src/os/windows/vm/os_windows.cpp

Thu, 07 Oct 2010 08:06:06 -0700

author
coleenp
date
Thu, 07 Oct 2010 08:06:06 -0700
changeset 2222
b6aedd1acdc0
parent 2220
1c352af0135d
child 2314
f95d63e2154a
permissions
-rw-r--r--

6983240: guarantee((Solaris::min_stack_allowed >= (StackYellowPages+StackRedPages...) wrong
Summary: min_stack_allowed is a compile time constant and Stack*Pages are settable
Reviewed-by: dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifdef _WIN64
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
    27 #define _WIN32_WINNT 0x500
    28 #endif
    30 // do not include precompiled header file
    31 # include "incls/_os_windows.cpp.incl"
    33 #ifdef _DEBUG
    34 #include <crtdbg.h>
    35 #endif
    38 #include <windows.h>
    39 #include <sys/types.h>
    40 #include <sys/stat.h>
    41 #include <sys/timeb.h>
    42 #include <objidl.h>
    43 #include <shlobj.h>
    45 #include <malloc.h>
    46 #include <signal.h>
    47 #include <direct.h>
    48 #include <errno.h>
    49 #include <fcntl.h>
    50 #include <io.h>
    51 #include <process.h>              // For _beginthreadex(), _endthreadex()
    52 #include <imagehlp.h>             // For os::dll_address_to_function_name
    54 /* for enumerating dll libraries */
    55 #include <tlhelp32.h>
    56 #include <vdmdbg.h>
    58 // for timer info max values which include all bits
    59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    61 // For DLL loading/load error detection
    62 // Values of PE COFF
    63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
    64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
    66 static HANDLE main_process;
    67 static HANDLE main_thread;
    68 static int    main_thread_id;
    70 static FILETIME process_creation_time;
    71 static FILETIME process_exit_time;
    72 static FILETIME process_user_time;
    73 static FILETIME process_kernel_time;
    75 #ifdef _WIN64
    76 PVOID  topLevelVectoredExceptionHandler = NULL;
    77 #endif
    79 #ifdef _M_IA64
    80 #define __CPU__ ia64
    81 #elif _M_AMD64
    82 #define __CPU__ amd64
    83 #else
    84 #define __CPU__ i486
    85 #endif
    87 // save DLL module handle, used by GetModuleFileName
    89 HINSTANCE vm_lib_handle;
    90 static int getLastErrorString(char *buf, size_t len);
    92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
    93   switch (reason) {
    94     case DLL_PROCESS_ATTACH:
    95       vm_lib_handle = hinst;
    96       if(ForceTimeHighResolution)
    97         timeBeginPeriod(1L);
    98       break;
    99     case DLL_PROCESS_DETACH:
   100       if(ForceTimeHighResolution)
   101         timeEndPeriod(1L);
   102 #ifdef _WIN64
   103       if (topLevelVectoredExceptionHandler != NULL) {
   104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   105         topLevelVectoredExceptionHandler = NULL;
   106       }
   107 #endif
   108       break;
   109     default:
   110       break;
   111   }
   112   return true;
   113 }
   115 static inline double fileTimeAsDouble(FILETIME* time) {
   116   const double high  = (double) ((unsigned int) ~0);
   117   const double split = 10000000.0;
   118   double result = (time->dwLowDateTime / split) +
   119                    time->dwHighDateTime * (high/split);
   120   return result;
   121 }
   123 // Implementation of os
   125 bool os::getenv(const char* name, char* buffer, int len) {
   126  int result = GetEnvironmentVariable(name, buffer, len);
   127  return result > 0 && result < len;
   128 }
   131 // No setuid programs under Windows.
   132 bool os::have_special_privileges() {
   133   return false;
   134 }
   137 // This method is  a periodic task to check for misbehaving JNI applications
   138 // under CheckJNI, we can add any periodic checks here.
   139 // For Windows at the moment does nothing
   140 void os::run_periodic_checks() {
   141   return;
   142 }
   144 #ifndef _WIN64
   145 // previous UnhandledExceptionFilter, if there is one
   146 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   148 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   149 #endif
   150 void os::init_system_properties_values() {
   151   /* sysclasspath, java_home, dll_dir */
   152   {
   153       char *home_path;
   154       char *dll_path;
   155       char *pslash;
   156       char *bin = "\\bin";
   157       char home_dir[MAX_PATH];
   159       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   160           os::jvm_path(home_dir, sizeof(home_dir));
   161           // Found the full path to jvm[_g].dll.
   162           // Now cut the path to <java_home>/jre if we can.
   163           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   164           pslash = strrchr(home_dir, '\\');
   165           if (pslash != NULL) {
   166               *pslash = '\0';                 /* get rid of \{client|server} */
   167               pslash = strrchr(home_dir, '\\');
   168               if (pslash != NULL)
   169                   *pslash = '\0';             /* get rid of \bin */
   170           }
   171       }
   173       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   174       if (home_path == NULL)
   175           return;
   176       strcpy(home_path, home_dir);
   177       Arguments::set_java_home(home_path);
   179       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   180       if (dll_path == NULL)
   181           return;
   182       strcpy(dll_path, home_dir);
   183       strcat(dll_path, bin);
   184       Arguments::set_dll_dir(dll_path);
   186       if (!set_boot_path('\\', ';'))
   187           return;
   188   }
   190   /* library_path */
   191   #define EXT_DIR "\\lib\\ext"
   192   #define BIN_DIR "\\bin"
   193   #define PACKAGE_DIR "\\Sun\\Java"
   194   {
   195     /* Win32 library search order (See the documentation for LoadLibrary):
   196      *
   197      * 1. The directory from which application is loaded.
   198      * 2. The current directory
   199      * 3. The system wide Java Extensions directory (Java only)
   200      * 4. System directory (GetSystemDirectory)
   201      * 5. Windows directory (GetWindowsDirectory)
   202      * 6. The PATH environment variable
   203      */
   205     char *library_path;
   206     char tmp[MAX_PATH];
   207     char *path_str = ::getenv("PATH");
   209     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   210         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   212     library_path[0] = '\0';
   214     GetModuleFileName(NULL, tmp, sizeof(tmp));
   215     *(strrchr(tmp, '\\')) = '\0';
   216     strcat(library_path, tmp);
   218     strcat(library_path, ";.");
   220     GetWindowsDirectory(tmp, sizeof(tmp));
   221     strcat(library_path, ";");
   222     strcat(library_path, tmp);
   223     strcat(library_path, PACKAGE_DIR BIN_DIR);
   225     GetSystemDirectory(tmp, sizeof(tmp));
   226     strcat(library_path, ";");
   227     strcat(library_path, tmp);
   229     GetWindowsDirectory(tmp, sizeof(tmp));
   230     strcat(library_path, ";");
   231     strcat(library_path, tmp);
   233     if (path_str) {
   234         strcat(library_path, ";");
   235         strcat(library_path, path_str);
   236     }
   238     Arguments::set_library_path(library_path);
   239     FREE_C_HEAP_ARRAY(char, library_path);
   240   }
   242   /* Default extensions directory */
   243   {
   244     char path[MAX_PATH];
   245     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   246     GetWindowsDirectory(path, MAX_PATH);
   247     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   248         path, PACKAGE_DIR, EXT_DIR);
   249     Arguments::set_ext_dirs(buf);
   250   }
   251   #undef EXT_DIR
   252   #undef BIN_DIR
   253   #undef PACKAGE_DIR
   255   /* Default endorsed standards directory. */
   256   {
   257     #define ENDORSED_DIR "\\lib\\endorsed"
   258     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   259     char * buf = NEW_C_HEAP_ARRAY(char, len);
   260     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   261     Arguments::set_endorsed_dirs(buf);
   262     #undef ENDORSED_DIR
   263   }
   265 #ifndef _WIN64
   266   // set our UnhandledExceptionFilter and save any previous one
   267   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   268 #endif
   270   // Done
   271   return;
   272 }
   274 void os::breakpoint() {
   275   DebugBreak();
   276 }
   278 // Invoked from the BREAKPOINT Macro
   279 extern "C" void breakpoint() {
   280   os::breakpoint();
   281 }
   283 // Returns an estimate of the current stack pointer. Result must be guaranteed
   284 // to point into the calling threads stack, and be no lower than the current
   285 // stack pointer.
   287 address os::current_stack_pointer() {
   288   int dummy;
   289   address sp = (address)&dummy;
   290   return sp;
   291 }
   293 // os::current_stack_base()
   294 //
   295 //   Returns the base of the stack, which is the stack's
   296 //   starting address.  This function must be called
   297 //   while running on the stack of the thread being queried.
   299 address os::current_stack_base() {
   300   MEMORY_BASIC_INFORMATION minfo;
   301   address stack_bottom;
   302   size_t stack_size;
   304   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   305   stack_bottom =  (address)minfo.AllocationBase;
   306   stack_size = minfo.RegionSize;
   308   // Add up the sizes of all the regions with the same
   309   // AllocationBase.
   310   while( 1 )
   311   {
   312     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   313     if ( stack_bottom == (address)minfo.AllocationBase )
   314       stack_size += minfo.RegionSize;
   315     else
   316       break;
   317   }
   319 #ifdef _M_IA64
   320   // IA64 has memory and register stacks
   321   stack_size = stack_size / 2;
   322 #endif
   323   return stack_bottom + stack_size;
   324 }
   326 size_t os::current_stack_size() {
   327   size_t sz;
   328   MEMORY_BASIC_INFORMATION minfo;
   329   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   330   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   331   return sz;
   332 }
   334 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   335   const struct tm* time_struct_ptr = localtime(clock);
   336   if (time_struct_ptr != NULL) {
   337     *res = *time_struct_ptr;
   338     return res;
   339   }
   340   return NULL;
   341 }
   343 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   345 // Thread start routine for all new Java threads
   346 static unsigned __stdcall java_start(Thread* thread) {
   347   // Try to randomize the cache line index of hot stack frames.
   348   // This helps when threads of the same stack traces evict each other's
   349   // cache lines. The threads can be either from the same JVM instance, or
   350   // from different JVM instances. The benefit is especially true for
   351   // processors with hyperthreading technology.
   352   static int counter = 0;
   353   int pid = os::current_process_id();
   354   _alloca(((pid ^ counter++) & 7) * 128);
   356   OSThread* osthr = thread->osthread();
   357   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   359   if (UseNUMA) {
   360     int lgrp_id = os::numa_get_group_id();
   361     if (lgrp_id != -1) {
   362       thread->set_lgrp_id(lgrp_id);
   363     }
   364   }
   367   if (UseVectoredExceptions) {
   368     // If we are using vectored exception we don't need to set a SEH
   369     thread->run();
   370   }
   371   else {
   372     // Install a win32 structured exception handler around every thread created
   373     // by VM, so VM can genrate error dump when an exception occurred in non-
   374     // Java thread (e.g. VM thread).
   375     __try {
   376        thread->run();
   377     } __except(topLevelExceptionFilter(
   378                (_EXCEPTION_POINTERS*)_exception_info())) {
   379         // Nothing to do.
   380     }
   381   }
   383   // One less thread is executing
   384   // When the VMThread gets here, the main thread may have already exited
   385   // which frees the CodeHeap containing the Atomic::add code
   386   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   387     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   388   }
   390   return 0;
   391 }
   393 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   394   // Allocate the OSThread object
   395   OSThread* osthread = new OSThread(NULL, NULL);
   396   if (osthread == NULL) return NULL;
   398   // Initialize support for Java interrupts
   399   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   400   if (interrupt_event == NULL) {
   401     delete osthread;
   402     return NULL;
   403   }
   404   osthread->set_interrupt_event(interrupt_event);
   406   // Store info on the Win32 thread into the OSThread
   407   osthread->set_thread_handle(thread_handle);
   408   osthread->set_thread_id(thread_id);
   410   if (UseNUMA) {
   411     int lgrp_id = os::numa_get_group_id();
   412     if (lgrp_id != -1) {
   413       thread->set_lgrp_id(lgrp_id);
   414     }
   415   }
   417   // Initial thread state is INITIALIZED, not SUSPENDED
   418   osthread->set_state(INITIALIZED);
   420   return osthread;
   421 }
   424 bool os::create_attached_thread(JavaThread* thread) {
   425 #ifdef ASSERT
   426   thread->verify_not_published();
   427 #endif
   428   HANDLE thread_h;
   429   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   430                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   431     fatal("DuplicateHandle failed\n");
   432   }
   433   OSThread* osthread = create_os_thread(thread, thread_h,
   434                                         (int)current_thread_id());
   435   if (osthread == NULL) {
   436      return false;
   437   }
   439   // Initial thread state is RUNNABLE
   440   osthread->set_state(RUNNABLE);
   442   thread->set_osthread(osthread);
   443   return true;
   444 }
   446 bool os::create_main_thread(JavaThread* thread) {
   447 #ifdef ASSERT
   448   thread->verify_not_published();
   449 #endif
   450   if (_starting_thread == NULL) {
   451     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   452      if (_starting_thread == NULL) {
   453         return false;
   454      }
   455   }
   457   // The primordial thread is runnable from the start)
   458   _starting_thread->set_state(RUNNABLE);
   460   thread->set_osthread(_starting_thread);
   461   return true;
   462 }
   464 // Allocate and initialize a new OSThread
   465 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   466   unsigned thread_id;
   468   // Allocate the OSThread object
   469   OSThread* osthread = new OSThread(NULL, NULL);
   470   if (osthread == NULL) {
   471     return false;
   472   }
   474   // Initialize support for Java interrupts
   475   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   476   if (interrupt_event == NULL) {
   477     delete osthread;
   478     return NULL;
   479   }
   480   osthread->set_interrupt_event(interrupt_event);
   481   osthread->set_interrupted(false);
   483   thread->set_osthread(osthread);
   485   if (stack_size == 0) {
   486     switch (thr_type) {
   487     case os::java_thread:
   488       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   489       if (JavaThread::stack_size_at_create() > 0)
   490         stack_size = JavaThread::stack_size_at_create();
   491       break;
   492     case os::compiler_thread:
   493       if (CompilerThreadStackSize > 0) {
   494         stack_size = (size_t)(CompilerThreadStackSize * K);
   495         break;
   496       } // else fall through:
   497         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   498     case os::vm_thread:
   499     case os::pgc_thread:
   500     case os::cgc_thread:
   501     case os::watcher_thread:
   502       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   503       break;
   504     }
   505   }
   507   // Create the Win32 thread
   508   //
   509   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   510   // does not specify stack size. Instead, it specifies the size of
   511   // initially committed space. The stack size is determined by
   512   // PE header in the executable. If the committed "stack_size" is larger
   513   // than default value in the PE header, the stack is rounded up to the
   514   // nearest multiple of 1MB. For example if the launcher has default
   515   // stack size of 320k, specifying any size less than 320k does not
   516   // affect the actual stack size at all, it only affects the initial
   517   // commitment. On the other hand, specifying 'stack_size' larger than
   518   // default value may cause significant increase in memory usage, because
   519   // not only the stack space will be rounded up to MB, but also the
   520   // entire space is committed upfront.
   521   //
   522   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   523   // for CreateThread() that can treat 'stack_size' as stack size. However we
   524   // are not supposed to call CreateThread() directly according to MSDN
   525   // document because JVM uses C runtime library. The good news is that the
   526   // flag appears to work with _beginthredex() as well.
   528 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   529 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   530 #endif
   532   HANDLE thread_handle =
   533     (HANDLE)_beginthreadex(NULL,
   534                            (unsigned)stack_size,
   535                            (unsigned (__stdcall *)(void*)) java_start,
   536                            thread,
   537                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   538                            &thread_id);
   539   if (thread_handle == NULL) {
   540     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   541     // without the flag.
   542     thread_handle =
   543     (HANDLE)_beginthreadex(NULL,
   544                            (unsigned)stack_size,
   545                            (unsigned (__stdcall *)(void*)) java_start,
   546                            thread,
   547                            CREATE_SUSPENDED,
   548                            &thread_id);
   549   }
   550   if (thread_handle == NULL) {
   551     // Need to clean up stuff we've allocated so far
   552     CloseHandle(osthread->interrupt_event());
   553     thread->set_osthread(NULL);
   554     delete osthread;
   555     return NULL;
   556   }
   558   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   560   // Store info on the Win32 thread into the OSThread
   561   osthread->set_thread_handle(thread_handle);
   562   osthread->set_thread_id(thread_id);
   564   // Initial thread state is INITIALIZED, not SUSPENDED
   565   osthread->set_state(INITIALIZED);
   567   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   568   return true;
   569 }
   572 // Free Win32 resources related to the OSThread
   573 void os::free_thread(OSThread* osthread) {
   574   assert(osthread != NULL, "osthread not set");
   575   CloseHandle(osthread->thread_handle());
   576   CloseHandle(osthread->interrupt_event());
   577   delete osthread;
   578 }
   581 static int    has_performance_count = 0;
   582 static jlong first_filetime;
   583 static jlong initial_performance_count;
   584 static jlong performance_frequency;
   587 jlong as_long(LARGE_INTEGER x) {
   588   jlong result = 0; // initialization to avoid warning
   589   set_high(&result, x.HighPart);
   590   set_low(&result,  x.LowPart);
   591   return result;
   592 }
   595 jlong os::elapsed_counter() {
   596   LARGE_INTEGER count;
   597   if (has_performance_count) {
   598     QueryPerformanceCounter(&count);
   599     return as_long(count) - initial_performance_count;
   600   } else {
   601     FILETIME wt;
   602     GetSystemTimeAsFileTime(&wt);
   603     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   604   }
   605 }
   608 jlong os::elapsed_frequency() {
   609   if (has_performance_count) {
   610     return performance_frequency;
   611   } else {
   612    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   613    return 10000000;
   614   }
   615 }
   618 julong os::available_memory() {
   619   return win32::available_memory();
   620 }
   622 julong os::win32::available_memory() {
   623   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   624   // value if total memory is larger than 4GB
   625   MEMORYSTATUSEX ms;
   626   ms.dwLength = sizeof(ms);
   627   GlobalMemoryStatusEx(&ms);
   629   return (julong)ms.ullAvailPhys;
   630 }
   632 julong os::physical_memory() {
   633   return win32::physical_memory();
   634 }
   636 julong os::allocatable_physical_memory(julong size) {
   637 #ifdef _LP64
   638   return size;
   639 #else
   640   // Limit to 1400m because of the 2gb address space wall
   641   return MIN2(size, (julong)1400*M);
   642 #endif
   643 }
   645 // VC6 lacks DWORD_PTR
   646 #if _MSC_VER < 1300
   647 typedef UINT_PTR DWORD_PTR;
   648 #endif
   650 int os::active_processor_count() {
   651   DWORD_PTR lpProcessAffinityMask = 0;
   652   DWORD_PTR lpSystemAffinityMask = 0;
   653   int proc_count = processor_count();
   654   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   655       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   656     // Nof active processors is number of bits in process affinity mask
   657     int bitcount = 0;
   658     while (lpProcessAffinityMask != 0) {
   659       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   660       bitcount++;
   661     }
   662     return bitcount;
   663   } else {
   664     return proc_count;
   665   }
   666 }
   668 bool os::distribute_processes(uint length, uint* distribution) {
   669   // Not yet implemented.
   670   return false;
   671 }
   673 bool os::bind_to_processor(uint processor_id) {
   674   // Not yet implemented.
   675   return false;
   676 }
   678 static void initialize_performance_counter() {
   679   LARGE_INTEGER count;
   680   if (QueryPerformanceFrequency(&count)) {
   681     has_performance_count = 1;
   682     performance_frequency = as_long(count);
   683     QueryPerformanceCounter(&count);
   684     initial_performance_count = as_long(count);
   685   } else {
   686     has_performance_count = 0;
   687     FILETIME wt;
   688     GetSystemTimeAsFileTime(&wt);
   689     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   690   }
   691 }
   694 double os::elapsedTime() {
   695   return (double) elapsed_counter() / (double) elapsed_frequency();
   696 }
   699 // Windows format:
   700 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   701 // Java format:
   702 //   Java standards require the number of milliseconds since 1/1/1970
   704 // Constant offset - calculated using offset()
   705 static jlong  _offset   = 116444736000000000;
   706 // Fake time counter for reproducible results when debugging
   707 static jlong  fake_time = 0;
   709 #ifdef ASSERT
   710 // Just to be safe, recalculate the offset in debug mode
   711 static jlong _calculated_offset = 0;
   712 static int   _has_calculated_offset = 0;
   714 jlong offset() {
   715   if (_has_calculated_offset) return _calculated_offset;
   716   SYSTEMTIME java_origin;
   717   java_origin.wYear          = 1970;
   718   java_origin.wMonth         = 1;
   719   java_origin.wDayOfWeek     = 0; // ignored
   720   java_origin.wDay           = 1;
   721   java_origin.wHour          = 0;
   722   java_origin.wMinute        = 0;
   723   java_origin.wSecond        = 0;
   724   java_origin.wMilliseconds  = 0;
   725   FILETIME jot;
   726   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   727     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   728   }
   729   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   730   _has_calculated_offset = 1;
   731   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   732   return _calculated_offset;
   733 }
   734 #else
   735 jlong offset() {
   736   return _offset;
   737 }
   738 #endif
   740 jlong windows_to_java_time(FILETIME wt) {
   741   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   742   return (a - offset()) / 10000;
   743 }
   745 FILETIME java_to_windows_time(jlong l) {
   746   jlong a = (l * 10000) + offset();
   747   FILETIME result;
   748   result.dwHighDateTime = high(a);
   749   result.dwLowDateTime  = low(a);
   750   return result;
   751 }
   753 // For now, we say that Windows does not support vtime.  I have no idea
   754 // whether it can actually be made to (DLD, 9/13/05).
   756 bool os::supports_vtime() { return false; }
   757 bool os::enable_vtime() { return false; }
   758 bool os::vtime_enabled() { return false; }
   759 double os::elapsedVTime() {
   760   // better than nothing, but not much
   761   return elapsedTime();
   762 }
   764 jlong os::javaTimeMillis() {
   765   if (UseFakeTimers) {
   766     return fake_time++;
   767   } else {
   768     FILETIME wt;
   769     GetSystemTimeAsFileTime(&wt);
   770     return windows_to_java_time(wt);
   771   }
   772 }
   774 #define NANOS_PER_SEC         CONST64(1000000000)
   775 #define NANOS_PER_MILLISEC    1000000
   776 jlong os::javaTimeNanos() {
   777   if (!has_performance_count) {
   778     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
   779   } else {
   780     LARGE_INTEGER current_count;
   781     QueryPerformanceCounter(&current_count);
   782     double current = as_long(current_count);
   783     double freq = performance_frequency;
   784     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
   785     return time;
   786   }
   787 }
   789 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   790   if (!has_performance_count) {
   791     // javaTimeMillis() doesn't have much percision,
   792     // but it is not going to wrap -- so all 64 bits
   793     info_ptr->max_value = ALL_64_BITS;
   795     // this is a wall clock timer, so may skip
   796     info_ptr->may_skip_backward = true;
   797     info_ptr->may_skip_forward = true;
   798   } else {
   799     jlong freq = performance_frequency;
   800     if (freq < NANOS_PER_SEC) {
   801       // the performance counter is 64 bits and we will
   802       // be multiplying it -- so no wrap in 64 bits
   803       info_ptr->max_value = ALL_64_BITS;
   804     } else if (freq > NANOS_PER_SEC) {
   805       // use the max value the counter can reach to
   806       // determine the max value which could be returned
   807       julong max_counter = (julong)ALL_64_BITS;
   808       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
   809     } else {
   810       // the performance counter is 64 bits and we will
   811       // be using it directly -- so no wrap in 64 bits
   812       info_ptr->max_value = ALL_64_BITS;
   813     }
   815     // using a counter, so no skipping
   816     info_ptr->may_skip_backward = false;
   817     info_ptr->may_skip_forward = false;
   818   }
   819   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   820 }
   822 char* os::local_time_string(char *buf, size_t buflen) {
   823   SYSTEMTIME st;
   824   GetLocalTime(&st);
   825   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   826                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   827   return buf;
   828 }
   830 bool os::getTimesSecs(double* process_real_time,
   831                      double* process_user_time,
   832                      double* process_system_time) {
   833   HANDLE h_process = GetCurrentProcess();
   834   FILETIME create_time, exit_time, kernel_time, user_time;
   835   BOOL result = GetProcessTimes(h_process,
   836                                &create_time,
   837                                &exit_time,
   838                                &kernel_time,
   839                                &user_time);
   840   if (result != 0) {
   841     FILETIME wt;
   842     GetSystemTimeAsFileTime(&wt);
   843     jlong rtc_millis = windows_to_java_time(wt);
   844     jlong user_millis = windows_to_java_time(user_time);
   845     jlong system_millis = windows_to_java_time(kernel_time);
   846     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   847     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   848     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   849     return true;
   850   } else {
   851     return false;
   852   }
   853 }
   855 void os::shutdown() {
   857   // allow PerfMemory to attempt cleanup of any persistent resources
   858   perfMemory_exit();
   860   // flush buffered output, finish log files
   861   ostream_abort();
   863   // Check for abort hook
   864   abort_hook_t abort_hook = Arguments::abort_hook();
   865   if (abort_hook != NULL) {
   866     abort_hook();
   867   }
   868 }
   870 void os::abort(bool dump_core)
   871 {
   872   os::shutdown();
   873   // no core dump on Windows
   874   ::exit(1);
   875 }
   877 // Die immediately, no exit hook, no abort hook, no cleanup.
   878 void os::die() {
   879   _exit(-1);
   880 }
   882 // Directory routines copied from src/win32/native/java/io/dirent_md.c
   883 //  * dirent_md.c       1.15 00/02/02
   884 //
   885 // The declarations for DIR and struct dirent are in jvm_win32.h.
   887 /* Caller must have already run dirname through JVM_NativePath, which removes
   888    duplicate slashes and converts all instances of '/' into '\\'. */
   890 DIR *
   891 os::opendir(const char *dirname)
   892 {
   893     assert(dirname != NULL, "just checking");   // hotspot change
   894     DIR *dirp = (DIR *)malloc(sizeof(DIR));
   895     DWORD fattr;                                // hotspot change
   896     char alt_dirname[4] = { 0, 0, 0, 0 };
   898     if (dirp == 0) {
   899         errno = ENOMEM;
   900         return 0;
   901     }
   903     /*
   904      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
   905      * as a directory in FindFirstFile().  We detect this case here and
   906      * prepend the current drive name.
   907      */
   908     if (dirname[1] == '\0' && dirname[0] == '\\') {
   909         alt_dirname[0] = _getdrive() + 'A' - 1;
   910         alt_dirname[1] = ':';
   911         alt_dirname[2] = '\\';
   912         alt_dirname[3] = '\0';
   913         dirname = alt_dirname;
   914     }
   916     dirp->path = (char *)malloc(strlen(dirname) + 5);
   917     if (dirp->path == 0) {
   918         free(dirp);
   919         errno = ENOMEM;
   920         return 0;
   921     }
   922     strcpy(dirp->path, dirname);
   924     fattr = GetFileAttributes(dirp->path);
   925     if (fattr == 0xffffffff) {
   926         free(dirp->path);
   927         free(dirp);
   928         errno = ENOENT;
   929         return 0;
   930     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
   931         free(dirp->path);
   932         free(dirp);
   933         errno = ENOTDIR;
   934         return 0;
   935     }
   937     /* Append "*.*", or possibly "\\*.*", to path */
   938     if (dirp->path[1] == ':'
   939         && (dirp->path[2] == '\0'
   940             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
   941         /* No '\\' needed for cases like "Z:" or "Z:\" */
   942         strcat(dirp->path, "*.*");
   943     } else {
   944         strcat(dirp->path, "\\*.*");
   945     }
   947     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
   948     if (dirp->handle == INVALID_HANDLE_VALUE) {
   949         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
   950             free(dirp->path);
   951             free(dirp);
   952             errno = EACCES;
   953             return 0;
   954         }
   955     }
   956     return dirp;
   957 }
   959 /* parameter dbuf unused on Windows */
   961 struct dirent *
   962 os::readdir(DIR *dirp, dirent *dbuf)
   963 {
   964     assert(dirp != NULL, "just checking");      // hotspot change
   965     if (dirp->handle == INVALID_HANDLE_VALUE) {
   966         return 0;
   967     }
   969     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
   971     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
   972         if (GetLastError() == ERROR_INVALID_HANDLE) {
   973             errno = EBADF;
   974             return 0;
   975         }
   976         FindClose(dirp->handle);
   977         dirp->handle = INVALID_HANDLE_VALUE;
   978     }
   980     return &dirp->dirent;
   981 }
   983 int
   984 os::closedir(DIR *dirp)
   985 {
   986     assert(dirp != NULL, "just checking");      // hotspot change
   987     if (dirp->handle != INVALID_HANDLE_VALUE) {
   988         if (!FindClose(dirp->handle)) {
   989             errno = EBADF;
   990             return -1;
   991         }
   992         dirp->handle = INVALID_HANDLE_VALUE;
   993     }
   994     free(dirp->path);
   995     free(dirp);
   996     return 0;
   997 }
   999 const char* os::dll_file_extension() { return ".dll"; }
  1001 const char* os::get_temp_directory() {
  1002   const char *prop = Arguments::get_property("java.io.tmpdir");
  1003   if (prop != 0) return prop;
  1004   static char path_buf[MAX_PATH];
  1005   if (GetTempPath(MAX_PATH, path_buf)>0)
  1006     return path_buf;
  1007   else{
  1008     path_buf[0]='\0';
  1009     return path_buf;
  1013 static bool file_exists(const char* filename) {
  1014   if (filename == NULL || strlen(filename) == 0) {
  1015     return false;
  1017   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1020 void os::dll_build_name(char *buffer, size_t buflen,
  1021                         const char* pname, const char* fname) {
  1022   // Copied from libhpi
  1023   const size_t pnamelen = pname ? strlen(pname) : 0;
  1024   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1026   // Quietly truncates on buffer overflow. Should be an error.
  1027   if (pnamelen + strlen(fname) + 10 > buflen) {
  1028     *buffer = '\0';
  1029     return;
  1032   if (pnamelen == 0) {
  1033     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1034   } else if (c == ':' || c == '\\') {
  1035     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1036   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1037     int n;
  1038     char** pelements = split_path(pname, &n);
  1039     for (int i = 0 ; i < n ; i++) {
  1040       char* path = pelements[i];
  1041       // Really shouldn't be NULL, but check can't hurt
  1042       size_t plen = (path == NULL) ? 0 : strlen(path);
  1043       if (plen == 0) {
  1044         continue; // skip the empty path values
  1046       const char lastchar = path[plen - 1];
  1047       if (lastchar == ':' || lastchar == '\\') {
  1048         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1049       } else {
  1050         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1052       if (file_exists(buffer)) {
  1053         break;
  1056     // release the storage
  1057     for (int i = 0 ; i < n ; i++) {
  1058       if (pelements[i] != NULL) {
  1059         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1062     if (pelements != NULL) {
  1063       FREE_C_HEAP_ARRAY(char*, pelements);
  1065   } else {
  1066     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1070 // Needs to be in os specific directory because windows requires another
  1071 // header file <direct.h>
  1072 const char* os::get_current_directory(char *buf, int buflen) {
  1073   return _getcwd(buf, buflen);
  1076 //-----------------------------------------------------------
  1077 // Helper functions for fatal error handler
  1079 // The following library functions are resolved dynamically at runtime:
  1081 // PSAPI functions, for Windows NT, 2000, XP
  1083 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
  1084 // SDK from Microsoft.  Here are the definitions copied from psapi.h
  1085 typedef struct _MODULEINFO {
  1086     LPVOID lpBaseOfDll;
  1087     DWORD SizeOfImage;
  1088     LPVOID EntryPoint;
  1089 } MODULEINFO, *LPMODULEINFO;
  1091 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
  1092 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
  1093 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
  1095 // ToolHelp Functions, for Windows 95, 98 and ME
  1097 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
  1098 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
  1099 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
  1101 bool _has_psapi;
  1102 bool _psapi_init = false;
  1103 bool _has_toolhelp;
  1105 static bool _init_psapi() {
  1106   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
  1107   if( psapi == NULL ) return false ;
  1109   _EnumProcessModules = CAST_TO_FN_PTR(
  1110       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
  1111       GetProcAddress(psapi, "EnumProcessModules")) ;
  1112   _GetModuleFileNameEx = CAST_TO_FN_PTR(
  1113       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
  1114       GetProcAddress(psapi, "GetModuleFileNameExA"));
  1115   _GetModuleInformation = CAST_TO_FN_PTR(
  1116       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
  1117       GetProcAddress(psapi, "GetModuleInformation"));
  1119   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
  1120   _psapi_init = true;
  1121   return _has_psapi;
  1124 static bool _init_toolhelp() {
  1125   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
  1126   if (kernel32 == NULL) return false ;
  1128   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
  1129       HANDLE(WINAPI *)(DWORD,DWORD),
  1130       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
  1131   _Module32First = CAST_TO_FN_PTR(
  1132       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1133       GetProcAddress(kernel32, "Module32First" ));
  1134   _Module32Next = CAST_TO_FN_PTR(
  1135       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1136       GetProcAddress(kernel32, "Module32Next" ));
  1138   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
  1139   return _has_toolhelp;
  1142 #ifdef _WIN64
  1143 // Helper routine which returns true if address in
  1144 // within the NTDLL address space.
  1145 //
  1146 static bool _addr_in_ntdll( address addr )
  1148   HMODULE hmod;
  1149   MODULEINFO minfo;
  1151   hmod = GetModuleHandle("NTDLL.DLL");
  1152   if ( hmod == NULL ) return false;
  1153   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
  1154                                &minfo, sizeof(MODULEINFO)) )
  1155     return false;
  1157   if ( (addr >= minfo.lpBaseOfDll) &&
  1158        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1159     return true;
  1160   else
  1161     return false;
  1163 #endif
  1166 // Enumerate all modules for a given process ID
  1167 //
  1168 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1169 // different API for doing this. We use PSAPI.DLL on NT based
  1170 // Windows and ToolHelp on 95/98/Me.
  1172 // Callback function that is called by enumerate_modules() on
  1173 // every DLL module.
  1174 // Input parameters:
  1175 //    int       pid,
  1176 //    char*     module_file_name,
  1177 //    address   module_base_addr,
  1178 //    unsigned  module_size,
  1179 //    void*     param
  1180 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1182 // enumerate_modules for Windows NT, using PSAPI
  1183 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1185   HANDLE   hProcess ;
  1187 # define MAX_NUM_MODULES 128
  1188   HMODULE     modules[MAX_NUM_MODULES];
  1189   static char filename[ MAX_PATH ];
  1190   int         result = 0;
  1192   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
  1194   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1195                          FALSE, pid ) ;
  1196   if (hProcess == NULL) return 0;
  1198   DWORD size_needed;
  1199   if (!_EnumProcessModules(hProcess, modules,
  1200                            sizeof(modules), &size_needed)) {
  1201       CloseHandle( hProcess );
  1202       return 0;
  1205   // number of modules that are currently loaded
  1206   int num_modules = size_needed / sizeof(HMODULE);
  1208   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1209     // Get Full pathname:
  1210     if(!_GetModuleFileNameEx(hProcess, modules[i],
  1211                              filename, sizeof(filename))) {
  1212         filename[0] = '\0';
  1215     MODULEINFO modinfo;
  1216     if (!_GetModuleInformation(hProcess, modules[i],
  1217                                &modinfo, sizeof(modinfo))) {
  1218         modinfo.lpBaseOfDll = NULL;
  1219         modinfo.SizeOfImage = 0;
  1222     // Invoke callback function
  1223     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1224                   modinfo.SizeOfImage, param);
  1225     if (result) break;
  1228   CloseHandle( hProcess ) ;
  1229   return result;
  1233 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1234 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1236   HANDLE                hSnapShot ;
  1237   static MODULEENTRY32  modentry ;
  1238   int                   result = 0;
  1240   if (!_has_toolhelp) return 0;
  1242   // Get a handle to a Toolhelp snapshot of the system
  1243   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1244   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1245       return FALSE ;
  1248   // iterate through all modules
  1249   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1250   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
  1252   while( not_done ) {
  1253     // invoke the callback
  1254     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1255                 modentry.modBaseSize, param);
  1256     if (result) break;
  1258     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1259     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
  1262   CloseHandle(hSnapShot);
  1263   return result;
  1266 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1268   // Get current process ID if caller doesn't provide it.
  1269   if (!pid) pid = os::current_process_id();
  1271   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1272   else                    return _enumerate_modules_windows(pid, func, param);
  1275 struct _modinfo {
  1276    address addr;
  1277    char*   full_path;   // point to a char buffer
  1278    int     buflen;      // size of the buffer
  1279    address base_addr;
  1280 };
  1282 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1283                                   unsigned size, void * param) {
  1284    struct _modinfo *pmod = (struct _modinfo *)param;
  1285    if (!pmod) return -1;
  1287    if (base_addr     <= pmod->addr &&
  1288        base_addr+size > pmod->addr) {
  1289      // if a buffer is provided, copy path name to the buffer
  1290      if (pmod->full_path) {
  1291        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1293      pmod->base_addr = base_addr;
  1294      return 1;
  1296    return 0;
  1299 bool os::dll_address_to_library_name(address addr, char* buf,
  1300                                      int buflen, int* offset) {
  1301 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1302 //       return the full path to the DLL file, sometimes it returns path
  1303 //       to the corresponding PDB file (debug info); sometimes it only
  1304 //       returns partial path, which makes life painful.
  1306    struct _modinfo mi;
  1307    mi.addr      = addr;
  1308    mi.full_path = buf;
  1309    mi.buflen    = buflen;
  1310    int pid = os::current_process_id();
  1311    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1312       // buf already contains path name
  1313       if (offset) *offset = addr - mi.base_addr;
  1314       return true;
  1315    } else {
  1316       if (buf) buf[0] = '\0';
  1317       if (offset) *offset = -1;
  1318       return false;
  1322 bool os::dll_address_to_function_name(address addr, char *buf,
  1323                                       int buflen, int *offset) {
  1324   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
  1325   // we need to initialize imagehlp/dbghelp, then load symbol table
  1326   // for every module. That's too much work to do after a fatal error.
  1327   // For an example on how to implement this function, see 1.4.2.
  1328   if (offset)  *offset  = -1;
  1329   if (buf) buf[0] = '\0';
  1330   return false;
  1333 void* os::dll_lookup(void* handle, const char* name) {
  1334   return GetProcAddress((HMODULE)handle, name);
  1337 // save the start and end address of jvm.dll into param[0] and param[1]
  1338 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1339                     unsigned size, void * param) {
  1340    if (!param) return -1;
  1342    if (base_addr     <= (address)_locate_jvm_dll &&
  1343        base_addr+size > (address)_locate_jvm_dll) {
  1344          ((address*)param)[0] = base_addr;
  1345          ((address*)param)[1] = base_addr + size;
  1346          return 1;
  1348    return 0;
  1351 address vm_lib_location[2];    // start and end address of jvm.dll
  1353 // check if addr is inside jvm.dll
  1354 bool os::address_is_in_vm(address addr) {
  1355   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1356     int pid = os::current_process_id();
  1357     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1358       assert(false, "Can't find jvm module.");
  1359       return false;
  1363   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1366 // print module info; param is outputStream*
  1367 static int _print_module(int pid, char* fname, address base,
  1368                          unsigned size, void* param) {
  1369    if (!param) return -1;
  1371    outputStream* st = (outputStream*)param;
  1373    address end_addr = base + size;
  1374    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1375    return 0;
  1378 // Loads .dll/.so and
  1379 // in case of error it checks if .dll/.so was built for the
  1380 // same architecture as Hotspot is running on
  1381 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1383   void * result = LoadLibrary(name);
  1384   if (result != NULL)
  1386     return result;
  1389   long errcode = GetLastError();
  1390   if (errcode == ERROR_MOD_NOT_FOUND) {
  1391     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1392     ebuf[ebuflen-1]='\0';
  1393     return NULL;
  1396   // Parsing dll below
  1397   // If we can read dll-info and find that dll was built
  1398   // for an architecture other than Hotspot is running in
  1399   // - then print to buffer "DLL was built for a different architecture"
  1400   // else call getLastErrorString to obtain system error message
  1402   // Read system error message into ebuf
  1403   // It may or may not be overwritten below (in the for loop and just above)
  1404   getLastErrorString(ebuf, (size_t) ebuflen);
  1405   ebuf[ebuflen-1]='\0';
  1406   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1407   if (file_descriptor<0)
  1409     return NULL;
  1412   uint32_t signature_offset;
  1413   uint16_t lib_arch=0;
  1414   bool failed_to_get_lib_arch=
  1416     //Go to position 3c in the dll
  1417     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1418     ||
  1419     // Read loacation of signature
  1420     (sizeof(signature_offset)!=
  1421       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1422     ||
  1423     //Go to COFF File Header in dll
  1424     //that is located after"signature" (4 bytes long)
  1425     (os::seek_to_file_offset(file_descriptor,
  1426       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1427     ||
  1428     //Read field that contains code of architecture
  1429     // that dll was build for
  1430     (sizeof(lib_arch)!=
  1431       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1432   );
  1434   ::close(file_descriptor);
  1435   if (failed_to_get_lib_arch)
  1437     // file i/o error - report getLastErrorString(...) msg
  1438     return NULL;
  1441   typedef struct
  1443     uint16_t arch_code;
  1444     char* arch_name;
  1445   } arch_t;
  1447   static const arch_t arch_array[]={
  1448     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1449     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1450     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1451   };
  1452   #if   (defined _M_IA64)
  1453     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1454   #elif (defined _M_AMD64)
  1455     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1456   #elif (defined _M_IX86)
  1457     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1458   #else
  1459     #error Method os::dll_load requires that one of following \
  1460            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1461   #endif
  1464   // Obtain a string for printf operation
  1465   // lib_arch_str shall contain string what platform this .dll was built for
  1466   // running_arch_str shall string contain what platform Hotspot was built for
  1467   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1468   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1470     if (lib_arch==arch_array[i].arch_code)
  1471       lib_arch_str=arch_array[i].arch_name;
  1472     if (running_arch==arch_array[i].arch_code)
  1473       running_arch_str=arch_array[i].arch_name;
  1476   assert(running_arch_str,
  1477     "Didn't find runing architecture code in arch_array");
  1479   // If the architure is right
  1480   // but some other error took place - report getLastErrorString(...) msg
  1481   if (lib_arch == running_arch)
  1483     return NULL;
  1486   if (lib_arch_str!=NULL)
  1488     ::_snprintf(ebuf, ebuflen-1,
  1489       "Can't load %s-bit .dll on a %s-bit platform",
  1490       lib_arch_str,running_arch_str);
  1492   else
  1494     // don't know what architecture this dll was build for
  1495     ::_snprintf(ebuf, ebuflen-1,
  1496       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1497       lib_arch,running_arch_str);
  1500   return NULL;
  1504 void os::print_dll_info(outputStream *st) {
  1505    int pid = os::current_process_id();
  1506    st->print_cr("Dynamic libraries:");
  1507    enumerate_modules(pid, _print_module, (void *)st);
  1510 // function pointer to Windows API "GetNativeSystemInfo".
  1511 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
  1512 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
  1514 void os::print_os_info(outputStream* st) {
  1515   st->print("OS:");
  1517   OSVERSIONINFOEX osvi;
  1518   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1519   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1521   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1522     st->print_cr("N/A");
  1523     return;
  1526   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1527   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1528     switch (os_vers) {
  1529     case 3051: st->print(" Windows NT 3.51"); break;
  1530     case 4000: st->print(" Windows NT 4.0"); break;
  1531     case 5000: st->print(" Windows 2000"); break;
  1532     case 5001: st->print(" Windows XP"); break;
  1533     case 5002:
  1534     case 6000:
  1535     case 6001: {
  1536       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1537       // find out whether we are running on 64 bit processor or not.
  1538       SYSTEM_INFO si;
  1539       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1540       // Check to see if _GetNativeSystemInfo has been initialized.
  1541       if (_GetNativeSystemInfo == NULL) {
  1542         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
  1543         _GetNativeSystemInfo =
  1544             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
  1545                            GetProcAddress(hKernel32,
  1546                                           "GetNativeSystemInfo"));
  1547         if (_GetNativeSystemInfo == NULL)
  1548           GetSystemInfo(&si);
  1549       } else {
  1550         _GetNativeSystemInfo(&si);
  1552       if (os_vers == 5002) {
  1553         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1554             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1555           st->print(" Windows XP x64 Edition");
  1556         else
  1557             st->print(" Windows Server 2003 family");
  1558       } else if (os_vers == 6000) {
  1559         if (osvi.wProductType == VER_NT_WORKSTATION)
  1560             st->print(" Windows Vista");
  1561         else
  1562             st->print(" Windows Server 2008");
  1563         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1564             st->print(" , 64 bit");
  1565       } else if (os_vers == 6001) {
  1566         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1567             st->print(" Windows 7");
  1568         } else {
  1569             // Unrecognized windows, print out its major and minor versions
  1570             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1572         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1573             st->print(" , 64 bit");
  1574       } else { // future os
  1575         // Unrecognized windows, print out its major and minor versions
  1576         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1577         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1578             st->print(" , 64 bit");
  1580       break;
  1582     default: // future windows, print out its major and minor versions
  1583       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1585   } else {
  1586     switch (os_vers) {
  1587     case 4000: st->print(" Windows 95"); break;
  1588     case 4010: st->print(" Windows 98"); break;
  1589     case 4090: st->print(" Windows Me"); break;
  1590     default: // future windows, print out its major and minor versions
  1591       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1594   st->print(" Build %d", osvi.dwBuildNumber);
  1595   st->print(" %s", osvi.szCSDVersion);           // service pack
  1596   st->cr();
  1599 void os::print_memory_info(outputStream* st) {
  1600   st->print("Memory:");
  1601   st->print(" %dk page", os::vm_page_size()>>10);
  1603   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1604   // value if total memory is larger than 4GB
  1605   MEMORYSTATUSEX ms;
  1606   ms.dwLength = sizeof(ms);
  1607   GlobalMemoryStatusEx(&ms);
  1609   st->print(", physical %uk", os::physical_memory() >> 10);
  1610   st->print("(%uk free)", os::available_memory() >> 10);
  1612   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1613   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1614   st->cr();
  1617 void os::print_siginfo(outputStream *st, void *siginfo) {
  1618   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1619   st->print("siginfo:");
  1620   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1622   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1623       er->NumberParameters >= 2) {
  1624       switch (er->ExceptionInformation[0]) {
  1625       case 0: st->print(", reading address"); break;
  1626       case 1: st->print(", writing address"); break;
  1627       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1628                             er->ExceptionInformation[0]);
  1630       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1631   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1632              er->NumberParameters >= 2 && UseSharedSpaces) {
  1633     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1634     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1635       st->print("\n\nError accessing class data sharing archive."       \
  1636                 " Mapped file inaccessible during execution, "          \
  1637                 " possible disk/network problem.");
  1639   } else {
  1640     int num = er->NumberParameters;
  1641     if (num > 0) {
  1642       st->print(", ExceptionInformation=");
  1643       for (int i = 0; i < num; i++) {
  1644         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1648   st->cr();
  1651 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1652   // do nothing
  1655 static char saved_jvm_path[MAX_PATH] = {0};
  1657 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1658 void os::jvm_path(char *buf, jint buflen) {
  1659   // Error checking.
  1660   if (buflen < MAX_PATH) {
  1661     assert(false, "must use a large-enough buffer");
  1662     buf[0] = '\0';
  1663     return;
  1665   // Lazy resolve the path to current module.
  1666   if (saved_jvm_path[0] != 0) {
  1667     strcpy(buf, saved_jvm_path);
  1668     return;
  1671   GetModuleFileName(vm_lib_handle, buf, buflen);
  1672   strcpy(saved_jvm_path, buf);
  1676 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1677 #ifndef _WIN64
  1678   st->print("_");
  1679 #endif
  1683 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1684 #ifndef _WIN64
  1685   st->print("@%d", args_size  * sizeof(int));
  1686 #endif
  1689 // sun.misc.Signal
  1690 // NOTE that this is a workaround for an apparent kernel bug where if
  1691 // a signal handler for SIGBREAK is installed then that signal handler
  1692 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1693 // See bug 4416763.
  1694 static void (*sigbreakHandler)(int) = NULL;
  1696 static void UserHandler(int sig, void *siginfo, void *context) {
  1697   os::signal_notify(sig);
  1698   // We need to reinstate the signal handler each time...
  1699   os::signal(sig, (void*)UserHandler);
  1702 void* os::user_handler() {
  1703   return (void*) UserHandler;
  1706 void* os::signal(int signal_number, void* handler) {
  1707   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1708     void (*oldHandler)(int) = sigbreakHandler;
  1709     sigbreakHandler = (void (*)(int)) handler;
  1710     return (void*) oldHandler;
  1711   } else {
  1712     return (void*)::signal(signal_number, (void (*)(int))handler);
  1716 void os::signal_raise(int signal_number) {
  1717   raise(signal_number);
  1720 // The Win32 C runtime library maps all console control events other than ^C
  1721 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1722 // logoff, and shutdown events.  We therefore install our own console handler
  1723 // that raises SIGTERM for the latter cases.
  1724 //
  1725 static BOOL WINAPI consoleHandler(DWORD event) {
  1726   switch(event) {
  1727     case CTRL_C_EVENT:
  1728       if (is_error_reported()) {
  1729         // Ctrl-C is pressed during error reporting, likely because the error
  1730         // handler fails to abort. Let VM die immediately.
  1731         os::die();
  1734       os::signal_raise(SIGINT);
  1735       return TRUE;
  1736       break;
  1737     case CTRL_BREAK_EVENT:
  1738       if (sigbreakHandler != NULL) {
  1739         (*sigbreakHandler)(SIGBREAK);
  1741       return TRUE;
  1742       break;
  1743     case CTRL_CLOSE_EVENT:
  1744     case CTRL_LOGOFF_EVENT:
  1745     case CTRL_SHUTDOWN_EVENT:
  1746       os::signal_raise(SIGTERM);
  1747       return TRUE;
  1748       break;
  1749     default:
  1750       break;
  1752   return FALSE;
  1755 /*
  1756  * The following code is moved from os.cpp for making this
  1757  * code platform specific, which it is by its very nature.
  1758  */
  1760 // Return maximum OS signal used + 1 for internal use only
  1761 // Used as exit signal for signal_thread
  1762 int os::sigexitnum_pd(){
  1763   return NSIG;
  1766 // a counter for each possible signal value, including signal_thread exit signal
  1767 static volatile jint pending_signals[NSIG+1] = { 0 };
  1768 static HANDLE sig_sem;
  1770 void os::signal_init_pd() {
  1771   // Initialize signal structures
  1772   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1774   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1776   // Programs embedding the VM do not want it to attempt to receive
  1777   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1778   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1779   // the VM is run as part of a Windows NT service (i.e., a servlet
  1780   // engine in a web server), the correct behavior is for any console
  1781   // control handler to return FALSE, not TRUE, because the OS's
  1782   // "final" handler for such events allows the process to continue if
  1783   // it is a service (while terminating it if it is not a service).
  1784   // To make this behavior uniform and the mechanism simpler, we
  1785   // completely disable the VM's usage of these console events if -Xrs
  1786   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1787   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1788   // case.  See bugs 4323062, 4345157, and related bugs.
  1790   if (!ReduceSignalUsage) {
  1791     // Add a CTRL-C handler
  1792     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1796 void os::signal_notify(int signal_number) {
  1797   BOOL ret;
  1799   Atomic::inc(&pending_signals[signal_number]);
  1800   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1801   assert(ret != 0, "ReleaseSemaphore() failed");
  1804 static int check_pending_signals(bool wait_for_signal) {
  1805   DWORD ret;
  1806   while (true) {
  1807     for (int i = 0; i < NSIG + 1; i++) {
  1808       jint n = pending_signals[i];
  1809       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1810         return i;
  1813     if (!wait_for_signal) {
  1814       return -1;
  1817     JavaThread *thread = JavaThread::current();
  1819     ThreadBlockInVM tbivm(thread);
  1821     bool threadIsSuspended;
  1822     do {
  1823       thread->set_suspend_equivalent();
  1824       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1825       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1826       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1828       // were we externally suspended while we were waiting?
  1829       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1830       if (threadIsSuspended) {
  1831         //
  1832         // The semaphore has been incremented, but while we were waiting
  1833         // another thread suspended us. We don't want to continue running
  1834         // while suspended because that would surprise the thread that
  1835         // suspended us.
  1836         //
  1837         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1838         assert(ret != 0, "ReleaseSemaphore() failed");
  1840         thread->java_suspend_self();
  1842     } while (threadIsSuspended);
  1846 int os::signal_lookup() {
  1847   return check_pending_signals(false);
  1850 int os::signal_wait() {
  1851   return check_pending_signals(true);
  1854 // Implicit OS exception handling
  1856 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1857   JavaThread* thread = JavaThread::current();
  1858   // Save pc in thread
  1859 #ifdef _M_IA64
  1860   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1861   // Set pc to handler
  1862   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1863 #elif _M_AMD64
  1864   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1865   // Set pc to handler
  1866   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1867 #else
  1868   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  1869   // Set pc to handler
  1870   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  1871 #endif
  1873   // Continue the execution
  1874   return EXCEPTION_CONTINUE_EXECUTION;
  1878 // Used for PostMortemDump
  1879 extern "C" void safepoints();
  1880 extern "C" void find(int x);
  1881 extern "C" void events();
  1883 // According to Windows API documentation, an illegal instruction sequence should generate
  1884 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  1885 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  1886 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  1888 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  1890 // From "Execution Protection in the Windows Operating System" draft 0.35
  1891 // Once a system header becomes available, the "real" define should be
  1892 // included or copied here.
  1893 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  1895 #define def_excpt(val) #val, val
  1897 struct siglabel {
  1898   char *name;
  1899   int   number;
  1900 };
  1902 struct siglabel exceptlabels[] = {
  1903     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  1904     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  1905     def_excpt(EXCEPTION_BREAKPOINT),
  1906     def_excpt(EXCEPTION_SINGLE_STEP),
  1907     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  1908     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  1909     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  1910     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  1911     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  1912     def_excpt(EXCEPTION_FLT_OVERFLOW),
  1913     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  1914     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  1915     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  1916     def_excpt(EXCEPTION_INT_OVERFLOW),
  1917     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  1918     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  1919     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  1920     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  1921     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  1922     def_excpt(EXCEPTION_STACK_OVERFLOW),
  1923     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  1924     def_excpt(EXCEPTION_GUARD_PAGE),
  1925     def_excpt(EXCEPTION_INVALID_HANDLE),
  1926     NULL, 0
  1927 };
  1929 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  1930   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  1931     if (exceptlabels[i].number == exception_code) {
  1932        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  1933        return buf;
  1937   return NULL;
  1940 //-----------------------------------------------------------------------------
  1941 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1942   // handle exception caused by idiv; should only happen for -MinInt/-1
  1943   // (division by zero is handled explicitly)
  1944 #ifdef _M_IA64
  1945   assert(0, "Fix Handle_IDiv_Exception");
  1946 #elif _M_AMD64
  1947   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1948   address pc = (address)ctx->Rip;
  1949   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1950   assert(pc[0] == 0xF7, "not an idiv opcode");
  1951   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1952   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  1953   // set correct result values and continue after idiv instruction
  1954   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1955   ctx->Rax = (DWORD)min_jint;      // result
  1956   ctx->Rdx = (DWORD)0;             // remainder
  1957   // Continue the execution
  1958 #else
  1959   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1960   address pc = (address)ctx->Eip;
  1961   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1962   assert(pc[0] == 0xF7, "not an idiv opcode");
  1963   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1964   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  1965   // set correct result values and continue after idiv instruction
  1966   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1967   ctx->Eax = (DWORD)min_jint;      // result
  1968   ctx->Edx = (DWORD)0;             // remainder
  1969   // Continue the execution
  1970 #endif
  1971   return EXCEPTION_CONTINUE_EXECUTION;
  1974 #ifndef  _WIN64
  1975 //-----------------------------------------------------------------------------
  1976 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1977   // handle exception caused by native method modifying control word
  1978   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1979   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  1981   switch (exception_code) {
  1982     case EXCEPTION_FLT_DENORMAL_OPERAND:
  1983     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  1984     case EXCEPTION_FLT_INEXACT_RESULT:
  1985     case EXCEPTION_FLT_INVALID_OPERATION:
  1986     case EXCEPTION_FLT_OVERFLOW:
  1987     case EXCEPTION_FLT_STACK_CHECK:
  1988     case EXCEPTION_FLT_UNDERFLOW:
  1989       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  1990       if (fp_control_word != ctx->FloatSave.ControlWord) {
  1991         // Restore FPCW and mask out FLT exceptions
  1992         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  1993         // Mask out pending FLT exceptions
  1994         ctx->FloatSave.StatusWord &=  0xffffff00;
  1995         return EXCEPTION_CONTINUE_EXECUTION;
  1999   if (prev_uef_handler != NULL) {
  2000     // We didn't handle this exception so pass it to the previous
  2001     // UnhandledExceptionFilter.
  2002     return (prev_uef_handler)(exceptionInfo);
  2005   return EXCEPTION_CONTINUE_SEARCH;
  2007 #else //_WIN64
  2008 /*
  2009   On Windows, the mxcsr control bits are non-volatile across calls
  2010   See also CR 6192333
  2011   If EXCEPTION_FLT_* happened after some native method modified
  2012   mxcsr - it is not a jvm fault.
  2013   However should we decide to restore of mxcsr after a faulty
  2014   native method we can uncomment following code
  2015       jint MxCsr = INITIAL_MXCSR;
  2016         // we can't use StubRoutines::addr_mxcsr_std()
  2017         // because in Win64 mxcsr is not saved there
  2018       if (MxCsr != ctx->MxCsr) {
  2019         ctx->MxCsr = MxCsr;
  2020         return EXCEPTION_CONTINUE_EXECUTION;
  2023 */
  2024 #endif //_WIN64
  2027 // Fatal error reporting is single threaded so we can make this a
  2028 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2029 // it.
  2030 static char saved_error_file[MAX_PATH] = {0};
  2032 void os::set_error_file(const char *logfile) {
  2033   if (strlen(logfile) <= MAX_PATH) {
  2034     strncpy(saved_error_file, logfile, MAX_PATH);
  2038 static inline void report_error(Thread* t, DWORD exception_code,
  2039                                 address addr, void* siginfo, void* context) {
  2040   VMError err(t, exception_code, addr, siginfo, context);
  2041   err.report_and_die();
  2043   // If UseOsErrorReporting, this will return here and save the error file
  2044   // somewhere where we can find it in the minidump.
  2047 //-----------------------------------------------------------------------------
  2048 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2049   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2050   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2051 #ifdef _M_IA64
  2052   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  2053 #elif _M_AMD64
  2054   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2055 #else
  2056   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2057 #endif
  2058   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2060 #ifndef _WIN64
  2061   // Execution protection violation - win32 running on AMD64 only
  2062   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2063   // This is safe to do because we have a new/unique ExceptionInformation
  2064   // code for this condition.
  2065   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2066     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2067     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2068     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2070     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2071       int page_size = os::vm_page_size();
  2073       // Make sure the pc and the faulting address are sane.
  2074       //
  2075       // If an instruction spans a page boundary, and the page containing
  2076       // the beginning of the instruction is executable but the following
  2077       // page is not, the pc and the faulting address might be slightly
  2078       // different - we still want to unguard the 2nd page in this case.
  2079       //
  2080       // 15 bytes seems to be a (very) safe value for max instruction size.
  2081       bool pc_is_near_addr =
  2082         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2083       bool instr_spans_page_boundary =
  2084         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2085                          (intptr_t) page_size) > 0);
  2087       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2088         static volatile address last_addr =
  2089           (address) os::non_memory_address_word();
  2091         // In conservative mode, don't unguard unless the address is in the VM
  2092         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2093             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2095           // Set memory to RWX and retry
  2096           address page_start =
  2097             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2098           bool res = os::protect_memory((char*) page_start, page_size,
  2099                                         os::MEM_PROT_RWX);
  2101           if (PrintMiscellaneous && Verbose) {
  2102             char buf[256];
  2103             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2104                          "at " INTPTR_FORMAT
  2105                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2106                          page_start, (res ? "success" : strerror(errno)));
  2107             tty->print_raw_cr(buf);
  2110           // Set last_addr so if we fault again at the same address, we don't
  2111           // end up in an endless loop.
  2112           //
  2113           // There are two potential complications here.  Two threads trapping
  2114           // at the same address at the same time could cause one of the
  2115           // threads to think it already unguarded, and abort the VM.  Likely
  2116           // very rare.
  2117           //
  2118           // The other race involves two threads alternately trapping at
  2119           // different addresses and failing to unguard the page, resulting in
  2120           // an endless loop.  This condition is probably even more unlikely
  2121           // than the first.
  2122           //
  2123           // Although both cases could be avoided by using locks or thread
  2124           // local last_addr, these solutions are unnecessary complication:
  2125           // this handler is a best-effort safety net, not a complete solution.
  2126           // It is disabled by default and should only be used as a workaround
  2127           // in case we missed any no-execute-unsafe VM code.
  2129           last_addr = addr;
  2131           return EXCEPTION_CONTINUE_EXECUTION;
  2135       // Last unguard failed or not unguarding
  2136       tty->print_raw_cr("Execution protection violation");
  2137       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2138                    exceptionInfo->ContextRecord);
  2139       return EXCEPTION_CONTINUE_SEARCH;
  2142 #endif // _WIN64
  2144   // Check to see if we caught the safepoint code in the
  2145   // process of write protecting the memory serialization page.
  2146   // It write enables the page immediately after protecting it
  2147   // so just return.
  2148   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2149     JavaThread* thread = (JavaThread*) t;
  2150     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2151     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2152     if ( os::is_memory_serialize_page(thread, addr) ) {
  2153       // Block current thread until the memory serialize page permission restored.
  2154       os::block_on_serialize_page_trap();
  2155       return EXCEPTION_CONTINUE_EXECUTION;
  2160   if (t != NULL && t->is_Java_thread()) {
  2161     JavaThread* thread = (JavaThread*) t;
  2162     bool in_java = thread->thread_state() == _thread_in_Java;
  2164     // Handle potential stack overflows up front.
  2165     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2166       if (os::uses_stack_guard_pages()) {
  2167 #ifdef _M_IA64
  2168         //
  2169         // If it's a legal stack address continue, Windows will map it in.
  2170         //
  2171         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2172         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2173         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2174           return EXCEPTION_CONTINUE_EXECUTION;
  2176         // The register save area is the same size as the memory stack
  2177         // and starts at the page just above the start of the memory stack.
  2178         // If we get a fault in this area, we've run out of register
  2179         // stack.  If we are in java, try throwing a stack overflow exception.
  2180         if (addr > thread->stack_base() &&
  2181                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2182           char buf[256];
  2183           jio_snprintf(buf, sizeof(buf),
  2184                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2185                        addr, thread->stack_base() );
  2186           tty->print_raw_cr(buf);
  2187           // If not in java code, return and hope for the best.
  2188           return in_java ? Handle_Exception(exceptionInfo,
  2189             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2190             :  EXCEPTION_CONTINUE_EXECUTION;
  2192 #endif
  2193         if (thread->stack_yellow_zone_enabled()) {
  2194           // Yellow zone violation.  The o/s has unprotected the first yellow
  2195           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2196           // update the enabled status, even if the zone contains only one page.
  2197           thread->disable_stack_yellow_zone();
  2198           // If not in java code, return and hope for the best.
  2199           return in_java ? Handle_Exception(exceptionInfo,
  2200             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2201             :  EXCEPTION_CONTINUE_EXECUTION;
  2202         } else {
  2203           // Fatal red zone violation.
  2204           thread->disable_stack_red_zone();
  2205           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2206           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2207                        exceptionInfo->ContextRecord);
  2208           return EXCEPTION_CONTINUE_SEARCH;
  2210       } else if (in_java) {
  2211         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2212         // a one-time-only guard page, which it has released to us.  The next
  2213         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2214         return Handle_Exception(exceptionInfo,
  2215           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2216       } else {
  2217         // Can only return and hope for the best.  Further stack growth will
  2218         // result in an ACCESS_VIOLATION.
  2219         return EXCEPTION_CONTINUE_EXECUTION;
  2221     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2222       // Either stack overflow or null pointer exception.
  2223       if (in_java) {
  2224         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2225         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2226         address stack_end = thread->stack_base() - thread->stack_size();
  2227         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2228           // Stack overflow.
  2229           assert(!os::uses_stack_guard_pages(),
  2230             "should be caught by red zone code above.");
  2231           return Handle_Exception(exceptionInfo,
  2232             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2234         //
  2235         // Check for safepoint polling and implicit null
  2236         // We only expect null pointers in the stubs (vtable)
  2237         // the rest are checked explicitly now.
  2238         //
  2239         CodeBlob* cb = CodeCache::find_blob(pc);
  2240         if (cb != NULL) {
  2241           if (os::is_poll_address(addr)) {
  2242             address stub = SharedRuntime::get_poll_stub(pc);
  2243             return Handle_Exception(exceptionInfo, stub);
  2247 #ifdef _WIN64
  2248           //
  2249           // If it's a legal stack address map the entire region in
  2250           //
  2251           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2252           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2253           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2254                   addr = (address)((uintptr_t)addr &
  2255                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2256                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2257                                     false );
  2258                   return EXCEPTION_CONTINUE_EXECUTION;
  2260           else
  2261 #endif
  2263             // Null pointer exception.
  2264 #ifdef _M_IA64
  2265             // We catch register stack overflows in compiled code by doing
  2266             // an explicit compare and executing a st8(G0, G0) if the
  2267             // BSP enters into our guard area.  We test for the overflow
  2268             // condition and fall into the normal null pointer exception
  2269             // code if BSP hasn't overflowed.
  2270             if ( in_java ) {
  2271               if(thread->register_stack_overflow()) {
  2272                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2273                                 thread->register_stack_limit(),
  2274                                "GR7 doesn't contain register_stack_limit");
  2275                 // Disable the yellow zone which sets the state that
  2276                 // we've got a stack overflow problem.
  2277                 if (thread->stack_yellow_zone_enabled()) {
  2278                   thread->disable_stack_yellow_zone();
  2280                 // Give us some room to process the exception
  2281                 thread->disable_register_stack_guard();
  2282                 // Update GR7 with the new limit so we can continue running
  2283                 // compiled code.
  2284                 exceptionInfo->ContextRecord->IntS3 =
  2285                                (ULONGLONG)thread->register_stack_limit();
  2286                 return Handle_Exception(exceptionInfo,
  2287                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2288               } else {
  2289                 //
  2290                 // Check for implicit null
  2291                 // We only expect null pointers in the stubs (vtable)
  2292                 // the rest are checked explicitly now.
  2293                 //
  2294                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2295                   // an access to the first page of VM--assume it is a null pointer
  2296                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2297                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2300             } // in_java
  2302             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2303             // get here.
  2304             tty->print_raw_cr("Access violation, possible null pointer exception");
  2305             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2306                          exceptionInfo->ContextRecord);
  2307             return EXCEPTION_CONTINUE_SEARCH;
  2308 #else /* !IA64 */
  2310             // Windows 98 reports faulting addresses incorrectly
  2311             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2312                 !os::win32::is_nt()) {
  2313               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2314               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2316             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2317                          exceptionInfo->ContextRecord);
  2318             return EXCEPTION_CONTINUE_SEARCH;
  2319 #endif
  2324 #ifdef _WIN64
  2325       // Special care for fast JNI field accessors.
  2326       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2327       // in and the heap gets shrunk before the field access.
  2328       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2329         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2330         if (addr != (address)-1) {
  2331           return Handle_Exception(exceptionInfo, addr);
  2334 #endif
  2336 #ifdef _WIN64
  2337       // Windows will sometimes generate an access violation
  2338       // when we call malloc.  Since we use VectoredExceptions
  2339       // on 64 bit platforms, we see this exception.  We must
  2340       // pass this exception on so Windows can recover.
  2341       // We check to see if the pc of the fault is in NTDLL.DLL
  2342       // if so, we pass control on to Windows for handling.
  2343       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2344 #endif
  2346       // Stack overflow or null pointer exception in native code.
  2347       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2348                    exceptionInfo->ContextRecord);
  2349       return EXCEPTION_CONTINUE_SEARCH;
  2352     if (in_java) {
  2353       switch (exception_code) {
  2354       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2355         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2357       case EXCEPTION_INT_OVERFLOW:
  2358         return Handle_IDiv_Exception(exceptionInfo);
  2360       } // switch
  2362 #ifndef _WIN64
  2363     if ((thread->thread_state() == _thread_in_Java) ||
  2364         (thread->thread_state() == _thread_in_native) )
  2366       LONG result=Handle_FLT_Exception(exceptionInfo);
  2367       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2369 #endif //_WIN64
  2372   if (exception_code != EXCEPTION_BREAKPOINT) {
  2373 #ifndef _WIN64
  2374     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2375                  exceptionInfo->ContextRecord);
  2376 #else
  2377     // Itanium Windows uses a VectoredExceptionHandler
  2378     // Which means that C++ programatic exception handlers (try/except)
  2379     // will get here.  Continue the search for the right except block if
  2380     // the exception code is not a fatal code.
  2381     switch ( exception_code ) {
  2382       case EXCEPTION_ACCESS_VIOLATION:
  2383       case EXCEPTION_STACK_OVERFLOW:
  2384       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2385       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2386       case EXCEPTION_INT_OVERFLOW:
  2387       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2388       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2389                        exceptionInfo->ContextRecord);
  2391         break;
  2392       default:
  2393         break;
  2395 #endif
  2397   return EXCEPTION_CONTINUE_SEARCH;
  2400 #ifndef _WIN64
  2401 // Special care for fast JNI accessors.
  2402 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2403 // the heap gets shrunk before the field access.
  2404 // Need to install our own structured exception handler since native code may
  2405 // install its own.
  2406 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2407   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2408   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2409     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2410     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2411     if (addr != (address)-1) {
  2412       return Handle_Exception(exceptionInfo, addr);
  2415   return EXCEPTION_CONTINUE_SEARCH;
  2418 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2419 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2420   __try { \
  2421     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2422   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2423   } \
  2424   return 0; \
  2427 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2428 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2429 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2430 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2431 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2432 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2433 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2434 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2436 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2437   switch (type) {
  2438     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2439     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2440     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2441     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2442     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2443     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2444     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2445     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2446     default:        ShouldNotReachHere();
  2448   return (address)-1;
  2450 #endif
  2452 // Virtual Memory
  2454 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2455 int os::vm_allocation_granularity() {
  2456   return os::win32::vm_allocation_granularity();
  2459 // Windows large page support is available on Windows 2003. In order to use
  2460 // large page memory, the administrator must first assign additional privilege
  2461 // to the user:
  2462 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2463 //   + select Local Policies -> User Rights Assignment
  2464 //   + double click "Lock pages in memory", add users and/or groups
  2465 //   + reboot
  2466 // Note the above steps are needed for administrator as well, as administrators
  2467 // by default do not have the privilege to lock pages in memory.
  2468 //
  2469 // Note about Windows 2003: although the API supports committing large page
  2470 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2471 // scenario, I found through experiment it only uses large page if the entire
  2472 // memory region is reserved and committed in a single VirtualAlloc() call.
  2473 // This makes Windows large page support more or less like Solaris ISM, in
  2474 // that the entire heap must be committed upfront. This probably will change
  2475 // in the future, if so the code below needs to be revisited.
  2477 #ifndef MEM_LARGE_PAGES
  2478 #define MEM_LARGE_PAGES 0x20000000
  2479 #endif
  2481 // GetLargePageMinimum is only available on Windows 2003. The other functions
  2482 // are available on NT but not on Windows 98/Me. We have to resolve them at
  2483 // runtime.
  2484 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
  2485 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
  2486              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  2487 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
  2488 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
  2490 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
  2491 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
  2492 static OpenProcessToken_func_type      _OpenProcessToken;
  2493 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
  2495 static HINSTANCE _kernel32;
  2496 static HINSTANCE _advapi32;
  2497 static HANDLE    _hProcess;
  2498 static HANDLE    _hToken;
  2500 static size_t _large_page_size = 0;
  2502 static bool resolve_functions_for_large_page_init() {
  2503   _kernel32 = LoadLibrary("kernel32.dll");
  2504   if (_kernel32 == NULL) return false;
  2506   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
  2507                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
  2508   if (_GetLargePageMinimum == NULL) return false;
  2510   _advapi32 = LoadLibrary("advapi32.dll");
  2511   if (_advapi32 == NULL) return false;
  2513   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
  2514                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
  2515   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
  2516                             GetProcAddress(_advapi32, "OpenProcessToken"));
  2517   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
  2518                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
  2519   return _AdjustTokenPrivileges != NULL &&
  2520          _OpenProcessToken      != NULL &&
  2521          _LookupPrivilegeValue  != NULL;
  2524 static bool request_lock_memory_privilege() {
  2525   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2526                                 os::current_process_id());
  2528   LUID luid;
  2529   if (_hProcess != NULL &&
  2530       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2531       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2533     TOKEN_PRIVILEGES tp;
  2534     tp.PrivilegeCount = 1;
  2535     tp.Privileges[0].Luid = luid;
  2536     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2538     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2539     // privilege. Check GetLastError() too. See MSDN document.
  2540     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2541         (GetLastError() == ERROR_SUCCESS)) {
  2542       return true;
  2546   return false;
  2549 static void cleanup_after_large_page_init() {
  2550   _GetLargePageMinimum = NULL;
  2551   _AdjustTokenPrivileges = NULL;
  2552   _OpenProcessToken = NULL;
  2553   _LookupPrivilegeValue = NULL;
  2554   if (_kernel32) FreeLibrary(_kernel32);
  2555   _kernel32 = NULL;
  2556   if (_advapi32) FreeLibrary(_advapi32);
  2557   _advapi32 = NULL;
  2558   if (_hProcess) CloseHandle(_hProcess);
  2559   _hProcess = NULL;
  2560   if (_hToken) CloseHandle(_hToken);
  2561   _hToken = NULL;
  2564 bool os::large_page_init() {
  2565   if (!UseLargePages) return false;
  2567   // print a warning if any large page related flag is specified on command line
  2568   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2569                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2570   bool success = false;
  2572 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2573   if (resolve_functions_for_large_page_init()) {
  2574     if (request_lock_memory_privilege()) {
  2575       size_t s = _GetLargePageMinimum();
  2576       if (s) {
  2577 #if defined(IA32) || defined(AMD64)
  2578         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2579           WARN("JVM cannot use large pages bigger than 4mb.");
  2580         } else {
  2581 #endif
  2582           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2583             _large_page_size = LargePageSizeInBytes;
  2584           } else {
  2585             _large_page_size = s;
  2587           success = true;
  2588 #if defined(IA32) || defined(AMD64)
  2590 #endif
  2591       } else {
  2592         WARN("Large page is not supported by the processor.");
  2594     } else {
  2595       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2597   } else {
  2598     WARN("Large page is not supported by the operating system.");
  2600 #undef WARN
  2602   const size_t default_page_size = (size_t) vm_page_size();
  2603   if (success && _large_page_size > default_page_size) {
  2604     _page_sizes[0] = _large_page_size;
  2605     _page_sizes[1] = default_page_size;
  2606     _page_sizes[2] = 0;
  2609   cleanup_after_large_page_init();
  2610   return success;
  2613 // On win32, one cannot release just a part of reserved memory, it's an
  2614 // all or nothing deal.  When we split a reservation, we must break the
  2615 // reservation into two reservations.
  2616 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2617                               bool realloc) {
  2618   if (size > 0) {
  2619     release_memory(base, size);
  2620     if (realloc) {
  2621       reserve_memory(split, base);
  2623     if (size != split) {
  2624       reserve_memory(size - split, base + split);
  2629 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2630   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2631          "reserve alignment");
  2632   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2633   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  2634   assert(res == NULL || addr == NULL || addr == res,
  2635          "Unexpected address from reserve.");
  2636   return res;
  2639 // Reserve memory at an arbitrary address, only if that area is
  2640 // available (and not reserved for something else).
  2641 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2642   // Windows os::reserve_memory() fails of the requested address range is
  2643   // not avilable.
  2644   return reserve_memory(bytes, requested_addr);
  2647 size_t os::large_page_size() {
  2648   return _large_page_size;
  2651 bool os::can_commit_large_page_memory() {
  2652   // Windows only uses large page memory when the entire region is reserved
  2653   // and committed in a single VirtualAlloc() call. This may change in the
  2654   // future, but with Windows 2003 it's not possible to commit on demand.
  2655   return false;
  2658 bool os::can_execute_large_page_memory() {
  2659   return true;
  2662 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  2664   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  2666   if (UseLargePagesIndividualAllocation) {
  2667     if (TracePageSizes && Verbose) {
  2668        tty->print_cr("Reserving large pages individually.");
  2670     char * p_buf;
  2671     // first reserve enough address space in advance since we want to be
  2672     // able to break a single contiguous virtual address range into multiple
  2673     // large page commits but WS2003 does not allow reserving large page space
  2674     // so we just use 4K pages for reserve, this gives us a legal contiguous
  2675     // address space. then we will deallocate that reservation, and re alloc
  2676     // using large pages
  2677     const size_t size_of_reserve = bytes + _large_page_size;
  2678     if (bytes > size_of_reserve) {
  2679       // Overflowed.
  2680       warning("Individually allocated large pages failed, "
  2681         "use -XX:-UseLargePagesIndividualAllocation to turn off");
  2682       return NULL;
  2684     p_buf = (char *) VirtualAlloc(addr,
  2685                                  size_of_reserve,  // size of Reserve
  2686                                  MEM_RESERVE,
  2687                                  PAGE_READWRITE);
  2688     // If reservation failed, return NULL
  2689     if (p_buf == NULL) return NULL;
  2691     release_memory(p_buf, bytes + _large_page_size);
  2692     // round up to page boundary.  If the size_of_reserve did not
  2693     // overflow and the reservation did not fail, this align up
  2694     // should not overflow.
  2695     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
  2697     // now go through and allocate one page at a time until all bytes are
  2698     // allocated
  2699     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
  2700     // An overflow of align_size_up() would have been caught above
  2701     // in the calculation of size_of_reserve.
  2702     char * next_alloc_addr = p_buf;
  2704 #ifdef ASSERT
  2705     // Variable for the failure injection
  2706     long ran_num = os::random();
  2707     size_t fail_after = ran_num % bytes;
  2708 #endif
  2710     while (bytes_remaining) {
  2711       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
  2712       // Note allocate and commit
  2713       char * p_new;
  2715 #ifdef ASSERT
  2716       bool inject_error = LargePagesIndividualAllocationInjectError &&
  2717           (bytes_remaining <= fail_after);
  2718 #else
  2719       const bool inject_error = false;
  2720 #endif
  2722       if (inject_error) {
  2723         p_new = NULL;
  2724       } else {
  2725         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2726                                     bytes_to_rq,
  2727                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
  2728                                     prot);
  2731       if (p_new == NULL) {
  2732         // Free any allocated pages
  2733         if (next_alloc_addr > p_buf) {
  2734           // Some memory was committed so release it.
  2735           size_t bytes_to_release = bytes - bytes_remaining;
  2736           release_memory(p_buf, bytes_to_release);
  2738 #ifdef ASSERT
  2739         if (UseLargePagesIndividualAllocation &&
  2740             LargePagesIndividualAllocationInjectError) {
  2741           if (TracePageSizes && Verbose) {
  2742              tty->print_cr("Reserving large pages individually failed.");
  2745 #endif
  2746         return NULL;
  2748       bytes_remaining -= bytes_to_rq;
  2749       next_alloc_addr += bytes_to_rq;
  2752     return p_buf;
  2754   } else {
  2755     // normal policy just allocate it all at once
  2756     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2757     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  2758     return res;
  2762 bool os::release_memory_special(char* base, size_t bytes) {
  2763   return release_memory(base, bytes);
  2766 void os::print_statistics() {
  2769 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2770   if (bytes == 0) {
  2771     // Don't bother the OS with noops.
  2772     return true;
  2774   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  2775   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  2776   // Don't attempt to print anything if the OS call fails. We're
  2777   // probably low on resources, so the print itself may cause crashes.
  2778   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
  2779   if (result != NULL && exec) {
  2780     DWORD oldprot;
  2781     // Windows doc says to use VirtualProtect to get execute permissions
  2782     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
  2783   } else {
  2784     return result;
  2788 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2789                        bool exec) {
  2790   return commit_memory(addr, size, exec);
  2793 bool os::uncommit_memory(char* addr, size_t bytes) {
  2794   if (bytes == 0) {
  2795     // Don't bother the OS with noops.
  2796     return true;
  2798   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  2799   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  2800   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  2803 bool os::release_memory(char* addr, size_t bytes) {
  2804   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  2807 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2808   return os::commit_memory(addr, size);
  2811 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2812   return os::uncommit_memory(addr, size);
  2815 // Set protections specified
  2816 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2817                         bool is_committed) {
  2818   unsigned int p = 0;
  2819   switch (prot) {
  2820   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  2821   case MEM_PROT_READ: p = PAGE_READONLY; break;
  2822   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  2823   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  2824   default:
  2825     ShouldNotReachHere();
  2828   DWORD old_status;
  2830   // Strange enough, but on Win32 one can change protection only for committed
  2831   // memory, not a big deal anyway, as bytes less or equal than 64K
  2832   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
  2833     fatal("cannot commit protection page");
  2835   // One cannot use os::guard_memory() here, as on Win32 guard page
  2836   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  2837   //
  2838   // Pages in the region become guard pages. Any attempt to access a guard page
  2839   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  2840   // the guard page status. Guard pages thus act as a one-time access alarm.
  2841   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  2844 bool os::guard_memory(char* addr, size_t bytes) {
  2845   DWORD old_status;
  2846   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  2849 bool os::unguard_memory(char* addr, size_t bytes) {
  2850   DWORD old_status;
  2851   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  2854 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2855 void os::free_memory(char *addr, size_t bytes)         { }
  2856 void os::numa_make_global(char *addr, size_t bytes)    { }
  2857 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  2858 bool os::numa_topology_changed()                       { return false; }
  2859 size_t os::numa_get_groups_num()                       { return 1; }
  2860 int os::numa_get_group_id()                            { return 0; }
  2861 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2862   if (size > 0) {
  2863     ids[0] = 0;
  2864     return 1;
  2866   return 0;
  2869 bool os::get_page_info(char *start, page_info* info) {
  2870   return false;
  2873 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2874   return end;
  2877 char* os::non_memory_address_word() {
  2878   // Must never look like an address returned by reserve_memory,
  2879   // even in its subfields (as defined by the CPU immediate fields,
  2880   // if the CPU splits constants across multiple instructions).
  2881   return (char*)-1;
  2884 #define MAX_ERROR_COUNT 100
  2885 #define SYS_THREAD_ERROR 0xffffffffUL
  2887 void os::pd_start_thread(Thread* thread) {
  2888   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  2889   // Returns previous suspend state:
  2890   // 0:  Thread was not suspended
  2891   // 1:  Thread is running now
  2892   // >1: Thread is still suspended.
  2893   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  2896 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2897   return ::read(fd, buf, nBytes);
  2900 class HighResolutionInterval {
  2901   // The default timer resolution seems to be 10 milliseconds.
  2902   // (Where is this written down?)
  2903   // If someone wants to sleep for only a fraction of the default,
  2904   // then we set the timer resolution down to 1 millisecond for
  2905   // the duration of their interval.
  2906   // We carefully set the resolution back, since otherwise we
  2907   // seem to incur an overhead (3%?) that we don't need.
  2908   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  2909   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  2910   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  2911   // timeBeginPeriod() if the relative error exceeded some threshold.
  2912   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  2913   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  2914   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  2915   // resolution timers running.
  2916 private:
  2917     jlong resolution;
  2918 public:
  2919   HighResolutionInterval(jlong ms) {
  2920     resolution = ms % 10L;
  2921     if (resolution != 0) {
  2922       MMRESULT result = timeBeginPeriod(1L);
  2925   ~HighResolutionInterval() {
  2926     if (resolution != 0) {
  2927       MMRESULT result = timeEndPeriod(1L);
  2929     resolution = 0L;
  2931 };
  2933 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  2934   jlong limit = (jlong) MAXDWORD;
  2936   while(ms > limit) {
  2937     int res;
  2938     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  2939       return res;
  2940     ms -= limit;
  2943   assert(thread == Thread::current(),  "thread consistency check");
  2944   OSThread* osthread = thread->osthread();
  2945   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  2946   int result;
  2947   if (interruptable) {
  2948     assert(thread->is_Java_thread(), "must be java thread");
  2949     JavaThread *jt = (JavaThread *) thread;
  2950     ThreadBlockInVM tbivm(jt);
  2952     jt->set_suspend_equivalent();
  2953     // cleared by handle_special_suspend_equivalent_condition() or
  2954     // java_suspend_self() via check_and_wait_while_suspended()
  2956     HANDLE events[1];
  2957     events[0] = osthread->interrupt_event();
  2958     HighResolutionInterval *phri=NULL;
  2959     if(!ForceTimeHighResolution)
  2960       phri = new HighResolutionInterval( ms );
  2961     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  2962       result = OS_TIMEOUT;
  2963     } else {
  2964       ResetEvent(osthread->interrupt_event());
  2965       osthread->set_interrupted(false);
  2966       result = OS_INTRPT;
  2968     delete phri; //if it is NULL, harmless
  2970     // were we externally suspended while we were waiting?
  2971     jt->check_and_wait_while_suspended();
  2972   } else {
  2973     assert(!thread->is_Java_thread(), "must not be java thread");
  2974     Sleep((long) ms);
  2975     result = OS_TIMEOUT;
  2977   return result;
  2980 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2981 void os::infinite_sleep() {
  2982   while (true) {    // sleep forever ...
  2983     Sleep(100000);  // ... 100 seconds at a time
  2987 typedef BOOL (WINAPI * STTSignature)(void) ;
  2989 os::YieldResult os::NakedYield() {
  2990   // Use either SwitchToThread() or Sleep(0)
  2991   // Consider passing back the return value from SwitchToThread().
  2992   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
  2993   // In that case we revert to Sleep(0).
  2994   static volatile STTSignature stt = (STTSignature) 1 ;
  2996   if (stt == ((STTSignature) 1)) {
  2997     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
  2998     // It's OK if threads race during initialization as the operation above is idempotent.
  3000   if (stt != NULL) {
  3001     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3002   } else {
  3003     Sleep (0) ;
  3005   return os::YIELD_UNKNOWN ;
  3008 void os::yield() {  os::NakedYield(); }
  3010 void os::yield_all(int attempts) {
  3011   // Yields to all threads, including threads with lower priorities
  3012   Sleep(1);
  3015 // Win32 only gives you access to seven real priorities at a time,
  3016 // so we compress Java's ten down to seven.  It would be better
  3017 // if we dynamically adjusted relative priorities.
  3019 int os::java_to_os_priority[MaxPriority + 1] = {
  3020   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3021   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3022   THREAD_PRIORITY_LOWEST,                       // 2
  3023   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3024   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3025   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3026   THREAD_PRIORITY_NORMAL,                       // 6
  3027   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3028   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3029   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3030   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  3031 };
  3033 int prio_policy1[MaxPriority + 1] = {
  3034   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3035   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3036   THREAD_PRIORITY_LOWEST,                       // 2
  3037   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3038   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3039   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3040   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3041   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3042   THREAD_PRIORITY_HIGHEST,                      // 8
  3043   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3044   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  3045 };
  3047 static int prio_init() {
  3048   // If ThreadPriorityPolicy is 1, switch tables
  3049   if (ThreadPriorityPolicy == 1) {
  3050     int i;
  3051     for (i = 0; i < MaxPriority + 1; i++) {
  3052       os::java_to_os_priority[i] = prio_policy1[i];
  3055   return 0;
  3058 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3059   if (!UseThreadPriorities) return OS_OK;
  3060   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3061   return ret ? OS_OK : OS_ERR;
  3064 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3065   if ( !UseThreadPriorities ) {
  3066     *priority_ptr = java_to_os_priority[NormPriority];
  3067     return OS_OK;
  3069   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3070   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3071     assert(false, "GetThreadPriority failed");
  3072     return OS_ERR;
  3074   *priority_ptr = os_prio;
  3075   return OS_OK;
  3079 // Hint to the underlying OS that a task switch would not be good.
  3080 // Void return because it's a hint and can fail.
  3081 void os::hint_no_preempt() {}
  3083 void os::interrupt(Thread* thread) {
  3084   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3085          "possibility of dangling Thread pointer");
  3087   OSThread* osthread = thread->osthread();
  3088   osthread->set_interrupted(true);
  3089   // More than one thread can get here with the same value of osthread,
  3090   // resulting in multiple notifications.  We do, however, want the store
  3091   // to interrupted() to be visible to other threads before we post
  3092   // the interrupt event.
  3093   OrderAccess::release();
  3094   SetEvent(osthread->interrupt_event());
  3095   // For JSR166:  unpark after setting status
  3096   if (thread->is_Java_thread())
  3097     ((JavaThread*)thread)->parker()->unpark();
  3099   ParkEvent * ev = thread->_ParkEvent ;
  3100   if (ev != NULL) ev->unpark() ;
  3105 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3106   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3107          "possibility of dangling Thread pointer");
  3109   OSThread* osthread = thread->osthread();
  3110   bool interrupted;
  3111   interrupted = osthread->interrupted();
  3112   if (clear_interrupted == true) {
  3113     osthread->set_interrupted(false);
  3114     ResetEvent(osthread->interrupt_event());
  3115   } // Otherwise leave the interrupted state alone
  3117   return interrupted;
  3120 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3121 ExtendedPC os::get_thread_pc(Thread* thread) {
  3122   CONTEXT context;
  3123   context.ContextFlags = CONTEXT_CONTROL;
  3124   HANDLE handle = thread->osthread()->thread_handle();
  3125 #ifdef _M_IA64
  3126   assert(0, "Fix get_thread_pc");
  3127   return ExtendedPC(NULL);
  3128 #else
  3129   if (GetThreadContext(handle, &context)) {
  3130 #ifdef _M_AMD64
  3131     return ExtendedPC((address) context.Rip);
  3132 #else
  3133     return ExtendedPC((address) context.Eip);
  3134 #endif
  3135   } else {
  3136     return ExtendedPC(NULL);
  3138 #endif
  3141 // GetCurrentThreadId() returns DWORD
  3142 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3144 static int _initial_pid = 0;
  3146 int os::current_process_id()
  3148   return (_initial_pid ? _initial_pid : _getpid());
  3151 int    os::win32::_vm_page_size       = 0;
  3152 int    os::win32::_vm_allocation_granularity = 0;
  3153 int    os::win32::_processor_type     = 0;
  3154 // Processor level is not available on non-NT systems, use vm_version instead
  3155 int    os::win32::_processor_level    = 0;
  3156 julong os::win32::_physical_memory    = 0;
  3157 size_t os::win32::_default_stack_size = 0;
  3159          intx os::win32::_os_thread_limit    = 0;
  3160 volatile intx os::win32::_os_thread_count    = 0;
  3162 bool   os::win32::_is_nt              = false;
  3163 bool   os::win32::_is_windows_2003    = false;
  3166 void os::win32::initialize_system_info() {
  3167   SYSTEM_INFO si;
  3168   GetSystemInfo(&si);
  3169   _vm_page_size    = si.dwPageSize;
  3170   _vm_allocation_granularity = si.dwAllocationGranularity;
  3171   _processor_type  = si.dwProcessorType;
  3172   _processor_level = si.wProcessorLevel;
  3173   set_processor_count(si.dwNumberOfProcessors);
  3175   MEMORYSTATUSEX ms;
  3176   ms.dwLength = sizeof(ms);
  3178   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3179   // dwMemoryLoad (% of memory in use)
  3180   GlobalMemoryStatusEx(&ms);
  3181   _physical_memory = ms.ullTotalPhys;
  3183   OSVERSIONINFO oi;
  3184   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
  3185   GetVersionEx(&oi);
  3186   switch(oi.dwPlatformId) {
  3187     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3188     case VER_PLATFORM_WIN32_NT:
  3189       _is_nt = true;
  3191         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3192         if (os_vers == 5002) {
  3193           _is_windows_2003 = true;
  3196       break;
  3197     default: fatal("Unknown platform");
  3200   _default_stack_size = os::current_stack_size();
  3201   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3202   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3203     "stack size not a multiple of page size");
  3205   initialize_performance_counter();
  3207   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3208   // known to deadlock the system, if the VM issues to thread operations with
  3209   // a too high frequency, e.g., such as changing the priorities.
  3210   // The 6000 seems to work well - no deadlocks has been notices on the test
  3211   // programs that we have seen experience this problem.
  3212   if (!os::win32::is_nt()) {
  3213     StarvationMonitorInterval = 6000;
  3218 void os::win32::setmode_streams() {
  3219   _setmode(_fileno(stdin), _O_BINARY);
  3220   _setmode(_fileno(stdout), _O_BINARY);
  3221   _setmode(_fileno(stderr), _O_BINARY);
  3225 int os::message_box(const char* title, const char* message) {
  3226   int result = MessageBox(NULL, message, title,
  3227                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3228   return result == IDYES;
  3231 int os::allocate_thread_local_storage() {
  3232   return TlsAlloc();
  3236 void os::free_thread_local_storage(int index) {
  3237   TlsFree(index);
  3241 void os::thread_local_storage_at_put(int index, void* value) {
  3242   TlsSetValue(index, value);
  3243   assert(thread_local_storage_at(index) == value, "Just checking");
  3247 void* os::thread_local_storage_at(int index) {
  3248   return TlsGetValue(index);
  3252 #ifndef PRODUCT
  3253 #ifndef _WIN64
  3254 // Helpers to check whether NX protection is enabled
  3255 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3256   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3257       pex->ExceptionRecord->NumberParameters > 0 &&
  3258       pex->ExceptionRecord->ExceptionInformation[0] ==
  3259       EXCEPTION_INFO_EXEC_VIOLATION) {
  3260     return EXCEPTION_EXECUTE_HANDLER;
  3262   return EXCEPTION_CONTINUE_SEARCH;
  3265 void nx_check_protection() {
  3266   // If NX is enabled we'll get an exception calling into code on the stack
  3267   char code[] = { (char)0xC3 }; // ret
  3268   void *code_ptr = (void *)code;
  3269   __try {
  3270     __asm call code_ptr
  3271   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3272     tty->print_raw_cr("NX protection detected.");
  3275 #endif // _WIN64
  3276 #endif // PRODUCT
  3278 // this is called _before_ the global arguments have been parsed
  3279 void os::init(void) {
  3280   _initial_pid = _getpid();
  3282   init_random(1234567);
  3284   win32::initialize_system_info();
  3285   win32::setmode_streams();
  3286   init_page_sizes((size_t) win32::vm_page_size());
  3288   // For better scalability on MP systems (must be called after initialize_system_info)
  3289 #ifndef PRODUCT
  3290   if (is_MP()) {
  3291     NoYieldsInMicrolock = true;
  3293 #endif
  3294   // This may be overridden later when argument processing is done.
  3295   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3296     os::win32::is_windows_2003());
  3298   // Initialize main_process and main_thread
  3299   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3300  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3301                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3302     fatal("DuplicateHandle failed\n");
  3304   main_thread_id = (int) GetCurrentThreadId();
  3307 // To install functions for atexit processing
  3308 extern "C" {
  3309   static void perfMemory_exit_helper() {
  3310     perfMemory_exit();
  3314 // this is called _after_ the global arguments have been parsed
  3315 jint os::init_2(void) {
  3316   // Allocate a single page and mark it as readable for safepoint polling
  3317   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3318   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3320   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3321   guarantee( return_page != NULL, "Commit Failed for polling page");
  3323   os::set_polling_page( polling_page );
  3325 #ifndef PRODUCT
  3326   if( Verbose && PrintMiscellaneous )
  3327     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3328 #endif
  3330   if (!UseMembar) {
  3331     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3332     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3334     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3335     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3337     os::set_memory_serialize_page( mem_serialize_page );
  3339 #ifndef PRODUCT
  3340     if(Verbose && PrintMiscellaneous)
  3341       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3342 #endif
  3345   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3347   // Setup Windows Exceptions
  3349   // On Itanium systems, Structured Exception Handling does not
  3350   // work since stack frames must be walkable by the OS.  Since
  3351   // much of our code is dynamically generated, and we do not have
  3352   // proper unwind .xdata sections, the system simply exits
  3353   // rather than delivering the exception.  To work around
  3354   // this we use VectorExceptions instead.
  3355 #ifdef _WIN64
  3356   if (UseVectoredExceptions) {
  3357     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3359 #endif
  3361   // for debugging float code generation bugs
  3362   if (ForceFloatExceptions) {
  3363 #ifndef  _WIN64
  3364     static long fp_control_word = 0;
  3365     __asm { fstcw fp_control_word }
  3366     // see Intel PPro Manual, Vol. 2, p 7-16
  3367     const long precision = 0x20;
  3368     const long underflow = 0x10;
  3369     const long overflow  = 0x08;
  3370     const long zero_div  = 0x04;
  3371     const long denorm    = 0x02;
  3372     const long invalid   = 0x01;
  3373     fp_control_word |= invalid;
  3374     __asm { fldcw fp_control_word }
  3375 #endif
  3378   // Initialize HPI.
  3379   jint hpi_result = hpi::initialize();
  3380   if (hpi_result != JNI_OK) { return hpi_result; }
  3382   // If stack_commit_size is 0, windows will reserve the default size,
  3383   // but only commit a small portion of it.
  3384   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3385   size_t default_reserve_size = os::win32::default_stack_size();
  3386   size_t actual_reserve_size = stack_commit_size;
  3387   if (stack_commit_size < default_reserve_size) {
  3388     // If stack_commit_size == 0, we want this too
  3389     actual_reserve_size = default_reserve_size;
  3392   // Check minimum allowable stack size for thread creation and to initialize
  3393   // the java system classes, including StackOverflowError - depends on page
  3394   // size.  Add a page for compiler2 recursion in main thread.
  3395   // Add in 2*BytesPerWord times page size to account for VM stack during
  3396   // class initialization depending on 32 or 64 bit VM.
  3397   size_t min_stack_allowed =
  3398             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3399             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3400   if (actual_reserve_size < min_stack_allowed) {
  3401     tty->print_cr("\nThe stack size specified is too small, "
  3402                   "Specify at least %dk",
  3403                   min_stack_allowed / K);
  3404     return JNI_ERR;
  3407   JavaThread::set_stack_size_at_create(stack_commit_size);
  3409   // Calculate theoretical max. size of Threads to guard gainst artifical
  3410   // out-of-memory situations, where all available address-space has been
  3411   // reserved by thread stacks.
  3412   assert(actual_reserve_size != 0, "Must have a stack");
  3414   // Calculate the thread limit when we should start doing Virtual Memory
  3415   // banging. Currently when the threads will have used all but 200Mb of space.
  3416   //
  3417   // TODO: consider performing a similar calculation for commit size instead
  3418   // as reserve size, since on a 64-bit platform we'll run into that more
  3419   // often than running out of virtual memory space.  We can use the
  3420   // lower value of the two calculations as the os_thread_limit.
  3421   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3422   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3424   // at exit methods are called in the reverse order of their registration.
  3425   // there is no limit to the number of functions registered. atexit does
  3426   // not set errno.
  3428   if (PerfAllowAtExitRegistration) {
  3429     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3430     // atexit functions can be delayed until process exit time, which
  3431     // can be problematic for embedded VM situations. Embedded VMs should
  3432     // call DestroyJavaVM() to assure that VM resources are released.
  3434     // note: perfMemory_exit_helper atexit function may be removed in
  3435     // the future if the appropriate cleanup code can be added to the
  3436     // VM_Exit VMOperation's doit method.
  3437     if (atexit(perfMemory_exit_helper) != 0) {
  3438       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3442   // initialize PSAPI or ToolHelp for fatal error handler
  3443   if (win32::is_nt()) _init_psapi();
  3444   else _init_toolhelp();
  3446 #ifndef _WIN64
  3447   // Print something if NX is enabled (win32 on AMD64)
  3448   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3449 #endif
  3451   // initialize thread priority policy
  3452   prio_init();
  3454   if (UseNUMA && !ForceNUMA) {
  3455     UseNUMA = false; // Currently unsupported.
  3458   return JNI_OK;
  3461 void os::init_3(void) {
  3462   return;
  3465 // Mark the polling page as unreadable
  3466 void os::make_polling_page_unreadable(void) {
  3467   DWORD old_status;
  3468   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3469     fatal("Could not disable polling page");
  3470 };
  3472 // Mark the polling page as readable
  3473 void os::make_polling_page_readable(void) {
  3474   DWORD old_status;
  3475   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3476     fatal("Could not enable polling page");
  3477 };
  3480 int os::stat(const char *path, struct stat *sbuf) {
  3481   char pathbuf[MAX_PATH];
  3482   if (strlen(path) > MAX_PATH - 1) {
  3483     errno = ENAMETOOLONG;
  3484     return -1;
  3486   hpi::native_path(strcpy(pathbuf, path));
  3487   int ret = ::stat(pathbuf, sbuf);
  3488   if (sbuf != NULL && UseUTCFileTimestamp) {
  3489     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3490     // the system timezone and so can return different values for the
  3491     // same file if/when daylight savings time changes.  This adjustment
  3492     // makes sure the same timestamp is returned regardless of the TZ.
  3493     //
  3494     // See:
  3495     // http://msdn.microsoft.com/library/
  3496     //   default.asp?url=/library/en-us/sysinfo/base/
  3497     //   time_zone_information_str.asp
  3498     // and
  3499     // http://msdn.microsoft.com/library/default.asp?url=
  3500     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3501     //
  3502     // NOTE: there is a insidious bug here:  If the timezone is changed
  3503     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3504     // the adjustment we do here will be wrong and we'll return the wrong
  3505     // value (which will likely end up creating an invalid class data
  3506     // archive).  Absent a better API for this, or some time zone locking
  3507     // mechanism, we'll have to live with this risk.
  3508     TIME_ZONE_INFORMATION tz;
  3509     DWORD tzid = GetTimeZoneInformation(&tz);
  3510     int daylightBias =
  3511       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3512     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3514   return ret;
  3518 #define FT2INT64(ft) \
  3519   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3522 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3523 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3524 // of a thread.
  3525 //
  3526 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3527 // the fast estimate available on the platform.
  3529 // current_thread_cpu_time() is not optimized for Windows yet
  3530 jlong os::current_thread_cpu_time() {
  3531   // return user + sys since the cost is the same
  3532   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3535 jlong os::thread_cpu_time(Thread* thread) {
  3536   // consistent with what current_thread_cpu_time() returns.
  3537   return os::thread_cpu_time(thread, true /* user+sys */);
  3540 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3541   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3544 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3545   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3546   // If this function changes, os::is_thread_cpu_time_supported() should too
  3547   if (os::win32::is_nt()) {
  3548     FILETIME CreationTime;
  3549     FILETIME ExitTime;
  3550     FILETIME KernelTime;
  3551     FILETIME UserTime;
  3553     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3554                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3555       return -1;
  3556     else
  3557       if (user_sys_cpu_time) {
  3558         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3559       } else {
  3560         return FT2INT64(UserTime) * 100;
  3562   } else {
  3563     return (jlong) timeGetTime() * 1000000;
  3567 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3568   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3569   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3570   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3571   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3574 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3575   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3576   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3577   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3578   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3581 bool os::is_thread_cpu_time_supported() {
  3582   // see os::thread_cpu_time
  3583   if (os::win32::is_nt()) {
  3584     FILETIME CreationTime;
  3585     FILETIME ExitTime;
  3586     FILETIME KernelTime;
  3587     FILETIME UserTime;
  3589     if ( GetThreadTimes(GetCurrentThread(),
  3590                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3591       return false;
  3592     else
  3593       return true;
  3594   } else {
  3595     return false;
  3599 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3600 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3601 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3602 // If we wanted to implement loadavg on Windows, we have a few options:
  3603 //
  3604 // a) Query CPU usage and run queue length and "fake" an answer by
  3605 //    returning the CPU usage if it's under 100%, and the run queue
  3606 //    length otherwise.  It turns out that querying is pretty slow
  3607 //    on Windows, on the order of 200 microseconds on a fast machine.
  3608 //    Note that on the Windows the CPU usage value is the % usage
  3609 //    since the last time the API was called (and the first call
  3610 //    returns 100%), so we'd have to deal with that as well.
  3611 //
  3612 // b) Sample the "fake" answer using a sampling thread and store
  3613 //    the answer in a global variable.  The call to loadavg would
  3614 //    just return the value of the global, avoiding the slow query.
  3615 //
  3616 // c) Sample a better answer using exponential decay to smooth the
  3617 //    value.  This is basically the algorithm used by UNIX kernels.
  3618 //
  3619 // Note that sampling thread starvation could affect both (b) and (c).
  3620 int os::loadavg(double loadavg[], int nelem) {
  3621   return -1;
  3625 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3626 bool os::dont_yield() {
  3627   return DontYieldALot;
  3630 // Is a (classpath) directory empty?
  3631 bool os::dir_is_empty(const char* path) {
  3632   WIN32_FIND_DATA fd;
  3633   HANDLE f = FindFirstFile(path, &fd);
  3634   if (f == INVALID_HANDLE_VALUE) {
  3635     return true;
  3637   FindClose(f);
  3638   return false;
  3641 // create binary file, rewriting existing file if required
  3642 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3643   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3644   if (!rewrite_existing) {
  3645     oflags |= _O_EXCL;
  3647   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  3650 // return current position of file pointer
  3651 jlong os::current_file_offset(int fd) {
  3652   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  3655 // move file pointer to the specified offset
  3656 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3657   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  3661 // Map a block of memory.
  3662 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  3663                      char *addr, size_t bytes, bool read_only,
  3664                      bool allow_exec) {
  3665   HANDLE hFile;
  3666   char* base;
  3668   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  3669                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  3670   if (hFile == NULL) {
  3671     if (PrintMiscellaneous && Verbose) {
  3672       DWORD err = GetLastError();
  3673       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  3675     return NULL;
  3678   if (allow_exec) {
  3679     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  3680     // unless it comes from a PE image (which the shared archive is not.)
  3681     // Even VirtualProtect refuses to give execute access to mapped memory
  3682     // that was not previously executable.
  3683     //
  3684     // Instead, stick the executable region in anonymous memory.  Yuck.
  3685     // Penalty is that ~4 pages will not be shareable - in the future
  3686     // we might consider DLLizing the shared archive with a proper PE
  3687     // header so that mapping executable + sharing is possible.
  3689     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  3690                                 PAGE_READWRITE);
  3691     if (base == NULL) {
  3692       if (PrintMiscellaneous && Verbose) {
  3693         DWORD err = GetLastError();
  3694         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  3696       CloseHandle(hFile);
  3697       return NULL;
  3700     DWORD bytes_read;
  3701     OVERLAPPED overlapped;
  3702     overlapped.Offset = (DWORD)file_offset;
  3703     overlapped.OffsetHigh = 0;
  3704     overlapped.hEvent = NULL;
  3705     // ReadFile guarantees that if the return value is true, the requested
  3706     // number of bytes were read before returning.
  3707     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  3708     if (!res) {
  3709       if (PrintMiscellaneous && Verbose) {
  3710         DWORD err = GetLastError();
  3711         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  3713       release_memory(base, bytes);
  3714       CloseHandle(hFile);
  3715       return NULL;
  3717   } else {
  3718     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  3719                                     NULL /*file_name*/);
  3720     if (hMap == NULL) {
  3721       if (PrintMiscellaneous && Verbose) {
  3722         DWORD err = GetLastError();
  3723         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  3725       CloseHandle(hFile);
  3726       return NULL;
  3729     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  3730     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  3731                                   (DWORD)bytes, addr);
  3732     if (base == NULL) {
  3733       if (PrintMiscellaneous && Verbose) {
  3734         DWORD err = GetLastError();
  3735         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  3737       CloseHandle(hMap);
  3738       CloseHandle(hFile);
  3739       return NULL;
  3742     if (CloseHandle(hMap) == 0) {
  3743       if (PrintMiscellaneous && Verbose) {
  3744         DWORD err = GetLastError();
  3745         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  3747       CloseHandle(hFile);
  3748       return base;
  3752   if (allow_exec) {
  3753     DWORD old_protect;
  3754     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  3755     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  3757     if (!res) {
  3758       if (PrintMiscellaneous && Verbose) {
  3759         DWORD err = GetLastError();
  3760         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  3762       // Don't consider this a hard error, on IA32 even if the
  3763       // VirtualProtect fails, we should still be able to execute
  3764       CloseHandle(hFile);
  3765       return base;
  3769   if (CloseHandle(hFile) == 0) {
  3770     if (PrintMiscellaneous && Verbose) {
  3771       DWORD err = GetLastError();
  3772       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  3774     return base;
  3777   return base;
  3781 // Remap a block of memory.
  3782 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  3783                        char *addr, size_t bytes, bool read_only,
  3784                        bool allow_exec) {
  3785   // This OS does not allow existing memory maps to be remapped so we
  3786   // have to unmap the memory before we remap it.
  3787   if (!os::unmap_memory(addr, bytes)) {
  3788     return NULL;
  3791   // There is a very small theoretical window between the unmap_memory()
  3792   // call above and the map_memory() call below where a thread in native
  3793   // code may be able to access an address that is no longer mapped.
  3795   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  3796                         allow_exec);
  3800 // Unmap a block of memory.
  3801 // Returns true=success, otherwise false.
  3803 bool os::unmap_memory(char* addr, size_t bytes) {
  3804   BOOL result = UnmapViewOfFile(addr);
  3805   if (result == 0) {
  3806     if (PrintMiscellaneous && Verbose) {
  3807       DWORD err = GetLastError();
  3808       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  3810     return false;
  3812   return true;
  3815 void os::pause() {
  3816   char filename[MAX_PATH];
  3817   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  3818     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  3819   } else {
  3820     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  3823   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  3824   if (fd != -1) {
  3825     struct stat buf;
  3826     close(fd);
  3827     while (::stat(filename, &buf) == 0) {
  3828       Sleep(100);
  3830   } else {
  3831     jio_fprintf(stderr,
  3832       "Could not open pause file '%s', continuing immediately.\n", filename);
  3836 // An Event wraps a win32 "CreateEvent" kernel handle.
  3837 //
  3838 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  3839 //
  3840 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  3841 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  3842 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  3843 //     In addition, an unpark() operation might fetch the handle field, but the
  3844 //     event could recycle between the fetch and the SetEvent() operation.
  3845 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  3846 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  3847 //     on an stale but recycled handle would be harmless, but in practice this might
  3848 //     confuse other non-Sun code, so it's not a viable approach.
  3849 //
  3850 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  3851 //     with the Event.  The event handle is never closed.  This could be construed
  3852 //     as handle leakage, but only up to the maximum # of threads that have been extant
  3853 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  3854 //     permit a process to have hundreds of thousands of open handles.
  3855 //
  3856 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  3857 //     and release unused handles.
  3858 //
  3859 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  3860 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  3861 //
  3862 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  3863 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  3864 //
  3865 // We use (2).
  3866 //
  3867 // TODO-FIXME:
  3868 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  3869 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  3870 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  3871 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  3872 //     into a single win32 CreateEvent() handle.
  3873 //
  3874 // _Event transitions in park()
  3875 //   -1 => -1 : illegal
  3876 //    1 =>  0 : pass - return immediately
  3877 //    0 => -1 : block
  3878 //
  3879 // _Event serves as a restricted-range semaphore :
  3880 //    -1 : thread is blocked
  3881 //     0 : neutral  - thread is running or ready
  3882 //     1 : signaled - thread is running or ready
  3883 //
  3884 // Another possible encoding of _Event would be
  3885 // with explicit "PARKED" and "SIGNALED" bits.
  3887 int os::PlatformEvent::park (jlong Millis) {
  3888     guarantee (_ParkHandle != NULL , "Invariant") ;
  3889     guarantee (Millis > 0          , "Invariant") ;
  3890     int v ;
  3892     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  3893     // the initial park() operation.
  3895     for (;;) {
  3896         v = _Event ;
  3897         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3899     guarantee ((v == 0) || (v == 1), "invariant") ;
  3900     if (v != 0) return OS_OK ;
  3902     // Do this the hard way by blocking ...
  3903     // TODO: consider a brief spin here, gated on the success of recent
  3904     // spin attempts by this thread.
  3905     //
  3906     // We decompose long timeouts into series of shorter timed waits.
  3907     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  3908     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  3909     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  3910     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  3911     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  3912     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  3913     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  3914     // for the already waited time.  This policy does not admit any new outcomes.
  3915     // In the future, however, we might want to track the accumulated wait time and
  3916     // adjust Millis accordingly if we encounter a spurious wakeup.
  3918     const int MAXTIMEOUT = 0x10000000 ;
  3919     DWORD rv = WAIT_TIMEOUT ;
  3920     while (_Event < 0 && Millis > 0) {
  3921        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  3922        if (Millis > MAXTIMEOUT) {
  3923           prd = MAXTIMEOUT ;
  3925        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  3926        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  3927        if (rv == WAIT_TIMEOUT) {
  3928            Millis -= prd ;
  3931     v = _Event ;
  3932     _Event = 0 ;
  3933     OrderAccess::fence() ;
  3934     // If we encounter a nearly simultanous timeout expiry and unpark()
  3935     // we return OS_OK indicating we awoke via unpark().
  3936     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  3937     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  3940 void os::PlatformEvent::park () {
  3941     guarantee (_ParkHandle != NULL, "Invariant") ;
  3942     // Invariant: Only the thread associated with the Event/PlatformEvent
  3943     // may call park().
  3944     int v ;
  3945     for (;;) {
  3946         v = _Event ;
  3947         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3949     guarantee ((v == 0) || (v == 1), "invariant") ;
  3950     if (v != 0) return ;
  3952     // Do this the hard way by blocking ...
  3953     // TODO: consider a brief spin here, gated on the success of recent
  3954     // spin attempts by this thread.
  3955     while (_Event < 0) {
  3956        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  3957        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  3960     // Usually we'll find _Event == 0 at this point, but as
  3961     // an optional optimization we clear it, just in case can
  3962     // multiple unpark() operations drove _Event up to 1.
  3963     _Event = 0 ;
  3964     OrderAccess::fence() ;
  3965     guarantee (_Event >= 0, "invariant") ;
  3968 void os::PlatformEvent::unpark() {
  3969   guarantee (_ParkHandle != NULL, "Invariant") ;
  3970   int v ;
  3971   for (;;) {
  3972       v = _Event ;      // Increment _Event if it's < 1.
  3973       if (v > 0) {
  3974          // If it's already signaled just return.
  3975          // The LD of _Event could have reordered or be satisfied
  3976          // by a read-aside from this processor's write buffer.
  3977          // To avoid problems execute a barrier and then
  3978          // ratify the value.  A degenerate CAS() would also work.
  3979          // Viz., CAS (v+0, &_Event, v) == v).
  3980          OrderAccess::fence() ;
  3981          if (_Event == v) return ;
  3982          continue ;
  3984       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  3986   if (v < 0) {
  3987      ::SetEvent (_ParkHandle) ;
  3992 // JSR166
  3993 // -------------------------------------------------------
  3995 /*
  3996  * The Windows implementation of Park is very straightforward: Basic
  3997  * operations on Win32 Events turn out to have the right semantics to
  3998  * use them directly. We opportunistically resuse the event inherited
  3999  * from Monitor.
  4000  */
  4003 void Parker::park(bool isAbsolute, jlong time) {
  4004   guarantee (_ParkEvent != NULL, "invariant") ;
  4005   // First, demultiplex/decode time arguments
  4006   if (time < 0) { // don't wait
  4007     return;
  4009   else if (time == 0 && !isAbsolute) {
  4010     time = INFINITE;
  4012   else if  (isAbsolute) {
  4013     time -= os::javaTimeMillis(); // convert to relative time
  4014     if (time <= 0) // already elapsed
  4015       return;
  4017   else { // relative
  4018     time /= 1000000; // Must coarsen from nanos to millis
  4019     if (time == 0)   // Wait for the minimal time unit if zero
  4020       time = 1;
  4023   JavaThread* thread = (JavaThread*)(Thread::current());
  4024   assert(thread->is_Java_thread(), "Must be JavaThread");
  4025   JavaThread *jt = (JavaThread *)thread;
  4027   // Don't wait if interrupted or already triggered
  4028   if (Thread::is_interrupted(thread, false) ||
  4029     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4030     ResetEvent(_ParkEvent);
  4031     return;
  4033   else {
  4034     ThreadBlockInVM tbivm(jt);
  4035     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4036     jt->set_suspend_equivalent();
  4038     WaitForSingleObject(_ParkEvent,  time);
  4039     ResetEvent(_ParkEvent);
  4041     // If externally suspended while waiting, re-suspend
  4042     if (jt->handle_special_suspend_equivalent_condition()) {
  4043       jt->java_suspend_self();
  4048 void Parker::unpark() {
  4049   guarantee (_ParkEvent != NULL, "invariant") ;
  4050   SetEvent(_ParkEvent);
  4053 // Run the specified command in a separate process. Return its exit value,
  4054 // or -1 on failure (e.g. can't create a new process).
  4055 int os::fork_and_exec(char* cmd) {
  4056   STARTUPINFO si;
  4057   PROCESS_INFORMATION pi;
  4059   memset(&si, 0, sizeof(si));
  4060   si.cb = sizeof(si);
  4061   memset(&pi, 0, sizeof(pi));
  4062   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4063                             cmd,    // command line
  4064                             NULL,   // process security attribute
  4065                             NULL,   // thread security attribute
  4066                             TRUE,   // inherits system handles
  4067                             0,      // no creation flags
  4068                             NULL,   // use parent's environment block
  4069                             NULL,   // use parent's starting directory
  4070                             &si,    // (in) startup information
  4071                             &pi);   // (out) process information
  4073   if (rslt) {
  4074     // Wait until child process exits.
  4075     WaitForSingleObject(pi.hProcess, INFINITE);
  4077     DWORD exit_code;
  4078     GetExitCodeProcess(pi.hProcess, &exit_code);
  4080     // Close process and thread handles.
  4081     CloseHandle(pi.hProcess);
  4082     CloseHandle(pi.hThread);
  4084     return (int)exit_code;
  4085   } else {
  4086     return -1;
  4090 //--------------------------------------------------------------------------------------------------
  4091 // Non-product code
  4093 static int mallocDebugIntervalCounter = 0;
  4094 static int mallocDebugCounter = 0;
  4095 bool os::check_heap(bool force) {
  4096   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4097   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4098     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4099     // wrong; at these points, eax contains the address of the offending block (I think).
  4100     // To get to the exlicit error message(s) below, just continue twice.
  4101     HANDLE heap = GetProcessHeap();
  4102     { HeapLock(heap);
  4103       PROCESS_HEAP_ENTRY phe;
  4104       phe.lpData = NULL;
  4105       while (HeapWalk(heap, &phe) != 0) {
  4106         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4107             !HeapValidate(heap, 0, phe.lpData)) {
  4108           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4109           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4110           fatal("corrupted C heap");
  4113       int err = GetLastError();
  4114       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4115         fatal(err_msg("heap walk aborted with error %d", err));
  4117       HeapUnlock(heap);
  4119     mallocDebugIntervalCounter = 0;
  4121   return true;
  4125 bool os::find(address addr, outputStream* st) {
  4126   // Nothing yet
  4127   return false;
  4130 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4131   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4133   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4134     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4135     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4136     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4138     if (os::is_memory_serialize_page(thread, addr))
  4139       return EXCEPTION_CONTINUE_EXECUTION;
  4142   return EXCEPTION_CONTINUE_SEARCH;
  4145 static int getLastErrorString(char *buf, size_t len)
  4147     long errval;
  4149     if ((errval = GetLastError()) != 0)
  4151       /* DOS error */
  4152       size_t n = (size_t)FormatMessage(
  4153             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  4154             NULL,
  4155             errval,
  4156             0,
  4157             buf,
  4158             (DWORD)len,
  4159             NULL);
  4160       if (n > 3) {
  4161         /* Drop final '.', CR, LF */
  4162         if (buf[n - 1] == '\n') n--;
  4163         if (buf[n - 1] == '\r') n--;
  4164         if (buf[n - 1] == '.') n--;
  4165         buf[n] = '\0';
  4167       return (int)n;
  4170     if (errno != 0)
  4172       /* C runtime error that has no corresponding DOS error code */
  4173       const char *s = strerror(errno);
  4174       size_t n = strlen(s);
  4175       if (n >= len) n = len - 1;
  4176       strncpy(buf, s, n);
  4177       buf[n] = '\0';
  4178       return (int)n;
  4180     return 0;
  4184 // We don't build a headless jre for Windows
  4185 bool os::is_headless_jre() { return false; }

mercurial