src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2062
0ce1569c90e5
child 2315
631f79e71e90
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)  // parallel only
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 protected:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   virtual size_t default_init_heap_size() {
   110     // Pick some reasonable default.
   111     return 8*M;
   112   }
   114   double _cur_collection_start_sec;
   115   size_t _cur_collection_pause_used_at_start_bytes;
   116   size_t _cur_collection_pause_used_regions_at_start;
   117   size_t _prev_collection_pause_used_at_end_bytes;
   118   double _cur_collection_par_time_ms;
   119   double _cur_satb_drain_time_ms;
   120   double _cur_clear_ct_time_ms;
   121   bool   _satb_drain_time_set;
   123 #ifndef PRODUCT
   124   // Card Table Count Cache stats
   125   double _min_clear_cc_time_ms;         // min
   126   double _max_clear_cc_time_ms;         // max
   127   double _cur_clear_cc_time_ms;         // clearing time during current pause
   128   double _cum_clear_cc_time_ms;         // cummulative clearing time
   129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   130 #endif
   132   double _cur_CH_strong_roots_end_sec;
   133   double _cur_CH_strong_roots_dur_ms;
   134   double _cur_G1_strong_roots_end_sec;
   135   double _cur_G1_strong_roots_dur_ms;
   137   // Statistics for recent GC pauses.  See below for how indexed.
   138   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   139   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   140   TruncatedSeq* _recent_evac_times_ms;
   141   // These exclude marking times.
   142   TruncatedSeq* _recent_pause_times_ms;
   143   TruncatedSeq* _recent_gc_times_ms;
   145   TruncatedSeq* _recent_CS_bytes_used_before;
   146   TruncatedSeq* _recent_CS_bytes_surviving;
   148   TruncatedSeq* _recent_rs_sizes;
   150   TruncatedSeq* _concurrent_mark_init_times_ms;
   151   TruncatedSeq* _concurrent_mark_remark_times_ms;
   152   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   154   Summary*           _summary;
   156   NumberSeq* _all_pause_times_ms;
   157   NumberSeq* _all_full_gc_times_ms;
   158   double _stop_world_start;
   159   NumberSeq* _all_stop_world_times_ms;
   160   NumberSeq* _all_yield_times_ms;
   162   size_t     _region_num_young;
   163   size_t     _region_num_tenured;
   164   size_t     _prev_region_num_young;
   165   size_t     _prev_region_num_tenured;
   167   NumberSeq* _all_mod_union_times_ms;
   169   int        _aux_num;
   170   NumberSeq* _all_aux_times_ms;
   171   double*    _cur_aux_start_times_ms;
   172   double*    _cur_aux_times_ms;
   173   bool*      _cur_aux_times_set;
   175   double* _par_last_gc_worker_start_times_ms;
   176   double* _par_last_ext_root_scan_times_ms;
   177   double* _par_last_mark_stack_scan_times_ms;
   178   double* _par_last_update_rs_times_ms;
   179   double* _par_last_update_rs_processed_buffers;
   180   double* _par_last_scan_rs_times_ms;
   181   double* _par_last_obj_copy_times_ms;
   182   double* _par_last_termination_times_ms;
   183   double* _par_last_termination_attempts;
   184   double* _par_last_gc_worker_end_times_ms;
   186   // indicates that we are in young GC mode
   187   bool _in_young_gc_mode;
   189   // indicates whether we are in full young or partially young GC mode
   190   bool _full_young_gcs;
   192   // if true, then it tries to dynamically adjust the length of the
   193   // young list
   194   bool _adaptive_young_list_length;
   195   size_t _young_list_min_length;
   196   size_t _young_list_target_length;
   197   size_t _young_list_fixed_length;
   199   size_t _young_cset_length;
   200   bool   _last_young_gc_full;
   202   unsigned              _full_young_pause_num;
   203   unsigned              _partial_young_pause_num;
   205   bool                  _during_marking;
   206   bool                  _in_marking_window;
   207   bool                  _in_marking_window_im;
   209   SurvRateGroup*        _short_lived_surv_rate_group;
   210   SurvRateGroup*        _survivor_surv_rate_group;
   211   // add here any more surv rate groups
   213   double                _gc_overhead_perc;
   215   bool during_marking() {
   216     return _during_marking;
   217   }
   219   // <NEW PREDICTION>
   221 private:
   222   enum PredictionConstants {
   223     TruncatedSeqLength = 10
   224   };
   226   TruncatedSeq* _alloc_rate_ms_seq;
   227   double        _prev_collection_pause_end_ms;
   229   TruncatedSeq* _pending_card_diff_seq;
   230   TruncatedSeq* _rs_length_diff_seq;
   231   TruncatedSeq* _cost_per_card_ms_seq;
   232   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   233   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   234   TruncatedSeq* _cost_per_entry_ms_seq;
   235   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   236   TruncatedSeq* _cost_per_byte_ms_seq;
   237   TruncatedSeq* _constant_other_time_ms_seq;
   238   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   239   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   241   TruncatedSeq* _pending_cards_seq;
   242   TruncatedSeq* _scanned_cards_seq;
   243   TruncatedSeq* _rs_lengths_seq;
   245   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   247   TruncatedSeq* _young_gc_eff_seq;
   249   TruncatedSeq* _max_conc_overhead_seq;
   251   size_t _recorded_young_regions;
   252   size_t _recorded_non_young_regions;
   253   size_t _recorded_region_num;
   255   size_t _free_regions_at_end_of_collection;
   257   size_t _recorded_rs_lengths;
   258   size_t _max_rs_lengths;
   260   size_t _recorded_marked_bytes;
   261   size_t _recorded_young_bytes;
   263   size_t _predicted_pending_cards;
   264   size_t _predicted_cards_scanned;
   265   size_t _predicted_rs_lengths;
   266   size_t _predicted_bytes_to_copy;
   268   double _predicted_survival_ratio;
   269   double _predicted_rs_update_time_ms;
   270   double _predicted_rs_scan_time_ms;
   271   double _predicted_object_copy_time_ms;
   272   double _predicted_constant_other_time_ms;
   273   double _predicted_young_other_time_ms;
   274   double _predicted_non_young_other_time_ms;
   275   double _predicted_pause_time_ms;
   277   double _vtime_diff_ms;
   279   double _recorded_young_free_cset_time_ms;
   280   double _recorded_non_young_free_cset_time_ms;
   282   double _sigma;
   283   double _expensive_region_limit_ms;
   285   size_t _rs_lengths_prediction;
   287   size_t _known_garbage_bytes;
   288   double _known_garbage_ratio;
   290   double sigma() {
   291     return _sigma;
   292   }
   294   // A function that prevents us putting too much stock in small sample
   295   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   296   // of samples.  5 or more samples yields one; fewer scales linearly from
   297   // 2.0 at 1 sample to 1.0 at 5.
   298   double confidence_factor(int samples) {
   299     if (samples > 4) return 1.0;
   300     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   301   }
   303   double get_new_neg_prediction(TruncatedSeq* seq) {
   304     return seq->davg() - sigma() * seq->dsd();
   305   }
   307 #ifndef PRODUCT
   308   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   309 #endif // PRODUCT
   311   void adjust_concurrent_refinement(double update_rs_time,
   312                                     double update_rs_processed_buffers,
   313                                     double goal_ms);
   315 protected:
   316   double _pause_time_target_ms;
   317   double _recorded_young_cset_choice_time_ms;
   318   double _recorded_non_young_cset_choice_time_ms;
   319   bool   _within_target;
   320   size_t _pending_cards;
   321   size_t _max_pending_cards;
   323 public:
   325   void set_region_short_lived(HeapRegion* hr) {
   326     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   327   }
   329   void set_region_survivors(HeapRegion* hr) {
   330     hr->install_surv_rate_group(_survivor_surv_rate_group);
   331   }
   333 #ifndef PRODUCT
   334   bool verify_young_ages();
   335 #endif // PRODUCT
   337   double get_new_prediction(TruncatedSeq* seq) {
   338     return MAX2(seq->davg() + sigma() * seq->dsd(),
   339                 seq->davg() * confidence_factor(seq->num()));
   340   }
   342   size_t young_cset_length() {
   343     return _young_cset_length;
   344   }
   346   void record_max_rs_lengths(size_t rs_lengths) {
   347     _max_rs_lengths = rs_lengths;
   348   }
   350   size_t predict_pending_card_diff() {
   351     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   352     if (prediction < 0.00001)
   353       return 0;
   354     else
   355       return (size_t) prediction;
   356   }
   358   size_t predict_pending_cards() {
   359     size_t max_pending_card_num = _g1->max_pending_card_num();
   360     size_t diff = predict_pending_card_diff();
   361     size_t prediction;
   362     if (diff > max_pending_card_num)
   363       prediction = max_pending_card_num;
   364     else
   365       prediction = max_pending_card_num - diff;
   367     return prediction;
   368   }
   370   size_t predict_rs_length_diff() {
   371     return (size_t) get_new_prediction(_rs_length_diff_seq);
   372   }
   374   double predict_alloc_rate_ms() {
   375     return get_new_prediction(_alloc_rate_ms_seq);
   376   }
   378   double predict_cost_per_card_ms() {
   379     return get_new_prediction(_cost_per_card_ms_seq);
   380   }
   382   double predict_rs_update_time_ms(size_t pending_cards) {
   383     return (double) pending_cards * predict_cost_per_card_ms();
   384   }
   386   double predict_fully_young_cards_per_entry_ratio() {
   387     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   388   }
   390   double predict_partially_young_cards_per_entry_ratio() {
   391     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   392       return predict_fully_young_cards_per_entry_ratio();
   393     else
   394       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   395   }
   397   size_t predict_young_card_num(size_t rs_length) {
   398     return (size_t) ((double) rs_length *
   399                      predict_fully_young_cards_per_entry_ratio());
   400   }
   402   size_t predict_non_young_card_num(size_t rs_length) {
   403     return (size_t) ((double) rs_length *
   404                      predict_partially_young_cards_per_entry_ratio());
   405   }
   407   double predict_rs_scan_time_ms(size_t card_num) {
   408     if (full_young_gcs())
   409       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   410     else
   411       return predict_partially_young_rs_scan_time_ms(card_num);
   412   }
   414   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   415     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   416       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   417     else
   418       return (double) card_num *
   419         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   420   }
   422   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   423     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   424       return 1.1 * (double) bytes_to_copy *
   425         get_new_prediction(_cost_per_byte_ms_seq);
   426     else
   427       return (double) bytes_to_copy *
   428         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   429   }
   431   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   432     if (_in_marking_window && !_in_marking_window_im)
   433       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   434     else
   435       return (double) bytes_to_copy *
   436         get_new_prediction(_cost_per_byte_ms_seq);
   437   }
   439   double predict_constant_other_time_ms() {
   440     return get_new_prediction(_constant_other_time_ms_seq);
   441   }
   443   double predict_young_other_time_ms(size_t young_num) {
   444     return
   445       (double) young_num *
   446       get_new_prediction(_young_other_cost_per_region_ms_seq);
   447   }
   449   double predict_non_young_other_time_ms(size_t non_young_num) {
   450     return
   451       (double) non_young_num *
   452       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   453   }
   455   void check_if_region_is_too_expensive(double predicted_time_ms);
   457   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   458   double predict_base_elapsed_time_ms(size_t pending_cards);
   459   double predict_base_elapsed_time_ms(size_t pending_cards,
   460                                       size_t scanned_cards);
   461   size_t predict_bytes_to_copy(HeapRegion* hr);
   462   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   464     // for use by: calculate_young_list_target_length(rs_length)
   465   bool predict_will_fit(size_t young_region_num,
   466                         double base_time_ms,
   467                         size_t init_free_regions,
   468                         double target_pause_time_ms);
   470   void start_recording_regions();
   471   void record_cset_region_info(HeapRegion* hr, bool young);
   472   void record_non_young_cset_region(HeapRegion* hr);
   474   void set_recorded_young_regions(size_t n_regions);
   475   void set_recorded_young_bytes(size_t bytes);
   476   void set_recorded_rs_lengths(size_t rs_lengths);
   477   void set_predicted_bytes_to_copy(size_t bytes);
   479   void end_recording_regions();
   481   void record_vtime_diff_ms(double vtime_diff_ms) {
   482     _vtime_diff_ms = vtime_diff_ms;
   483   }
   485   void record_young_free_cset_time_ms(double time_ms) {
   486     _recorded_young_free_cset_time_ms = time_ms;
   487   }
   489   void record_non_young_free_cset_time_ms(double time_ms) {
   490     _recorded_non_young_free_cset_time_ms = time_ms;
   491   }
   493   double predict_young_gc_eff() {
   494     return get_new_neg_prediction(_young_gc_eff_seq);
   495   }
   497   double predict_survivor_regions_evac_time();
   499   // </NEW PREDICTION>
   501 public:
   502   void cset_regions_freed() {
   503     bool propagate = _last_young_gc_full && !_in_marking_window;
   504     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   505     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   506     // also call it on any more surv rate groups
   507   }
   509   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   510     _known_garbage_bytes = known_garbage_bytes;
   511     size_t heap_bytes = _g1->capacity();
   512     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   513   }
   515   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   516     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   518     _known_garbage_bytes -= known_garbage_bytes;
   519     size_t heap_bytes = _g1->capacity();
   520     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   521   }
   523   G1MMUTracker* mmu_tracker() {
   524     return _mmu_tracker;
   525   }
   527   double max_pause_time_ms() {
   528     return _mmu_tracker->max_gc_time() * 1000.0;
   529   }
   531   double predict_init_time_ms() {
   532     return get_new_prediction(_concurrent_mark_init_times_ms);
   533   }
   535   double predict_remark_time_ms() {
   536     return get_new_prediction(_concurrent_mark_remark_times_ms);
   537   }
   539   double predict_cleanup_time_ms() {
   540     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   541   }
   543   // Returns an estimate of the survival rate of the region at yg-age
   544   // "yg_age".
   545   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   546     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   547     if (seq->num() == 0)
   548       gclog_or_tty->print("BARF! age is %d", age);
   549     guarantee( seq->num() > 0, "invariant" );
   550     double pred = get_new_prediction(seq);
   551     if (pred > 1.0)
   552       pred = 1.0;
   553     return pred;
   554   }
   556   double predict_yg_surv_rate(int age) {
   557     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   558   }
   560   double accum_yg_surv_rate_pred(int age) {
   561     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   562   }
   564 protected:
   565   void print_stats(int level, const char* str, double value);
   566   void print_stats(int level, const char* str, int value);
   568   void print_par_stats(int level, const char* str, double* data) {
   569     print_par_stats(level, str, data, true);
   570   }
   571   void print_par_stats(int level, const char* str, double* data, bool summary);
   572   void print_par_sizes(int level, const char* str, double* data, bool summary);
   574   void check_other_times(int level,
   575                          NumberSeq* other_times_ms,
   576                          NumberSeq* calc_other_times_ms) const;
   578   void print_summary (PauseSummary* stats) const;
   580   void print_summary (int level, const char* str, NumberSeq* seq) const;
   581   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   583   double avg_value (double* data);
   584   double max_value (double* data);
   585   double sum_of_values (double* data);
   586   double max_sum (double* data1, double* data2);
   588   int _last_satb_drain_processed_buffers;
   589   int _last_update_rs_processed_buffers;
   590   double _last_pause_time_ms;
   592   size_t _bytes_in_to_space_before_gc;
   593   size_t _bytes_in_to_space_after_gc;
   594   size_t bytes_in_to_space_during_gc() {
   595     return
   596       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   597   }
   598   size_t _bytes_in_collection_set_before_gc;
   599   // Used to count used bytes in CS.
   600   friend class CountCSClosure;
   602   // Statistics kept per GC stoppage, pause or full.
   603   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   605   // We track markings.
   606   int _num_markings;
   607   double _mark_thread_startup_sec;       // Time at startup of marking thread
   609   // Add a new GC of the given duration and end time to the record.
   610   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   612   // The head of the list (via "next_in_collection_set()") representing the
   613   // current collection set. Set from the incrementally built collection
   614   // set at the start of the pause.
   615   HeapRegion* _collection_set;
   617   // The number of regions in the collection set. Set from the incrementally
   618   // built collection set at the start of an evacuation pause.
   619   size_t _collection_set_size;
   621   // The number of bytes in the collection set before the pause. Set from
   622   // the incrementally built collection set at the start of an evacuation
   623   // pause.
   624   size_t _collection_set_bytes_used_before;
   626   // The associated information that is maintained while the incremental
   627   // collection set is being built with young regions. Used to populate
   628   // the recorded info for the evacuation pause.
   630   enum CSetBuildType {
   631     Active,             // We are actively building the collection set
   632     Inactive            // We are not actively building the collection set
   633   };
   635   CSetBuildType _inc_cset_build_state;
   637   // The head of the incrementally built collection set.
   638   HeapRegion* _inc_cset_head;
   640   // The tail of the incrementally built collection set.
   641   HeapRegion* _inc_cset_tail;
   643   // The number of regions in the incrementally built collection set.
   644   // Used to set _collection_set_size at the start of an evacuation
   645   // pause.
   646   size_t _inc_cset_size;
   648   // Used as the index in the surving young words structure
   649   // which tracks the amount of space, for each young region,
   650   // that survives the pause.
   651   size_t _inc_cset_young_index;
   653   // The number of bytes in the incrementally built collection set.
   654   // Used to set _collection_set_bytes_used_before at the start of
   655   // an evacuation pause.
   656   size_t _inc_cset_bytes_used_before;
   658   // Used to record the highest end of heap region in collection set
   659   HeapWord* _inc_cset_max_finger;
   661   // The number of recorded used bytes in the young regions
   662   // of the collection set. This is the sum of the used() bytes
   663   // of retired young regions in the collection set.
   664   size_t _inc_cset_recorded_young_bytes;
   666   // The RSet lengths recorded for regions in the collection set
   667   // (updated by the periodic sampling of the regions in the
   668   // young list/collection set).
   669   size_t _inc_cset_recorded_rs_lengths;
   671   // The predicted elapsed time it will take to collect the regions
   672   // in the collection set (updated by the periodic sampling of the
   673   // regions in the young list/collection set).
   674   double _inc_cset_predicted_elapsed_time_ms;
   676   // The predicted bytes to copy for the regions in the collection
   677   // set (updated by the periodic sampling of the regions in the
   678   // young list/collection set).
   679   size_t _inc_cset_predicted_bytes_to_copy;
   681   // Info about marking.
   682   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   684   // The number of collection pauses at the end of the last mark.
   685   size_t _n_pauses_at_mark_end;
   687   // Stash a pointer to the g1 heap.
   688   G1CollectedHeap* _g1;
   690   // The average time in ms per collection pause, averaged over recent pauses.
   691   double recent_avg_time_for_pauses_ms();
   693   // The average time in ms for processing CollectedHeap strong roots, per
   694   // collection pause, averaged over recent pauses.
   695   double recent_avg_time_for_CH_strong_ms();
   697   // The average time in ms for processing the G1 remembered set, per
   698   // pause, averaged over recent pauses.
   699   double recent_avg_time_for_G1_strong_ms();
   701   // The average time in ms for "evacuating followers", per pause, averaged
   702   // over recent pauses.
   703   double recent_avg_time_for_evac_ms();
   705   // The number of "recent" GCs recorded in the number sequences
   706   int number_of_recent_gcs();
   708   // The average survival ratio, computed by the total number of bytes
   709   // suriviving / total number of bytes before collection over the last
   710   // several recent pauses.
   711   double recent_avg_survival_fraction();
   712   // The survival fraction of the most recent pause; if there have been no
   713   // pauses, returns 1.0.
   714   double last_survival_fraction();
   716   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   717   // one that may be higher than "recent_avg_survival_fraction".
   718   // This is conservative in several ways:
   719   //   If there have been few pauses, it will assume a potential high
   720   //     variance, and err on the side of caution.
   721   //   It puts a lower bound (currently 0.1) on the value it will return.
   722   //   To try to detect phase changes, if the most recent pause ("latest") has a
   723   //     higher-than average ("avg") survival rate, it returns that rate.
   724   // "work" version is a utility function; young is restricted to young regions.
   725   double conservative_avg_survival_fraction_work(double avg,
   726                                                  double latest);
   728   // The arguments are the two sequences that keep track of the number of bytes
   729   //   surviving and the total number of bytes before collection, resp.,
   730   //   over the last evereal recent pauses
   731   // Returns the survival rate for the category in the most recent pause.
   732   // If there have been no pauses, returns 1.0.
   733   double last_survival_fraction_work(TruncatedSeq* surviving,
   734                                      TruncatedSeq* before);
   736   // The arguments are the two sequences that keep track of the number of bytes
   737   //   surviving and the total number of bytes before collection, resp.,
   738   //   over the last several recent pauses
   739   // Returns the average survival ration over the last several recent pauses
   740   // If there have been no pauses, return 1.0
   741   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   742                                            TruncatedSeq* before);
   744   double conservative_avg_survival_fraction() {
   745     double avg = recent_avg_survival_fraction();
   746     double latest = last_survival_fraction();
   747     return conservative_avg_survival_fraction_work(avg, latest);
   748   }
   750   // The ratio of gc time to elapsed time, computed over recent pauses.
   751   double _recent_avg_pause_time_ratio;
   753   double recent_avg_pause_time_ratio() {
   754     return _recent_avg_pause_time_ratio;
   755   }
   757   // Number of pauses between concurrent marking.
   758   size_t _pauses_btwn_concurrent_mark;
   760   size_t _n_marks_since_last_pause;
   762   // At the end of a pause we check the heap occupancy and we decide
   763   // whether we will start a marking cycle during the next pause. If
   764   // we decide that we want to do that, we will set this parameter to
   765   // true. So, this parameter will stay true between the end of a
   766   // pause and the beginning of a subsequent pause (not necessarily
   767   // the next one, see the comments on the next field) when we decide
   768   // that we will indeed start a marking cycle and do the initial-mark
   769   // work.
   770   volatile bool _initiate_conc_mark_if_possible;
   772   // If initiate_conc_mark_if_possible() is set at the beginning of a
   773   // pause, it is a suggestion that the pause should start a marking
   774   // cycle by doing the initial-mark work. However, it is possible
   775   // that the concurrent marking thread is still finishing up the
   776   // previous marking cycle (e.g., clearing the next marking
   777   // bitmap). If that is the case we cannot start a new cycle and
   778   // we'll have to wait for the concurrent marking thread to finish
   779   // what it is doing. In this case we will postpone the marking cycle
   780   // initiation decision for the next pause. When we eventually decide
   781   // to start a cycle, we will set _during_initial_mark_pause which
   782   // will stay true until the end of the initial-mark pause and it's
   783   // the condition that indicates that a pause is doing the
   784   // initial-mark work.
   785   volatile bool _during_initial_mark_pause;
   787   bool _should_revert_to_full_young_gcs;
   788   bool _last_full_young_gc;
   790   // This set of variables tracks the collector efficiency, in order to
   791   // determine whether we should initiate a new marking.
   792   double _cur_mark_stop_world_time_ms;
   793   double _mark_init_start_sec;
   794   double _mark_remark_start_sec;
   795   double _mark_cleanup_start_sec;
   796   double _mark_closure_time_ms;
   798   void   calculate_young_list_min_length();
   799   void   calculate_young_list_target_length();
   800   void   calculate_young_list_target_length(size_t rs_lengths);
   802 public:
   804   G1CollectorPolicy();
   806   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   808   virtual CollectorPolicy::Name kind() {
   809     return CollectorPolicy::G1CollectorPolicyKind;
   810   }
   812   void check_prediction_validity();
   814   size_t bytes_in_collection_set() {
   815     return _bytes_in_collection_set_before_gc;
   816   }
   818   size_t bytes_in_to_space() {
   819     return bytes_in_to_space_during_gc();
   820   }
   822   unsigned calc_gc_alloc_time_stamp() {
   823     return _all_pause_times_ms->num() + 1;
   824   }
   826 protected:
   828   // Count the number of bytes used in the CS.
   829   void count_CS_bytes_used();
   831   // Together these do the base cleanup-recording work.  Subclasses might
   832   // want to put something between them.
   833   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   834                                                 size_t max_live_bytes);
   835   void record_concurrent_mark_cleanup_end_work2();
   837 public:
   839   virtual void init();
   841   // Create jstat counters for the policy.
   842   virtual void initialize_gc_policy_counters();
   844   virtual HeapWord* mem_allocate_work(size_t size,
   845                                       bool is_tlab,
   846                                       bool* gc_overhead_limit_was_exceeded);
   848   // This method controls how a collector handles one or more
   849   // of its generations being fully allocated.
   850   virtual HeapWord* satisfy_failed_allocation(size_t size,
   851                                               bool is_tlab);
   853   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   855   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   857   // The number of collection pauses so far.
   858   long n_pauses() const { return _n_pauses; }
   860   // Update the heuristic info to record a collection pause of the given
   861   // start time, where the given number of bytes were used at the start.
   862   // This may involve changing the desired size of a collection set.
   864   virtual void record_stop_world_start();
   866   virtual void record_collection_pause_start(double start_time_sec,
   867                                              size_t start_used);
   869   // Must currently be called while the world is stopped.
   870   virtual void record_concurrent_mark_init_start();
   871   virtual void record_concurrent_mark_init_end();
   872   void record_concurrent_mark_init_end_pre(double
   873                                            mark_init_elapsed_time_ms);
   875   void record_mark_closure_time(double mark_closure_time_ms);
   877   virtual void record_concurrent_mark_remark_start();
   878   virtual void record_concurrent_mark_remark_end();
   880   virtual void record_concurrent_mark_cleanup_start();
   881   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   882                                                   size_t max_live_bytes);
   883   virtual void record_concurrent_mark_cleanup_completed();
   885   virtual void record_concurrent_pause();
   886   virtual void record_concurrent_pause_end();
   888   virtual void record_collection_pause_end_CH_strong_roots();
   889   virtual void record_collection_pause_end_G1_strong_roots();
   891   virtual void record_collection_pause_end();
   893   // Record the fact that a full collection occurred.
   894   virtual void record_full_collection_start();
   895   virtual void record_full_collection_end();
   897   void record_gc_worker_start_time(int worker_i, double ms) {
   898     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   899   }
   901   void record_ext_root_scan_time(int worker_i, double ms) {
   902     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   903   }
   905   void record_mark_stack_scan_time(int worker_i, double ms) {
   906     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   907   }
   909   void record_satb_drain_time(double ms) {
   910     _cur_satb_drain_time_ms = ms;
   911     _satb_drain_time_set    = true;
   912   }
   914   void record_satb_drain_processed_buffers (int processed_buffers) {
   915     _last_satb_drain_processed_buffers = processed_buffers;
   916   }
   918   void record_mod_union_time(double ms) {
   919     _all_mod_union_times_ms->add(ms);
   920   }
   922   void record_update_rs_time(int thread, double ms) {
   923     _par_last_update_rs_times_ms[thread] = ms;
   924   }
   926   void record_update_rs_processed_buffers (int thread,
   927                                            double processed_buffers) {
   928     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   929   }
   931   void record_scan_rs_time(int thread, double ms) {
   932     _par_last_scan_rs_times_ms[thread] = ms;
   933   }
   935   void reset_obj_copy_time(int thread) {
   936     _par_last_obj_copy_times_ms[thread] = 0.0;
   937   }
   939   void reset_obj_copy_time() {
   940     reset_obj_copy_time(0);
   941   }
   943   void record_obj_copy_time(int thread, double ms) {
   944     _par_last_obj_copy_times_ms[thread] += ms;
   945   }
   947   void record_termination(int thread, double ms, size_t attempts) {
   948     _par_last_termination_times_ms[thread] = ms;
   949     _par_last_termination_attempts[thread] = (double) attempts;
   950   }
   952   void record_gc_worker_end_time(int worker_i, double ms) {
   953     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   954   }
   956   void record_pause_time_ms(double ms) {
   957     _last_pause_time_ms = ms;
   958   }
   960   void record_clear_ct_time(double ms) {
   961     _cur_clear_ct_time_ms = ms;
   962   }
   964   void record_par_time(double ms) {
   965     _cur_collection_par_time_ms = ms;
   966   }
   968   void record_aux_start_time(int i) {
   969     guarantee(i < _aux_num, "should be within range");
   970     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   971   }
   973   void record_aux_end_time(int i) {
   974     guarantee(i < _aux_num, "should be within range");
   975     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   976     _cur_aux_times_set[i] = true;
   977     _cur_aux_times_ms[i] += ms;
   978   }
   980 #ifndef PRODUCT
   981   void record_cc_clear_time(double ms) {
   982     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   983       _min_clear_cc_time_ms = ms;
   984     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   985       _max_clear_cc_time_ms = ms;
   986     _cur_clear_cc_time_ms = ms;
   987     _cum_clear_cc_time_ms += ms;
   988     _num_cc_clears++;
   989   }
   990 #endif
   992   // Record the fact that "bytes" bytes allocated in a region.
   993   void record_before_bytes(size_t bytes);
   994   void record_after_bytes(size_t bytes);
   996   // Returns "true" if this is a good time to do a collection pause.
   997   // The "word_size" argument, if non-zero, indicates the size of an
   998   // allocation request that is prompting this query.
   999   virtual bool should_do_collection_pause(size_t word_size) = 0;
  1001   // Choose a new collection set.  Marks the chosen regions as being
  1002   // "in_collection_set", and links them together.  The head and number of
  1003   // the collection set are available via access methods.
  1004   virtual void choose_collection_set(double target_pause_time_ms) = 0;
  1006   // The head of the list (via "next_in_collection_set()") representing the
  1007   // current collection set.
  1008   HeapRegion* collection_set() { return _collection_set; }
  1010   void clear_collection_set() { _collection_set = NULL; }
  1012   // The number of elements in the current collection set.
  1013   size_t collection_set_size() { return _collection_set_size; }
  1015   // Add "hr" to the CS.
  1016   void add_to_collection_set(HeapRegion* hr);
  1018   // Incremental CSet Support
  1020   // The head of the incrementally built collection set.
  1021   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1023   // The tail of the incrementally built collection set.
  1024   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1026   // The number of elements in the incrementally built collection set.
  1027   size_t inc_cset_size() { return _inc_cset_size; }
  1029   // Initialize incremental collection set info.
  1030   void start_incremental_cset_building();
  1032   void clear_incremental_cset() {
  1033     _inc_cset_head = NULL;
  1034     _inc_cset_tail = NULL;
  1037   // Stop adding regions to the incremental collection set
  1038   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1040   // Add/remove information about hr to the aggregated information
  1041   // for the incrementally built collection set.
  1042   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1043   void remove_from_incremental_cset_info(HeapRegion* hr);
  1045   // Update information about hr in the aggregated information for
  1046   // the incrementally built collection set.
  1047   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1049 private:
  1050   // Update the incremental cset information when adding a region
  1051   // (should not be called directly).
  1052   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1054 public:
  1055   // Add hr to the LHS of the incremental collection set.
  1056   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1058   // Add hr to the RHS of the incremental collection set.
  1059   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1061 #ifndef PRODUCT
  1062   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1063 #endif // !PRODUCT
  1065   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1066   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1067   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1069   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1070   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1071   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1073   // This sets the initiate_conc_mark_if_possible() flag to start a
  1074   // new cycle, as long as we are not already in one. It's best if it
  1075   // is called during a safepoint when the test whether a cycle is in
  1076   // progress or not is stable.
  1077   bool force_initial_mark_if_outside_cycle();
  1079   // This is called at the very beginning of an evacuation pause (it
  1080   // has to be the first thing that the pause does). If
  1081   // initiate_conc_mark_if_possible() is true, and the concurrent
  1082   // marking thread has completed its work during the previous cycle,
  1083   // it will set during_initial_mark_pause() to so that the pause does
  1084   // the initial-mark work and start a marking cycle.
  1085   void decide_on_conc_mark_initiation();
  1087   // If an expansion would be appropriate, because recent GC overhead had
  1088   // exceeded the desired limit, return an amount to expand by.
  1089   virtual size_t expansion_amount();
  1091   // note start of mark thread
  1092   void note_start_of_mark_thread();
  1094   // The marked bytes of the "r" has changed; reclassify it's desirability
  1095   // for marking.  Also asserts that "r" is eligible for a CS.
  1096   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1098 #ifndef PRODUCT
  1099   // Check any appropriate marked bytes info, asserting false if
  1100   // something's wrong, else returning "true".
  1101   virtual bool assertMarkedBytesDataOK() = 0;
  1102 #endif
  1104   // Print tracing information.
  1105   void print_tracing_info() const;
  1107   // Print stats on young survival ratio
  1108   void print_yg_surv_rate_info() const;
  1110   void finished_recalculating_age_indexes(bool is_survivors) {
  1111     if (is_survivors) {
  1112       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1113     } else {
  1114       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1116     // do that for any other surv rate groups
  1119   bool should_add_next_region_to_young_list();
  1121   bool in_young_gc_mode() {
  1122     return _in_young_gc_mode;
  1124   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1125     _in_young_gc_mode = in_young_gc_mode;
  1128   bool full_young_gcs() {
  1129     return _full_young_gcs;
  1131   void set_full_young_gcs(bool full_young_gcs) {
  1132     _full_young_gcs = full_young_gcs;
  1135   bool adaptive_young_list_length() {
  1136     return _adaptive_young_list_length;
  1138   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1139     _adaptive_young_list_length = adaptive_young_list_length;
  1142   inline double get_gc_eff_factor() {
  1143     double ratio = _known_garbage_ratio;
  1145     double square = ratio * ratio;
  1146     // square = square * square;
  1147     double ret = square * 9.0 + 1.0;
  1148 #if 0
  1149     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1150 #endif // 0
  1151     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1152     return ret;
  1155   //
  1156   // Survivor regions policy.
  1157   //
  1158 protected:
  1160   // Current tenuring threshold, set to 0 if the collector reaches the
  1161   // maximum amount of suvivors regions.
  1162   int _tenuring_threshold;
  1164   // The limit on the number of regions allocated for survivors.
  1165   size_t _max_survivor_regions;
  1167   // The amount of survor regions after a collection.
  1168   size_t _recorded_survivor_regions;
  1169   // List of survivor regions.
  1170   HeapRegion* _recorded_survivor_head;
  1171   HeapRegion* _recorded_survivor_tail;
  1173   ageTable _survivors_age_table;
  1175 public:
  1177   inline GCAllocPurpose
  1178     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1179       if (age < _tenuring_threshold && src_region->is_young()) {
  1180         return GCAllocForSurvived;
  1181       } else {
  1182         return GCAllocForTenured;
  1186   inline bool track_object_age(GCAllocPurpose purpose) {
  1187     return purpose == GCAllocForSurvived;
  1190   inline GCAllocPurpose alternative_purpose(int purpose) {
  1191     return GCAllocForTenured;
  1194   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1196   size_t max_regions(int purpose);
  1198   // The limit on regions for a particular purpose is reached.
  1199   void note_alloc_region_limit_reached(int purpose) {
  1200     if (purpose == GCAllocForSurvived) {
  1201       _tenuring_threshold = 0;
  1205   void note_start_adding_survivor_regions() {
  1206     _survivor_surv_rate_group->start_adding_regions();
  1209   void note_stop_adding_survivor_regions() {
  1210     _survivor_surv_rate_group->stop_adding_regions();
  1213   void record_survivor_regions(size_t      regions,
  1214                                HeapRegion* head,
  1215                                HeapRegion* tail) {
  1216     _recorded_survivor_regions = regions;
  1217     _recorded_survivor_head    = head;
  1218     _recorded_survivor_tail    = tail;
  1221   size_t recorded_survivor_regions() {
  1222     return _recorded_survivor_regions;
  1225   void record_thread_age_table(ageTable* age_table)
  1227     _survivors_age_table.merge_par(age_table);
  1230   // Calculates survivor space parameters.
  1231   void calculate_survivors_policy();
  1233 };
  1235 // This encapsulates a particular strategy for a g1 Collector.
  1236 //
  1237 //      Start a concurrent mark when our heap size is n bytes
  1238 //            greater then our heap size was at the last concurrent
  1239 //            mark.  Where n is a function of the CMSTriggerRatio
  1240 //            and the MinHeapFreeRatio.
  1241 //
  1242 //      Start a g1 collection pause when we have allocated the
  1243 //            average number of bytes currently being freed in
  1244 //            a collection, but only if it is at least one region
  1245 //            full
  1246 //
  1247 //      Resize Heap based on desired
  1248 //      allocation space, where desired allocation space is
  1249 //      a function of survival rate and desired future to size.
  1250 //
  1251 //      Choose collection set by first picking all older regions
  1252 //      which have a survival rate which beats our projected young
  1253 //      survival rate.  Then fill out the number of needed regions
  1254 //      with young regions.
  1256 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1257   CollectionSetChooser* _collectionSetChooser;
  1258   // If the estimated is less then desirable, resize if possible.
  1259   void expand_if_possible(size_t numRegions);
  1261   virtual void choose_collection_set(double target_pause_time_ms);
  1262   virtual void record_collection_pause_start(double start_time_sec,
  1263                                              size_t start_used);
  1264   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1265                                                   size_t max_live_bytes);
  1266   virtual void record_full_collection_end();
  1268 public:
  1269   G1CollectorPolicy_BestRegionsFirst() {
  1270     _collectionSetChooser = new CollectionSetChooser();
  1272   void record_collection_pause_end();
  1273   bool should_do_collection_pause(size_t word_size);
  1274   // This is not needed any more, after the CSet choosing code was
  1275   // changed to use the pause prediction work. But let's leave the
  1276   // hook in just in case.
  1277   void note_change_in_marked_bytes(HeapRegion* r) { }
  1278 #ifndef PRODUCT
  1279   bool assertMarkedBytesDataOK();
  1280 #endif
  1281 };
  1283 // This should move to some place more general...
  1285 // If we have "n" measurements, and we've kept track of their "sum" and the
  1286 // "sum_of_squares" of the measurements, this returns the variance of the
  1287 // sequence.
  1288 inline double variance(int n, double sum_of_squares, double sum) {
  1289   double n_d = (double)n;
  1290   double avg = sum/n_d;
  1291   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1294 // Local Variables: ***
  1295 // c-indentation-style: gnu ***
  1296 // End: ***
  1298 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial