-thru case in succs[0], so flip targets in succs map
   822         Block *tbs0 = b->_succs[0];
   823         Block *tbs1 = b->_succs[1];
   824         b->_succs.map( 0, tbs1 );
   825         b->_succs.map( 1, tbs0 );
   826         // Flip projection for each target
   827         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
   829       } else if( bnext != bs1 ) {
   830         // Need a double-branch
   831         // The existing conditional branch need not change.
   832         // Add a unconditional branch to the false target.
   833         // Alas, it must appear in its own block and adding a
   834         // block this late in the game is complicated.  Sigh.
   835         insert_goto_at(i, 1);
   836       }
   838       // Make sure we TRUE branch to the target
   839       if( proj0->Opcode() == Op_IfFalse ) {
   840         iff->negate();
   841       }
   843       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
   844       b->_nodes.pop();
   846     } else {
   847       // Multi-exit block, e.g. a switch statement
   848       // But we don't need to do anything here
   849     }
   850   } // End of for all blocks
   851 }
   854 //------------------------------dump-------------------------------------------
   855 #ifndef PRODUCT
   856 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
   857   const Node *x = end->is_block_proj();
   858   assert( x, "not a CFG" );
   860   // Do not visit this block again
   861   if( visited.test_set(x->_idx) ) return;
   863   // Skip through this block
   864   const Node *p = x;
   865   do {
   866     p = p->in(0);               // Move control forward
   867     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
   868   } while( !p->is_block_start() );
   870   // Recursively visit
   871   for( uint i=1; i<p->req(); i++ )
   872     _dump_cfg(p->in(i),visited);
   874   // Dump the block
   875   _bbs[p->_idx]->dump(&_bbs);
   876 }
   878 void PhaseCFG::dump( ) const {
   879   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
   880   if( _blocks.size() ) {        // Did we do basic-block layout?
   881     for( uint i=0; i<_num_blocks; i++ )
   882       _blocks[i]->dump(&_bbs);
   883   } else {                      // Else do it with a DFS
   884     VectorSet visited(_bbs._arena);
   885     _dump_cfg(_root,visited);
   886   }
   887 }
   889 void PhaseCFG::dump_headers() {
   890   for( uint i = 0; i < _num_blocks; i++ ) {
   891     if( _blocks[i] == NULL ) continue;
   892     _blocks[i]->dump_head(&_bbs);
   893   }
   894 }
   896 void PhaseCFG::verify( ) const {
   897 #ifdef ASSERT
   898   // Verify sane CFG
   899   for( uint i = 0; i < _num_blocks; i++ ) {
   900     Block *b = _blocks[i];
   901     uint cnt = b->_nodes.size();
   902     uint j;
   903     for( j = 0; j < cnt; j++ ) {
   904       Node *n = b->_nodes[j];
   905       assert( _bbs[n->_idx] == b, "" );
   906       if( j >= 1 && n->is_Mach() &&
   907           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   908         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
   909                 "CreateEx must be first instruction in block" );
   910       }
   911       for( uint k = 0; k < n->req(); k++ ) {
   912         Node *def = n->in(k);
   913         if( def && def != n ) {
   914           assert( _bbs[def->_idx] || def->is_Con(),
   915                   "must have block; constants for debug info ok" );
   916           // Verify that instructions in the block is in correct order.
   917           // Uses must follow their definition if they are at the same block.
   918           // Mostly done to check that MachSpillCopy nodes are placed correctly
   919           // when CreateEx node is moved in build_ifg_physical().
   920           if( _bbs[def->_idx] == b &&
   921               !(b->head()->is_Loop() && n->is_Phi()) &&
   922               // See (+++) comment in reg_split.cpp
   923               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
   924             bool is_loop = false;
   925             if (n->is_Phi()) {
   926               for( uint l = 1; l < def->req(); l++ ) {
   927                 if (n == def->in(l)) {
   928                   is_loop = true;
   929                   break; // Some kind of loop
   930                 }
   931               }
   932             }
   933             assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
   934           }
   935           if( def->is_SafePointScalarObject() ) {
   936             assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
   937             assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
   938           }
   939         }
   940       }
   941     }
   943     j = b->end_idx();
   944     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
   945     assert( bp, "last instruction must be a block proj" );
   946     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
   947     if( bp->is_Catch() ) {
   948       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
   949       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
   950     }
   951     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
   952       assert( b->_num_succs == 2, "Conditional branch must have two targets");
   953     }
   954   }
   955 #endif
   956 }
   957 #endif
   959 //=============================================================================
   960 //------------------------------UnionFind--------------------------------------
   961 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
   962   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
   963 }
   965 void UnionFind::extend( uint from_idx, uint to_idx ) {
   966   _nesting.check();
   967   if( from_idx >= _max ) {
   968     uint size = 16;
   969     while( size <= from_idx ) size <<=1;
   970     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
   971     _max = size;
   972   }
   973   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
   974   _indices[from_idx] = to_idx;
   975 }
   977 void UnionFind::reset( uint max ) {
   978   assert( max <= max_uint, "Must fit within uint" );
   979   // Force the Union-Find mapping to be at least this large
   980   extend(max,0);
   981   // Initialize to be the ID mapping.
   982   for( uint i=0; i<max; i++ ) map(i,i);
   983 }
   985 //------------------------------Find_compress----------------------------------
   986 // Straight out of Tarjan's union-find algorithm
   987 uint UnionFind::Find_compress( uint idx ) {
   988   uint cur  = idx;
   989   uint next = lookup(cur);
   990   while( next != cur ) {        // Scan chain of equivalences
   991     assert( next < cur, "always union smaller" );
   992     cur = next;                 // until find a fixed-point
   993     next = lookup(cur);
   994   }
   995   // Core of union-find algorithm: update chain of
   996   // equivalences to be equal to the root.
   997   while( idx != next ) {
   998     uint tmp = lookup(idx);
   999     map(idx, next);
  1000     idx = tmp;
  1002   return idx;
  1005 //------------------------------Find_const-------------------------------------
  1006 // Like Find above, but no path compress, so bad asymptotic behavior
  1007 uint UnionFind::Find_const( uint idx ) const {
  1008   if( idx == 0 ) return idx;    // Ignore the zero idx
  1009   // Off the end?  This can happen during debugging dumps
  1010   // when data structures have not finished being updated.
  1011   if( idx >= _max ) return idx;
  1012   uint next = lookup(idx);
  1013   while( next != idx ) {        // Scan chain of equivalences
  1014     idx = next;                 // until find a fixed-point
  1015     next = lookup(idx);
  1017   return next;
  1020 //------------------------------Union------------------------------------------
  1021 // union 2 sets together.
  1022 void UnionFind::Union( uint idx1, uint idx2 ) {
  1023   uint src = Find(idx1);
  1024   uint dst = Find(idx2);
  1025   assert( src, "" );
  1026   assert( dst, "" );
  1027   assert( src < _max, "oob" );
  1028   assert( dst < _max, "oob" );
  1029   assert( src < dst, "always union smaller" );
  1030   map(dst,src);
  1033 #ifndef PRODUCT
  1034 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
  1035   tty->print_cr("---- Edges ----");
  1036   for (int i = 0; i < edges->length(); i++) {
  1037     CFGEdge *e = edges->at(i);
  1038     if (e != NULL) {
  1039       edges->at(i)->dump();
  1044 static void trace_dump(Trace *traces[], int count) {
  1045   tty->print_cr("---- Traces ----");
  1046   for (int i = 0; i < count; i++) {
  1047     Trace *tr = traces[i];
  1048     if (tr != NULL) {
  1049       tr->dump();
  1054 void Trace::dump( ) const {
  1055   tty->print_cr("Trace (freq %f)", first_block()->_freq);
  1056   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1057     tty->print("  B%d", b->_pre_order);
  1058     if (b->head()->is_Loop()) {
  1059       tty->print(" (L%d)", b->compute_loop_alignment());
  1061     if (b->has_loop_alignment()) {
  1062       tty->print(" (T%d)", b->code_alignment());
  1065   tty->cr();
  1068 void CFGEdge::dump( ) const {
  1069   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
  1070              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
  1071   switch(state()) {
  1072   case connected:
  1073     tty->print("connected");
  1074     break;
  1075   case open:
  1076     tty->print("open");
  1077     break;
  1078   case interior:
  1079     tty->print("interior");
  1080     break;
  1082   if (infrequent()) {
  1083     tty->print("  infrequent");
  1085   tty->cr();
  1087 #endif
  1089 //=============================================================================
  1091 //------------------------------edge_order-------------------------------------
  1092 // Comparison function for edges
  1093 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
  1094   float freq0 = (*e0)->freq();
  1095   float freq1 = (*e1)->freq();
  1096   if (freq0 != freq1) {
  1097     return freq0 > freq1 ? -1 : 1;
  1100   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
  1101   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
  1103   return dist1 - dist0;
  1106 //------------------------------trace_frequency_order--------------------------
  1107 // Comparison function for edges
  1108 static int trace_frequency_order(const void *p0, const void *p1) {
  1109   Trace *tr0 = *(Trace **) p0;
  1110   Trace *tr1 = *(Trace **) p1;
  1111   Block *b0 = tr0->first_block();
  1112   Block *b1 = tr1->first_block();
  1114   // The trace of connector blocks goes at the end;
  1115   // we only expect one such trace
  1116   if (b0->is_connector() != b1->is_connector()) {
  1117     return b1->is_connector() ? -1 : 1;
  1120   // Pull more frequently executed blocks to the beginning
  1121   float freq0 = b0->_freq;
  1122   float freq1 = b1->_freq;
  1123   if (freq0 != freq1) {
  1124     return freq0 > freq1 ? -1 : 1;
  1127   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
  1129   return diff;
  1132 //------------------------------find_edges-------------------------------------
  1133 // Find edges of interest, i.e, those which can fall through. Presumes that
  1134 // edges which don't fall through are of low frequency and can be generally
  1135 // ignored.  Initialize the list of traces.
  1136 void PhaseBlockLayout::find_edges()
  1138   // Walk the blocks, creating edges and Traces
  1139   uint i;
  1140   Trace *tr = NULL;
  1141   for (i = 0; i < _cfg._num_blocks; i++) {
  1142     Block *b = _cfg._blocks[i];
  1143     tr = new Trace(b, next, prev);
  1144     traces[tr->id()] = tr;
  1146     // All connector blocks should be at the end of the list
  1147     if (b->is_connector()) break;
  1149     // If this block and the next one have a one-to-one successor
  1150     // predecessor relationship, simply append the next block
  1151     int nfallthru = b->num_fall_throughs();
  1152     while (nfallthru == 1 &&
  1153            b->succ_fall_through(0)) {
  1154       Block *n = b->_succs[0];
  1156       // Skip over single-entry connector blocks, we don't want to
  1157       // add them to the trace.
  1158       while (n->is_connector() && n->num_preds() == 1) {
  1159         n = n->_succs[0];
  1162       // We see a merge point, so stop search for the next block
  1163       if (n->num_preds() != 1) break;
  1165       i++;
  1166       assert(n = _cfg._blocks[i], "expecting next block");
  1167       tr->append(n);
  1168       uf->map(n->_pre_order, tr->id());
  1169       traces[n->_pre_order] = NULL;
  1170       nfallthru = b->num_fall_throughs();
  1171       b = n;
  1174     if (nfallthru > 0) {
  1175       // Create a CFGEdge for each outgoing
  1176       // edge that could be a fall-through.
  1177       for (uint j = 0; j < b->_num_succs; j++ ) {
  1178         if (b->succ_fall_through(j)) {
  1179           Block *target = b->non_connector_successor(j);
  1180           float freq = b->_freq * b->succ_prob(j);
  1181           int from_pct = (int) ((100 * freq) / b->_freq);
  1182           int to_pct = (int) ((100 * freq) / target->_freq);
  1183           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
  1189   // Group connector blocks into one trace
  1190   for (i++; i < _cfg._num_blocks; i++) {
  1191     Block *b = _cfg._blocks[i];
  1192     assert(b->is_connector(), "connector blocks at the end");
  1193     tr->append(b);
  1194     uf->map(b->_pre_order, tr->id());
  1195     traces[b->_pre_order] = NULL;
  1199 //------------------------------union_traces----------------------------------
  1200 // Union two traces together in uf, and null out the trace in the list
  1201 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
  1203   uint old_id = old_trace->id();
  1204   uint updated_id = updated_trace->id();
  1206   uint lo_id = updated_id;
  1207   uint hi_id = old_id;
  1209   // If from is greater than to, swap values to meet
  1210   // UnionFind guarantee.
  1211   if (updated_id > old_id) {
  1212     lo_id = old_id;
  1213     hi_id = updated_id;
  1215     // Fix up the trace ids
  1216     traces[lo_id] = traces[updated_id];
  1217     updated_trace->set_id(lo_id);
  1220   // Union the lower with the higher and remove the pointer
  1221   // to the higher.
  1222   uf->Union(lo_id, hi_id);
  1223   traces[hi_id] = NULL;
  1226 //------------------------------grow_traces-------------------------------------
  1227 // Append traces together via the most frequently executed edges
  1228 void PhaseBlockLayout::grow_traces()
  1230   // Order the edges, and drive the growth of Traces via the most
  1231   // frequently executed edges.
  1232   edges->sort(edge_order);
  1233   for (int i = 0; i < edges->length(); i++) {
  1234     CFGEdge *e = edges->at(i);
  1236     if (e->state() != CFGEdge::open) continue;
  1238     Block *src_block = e->from();
  1239     Block *targ_block = e->to();
  1241     // Don't grow traces along backedges?
  1242     if (!BlockLayoutRotateLoops) {
  1243       if (targ_block->_rpo <= src_block->_rpo) {
  1244         targ_block->set_loop_alignment(targ_block);
  1245         continue;
  1249     Trace *src_trace = trace(src_block);
  1250     Trace *targ_trace = trace(targ_block);
  1252     // If the edge in question can join two traces at their ends,
  1253     // append one trace to the other.
  1254    if (src_trace->last_block() == src_block) {
  1255       if (src_trace == targ_trace) {
  1256         e->set_state(CFGEdge::interior);
  1257         if (targ_trace->backedge(e)) {
  1258           // Reset i to catch any newly eligible edge
  1259           // (Or we could remember the first "open" edge, and reset there)
  1260           i = 0;
  1262       } else if (targ_trace->first_block() == targ_block) {
  1263         e->set_state(CFGEdge::connected);
  1264         src_trace->append(targ_trace);
  1265         union_traces(src_trace, targ_trace);
  1271 //------------------------------merge_traces-----------------------------------
  1272 // Embed one trace into another, if the fork or join points are sufficiently
  1273 // balanced.
  1274 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
  1276   // Walk the edge list a another time, looking at unprocessed edges.
  1277   // Fold in diamonds
  1278   for (int i = 0; i < edges->length(); i++) {
  1279     CFGEdge *e = edges->at(i);
  1281     if (e->state() != CFGEdge::open) continue;
  1282     if (fall_thru_only) {
  1283       if (e->infrequent()) continue;
  1286     Block *src_block = e->from();
  1287     Trace *src_trace = trace(src_block);
  1288     bool src_at_tail = src_trace->last_block() == src_block;
  1290     Block *targ_block  = e->to();
  1291     Trace *targ_trace  = trace(targ_block);
  1292     bool targ_at_start = targ_trace->first_block() == targ_block;
  1294     if (src_trace == targ_trace) {
  1295       // This may be a loop, but we can't do much about it.
  1296       e->set_state(CFGEdge::interior);
  1297       continue;
  1300     if (fall_thru_only) {
  1301       // If the edge links the middle of two traces, we can't do anything.
  1302       // Mark the edge and continue.
  1303       if (!src_at_tail & !targ_at_start) {
  1304         continue;
  1307       // Don't grow traces along backedges?
  1308       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
  1309           continue;
  1312       // If both ends of the edge are available, why didn't we handle it earlier?
  1313       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
  1315       if (targ_at_start) {
  1316         // Insert the "targ" trace in the "src" trace if the insertion point
  1317         // is a two way branch.
  1318         // Better profitability check possible, but may not be worth it.
  1319         // Someday, see if the this "fork" has an associated "join";
  1320         // then make a policy on merging this trace at the fork or join.
  1321         // For example, other things being equal, it may be better to place this
  1322         // trace at the join point if the "src" trace ends in a two-way, but
  1323         // the insertion point is one-way.
  1324         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
  1325         e->set_state(CFGEdge::connected);
  1326         src_trace->insert_after(src_block, targ_trace);
  1327         union_traces(src_trace, targ_trace);
  1328       } else if (src_at_tail) {
  1329         if (src_trace != trace(_cfg._broot)) {
  1330           e->set_state(CFGEdge::connected);
  1331           targ_trace->insert_before(targ_block, src_trace);
  1332           union_traces(targ_trace, src_trace);
  1335     } else if (e->state() == CFGEdge::open) {
  1336       // Append traces, even without a fall-thru connection.
  1337       // But leave root entry at the beginning of the block list.
  1338       if (targ_trace != trace(_cfg._broot)) {
  1339         e->set_state(CFGEdge::connected);
  1340         src_trace->append(targ_trace);
  1341         union_traces(src_trace, targ_trace);
  1347 //----------------------------reorder_traces-----------------------------------
  1348 // Order the sequence of the traces in some desirable way, and fixup the
  1349 // jumps at the end of each block.
  1350 void PhaseBlockLayout::reorder_traces(int count)
  1352   ResourceArea *area = Thread::current()->resource_area();
  1353   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
  1354   Block_List worklist;
  1355   int new_count = 0;
  1357   // Compact the traces.
  1358   for (int i = 0; i < count; i++) {
  1359     Trace *tr = traces[i];
  1360     if (tr != NULL) {
  1361       new_traces[new_count++] = tr;
  1365   // The entry block should be first on the new trace list.
  1366   Trace *tr = trace(_cfg._broot);
  1367   assert(tr == new_traces[0], "entry trace misplaced");
  1369   // Sort the new trace list by frequency
  1370   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
  1372   // Patch up the successor blocks
  1373   _cfg._blocks.reset();
  1374   _cfg._num_blocks = 0;
  1375   for (int i = 0; i < new_count; i++) {
  1376     Trace *tr = new_traces[i];
  1377     if (tr != NULL) {
  1378       tr->fixup_blocks(_cfg);
  1383 //------------------------------PhaseBlockLayout-------------------------------
  1384 // Order basic blocks based on frequency
  1385 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
  1386   Phase(BlockLayout),
  1387   _cfg(cfg)
  1389   ResourceMark rm;
  1390   ResourceArea *area = Thread::current()->resource_area();
  1392   // List of traces
  1393   int size = _cfg._num_blocks + 1;
  1394   traces = NEW_ARENA_ARRAY(area, Trace *, size);
  1395   memset(traces, 0, size*sizeof(Trace*));
  1396   next = NEW_ARENA_ARRAY(area, Block *, size);
  1397   memset(next,   0, size*sizeof(Block *));
  1398   prev = NEW_ARENA_ARRAY(area, Block *, size);
  1399   memset(prev  , 0, size*sizeof(Block *));
  1401   // List of edges
  1402   edges = new GrowableArray<CFGEdge*>;
  1404   // Mapping block index --> block_trace
  1405   uf = new UnionFind(size);
  1406   uf->reset(size);
  1408   // Find edges and create traces.
  1409   find_edges();
  1411   // Grow traces at their ends via most frequent edges.
  1412   grow_traces();
  1414   // Merge one trace into another, but only at fall-through points.
  1415   // This may make diamonds and other related shapes in a trace.
  1416   merge_traces(true);
  1418   // Run merge again, allowing two traces to be catenated, even if
  1419   // one does not fall through into the other. This appends loosely
  1420   // related traces to be near each other.
  1421   merge_traces(false);
  1423   // Re-order all the remaining traces by frequency
  1424   reorder_traces(size);
  1426   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
  1430 //------------------------------backedge---------------------------------------
  1431 // Edge e completes a loop in a trace. If the target block is head of the
  1432 // loop, rotate the loop block so that the loop ends in a conditional branch.
  1433 bool Trace::backedge(CFGEdge *e) {
  1434   bool loop_rotated = false;
  1435   Block *src_block  = e->from();
  1436   Block *targ_block    = e->to();
  1438   assert(last_block() == src_block, "loop discovery at back branch");
  1439   if (first_block() == targ_block) {
  1440     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
  1441       // Find the last block in the trace that has a conditional
  1442       // branch.
  1443       Block *b;
  1444       for (b = last_block(); b != NULL; b = prev(b)) {
  1445         if (b->num_fall_throughs() == 2) {
  1446           break;
  1450       if (b != last_block() && b != NULL) {
  1451         loop_rotated = true;
  1453         // Rotate the loop by doing two-part linked-list surgery.
  1454         append(first_block());
  1455         break_loop_after(b);
  1459     // Backbranch to the top of a trace
  1460     // Scroll forward through the trace from the targ_block. If we find
  1461     // a loop head before another loop top, use the the loop head alignment.
  1462     for (Block *b = targ_block; b != NULL; b = next(b)) {
  1463       if (b->has_loop_alignment()) {
  1464         break;
  1466       if (b->head()->is_Loop()) {
  1467         targ_block = b;
  1468         break;
  1472     first_block()->set_loop_alignment(targ_block);
  1474   } else {
  1475     // Backbranch into the middle of a trace
  1476     targ_block->set_loop_alignment(targ_block);
  1479   return loop_rotated;
  1482 //------------------------------fixup_blocks-----------------------------------
  1483 // push blocks onto the CFG list
  1484 // ensure that blocks have the correct two-way branch sense
  1485 void Trace::fixup_blocks(PhaseCFG &cfg) {
  1486   Block *last = last_block();
  1487   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1488     cfg._blocks.push(b);
  1489     cfg._num_blocks++;
  1490     if (!b->is_connector()) {
  1491       int nfallthru = b->num_fall_throughs();
  1492       if (b != last) {
  1493         if (nfallthru == 2) {
  1494           // Ensure that the sense of the branch is correct
  1495           Block *bnext = next(b);
  1496           Block *bs0 = b->non_connector_successor(0);
  1498           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
  1499           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
  1500           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
  1502           if (bnext == bs0) {
  1503             // Fall-thru case in succs[0], should be in succs[1]
  1505             // Flip targets in _succs map
  1506             Block *tbs0 = b->_succs[0];
  1507             Block *tbs1 = b->_succs[1];
  1508             b->_succs.map( 0, tbs1 );
  1509             b->_succs.map( 1, tbs0 );
  1511             // Flip projections to match targets
  1512             b->_nodes.map(b->_nodes.size()-2, proj1);
  1513             b->_nodes.map(b->_nodes.size()-1, proj0);

mercurial