src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Wed, 04 Aug 2010 13:03:23 -0400

author
tonyp
date
Wed, 04 Aug 2010 13:03:23 -0400
changeset 2062
0ce1569c90e5
parent 2060
2d160770d2e5
child 2314
f95d63e2154a
permissions
-rw-r--r--

6963209: G1: remove the concept of abandoned pauses
Summary: As part of 6944166 we disabled the concept of abandoned pauses (i.e., if the collection set is empty, we would still try to do a pause even if it is to update the RSets and scan the roots). This changeset removes the code and structures associated with abandoned pauses.
Reviewed-by: iveresov, johnc

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    51 class PauseSummary: public CHeapObj {
    52   define_num_seq(total)
    53     define_num_seq(other)
    55 public:
    56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    57 };
    59 class MainBodySummary: public CHeapObj {
    60   define_num_seq(satb_drain) // optional
    61   define_num_seq(parallel) // parallel only
    62     define_num_seq(ext_root_scan)
    63     define_num_seq(mark_stack_scan)
    64     define_num_seq(update_rs)
    65     define_num_seq(scan_rs)
    66     define_num_seq(obj_copy)
    67     define_num_seq(termination) // parallel only
    68     define_num_seq(parallel_other) // parallel only
    69   define_num_seq(mark_closure)
    70   define_num_seq(clear_ct)  // parallel only
    71 };
    73 class Summary: public PauseSummary,
    74                public MainBodySummary {
    75 public:
    76   virtual MainBodySummary*    main_body_summary()    { return this; }
    77 };
    79 class G1CollectorPolicy: public CollectorPolicy {
    80 protected:
    81   // The number of pauses during the execution.
    82   long _n_pauses;
    84   // either equal to the number of parallel threads, if ParallelGCThreads
    85   // has been set, or 1 otherwise
    86   int _parallel_gc_threads;
    88   enum SomePrivateConstants {
    89     NumPrevPausesForHeuristics = 10
    90   };
    92   G1MMUTracker* _mmu_tracker;
    94   void initialize_flags();
    96   void initialize_all() {
    97     initialize_flags();
    98     initialize_size_info();
    99     initialize_perm_generation(PermGen::MarkSweepCompact);
   100   }
   102   virtual size_t default_init_heap_size() {
   103     // Pick some reasonable default.
   104     return 8*M;
   105   }
   107   double _cur_collection_start_sec;
   108   size_t _cur_collection_pause_used_at_start_bytes;
   109   size_t _cur_collection_pause_used_regions_at_start;
   110   size_t _prev_collection_pause_used_at_end_bytes;
   111   double _cur_collection_par_time_ms;
   112   double _cur_satb_drain_time_ms;
   113   double _cur_clear_ct_time_ms;
   114   bool   _satb_drain_time_set;
   116 #ifndef PRODUCT
   117   // Card Table Count Cache stats
   118   double _min_clear_cc_time_ms;         // min
   119   double _max_clear_cc_time_ms;         // max
   120   double _cur_clear_cc_time_ms;         // clearing time during current pause
   121   double _cum_clear_cc_time_ms;         // cummulative clearing time
   122   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   123 #endif
   125   double _cur_CH_strong_roots_end_sec;
   126   double _cur_CH_strong_roots_dur_ms;
   127   double _cur_G1_strong_roots_end_sec;
   128   double _cur_G1_strong_roots_dur_ms;
   130   // Statistics for recent GC pauses.  See below for how indexed.
   131   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   132   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   133   TruncatedSeq* _recent_evac_times_ms;
   134   // These exclude marking times.
   135   TruncatedSeq* _recent_pause_times_ms;
   136   TruncatedSeq* _recent_gc_times_ms;
   138   TruncatedSeq* _recent_CS_bytes_used_before;
   139   TruncatedSeq* _recent_CS_bytes_surviving;
   141   TruncatedSeq* _recent_rs_sizes;
   143   TruncatedSeq* _concurrent_mark_init_times_ms;
   144   TruncatedSeq* _concurrent_mark_remark_times_ms;
   145   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   147   Summary*           _summary;
   149   NumberSeq* _all_pause_times_ms;
   150   NumberSeq* _all_full_gc_times_ms;
   151   double _stop_world_start;
   152   NumberSeq* _all_stop_world_times_ms;
   153   NumberSeq* _all_yield_times_ms;
   155   size_t     _region_num_young;
   156   size_t     _region_num_tenured;
   157   size_t     _prev_region_num_young;
   158   size_t     _prev_region_num_tenured;
   160   NumberSeq* _all_mod_union_times_ms;
   162   int        _aux_num;
   163   NumberSeq* _all_aux_times_ms;
   164   double*    _cur_aux_start_times_ms;
   165   double*    _cur_aux_times_ms;
   166   bool*      _cur_aux_times_set;
   168   double* _par_last_gc_worker_start_times_ms;
   169   double* _par_last_ext_root_scan_times_ms;
   170   double* _par_last_mark_stack_scan_times_ms;
   171   double* _par_last_update_rs_times_ms;
   172   double* _par_last_update_rs_processed_buffers;
   173   double* _par_last_scan_rs_times_ms;
   174   double* _par_last_obj_copy_times_ms;
   175   double* _par_last_termination_times_ms;
   176   double* _par_last_termination_attempts;
   177   double* _par_last_gc_worker_end_times_ms;
   179   // indicates that we are in young GC mode
   180   bool _in_young_gc_mode;
   182   // indicates whether we are in full young or partially young GC mode
   183   bool _full_young_gcs;
   185   // if true, then it tries to dynamically adjust the length of the
   186   // young list
   187   bool _adaptive_young_list_length;
   188   size_t _young_list_min_length;
   189   size_t _young_list_target_length;
   190   size_t _young_list_fixed_length;
   192   size_t _young_cset_length;
   193   bool   _last_young_gc_full;
   195   unsigned              _full_young_pause_num;
   196   unsigned              _partial_young_pause_num;
   198   bool                  _during_marking;
   199   bool                  _in_marking_window;
   200   bool                  _in_marking_window_im;
   202   SurvRateGroup*        _short_lived_surv_rate_group;
   203   SurvRateGroup*        _survivor_surv_rate_group;
   204   // add here any more surv rate groups
   206   double                _gc_overhead_perc;
   208   bool during_marking() {
   209     return _during_marking;
   210   }
   212   // <NEW PREDICTION>
   214 private:
   215   enum PredictionConstants {
   216     TruncatedSeqLength = 10
   217   };
   219   TruncatedSeq* _alloc_rate_ms_seq;
   220   double        _prev_collection_pause_end_ms;
   222   TruncatedSeq* _pending_card_diff_seq;
   223   TruncatedSeq* _rs_length_diff_seq;
   224   TruncatedSeq* _cost_per_card_ms_seq;
   225   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   226   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   227   TruncatedSeq* _cost_per_entry_ms_seq;
   228   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   229   TruncatedSeq* _cost_per_byte_ms_seq;
   230   TruncatedSeq* _constant_other_time_ms_seq;
   231   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   232   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   234   TruncatedSeq* _pending_cards_seq;
   235   TruncatedSeq* _scanned_cards_seq;
   236   TruncatedSeq* _rs_lengths_seq;
   238   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   240   TruncatedSeq* _young_gc_eff_seq;
   242   TruncatedSeq* _max_conc_overhead_seq;
   244   size_t _recorded_young_regions;
   245   size_t _recorded_non_young_regions;
   246   size_t _recorded_region_num;
   248   size_t _free_regions_at_end_of_collection;
   250   size_t _recorded_rs_lengths;
   251   size_t _max_rs_lengths;
   253   size_t _recorded_marked_bytes;
   254   size_t _recorded_young_bytes;
   256   size_t _predicted_pending_cards;
   257   size_t _predicted_cards_scanned;
   258   size_t _predicted_rs_lengths;
   259   size_t _predicted_bytes_to_copy;
   261   double _predicted_survival_ratio;
   262   double _predicted_rs_update_time_ms;
   263   double _predicted_rs_scan_time_ms;
   264   double _predicted_object_copy_time_ms;
   265   double _predicted_constant_other_time_ms;
   266   double _predicted_young_other_time_ms;
   267   double _predicted_non_young_other_time_ms;
   268   double _predicted_pause_time_ms;
   270   double _vtime_diff_ms;
   272   double _recorded_young_free_cset_time_ms;
   273   double _recorded_non_young_free_cset_time_ms;
   275   double _sigma;
   276   double _expensive_region_limit_ms;
   278   size_t _rs_lengths_prediction;
   280   size_t _known_garbage_bytes;
   281   double _known_garbage_ratio;
   283   double sigma() {
   284     return _sigma;
   285   }
   287   // A function that prevents us putting too much stock in small sample
   288   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   289   // of samples.  5 or more samples yields one; fewer scales linearly from
   290   // 2.0 at 1 sample to 1.0 at 5.
   291   double confidence_factor(int samples) {
   292     if (samples > 4) return 1.0;
   293     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   294   }
   296   double get_new_neg_prediction(TruncatedSeq* seq) {
   297     return seq->davg() - sigma() * seq->dsd();
   298   }
   300 #ifndef PRODUCT
   301   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   302 #endif // PRODUCT
   304   void adjust_concurrent_refinement(double update_rs_time,
   305                                     double update_rs_processed_buffers,
   306                                     double goal_ms);
   308 protected:
   309   double _pause_time_target_ms;
   310   double _recorded_young_cset_choice_time_ms;
   311   double _recorded_non_young_cset_choice_time_ms;
   312   bool   _within_target;
   313   size_t _pending_cards;
   314   size_t _max_pending_cards;
   316 public:
   318   void set_region_short_lived(HeapRegion* hr) {
   319     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   320   }
   322   void set_region_survivors(HeapRegion* hr) {
   323     hr->install_surv_rate_group(_survivor_surv_rate_group);
   324   }
   326 #ifndef PRODUCT
   327   bool verify_young_ages();
   328 #endif // PRODUCT
   330   double get_new_prediction(TruncatedSeq* seq) {
   331     return MAX2(seq->davg() + sigma() * seq->dsd(),
   332                 seq->davg() * confidence_factor(seq->num()));
   333   }
   335   size_t young_cset_length() {
   336     return _young_cset_length;
   337   }
   339   void record_max_rs_lengths(size_t rs_lengths) {
   340     _max_rs_lengths = rs_lengths;
   341   }
   343   size_t predict_pending_card_diff() {
   344     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   345     if (prediction < 0.00001)
   346       return 0;
   347     else
   348       return (size_t) prediction;
   349   }
   351   size_t predict_pending_cards() {
   352     size_t max_pending_card_num = _g1->max_pending_card_num();
   353     size_t diff = predict_pending_card_diff();
   354     size_t prediction;
   355     if (diff > max_pending_card_num)
   356       prediction = max_pending_card_num;
   357     else
   358       prediction = max_pending_card_num - diff;
   360     return prediction;
   361   }
   363   size_t predict_rs_length_diff() {
   364     return (size_t) get_new_prediction(_rs_length_diff_seq);
   365   }
   367   double predict_alloc_rate_ms() {
   368     return get_new_prediction(_alloc_rate_ms_seq);
   369   }
   371   double predict_cost_per_card_ms() {
   372     return get_new_prediction(_cost_per_card_ms_seq);
   373   }
   375   double predict_rs_update_time_ms(size_t pending_cards) {
   376     return (double) pending_cards * predict_cost_per_card_ms();
   377   }
   379   double predict_fully_young_cards_per_entry_ratio() {
   380     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   381   }
   383   double predict_partially_young_cards_per_entry_ratio() {
   384     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   385       return predict_fully_young_cards_per_entry_ratio();
   386     else
   387       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   388   }
   390   size_t predict_young_card_num(size_t rs_length) {
   391     return (size_t) ((double) rs_length *
   392                      predict_fully_young_cards_per_entry_ratio());
   393   }
   395   size_t predict_non_young_card_num(size_t rs_length) {
   396     return (size_t) ((double) rs_length *
   397                      predict_partially_young_cards_per_entry_ratio());
   398   }
   400   double predict_rs_scan_time_ms(size_t card_num) {
   401     if (full_young_gcs())
   402       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   403     else
   404       return predict_partially_young_rs_scan_time_ms(card_num);
   405   }
   407   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   408     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   409       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   410     else
   411       return (double) card_num *
   412         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   413   }
   415   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   416     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   417       return 1.1 * (double) bytes_to_copy *
   418         get_new_prediction(_cost_per_byte_ms_seq);
   419     else
   420       return (double) bytes_to_copy *
   421         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   422   }
   424   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   425     if (_in_marking_window && !_in_marking_window_im)
   426       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   427     else
   428       return (double) bytes_to_copy *
   429         get_new_prediction(_cost_per_byte_ms_seq);
   430   }
   432   double predict_constant_other_time_ms() {
   433     return get_new_prediction(_constant_other_time_ms_seq);
   434   }
   436   double predict_young_other_time_ms(size_t young_num) {
   437     return
   438       (double) young_num *
   439       get_new_prediction(_young_other_cost_per_region_ms_seq);
   440   }
   442   double predict_non_young_other_time_ms(size_t non_young_num) {
   443     return
   444       (double) non_young_num *
   445       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   446   }
   448   void check_if_region_is_too_expensive(double predicted_time_ms);
   450   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   451   double predict_base_elapsed_time_ms(size_t pending_cards);
   452   double predict_base_elapsed_time_ms(size_t pending_cards,
   453                                       size_t scanned_cards);
   454   size_t predict_bytes_to_copy(HeapRegion* hr);
   455   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   457     // for use by: calculate_young_list_target_length(rs_length)
   458   bool predict_will_fit(size_t young_region_num,
   459                         double base_time_ms,
   460                         size_t init_free_regions,
   461                         double target_pause_time_ms);
   463   void start_recording_regions();
   464   void record_cset_region_info(HeapRegion* hr, bool young);
   465   void record_non_young_cset_region(HeapRegion* hr);
   467   void set_recorded_young_regions(size_t n_regions);
   468   void set_recorded_young_bytes(size_t bytes);
   469   void set_recorded_rs_lengths(size_t rs_lengths);
   470   void set_predicted_bytes_to_copy(size_t bytes);
   472   void end_recording_regions();
   474   void record_vtime_diff_ms(double vtime_diff_ms) {
   475     _vtime_diff_ms = vtime_diff_ms;
   476   }
   478   void record_young_free_cset_time_ms(double time_ms) {
   479     _recorded_young_free_cset_time_ms = time_ms;
   480   }
   482   void record_non_young_free_cset_time_ms(double time_ms) {
   483     _recorded_non_young_free_cset_time_ms = time_ms;
   484   }
   486   double predict_young_gc_eff() {
   487     return get_new_neg_prediction(_young_gc_eff_seq);
   488   }
   490   double predict_survivor_regions_evac_time();
   492   // </NEW PREDICTION>
   494 public:
   495   void cset_regions_freed() {
   496     bool propagate = _last_young_gc_full && !_in_marking_window;
   497     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   498     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   499     // also call it on any more surv rate groups
   500   }
   502   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   503     _known_garbage_bytes = known_garbage_bytes;
   504     size_t heap_bytes = _g1->capacity();
   505     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   506   }
   508   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   509     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   511     _known_garbage_bytes -= known_garbage_bytes;
   512     size_t heap_bytes = _g1->capacity();
   513     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   514   }
   516   G1MMUTracker* mmu_tracker() {
   517     return _mmu_tracker;
   518   }
   520   double max_pause_time_ms() {
   521     return _mmu_tracker->max_gc_time() * 1000.0;
   522   }
   524   double predict_init_time_ms() {
   525     return get_new_prediction(_concurrent_mark_init_times_ms);
   526   }
   528   double predict_remark_time_ms() {
   529     return get_new_prediction(_concurrent_mark_remark_times_ms);
   530   }
   532   double predict_cleanup_time_ms() {
   533     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   534   }
   536   // Returns an estimate of the survival rate of the region at yg-age
   537   // "yg_age".
   538   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   539     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   540     if (seq->num() == 0)
   541       gclog_or_tty->print("BARF! age is %d", age);
   542     guarantee( seq->num() > 0, "invariant" );
   543     double pred = get_new_prediction(seq);
   544     if (pred > 1.0)
   545       pred = 1.0;
   546     return pred;
   547   }
   549   double predict_yg_surv_rate(int age) {
   550     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   551   }
   553   double accum_yg_surv_rate_pred(int age) {
   554     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   555   }
   557 protected:
   558   void print_stats(int level, const char* str, double value);
   559   void print_stats(int level, const char* str, int value);
   561   void print_par_stats(int level, const char* str, double* data) {
   562     print_par_stats(level, str, data, true);
   563   }
   564   void print_par_stats(int level, const char* str, double* data, bool summary);
   565   void print_par_sizes(int level, const char* str, double* data, bool summary);
   567   void check_other_times(int level,
   568                          NumberSeq* other_times_ms,
   569                          NumberSeq* calc_other_times_ms) const;
   571   void print_summary (PauseSummary* stats) const;
   573   void print_summary (int level, const char* str, NumberSeq* seq) const;
   574   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   576   double avg_value (double* data);
   577   double max_value (double* data);
   578   double sum_of_values (double* data);
   579   double max_sum (double* data1, double* data2);
   581   int _last_satb_drain_processed_buffers;
   582   int _last_update_rs_processed_buffers;
   583   double _last_pause_time_ms;
   585   size_t _bytes_in_to_space_before_gc;
   586   size_t _bytes_in_to_space_after_gc;
   587   size_t bytes_in_to_space_during_gc() {
   588     return
   589       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   590   }
   591   size_t _bytes_in_collection_set_before_gc;
   592   // Used to count used bytes in CS.
   593   friend class CountCSClosure;
   595   // Statistics kept per GC stoppage, pause or full.
   596   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   598   // We track markings.
   599   int _num_markings;
   600   double _mark_thread_startup_sec;       // Time at startup of marking thread
   602   // Add a new GC of the given duration and end time to the record.
   603   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   605   // The head of the list (via "next_in_collection_set()") representing the
   606   // current collection set. Set from the incrementally built collection
   607   // set at the start of the pause.
   608   HeapRegion* _collection_set;
   610   // The number of regions in the collection set. Set from the incrementally
   611   // built collection set at the start of an evacuation pause.
   612   size_t _collection_set_size;
   614   // The number of bytes in the collection set before the pause. Set from
   615   // the incrementally built collection set at the start of an evacuation
   616   // pause.
   617   size_t _collection_set_bytes_used_before;
   619   // The associated information that is maintained while the incremental
   620   // collection set is being built with young regions. Used to populate
   621   // the recorded info for the evacuation pause.
   623   enum CSetBuildType {
   624     Active,             // We are actively building the collection set
   625     Inactive            // We are not actively building the collection set
   626   };
   628   CSetBuildType _inc_cset_build_state;
   630   // The head of the incrementally built collection set.
   631   HeapRegion* _inc_cset_head;
   633   // The tail of the incrementally built collection set.
   634   HeapRegion* _inc_cset_tail;
   636   // The number of regions in the incrementally built collection set.
   637   // Used to set _collection_set_size at the start of an evacuation
   638   // pause.
   639   size_t _inc_cset_size;
   641   // Used as the index in the surving young words structure
   642   // which tracks the amount of space, for each young region,
   643   // that survives the pause.
   644   size_t _inc_cset_young_index;
   646   // The number of bytes in the incrementally built collection set.
   647   // Used to set _collection_set_bytes_used_before at the start of
   648   // an evacuation pause.
   649   size_t _inc_cset_bytes_used_before;
   651   // Used to record the highest end of heap region in collection set
   652   HeapWord* _inc_cset_max_finger;
   654   // The number of recorded used bytes in the young regions
   655   // of the collection set. This is the sum of the used() bytes
   656   // of retired young regions in the collection set.
   657   size_t _inc_cset_recorded_young_bytes;
   659   // The RSet lengths recorded for regions in the collection set
   660   // (updated by the periodic sampling of the regions in the
   661   // young list/collection set).
   662   size_t _inc_cset_recorded_rs_lengths;
   664   // The predicted elapsed time it will take to collect the regions
   665   // in the collection set (updated by the periodic sampling of the
   666   // regions in the young list/collection set).
   667   double _inc_cset_predicted_elapsed_time_ms;
   669   // The predicted bytes to copy for the regions in the collection
   670   // set (updated by the periodic sampling of the regions in the
   671   // young list/collection set).
   672   size_t _inc_cset_predicted_bytes_to_copy;
   674   // Info about marking.
   675   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   677   // The number of collection pauses at the end of the last mark.
   678   size_t _n_pauses_at_mark_end;
   680   // Stash a pointer to the g1 heap.
   681   G1CollectedHeap* _g1;
   683   // The average time in ms per collection pause, averaged over recent pauses.
   684   double recent_avg_time_for_pauses_ms();
   686   // The average time in ms for processing CollectedHeap strong roots, per
   687   // collection pause, averaged over recent pauses.
   688   double recent_avg_time_for_CH_strong_ms();
   690   // The average time in ms for processing the G1 remembered set, per
   691   // pause, averaged over recent pauses.
   692   double recent_avg_time_for_G1_strong_ms();
   694   // The average time in ms for "evacuating followers", per pause, averaged
   695   // over recent pauses.
   696   double recent_avg_time_for_evac_ms();
   698   // The number of "recent" GCs recorded in the number sequences
   699   int number_of_recent_gcs();
   701   // The average survival ratio, computed by the total number of bytes
   702   // suriviving / total number of bytes before collection over the last
   703   // several recent pauses.
   704   double recent_avg_survival_fraction();
   705   // The survival fraction of the most recent pause; if there have been no
   706   // pauses, returns 1.0.
   707   double last_survival_fraction();
   709   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   710   // one that may be higher than "recent_avg_survival_fraction".
   711   // This is conservative in several ways:
   712   //   If there have been few pauses, it will assume a potential high
   713   //     variance, and err on the side of caution.
   714   //   It puts a lower bound (currently 0.1) on the value it will return.
   715   //   To try to detect phase changes, if the most recent pause ("latest") has a
   716   //     higher-than average ("avg") survival rate, it returns that rate.
   717   // "work" version is a utility function; young is restricted to young regions.
   718   double conservative_avg_survival_fraction_work(double avg,
   719                                                  double latest);
   721   // The arguments are the two sequences that keep track of the number of bytes
   722   //   surviving and the total number of bytes before collection, resp.,
   723   //   over the last evereal recent pauses
   724   // Returns the survival rate for the category in the most recent pause.
   725   // If there have been no pauses, returns 1.0.
   726   double last_survival_fraction_work(TruncatedSeq* surviving,
   727                                      TruncatedSeq* before);
   729   // The arguments are the two sequences that keep track of the number of bytes
   730   //   surviving and the total number of bytes before collection, resp.,
   731   //   over the last several recent pauses
   732   // Returns the average survival ration over the last several recent pauses
   733   // If there have been no pauses, return 1.0
   734   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   735                                            TruncatedSeq* before);
   737   double conservative_avg_survival_fraction() {
   738     double avg = recent_avg_survival_fraction();
   739     double latest = last_survival_fraction();
   740     return conservative_avg_survival_fraction_work(avg, latest);
   741   }
   743   // The ratio of gc time to elapsed time, computed over recent pauses.
   744   double _recent_avg_pause_time_ratio;
   746   double recent_avg_pause_time_ratio() {
   747     return _recent_avg_pause_time_ratio;
   748   }
   750   // Number of pauses between concurrent marking.
   751   size_t _pauses_btwn_concurrent_mark;
   753   size_t _n_marks_since_last_pause;
   755   // At the end of a pause we check the heap occupancy and we decide
   756   // whether we will start a marking cycle during the next pause. If
   757   // we decide that we want to do that, we will set this parameter to
   758   // true. So, this parameter will stay true between the end of a
   759   // pause and the beginning of a subsequent pause (not necessarily
   760   // the next one, see the comments on the next field) when we decide
   761   // that we will indeed start a marking cycle and do the initial-mark
   762   // work.
   763   volatile bool _initiate_conc_mark_if_possible;
   765   // If initiate_conc_mark_if_possible() is set at the beginning of a
   766   // pause, it is a suggestion that the pause should start a marking
   767   // cycle by doing the initial-mark work. However, it is possible
   768   // that the concurrent marking thread is still finishing up the
   769   // previous marking cycle (e.g., clearing the next marking
   770   // bitmap). If that is the case we cannot start a new cycle and
   771   // we'll have to wait for the concurrent marking thread to finish
   772   // what it is doing. In this case we will postpone the marking cycle
   773   // initiation decision for the next pause. When we eventually decide
   774   // to start a cycle, we will set _during_initial_mark_pause which
   775   // will stay true until the end of the initial-mark pause and it's
   776   // the condition that indicates that a pause is doing the
   777   // initial-mark work.
   778   volatile bool _during_initial_mark_pause;
   780   bool _should_revert_to_full_young_gcs;
   781   bool _last_full_young_gc;
   783   // This set of variables tracks the collector efficiency, in order to
   784   // determine whether we should initiate a new marking.
   785   double _cur_mark_stop_world_time_ms;
   786   double _mark_init_start_sec;
   787   double _mark_remark_start_sec;
   788   double _mark_cleanup_start_sec;
   789   double _mark_closure_time_ms;
   791   void   calculate_young_list_min_length();
   792   void   calculate_young_list_target_length();
   793   void   calculate_young_list_target_length(size_t rs_lengths);
   795 public:
   797   G1CollectorPolicy();
   799   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   801   virtual CollectorPolicy::Name kind() {
   802     return CollectorPolicy::G1CollectorPolicyKind;
   803   }
   805   void check_prediction_validity();
   807   size_t bytes_in_collection_set() {
   808     return _bytes_in_collection_set_before_gc;
   809   }
   811   size_t bytes_in_to_space() {
   812     return bytes_in_to_space_during_gc();
   813   }
   815   unsigned calc_gc_alloc_time_stamp() {
   816     return _all_pause_times_ms->num() + 1;
   817   }
   819 protected:
   821   // Count the number of bytes used in the CS.
   822   void count_CS_bytes_used();
   824   // Together these do the base cleanup-recording work.  Subclasses might
   825   // want to put something between them.
   826   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   827                                                 size_t max_live_bytes);
   828   void record_concurrent_mark_cleanup_end_work2();
   830 public:
   832   virtual void init();
   834   // Create jstat counters for the policy.
   835   virtual void initialize_gc_policy_counters();
   837   virtual HeapWord* mem_allocate_work(size_t size,
   838                                       bool is_tlab,
   839                                       bool* gc_overhead_limit_was_exceeded);
   841   // This method controls how a collector handles one or more
   842   // of its generations being fully allocated.
   843   virtual HeapWord* satisfy_failed_allocation(size_t size,
   844                                               bool is_tlab);
   846   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   848   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   850   // The number of collection pauses so far.
   851   long n_pauses() const { return _n_pauses; }
   853   // Update the heuristic info to record a collection pause of the given
   854   // start time, where the given number of bytes were used at the start.
   855   // This may involve changing the desired size of a collection set.
   857   virtual void record_stop_world_start();
   859   virtual void record_collection_pause_start(double start_time_sec,
   860                                              size_t start_used);
   862   // Must currently be called while the world is stopped.
   863   virtual void record_concurrent_mark_init_start();
   864   virtual void record_concurrent_mark_init_end();
   865   void record_concurrent_mark_init_end_pre(double
   866                                            mark_init_elapsed_time_ms);
   868   void record_mark_closure_time(double mark_closure_time_ms);
   870   virtual void record_concurrent_mark_remark_start();
   871   virtual void record_concurrent_mark_remark_end();
   873   virtual void record_concurrent_mark_cleanup_start();
   874   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   875                                                   size_t max_live_bytes);
   876   virtual void record_concurrent_mark_cleanup_completed();
   878   virtual void record_concurrent_pause();
   879   virtual void record_concurrent_pause_end();
   881   virtual void record_collection_pause_end_CH_strong_roots();
   882   virtual void record_collection_pause_end_G1_strong_roots();
   884   virtual void record_collection_pause_end();
   886   // Record the fact that a full collection occurred.
   887   virtual void record_full_collection_start();
   888   virtual void record_full_collection_end();
   890   void record_gc_worker_start_time(int worker_i, double ms) {
   891     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   892   }
   894   void record_ext_root_scan_time(int worker_i, double ms) {
   895     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   896   }
   898   void record_mark_stack_scan_time(int worker_i, double ms) {
   899     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   900   }
   902   void record_satb_drain_time(double ms) {
   903     _cur_satb_drain_time_ms = ms;
   904     _satb_drain_time_set    = true;
   905   }
   907   void record_satb_drain_processed_buffers (int processed_buffers) {
   908     _last_satb_drain_processed_buffers = processed_buffers;
   909   }
   911   void record_mod_union_time(double ms) {
   912     _all_mod_union_times_ms->add(ms);
   913   }
   915   void record_update_rs_time(int thread, double ms) {
   916     _par_last_update_rs_times_ms[thread] = ms;
   917   }
   919   void record_update_rs_processed_buffers (int thread,
   920                                            double processed_buffers) {
   921     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   922   }
   924   void record_scan_rs_time(int thread, double ms) {
   925     _par_last_scan_rs_times_ms[thread] = ms;
   926   }
   928   void reset_obj_copy_time(int thread) {
   929     _par_last_obj_copy_times_ms[thread] = 0.0;
   930   }
   932   void reset_obj_copy_time() {
   933     reset_obj_copy_time(0);
   934   }
   936   void record_obj_copy_time(int thread, double ms) {
   937     _par_last_obj_copy_times_ms[thread] += ms;
   938   }
   940   void record_termination(int thread, double ms, size_t attempts) {
   941     _par_last_termination_times_ms[thread] = ms;
   942     _par_last_termination_attempts[thread] = (double) attempts;
   943   }
   945   void record_gc_worker_end_time(int worker_i, double ms) {
   946     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   947   }
   949   void record_pause_time_ms(double ms) {
   950     _last_pause_time_ms = ms;
   951   }
   953   void record_clear_ct_time(double ms) {
   954     _cur_clear_ct_time_ms = ms;
   955   }
   957   void record_par_time(double ms) {
   958     _cur_collection_par_time_ms = ms;
   959   }
   961   void record_aux_start_time(int i) {
   962     guarantee(i < _aux_num, "should be within range");
   963     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   964   }
   966   void record_aux_end_time(int i) {
   967     guarantee(i < _aux_num, "should be within range");
   968     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   969     _cur_aux_times_set[i] = true;
   970     _cur_aux_times_ms[i] += ms;
   971   }
   973 #ifndef PRODUCT
   974   void record_cc_clear_time(double ms) {
   975     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   976       _min_clear_cc_time_ms = ms;
   977     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   978       _max_clear_cc_time_ms = ms;
   979     _cur_clear_cc_time_ms = ms;
   980     _cum_clear_cc_time_ms += ms;
   981     _num_cc_clears++;
   982   }
   983 #endif
   985   // Record the fact that "bytes" bytes allocated in a region.
   986   void record_before_bytes(size_t bytes);
   987   void record_after_bytes(size_t bytes);
   989   // Returns "true" if this is a good time to do a collection pause.
   990   // The "word_size" argument, if non-zero, indicates the size of an
   991   // allocation request that is prompting this query.
   992   virtual bool should_do_collection_pause(size_t word_size) = 0;
   994   // Choose a new collection set.  Marks the chosen regions as being
   995   // "in_collection_set", and links them together.  The head and number of
   996   // the collection set are available via access methods.
   997   virtual void choose_collection_set(double target_pause_time_ms) = 0;
   999   // The head of the list (via "next_in_collection_set()") representing the
  1000   // current collection set.
  1001   HeapRegion* collection_set() { return _collection_set; }
  1003   void clear_collection_set() { _collection_set = NULL; }
  1005   // The number of elements in the current collection set.
  1006   size_t collection_set_size() { return _collection_set_size; }
  1008   // Add "hr" to the CS.
  1009   void add_to_collection_set(HeapRegion* hr);
  1011   // Incremental CSet Support
  1013   // The head of the incrementally built collection set.
  1014   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1016   // The tail of the incrementally built collection set.
  1017   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1019   // The number of elements in the incrementally built collection set.
  1020   size_t inc_cset_size() { return _inc_cset_size; }
  1022   // Initialize incremental collection set info.
  1023   void start_incremental_cset_building();
  1025   void clear_incremental_cset() {
  1026     _inc_cset_head = NULL;
  1027     _inc_cset_tail = NULL;
  1030   // Stop adding regions to the incremental collection set
  1031   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1033   // Add/remove information about hr to the aggregated information
  1034   // for the incrementally built collection set.
  1035   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1036   void remove_from_incremental_cset_info(HeapRegion* hr);
  1038   // Update information about hr in the aggregated information for
  1039   // the incrementally built collection set.
  1040   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1042 private:
  1043   // Update the incremental cset information when adding a region
  1044   // (should not be called directly).
  1045   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1047 public:
  1048   // Add hr to the LHS of the incremental collection set.
  1049   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1051   // Add hr to the RHS of the incremental collection set.
  1052   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1054 #ifndef PRODUCT
  1055   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1056 #endif // !PRODUCT
  1058   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1059   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1060   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1062   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1063   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1064   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1066   // This sets the initiate_conc_mark_if_possible() flag to start a
  1067   // new cycle, as long as we are not already in one. It's best if it
  1068   // is called during a safepoint when the test whether a cycle is in
  1069   // progress or not is stable.
  1070   bool force_initial_mark_if_outside_cycle();
  1072   // This is called at the very beginning of an evacuation pause (it
  1073   // has to be the first thing that the pause does). If
  1074   // initiate_conc_mark_if_possible() is true, and the concurrent
  1075   // marking thread has completed its work during the previous cycle,
  1076   // it will set during_initial_mark_pause() to so that the pause does
  1077   // the initial-mark work and start a marking cycle.
  1078   void decide_on_conc_mark_initiation();
  1080   // If an expansion would be appropriate, because recent GC overhead had
  1081   // exceeded the desired limit, return an amount to expand by.
  1082   virtual size_t expansion_amount();
  1084   // note start of mark thread
  1085   void note_start_of_mark_thread();
  1087   // The marked bytes of the "r" has changed; reclassify it's desirability
  1088   // for marking.  Also asserts that "r" is eligible for a CS.
  1089   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1091 #ifndef PRODUCT
  1092   // Check any appropriate marked bytes info, asserting false if
  1093   // something's wrong, else returning "true".
  1094   virtual bool assertMarkedBytesDataOK() = 0;
  1095 #endif
  1097   // Print tracing information.
  1098   void print_tracing_info() const;
  1100   // Print stats on young survival ratio
  1101   void print_yg_surv_rate_info() const;
  1103   void finished_recalculating_age_indexes(bool is_survivors) {
  1104     if (is_survivors) {
  1105       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1106     } else {
  1107       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1109     // do that for any other surv rate groups
  1112   bool should_add_next_region_to_young_list();
  1114   bool in_young_gc_mode() {
  1115     return _in_young_gc_mode;
  1117   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1118     _in_young_gc_mode = in_young_gc_mode;
  1121   bool full_young_gcs() {
  1122     return _full_young_gcs;
  1124   void set_full_young_gcs(bool full_young_gcs) {
  1125     _full_young_gcs = full_young_gcs;
  1128   bool adaptive_young_list_length() {
  1129     return _adaptive_young_list_length;
  1131   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1132     _adaptive_young_list_length = adaptive_young_list_length;
  1135   inline double get_gc_eff_factor() {
  1136     double ratio = _known_garbage_ratio;
  1138     double square = ratio * ratio;
  1139     // square = square * square;
  1140     double ret = square * 9.0 + 1.0;
  1141 #if 0
  1142     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1143 #endif // 0
  1144     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1145     return ret;
  1148   //
  1149   // Survivor regions policy.
  1150   //
  1151 protected:
  1153   // Current tenuring threshold, set to 0 if the collector reaches the
  1154   // maximum amount of suvivors regions.
  1155   int _tenuring_threshold;
  1157   // The limit on the number of regions allocated for survivors.
  1158   size_t _max_survivor_regions;
  1160   // The amount of survor regions after a collection.
  1161   size_t _recorded_survivor_regions;
  1162   // List of survivor regions.
  1163   HeapRegion* _recorded_survivor_head;
  1164   HeapRegion* _recorded_survivor_tail;
  1166   ageTable _survivors_age_table;
  1168 public:
  1170   inline GCAllocPurpose
  1171     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1172       if (age < _tenuring_threshold && src_region->is_young()) {
  1173         return GCAllocForSurvived;
  1174       } else {
  1175         return GCAllocForTenured;
  1179   inline bool track_object_age(GCAllocPurpose purpose) {
  1180     return purpose == GCAllocForSurvived;
  1183   inline GCAllocPurpose alternative_purpose(int purpose) {
  1184     return GCAllocForTenured;
  1187   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1189   size_t max_regions(int purpose);
  1191   // The limit on regions for a particular purpose is reached.
  1192   void note_alloc_region_limit_reached(int purpose) {
  1193     if (purpose == GCAllocForSurvived) {
  1194       _tenuring_threshold = 0;
  1198   void note_start_adding_survivor_regions() {
  1199     _survivor_surv_rate_group->start_adding_regions();
  1202   void note_stop_adding_survivor_regions() {
  1203     _survivor_surv_rate_group->stop_adding_regions();
  1206   void record_survivor_regions(size_t      regions,
  1207                                HeapRegion* head,
  1208                                HeapRegion* tail) {
  1209     _recorded_survivor_regions = regions;
  1210     _recorded_survivor_head    = head;
  1211     _recorded_survivor_tail    = tail;
  1214   size_t recorded_survivor_regions() {
  1215     return _recorded_survivor_regions;
  1218   void record_thread_age_table(ageTable* age_table)
  1220     _survivors_age_table.merge_par(age_table);
  1223   // Calculates survivor space parameters.
  1224   void calculate_survivors_policy();
  1226 };
  1228 // This encapsulates a particular strategy for a g1 Collector.
  1229 //
  1230 //      Start a concurrent mark when our heap size is n bytes
  1231 //            greater then our heap size was at the last concurrent
  1232 //            mark.  Where n is a function of the CMSTriggerRatio
  1233 //            and the MinHeapFreeRatio.
  1234 //
  1235 //      Start a g1 collection pause when we have allocated the
  1236 //            average number of bytes currently being freed in
  1237 //            a collection, but only if it is at least one region
  1238 //            full
  1239 //
  1240 //      Resize Heap based on desired
  1241 //      allocation space, where desired allocation space is
  1242 //      a function of survival rate and desired future to size.
  1243 //
  1244 //      Choose collection set by first picking all older regions
  1245 //      which have a survival rate which beats our projected young
  1246 //      survival rate.  Then fill out the number of needed regions
  1247 //      with young regions.
  1249 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1250   CollectionSetChooser* _collectionSetChooser;
  1251   // If the estimated is less then desirable, resize if possible.
  1252   void expand_if_possible(size_t numRegions);
  1254   virtual void choose_collection_set(double target_pause_time_ms);
  1255   virtual void record_collection_pause_start(double start_time_sec,
  1256                                              size_t start_used);
  1257   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1258                                                   size_t max_live_bytes);
  1259   virtual void record_full_collection_end();
  1261 public:
  1262   G1CollectorPolicy_BestRegionsFirst() {
  1263     _collectionSetChooser = new CollectionSetChooser();
  1265   void record_collection_pause_end();
  1266   bool should_do_collection_pause(size_t word_size);
  1267   // This is not needed any more, after the CSet choosing code was
  1268   // changed to use the pause prediction work. But let's leave the
  1269   // hook in just in case.
  1270   void note_change_in_marked_bytes(HeapRegion* r) { }
  1271 #ifndef PRODUCT
  1272   bool assertMarkedBytesDataOK();
  1273 #endif
  1274 };
  1276 // This should move to some place more general...
  1278 // If we have "n" measurements, and we've kept track of their "sum" and the
  1279 // "sum_of_squares" of the measurements, this returns the variance of the
  1280 // sequence.
  1281 inline double variance(int n, double sum_of_squares, double sum) {
  1282   double n_d = (double)n;
  1283   double avg = sum/n_d;
  1284   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1287 // Local Variables: ***
  1288 // c-indentation-style: gnu ***
  1289 // End: ***

mercurial