src/share/vm/opto/block.cpp

Tue, 03 Aug 2010 15:55:03 -0700

author
kvn
date
Tue, 03 Aug 2010 15:55:03 -0700
changeset 2040
0e35fa8ebccd
parent 1907
c18cbe5936b8
child 2314
f95d63e2154a
permissions
-rw-r--r--

6973963: SEGV in ciBlock::start_bci() with EA
Summary: Added more checks into ResourceObj and growableArray to verify correctness of allocation type.
Reviewed-by: never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_block.cpp.incl"
    31 //-----------------------------------------------------------------------------
    32 void Block_Array::grow( uint i ) {
    33   assert(i >= Max(), "must be an overflow");
    34   debug_only(_limit = i+1);
    35   if( i < _size )  return;
    36   if( !_size ) {
    37     _size = 1;
    38     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    39     _blocks[0] = NULL;
    40   }
    41   uint old = _size;
    42   while( i >= _size ) _size <<= 1;      // Double to fit
    43   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    44   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    45 }
    47 //=============================================================================
    48 void Block_List::remove(uint i) {
    49   assert(i < _cnt, "index out of bounds");
    50   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    51   pop(); // shrink list by one block
    52 }
    54 void Block_List::insert(uint i, Block *b) {
    55   push(b); // grow list by one block
    56   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    57   _blocks[i] = b;
    58 }
    60 #ifndef PRODUCT
    61 void Block_List::print() {
    62   for (uint i=0; i < size(); i++) {
    63     tty->print("B%d ", _blocks[i]->_pre_order);
    64   }
    65   tty->print("size = %d\n", size());
    66 }
    67 #endif
    69 //=============================================================================
    71 uint Block::code_alignment() {
    72   // Check for Root block
    73   if( _pre_order == 0 ) return CodeEntryAlignment;
    74   // Check for Start block
    75   if( _pre_order == 1 ) return InteriorEntryAlignment;
    76   // Check for loop alignment
    77   if (has_loop_alignment())  return loop_alignment();
    79   return 1;                     // no particular alignment
    80 }
    82 uint Block::compute_loop_alignment() {
    83   Node *h = head();
    84   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
    85     // Pre- and post-loops have low trip count so do not bother with
    86     // NOPs for align loop head.  The constants are hidden from tuning
    87     // but only because my "divide by 4" heuristic surely gets nearly
    88     // all possible gain (a "do not align at all" heuristic has a
    89     // chance of getting a really tiny gain).
    90     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
    91                                 h->as_CountedLoop()->is_post_loop()) )
    92       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
    93     // Loops with low backedge frequency should not be aligned.
    94     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
    95     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
    96       return 1;             // Loop does not loop, more often than not!
    97     }
    98     return OptoLoopAlignment; // Otherwise align loop head
    99   }
   101   return 1;                     // no particular alignment
   102 }
   104 //-----------------------------------------------------------------------------
   105 // Compute the size of first 'inst_cnt' instructions in this block.
   106 // Return the number of instructions left to compute if the block has
   107 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
   108 // exceeds OptoLoopAlignment.
   109 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
   110                                     PhaseRegAlloc* ra) {
   111   uint last_inst = _nodes.size();
   112   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
   113     uint inst_size = _nodes[j]->size(ra);
   114     if( inst_size > 0 ) {
   115       inst_cnt--;
   116       uint sz = sum_size + inst_size;
   117       if( sz <= (uint)OptoLoopAlignment ) {
   118         // Compute size of instructions which fit into fetch buffer only
   119         // since all inst_cnt instructions will not fit even if we align them.
   120         sum_size = sz;
   121       } else {
   122         return 0;
   123       }
   124     }
   125   }
   126   return inst_cnt;
   127 }
   129 //-----------------------------------------------------------------------------
   130 uint Block::find_node( const Node *n ) const {
   131   for( uint i = 0; i < _nodes.size(); i++ ) {
   132     if( _nodes[i] == n )
   133       return i;
   134   }
   135   ShouldNotReachHere();
   136   return 0;
   137 }
   139 // Find and remove n from block list
   140 void Block::find_remove( const Node *n ) {
   141   _nodes.remove(find_node(n));
   142 }
   144 //------------------------------is_Empty---------------------------------------
   145 // Return empty status of a block.  Empty blocks contain only the head, other
   146 // ideal nodes, and an optional trailing goto.
   147 int Block::is_Empty() const {
   149   // Root or start block is not considered empty
   150   if (head()->is_Root() || head()->is_Start()) {
   151     return not_empty;
   152   }
   154   int success_result = completely_empty;
   155   int end_idx = _nodes.size()-1;
   157   // Check for ending goto
   158   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
   159     success_result = empty_with_goto;
   160     end_idx--;
   161   }
   163   // Unreachable blocks are considered empty
   164   if (num_preds() <= 1) {
   165     return success_result;
   166   }
   168   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   169   // turn directly into code, because only MachNodes have non-trivial
   170   // emit() functions.
   171   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
   172     end_idx--;
   173   }
   175   // No room for any interesting instructions?
   176   if (end_idx == 0) {
   177     return success_result;
   178   }
   180   return not_empty;
   181 }
   183 //------------------------------has_uncommon_code------------------------------
   184 // Return true if the block's code implies that it is likely to be
   185 // executed infrequently.  Check to see if the block ends in a Halt or
   186 // a low probability call.
   187 bool Block::has_uncommon_code() const {
   188   Node* en = end();
   190   if (en->is_Goto())
   191     en = en->in(0);
   192   if (en->is_Catch())
   193     en = en->in(0);
   194   if (en->is_Proj() && en->in(0)->is_MachCall()) {
   195     MachCallNode* call = en->in(0)->as_MachCall();
   196     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   197       // This is true for slow-path stubs like new_{instance,array},
   198       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   199       // The magic number corresponds to the probability of an uncommon_trap,
   200       // even though it is a count not a probability.
   201       return true;
   202     }
   203   }
   205   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   206   return op == Op_Halt;
   207 }
   209 //------------------------------is_uncommon------------------------------------
   210 // True if block is low enough frequency or guarded by a test which
   211 // mostly does not go here.
   212 bool Block::is_uncommon( Block_Array &bbs ) const {
   213   // Initial blocks must never be moved, so are never uncommon.
   214   if (head()->is_Root() || head()->is_Start())  return false;
   216   // Check for way-low freq
   217   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   219   // Look for code shape indicating uncommon_trap or slow path
   220   if (has_uncommon_code()) return true;
   222   const float epsilon = 0.05f;
   223   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   224   uint uncommon_preds = 0;
   225   uint freq_preds = 0;
   226   uint uncommon_for_freq_preds = 0;
   228   for( uint i=1; i<num_preds(); i++ ) {
   229     Block* guard = bbs[pred(i)->_idx];
   230     // Check to see if this block follows its guard 1 time out of 10000
   231     // or less.
   232     //
   233     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   234     // we intend to be "uncommon", such as slow-path TLE allocation,
   235     // predicted call failure, and uncommon trap triggers.
   236     //
   237     // Use an epsilon value of 5% to allow for variability in frequency
   238     // predictions and floating point calculations. The net effect is
   239     // that guard_factor is set to 9500.
   240     //
   241     // Ignore low-frequency blocks.
   242     // The next check is (guard->_freq < 1.e-5 * 9500.).
   243     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   244       uncommon_preds++;
   245     } else {
   246       freq_preds++;
   247       if( _freq < guard->_freq * guard_factor ) {
   248         uncommon_for_freq_preds++;
   249       }
   250     }
   251   }
   252   if( num_preds() > 1 &&
   253       // The block is uncommon if all preds are uncommon or
   254       (uncommon_preds == (num_preds()-1) ||
   255       // it is uncommon for all frequent preds.
   256        uncommon_for_freq_preds == freq_preds) ) {
   257     return true;
   258   }
   259   return false;
   260 }
   262 //------------------------------dump-------------------------------------------
   263 #ifndef PRODUCT
   264 void Block::dump_bidx(const Block* orig) const {
   265   if (_pre_order) tty->print("B%d",_pre_order);
   266   else tty->print("N%d", head()->_idx);
   268   if (Verbose && orig != this) {
   269     // Dump the original block's idx
   270     tty->print(" (");
   271     orig->dump_bidx(orig);
   272     tty->print(")");
   273   }
   274 }
   276 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
   277   if (is_connector()) {
   278     for (uint i=1; i<num_preds(); i++) {
   279       Block *p = ((*bbs)[pred(i)->_idx]);
   280       p->dump_pred(bbs, orig);
   281     }
   282   } else {
   283     dump_bidx(orig);
   284     tty->print(" ");
   285   }
   286 }
   288 void Block::dump_head( const Block_Array *bbs ) const {
   289   // Print the basic block
   290   dump_bidx(this);
   291   tty->print(": #\t");
   293   // Print the incoming CFG edges and the outgoing CFG edges
   294   for( uint i=0; i<_num_succs; i++ ) {
   295     non_connector_successor(i)->dump_bidx(_succs[i]);
   296     tty->print(" ");
   297   }
   298   tty->print("<- ");
   299   if( head()->is_block_start() ) {
   300     for (uint i=1; i<num_preds(); i++) {
   301       Node *s = pred(i);
   302       if (bbs) {
   303         Block *p = (*bbs)[s->_idx];
   304         p->dump_pred(bbs, p);
   305       } else {
   306         while (!s->is_block_start())
   307           s = s->in(0);
   308         tty->print("N%d ", s->_idx );
   309       }
   310     }
   311   } else
   312     tty->print("BLOCK HEAD IS JUNK  ");
   314   // Print loop, if any
   315   const Block *bhead = this;    // Head of self-loop
   316   Node *bh = bhead->head();
   317   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
   318     LoopNode *loop = bh->as_Loop();
   319     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
   320     while (bx->is_connector()) {
   321       bx = (*bbs)[bx->pred(1)->_idx];
   322     }
   323     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   324     // Dump any loop-specific bits, especially for CountedLoops.
   325     loop->dump_spec(tty);
   326   } else if (has_loop_alignment()) {
   327     tty->print(" top-of-loop");
   328   }
   329   tty->print(" Freq: %g",_freq);
   330   if( Verbose || WizardMode ) {
   331     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   332     tty->print(" RegPressure: %d",_reg_pressure);
   333     tty->print(" IHRP Index: %d",_ihrp_index);
   334     tty->print(" FRegPressure: %d",_freg_pressure);
   335     tty->print(" FHRP Index: %d",_fhrp_index);
   336   }
   337   tty->print_cr("");
   338 }
   340 void Block::dump() const { dump(0); }
   342 void Block::dump( const Block_Array *bbs ) const {
   343   dump_head(bbs);
   344   uint cnt = _nodes.size();
   345   for( uint i=0; i<cnt; i++ )
   346     _nodes[i]->dump();
   347   tty->print("\n");
   348 }
   349 #endif
   351 //=============================================================================
   352 //------------------------------PhaseCFG---------------------------------------
   353 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
   354   Phase(CFG),
   355   _bbs(a),
   356   _root(r),
   357   _node_latency(NULL)
   358 #ifndef PRODUCT
   359   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   360 #endif
   361 #ifdef ASSERT
   362   , _raw_oops(a)
   363 #endif
   364 {
   365   ResourceMark rm;
   366   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   367   // then Match it into a machine-specific Node.  Then clone the machine
   368   // Node on demand.
   369   Node *x = new (C, 1) GotoNode(NULL);
   370   x->init_req(0, x);
   371   _goto = m.match_tree(x);
   372   assert(_goto != NULL, "");
   373   _goto->set_req(0,_goto);
   375   // Build the CFG in Reverse Post Order
   376   _num_blocks = build_cfg();
   377   _broot = _bbs[_root->_idx];
   378 }
   380 //------------------------------build_cfg--------------------------------------
   381 // Build a proper looking CFG.  Make every block begin with either a StartNode
   382 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   383 // The RootNode both starts and ends it's own block.  Do this with a recursive
   384 // backwards walk over the control edges.
   385 uint PhaseCFG::build_cfg() {
   386   Arena *a = Thread::current()->resource_area();
   387   VectorSet visited(a);
   389   // Allocate stack with enough space to avoid frequent realloc
   390   Node_Stack nstack(a, C->unique() >> 1);
   391   nstack.push(_root, 0);
   392   uint sum = 0;                 // Counter for blocks
   394   while (nstack.is_nonempty()) {
   395     // node and in's index from stack's top
   396     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   397     // only nodes which point to the start of basic block (see below).
   398     Node *np = nstack.node();
   399     // idx > 0, except for the first node (_root) pushed on stack
   400     // at the beginning when idx == 0.
   401     // We will use the condition (idx == 0) later to end the build.
   402     uint idx = nstack.index();
   403     Node *proj = np->in(idx);
   404     const Node *x = proj->is_block_proj();
   405     // Does the block end with a proper block-ending Node?  One of Return,
   406     // If or Goto? (This check should be done for visited nodes also).
   407     if (x == NULL) {                    // Does not end right...
   408       Node *g = _goto->clone(); // Force it to end in a Goto
   409       g->set_req(0, proj);
   410       np->set_req(idx, g);
   411       x = proj = g;
   412     }
   413     if (!visited.test_set(x->_idx)) { // Visit this block once
   414       // Skip any control-pinned middle'in stuff
   415       Node *p = proj;
   416       do {
   417         proj = p;                   // Update pointer to last Control
   418         p = p->in(0);               // Move control forward
   419       } while( !p->is_block_proj() &&
   420                !p->is_block_start() );
   421       // Make the block begin with one of Region or StartNode.
   422       if( !p->is_block_start() ) {
   423         RegionNode *r = new (C, 2) RegionNode( 2 );
   424         r->init_req(1, p);         // Insert RegionNode in the way
   425         proj->set_req(0, r);        // Insert RegionNode in the way
   426         p = r;
   427       }
   428       // 'p' now points to the start of this basic block
   430       // Put self in array of basic blocks
   431       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
   432       _bbs.map(p->_idx,bb);
   433       _bbs.map(x->_idx,bb);
   434       if( x != p )                  // Only for root is x == p
   435         bb->_nodes.push((Node*)x);
   437       // Now handle predecessors
   438       ++sum;                        // Count 1 for self block
   439       uint cnt = bb->num_preds();
   440       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   441         Node *prevproj = p->in(i);  // Get prior input
   442         assert( !prevproj->is_Con(), "dead input not removed" );
   443         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   444         // i.e., it splits at the source (via an IF or SWITCH) and merges
   445         // at the destination (via a many-input Region).
   446         // This breaks critical edges.  The RegionNode to start the block
   447         // will be added when <p,i> is pulled off the node stack
   448         if ( cnt > 2 ) {             // Merging many things?
   449           assert( prevproj== bb->pred(i),"");
   450           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   451             // Force a block on the control-dependent edge
   452             Node *g = _goto->clone();       // Force it to end in a Goto
   453             g->set_req(0,prevproj);
   454             p->set_req(i,g);
   455           }
   456         }
   457         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   458       }
   459     } else { // Post-processing visited nodes
   460       nstack.pop();                 // remove node from stack
   461       // Check if it the fist node pushed on stack at the beginning.
   462       if (idx == 0) break;          // end of the build
   463       // Find predecessor basic block
   464       Block *pb = _bbs[x->_idx];
   465       // Insert into nodes array, if not already there
   466       if( !_bbs.lookup(proj->_idx) ) {
   467         assert( x != proj, "" );
   468         // Map basic block of projection
   469         _bbs.map(proj->_idx,pb);
   470         pb->_nodes.push(proj);
   471       }
   472       // Insert self as a child of my predecessor block
   473       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
   474       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
   475               "too many control users, not a CFG?" );
   476     }
   477   }
   478   // Return number of basic blocks for all children and self
   479   return sum;
   480 }
   482 //------------------------------insert_goto_at---------------------------------
   483 // Inserts a goto & corresponding basic block between
   484 // block[block_no] and its succ_no'th successor block
   485 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   486   // get block with block_no
   487   assert(block_no < _num_blocks, "illegal block number");
   488   Block* in  = _blocks[block_no];
   489   // get successor block succ_no
   490   assert(succ_no < in->_num_succs, "illegal successor number");
   491   Block* out = in->_succs[succ_no];
   492   // Compute frequency of the new block. Do this before inserting
   493   // new block in case succ_prob() needs to infer the probability from
   494   // surrounding blocks.
   495   float freq = in->_freq * in->succ_prob(succ_no);
   496   // get ProjNode corresponding to the succ_no'th successor of the in block
   497   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
   498   // create region for basic block
   499   RegionNode* region = new (C, 2) RegionNode(2);
   500   region->init_req(1, proj);
   501   // setup corresponding basic block
   502   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
   503   _bbs.map(region->_idx, block);
   504   C->regalloc()->set_bad(region->_idx);
   505   // add a goto node
   506   Node* gto = _goto->clone(); // get a new goto node
   507   gto->set_req(0, region);
   508   // add it to the basic block
   509   block->_nodes.push(gto);
   510   _bbs.map(gto->_idx, block);
   511   C->regalloc()->set_bad(gto->_idx);
   512   // hook up successor block
   513   block->_succs.map(block->_num_succs++, out);
   514   // remap successor's predecessors if necessary
   515   for (uint i = 1; i < out->num_preds(); i++) {
   516     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   517   }
   518   // remap predecessor's successor to new block
   519   in->_succs.map(succ_no, block);
   520   // Set the frequency of the new block
   521   block->_freq = freq;
   522   // add new basic block to basic block list
   523   _blocks.insert(block_no + 1, block);
   524   _num_blocks++;
   525 }
   527 //------------------------------no_flip_branch---------------------------------
   528 // Does this block end in a multiway branch that cannot have the default case
   529 // flipped for another case?
   530 static bool no_flip_branch( Block *b ) {
   531   int branch_idx = b->_nodes.size() - b->_num_succs-1;
   532   if( branch_idx < 1 ) return false;
   533   Node *bra = b->_nodes[branch_idx];
   534   if( bra->is_Catch() )
   535     return true;
   536   if( bra->is_Mach() ) {
   537     if( bra->is_MachNullCheck() )
   538       return true;
   539     int iop = bra->as_Mach()->ideal_Opcode();
   540     if( iop == Op_FastLock || iop == Op_FastUnlock )
   541       return true;
   542   }
   543   return false;
   544 }
   546 //------------------------------convert_NeverBranch_to_Goto--------------------
   547 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   548 // true target.  NeverBranch are treated as a conditional branch that always
   549 // goes the same direction for most of the optimizer and are used to give a
   550 // fake exit path to infinite loops.  At this late stage they need to turn
   551 // into Goto's so that when you enter the infinite loop you indeed hang.
   552 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   553   // Find true target
   554   int end_idx = b->end_idx();
   555   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
   556   Block *succ = b->_succs[idx];
   557   Node* gto = _goto->clone(); // get a new goto node
   558   gto->set_req(0, b->head());
   559   Node *bp = b->_nodes[end_idx];
   560   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
   561   _bbs.map(gto->_idx, b);
   562   C->regalloc()->set_bad(gto->_idx);
   563   b->_nodes.pop();              // Yank projections
   564   b->_nodes.pop();              // Yank projections
   565   b->_succs.map(0,succ);        // Map only successor
   566   b->_num_succs = 1;
   567   // remap successor's predecessors if necessary
   568   uint j;
   569   for( j = 1; j < succ->num_preds(); j++)
   570     if( succ->pred(j)->in(0) == bp )
   571       succ->head()->set_req(j, gto);
   572   // Kill alternate exit path
   573   Block *dead = b->_succs[1-idx];
   574   for( j = 1; j < dead->num_preds(); j++)
   575     if( dead->pred(j)->in(0) == bp )
   576       break;
   577   // Scan through block, yanking dead path from
   578   // all regions and phis.
   579   dead->head()->del_req(j);
   580   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
   581     dead->_nodes[k]->del_req(j);
   582 }
   584 //------------------------------move_to_next-----------------------------------
   585 // Helper function to move block bx to the slot following b_index. Return
   586 // true if the move is successful, otherwise false
   587 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
   588   if (bx == NULL) return false;
   590   // Return false if bx is already scheduled.
   591   uint bx_index = bx->_pre_order;
   592   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
   593     return false;
   594   }
   596   // Find the current index of block bx on the block list
   597   bx_index = b_index + 1;
   598   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
   599   assert(_blocks[bx_index] == bx, "block not found");
   601   // If the previous block conditionally falls into bx, return false,
   602   // because moving bx will create an extra jump.
   603   for(uint k = 1; k < bx->num_preds(); k++ ) {
   604     Block* pred = _bbs[bx->pred(k)->_idx];
   605     if (pred == _blocks[bx_index-1]) {
   606       if (pred->_num_succs != 1) {
   607         return false;
   608       }
   609     }
   610   }
   612   // Reinsert bx just past block 'b'
   613   _blocks.remove(bx_index);
   614   _blocks.insert(b_index + 1, bx);
   615   return true;
   616 }
   618 //------------------------------move_to_end------------------------------------
   619 // Move empty and uncommon blocks to the end.
   620 void PhaseCFG::move_to_end(Block *b, uint i) {
   621   int e = b->is_Empty();
   622   if (e != Block::not_empty) {
   623     if (e == Block::empty_with_goto) {
   624       // Remove the goto, but leave the block.
   625       b->_nodes.pop();
   626     }
   627     // Mark this block as a connector block, which will cause it to be
   628     // ignored in certain functions such as non_connector_successor().
   629     b->set_connector();
   630   }
   631   // Move the empty block to the end, and don't recheck.
   632   _blocks.remove(i);
   633   _blocks.push(b);
   634 }
   636 //---------------------------set_loop_alignment--------------------------------
   637 // Set loop alignment for every block
   638 void PhaseCFG::set_loop_alignment() {
   639   uint last = _num_blocks;
   640   assert( _blocks[0] == _broot, "" );
   642   for (uint i = 1; i < last; i++ ) {
   643     Block *b = _blocks[i];
   644     if (b->head()->is_Loop()) {
   645       b->set_loop_alignment(b);
   646     }
   647   }
   648 }
   650 //-----------------------------remove_empty------------------------------------
   651 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
   652 // to the end.
   653 void PhaseCFG::remove_empty() {
   654   // Move uncommon blocks to the end
   655   uint last = _num_blocks;
   656   assert( _blocks[0] == _broot, "" );
   658   for (uint i = 1; i < last; i++) {
   659     Block *b = _blocks[i];
   660     if (b->is_connector()) break;
   662     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   663     // true target.  NeverBranch are treated as a conditional branch that
   664     // always goes the same direction for most of the optimizer and are used
   665     // to give a fake exit path to infinite loops.  At this late stage they
   666     // need to turn into Goto's so that when you enter the infinite loop you
   667     // indeed hang.
   668     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
   669       convert_NeverBranch_to_Goto(b);
   671     // Look for uncommon blocks and move to end.
   672     if (!C->do_freq_based_layout()) {
   673       if( b->is_uncommon(_bbs) ) {
   674         move_to_end(b, i);
   675         last--;                   // No longer check for being uncommon!
   676         if( no_flip_branch(b) ) { // Fall-thru case must follow?
   677           b = _blocks[i];         // Find the fall-thru block
   678           move_to_end(b, i);
   679           last--;
   680         }
   681         i--;                      // backup block counter post-increment
   682       }
   683     }
   684   }
   686   // Move empty blocks to the end
   687   last = _num_blocks;
   688   for (uint i = 1; i < last; i++) {
   689     Block *b = _blocks[i];
   690     if (b->is_Empty() != Block::not_empty) {
   691       move_to_end(b, i);
   692       last--;
   693       i--;
   694     }
   695   } // End of for all blocks
   696 }
   698 //-----------------------------fixup_flow--------------------------------------
   699 // Fix up the final control flow for basic blocks.
   700 void PhaseCFG::fixup_flow() {
   701   // Fixup final control flow for the blocks.  Remove jump-to-next
   702   // block.  If neither arm of a IF follows the conditional branch, we
   703   // have to add a second jump after the conditional.  We place the
   704   // TRUE branch target in succs[0] for both GOTOs and IFs.
   705   for (uint i=0; i < _num_blocks; i++) {
   706     Block *b = _blocks[i];
   707     b->_pre_order = i;          // turn pre-order into block-index
   709     // Connector blocks need no further processing.
   710     if (b->is_connector()) {
   711       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
   712              "All connector blocks should sink to the end");
   713       continue;
   714     }
   715     assert(b->is_Empty() != Block::completely_empty,
   716            "Empty blocks should be connectors");
   718     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
   719     Block *bs0 = b->non_connector_successor(0);
   721     // Check for multi-way branches where I cannot negate the test to
   722     // exchange the true and false targets.
   723     if( no_flip_branch( b ) ) {
   724       // Find fall through case - if must fall into its target
   725       int branch_idx = b->_nodes.size() - b->_num_succs;
   726       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
   727         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
   728         if (p->_con == 0) {
   729           // successor j2 is fall through case
   730           if (b->non_connector_successor(j2) != bnext) {
   731             // but it is not the next block => insert a goto
   732             insert_goto_at(i, j2);
   733           }
   734           // Put taken branch in slot 0
   735           if( j2 == 0 && b->_num_succs == 2) {
   736             // Flip targets in succs map
   737             Block *tbs0 = b->_succs[0];
   738             Block *tbs1 = b->_succs[1];
   739             b->_succs.map( 0, tbs1 );
   740             b->_succs.map( 1, tbs0 );
   741           }
   742           break;
   743         }
   744       }
   745       // Remove all CatchProjs
   746       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
   748     } else if (b->_num_succs == 1) {
   749       // Block ends in a Goto?
   750       if (bnext == bs0) {
   751         // We fall into next block; remove the Goto
   752         b->_nodes.pop();
   753       }
   755     } else if( b->_num_succs == 2 ) { // Block ends in a If?
   756       // Get opcode of 1st projection (matches _succs[0])
   757       // Note: Since this basic block has 2 exits, the last 2 nodes must
   758       //       be projections (in any order), the 3rd last node must be
   759       //       the IfNode (we have excluded other 2-way exits such as
   760       //       CatchNodes already).
   761       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
   762       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
   763       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
   765       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   766       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
   767       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
   769       Block *bs1 = b->non_connector_successor(1);
   771       // Check for neither successor block following the current
   772       // block ending in a conditional. If so, move one of the
   773       // successors after the current one, provided that the
   774       // successor was previously unscheduled, but moveable
   775       // (i.e., all paths to it involve a branch).
   776       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
   777         // Choose the more common successor based on the probability
   778         // of the conditional branch.
   779         Block *bx = bs0;
   780         Block *by = bs1;
   782         // _prob is the probability of taking the true path. Make
   783         // p the probability of taking successor #1.
   784         float p = iff->as_MachIf()->_prob;
   785         if( proj0->Opcode() == Op_IfTrue ) {
   786           p = 1.0 - p;
   787         }
   789         // Prefer successor #1 if p > 0.5
   790         if (p > PROB_FAIR) {
   791           bx = bs1;
   792           by = bs0;
   793         }
   795         // Attempt the more common successor first
   796         if (move_to_next(bx, i)) {
   797           bnext = bx;
   798         } else if (move_to_next(by, i)) {
   799           bnext = by;
   800         }
   801       }
   803       // Check for conditional branching the wrong way.  Negate
   804       // conditional, if needed, so it falls into the following block
   805       // and branches to the not-following block.
   807       // Check for the next block being in succs[0].  We are going to branch
   808       // to succs[0], so we want the fall-thru case as the next block in
   809       // succs[1].
   810       if (bnext == bs0) {
   811         // Fall-thru case in succs[0], so flip targets in succs map
   812         Block *tbs0 = b->_succs[0];
   813         Block *tbs1 = b->_succs[1];
   814         b->_succs.map( 0, tbs1 );
   815         b->_succs.map( 1, tbs0 );
   816         // Flip projection for each target
   817         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
   819       } else if( bnext != bs1 ) {
   820         // Need a double-branch
   821         // The existing conditional branch need not change.
   822         // Add a unconditional branch to the false target.
   823         // Alas, it must appear in its own block and adding a
   824         // block this late in the game is complicated.  Sigh.
   825         insert_goto_at(i, 1);
   826       }
   828       // Make sure we TRUE branch to the target
   829       if( proj0->Opcode() == Op_IfFalse ) {
   830         iff->negate();
   831       }
   833       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
   834       b->_nodes.pop();
   836     } else {
   837       // Multi-exit block, e.g. a switch statement
   838       // But we don't need to do anything here
   839     }
   840   } // End of for all blocks
   841 }
   844 //------------------------------dump-------------------------------------------
   845 #ifndef PRODUCT
   846 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
   847   const Node *x = end->is_block_proj();
   848   assert( x, "not a CFG" );
   850   // Do not visit this block again
   851   if( visited.test_set(x->_idx) ) return;
   853   // Skip through this block
   854   const Node *p = x;
   855   do {
   856     p = p->in(0);               // Move control forward
   857     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
   858   } while( !p->is_block_start() );
   860   // Recursively visit
   861   for( uint i=1; i<p->req(); i++ )
   862     _dump_cfg(p->in(i),visited);
   864   // Dump the block
   865   _bbs[p->_idx]->dump(&_bbs);
   866 }
   868 void PhaseCFG::dump( ) const {
   869   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
   870   if( _blocks.size() ) {        // Did we do basic-block layout?
   871     for( uint i=0; i<_num_blocks; i++ )
   872       _blocks[i]->dump(&_bbs);
   873   } else {                      // Else do it with a DFS
   874     VectorSet visited(_bbs._arena);
   875     _dump_cfg(_root,visited);
   876   }
   877 }
   879 void PhaseCFG::dump_headers() {
   880   for( uint i = 0; i < _num_blocks; i++ ) {
   881     if( _blocks[i] == NULL ) continue;
   882     _blocks[i]->dump_head(&_bbs);
   883   }
   884 }
   886 void PhaseCFG::verify( ) const {
   887 #ifdef ASSERT
   888   // Verify sane CFG
   889   for( uint i = 0; i < _num_blocks; i++ ) {
   890     Block *b = _blocks[i];
   891     uint cnt = b->_nodes.size();
   892     uint j;
   893     for( j = 0; j < cnt; j++ ) {
   894       Node *n = b->_nodes[j];
   895       assert( _bbs[n->_idx] == b, "" );
   896       if( j >= 1 && n->is_Mach() &&
   897           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   898         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
   899                 "CreateEx must be first instruction in block" );
   900       }
   901       for( uint k = 0; k < n->req(); k++ ) {
   902         Node *def = n->in(k);
   903         if( def && def != n ) {
   904           assert( _bbs[def->_idx] || def->is_Con(),
   905                   "must have block; constants for debug info ok" );
   906           // Verify that instructions in the block is in correct order.
   907           // Uses must follow their definition if they are at the same block.
   908           // Mostly done to check that MachSpillCopy nodes are placed correctly
   909           // when CreateEx node is moved in build_ifg_physical().
   910           if( _bbs[def->_idx] == b &&
   911               !(b->head()->is_Loop() && n->is_Phi()) &&
   912               // See (+++) comment in reg_split.cpp
   913               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
   914             bool is_loop = false;
   915             if (n->is_Phi()) {
   916               for( uint l = 1; l < def->req(); l++ ) {
   917                 if (n == def->in(l)) {
   918                   is_loop = true;
   919                   break; // Some kind of loop
   920                 }
   921               }
   922             }
   923             assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
   924           }
   925           if( def->is_SafePointScalarObject() ) {
   926             assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
   927             assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
   928           }
   929         }
   930       }
   931     }
   933     j = b->end_idx();
   934     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
   935     assert( bp, "last instruction must be a block proj" );
   936     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
   937     if( bp->is_Catch() ) {
   938       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
   939       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
   940     }
   941     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
   942       assert( b->_num_succs == 2, "Conditional branch must have two targets");
   943     }
   944   }
   945 #endif
   946 }
   947 #endif
   949 //=============================================================================
   950 //------------------------------UnionFind--------------------------------------
   951 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
   952   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
   953 }
   955 void UnionFind::extend( uint from_idx, uint to_idx ) {
   956   _nesting.check();
   957   if( from_idx >= _max ) {
   958     uint size = 16;
   959     while( size <= from_idx ) size <<=1;
   960     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
   961     _max = size;
   962   }
   963   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
   964   _indices[from_idx] = to_idx;
   965 }
   967 void UnionFind::reset( uint max ) {
   968   assert( max <= max_uint, "Must fit within uint" );
   969   // Force the Union-Find mapping to be at least this large
   970   extend(max,0);
   971   // Initialize to be the ID mapping.
   972   for( uint i=0; i<max; i++ ) map(i,i);
   973 }
   975 //------------------------------Find_compress----------------------------------
   976 // Straight out of Tarjan's union-find algorithm
   977 uint UnionFind::Find_compress( uint idx ) {
   978   uint cur  = idx;
   979   uint next = lookup(cur);
   980   while( next != cur ) {        // Scan chain of equivalences
   981     assert( next < cur, "always union smaller" );
   982     cur = next;                 // until find a fixed-point
   983     next = lookup(cur);
   984   }
   985   // Core of union-find algorithm: update chain of
   986   // equivalences to be equal to the root.
   987   while( idx != next ) {
   988     uint tmp = lookup(idx);
   989     map(idx, next);
   990     idx = tmp;
   991   }
   992   return idx;
   993 }
   995 //------------------------------Find_const-------------------------------------
   996 // Like Find above, but no path compress, so bad asymptotic behavior
   997 uint UnionFind::Find_const( uint idx ) const {
   998   if( idx == 0 ) return idx;    // Ignore the zero idx
   999   // Off the end?  This can happen during debugging dumps
  1000   // when data structures have not finished being updated.
  1001   if( idx >= _max ) return idx;
  1002   uint next = lookup(idx);
  1003   while( next != idx ) {        // Scan chain of equivalences
  1004     idx = next;                 // until find a fixed-point
  1005     next = lookup(idx);
  1007   return next;
  1010 //------------------------------Union------------------------------------------
  1011 // union 2 sets together.
  1012 void UnionFind::Union( uint idx1, uint idx2 ) {
  1013   uint src = Find(idx1);
  1014   uint dst = Find(idx2);
  1015   assert( src, "" );
  1016   assert( dst, "" );
  1017   assert( src < _max, "oob" );
  1018   assert( dst < _max, "oob" );
  1019   assert( src < dst, "always union smaller" );
  1020   map(dst,src);
  1023 #ifndef PRODUCT
  1024 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
  1025   tty->print_cr("---- Edges ----");
  1026   for (int i = 0; i < edges->length(); i++) {
  1027     CFGEdge *e = edges->at(i);
  1028     if (e != NULL) {
  1029       edges->at(i)->dump();
  1034 static void trace_dump(Trace *traces[], int count) {
  1035   tty->print_cr("---- Traces ----");
  1036   for (int i = 0; i < count; i++) {
  1037     Trace *tr = traces[i];
  1038     if (tr != NULL) {
  1039       tr->dump();
  1044 void Trace::dump( ) const {
  1045   tty->print_cr("Trace (freq %f)", first_block()->_freq);
  1046   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1047     tty->print("  B%d", b->_pre_order);
  1048     if (b->head()->is_Loop()) {
  1049       tty->print(" (L%d)", b->compute_loop_alignment());
  1051     if (b->has_loop_alignment()) {
  1052       tty->print(" (T%d)", b->code_alignment());
  1055   tty->cr();
  1058 void CFGEdge::dump( ) const {
  1059   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
  1060              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
  1061   switch(state()) {
  1062   case connected:
  1063     tty->print("connected");
  1064     break;
  1065   case open:
  1066     tty->print("open");
  1067     break;
  1068   case interior:
  1069     tty->print("interior");
  1070     break;
  1072   if (infrequent()) {
  1073     tty->print("  infrequent");
  1075   tty->cr();
  1077 #endif
  1079 //=============================================================================
  1081 //------------------------------edge_order-------------------------------------
  1082 // Comparison function for edges
  1083 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
  1084   float freq0 = (*e0)->freq();
  1085   float freq1 = (*e1)->freq();
  1086   if (freq0 != freq1) {
  1087     return freq0 > freq1 ? -1 : 1;
  1090   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
  1091   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
  1093   return dist1 - dist0;
  1096 //------------------------------trace_frequency_order--------------------------
  1097 // Comparison function for edges
  1098 static int trace_frequency_order(const void *p0, const void *p1) {
  1099   Trace *tr0 = *(Trace **) p0;
  1100   Trace *tr1 = *(Trace **) p1;
  1101   Block *b0 = tr0->first_block();
  1102   Block *b1 = tr1->first_block();
  1104   // The trace of connector blocks goes at the end;
  1105   // we only expect one such trace
  1106   if (b0->is_connector() != b1->is_connector()) {
  1107     return b1->is_connector() ? -1 : 1;
  1110   // Pull more frequently executed blocks to the beginning
  1111   float freq0 = b0->_freq;
  1112   float freq1 = b1->_freq;
  1113   if (freq0 != freq1) {
  1114     return freq0 > freq1 ? -1 : 1;
  1117   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
  1119   return diff;
  1122 //------------------------------find_edges-------------------------------------
  1123 // Find edges of interest, i.e, those which can fall through. Presumes that
  1124 // edges which don't fall through are of low frequency and can be generally
  1125 // ignored.  Initialize the list of traces.
  1126 void PhaseBlockLayout::find_edges()
  1128   // Walk the blocks, creating edges and Traces
  1129   uint i;
  1130   Trace *tr = NULL;
  1131   for (i = 0; i < _cfg._num_blocks; i++) {
  1132     Block *b = _cfg._blocks[i];
  1133     tr = new Trace(b, next, prev);
  1134     traces[tr->id()] = tr;
  1136     // All connector blocks should be at the end of the list
  1137     if (b->is_connector()) break;
  1139     // If this block and the next one have a one-to-one successor
  1140     // predecessor relationship, simply append the next block
  1141     int nfallthru = b->num_fall_throughs();
  1142     while (nfallthru == 1 &&
  1143            b->succ_fall_through(0)) {
  1144       Block *n = b->_succs[0];
  1146       // Skip over single-entry connector blocks, we don't want to
  1147       // add them to the trace.
  1148       while (n->is_connector() && n->num_preds() == 1) {
  1149         n = n->_succs[0];
  1152       // We see a merge point, so stop search for the next block
  1153       if (n->num_preds() != 1) break;
  1155       i++;
  1156       assert(n = _cfg._blocks[i], "expecting next block");
  1157       tr->append(n);
  1158       uf->map(n->_pre_order, tr->id());
  1159       traces[n->_pre_order] = NULL;
  1160       nfallthru = b->num_fall_throughs();
  1161       b = n;
  1164     if (nfallthru > 0) {
  1165       // Create a CFGEdge for each outgoing
  1166       // edge that could be a fall-through.
  1167       for (uint j = 0; j < b->_num_succs; j++ ) {
  1168         if (b->succ_fall_through(j)) {
  1169           Block *target = b->non_connector_successor(j);
  1170           float freq = b->_freq * b->succ_prob(j);
  1171           int from_pct = (int) ((100 * freq) / b->_freq);
  1172           int to_pct = (int) ((100 * freq) / target->_freq);
  1173           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
  1179   // Group connector blocks into one trace
  1180   for (i++; i < _cfg._num_blocks; i++) {
  1181     Block *b = _cfg._blocks[i];
  1182     assert(b->is_connector(), "connector blocks at the end");
  1183     tr->append(b);
  1184     uf->map(b->_pre_order, tr->id());
  1185     traces[b->_pre_order] = NULL;
  1189 //------------------------------union_traces----------------------------------
  1190 // Union two traces together in uf, and null out the trace in the list
  1191 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
  1193   uint old_id = old_trace->id();
  1194   uint updated_id = updated_trace->id();
  1196   uint lo_id = updated_id;
  1197   uint hi_id = old_id;
  1199   // If from is greater than to, swap values to meet
  1200   // UnionFind guarantee.
  1201   if (updated_id > old_id) {
  1202     lo_id = old_id;
  1203     hi_id = updated_id;
  1205     // Fix up the trace ids
  1206     traces[lo_id] = traces[updated_id];
  1207     updated_trace->set_id(lo_id);
  1210   // Union the lower with the higher and remove the pointer
  1211   // to the higher.
  1212   uf->Union(lo_id, hi_id);
  1213   traces[hi_id] = NULL;
  1216 //------------------------------grow_traces-------------------------------------
  1217 // Append traces together via the most frequently executed edges
  1218 void PhaseBlockLayout::grow_traces()
  1220   // Order the edges, and drive the growth of Traces via the most
  1221   // frequently executed edges.
  1222   edges->sort(edge_order);
  1223   for (int i = 0; i < edges->length(); i++) {
  1224     CFGEdge *e = edges->at(i);
  1226     if (e->state() != CFGEdge::open) continue;
  1228     Block *src_block = e->from();
  1229     Block *targ_block = e->to();
  1231     // Don't grow traces along backedges?
  1232     if (!BlockLayoutRotateLoops) {
  1233       if (targ_block->_rpo <= src_block->_rpo) {
  1234         targ_block->set_loop_alignment(targ_block);
  1235         continue;
  1239     Trace *src_trace = trace(src_block);
  1240     Trace *targ_trace = trace(targ_block);
  1242     // If the edge in question can join two traces at their ends,
  1243     // append one trace to the other.
  1244    if (src_trace->last_block() == src_block) {
  1245       if (src_trace == targ_trace) {
  1246         e->set_state(CFGEdge::interior);
  1247         if (targ_trace->backedge(e)) {
  1248           // Reset i to catch any newly eligible edge
  1249           // (Or we could remember the first "open" edge, and reset there)
  1250           i = 0;
  1252       } else if (targ_trace->first_block() == targ_block) {
  1253         e->set_state(CFGEdge::connected);
  1254         src_trace->append(targ_trace);
  1255         union_traces(src_trace, targ_trace);
  1261 //------------------------------merge_traces-----------------------------------
  1262 // Embed one trace into another, if the fork or join points are sufficiently
  1263 // balanced.
  1264 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
  1266   // Walk the edge list a another time, looking at unprocessed edges.
  1267   // Fold in diamonds
  1268   for (int i = 0; i < edges->length(); i++) {
  1269     CFGEdge *e = edges->at(i);
  1271     if (e->state() != CFGEdge::open) continue;
  1272     if (fall_thru_only) {
  1273       if (e->infrequent()) continue;
  1276     Block *src_block = e->from();
  1277     Trace *src_trace = trace(src_block);
  1278     bool src_at_tail = src_trace->last_block() == src_block;
  1280     Block *targ_block  = e->to();
  1281     Trace *targ_trace  = trace(targ_block);
  1282     bool targ_at_start = targ_trace->first_block() == targ_block;
  1284     if (src_trace == targ_trace) {
  1285       // This may be a loop, but we can't do much about it.
  1286       e->set_state(CFGEdge::interior);
  1287       continue;
  1290     if (fall_thru_only) {
  1291       // If the edge links the middle of two traces, we can't do anything.
  1292       // Mark the edge and continue.
  1293       if (!src_at_tail & !targ_at_start) {
  1294         continue;
  1297       // Don't grow traces along backedges?
  1298       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
  1299           continue;
  1302       // If both ends of the edge are available, why didn't we handle it earlier?
  1303       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
  1305       if (targ_at_start) {
  1306         // Insert the "targ" trace in the "src" trace if the insertion point
  1307         // is a two way branch.
  1308         // Better profitability check possible, but may not be worth it.
  1309         // Someday, see if the this "fork" has an associated "join";
  1310         // then make a policy on merging this trace at the fork or join.
  1311         // For example, other things being equal, it may be better to place this
  1312         // trace at the join point if the "src" trace ends in a two-way, but
  1313         // the insertion point is one-way.
  1314         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
  1315         e->set_state(CFGEdge::connected);
  1316         src_trace->insert_after(src_block, targ_trace);
  1317         union_traces(src_trace, targ_trace);
  1318       } else if (src_at_tail) {
  1319         if (src_trace != trace(_cfg._broot)) {
  1320           e->set_state(CFGEdge::connected);
  1321           targ_trace->insert_before(targ_block, src_trace);
  1322           union_traces(targ_trace, src_trace);
  1325     } else if (e->state() == CFGEdge::open) {
  1326       // Append traces, even without a fall-thru connection.
  1327       // But leave root entry at the beginning of the block list.
  1328       if (targ_trace != trace(_cfg._broot)) {
  1329         e->set_state(CFGEdge::connected);
  1330         src_trace->append(targ_trace);
  1331         union_traces(src_trace, targ_trace);
  1337 //----------------------------reorder_traces-----------------------------------
  1338 // Order the sequence of the traces in some desirable way, and fixup the
  1339 // jumps at the end of each block.
  1340 void PhaseBlockLayout::reorder_traces(int count)
  1342   ResourceArea *area = Thread::current()->resource_area();
  1343   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
  1344   Block_List worklist;
  1345   int new_count = 0;
  1347   // Compact the traces.
  1348   for (int i = 0; i < count; i++) {
  1349     Trace *tr = traces[i];
  1350     if (tr != NULL) {
  1351       new_traces[new_count++] = tr;
  1355   // The entry block should be first on the new trace list.
  1356   Trace *tr = trace(_cfg._broot);
  1357   assert(tr == new_traces[0], "entry trace misplaced");
  1359   // Sort the new trace list by frequency
  1360   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
  1362   // Patch up the successor blocks
  1363   _cfg._blocks.reset();
  1364   _cfg._num_blocks = 0;
  1365   for (int i = 0; i < new_count; i++) {
  1366     Trace *tr = new_traces[i];
  1367     if (tr != NULL) {
  1368       tr->fixup_blocks(_cfg);
  1373 //------------------------------PhaseBlockLayout-------------------------------
  1374 // Order basic blocks based on frequency
  1375 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
  1376   Phase(BlockLayout),
  1377   _cfg(cfg)
  1379   ResourceMark rm;
  1380   ResourceArea *area = Thread::current()->resource_area();
  1382   // List of traces
  1383   int size = _cfg._num_blocks + 1;
  1384   traces = NEW_ARENA_ARRAY(area, Trace *, size);
  1385   memset(traces, 0, size*sizeof(Trace*));
  1386   next = NEW_ARENA_ARRAY(area, Block *, size);
  1387   memset(next,   0, size*sizeof(Block *));
  1388   prev = NEW_ARENA_ARRAY(area, Block *, size);
  1389   memset(prev  , 0, size*sizeof(Block *));
  1391   // List of edges
  1392   edges = new GrowableArray<CFGEdge*>;
  1394   // Mapping block index --> block_trace
  1395   uf = new UnionFind(size);
  1396   uf->reset(size);
  1398   // Find edges and create traces.
  1399   find_edges();
  1401   // Grow traces at their ends via most frequent edges.
  1402   grow_traces();
  1404   // Merge one trace into another, but only at fall-through points.
  1405   // This may make diamonds and other related shapes in a trace.
  1406   merge_traces(true);
  1408   // Run merge again, allowing two traces to be catenated, even if
  1409   // one does not fall through into the other. This appends loosely
  1410   // related traces to be near each other.
  1411   merge_traces(false);
  1413   // Re-order all the remaining traces by frequency
  1414   reorder_traces(size);
  1416   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
  1420 //------------------------------backedge---------------------------------------
  1421 // Edge e completes a loop in a trace. If the target block is head of the
  1422 // loop, rotate the loop block so that the loop ends in a conditional branch.
  1423 bool Trace::backedge(CFGEdge *e) {
  1424   bool loop_rotated = false;
  1425   Block *src_block  = e->from();
  1426   Block *targ_block    = e->to();
  1428   assert(last_block() == src_block, "loop discovery at back branch");
  1429   if (first_block() == targ_block) {
  1430     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
  1431       // Find the last block in the trace that has a conditional
  1432       // branch.
  1433       Block *b;
  1434       for (b = last_block(); b != NULL; b = prev(b)) {
  1435         if (b->num_fall_throughs() == 2) {
  1436           break;
  1440       if (b != last_block() && b != NULL) {
  1441         loop_rotated = true;
  1443         // Rotate the loop by doing two-part linked-list surgery.
  1444         append(first_block());
  1445         break_loop_after(b);
  1449     // Backbranch to the top of a trace
  1450     // Scroll forward through the trace from the targ_block. If we find
  1451     // a loop head before another loop top, use the the loop head alignment.
  1452     for (Block *b = targ_block; b != NULL; b = next(b)) {
  1453       if (b->has_loop_alignment()) {
  1454         break;
  1456       if (b->head()->is_Loop()) {
  1457         targ_block = b;
  1458         break;
  1462     first_block()->set_loop_alignment(targ_block);
  1464   } else {
  1465     // Backbranch into the middle of a trace
  1466     targ_block->set_loop_alignment(targ_block);
  1469   return loop_rotated;
  1472 //------------------------------fixup_blocks-----------------------------------
  1473 // push blocks onto the CFG list
  1474 // ensure that blocks have the correct two-way branch sense
  1475 void Trace::fixup_blocks(PhaseCFG &cfg) {
  1476   Block *last = last_block();
  1477   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1478     cfg._blocks.push(b);
  1479     cfg._num_blocks++;
  1480     if (!b->is_connector()) {
  1481       int nfallthru = b->num_fall_throughs();
  1482       if (b != last) {
  1483         if (nfallthru == 2) {
  1484           // Ensure that the sense of the branch is correct
  1485           Block *bnext = next(b);
  1486           Block *bs0 = b->non_connector_successor(0);
  1488           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
  1489           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
  1490           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
  1492           if (bnext == bs0) {
  1493             // Fall-thru case in succs[0], should be in succs[1]
  1495             // Flip targets in _succs map
  1496             Block *tbs0 = b->_succs[0];
  1497             Block *tbs1 = b->_succs[1];
  1498             b->_succs.map( 0, tbs1 );
  1499             b->_succs.map( 1, tbs0 );
  1501             // Flip projections to match targets
  1502             b->_nodes.map(b->_nodes.size()-2, proj1);
  1503             b->_nodes.map(b->_nodes.size()-1, proj0);

mercurial