src/os/windows/vm/os_windows.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2222
b6aedd1acdc0
child 2322
828eafbd85cc
child 2364
2d4762ec74af
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifdef _WIN64
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
    27 #define _WIN32_WINNT 0x500
    28 #endif
    30 // no precompiled headers
    31 #include "classfile/classLoader.hpp"
    32 #include "classfile/systemDictionary.hpp"
    33 #include "classfile/vmSymbols.hpp"
    34 #include "code/icBuffer.hpp"
    35 #include "code/vtableStubs.hpp"
    36 #include "compiler/compileBroker.hpp"
    37 #include "interpreter/interpreter.hpp"
    38 #include "jvm_windows.h"
    39 #include "memory/allocation.inline.hpp"
    40 #include "memory/filemap.hpp"
    41 #include "mutex_windows.inline.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "os_share_windows.hpp"
    44 #include "prims/jniFastGetField.hpp"
    45 #include "prims/jvm.h"
    46 #include "prims/jvm_misc.hpp"
    47 #include "runtime/arguments.hpp"
    48 #include "runtime/extendedPC.hpp"
    49 #include "runtime/globals.hpp"
    50 #include "runtime/hpi.hpp"
    51 #include "runtime/interfaceSupport.hpp"
    52 #include "runtime/java.hpp"
    53 #include "runtime/javaCalls.hpp"
    54 #include "runtime/mutexLocker.hpp"
    55 #include "runtime/objectMonitor.hpp"
    56 #include "runtime/osThread.hpp"
    57 #include "runtime/perfMemory.hpp"
    58 #include "runtime/sharedRuntime.hpp"
    59 #include "runtime/statSampler.hpp"
    60 #include "runtime/stubRoutines.hpp"
    61 #include "runtime/threadCritical.hpp"
    62 #include "runtime/timer.hpp"
    63 #include "services/attachListener.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "thread_windows.inline.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    70 #ifdef TARGET_ARCH_x86
    71 # include "assembler_x86.inline.hpp"
    72 # include "nativeInst_x86.hpp"
    73 #endif
    74 #ifdef COMPILER1
    75 #include "c1/c1_Runtime1.hpp"
    76 #endif
    77 #ifdef COMPILER2
    78 #include "opto/runtime.hpp"
    79 #endif
    81 #ifdef _DEBUG
    82 #include <crtdbg.h>
    83 #endif
    86 #include <windows.h>
    87 #include <sys/types.h>
    88 #include <sys/stat.h>
    89 #include <sys/timeb.h>
    90 #include <objidl.h>
    91 #include <shlobj.h>
    93 #include <malloc.h>
    94 #include <signal.h>
    95 #include <direct.h>
    96 #include <errno.h>
    97 #include <fcntl.h>
    98 #include <io.h>
    99 #include <process.h>              // For _beginthreadex(), _endthreadex()
   100 #include <imagehlp.h>             // For os::dll_address_to_function_name
   102 /* for enumerating dll libraries */
   103 #include <tlhelp32.h>
   104 #include <vdmdbg.h>
   106 // for timer info max values which include all bits
   107 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   109 // For DLL loading/load error detection
   110 // Values of PE COFF
   111 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   112 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   114 static HANDLE main_process;
   115 static HANDLE main_thread;
   116 static int    main_thread_id;
   118 static FILETIME process_creation_time;
   119 static FILETIME process_exit_time;
   120 static FILETIME process_user_time;
   121 static FILETIME process_kernel_time;
   123 #ifdef _WIN64
   124 PVOID  topLevelVectoredExceptionHandler = NULL;
   125 #endif
   127 #ifdef _M_IA64
   128 #define __CPU__ ia64
   129 #elif _M_AMD64
   130 #define __CPU__ amd64
   131 #else
   132 #define __CPU__ i486
   133 #endif
   135 // save DLL module handle, used by GetModuleFileName
   137 HINSTANCE vm_lib_handle;
   138 static int getLastErrorString(char *buf, size_t len);
   140 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   141   switch (reason) {
   142     case DLL_PROCESS_ATTACH:
   143       vm_lib_handle = hinst;
   144       if(ForceTimeHighResolution)
   145         timeBeginPeriod(1L);
   146       break;
   147     case DLL_PROCESS_DETACH:
   148       if(ForceTimeHighResolution)
   149         timeEndPeriod(1L);
   150 #ifdef _WIN64
   151       if (topLevelVectoredExceptionHandler != NULL) {
   152         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   153         topLevelVectoredExceptionHandler = NULL;
   154       }
   155 #endif
   156       break;
   157     default:
   158       break;
   159   }
   160   return true;
   161 }
   163 static inline double fileTimeAsDouble(FILETIME* time) {
   164   const double high  = (double) ((unsigned int) ~0);
   165   const double split = 10000000.0;
   166   double result = (time->dwLowDateTime / split) +
   167                    time->dwHighDateTime * (high/split);
   168   return result;
   169 }
   171 // Implementation of os
   173 bool os::getenv(const char* name, char* buffer, int len) {
   174  int result = GetEnvironmentVariable(name, buffer, len);
   175  return result > 0 && result < len;
   176 }
   179 // No setuid programs under Windows.
   180 bool os::have_special_privileges() {
   181   return false;
   182 }
   185 // This method is  a periodic task to check for misbehaving JNI applications
   186 // under CheckJNI, we can add any periodic checks here.
   187 // For Windows at the moment does nothing
   188 void os::run_periodic_checks() {
   189   return;
   190 }
   192 #ifndef _WIN64
   193 // previous UnhandledExceptionFilter, if there is one
   194 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   197 #endif
   198 void os::init_system_properties_values() {
   199   /* sysclasspath, java_home, dll_dir */
   200   {
   201       char *home_path;
   202       char *dll_path;
   203       char *pslash;
   204       char *bin = "\\bin";
   205       char home_dir[MAX_PATH];
   207       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   208           os::jvm_path(home_dir, sizeof(home_dir));
   209           // Found the full path to jvm[_g].dll.
   210           // Now cut the path to <java_home>/jre if we can.
   211           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   212           pslash = strrchr(home_dir, '\\');
   213           if (pslash != NULL) {
   214               *pslash = '\0';                 /* get rid of \{client|server} */
   215               pslash = strrchr(home_dir, '\\');
   216               if (pslash != NULL)
   217                   *pslash = '\0';             /* get rid of \bin */
   218           }
   219       }
   221       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   222       if (home_path == NULL)
   223           return;
   224       strcpy(home_path, home_dir);
   225       Arguments::set_java_home(home_path);
   227       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   228       if (dll_path == NULL)
   229           return;
   230       strcpy(dll_path, home_dir);
   231       strcat(dll_path, bin);
   232       Arguments::set_dll_dir(dll_path);
   234       if (!set_boot_path('\\', ';'))
   235           return;
   236   }
   238   /* library_path */
   239   #define EXT_DIR "\\lib\\ext"
   240   #define BIN_DIR "\\bin"
   241   #define PACKAGE_DIR "\\Sun\\Java"
   242   {
   243     /* Win32 library search order (See the documentation for LoadLibrary):
   244      *
   245      * 1. The directory from which application is loaded.
   246      * 2. The current directory
   247      * 3. The system wide Java Extensions directory (Java only)
   248      * 4. System directory (GetSystemDirectory)
   249      * 5. Windows directory (GetWindowsDirectory)
   250      * 6. The PATH environment variable
   251      */
   253     char *library_path;
   254     char tmp[MAX_PATH];
   255     char *path_str = ::getenv("PATH");
   257     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   258         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   260     library_path[0] = '\0';
   262     GetModuleFileName(NULL, tmp, sizeof(tmp));
   263     *(strrchr(tmp, '\\')) = '\0';
   264     strcat(library_path, tmp);
   266     strcat(library_path, ";.");
   268     GetWindowsDirectory(tmp, sizeof(tmp));
   269     strcat(library_path, ";");
   270     strcat(library_path, tmp);
   271     strcat(library_path, PACKAGE_DIR BIN_DIR);
   273     GetSystemDirectory(tmp, sizeof(tmp));
   274     strcat(library_path, ";");
   275     strcat(library_path, tmp);
   277     GetWindowsDirectory(tmp, sizeof(tmp));
   278     strcat(library_path, ";");
   279     strcat(library_path, tmp);
   281     if (path_str) {
   282         strcat(library_path, ";");
   283         strcat(library_path, path_str);
   284     }
   286     Arguments::set_library_path(library_path);
   287     FREE_C_HEAP_ARRAY(char, library_path);
   288   }
   290   /* Default extensions directory */
   291   {
   292     char path[MAX_PATH];
   293     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   294     GetWindowsDirectory(path, MAX_PATH);
   295     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   296         path, PACKAGE_DIR, EXT_DIR);
   297     Arguments::set_ext_dirs(buf);
   298   }
   299   #undef EXT_DIR
   300   #undef BIN_DIR
   301   #undef PACKAGE_DIR
   303   /* Default endorsed standards directory. */
   304   {
   305     #define ENDORSED_DIR "\\lib\\endorsed"
   306     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   307     char * buf = NEW_C_HEAP_ARRAY(char, len);
   308     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   309     Arguments::set_endorsed_dirs(buf);
   310     #undef ENDORSED_DIR
   311   }
   313 #ifndef _WIN64
   314   // set our UnhandledExceptionFilter and save any previous one
   315   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   316 #endif
   318   // Done
   319   return;
   320 }
   322 void os::breakpoint() {
   323   DebugBreak();
   324 }
   326 // Invoked from the BREAKPOINT Macro
   327 extern "C" void breakpoint() {
   328   os::breakpoint();
   329 }
   331 // Returns an estimate of the current stack pointer. Result must be guaranteed
   332 // to point into the calling threads stack, and be no lower than the current
   333 // stack pointer.
   335 address os::current_stack_pointer() {
   336   int dummy;
   337   address sp = (address)&dummy;
   338   return sp;
   339 }
   341 // os::current_stack_base()
   342 //
   343 //   Returns the base of the stack, which is the stack's
   344 //   starting address.  This function must be called
   345 //   while running on the stack of the thread being queried.
   347 address os::current_stack_base() {
   348   MEMORY_BASIC_INFORMATION minfo;
   349   address stack_bottom;
   350   size_t stack_size;
   352   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   353   stack_bottom =  (address)minfo.AllocationBase;
   354   stack_size = minfo.RegionSize;
   356   // Add up the sizes of all the regions with the same
   357   // AllocationBase.
   358   while( 1 )
   359   {
   360     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   361     if ( stack_bottom == (address)minfo.AllocationBase )
   362       stack_size += minfo.RegionSize;
   363     else
   364       break;
   365   }
   367 #ifdef _M_IA64
   368   // IA64 has memory and register stacks
   369   stack_size = stack_size / 2;
   370 #endif
   371   return stack_bottom + stack_size;
   372 }
   374 size_t os::current_stack_size() {
   375   size_t sz;
   376   MEMORY_BASIC_INFORMATION minfo;
   377   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   378   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   379   return sz;
   380 }
   382 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   383   const struct tm* time_struct_ptr = localtime(clock);
   384   if (time_struct_ptr != NULL) {
   385     *res = *time_struct_ptr;
   386     return res;
   387   }
   388   return NULL;
   389 }
   391 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   393 // Thread start routine for all new Java threads
   394 static unsigned __stdcall java_start(Thread* thread) {
   395   // Try to randomize the cache line index of hot stack frames.
   396   // This helps when threads of the same stack traces evict each other's
   397   // cache lines. The threads can be either from the same JVM instance, or
   398   // from different JVM instances. The benefit is especially true for
   399   // processors with hyperthreading technology.
   400   static int counter = 0;
   401   int pid = os::current_process_id();
   402   _alloca(((pid ^ counter++) & 7) * 128);
   404   OSThread* osthr = thread->osthread();
   405   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   407   if (UseNUMA) {
   408     int lgrp_id = os::numa_get_group_id();
   409     if (lgrp_id != -1) {
   410       thread->set_lgrp_id(lgrp_id);
   411     }
   412   }
   415   if (UseVectoredExceptions) {
   416     // If we are using vectored exception we don't need to set a SEH
   417     thread->run();
   418   }
   419   else {
   420     // Install a win32 structured exception handler around every thread created
   421     // by VM, so VM can genrate error dump when an exception occurred in non-
   422     // Java thread (e.g. VM thread).
   423     __try {
   424        thread->run();
   425     } __except(topLevelExceptionFilter(
   426                (_EXCEPTION_POINTERS*)_exception_info())) {
   427         // Nothing to do.
   428     }
   429   }
   431   // One less thread is executing
   432   // When the VMThread gets here, the main thread may have already exited
   433   // which frees the CodeHeap containing the Atomic::add code
   434   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   435     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   436   }
   438   return 0;
   439 }
   441 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   442   // Allocate the OSThread object
   443   OSThread* osthread = new OSThread(NULL, NULL);
   444   if (osthread == NULL) return NULL;
   446   // Initialize support for Java interrupts
   447   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   448   if (interrupt_event == NULL) {
   449     delete osthread;
   450     return NULL;
   451   }
   452   osthread->set_interrupt_event(interrupt_event);
   454   // Store info on the Win32 thread into the OSThread
   455   osthread->set_thread_handle(thread_handle);
   456   osthread->set_thread_id(thread_id);
   458   if (UseNUMA) {
   459     int lgrp_id = os::numa_get_group_id();
   460     if (lgrp_id != -1) {
   461       thread->set_lgrp_id(lgrp_id);
   462     }
   463   }
   465   // Initial thread state is INITIALIZED, not SUSPENDED
   466   osthread->set_state(INITIALIZED);
   468   return osthread;
   469 }
   472 bool os::create_attached_thread(JavaThread* thread) {
   473 #ifdef ASSERT
   474   thread->verify_not_published();
   475 #endif
   476   HANDLE thread_h;
   477   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   478                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   479     fatal("DuplicateHandle failed\n");
   480   }
   481   OSThread* osthread = create_os_thread(thread, thread_h,
   482                                         (int)current_thread_id());
   483   if (osthread == NULL) {
   484      return false;
   485   }
   487   // Initial thread state is RUNNABLE
   488   osthread->set_state(RUNNABLE);
   490   thread->set_osthread(osthread);
   491   return true;
   492 }
   494 bool os::create_main_thread(JavaThread* thread) {
   495 #ifdef ASSERT
   496   thread->verify_not_published();
   497 #endif
   498   if (_starting_thread == NULL) {
   499     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   500      if (_starting_thread == NULL) {
   501         return false;
   502      }
   503   }
   505   // The primordial thread is runnable from the start)
   506   _starting_thread->set_state(RUNNABLE);
   508   thread->set_osthread(_starting_thread);
   509   return true;
   510 }
   512 // Allocate and initialize a new OSThread
   513 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   514   unsigned thread_id;
   516   // Allocate the OSThread object
   517   OSThread* osthread = new OSThread(NULL, NULL);
   518   if (osthread == NULL) {
   519     return false;
   520   }
   522   // Initialize support for Java interrupts
   523   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   524   if (interrupt_event == NULL) {
   525     delete osthread;
   526     return NULL;
   527   }
   528   osthread->set_interrupt_event(interrupt_event);
   529   osthread->set_interrupted(false);
   531   thread->set_osthread(osthread);
   533   if (stack_size == 0) {
   534     switch (thr_type) {
   535     case os::java_thread:
   536       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   537       if (JavaThread::stack_size_at_create() > 0)
   538         stack_size = JavaThread::stack_size_at_create();
   539       break;
   540     case os::compiler_thread:
   541       if (CompilerThreadStackSize > 0) {
   542         stack_size = (size_t)(CompilerThreadStackSize * K);
   543         break;
   544       } // else fall through:
   545         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   546     case os::vm_thread:
   547     case os::pgc_thread:
   548     case os::cgc_thread:
   549     case os::watcher_thread:
   550       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   551       break;
   552     }
   553   }
   555   // Create the Win32 thread
   556   //
   557   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   558   // does not specify stack size. Instead, it specifies the size of
   559   // initially committed space. The stack size is determined by
   560   // PE header in the executable. If the committed "stack_size" is larger
   561   // than default value in the PE header, the stack is rounded up to the
   562   // nearest multiple of 1MB. For example if the launcher has default
   563   // stack size of 320k, specifying any size less than 320k does not
   564   // affect the actual stack size at all, it only affects the initial
   565   // commitment. On the other hand, specifying 'stack_size' larger than
   566   // default value may cause significant increase in memory usage, because
   567   // not only the stack space will be rounded up to MB, but also the
   568   // entire space is committed upfront.
   569   //
   570   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   571   // for CreateThread() that can treat 'stack_size' as stack size. However we
   572   // are not supposed to call CreateThread() directly according to MSDN
   573   // document because JVM uses C runtime library. The good news is that the
   574   // flag appears to work with _beginthredex() as well.
   576 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   577 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   578 #endif
   580   HANDLE thread_handle =
   581     (HANDLE)_beginthreadex(NULL,
   582                            (unsigned)stack_size,
   583                            (unsigned (__stdcall *)(void*)) java_start,
   584                            thread,
   585                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   586                            &thread_id);
   587   if (thread_handle == NULL) {
   588     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   589     // without the flag.
   590     thread_handle =
   591     (HANDLE)_beginthreadex(NULL,
   592                            (unsigned)stack_size,
   593                            (unsigned (__stdcall *)(void*)) java_start,
   594                            thread,
   595                            CREATE_SUSPENDED,
   596                            &thread_id);
   597   }
   598   if (thread_handle == NULL) {
   599     // Need to clean up stuff we've allocated so far
   600     CloseHandle(osthread->interrupt_event());
   601     thread->set_osthread(NULL);
   602     delete osthread;
   603     return NULL;
   604   }
   606   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   608   // Store info on the Win32 thread into the OSThread
   609   osthread->set_thread_handle(thread_handle);
   610   osthread->set_thread_id(thread_id);
   612   // Initial thread state is INITIALIZED, not SUSPENDED
   613   osthread->set_state(INITIALIZED);
   615   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   616   return true;
   617 }
   620 // Free Win32 resources related to the OSThread
   621 void os::free_thread(OSThread* osthread) {
   622   assert(osthread != NULL, "osthread not set");
   623   CloseHandle(osthread->thread_handle());
   624   CloseHandle(osthread->interrupt_event());
   625   delete osthread;
   626 }
   629 static int    has_performance_count = 0;
   630 static jlong first_filetime;
   631 static jlong initial_performance_count;
   632 static jlong performance_frequency;
   635 jlong as_long(LARGE_INTEGER x) {
   636   jlong result = 0; // initialization to avoid warning
   637   set_high(&result, x.HighPart);
   638   set_low(&result,  x.LowPart);
   639   return result;
   640 }
   643 jlong os::elapsed_counter() {
   644   LARGE_INTEGER count;
   645   if (has_performance_count) {
   646     QueryPerformanceCounter(&count);
   647     return as_long(count) - initial_performance_count;
   648   } else {
   649     FILETIME wt;
   650     GetSystemTimeAsFileTime(&wt);
   651     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   652   }
   653 }
   656 jlong os::elapsed_frequency() {
   657   if (has_performance_count) {
   658     return performance_frequency;
   659   } else {
   660    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   661    return 10000000;
   662   }
   663 }
   666 julong os::available_memory() {
   667   return win32::available_memory();
   668 }
   670 julong os::win32::available_memory() {
   671   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   672   // value if total memory is larger than 4GB
   673   MEMORYSTATUSEX ms;
   674   ms.dwLength = sizeof(ms);
   675   GlobalMemoryStatusEx(&ms);
   677   return (julong)ms.ullAvailPhys;
   678 }
   680 julong os::physical_memory() {
   681   return win32::physical_memory();
   682 }
   684 julong os::allocatable_physical_memory(julong size) {
   685 #ifdef _LP64
   686   return size;
   687 #else
   688   // Limit to 1400m because of the 2gb address space wall
   689   return MIN2(size, (julong)1400*M);
   690 #endif
   691 }
   693 // VC6 lacks DWORD_PTR
   694 #if _MSC_VER < 1300
   695 typedef UINT_PTR DWORD_PTR;
   696 #endif
   698 int os::active_processor_count() {
   699   DWORD_PTR lpProcessAffinityMask = 0;
   700   DWORD_PTR lpSystemAffinityMask = 0;
   701   int proc_count = processor_count();
   702   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   703       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   704     // Nof active processors is number of bits in process affinity mask
   705     int bitcount = 0;
   706     while (lpProcessAffinityMask != 0) {
   707       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   708       bitcount++;
   709     }
   710     return bitcount;
   711   } else {
   712     return proc_count;
   713   }
   714 }
   716 bool os::distribute_processes(uint length, uint* distribution) {
   717   // Not yet implemented.
   718   return false;
   719 }
   721 bool os::bind_to_processor(uint processor_id) {
   722   // Not yet implemented.
   723   return false;
   724 }
   726 static void initialize_performance_counter() {
   727   LARGE_INTEGER count;
   728   if (QueryPerformanceFrequency(&count)) {
   729     has_performance_count = 1;
   730     performance_frequency = as_long(count);
   731     QueryPerformanceCounter(&count);
   732     initial_performance_count = as_long(count);
   733   } else {
   734     has_performance_count = 0;
   735     FILETIME wt;
   736     GetSystemTimeAsFileTime(&wt);
   737     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   738   }
   739 }
   742 double os::elapsedTime() {
   743   return (double) elapsed_counter() / (double) elapsed_frequency();
   744 }
   747 // Windows format:
   748 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   749 // Java format:
   750 //   Java standards require the number of milliseconds since 1/1/1970
   752 // Constant offset - calculated using offset()
   753 static jlong  _offset   = 116444736000000000;
   754 // Fake time counter for reproducible results when debugging
   755 static jlong  fake_time = 0;
   757 #ifdef ASSERT
   758 // Just to be safe, recalculate the offset in debug mode
   759 static jlong _calculated_offset = 0;
   760 static int   _has_calculated_offset = 0;
   762 jlong offset() {
   763   if (_has_calculated_offset) return _calculated_offset;
   764   SYSTEMTIME java_origin;
   765   java_origin.wYear          = 1970;
   766   java_origin.wMonth         = 1;
   767   java_origin.wDayOfWeek     = 0; // ignored
   768   java_origin.wDay           = 1;
   769   java_origin.wHour          = 0;
   770   java_origin.wMinute        = 0;
   771   java_origin.wSecond        = 0;
   772   java_origin.wMilliseconds  = 0;
   773   FILETIME jot;
   774   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   775     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   776   }
   777   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   778   _has_calculated_offset = 1;
   779   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   780   return _calculated_offset;
   781 }
   782 #else
   783 jlong offset() {
   784   return _offset;
   785 }
   786 #endif
   788 jlong windows_to_java_time(FILETIME wt) {
   789   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   790   return (a - offset()) / 10000;
   791 }
   793 FILETIME java_to_windows_time(jlong l) {
   794   jlong a = (l * 10000) + offset();
   795   FILETIME result;
   796   result.dwHighDateTime = high(a);
   797   result.dwLowDateTime  = low(a);
   798   return result;
   799 }
   801 // For now, we say that Windows does not support vtime.  I have no idea
   802 // whether it can actually be made to (DLD, 9/13/05).
   804 bool os::supports_vtime() { return false; }
   805 bool os::enable_vtime() { return false; }
   806 bool os::vtime_enabled() { return false; }
   807 double os::elapsedVTime() {
   808   // better than nothing, but not much
   809   return elapsedTime();
   810 }
   812 jlong os::javaTimeMillis() {
   813   if (UseFakeTimers) {
   814     return fake_time++;
   815   } else {
   816     FILETIME wt;
   817     GetSystemTimeAsFileTime(&wt);
   818     return windows_to_java_time(wt);
   819   }
   820 }
   822 #define NANOS_PER_SEC         CONST64(1000000000)
   823 #define NANOS_PER_MILLISEC    1000000
   824 jlong os::javaTimeNanos() {
   825   if (!has_performance_count) {
   826     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
   827   } else {
   828     LARGE_INTEGER current_count;
   829     QueryPerformanceCounter(&current_count);
   830     double current = as_long(current_count);
   831     double freq = performance_frequency;
   832     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
   833     return time;
   834   }
   835 }
   837 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   838   if (!has_performance_count) {
   839     // javaTimeMillis() doesn't have much percision,
   840     // but it is not going to wrap -- so all 64 bits
   841     info_ptr->max_value = ALL_64_BITS;
   843     // this is a wall clock timer, so may skip
   844     info_ptr->may_skip_backward = true;
   845     info_ptr->may_skip_forward = true;
   846   } else {
   847     jlong freq = performance_frequency;
   848     if (freq < NANOS_PER_SEC) {
   849       // the performance counter is 64 bits and we will
   850       // be multiplying it -- so no wrap in 64 bits
   851       info_ptr->max_value = ALL_64_BITS;
   852     } else if (freq > NANOS_PER_SEC) {
   853       // use the max value the counter can reach to
   854       // determine the max value which could be returned
   855       julong max_counter = (julong)ALL_64_BITS;
   856       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
   857     } else {
   858       // the performance counter is 64 bits and we will
   859       // be using it directly -- so no wrap in 64 bits
   860       info_ptr->max_value = ALL_64_BITS;
   861     }
   863     // using a counter, so no skipping
   864     info_ptr->may_skip_backward = false;
   865     info_ptr->may_skip_forward = false;
   866   }
   867   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   868 }
   870 char* os::local_time_string(char *buf, size_t buflen) {
   871   SYSTEMTIME st;
   872   GetLocalTime(&st);
   873   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   874                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   875   return buf;
   876 }
   878 bool os::getTimesSecs(double* process_real_time,
   879                      double* process_user_time,
   880                      double* process_system_time) {
   881   HANDLE h_process = GetCurrentProcess();
   882   FILETIME create_time, exit_time, kernel_time, user_time;
   883   BOOL result = GetProcessTimes(h_process,
   884                                &create_time,
   885                                &exit_time,
   886                                &kernel_time,
   887                                &user_time);
   888   if (result != 0) {
   889     FILETIME wt;
   890     GetSystemTimeAsFileTime(&wt);
   891     jlong rtc_millis = windows_to_java_time(wt);
   892     jlong user_millis = windows_to_java_time(user_time);
   893     jlong system_millis = windows_to_java_time(kernel_time);
   894     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   895     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   896     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   897     return true;
   898   } else {
   899     return false;
   900   }
   901 }
   903 void os::shutdown() {
   905   // allow PerfMemory to attempt cleanup of any persistent resources
   906   perfMemory_exit();
   908   // flush buffered output, finish log files
   909   ostream_abort();
   911   // Check for abort hook
   912   abort_hook_t abort_hook = Arguments::abort_hook();
   913   if (abort_hook != NULL) {
   914     abort_hook();
   915   }
   916 }
   918 void os::abort(bool dump_core)
   919 {
   920   os::shutdown();
   921   // no core dump on Windows
   922   ::exit(1);
   923 }
   925 // Die immediately, no exit hook, no abort hook, no cleanup.
   926 void os::die() {
   927   _exit(-1);
   928 }
   930 // Directory routines copied from src/win32/native/java/io/dirent_md.c
   931 //  * dirent_md.c       1.15 00/02/02
   932 //
   933 // The declarations for DIR and struct dirent are in jvm_win32.h.
   935 /* Caller must have already run dirname through JVM_NativePath, which removes
   936    duplicate slashes and converts all instances of '/' into '\\'. */
   938 DIR *
   939 os::opendir(const char *dirname)
   940 {
   941     assert(dirname != NULL, "just checking");   // hotspot change
   942     DIR *dirp = (DIR *)malloc(sizeof(DIR));
   943     DWORD fattr;                                // hotspot change
   944     char alt_dirname[4] = { 0, 0, 0, 0 };
   946     if (dirp == 0) {
   947         errno = ENOMEM;
   948         return 0;
   949     }
   951     /*
   952      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
   953      * as a directory in FindFirstFile().  We detect this case here and
   954      * prepend the current drive name.
   955      */
   956     if (dirname[1] == '\0' && dirname[0] == '\\') {
   957         alt_dirname[0] = _getdrive() + 'A' - 1;
   958         alt_dirname[1] = ':';
   959         alt_dirname[2] = '\\';
   960         alt_dirname[3] = '\0';
   961         dirname = alt_dirname;
   962     }
   964     dirp->path = (char *)malloc(strlen(dirname) + 5);
   965     if (dirp->path == 0) {
   966         free(dirp);
   967         errno = ENOMEM;
   968         return 0;
   969     }
   970     strcpy(dirp->path, dirname);
   972     fattr = GetFileAttributes(dirp->path);
   973     if (fattr == 0xffffffff) {
   974         free(dirp->path);
   975         free(dirp);
   976         errno = ENOENT;
   977         return 0;
   978     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
   979         free(dirp->path);
   980         free(dirp);
   981         errno = ENOTDIR;
   982         return 0;
   983     }
   985     /* Append "*.*", or possibly "\\*.*", to path */
   986     if (dirp->path[1] == ':'
   987         && (dirp->path[2] == '\0'
   988             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
   989         /* No '\\' needed for cases like "Z:" or "Z:\" */
   990         strcat(dirp->path, "*.*");
   991     } else {
   992         strcat(dirp->path, "\\*.*");
   993     }
   995     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
   996     if (dirp->handle == INVALID_HANDLE_VALUE) {
   997         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
   998             free(dirp->path);
   999             free(dirp);
  1000             errno = EACCES;
  1001             return 0;
  1004     return dirp;
  1007 /* parameter dbuf unused on Windows */
  1009 struct dirent *
  1010 os::readdir(DIR *dirp, dirent *dbuf)
  1012     assert(dirp != NULL, "just checking");      // hotspot change
  1013     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1014         return 0;
  1017     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1019     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1020         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1021             errno = EBADF;
  1022             return 0;
  1024         FindClose(dirp->handle);
  1025         dirp->handle = INVALID_HANDLE_VALUE;
  1028     return &dirp->dirent;
  1031 int
  1032 os::closedir(DIR *dirp)
  1034     assert(dirp != NULL, "just checking");      // hotspot change
  1035     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1036         if (!FindClose(dirp->handle)) {
  1037             errno = EBADF;
  1038             return -1;
  1040         dirp->handle = INVALID_HANDLE_VALUE;
  1042     free(dirp->path);
  1043     free(dirp);
  1044     return 0;
  1047 const char* os::dll_file_extension() { return ".dll"; }
  1049 const char* os::get_temp_directory() {
  1050   const char *prop = Arguments::get_property("java.io.tmpdir");
  1051   if (prop != 0) return prop;
  1052   static char path_buf[MAX_PATH];
  1053   if (GetTempPath(MAX_PATH, path_buf)>0)
  1054     return path_buf;
  1055   else{
  1056     path_buf[0]='\0';
  1057     return path_buf;
  1061 static bool file_exists(const char* filename) {
  1062   if (filename == NULL || strlen(filename) == 0) {
  1063     return false;
  1065   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1068 void os::dll_build_name(char *buffer, size_t buflen,
  1069                         const char* pname, const char* fname) {
  1070   // Copied from libhpi
  1071   const size_t pnamelen = pname ? strlen(pname) : 0;
  1072   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1074   // Quietly truncates on buffer overflow. Should be an error.
  1075   if (pnamelen + strlen(fname) + 10 > buflen) {
  1076     *buffer = '\0';
  1077     return;
  1080   if (pnamelen == 0) {
  1081     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1082   } else if (c == ':' || c == '\\') {
  1083     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1084   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1085     int n;
  1086     char** pelements = split_path(pname, &n);
  1087     for (int i = 0 ; i < n ; i++) {
  1088       char* path = pelements[i];
  1089       // Really shouldn't be NULL, but check can't hurt
  1090       size_t plen = (path == NULL) ? 0 : strlen(path);
  1091       if (plen == 0) {
  1092         continue; // skip the empty path values
  1094       const char lastchar = path[plen - 1];
  1095       if (lastchar == ':' || lastchar == '\\') {
  1096         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1097       } else {
  1098         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1100       if (file_exists(buffer)) {
  1101         break;
  1104     // release the storage
  1105     for (int i = 0 ; i < n ; i++) {
  1106       if (pelements[i] != NULL) {
  1107         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1110     if (pelements != NULL) {
  1111       FREE_C_HEAP_ARRAY(char*, pelements);
  1113   } else {
  1114     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1118 // Needs to be in os specific directory because windows requires another
  1119 // header file <direct.h>
  1120 const char* os::get_current_directory(char *buf, int buflen) {
  1121   return _getcwd(buf, buflen);
  1124 //-----------------------------------------------------------
  1125 // Helper functions for fatal error handler
  1127 // The following library functions are resolved dynamically at runtime:
  1129 // PSAPI functions, for Windows NT, 2000, XP
  1131 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
  1132 // SDK from Microsoft.  Here are the definitions copied from psapi.h
  1133 typedef struct _MODULEINFO {
  1134     LPVOID lpBaseOfDll;
  1135     DWORD SizeOfImage;
  1136     LPVOID EntryPoint;
  1137 } MODULEINFO, *LPMODULEINFO;
  1139 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
  1140 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
  1141 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
  1143 // ToolHelp Functions, for Windows 95, 98 and ME
  1145 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
  1146 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
  1147 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
  1149 bool _has_psapi;
  1150 bool _psapi_init = false;
  1151 bool _has_toolhelp;
  1153 static bool _init_psapi() {
  1154   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
  1155   if( psapi == NULL ) return false ;
  1157   _EnumProcessModules = CAST_TO_FN_PTR(
  1158       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
  1159       GetProcAddress(psapi, "EnumProcessModules")) ;
  1160   _GetModuleFileNameEx = CAST_TO_FN_PTR(
  1161       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
  1162       GetProcAddress(psapi, "GetModuleFileNameExA"));
  1163   _GetModuleInformation = CAST_TO_FN_PTR(
  1164       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
  1165       GetProcAddress(psapi, "GetModuleInformation"));
  1167   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
  1168   _psapi_init = true;
  1169   return _has_psapi;
  1172 static bool _init_toolhelp() {
  1173   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
  1174   if (kernel32 == NULL) return false ;
  1176   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
  1177       HANDLE(WINAPI *)(DWORD,DWORD),
  1178       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
  1179   _Module32First = CAST_TO_FN_PTR(
  1180       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1181       GetProcAddress(kernel32, "Module32First" ));
  1182   _Module32Next = CAST_TO_FN_PTR(
  1183       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1184       GetProcAddress(kernel32, "Module32Next" ));
  1186   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
  1187   return _has_toolhelp;
  1190 #ifdef _WIN64
  1191 // Helper routine which returns true if address in
  1192 // within the NTDLL address space.
  1193 //
  1194 static bool _addr_in_ntdll( address addr )
  1196   HMODULE hmod;
  1197   MODULEINFO minfo;
  1199   hmod = GetModuleHandle("NTDLL.DLL");
  1200   if ( hmod == NULL ) return false;
  1201   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
  1202                                &minfo, sizeof(MODULEINFO)) )
  1203     return false;
  1205   if ( (addr >= minfo.lpBaseOfDll) &&
  1206        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1207     return true;
  1208   else
  1209     return false;
  1211 #endif
  1214 // Enumerate all modules for a given process ID
  1215 //
  1216 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1217 // different API for doing this. We use PSAPI.DLL on NT based
  1218 // Windows and ToolHelp on 95/98/Me.
  1220 // Callback function that is called by enumerate_modules() on
  1221 // every DLL module.
  1222 // Input parameters:
  1223 //    int       pid,
  1224 //    char*     module_file_name,
  1225 //    address   module_base_addr,
  1226 //    unsigned  module_size,
  1227 //    void*     param
  1228 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1230 // enumerate_modules for Windows NT, using PSAPI
  1231 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1233   HANDLE   hProcess ;
  1235 # define MAX_NUM_MODULES 128
  1236   HMODULE     modules[MAX_NUM_MODULES];
  1237   static char filename[ MAX_PATH ];
  1238   int         result = 0;
  1240   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
  1242   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1243                          FALSE, pid ) ;
  1244   if (hProcess == NULL) return 0;
  1246   DWORD size_needed;
  1247   if (!_EnumProcessModules(hProcess, modules,
  1248                            sizeof(modules), &size_needed)) {
  1249       CloseHandle( hProcess );
  1250       return 0;
  1253   // number of modules that are currently loaded
  1254   int num_modules = size_needed / sizeof(HMODULE);
  1256   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1257     // Get Full pathname:
  1258     if(!_GetModuleFileNameEx(hProcess, modules[i],
  1259                              filename, sizeof(filename))) {
  1260         filename[0] = '\0';
  1263     MODULEINFO modinfo;
  1264     if (!_GetModuleInformation(hProcess, modules[i],
  1265                                &modinfo, sizeof(modinfo))) {
  1266         modinfo.lpBaseOfDll = NULL;
  1267         modinfo.SizeOfImage = 0;
  1270     // Invoke callback function
  1271     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1272                   modinfo.SizeOfImage, param);
  1273     if (result) break;
  1276   CloseHandle( hProcess ) ;
  1277   return result;
  1281 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1282 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1284   HANDLE                hSnapShot ;
  1285   static MODULEENTRY32  modentry ;
  1286   int                   result = 0;
  1288   if (!_has_toolhelp) return 0;
  1290   // Get a handle to a Toolhelp snapshot of the system
  1291   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1292   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1293       return FALSE ;
  1296   // iterate through all modules
  1297   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1298   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
  1300   while( not_done ) {
  1301     // invoke the callback
  1302     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1303                 modentry.modBaseSize, param);
  1304     if (result) break;
  1306     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1307     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
  1310   CloseHandle(hSnapShot);
  1311   return result;
  1314 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1316   // Get current process ID if caller doesn't provide it.
  1317   if (!pid) pid = os::current_process_id();
  1319   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1320   else                    return _enumerate_modules_windows(pid, func, param);
  1323 struct _modinfo {
  1324    address addr;
  1325    char*   full_path;   // point to a char buffer
  1326    int     buflen;      // size of the buffer
  1327    address base_addr;
  1328 };
  1330 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1331                                   unsigned size, void * param) {
  1332    struct _modinfo *pmod = (struct _modinfo *)param;
  1333    if (!pmod) return -1;
  1335    if (base_addr     <= pmod->addr &&
  1336        base_addr+size > pmod->addr) {
  1337      // if a buffer is provided, copy path name to the buffer
  1338      if (pmod->full_path) {
  1339        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1341      pmod->base_addr = base_addr;
  1342      return 1;
  1344    return 0;
  1347 bool os::dll_address_to_library_name(address addr, char* buf,
  1348                                      int buflen, int* offset) {
  1349 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1350 //       return the full path to the DLL file, sometimes it returns path
  1351 //       to the corresponding PDB file (debug info); sometimes it only
  1352 //       returns partial path, which makes life painful.
  1354    struct _modinfo mi;
  1355    mi.addr      = addr;
  1356    mi.full_path = buf;
  1357    mi.buflen    = buflen;
  1358    int pid = os::current_process_id();
  1359    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1360       // buf already contains path name
  1361       if (offset) *offset = addr - mi.base_addr;
  1362       return true;
  1363    } else {
  1364       if (buf) buf[0] = '\0';
  1365       if (offset) *offset = -1;
  1366       return false;
  1370 bool os::dll_address_to_function_name(address addr, char *buf,
  1371                                       int buflen, int *offset) {
  1372   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
  1373   // we need to initialize imagehlp/dbghelp, then load symbol table
  1374   // for every module. That's too much work to do after a fatal error.
  1375   // For an example on how to implement this function, see 1.4.2.
  1376   if (offset)  *offset  = -1;
  1377   if (buf) buf[0] = '\0';
  1378   return false;
  1381 void* os::dll_lookup(void* handle, const char* name) {
  1382   return GetProcAddress((HMODULE)handle, name);
  1385 // save the start and end address of jvm.dll into param[0] and param[1]
  1386 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1387                     unsigned size, void * param) {
  1388    if (!param) return -1;
  1390    if (base_addr     <= (address)_locate_jvm_dll &&
  1391        base_addr+size > (address)_locate_jvm_dll) {
  1392          ((address*)param)[0] = base_addr;
  1393          ((address*)param)[1] = base_addr + size;
  1394          return 1;
  1396    return 0;
  1399 address vm_lib_location[2];    // start and end address of jvm.dll
  1401 // check if addr is inside jvm.dll
  1402 bool os::address_is_in_vm(address addr) {
  1403   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1404     int pid = os::current_process_id();
  1405     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1406       assert(false, "Can't find jvm module.");
  1407       return false;
  1411   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1414 // print module info; param is outputStream*
  1415 static int _print_module(int pid, char* fname, address base,
  1416                          unsigned size, void* param) {
  1417    if (!param) return -1;
  1419    outputStream* st = (outputStream*)param;
  1421    address end_addr = base + size;
  1422    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1423    return 0;
  1426 // Loads .dll/.so and
  1427 // in case of error it checks if .dll/.so was built for the
  1428 // same architecture as Hotspot is running on
  1429 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1431   void * result = LoadLibrary(name);
  1432   if (result != NULL)
  1434     return result;
  1437   long errcode = GetLastError();
  1438   if (errcode == ERROR_MOD_NOT_FOUND) {
  1439     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1440     ebuf[ebuflen-1]='\0';
  1441     return NULL;
  1444   // Parsing dll below
  1445   // If we can read dll-info and find that dll was built
  1446   // for an architecture other than Hotspot is running in
  1447   // - then print to buffer "DLL was built for a different architecture"
  1448   // else call getLastErrorString to obtain system error message
  1450   // Read system error message into ebuf
  1451   // It may or may not be overwritten below (in the for loop and just above)
  1452   getLastErrorString(ebuf, (size_t) ebuflen);
  1453   ebuf[ebuflen-1]='\0';
  1454   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1455   if (file_descriptor<0)
  1457     return NULL;
  1460   uint32_t signature_offset;
  1461   uint16_t lib_arch=0;
  1462   bool failed_to_get_lib_arch=
  1464     //Go to position 3c in the dll
  1465     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1466     ||
  1467     // Read loacation of signature
  1468     (sizeof(signature_offset)!=
  1469       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1470     ||
  1471     //Go to COFF File Header in dll
  1472     //that is located after"signature" (4 bytes long)
  1473     (os::seek_to_file_offset(file_descriptor,
  1474       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1475     ||
  1476     //Read field that contains code of architecture
  1477     // that dll was build for
  1478     (sizeof(lib_arch)!=
  1479       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1480   );
  1482   ::close(file_descriptor);
  1483   if (failed_to_get_lib_arch)
  1485     // file i/o error - report getLastErrorString(...) msg
  1486     return NULL;
  1489   typedef struct
  1491     uint16_t arch_code;
  1492     char* arch_name;
  1493   } arch_t;
  1495   static const arch_t arch_array[]={
  1496     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1497     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1498     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1499   };
  1500   #if   (defined _M_IA64)
  1501     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1502   #elif (defined _M_AMD64)
  1503     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1504   #elif (defined _M_IX86)
  1505     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1506   #else
  1507     #error Method os::dll_load requires that one of following \
  1508            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1509   #endif
  1512   // Obtain a string for printf operation
  1513   // lib_arch_str shall contain string what platform this .dll was built for
  1514   // running_arch_str shall string contain what platform Hotspot was built for
  1515   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1516   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1518     if (lib_arch==arch_array[i].arch_code)
  1519       lib_arch_str=arch_array[i].arch_name;
  1520     if (running_arch==arch_array[i].arch_code)
  1521       running_arch_str=arch_array[i].arch_name;
  1524   assert(running_arch_str,
  1525     "Didn't find runing architecture code in arch_array");
  1527   // If the architure is right
  1528   // but some other error took place - report getLastErrorString(...) msg
  1529   if (lib_arch == running_arch)
  1531     return NULL;
  1534   if (lib_arch_str!=NULL)
  1536     ::_snprintf(ebuf, ebuflen-1,
  1537       "Can't load %s-bit .dll on a %s-bit platform",
  1538       lib_arch_str,running_arch_str);
  1540   else
  1542     // don't know what architecture this dll was build for
  1543     ::_snprintf(ebuf, ebuflen-1,
  1544       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1545       lib_arch,running_arch_str);
  1548   return NULL;
  1552 void os::print_dll_info(outputStream *st) {
  1553    int pid = os::current_process_id();
  1554    st->print_cr("Dynamic libraries:");
  1555    enumerate_modules(pid, _print_module, (void *)st);
  1558 // function pointer to Windows API "GetNativeSystemInfo".
  1559 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
  1560 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
  1562 void os::print_os_info(outputStream* st) {
  1563   st->print("OS:");
  1565   OSVERSIONINFOEX osvi;
  1566   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1567   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1569   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1570     st->print_cr("N/A");
  1571     return;
  1574   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1575   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1576     switch (os_vers) {
  1577     case 3051: st->print(" Windows NT 3.51"); break;
  1578     case 4000: st->print(" Windows NT 4.0"); break;
  1579     case 5000: st->print(" Windows 2000"); break;
  1580     case 5001: st->print(" Windows XP"); break;
  1581     case 5002:
  1582     case 6000:
  1583     case 6001: {
  1584       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1585       // find out whether we are running on 64 bit processor or not.
  1586       SYSTEM_INFO si;
  1587       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1588       // Check to see if _GetNativeSystemInfo has been initialized.
  1589       if (_GetNativeSystemInfo == NULL) {
  1590         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
  1591         _GetNativeSystemInfo =
  1592             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
  1593                            GetProcAddress(hKernel32,
  1594                                           "GetNativeSystemInfo"));
  1595         if (_GetNativeSystemInfo == NULL)
  1596           GetSystemInfo(&si);
  1597       } else {
  1598         _GetNativeSystemInfo(&si);
  1600       if (os_vers == 5002) {
  1601         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1602             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1603           st->print(" Windows XP x64 Edition");
  1604         else
  1605             st->print(" Windows Server 2003 family");
  1606       } else if (os_vers == 6000) {
  1607         if (osvi.wProductType == VER_NT_WORKSTATION)
  1608             st->print(" Windows Vista");
  1609         else
  1610             st->print(" Windows Server 2008");
  1611         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1612             st->print(" , 64 bit");
  1613       } else if (os_vers == 6001) {
  1614         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1615             st->print(" Windows 7");
  1616         } else {
  1617             // Unrecognized windows, print out its major and minor versions
  1618             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1620         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1621             st->print(" , 64 bit");
  1622       } else { // future os
  1623         // Unrecognized windows, print out its major and minor versions
  1624         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1625         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1626             st->print(" , 64 bit");
  1628       break;
  1630     default: // future windows, print out its major and minor versions
  1631       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1633   } else {
  1634     switch (os_vers) {
  1635     case 4000: st->print(" Windows 95"); break;
  1636     case 4010: st->print(" Windows 98"); break;
  1637     case 4090: st->print(" Windows Me"); break;
  1638     default: // future windows, print out its major and minor versions
  1639       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1642   st->print(" Build %d", osvi.dwBuildNumber);
  1643   st->print(" %s", osvi.szCSDVersion);           // service pack
  1644   st->cr();
  1647 void os::print_memory_info(outputStream* st) {
  1648   st->print("Memory:");
  1649   st->print(" %dk page", os::vm_page_size()>>10);
  1651   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1652   // value if total memory is larger than 4GB
  1653   MEMORYSTATUSEX ms;
  1654   ms.dwLength = sizeof(ms);
  1655   GlobalMemoryStatusEx(&ms);
  1657   st->print(", physical %uk", os::physical_memory() >> 10);
  1658   st->print("(%uk free)", os::available_memory() >> 10);
  1660   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1661   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1662   st->cr();
  1665 void os::print_siginfo(outputStream *st, void *siginfo) {
  1666   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1667   st->print("siginfo:");
  1668   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1670   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1671       er->NumberParameters >= 2) {
  1672       switch (er->ExceptionInformation[0]) {
  1673       case 0: st->print(", reading address"); break;
  1674       case 1: st->print(", writing address"); break;
  1675       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1676                             er->ExceptionInformation[0]);
  1678       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1679   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1680              er->NumberParameters >= 2 && UseSharedSpaces) {
  1681     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1682     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1683       st->print("\n\nError accessing class data sharing archive."       \
  1684                 " Mapped file inaccessible during execution, "          \
  1685                 " possible disk/network problem.");
  1687   } else {
  1688     int num = er->NumberParameters;
  1689     if (num > 0) {
  1690       st->print(", ExceptionInformation=");
  1691       for (int i = 0; i < num; i++) {
  1692         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1696   st->cr();
  1699 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1700   // do nothing
  1703 static char saved_jvm_path[MAX_PATH] = {0};
  1705 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1706 void os::jvm_path(char *buf, jint buflen) {
  1707   // Error checking.
  1708   if (buflen < MAX_PATH) {
  1709     assert(false, "must use a large-enough buffer");
  1710     buf[0] = '\0';
  1711     return;
  1713   // Lazy resolve the path to current module.
  1714   if (saved_jvm_path[0] != 0) {
  1715     strcpy(buf, saved_jvm_path);
  1716     return;
  1719   GetModuleFileName(vm_lib_handle, buf, buflen);
  1720   strcpy(saved_jvm_path, buf);
  1724 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1725 #ifndef _WIN64
  1726   st->print("_");
  1727 #endif
  1731 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1732 #ifndef _WIN64
  1733   st->print("@%d", args_size  * sizeof(int));
  1734 #endif
  1737 // sun.misc.Signal
  1738 // NOTE that this is a workaround for an apparent kernel bug where if
  1739 // a signal handler for SIGBREAK is installed then that signal handler
  1740 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1741 // See bug 4416763.
  1742 static void (*sigbreakHandler)(int) = NULL;
  1744 static void UserHandler(int sig, void *siginfo, void *context) {
  1745   os::signal_notify(sig);
  1746   // We need to reinstate the signal handler each time...
  1747   os::signal(sig, (void*)UserHandler);
  1750 void* os::user_handler() {
  1751   return (void*) UserHandler;
  1754 void* os::signal(int signal_number, void* handler) {
  1755   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1756     void (*oldHandler)(int) = sigbreakHandler;
  1757     sigbreakHandler = (void (*)(int)) handler;
  1758     return (void*) oldHandler;
  1759   } else {
  1760     return (void*)::signal(signal_number, (void (*)(int))handler);
  1764 void os::signal_raise(int signal_number) {
  1765   raise(signal_number);
  1768 // The Win32 C runtime library maps all console control events other than ^C
  1769 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1770 // logoff, and shutdown events.  We therefore install our own console handler
  1771 // that raises SIGTERM for the latter cases.
  1772 //
  1773 static BOOL WINAPI consoleHandler(DWORD event) {
  1774   switch(event) {
  1775     case CTRL_C_EVENT:
  1776       if (is_error_reported()) {
  1777         // Ctrl-C is pressed during error reporting, likely because the error
  1778         // handler fails to abort. Let VM die immediately.
  1779         os::die();
  1782       os::signal_raise(SIGINT);
  1783       return TRUE;
  1784       break;
  1785     case CTRL_BREAK_EVENT:
  1786       if (sigbreakHandler != NULL) {
  1787         (*sigbreakHandler)(SIGBREAK);
  1789       return TRUE;
  1790       break;
  1791     case CTRL_CLOSE_EVENT:
  1792     case CTRL_LOGOFF_EVENT:
  1793     case CTRL_SHUTDOWN_EVENT:
  1794       os::signal_raise(SIGTERM);
  1795       return TRUE;
  1796       break;
  1797     default:
  1798       break;
  1800   return FALSE;
  1803 /*
  1804  * The following code is moved from os.cpp for making this
  1805  * code platform specific, which it is by its very nature.
  1806  */
  1808 // Return maximum OS signal used + 1 for internal use only
  1809 // Used as exit signal for signal_thread
  1810 int os::sigexitnum_pd(){
  1811   return NSIG;
  1814 // a counter for each possible signal value, including signal_thread exit signal
  1815 static volatile jint pending_signals[NSIG+1] = { 0 };
  1816 static HANDLE sig_sem;
  1818 void os::signal_init_pd() {
  1819   // Initialize signal structures
  1820   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1822   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1824   // Programs embedding the VM do not want it to attempt to receive
  1825   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1826   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1827   // the VM is run as part of a Windows NT service (i.e., a servlet
  1828   // engine in a web server), the correct behavior is for any console
  1829   // control handler to return FALSE, not TRUE, because the OS's
  1830   // "final" handler for such events allows the process to continue if
  1831   // it is a service (while terminating it if it is not a service).
  1832   // To make this behavior uniform and the mechanism simpler, we
  1833   // completely disable the VM's usage of these console events if -Xrs
  1834   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1835   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1836   // case.  See bugs 4323062, 4345157, and related bugs.
  1838   if (!ReduceSignalUsage) {
  1839     // Add a CTRL-C handler
  1840     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1844 void os::signal_notify(int signal_number) {
  1845   BOOL ret;
  1847   Atomic::inc(&pending_signals[signal_number]);
  1848   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1849   assert(ret != 0, "ReleaseSemaphore() failed");
  1852 static int check_pending_signals(bool wait_for_signal) {
  1853   DWORD ret;
  1854   while (true) {
  1855     for (int i = 0; i < NSIG + 1; i++) {
  1856       jint n = pending_signals[i];
  1857       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1858         return i;
  1861     if (!wait_for_signal) {
  1862       return -1;
  1865     JavaThread *thread = JavaThread::current();
  1867     ThreadBlockInVM tbivm(thread);
  1869     bool threadIsSuspended;
  1870     do {
  1871       thread->set_suspend_equivalent();
  1872       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1873       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1874       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1876       // were we externally suspended while we were waiting?
  1877       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1878       if (threadIsSuspended) {
  1879         //
  1880         // The semaphore has been incremented, but while we were waiting
  1881         // another thread suspended us. We don't want to continue running
  1882         // while suspended because that would surprise the thread that
  1883         // suspended us.
  1884         //
  1885         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1886         assert(ret != 0, "ReleaseSemaphore() failed");
  1888         thread->java_suspend_self();
  1890     } while (threadIsSuspended);
  1894 int os::signal_lookup() {
  1895   return check_pending_signals(false);
  1898 int os::signal_wait() {
  1899   return check_pending_signals(true);
  1902 // Implicit OS exception handling
  1904 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1905   JavaThread* thread = JavaThread::current();
  1906   // Save pc in thread
  1907 #ifdef _M_IA64
  1908   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1909   // Set pc to handler
  1910   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1911 #elif _M_AMD64
  1912   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1913   // Set pc to handler
  1914   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1915 #else
  1916   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  1917   // Set pc to handler
  1918   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  1919 #endif
  1921   // Continue the execution
  1922   return EXCEPTION_CONTINUE_EXECUTION;
  1926 // Used for PostMortemDump
  1927 extern "C" void safepoints();
  1928 extern "C" void find(int x);
  1929 extern "C" void events();
  1931 // According to Windows API documentation, an illegal instruction sequence should generate
  1932 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  1933 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  1934 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  1936 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  1938 // From "Execution Protection in the Windows Operating System" draft 0.35
  1939 // Once a system header becomes available, the "real" define should be
  1940 // included or copied here.
  1941 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  1943 #define def_excpt(val) #val, val
  1945 struct siglabel {
  1946   char *name;
  1947   int   number;
  1948 };
  1950 struct siglabel exceptlabels[] = {
  1951     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  1952     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  1953     def_excpt(EXCEPTION_BREAKPOINT),
  1954     def_excpt(EXCEPTION_SINGLE_STEP),
  1955     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  1956     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  1957     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  1958     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  1959     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  1960     def_excpt(EXCEPTION_FLT_OVERFLOW),
  1961     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  1962     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  1963     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  1964     def_excpt(EXCEPTION_INT_OVERFLOW),
  1965     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  1966     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  1967     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  1968     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  1969     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  1970     def_excpt(EXCEPTION_STACK_OVERFLOW),
  1971     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  1972     def_excpt(EXCEPTION_GUARD_PAGE),
  1973     def_excpt(EXCEPTION_INVALID_HANDLE),
  1974     NULL, 0
  1975 };
  1977 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  1978   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  1979     if (exceptlabels[i].number == exception_code) {
  1980        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  1981        return buf;
  1985   return NULL;
  1988 //-----------------------------------------------------------------------------
  1989 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1990   // handle exception caused by idiv; should only happen for -MinInt/-1
  1991   // (division by zero is handled explicitly)
  1992 #ifdef _M_IA64
  1993   assert(0, "Fix Handle_IDiv_Exception");
  1994 #elif _M_AMD64
  1995   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1996   address pc = (address)ctx->Rip;
  1997   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1998   assert(pc[0] == 0xF7, "not an idiv opcode");
  1999   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2000   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2001   // set correct result values and continue after idiv instruction
  2002   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2003   ctx->Rax = (DWORD)min_jint;      // result
  2004   ctx->Rdx = (DWORD)0;             // remainder
  2005   // Continue the execution
  2006 #else
  2007   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2008   address pc = (address)ctx->Eip;
  2009   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  2010   assert(pc[0] == 0xF7, "not an idiv opcode");
  2011   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2012   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2013   // set correct result values and continue after idiv instruction
  2014   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2015   ctx->Eax = (DWORD)min_jint;      // result
  2016   ctx->Edx = (DWORD)0;             // remainder
  2017   // Continue the execution
  2018 #endif
  2019   return EXCEPTION_CONTINUE_EXECUTION;
  2022 #ifndef  _WIN64
  2023 //-----------------------------------------------------------------------------
  2024 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2025   // handle exception caused by native method modifying control word
  2026   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2027   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2029   switch (exception_code) {
  2030     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2031     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2032     case EXCEPTION_FLT_INEXACT_RESULT:
  2033     case EXCEPTION_FLT_INVALID_OPERATION:
  2034     case EXCEPTION_FLT_OVERFLOW:
  2035     case EXCEPTION_FLT_STACK_CHECK:
  2036     case EXCEPTION_FLT_UNDERFLOW:
  2037       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2038       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2039         // Restore FPCW and mask out FLT exceptions
  2040         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2041         // Mask out pending FLT exceptions
  2042         ctx->FloatSave.StatusWord &=  0xffffff00;
  2043         return EXCEPTION_CONTINUE_EXECUTION;
  2047   if (prev_uef_handler != NULL) {
  2048     // We didn't handle this exception so pass it to the previous
  2049     // UnhandledExceptionFilter.
  2050     return (prev_uef_handler)(exceptionInfo);
  2053   return EXCEPTION_CONTINUE_SEARCH;
  2055 #else //_WIN64
  2056 /*
  2057   On Windows, the mxcsr control bits are non-volatile across calls
  2058   See also CR 6192333
  2059   If EXCEPTION_FLT_* happened after some native method modified
  2060   mxcsr - it is not a jvm fault.
  2061   However should we decide to restore of mxcsr after a faulty
  2062   native method we can uncomment following code
  2063       jint MxCsr = INITIAL_MXCSR;
  2064         // we can't use StubRoutines::addr_mxcsr_std()
  2065         // because in Win64 mxcsr is not saved there
  2066       if (MxCsr != ctx->MxCsr) {
  2067         ctx->MxCsr = MxCsr;
  2068         return EXCEPTION_CONTINUE_EXECUTION;
  2071 */
  2072 #endif //_WIN64
  2075 // Fatal error reporting is single threaded so we can make this a
  2076 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2077 // it.
  2078 static char saved_error_file[MAX_PATH] = {0};
  2080 void os::set_error_file(const char *logfile) {
  2081   if (strlen(logfile) <= MAX_PATH) {
  2082     strncpy(saved_error_file, logfile, MAX_PATH);
  2086 static inline void report_error(Thread* t, DWORD exception_code,
  2087                                 address addr, void* siginfo, void* context) {
  2088   VMError err(t, exception_code, addr, siginfo, context);
  2089   err.report_and_die();
  2091   // If UseOsErrorReporting, this will return here and save the error file
  2092   // somewhere where we can find it in the minidump.
  2095 //-----------------------------------------------------------------------------
  2096 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2097   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2098   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2099 #ifdef _M_IA64
  2100   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  2101 #elif _M_AMD64
  2102   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2103 #else
  2104   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2105 #endif
  2106   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2108 #ifndef _WIN64
  2109   // Execution protection violation - win32 running on AMD64 only
  2110   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2111   // This is safe to do because we have a new/unique ExceptionInformation
  2112   // code for this condition.
  2113   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2114     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2115     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2116     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2118     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2119       int page_size = os::vm_page_size();
  2121       // Make sure the pc and the faulting address are sane.
  2122       //
  2123       // If an instruction spans a page boundary, and the page containing
  2124       // the beginning of the instruction is executable but the following
  2125       // page is not, the pc and the faulting address might be slightly
  2126       // different - we still want to unguard the 2nd page in this case.
  2127       //
  2128       // 15 bytes seems to be a (very) safe value for max instruction size.
  2129       bool pc_is_near_addr =
  2130         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2131       bool instr_spans_page_boundary =
  2132         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2133                          (intptr_t) page_size) > 0);
  2135       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2136         static volatile address last_addr =
  2137           (address) os::non_memory_address_word();
  2139         // In conservative mode, don't unguard unless the address is in the VM
  2140         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2141             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2143           // Set memory to RWX and retry
  2144           address page_start =
  2145             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2146           bool res = os::protect_memory((char*) page_start, page_size,
  2147                                         os::MEM_PROT_RWX);
  2149           if (PrintMiscellaneous && Verbose) {
  2150             char buf[256];
  2151             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2152                          "at " INTPTR_FORMAT
  2153                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2154                          page_start, (res ? "success" : strerror(errno)));
  2155             tty->print_raw_cr(buf);
  2158           // Set last_addr so if we fault again at the same address, we don't
  2159           // end up in an endless loop.
  2160           //
  2161           // There are two potential complications here.  Two threads trapping
  2162           // at the same address at the same time could cause one of the
  2163           // threads to think it already unguarded, and abort the VM.  Likely
  2164           // very rare.
  2165           //
  2166           // The other race involves two threads alternately trapping at
  2167           // different addresses and failing to unguard the page, resulting in
  2168           // an endless loop.  This condition is probably even more unlikely
  2169           // than the first.
  2170           //
  2171           // Although both cases could be avoided by using locks or thread
  2172           // local last_addr, these solutions are unnecessary complication:
  2173           // this handler is a best-effort safety net, not a complete solution.
  2174           // It is disabled by default and should only be used as a workaround
  2175           // in case we missed any no-execute-unsafe VM code.
  2177           last_addr = addr;
  2179           return EXCEPTION_CONTINUE_EXECUTION;
  2183       // Last unguard failed or not unguarding
  2184       tty->print_raw_cr("Execution protection violation");
  2185       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2186                    exceptionInfo->ContextRecord);
  2187       return EXCEPTION_CONTINUE_SEARCH;
  2190 #endif // _WIN64
  2192   // Check to see if we caught the safepoint code in the
  2193   // process of write protecting the memory serialization page.
  2194   // It write enables the page immediately after protecting it
  2195   // so just return.
  2196   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2197     JavaThread* thread = (JavaThread*) t;
  2198     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2199     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2200     if ( os::is_memory_serialize_page(thread, addr) ) {
  2201       // Block current thread until the memory serialize page permission restored.
  2202       os::block_on_serialize_page_trap();
  2203       return EXCEPTION_CONTINUE_EXECUTION;
  2208   if (t != NULL && t->is_Java_thread()) {
  2209     JavaThread* thread = (JavaThread*) t;
  2210     bool in_java = thread->thread_state() == _thread_in_Java;
  2212     // Handle potential stack overflows up front.
  2213     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2214       if (os::uses_stack_guard_pages()) {
  2215 #ifdef _M_IA64
  2216         //
  2217         // If it's a legal stack address continue, Windows will map it in.
  2218         //
  2219         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2220         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2221         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2222           return EXCEPTION_CONTINUE_EXECUTION;
  2224         // The register save area is the same size as the memory stack
  2225         // and starts at the page just above the start of the memory stack.
  2226         // If we get a fault in this area, we've run out of register
  2227         // stack.  If we are in java, try throwing a stack overflow exception.
  2228         if (addr > thread->stack_base() &&
  2229                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2230           char buf[256];
  2231           jio_snprintf(buf, sizeof(buf),
  2232                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2233                        addr, thread->stack_base() );
  2234           tty->print_raw_cr(buf);
  2235           // If not in java code, return and hope for the best.
  2236           return in_java ? Handle_Exception(exceptionInfo,
  2237             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2238             :  EXCEPTION_CONTINUE_EXECUTION;
  2240 #endif
  2241         if (thread->stack_yellow_zone_enabled()) {
  2242           // Yellow zone violation.  The o/s has unprotected the first yellow
  2243           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2244           // update the enabled status, even if the zone contains only one page.
  2245           thread->disable_stack_yellow_zone();
  2246           // If not in java code, return and hope for the best.
  2247           return in_java ? Handle_Exception(exceptionInfo,
  2248             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2249             :  EXCEPTION_CONTINUE_EXECUTION;
  2250         } else {
  2251           // Fatal red zone violation.
  2252           thread->disable_stack_red_zone();
  2253           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2254           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2255                        exceptionInfo->ContextRecord);
  2256           return EXCEPTION_CONTINUE_SEARCH;
  2258       } else if (in_java) {
  2259         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2260         // a one-time-only guard page, which it has released to us.  The next
  2261         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2262         return Handle_Exception(exceptionInfo,
  2263           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2264       } else {
  2265         // Can only return and hope for the best.  Further stack growth will
  2266         // result in an ACCESS_VIOLATION.
  2267         return EXCEPTION_CONTINUE_EXECUTION;
  2269     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2270       // Either stack overflow or null pointer exception.
  2271       if (in_java) {
  2272         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2273         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2274         address stack_end = thread->stack_base() - thread->stack_size();
  2275         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2276           // Stack overflow.
  2277           assert(!os::uses_stack_guard_pages(),
  2278             "should be caught by red zone code above.");
  2279           return Handle_Exception(exceptionInfo,
  2280             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2282         //
  2283         // Check for safepoint polling and implicit null
  2284         // We only expect null pointers in the stubs (vtable)
  2285         // the rest are checked explicitly now.
  2286         //
  2287         CodeBlob* cb = CodeCache::find_blob(pc);
  2288         if (cb != NULL) {
  2289           if (os::is_poll_address(addr)) {
  2290             address stub = SharedRuntime::get_poll_stub(pc);
  2291             return Handle_Exception(exceptionInfo, stub);
  2295 #ifdef _WIN64
  2296           //
  2297           // If it's a legal stack address map the entire region in
  2298           //
  2299           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2300           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2301           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2302                   addr = (address)((uintptr_t)addr &
  2303                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2304                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2305                                     false );
  2306                   return EXCEPTION_CONTINUE_EXECUTION;
  2308           else
  2309 #endif
  2311             // Null pointer exception.
  2312 #ifdef _M_IA64
  2313             // We catch register stack overflows in compiled code by doing
  2314             // an explicit compare and executing a st8(G0, G0) if the
  2315             // BSP enters into our guard area.  We test for the overflow
  2316             // condition and fall into the normal null pointer exception
  2317             // code if BSP hasn't overflowed.
  2318             if ( in_java ) {
  2319               if(thread->register_stack_overflow()) {
  2320                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2321                                 thread->register_stack_limit(),
  2322                                "GR7 doesn't contain register_stack_limit");
  2323                 // Disable the yellow zone which sets the state that
  2324                 // we've got a stack overflow problem.
  2325                 if (thread->stack_yellow_zone_enabled()) {
  2326                   thread->disable_stack_yellow_zone();
  2328                 // Give us some room to process the exception
  2329                 thread->disable_register_stack_guard();
  2330                 // Update GR7 with the new limit so we can continue running
  2331                 // compiled code.
  2332                 exceptionInfo->ContextRecord->IntS3 =
  2333                                (ULONGLONG)thread->register_stack_limit();
  2334                 return Handle_Exception(exceptionInfo,
  2335                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2336               } else {
  2337                 //
  2338                 // Check for implicit null
  2339                 // We only expect null pointers in the stubs (vtable)
  2340                 // the rest are checked explicitly now.
  2341                 //
  2342                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2343                   // an access to the first page of VM--assume it is a null pointer
  2344                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2345                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2348             } // in_java
  2350             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2351             // get here.
  2352             tty->print_raw_cr("Access violation, possible null pointer exception");
  2353             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2354                          exceptionInfo->ContextRecord);
  2355             return EXCEPTION_CONTINUE_SEARCH;
  2356 #else /* !IA64 */
  2358             // Windows 98 reports faulting addresses incorrectly
  2359             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2360                 !os::win32::is_nt()) {
  2361               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2362               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2364             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2365                          exceptionInfo->ContextRecord);
  2366             return EXCEPTION_CONTINUE_SEARCH;
  2367 #endif
  2372 #ifdef _WIN64
  2373       // Special care for fast JNI field accessors.
  2374       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2375       // in and the heap gets shrunk before the field access.
  2376       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2377         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2378         if (addr != (address)-1) {
  2379           return Handle_Exception(exceptionInfo, addr);
  2382 #endif
  2384 #ifdef _WIN64
  2385       // Windows will sometimes generate an access violation
  2386       // when we call malloc.  Since we use VectoredExceptions
  2387       // on 64 bit platforms, we see this exception.  We must
  2388       // pass this exception on so Windows can recover.
  2389       // We check to see if the pc of the fault is in NTDLL.DLL
  2390       // if so, we pass control on to Windows for handling.
  2391       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2392 #endif
  2394       // Stack overflow or null pointer exception in native code.
  2395       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2396                    exceptionInfo->ContextRecord);
  2397       return EXCEPTION_CONTINUE_SEARCH;
  2400     if (in_java) {
  2401       switch (exception_code) {
  2402       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2403         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2405       case EXCEPTION_INT_OVERFLOW:
  2406         return Handle_IDiv_Exception(exceptionInfo);
  2408       } // switch
  2410 #ifndef _WIN64
  2411     if ((thread->thread_state() == _thread_in_Java) ||
  2412         (thread->thread_state() == _thread_in_native) )
  2414       LONG result=Handle_FLT_Exception(exceptionInfo);
  2415       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2417 #endif //_WIN64
  2420   if (exception_code != EXCEPTION_BREAKPOINT) {
  2421 #ifndef _WIN64
  2422     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2423                  exceptionInfo->ContextRecord);
  2424 #else
  2425     // Itanium Windows uses a VectoredExceptionHandler
  2426     // Which means that C++ programatic exception handlers (try/except)
  2427     // will get here.  Continue the search for the right except block if
  2428     // the exception code is not a fatal code.
  2429     switch ( exception_code ) {
  2430       case EXCEPTION_ACCESS_VIOLATION:
  2431       case EXCEPTION_STACK_OVERFLOW:
  2432       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2433       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2434       case EXCEPTION_INT_OVERFLOW:
  2435       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2436       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2437                        exceptionInfo->ContextRecord);
  2439         break;
  2440       default:
  2441         break;
  2443 #endif
  2445   return EXCEPTION_CONTINUE_SEARCH;
  2448 #ifndef _WIN64
  2449 // Special care for fast JNI accessors.
  2450 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2451 // the heap gets shrunk before the field access.
  2452 // Need to install our own structured exception handler since native code may
  2453 // install its own.
  2454 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2455   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2456   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2457     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2458     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2459     if (addr != (address)-1) {
  2460       return Handle_Exception(exceptionInfo, addr);
  2463   return EXCEPTION_CONTINUE_SEARCH;
  2466 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2467 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2468   __try { \
  2469     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2470   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2471   } \
  2472   return 0; \
  2475 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2476 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2477 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2478 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2479 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2480 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2481 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2482 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2484 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2485   switch (type) {
  2486     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2487     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2488     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2489     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2490     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2491     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2492     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2493     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2494     default:        ShouldNotReachHere();
  2496   return (address)-1;
  2498 #endif
  2500 // Virtual Memory
  2502 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2503 int os::vm_allocation_granularity() {
  2504   return os::win32::vm_allocation_granularity();
  2507 // Windows large page support is available on Windows 2003. In order to use
  2508 // large page memory, the administrator must first assign additional privilege
  2509 // to the user:
  2510 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2511 //   + select Local Policies -> User Rights Assignment
  2512 //   + double click "Lock pages in memory", add users and/or groups
  2513 //   + reboot
  2514 // Note the above steps are needed for administrator as well, as administrators
  2515 // by default do not have the privilege to lock pages in memory.
  2516 //
  2517 // Note about Windows 2003: although the API supports committing large page
  2518 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2519 // scenario, I found through experiment it only uses large page if the entire
  2520 // memory region is reserved and committed in a single VirtualAlloc() call.
  2521 // This makes Windows large page support more or less like Solaris ISM, in
  2522 // that the entire heap must be committed upfront. This probably will change
  2523 // in the future, if so the code below needs to be revisited.
  2525 #ifndef MEM_LARGE_PAGES
  2526 #define MEM_LARGE_PAGES 0x20000000
  2527 #endif
  2529 // GetLargePageMinimum is only available on Windows 2003. The other functions
  2530 // are available on NT but not on Windows 98/Me. We have to resolve them at
  2531 // runtime.
  2532 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
  2533 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
  2534              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  2535 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
  2536 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
  2538 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
  2539 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
  2540 static OpenProcessToken_func_type      _OpenProcessToken;
  2541 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
  2543 static HINSTANCE _kernel32;
  2544 static HINSTANCE _advapi32;
  2545 static HANDLE    _hProcess;
  2546 static HANDLE    _hToken;
  2548 static size_t _large_page_size = 0;
  2550 static bool resolve_functions_for_large_page_init() {
  2551   _kernel32 = LoadLibrary("kernel32.dll");
  2552   if (_kernel32 == NULL) return false;
  2554   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
  2555                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
  2556   if (_GetLargePageMinimum == NULL) return false;
  2558   _advapi32 = LoadLibrary("advapi32.dll");
  2559   if (_advapi32 == NULL) return false;
  2561   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
  2562                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
  2563   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
  2564                             GetProcAddress(_advapi32, "OpenProcessToken"));
  2565   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
  2566                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
  2567   return _AdjustTokenPrivileges != NULL &&
  2568          _OpenProcessToken      != NULL &&
  2569          _LookupPrivilegeValue  != NULL;
  2572 static bool request_lock_memory_privilege() {
  2573   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2574                                 os::current_process_id());
  2576   LUID luid;
  2577   if (_hProcess != NULL &&
  2578       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2579       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2581     TOKEN_PRIVILEGES tp;
  2582     tp.PrivilegeCount = 1;
  2583     tp.Privileges[0].Luid = luid;
  2584     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2586     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2587     // privilege. Check GetLastError() too. See MSDN document.
  2588     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2589         (GetLastError() == ERROR_SUCCESS)) {
  2590       return true;
  2594   return false;
  2597 static void cleanup_after_large_page_init() {
  2598   _GetLargePageMinimum = NULL;
  2599   _AdjustTokenPrivileges = NULL;
  2600   _OpenProcessToken = NULL;
  2601   _LookupPrivilegeValue = NULL;
  2602   if (_kernel32) FreeLibrary(_kernel32);
  2603   _kernel32 = NULL;
  2604   if (_advapi32) FreeLibrary(_advapi32);
  2605   _advapi32 = NULL;
  2606   if (_hProcess) CloseHandle(_hProcess);
  2607   _hProcess = NULL;
  2608   if (_hToken) CloseHandle(_hToken);
  2609   _hToken = NULL;
  2612 bool os::large_page_init() {
  2613   if (!UseLargePages) return false;
  2615   // print a warning if any large page related flag is specified on command line
  2616   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2617                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2618   bool success = false;
  2620 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2621   if (resolve_functions_for_large_page_init()) {
  2622     if (request_lock_memory_privilege()) {
  2623       size_t s = _GetLargePageMinimum();
  2624       if (s) {
  2625 #if defined(IA32) || defined(AMD64)
  2626         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2627           WARN("JVM cannot use large pages bigger than 4mb.");
  2628         } else {
  2629 #endif
  2630           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2631             _large_page_size = LargePageSizeInBytes;
  2632           } else {
  2633             _large_page_size = s;
  2635           success = true;
  2636 #if defined(IA32) || defined(AMD64)
  2638 #endif
  2639       } else {
  2640         WARN("Large page is not supported by the processor.");
  2642     } else {
  2643       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2645   } else {
  2646     WARN("Large page is not supported by the operating system.");
  2648 #undef WARN
  2650   const size_t default_page_size = (size_t) vm_page_size();
  2651   if (success && _large_page_size > default_page_size) {
  2652     _page_sizes[0] = _large_page_size;
  2653     _page_sizes[1] = default_page_size;
  2654     _page_sizes[2] = 0;
  2657   cleanup_after_large_page_init();
  2658   return success;
  2661 // On win32, one cannot release just a part of reserved memory, it's an
  2662 // all or nothing deal.  When we split a reservation, we must break the
  2663 // reservation into two reservations.
  2664 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2665                               bool realloc) {
  2666   if (size > 0) {
  2667     release_memory(base, size);
  2668     if (realloc) {
  2669       reserve_memory(split, base);
  2671     if (size != split) {
  2672       reserve_memory(size - split, base + split);
  2677 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2678   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2679          "reserve alignment");
  2680   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2681   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  2682   assert(res == NULL || addr == NULL || addr == res,
  2683          "Unexpected address from reserve.");
  2684   return res;
  2687 // Reserve memory at an arbitrary address, only if that area is
  2688 // available (and not reserved for something else).
  2689 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2690   // Windows os::reserve_memory() fails of the requested address range is
  2691   // not avilable.
  2692   return reserve_memory(bytes, requested_addr);
  2695 size_t os::large_page_size() {
  2696   return _large_page_size;
  2699 bool os::can_commit_large_page_memory() {
  2700   // Windows only uses large page memory when the entire region is reserved
  2701   // and committed in a single VirtualAlloc() call. This may change in the
  2702   // future, but with Windows 2003 it's not possible to commit on demand.
  2703   return false;
  2706 bool os::can_execute_large_page_memory() {
  2707   return true;
  2710 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  2712   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  2714   if (UseLargePagesIndividualAllocation) {
  2715     if (TracePageSizes && Verbose) {
  2716        tty->print_cr("Reserving large pages individually.");
  2718     char * p_buf;
  2719     // first reserve enough address space in advance since we want to be
  2720     // able to break a single contiguous virtual address range into multiple
  2721     // large page commits but WS2003 does not allow reserving large page space
  2722     // so we just use 4K pages for reserve, this gives us a legal contiguous
  2723     // address space. then we will deallocate that reservation, and re alloc
  2724     // using large pages
  2725     const size_t size_of_reserve = bytes + _large_page_size;
  2726     if (bytes > size_of_reserve) {
  2727       // Overflowed.
  2728       warning("Individually allocated large pages failed, "
  2729         "use -XX:-UseLargePagesIndividualAllocation to turn off");
  2730       return NULL;
  2732     p_buf = (char *) VirtualAlloc(addr,
  2733                                  size_of_reserve,  // size of Reserve
  2734                                  MEM_RESERVE,
  2735                                  PAGE_READWRITE);
  2736     // If reservation failed, return NULL
  2737     if (p_buf == NULL) return NULL;
  2739     release_memory(p_buf, bytes + _large_page_size);
  2740     // round up to page boundary.  If the size_of_reserve did not
  2741     // overflow and the reservation did not fail, this align up
  2742     // should not overflow.
  2743     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
  2745     // now go through and allocate one page at a time until all bytes are
  2746     // allocated
  2747     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
  2748     // An overflow of align_size_up() would have been caught above
  2749     // in the calculation of size_of_reserve.
  2750     char * next_alloc_addr = p_buf;
  2752 #ifdef ASSERT
  2753     // Variable for the failure injection
  2754     long ran_num = os::random();
  2755     size_t fail_after = ran_num % bytes;
  2756 #endif
  2758     while (bytes_remaining) {
  2759       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
  2760       // Note allocate and commit
  2761       char * p_new;
  2763 #ifdef ASSERT
  2764       bool inject_error = LargePagesIndividualAllocationInjectError &&
  2765           (bytes_remaining <= fail_after);
  2766 #else
  2767       const bool inject_error = false;
  2768 #endif
  2770       if (inject_error) {
  2771         p_new = NULL;
  2772       } else {
  2773         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2774                                     bytes_to_rq,
  2775                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
  2776                                     prot);
  2779       if (p_new == NULL) {
  2780         // Free any allocated pages
  2781         if (next_alloc_addr > p_buf) {
  2782           // Some memory was committed so release it.
  2783           size_t bytes_to_release = bytes - bytes_remaining;
  2784           release_memory(p_buf, bytes_to_release);
  2786 #ifdef ASSERT
  2787         if (UseLargePagesIndividualAllocation &&
  2788             LargePagesIndividualAllocationInjectError) {
  2789           if (TracePageSizes && Verbose) {
  2790              tty->print_cr("Reserving large pages individually failed.");
  2793 #endif
  2794         return NULL;
  2796       bytes_remaining -= bytes_to_rq;
  2797       next_alloc_addr += bytes_to_rq;
  2800     return p_buf;
  2802   } else {
  2803     // normal policy just allocate it all at once
  2804     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2805     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  2806     return res;
  2810 bool os::release_memory_special(char* base, size_t bytes) {
  2811   return release_memory(base, bytes);
  2814 void os::print_statistics() {
  2817 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2818   if (bytes == 0) {
  2819     // Don't bother the OS with noops.
  2820     return true;
  2822   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  2823   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  2824   // Don't attempt to print anything if the OS call fails. We're
  2825   // probably low on resources, so the print itself may cause crashes.
  2826   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
  2827   if (result != NULL && exec) {
  2828     DWORD oldprot;
  2829     // Windows doc says to use VirtualProtect to get execute permissions
  2830     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
  2831   } else {
  2832     return result;
  2836 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2837                        bool exec) {
  2838   return commit_memory(addr, size, exec);
  2841 bool os::uncommit_memory(char* addr, size_t bytes) {
  2842   if (bytes == 0) {
  2843     // Don't bother the OS with noops.
  2844     return true;
  2846   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  2847   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  2848   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  2851 bool os::release_memory(char* addr, size_t bytes) {
  2852   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  2855 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2856   return os::commit_memory(addr, size);
  2859 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2860   return os::uncommit_memory(addr, size);
  2863 // Set protections specified
  2864 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2865                         bool is_committed) {
  2866   unsigned int p = 0;
  2867   switch (prot) {
  2868   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  2869   case MEM_PROT_READ: p = PAGE_READONLY; break;
  2870   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  2871   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  2872   default:
  2873     ShouldNotReachHere();
  2876   DWORD old_status;
  2878   // Strange enough, but on Win32 one can change protection only for committed
  2879   // memory, not a big deal anyway, as bytes less or equal than 64K
  2880   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
  2881     fatal("cannot commit protection page");
  2883   // One cannot use os::guard_memory() here, as on Win32 guard page
  2884   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  2885   //
  2886   // Pages in the region become guard pages. Any attempt to access a guard page
  2887   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  2888   // the guard page status. Guard pages thus act as a one-time access alarm.
  2889   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  2892 bool os::guard_memory(char* addr, size_t bytes) {
  2893   DWORD old_status;
  2894   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  2897 bool os::unguard_memory(char* addr, size_t bytes) {
  2898   DWORD old_status;
  2899   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  2902 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2903 void os::free_memory(char *addr, size_t bytes)         { }
  2904 void os::numa_make_global(char *addr, size_t bytes)    { }
  2905 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  2906 bool os::numa_topology_changed()                       { return false; }
  2907 size_t os::numa_get_groups_num()                       { return 1; }
  2908 int os::numa_get_group_id()                            { return 0; }
  2909 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2910   if (size > 0) {
  2911     ids[0] = 0;
  2912     return 1;
  2914   return 0;
  2917 bool os::get_page_info(char *start, page_info* info) {
  2918   return false;
  2921 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2922   return end;
  2925 char* os::non_memory_address_word() {
  2926   // Must never look like an address returned by reserve_memory,
  2927   // even in its subfields (as defined by the CPU immediate fields,
  2928   // if the CPU splits constants across multiple instructions).
  2929   return (char*)-1;
  2932 #define MAX_ERROR_COUNT 100
  2933 #define SYS_THREAD_ERROR 0xffffffffUL
  2935 void os::pd_start_thread(Thread* thread) {
  2936   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  2937   // Returns previous suspend state:
  2938   // 0:  Thread was not suspended
  2939   // 1:  Thread is running now
  2940   // >1: Thread is still suspended.
  2941   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  2944 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2945   return ::read(fd, buf, nBytes);
  2948 class HighResolutionInterval {
  2949   // The default timer resolution seems to be 10 milliseconds.
  2950   // (Where is this written down?)
  2951   // If someone wants to sleep for only a fraction of the default,
  2952   // then we set the timer resolution down to 1 millisecond for
  2953   // the duration of their interval.
  2954   // We carefully set the resolution back, since otherwise we
  2955   // seem to incur an overhead (3%?) that we don't need.
  2956   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  2957   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  2958   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  2959   // timeBeginPeriod() if the relative error exceeded some threshold.
  2960   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  2961   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  2962   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  2963   // resolution timers running.
  2964 private:
  2965     jlong resolution;
  2966 public:
  2967   HighResolutionInterval(jlong ms) {
  2968     resolution = ms % 10L;
  2969     if (resolution != 0) {
  2970       MMRESULT result = timeBeginPeriod(1L);
  2973   ~HighResolutionInterval() {
  2974     if (resolution != 0) {
  2975       MMRESULT result = timeEndPeriod(1L);
  2977     resolution = 0L;
  2979 };
  2981 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  2982   jlong limit = (jlong) MAXDWORD;
  2984   while(ms > limit) {
  2985     int res;
  2986     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  2987       return res;
  2988     ms -= limit;
  2991   assert(thread == Thread::current(),  "thread consistency check");
  2992   OSThread* osthread = thread->osthread();
  2993   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  2994   int result;
  2995   if (interruptable) {
  2996     assert(thread->is_Java_thread(), "must be java thread");
  2997     JavaThread *jt = (JavaThread *) thread;
  2998     ThreadBlockInVM tbivm(jt);
  3000     jt->set_suspend_equivalent();
  3001     // cleared by handle_special_suspend_equivalent_condition() or
  3002     // java_suspend_self() via check_and_wait_while_suspended()
  3004     HANDLE events[1];
  3005     events[0] = osthread->interrupt_event();
  3006     HighResolutionInterval *phri=NULL;
  3007     if(!ForceTimeHighResolution)
  3008       phri = new HighResolutionInterval( ms );
  3009     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3010       result = OS_TIMEOUT;
  3011     } else {
  3012       ResetEvent(osthread->interrupt_event());
  3013       osthread->set_interrupted(false);
  3014       result = OS_INTRPT;
  3016     delete phri; //if it is NULL, harmless
  3018     // were we externally suspended while we were waiting?
  3019     jt->check_and_wait_while_suspended();
  3020   } else {
  3021     assert(!thread->is_Java_thread(), "must not be java thread");
  3022     Sleep((long) ms);
  3023     result = OS_TIMEOUT;
  3025   return result;
  3028 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3029 void os::infinite_sleep() {
  3030   while (true) {    // sleep forever ...
  3031     Sleep(100000);  // ... 100 seconds at a time
  3035 typedef BOOL (WINAPI * STTSignature)(void) ;
  3037 os::YieldResult os::NakedYield() {
  3038   // Use either SwitchToThread() or Sleep(0)
  3039   // Consider passing back the return value from SwitchToThread().
  3040   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
  3041   // In that case we revert to Sleep(0).
  3042   static volatile STTSignature stt = (STTSignature) 1 ;
  3044   if (stt == ((STTSignature) 1)) {
  3045     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
  3046     // It's OK if threads race during initialization as the operation above is idempotent.
  3048   if (stt != NULL) {
  3049     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3050   } else {
  3051     Sleep (0) ;
  3053   return os::YIELD_UNKNOWN ;
  3056 void os::yield() {  os::NakedYield(); }
  3058 void os::yield_all(int attempts) {
  3059   // Yields to all threads, including threads with lower priorities
  3060   Sleep(1);
  3063 // Win32 only gives you access to seven real priorities at a time,
  3064 // so we compress Java's ten down to seven.  It would be better
  3065 // if we dynamically adjusted relative priorities.
  3067 int os::java_to_os_priority[MaxPriority + 1] = {
  3068   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3069   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3070   THREAD_PRIORITY_LOWEST,                       // 2
  3071   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3072   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3073   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3074   THREAD_PRIORITY_NORMAL,                       // 6
  3075   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3076   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3077   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3078   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  3079 };
  3081 int prio_policy1[MaxPriority + 1] = {
  3082   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3083   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3084   THREAD_PRIORITY_LOWEST,                       // 2
  3085   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3086   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3087   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3088   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3089   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3090   THREAD_PRIORITY_HIGHEST,                      // 8
  3091   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3092   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  3093 };
  3095 static int prio_init() {
  3096   // If ThreadPriorityPolicy is 1, switch tables
  3097   if (ThreadPriorityPolicy == 1) {
  3098     int i;
  3099     for (i = 0; i < MaxPriority + 1; i++) {
  3100       os::java_to_os_priority[i] = prio_policy1[i];
  3103   return 0;
  3106 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3107   if (!UseThreadPriorities) return OS_OK;
  3108   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3109   return ret ? OS_OK : OS_ERR;
  3112 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3113   if ( !UseThreadPriorities ) {
  3114     *priority_ptr = java_to_os_priority[NormPriority];
  3115     return OS_OK;
  3117   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3118   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3119     assert(false, "GetThreadPriority failed");
  3120     return OS_ERR;
  3122   *priority_ptr = os_prio;
  3123   return OS_OK;
  3127 // Hint to the underlying OS that a task switch would not be good.
  3128 // Void return because it's a hint and can fail.
  3129 void os::hint_no_preempt() {}
  3131 void os::interrupt(Thread* thread) {
  3132   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3133          "possibility of dangling Thread pointer");
  3135   OSThread* osthread = thread->osthread();
  3136   osthread->set_interrupted(true);
  3137   // More than one thread can get here with the same value of osthread,
  3138   // resulting in multiple notifications.  We do, however, want the store
  3139   // to interrupted() to be visible to other threads before we post
  3140   // the interrupt event.
  3141   OrderAccess::release();
  3142   SetEvent(osthread->interrupt_event());
  3143   // For JSR166:  unpark after setting status
  3144   if (thread->is_Java_thread())
  3145     ((JavaThread*)thread)->parker()->unpark();
  3147   ParkEvent * ev = thread->_ParkEvent ;
  3148   if (ev != NULL) ev->unpark() ;
  3153 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3154   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3155          "possibility of dangling Thread pointer");
  3157   OSThread* osthread = thread->osthread();
  3158   bool interrupted;
  3159   interrupted = osthread->interrupted();
  3160   if (clear_interrupted == true) {
  3161     osthread->set_interrupted(false);
  3162     ResetEvent(osthread->interrupt_event());
  3163   } // Otherwise leave the interrupted state alone
  3165   return interrupted;
  3168 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3169 ExtendedPC os::get_thread_pc(Thread* thread) {
  3170   CONTEXT context;
  3171   context.ContextFlags = CONTEXT_CONTROL;
  3172   HANDLE handle = thread->osthread()->thread_handle();
  3173 #ifdef _M_IA64
  3174   assert(0, "Fix get_thread_pc");
  3175   return ExtendedPC(NULL);
  3176 #else
  3177   if (GetThreadContext(handle, &context)) {
  3178 #ifdef _M_AMD64
  3179     return ExtendedPC((address) context.Rip);
  3180 #else
  3181     return ExtendedPC((address) context.Eip);
  3182 #endif
  3183   } else {
  3184     return ExtendedPC(NULL);
  3186 #endif
  3189 // GetCurrentThreadId() returns DWORD
  3190 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3192 static int _initial_pid = 0;
  3194 int os::current_process_id()
  3196   return (_initial_pid ? _initial_pid : _getpid());
  3199 int    os::win32::_vm_page_size       = 0;
  3200 int    os::win32::_vm_allocation_granularity = 0;
  3201 int    os::win32::_processor_type     = 0;
  3202 // Processor level is not available on non-NT systems, use vm_version instead
  3203 int    os::win32::_processor_level    = 0;
  3204 julong os::win32::_physical_memory    = 0;
  3205 size_t os::win32::_default_stack_size = 0;
  3207          intx os::win32::_os_thread_limit    = 0;
  3208 volatile intx os::win32::_os_thread_count    = 0;
  3210 bool   os::win32::_is_nt              = false;
  3211 bool   os::win32::_is_windows_2003    = false;
  3214 void os::win32::initialize_system_info() {
  3215   SYSTEM_INFO si;
  3216   GetSystemInfo(&si);
  3217   _vm_page_size    = si.dwPageSize;
  3218   _vm_allocation_granularity = si.dwAllocationGranularity;
  3219   _processor_type  = si.dwProcessorType;
  3220   _processor_level = si.wProcessorLevel;
  3221   set_processor_count(si.dwNumberOfProcessors);
  3223   MEMORYSTATUSEX ms;
  3224   ms.dwLength = sizeof(ms);
  3226   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3227   // dwMemoryLoad (% of memory in use)
  3228   GlobalMemoryStatusEx(&ms);
  3229   _physical_memory = ms.ullTotalPhys;
  3231   OSVERSIONINFO oi;
  3232   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
  3233   GetVersionEx(&oi);
  3234   switch(oi.dwPlatformId) {
  3235     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3236     case VER_PLATFORM_WIN32_NT:
  3237       _is_nt = true;
  3239         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3240         if (os_vers == 5002) {
  3241           _is_windows_2003 = true;
  3244       break;
  3245     default: fatal("Unknown platform");
  3248   _default_stack_size = os::current_stack_size();
  3249   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3250   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3251     "stack size not a multiple of page size");
  3253   initialize_performance_counter();
  3255   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3256   // known to deadlock the system, if the VM issues to thread operations with
  3257   // a too high frequency, e.g., such as changing the priorities.
  3258   // The 6000 seems to work well - no deadlocks has been notices on the test
  3259   // programs that we have seen experience this problem.
  3260   if (!os::win32::is_nt()) {
  3261     StarvationMonitorInterval = 6000;
  3266 void os::win32::setmode_streams() {
  3267   _setmode(_fileno(stdin), _O_BINARY);
  3268   _setmode(_fileno(stdout), _O_BINARY);
  3269   _setmode(_fileno(stderr), _O_BINARY);
  3273 int os::message_box(const char* title, const char* message) {
  3274   int result = MessageBox(NULL, message, title,
  3275                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3276   return result == IDYES;
  3279 int os::allocate_thread_local_storage() {
  3280   return TlsAlloc();
  3284 void os::free_thread_local_storage(int index) {
  3285   TlsFree(index);
  3289 void os::thread_local_storage_at_put(int index, void* value) {
  3290   TlsSetValue(index, value);
  3291   assert(thread_local_storage_at(index) == value, "Just checking");
  3295 void* os::thread_local_storage_at(int index) {
  3296   return TlsGetValue(index);
  3300 #ifndef PRODUCT
  3301 #ifndef _WIN64
  3302 // Helpers to check whether NX protection is enabled
  3303 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3304   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3305       pex->ExceptionRecord->NumberParameters > 0 &&
  3306       pex->ExceptionRecord->ExceptionInformation[0] ==
  3307       EXCEPTION_INFO_EXEC_VIOLATION) {
  3308     return EXCEPTION_EXECUTE_HANDLER;
  3310   return EXCEPTION_CONTINUE_SEARCH;
  3313 void nx_check_protection() {
  3314   // If NX is enabled we'll get an exception calling into code on the stack
  3315   char code[] = { (char)0xC3 }; // ret
  3316   void *code_ptr = (void *)code;
  3317   __try {
  3318     __asm call code_ptr
  3319   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3320     tty->print_raw_cr("NX protection detected.");
  3323 #endif // _WIN64
  3324 #endif // PRODUCT
  3326 // this is called _before_ the global arguments have been parsed
  3327 void os::init(void) {
  3328   _initial_pid = _getpid();
  3330   init_random(1234567);
  3332   win32::initialize_system_info();
  3333   win32::setmode_streams();
  3334   init_page_sizes((size_t) win32::vm_page_size());
  3336   // For better scalability on MP systems (must be called after initialize_system_info)
  3337 #ifndef PRODUCT
  3338   if (is_MP()) {
  3339     NoYieldsInMicrolock = true;
  3341 #endif
  3342   // This may be overridden later when argument processing is done.
  3343   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3344     os::win32::is_windows_2003());
  3346   // Initialize main_process and main_thread
  3347   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3348  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3349                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3350     fatal("DuplicateHandle failed\n");
  3352   main_thread_id = (int) GetCurrentThreadId();
  3355 // To install functions for atexit processing
  3356 extern "C" {
  3357   static void perfMemory_exit_helper() {
  3358     perfMemory_exit();
  3362 // this is called _after_ the global arguments have been parsed
  3363 jint os::init_2(void) {
  3364   // Allocate a single page and mark it as readable for safepoint polling
  3365   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3366   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3368   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3369   guarantee( return_page != NULL, "Commit Failed for polling page");
  3371   os::set_polling_page( polling_page );
  3373 #ifndef PRODUCT
  3374   if( Verbose && PrintMiscellaneous )
  3375     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3376 #endif
  3378   if (!UseMembar) {
  3379     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3380     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3382     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3383     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3385     os::set_memory_serialize_page( mem_serialize_page );
  3387 #ifndef PRODUCT
  3388     if(Verbose && PrintMiscellaneous)
  3389       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3390 #endif
  3393   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3395   // Setup Windows Exceptions
  3397   // On Itanium systems, Structured Exception Handling does not
  3398   // work since stack frames must be walkable by the OS.  Since
  3399   // much of our code is dynamically generated, and we do not have
  3400   // proper unwind .xdata sections, the system simply exits
  3401   // rather than delivering the exception.  To work around
  3402   // this we use VectorExceptions instead.
  3403 #ifdef _WIN64
  3404   if (UseVectoredExceptions) {
  3405     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3407 #endif
  3409   // for debugging float code generation bugs
  3410   if (ForceFloatExceptions) {
  3411 #ifndef  _WIN64
  3412     static long fp_control_word = 0;
  3413     __asm { fstcw fp_control_word }
  3414     // see Intel PPro Manual, Vol. 2, p 7-16
  3415     const long precision = 0x20;
  3416     const long underflow = 0x10;
  3417     const long overflow  = 0x08;
  3418     const long zero_div  = 0x04;
  3419     const long denorm    = 0x02;
  3420     const long invalid   = 0x01;
  3421     fp_control_word |= invalid;
  3422     __asm { fldcw fp_control_word }
  3423 #endif
  3426   // Initialize HPI.
  3427   jint hpi_result = hpi::initialize();
  3428   if (hpi_result != JNI_OK) { return hpi_result; }
  3430   // If stack_commit_size is 0, windows will reserve the default size,
  3431   // but only commit a small portion of it.
  3432   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3433   size_t default_reserve_size = os::win32::default_stack_size();
  3434   size_t actual_reserve_size = stack_commit_size;
  3435   if (stack_commit_size < default_reserve_size) {
  3436     // If stack_commit_size == 0, we want this too
  3437     actual_reserve_size = default_reserve_size;
  3440   // Check minimum allowable stack size for thread creation and to initialize
  3441   // the java system classes, including StackOverflowError - depends on page
  3442   // size.  Add a page for compiler2 recursion in main thread.
  3443   // Add in 2*BytesPerWord times page size to account for VM stack during
  3444   // class initialization depending on 32 or 64 bit VM.
  3445   size_t min_stack_allowed =
  3446             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3447             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3448   if (actual_reserve_size < min_stack_allowed) {
  3449     tty->print_cr("\nThe stack size specified is too small, "
  3450                   "Specify at least %dk",
  3451                   min_stack_allowed / K);
  3452     return JNI_ERR;
  3455   JavaThread::set_stack_size_at_create(stack_commit_size);
  3457   // Calculate theoretical max. size of Threads to guard gainst artifical
  3458   // out-of-memory situations, where all available address-space has been
  3459   // reserved by thread stacks.
  3460   assert(actual_reserve_size != 0, "Must have a stack");
  3462   // Calculate the thread limit when we should start doing Virtual Memory
  3463   // banging. Currently when the threads will have used all but 200Mb of space.
  3464   //
  3465   // TODO: consider performing a similar calculation for commit size instead
  3466   // as reserve size, since on a 64-bit platform we'll run into that more
  3467   // often than running out of virtual memory space.  We can use the
  3468   // lower value of the two calculations as the os_thread_limit.
  3469   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3470   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3472   // at exit methods are called in the reverse order of their registration.
  3473   // there is no limit to the number of functions registered. atexit does
  3474   // not set errno.
  3476   if (PerfAllowAtExitRegistration) {
  3477     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3478     // atexit functions can be delayed until process exit time, which
  3479     // can be problematic for embedded VM situations. Embedded VMs should
  3480     // call DestroyJavaVM() to assure that VM resources are released.
  3482     // note: perfMemory_exit_helper atexit function may be removed in
  3483     // the future if the appropriate cleanup code can be added to the
  3484     // VM_Exit VMOperation's doit method.
  3485     if (atexit(perfMemory_exit_helper) != 0) {
  3486       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3490   // initialize PSAPI or ToolHelp for fatal error handler
  3491   if (win32::is_nt()) _init_psapi();
  3492   else _init_toolhelp();
  3494 #ifndef _WIN64
  3495   // Print something if NX is enabled (win32 on AMD64)
  3496   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3497 #endif
  3499   // initialize thread priority policy
  3500   prio_init();
  3502   if (UseNUMA && !ForceNUMA) {
  3503     UseNUMA = false; // Currently unsupported.
  3506   return JNI_OK;
  3509 void os::init_3(void) {
  3510   return;
  3513 // Mark the polling page as unreadable
  3514 void os::make_polling_page_unreadable(void) {
  3515   DWORD old_status;
  3516   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3517     fatal("Could not disable polling page");
  3518 };
  3520 // Mark the polling page as readable
  3521 void os::make_polling_page_readable(void) {
  3522   DWORD old_status;
  3523   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3524     fatal("Could not enable polling page");
  3525 };
  3528 int os::stat(const char *path, struct stat *sbuf) {
  3529   char pathbuf[MAX_PATH];
  3530   if (strlen(path) > MAX_PATH - 1) {
  3531     errno = ENAMETOOLONG;
  3532     return -1;
  3534   hpi::native_path(strcpy(pathbuf, path));
  3535   int ret = ::stat(pathbuf, sbuf);
  3536   if (sbuf != NULL && UseUTCFileTimestamp) {
  3537     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3538     // the system timezone and so can return different values for the
  3539     // same file if/when daylight savings time changes.  This adjustment
  3540     // makes sure the same timestamp is returned regardless of the TZ.
  3541     //
  3542     // See:
  3543     // http://msdn.microsoft.com/library/
  3544     //   default.asp?url=/library/en-us/sysinfo/base/
  3545     //   time_zone_information_str.asp
  3546     // and
  3547     // http://msdn.microsoft.com/library/default.asp?url=
  3548     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3549     //
  3550     // NOTE: there is a insidious bug here:  If the timezone is changed
  3551     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3552     // the adjustment we do here will be wrong and we'll return the wrong
  3553     // value (which will likely end up creating an invalid class data
  3554     // archive).  Absent a better API for this, or some time zone locking
  3555     // mechanism, we'll have to live with this risk.
  3556     TIME_ZONE_INFORMATION tz;
  3557     DWORD tzid = GetTimeZoneInformation(&tz);
  3558     int daylightBias =
  3559       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3560     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3562   return ret;
  3566 #define FT2INT64(ft) \
  3567   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3570 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3571 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3572 // of a thread.
  3573 //
  3574 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3575 // the fast estimate available on the platform.
  3577 // current_thread_cpu_time() is not optimized for Windows yet
  3578 jlong os::current_thread_cpu_time() {
  3579   // return user + sys since the cost is the same
  3580   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3583 jlong os::thread_cpu_time(Thread* thread) {
  3584   // consistent with what current_thread_cpu_time() returns.
  3585   return os::thread_cpu_time(thread, true /* user+sys */);
  3588 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3589   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3592 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3593   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3594   // If this function changes, os::is_thread_cpu_time_supported() should too
  3595   if (os::win32::is_nt()) {
  3596     FILETIME CreationTime;
  3597     FILETIME ExitTime;
  3598     FILETIME KernelTime;
  3599     FILETIME UserTime;
  3601     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3602                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3603       return -1;
  3604     else
  3605       if (user_sys_cpu_time) {
  3606         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3607       } else {
  3608         return FT2INT64(UserTime) * 100;
  3610   } else {
  3611     return (jlong) timeGetTime() * 1000000;
  3615 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3616   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3617   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3618   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3619   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3622 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3623   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3624   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3625   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3626   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3629 bool os::is_thread_cpu_time_supported() {
  3630   // see os::thread_cpu_time
  3631   if (os::win32::is_nt()) {
  3632     FILETIME CreationTime;
  3633     FILETIME ExitTime;
  3634     FILETIME KernelTime;
  3635     FILETIME UserTime;
  3637     if ( GetThreadTimes(GetCurrentThread(),
  3638                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3639       return false;
  3640     else
  3641       return true;
  3642   } else {
  3643     return false;
  3647 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3648 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3649 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3650 // If we wanted to implement loadavg on Windows, we have a few options:
  3651 //
  3652 // a) Query CPU usage and run queue length and "fake" an answer by
  3653 //    returning the CPU usage if it's under 100%, and the run queue
  3654 //    length otherwise.  It turns out that querying is pretty slow
  3655 //    on Windows, on the order of 200 microseconds on a fast machine.
  3656 //    Note that on the Windows the CPU usage value is the % usage
  3657 //    since the last time the API was called (and the first call
  3658 //    returns 100%), so we'd have to deal with that as well.
  3659 //
  3660 // b) Sample the "fake" answer using a sampling thread and store
  3661 //    the answer in a global variable.  The call to loadavg would
  3662 //    just return the value of the global, avoiding the slow query.
  3663 //
  3664 // c) Sample a better answer using exponential decay to smooth the
  3665 //    value.  This is basically the algorithm used by UNIX kernels.
  3666 //
  3667 // Note that sampling thread starvation could affect both (b) and (c).
  3668 int os::loadavg(double loadavg[], int nelem) {
  3669   return -1;
  3673 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3674 bool os::dont_yield() {
  3675   return DontYieldALot;
  3678 // Is a (classpath) directory empty?
  3679 bool os::dir_is_empty(const char* path) {
  3680   WIN32_FIND_DATA fd;
  3681   HANDLE f = FindFirstFile(path, &fd);
  3682   if (f == INVALID_HANDLE_VALUE) {
  3683     return true;
  3685   FindClose(f);
  3686   return false;
  3689 // create binary file, rewriting existing file if required
  3690 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3691   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3692   if (!rewrite_existing) {
  3693     oflags |= _O_EXCL;
  3695   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  3698 // return current position of file pointer
  3699 jlong os::current_file_offset(int fd) {
  3700   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  3703 // move file pointer to the specified offset
  3704 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3705   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  3709 // Map a block of memory.
  3710 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  3711                      char *addr, size_t bytes, bool read_only,
  3712                      bool allow_exec) {
  3713   HANDLE hFile;
  3714   char* base;
  3716   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  3717                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  3718   if (hFile == NULL) {
  3719     if (PrintMiscellaneous && Verbose) {
  3720       DWORD err = GetLastError();
  3721       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  3723     return NULL;
  3726   if (allow_exec) {
  3727     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  3728     // unless it comes from a PE image (which the shared archive is not.)
  3729     // Even VirtualProtect refuses to give execute access to mapped memory
  3730     // that was not previously executable.
  3731     //
  3732     // Instead, stick the executable region in anonymous memory.  Yuck.
  3733     // Penalty is that ~4 pages will not be shareable - in the future
  3734     // we might consider DLLizing the shared archive with a proper PE
  3735     // header so that mapping executable + sharing is possible.
  3737     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  3738                                 PAGE_READWRITE);
  3739     if (base == NULL) {
  3740       if (PrintMiscellaneous && Verbose) {
  3741         DWORD err = GetLastError();
  3742         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  3744       CloseHandle(hFile);
  3745       return NULL;
  3748     DWORD bytes_read;
  3749     OVERLAPPED overlapped;
  3750     overlapped.Offset = (DWORD)file_offset;
  3751     overlapped.OffsetHigh = 0;
  3752     overlapped.hEvent = NULL;
  3753     // ReadFile guarantees that if the return value is true, the requested
  3754     // number of bytes were read before returning.
  3755     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  3756     if (!res) {
  3757       if (PrintMiscellaneous && Verbose) {
  3758         DWORD err = GetLastError();
  3759         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  3761       release_memory(base, bytes);
  3762       CloseHandle(hFile);
  3763       return NULL;
  3765   } else {
  3766     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  3767                                     NULL /*file_name*/);
  3768     if (hMap == NULL) {
  3769       if (PrintMiscellaneous && Verbose) {
  3770         DWORD err = GetLastError();
  3771         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  3773       CloseHandle(hFile);
  3774       return NULL;
  3777     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  3778     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  3779                                   (DWORD)bytes, addr);
  3780     if (base == NULL) {
  3781       if (PrintMiscellaneous && Verbose) {
  3782         DWORD err = GetLastError();
  3783         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  3785       CloseHandle(hMap);
  3786       CloseHandle(hFile);
  3787       return NULL;
  3790     if (CloseHandle(hMap) == 0) {
  3791       if (PrintMiscellaneous && Verbose) {
  3792         DWORD err = GetLastError();
  3793         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  3795       CloseHandle(hFile);
  3796       return base;
  3800   if (allow_exec) {
  3801     DWORD old_protect;
  3802     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  3803     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  3805     if (!res) {
  3806       if (PrintMiscellaneous && Verbose) {
  3807         DWORD err = GetLastError();
  3808         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  3810       // Don't consider this a hard error, on IA32 even if the
  3811       // VirtualProtect fails, we should still be able to execute
  3812       CloseHandle(hFile);
  3813       return base;
  3817   if (CloseHandle(hFile) == 0) {
  3818     if (PrintMiscellaneous && Verbose) {
  3819       DWORD err = GetLastError();
  3820       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  3822     return base;
  3825   return base;
  3829 // Remap a block of memory.
  3830 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  3831                        char *addr, size_t bytes, bool read_only,
  3832                        bool allow_exec) {
  3833   // This OS does not allow existing memory maps to be remapped so we
  3834   // have to unmap the memory before we remap it.
  3835   if (!os::unmap_memory(addr, bytes)) {
  3836     return NULL;
  3839   // There is a very small theoretical window between the unmap_memory()
  3840   // call above and the map_memory() call below where a thread in native
  3841   // code may be able to access an address that is no longer mapped.
  3843   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  3844                         allow_exec);
  3848 // Unmap a block of memory.
  3849 // Returns true=success, otherwise false.
  3851 bool os::unmap_memory(char* addr, size_t bytes) {
  3852   BOOL result = UnmapViewOfFile(addr);
  3853   if (result == 0) {
  3854     if (PrintMiscellaneous && Verbose) {
  3855       DWORD err = GetLastError();
  3856       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  3858     return false;
  3860   return true;
  3863 void os::pause() {
  3864   char filename[MAX_PATH];
  3865   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  3866     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  3867   } else {
  3868     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  3871   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  3872   if (fd != -1) {
  3873     struct stat buf;
  3874     close(fd);
  3875     while (::stat(filename, &buf) == 0) {
  3876       Sleep(100);
  3878   } else {
  3879     jio_fprintf(stderr,
  3880       "Could not open pause file '%s', continuing immediately.\n", filename);
  3884 // An Event wraps a win32 "CreateEvent" kernel handle.
  3885 //
  3886 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  3887 //
  3888 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  3889 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  3890 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  3891 //     In addition, an unpark() operation might fetch the handle field, but the
  3892 //     event could recycle between the fetch and the SetEvent() operation.
  3893 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  3894 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  3895 //     on an stale but recycled handle would be harmless, but in practice this might
  3896 //     confuse other non-Sun code, so it's not a viable approach.
  3897 //
  3898 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  3899 //     with the Event.  The event handle is never closed.  This could be construed
  3900 //     as handle leakage, but only up to the maximum # of threads that have been extant
  3901 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  3902 //     permit a process to have hundreds of thousands of open handles.
  3903 //
  3904 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  3905 //     and release unused handles.
  3906 //
  3907 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  3908 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  3909 //
  3910 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  3911 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  3912 //
  3913 // We use (2).
  3914 //
  3915 // TODO-FIXME:
  3916 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  3917 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  3918 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  3919 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  3920 //     into a single win32 CreateEvent() handle.
  3921 //
  3922 // _Event transitions in park()
  3923 //   -1 => -1 : illegal
  3924 //    1 =>  0 : pass - return immediately
  3925 //    0 => -1 : block
  3926 //
  3927 // _Event serves as a restricted-range semaphore :
  3928 //    -1 : thread is blocked
  3929 //     0 : neutral  - thread is running or ready
  3930 //     1 : signaled - thread is running or ready
  3931 //
  3932 // Another possible encoding of _Event would be
  3933 // with explicit "PARKED" and "SIGNALED" bits.
  3935 int os::PlatformEvent::park (jlong Millis) {
  3936     guarantee (_ParkHandle != NULL , "Invariant") ;
  3937     guarantee (Millis > 0          , "Invariant") ;
  3938     int v ;
  3940     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  3941     // the initial park() operation.
  3943     for (;;) {
  3944         v = _Event ;
  3945         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3947     guarantee ((v == 0) || (v == 1), "invariant") ;
  3948     if (v != 0) return OS_OK ;
  3950     // Do this the hard way by blocking ...
  3951     // TODO: consider a brief spin here, gated on the success of recent
  3952     // spin attempts by this thread.
  3953     //
  3954     // We decompose long timeouts into series of shorter timed waits.
  3955     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  3956     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  3957     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  3958     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  3959     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  3960     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  3961     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  3962     // for the already waited time.  This policy does not admit any new outcomes.
  3963     // In the future, however, we might want to track the accumulated wait time and
  3964     // adjust Millis accordingly if we encounter a spurious wakeup.
  3966     const int MAXTIMEOUT = 0x10000000 ;
  3967     DWORD rv = WAIT_TIMEOUT ;
  3968     while (_Event < 0 && Millis > 0) {
  3969        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  3970        if (Millis > MAXTIMEOUT) {
  3971           prd = MAXTIMEOUT ;
  3973        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  3974        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  3975        if (rv == WAIT_TIMEOUT) {
  3976            Millis -= prd ;
  3979     v = _Event ;
  3980     _Event = 0 ;
  3981     OrderAccess::fence() ;
  3982     // If we encounter a nearly simultanous timeout expiry and unpark()
  3983     // we return OS_OK indicating we awoke via unpark().
  3984     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  3985     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  3988 void os::PlatformEvent::park () {
  3989     guarantee (_ParkHandle != NULL, "Invariant") ;
  3990     // Invariant: Only the thread associated with the Event/PlatformEvent
  3991     // may call park().
  3992     int v ;
  3993     for (;;) {
  3994         v = _Event ;
  3995         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3997     guarantee ((v == 0) || (v == 1), "invariant") ;
  3998     if (v != 0) return ;
  4000     // Do this the hard way by blocking ...
  4001     // TODO: consider a brief spin here, gated on the success of recent
  4002     // spin attempts by this thread.
  4003     while (_Event < 0) {
  4004        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4005        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4008     // Usually we'll find _Event == 0 at this point, but as
  4009     // an optional optimization we clear it, just in case can
  4010     // multiple unpark() operations drove _Event up to 1.
  4011     _Event = 0 ;
  4012     OrderAccess::fence() ;
  4013     guarantee (_Event >= 0, "invariant") ;
  4016 void os::PlatformEvent::unpark() {
  4017   guarantee (_ParkHandle != NULL, "Invariant") ;
  4018   int v ;
  4019   for (;;) {
  4020       v = _Event ;      // Increment _Event if it's < 1.
  4021       if (v > 0) {
  4022          // If it's already signaled just return.
  4023          // The LD of _Event could have reordered or be satisfied
  4024          // by a read-aside from this processor's write buffer.
  4025          // To avoid problems execute a barrier and then
  4026          // ratify the value.  A degenerate CAS() would also work.
  4027          // Viz., CAS (v+0, &_Event, v) == v).
  4028          OrderAccess::fence() ;
  4029          if (_Event == v) return ;
  4030          continue ;
  4032       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4034   if (v < 0) {
  4035      ::SetEvent (_ParkHandle) ;
  4040 // JSR166
  4041 // -------------------------------------------------------
  4043 /*
  4044  * The Windows implementation of Park is very straightforward: Basic
  4045  * operations on Win32 Events turn out to have the right semantics to
  4046  * use them directly. We opportunistically resuse the event inherited
  4047  * from Monitor.
  4048  */
  4051 void Parker::park(bool isAbsolute, jlong time) {
  4052   guarantee (_ParkEvent != NULL, "invariant") ;
  4053   // First, demultiplex/decode time arguments
  4054   if (time < 0) { // don't wait
  4055     return;
  4057   else if (time == 0 && !isAbsolute) {
  4058     time = INFINITE;
  4060   else if  (isAbsolute) {
  4061     time -= os::javaTimeMillis(); // convert to relative time
  4062     if (time <= 0) // already elapsed
  4063       return;
  4065   else { // relative
  4066     time /= 1000000; // Must coarsen from nanos to millis
  4067     if (time == 0)   // Wait for the minimal time unit if zero
  4068       time = 1;
  4071   JavaThread* thread = (JavaThread*)(Thread::current());
  4072   assert(thread->is_Java_thread(), "Must be JavaThread");
  4073   JavaThread *jt = (JavaThread *)thread;
  4075   // Don't wait if interrupted or already triggered
  4076   if (Thread::is_interrupted(thread, false) ||
  4077     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4078     ResetEvent(_ParkEvent);
  4079     return;
  4081   else {
  4082     ThreadBlockInVM tbivm(jt);
  4083     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4084     jt->set_suspend_equivalent();
  4086     WaitForSingleObject(_ParkEvent,  time);
  4087     ResetEvent(_ParkEvent);
  4089     // If externally suspended while waiting, re-suspend
  4090     if (jt->handle_special_suspend_equivalent_condition()) {
  4091       jt->java_suspend_self();
  4096 void Parker::unpark() {
  4097   guarantee (_ParkEvent != NULL, "invariant") ;
  4098   SetEvent(_ParkEvent);
  4101 // Run the specified command in a separate process. Return its exit value,
  4102 // or -1 on failure (e.g. can't create a new process).
  4103 int os::fork_and_exec(char* cmd) {
  4104   STARTUPINFO si;
  4105   PROCESS_INFORMATION pi;
  4107   memset(&si, 0, sizeof(si));
  4108   si.cb = sizeof(si);
  4109   memset(&pi, 0, sizeof(pi));
  4110   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4111                             cmd,    // command line
  4112                             NULL,   // process security attribute
  4113                             NULL,   // thread security attribute
  4114                             TRUE,   // inherits system handles
  4115                             0,      // no creation flags
  4116                             NULL,   // use parent's environment block
  4117                             NULL,   // use parent's starting directory
  4118                             &si,    // (in) startup information
  4119                             &pi);   // (out) process information
  4121   if (rslt) {
  4122     // Wait until child process exits.
  4123     WaitForSingleObject(pi.hProcess, INFINITE);
  4125     DWORD exit_code;
  4126     GetExitCodeProcess(pi.hProcess, &exit_code);
  4128     // Close process and thread handles.
  4129     CloseHandle(pi.hProcess);
  4130     CloseHandle(pi.hThread);
  4132     return (int)exit_code;
  4133   } else {
  4134     return -1;
  4138 //--------------------------------------------------------------------------------------------------
  4139 // Non-product code
  4141 static int mallocDebugIntervalCounter = 0;
  4142 static int mallocDebugCounter = 0;
  4143 bool os::check_heap(bool force) {
  4144   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4145   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4146     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4147     // wrong; at these points, eax contains the address of the offending block (I think).
  4148     // To get to the exlicit error message(s) below, just continue twice.
  4149     HANDLE heap = GetProcessHeap();
  4150     { HeapLock(heap);
  4151       PROCESS_HEAP_ENTRY phe;
  4152       phe.lpData = NULL;
  4153       while (HeapWalk(heap, &phe) != 0) {
  4154         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4155             !HeapValidate(heap, 0, phe.lpData)) {
  4156           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4157           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4158           fatal("corrupted C heap");
  4161       int err = GetLastError();
  4162       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4163         fatal(err_msg("heap walk aborted with error %d", err));
  4165       HeapUnlock(heap);
  4167     mallocDebugIntervalCounter = 0;
  4169   return true;
  4173 bool os::find(address addr, outputStream* st) {
  4174   // Nothing yet
  4175   return false;
  4178 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4179   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4181   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4182     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4183     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4184     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4186     if (os::is_memory_serialize_page(thread, addr))
  4187       return EXCEPTION_CONTINUE_EXECUTION;
  4190   return EXCEPTION_CONTINUE_SEARCH;
  4193 static int getLastErrorString(char *buf, size_t len)
  4195     long errval;
  4197     if ((errval = GetLastError()) != 0)
  4199       /* DOS error */
  4200       size_t n = (size_t)FormatMessage(
  4201             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  4202             NULL,
  4203             errval,
  4204             0,
  4205             buf,
  4206             (DWORD)len,
  4207             NULL);
  4208       if (n > 3) {
  4209         /* Drop final '.', CR, LF */
  4210         if (buf[n - 1] == '\n') n--;
  4211         if (buf[n - 1] == '\r') n--;
  4212         if (buf[n - 1] == '.') n--;
  4213         buf[n] = '\0';
  4215       return (int)n;
  4218     if (errno != 0)
  4220       /* C runtime error that has no corresponding DOS error code */
  4221       const char *s = strerror(errno);
  4222       size_t n = strlen(s);
  4223       if (n >= len) n = len - 1;
  4224       strncpy(buf, s, n);
  4225       buf[n] = '\0';
  4226       return (int)n;
  4228     return 0;
  4232 // We don't build a headless jre for Windows
  4233 bool os::is_headless_jre() { return false; }

mercurial