src/share/vm/opto/escape.cpp

Tue, 02 Dec 2014 12:24:31 -0800

author
kvn
date
Tue, 02 Dec 2014 12:24:31 -0800
changeset 7402
f913964f3fde
parent 7385
9e69e8d1c900
child 7535
7ae4e26cb1e0
child 7575
f46bff88dc9f
permissions
-rw-r--r--

8066199: C2 escape analysis prevents VM from exiting quickly
Summary: Check for safepoint and block during EA Connection graph construction.
Reviewed-by: roland, vlivanov, shade

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _in_worklist(C->comp_arena()),
    41   _next_pidx(0),
    42   _collecting(true),
    43   _verify(false),
    44   _compile(C),
    45   _igvn(igvn),
    46   _node_map(C->comp_arena()) {
    47   // Add unknown java object.
    48   add_java_object(C->top(), PointsToNode::GlobalEscape);
    49   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    50   // Add ConP(#NULL) and ConN(#NULL) nodes.
    51   Node* oop_null = igvn->zerocon(T_OBJECT);
    52   assert(oop_null->_idx < nodes_size(), "should be created already");
    53   add_java_object(oop_null, PointsToNode::NoEscape);
    54   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    55   if (UseCompressedOops) {
    56     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    57     assert(noop_null->_idx < nodes_size(), "should be created already");
    58     map_ideal_node(noop_null, null_obj);
    59   }
    60   _pcmp_neq = NULL; // Should be initialized
    61   _pcmp_eq  = NULL;
    62 }
    64 bool ConnectionGraph::has_candidates(Compile *C) {
    65   // EA brings benefits only when the code has allocations and/or locks which
    66   // are represented by ideal Macro nodes.
    67   int cnt = C->macro_count();
    68   for (int i = 0; i < cnt; i++) {
    69     Node *n = C->macro_node(i);
    70     if (n->is_Allocate())
    71       return true;
    72     if (n->is_Lock()) {
    73       Node* obj = n->as_Lock()->obj_node()->uncast();
    74       if (!(obj->is_Parm() || obj->is_Con()))
    75         return true;
    76     }
    77     if (n->is_CallStaticJava() &&
    78         n->as_CallStaticJava()->is_boxing_method()) {
    79       return true;
    80     }
    81   }
    82   return false;
    83 }
    85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    86   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    87   ResourceMark rm;
    89   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    90   // to create space for them in ConnectionGraph::_nodes[].
    91   Node* oop_null = igvn->zerocon(T_OBJECT);
    92   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    93   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    94   // Perform escape analysis
    95   if (congraph->compute_escape()) {
    96     // There are non escaping objects.
    97     C->set_congraph(congraph);
    98   }
    99   // Cleanup.
   100   if (oop_null->outcnt() == 0)
   101     igvn->hash_delete(oop_null);
   102   if (noop_null->outcnt() == 0)
   103     igvn->hash_delete(noop_null);
   104 }
   106 bool ConnectionGraph::compute_escape() {
   107   Compile* C = _compile;
   108   PhaseGVN* igvn = _igvn;
   110   // Worklists used by EA.
   111   Unique_Node_List delayed_worklist;
   112   GrowableArray<Node*> alloc_worklist;
   113   GrowableArray<Node*> ptr_cmp_worklist;
   114   GrowableArray<Node*> storestore_worklist;
   115   GrowableArray<PointsToNode*>   ptnodes_worklist;
   116   GrowableArray<JavaObjectNode*> java_objects_worklist;
   117   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   118   GrowableArray<FieldNode*>      oop_fields_worklist;
   119   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   121   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   123   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   124   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
   125   // Initialize worklist
   126   if (C->root() != NULL) {
   127     ideal_nodes.push(C->root());
   128   }
   129   // Processed ideal nodes are unique on ideal_nodes list
   130   // but several ideal nodes are mapped to the phantom_obj.
   131   // To avoid duplicated entries on the following worklists
   132   // add the phantom_obj only once to them.
   133   ptnodes_worklist.append(phantom_obj);
   134   java_objects_worklist.append(phantom_obj);
   135   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   136     Node* n = ideal_nodes.at(next);
   137     // Create PointsTo nodes and add them to Connection Graph. Called
   138     // only once per ideal node since ideal_nodes is Unique_Node list.
   139     add_node_to_connection_graph(n, &delayed_worklist);
   140     PointsToNode* ptn = ptnode_adr(n->_idx);
   141     if (ptn != NULL && ptn != phantom_obj) {
   142       ptnodes_worklist.append(ptn);
   143       if (ptn->is_JavaObject()) {
   144         java_objects_worklist.append(ptn->as_JavaObject());
   145         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   146             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   147           // Only allocations and java static calls results are interesting.
   148           non_escaped_worklist.append(ptn->as_JavaObject());
   149         }
   150       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   151         oop_fields_worklist.append(ptn->as_Field());
   152       }
   153     }
   154     if (n->is_MergeMem()) {
   155       // Collect all MergeMem nodes to add memory slices for
   156       // scalar replaceable objects in split_unique_types().
   157       _mergemem_worklist.append(n->as_MergeMem());
   158     } else if (OptimizePtrCompare && n->is_Cmp() &&
   159                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   160       // Collect compare pointers nodes.
   161       ptr_cmp_worklist.append(n);
   162     } else if (n->is_MemBarStoreStore()) {
   163       // Collect all MemBarStoreStore nodes so that depending on the
   164       // escape status of the associated Allocate node some of them
   165       // may be eliminated.
   166       storestore_worklist.append(n);
   167     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
   168                (n->req() > MemBarNode::Precedent)) {
   169       record_for_optimizer(n);
   170 #ifdef ASSERT
   171     } else if (n->is_AddP()) {
   172       // Collect address nodes for graph verification.
   173       addp_worklist.append(n);
   174 #endif
   175     }
   176     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   177       Node* m = n->fast_out(i);   // Get user
   178       ideal_nodes.push(m);
   179     }
   180   }
   181   if (non_escaped_worklist.length() == 0) {
   182     _collecting = false;
   183     return false; // Nothing to do.
   184   }
   185   // Add final simple edges to graph.
   186   while(delayed_worklist.size() > 0) {
   187     Node* n = delayed_worklist.pop();
   188     add_final_edges(n);
   189   }
   190   int ptnodes_length = ptnodes_worklist.length();
   192 #ifdef ASSERT
   193   if (VerifyConnectionGraph) {
   194     // Verify that no new simple edges could be created and all
   195     // local vars has edges.
   196     _verify = true;
   197     for (int next = 0; next < ptnodes_length; ++next) {
   198       PointsToNode* ptn = ptnodes_worklist.at(next);
   199       add_final_edges(ptn->ideal_node());
   200       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   201         ptn->dump();
   202         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   203       }
   204     }
   205     _verify = false;
   206   }
   207 #endif
   209   // 2. Finish Graph construction by propagating references to all
   210   //    java objects through graph.
   211   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   212                                  java_objects_worklist, oop_fields_worklist)) {
   213     // All objects escaped or hit time or iterations limits.
   214     _collecting = false;
   215     return false;
   216   }
   218   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   219   //    scalar replaceable allocations on alloc_worklist for processing
   220   //    in split_unique_types().
   221   int non_escaped_length = non_escaped_worklist.length();
   222   for (int next = 0; next < non_escaped_length; next++) {
   223     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   224     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
   225     Node* n = ptn->ideal_node();
   226     if (n->is_Allocate()) {
   227       n->as_Allocate()->_is_non_escaping = noescape;
   228     }
   229     if (n->is_CallStaticJava()) {
   230       n->as_CallStaticJava()->_is_non_escaping = noescape;
   231     }
   232     if (noescape && ptn->scalar_replaceable()) {
   233       adjust_scalar_replaceable_state(ptn);
   234       if (ptn->scalar_replaceable()) {
   235         alloc_worklist.append(ptn->ideal_node());
   236       }
   237     }
   238   }
   240 #ifdef ASSERT
   241   if (VerifyConnectionGraph) {
   242     // Verify that graph is complete - no new edges could be added or needed.
   243     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   244                             java_objects_worklist, addp_worklist);
   245   }
   246   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   247   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   248          null_obj->edge_count() == 0 &&
   249          !null_obj->arraycopy_src() &&
   250          !null_obj->arraycopy_dst(), "sanity");
   251 #endif
   253   _collecting = false;
   255   } // TracePhase t3("connectionGraph")
   257   // 4. Optimize ideal graph based on EA information.
   258   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   259   if (has_non_escaping_obj) {
   260     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   261   }
   263 #ifndef PRODUCT
   264   if (PrintEscapeAnalysis) {
   265     dump(ptnodes_worklist); // Dump ConnectionGraph
   266   }
   267 #endif
   269   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   270 #ifdef ASSERT
   271   if (VerifyConnectionGraph) {
   272     int alloc_length = alloc_worklist.length();
   273     for (int next = 0; next < alloc_length; ++next) {
   274       Node* n = alloc_worklist.at(next);
   275       PointsToNode* ptn = ptnode_adr(n->_idx);
   276       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   277     }
   278   }
   279 #endif
   281   // 5. Separate memory graph for scalar replaceable allcations.
   282   if (has_scalar_replaceable_candidates &&
   283       C->AliasLevel() >= 3 && EliminateAllocations) {
   284     // Now use the escape information to create unique types for
   285     // scalar replaceable objects.
   286     split_unique_types(alloc_worklist);
   287     if (C->failing())  return false;
   288     C->print_method(PHASE_AFTER_EA, 2);
   290 #ifdef ASSERT
   291   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   292     tty->print("=== No allocations eliminated for ");
   293     C->method()->print_short_name();
   294     if(!EliminateAllocations) {
   295       tty->print(" since EliminateAllocations is off ===");
   296     } else if(!has_scalar_replaceable_candidates) {
   297       tty->print(" since there are no scalar replaceable candidates ===");
   298     } else if(C->AliasLevel() < 3) {
   299       tty->print(" since AliasLevel < 3 ===");
   300     }
   301     tty->cr();
   302 #endif
   303   }
   304   return has_non_escaping_obj;
   305 }
   307 // Utility function for nodes that load an object
   308 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   309   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   310   // ThreadLocal has RawPtr type.
   311   const Type* t = _igvn->type(n);
   312   if (t->make_ptr() != NULL) {
   313     Node* adr = n->in(MemNode::Address);
   314 #ifdef ASSERT
   315     if (!adr->is_AddP()) {
   316       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   317     } else {
   318       assert((ptnode_adr(adr->_idx) == NULL ||
   319               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   320     }
   321 #endif
   322     add_local_var_and_edge(n, PointsToNode::NoEscape,
   323                            adr, delayed_worklist);
   324   }
   325 }
   327 // Populate Connection Graph with PointsTo nodes and create simple
   328 // connection graph edges.
   329 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   330   assert(!_verify, "this method sould not be called for verification");
   331   PhaseGVN* igvn = _igvn;
   332   uint n_idx = n->_idx;
   333   PointsToNode* n_ptn = ptnode_adr(n_idx);
   334   if (n_ptn != NULL)
   335     return; // No need to redefine PointsTo node during first iteration.
   337   if (n->is_Call()) {
   338     // Arguments to allocation and locking don't escape.
   339     if (n->is_AbstractLock()) {
   340       // Put Lock and Unlock nodes on IGVN worklist to process them during
   341       // first IGVN optimization when escape information is still available.
   342       record_for_optimizer(n);
   343     } else if (n->is_Allocate()) {
   344       add_call_node(n->as_Call());
   345       record_for_optimizer(n);
   346     } else {
   347       if (n->is_CallStaticJava()) {
   348         const char* name = n->as_CallStaticJava()->_name;
   349         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   350           return; // Skip uncommon traps
   351       }
   352       // Don't mark as processed since call's arguments have to be processed.
   353       delayed_worklist->push(n);
   354       // Check if a call returns an object.
   355       if ((n->as_Call()->returns_pointer() &&
   356            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
   357           (n->is_CallStaticJava() &&
   358            n->as_CallStaticJava()->is_boxing_method())) {
   359         add_call_node(n->as_Call());
   360       }
   361     }
   362     return;
   363   }
   364   // Put this check here to process call arguments since some call nodes
   365   // point to phantom_obj.
   366   if (n_ptn == phantom_obj || n_ptn == null_obj)
   367     return; // Skip predefined nodes.
   369   int opcode = n->Opcode();
   370   switch (opcode) {
   371     case Op_AddP: {
   372       Node* base = get_addp_base(n);
   373       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   374       // Field nodes are created for all field types. They are used in
   375       // adjust_scalar_replaceable_state() and split_unique_types().
   376       // Note, non-oop fields will have only base edges in Connection
   377       // Graph because such fields are not used for oop loads and stores.
   378       int offset = address_offset(n, igvn);
   379       add_field(n, PointsToNode::NoEscape, offset);
   380       if (ptn_base == NULL) {
   381         delayed_worklist->push(n); // Process it later.
   382       } else {
   383         n_ptn = ptnode_adr(n_idx);
   384         add_base(n_ptn->as_Field(), ptn_base);
   385       }
   386       break;
   387     }
   388     case Op_CastX2P: {
   389       map_ideal_node(n, phantom_obj);
   390       break;
   391     }
   392     case Op_CastPP:
   393     case Op_CheckCastPP:
   394     case Op_EncodeP:
   395     case Op_DecodeN:
   396     case Op_EncodePKlass:
   397     case Op_DecodeNKlass: {
   398       add_local_var_and_edge(n, PointsToNode::NoEscape,
   399                              n->in(1), delayed_worklist);
   400       break;
   401     }
   402     case Op_CMoveP: {
   403       add_local_var(n, PointsToNode::NoEscape);
   404       // Do not add edges during first iteration because some could be
   405       // not defined yet.
   406       delayed_worklist->push(n);
   407       break;
   408     }
   409     case Op_ConP:
   410     case Op_ConN:
   411     case Op_ConNKlass: {
   412       // assume all oop constants globally escape except for null
   413       PointsToNode::EscapeState es;
   414       const Type* t = igvn->type(n);
   415       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
   416         es = PointsToNode::NoEscape;
   417       } else {
   418         es = PointsToNode::GlobalEscape;
   419       }
   420       add_java_object(n, es);
   421       break;
   422     }
   423     case Op_CreateEx: {
   424       // assume that all exception objects globally escape
   425       map_ideal_node(n, phantom_obj);
   426       break;
   427     }
   428     case Op_LoadKlass:
   429     case Op_LoadNKlass: {
   430       // Unknown class is loaded
   431       map_ideal_node(n, phantom_obj);
   432       break;
   433     }
   434     case Op_LoadP:
   435     case Op_LoadN:
   436     case Op_LoadPLocked: {
   437       add_objload_to_connection_graph(n, delayed_worklist);
   438       break;
   439     }
   440     case Op_Parm: {
   441       map_ideal_node(n, phantom_obj);
   442       break;
   443     }
   444     case Op_PartialSubtypeCheck: {
   445       // Produces Null or notNull and is used in only in CmpP so
   446       // phantom_obj could be used.
   447       map_ideal_node(n, phantom_obj); // Result is unknown
   448       break;
   449     }
   450     case Op_Phi: {
   451       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   452       // ThreadLocal has RawPtr type.
   453       const Type* t = n->as_Phi()->type();
   454       if (t->make_ptr() != NULL) {
   455         add_local_var(n, PointsToNode::NoEscape);
   456         // Do not add edges during first iteration because some could be
   457         // not defined yet.
   458         delayed_worklist->push(n);
   459       }
   460       break;
   461     }
   462     case Op_Proj: {
   463       // we are only interested in the oop result projection from a call
   464       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   465           n->in(0)->as_Call()->returns_pointer()) {
   466         add_local_var_and_edge(n, PointsToNode::NoEscape,
   467                                n->in(0), delayed_worklist);
   468       }
   469       break;
   470     }
   471     case Op_Rethrow: // Exception object escapes
   472     case Op_Return: {
   473       if (n->req() > TypeFunc::Parms &&
   474           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   475         // Treat Return value as LocalVar with GlobalEscape escape state.
   476         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   477                                n->in(TypeFunc::Parms), delayed_worklist);
   478       }
   479       break;
   480     }
   481     case Op_GetAndSetP:
   482     case Op_GetAndSetN: {
   483       add_objload_to_connection_graph(n, delayed_worklist);
   484       // fallthrough
   485     }
   486     case Op_StoreP:
   487     case Op_StoreN:
   488     case Op_StoreNKlass:
   489     case Op_StorePConditional:
   490     case Op_CompareAndSwapP:
   491     case Op_CompareAndSwapN: {
   492       Node* adr = n->in(MemNode::Address);
   493       const Type *adr_type = igvn->type(adr);
   494       adr_type = adr_type->make_ptr();
   495       if (adr_type == NULL) {
   496         break; // skip dead nodes
   497       }
   498       if (adr_type->isa_oopptr() ||
   499           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   500                         (adr_type == TypeRawPtr::NOTNULL &&
   501                          adr->in(AddPNode::Address)->is_Proj() &&
   502                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   503         delayed_worklist->push(n); // Process it later.
   504 #ifdef ASSERT
   505         assert(adr->is_AddP(), "expecting an AddP");
   506         if (adr_type == TypeRawPtr::NOTNULL) {
   507           // Verify a raw address for a store captured by Initialize node.
   508           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   509           assert(offs != Type::OffsetBot, "offset must be a constant");
   510         }
   511 #endif
   512       } else {
   513         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   514         if (adr->is_BoxLock())
   515           break;
   516         // Stored value escapes in unsafe access.
   517         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   518           // Pointer stores in G1 barriers looks like unsafe access.
   519           // Ignore such stores to be able scalar replace non-escaping
   520           // allocations.
   521           if (UseG1GC && adr->is_AddP()) {
   522             Node* base = get_addp_base(adr);
   523             if (base->Opcode() == Op_LoadP &&
   524                 base->in(MemNode::Address)->is_AddP()) {
   525               adr = base->in(MemNode::Address);
   526               Node* tls = get_addp_base(adr);
   527               if (tls->Opcode() == Op_ThreadLocal) {
   528                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   529                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   530                                      PtrQueue::byte_offset_of_buf())) {
   531                   break; // G1 pre barier previous oop value store.
   532                 }
   533                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   534                                      PtrQueue::byte_offset_of_buf())) {
   535                   break; // G1 post barier card address store.
   536                 }
   537               }
   538             }
   539           }
   540           delayed_worklist->push(n); // Process unsafe access later.
   541           break;
   542         }
   543 #ifdef ASSERT
   544         n->dump(1);
   545         assert(false, "not unsafe or G1 barrier raw StoreP");
   546 #endif
   547       }
   548       break;
   549     }
   550     case Op_AryEq:
   551     case Op_StrComp:
   552     case Op_StrEquals:
   553     case Op_StrIndexOf:
   554     case Op_EncodeISOArray: {
   555       add_local_var(n, PointsToNode::ArgEscape);
   556       delayed_worklist->push(n); // Process it later.
   557       break;
   558     }
   559     case Op_ThreadLocal: {
   560       add_java_object(n, PointsToNode::ArgEscape);
   561       break;
   562     }
   563     default:
   564       ; // Do nothing for nodes not related to EA.
   565   }
   566   return;
   567 }
   569 #ifdef ASSERT
   570 #define ELSE_FAIL(name)                               \
   571       /* Should not be called for not pointer type. */  \
   572       n->dump(1);                                       \
   573       assert(false, name);                              \
   574       break;
   575 #else
   576 #define ELSE_FAIL(name) \
   577       break;
   578 #endif
   580 // Add final simple edges to graph.
   581 void ConnectionGraph::add_final_edges(Node *n) {
   582   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   583 #ifdef ASSERT
   584   if (_verify && n_ptn->is_JavaObject())
   585     return; // This method does not change graph for JavaObject.
   586 #endif
   588   if (n->is_Call()) {
   589     process_call_arguments(n->as_Call());
   590     return;
   591   }
   592   assert(n->is_Store() || n->is_LoadStore() ||
   593          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   594          "node should be registered already");
   595   int opcode = n->Opcode();
   596   switch (opcode) {
   597     case Op_AddP: {
   598       Node* base = get_addp_base(n);
   599       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   600       assert(ptn_base != NULL, "field's base should be registered");
   601       add_base(n_ptn->as_Field(), ptn_base);
   602       break;
   603     }
   604     case Op_CastPP:
   605     case Op_CheckCastPP:
   606     case Op_EncodeP:
   607     case Op_DecodeN:
   608     case Op_EncodePKlass:
   609     case Op_DecodeNKlass: {
   610       add_local_var_and_edge(n, PointsToNode::NoEscape,
   611                              n->in(1), NULL);
   612       break;
   613     }
   614     case Op_CMoveP: {
   615       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   616         Node* in = n->in(i);
   617         if (in == NULL)
   618           continue;  // ignore NULL
   619         Node* uncast_in = in->uncast();
   620         if (uncast_in->is_top() || uncast_in == n)
   621           continue;  // ignore top or inputs which go back this node
   622         PointsToNode* ptn = ptnode_adr(in->_idx);
   623         assert(ptn != NULL, "node should be registered");
   624         add_edge(n_ptn, ptn);
   625       }
   626       break;
   627     }
   628     case Op_LoadP:
   629     case Op_LoadN:
   630     case Op_LoadPLocked: {
   631       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   632       // ThreadLocal has RawPtr type.
   633       const Type* t = _igvn->type(n);
   634       if (t->make_ptr() != NULL) {
   635         Node* adr = n->in(MemNode::Address);
   636         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   637         break;
   638       }
   639       ELSE_FAIL("Op_LoadP");
   640     }
   641     case Op_Phi: {
   642       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   643       // ThreadLocal has RawPtr type.
   644       const Type* t = n->as_Phi()->type();
   645       if (t->make_ptr() != NULL) {
   646         for (uint i = 1; i < n->req(); i++) {
   647           Node* in = n->in(i);
   648           if (in == NULL)
   649             continue;  // ignore NULL
   650           Node* uncast_in = in->uncast();
   651           if (uncast_in->is_top() || uncast_in == n)
   652             continue;  // ignore top or inputs which go back this node
   653           PointsToNode* ptn = ptnode_adr(in->_idx);
   654           assert(ptn != NULL, "node should be registered");
   655           add_edge(n_ptn, ptn);
   656         }
   657         break;
   658       }
   659       ELSE_FAIL("Op_Phi");
   660     }
   661     case Op_Proj: {
   662       // we are only interested in the oop result projection from a call
   663       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   664           n->in(0)->as_Call()->returns_pointer()) {
   665         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   666         break;
   667       }
   668       ELSE_FAIL("Op_Proj");
   669     }
   670     case Op_Rethrow: // Exception object escapes
   671     case Op_Return: {
   672       if (n->req() > TypeFunc::Parms &&
   673           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   674         // Treat Return value as LocalVar with GlobalEscape escape state.
   675         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   676                                n->in(TypeFunc::Parms), NULL);
   677         break;
   678       }
   679       ELSE_FAIL("Op_Return");
   680     }
   681     case Op_StoreP:
   682     case Op_StoreN:
   683     case Op_StoreNKlass:
   684     case Op_StorePConditional:
   685     case Op_CompareAndSwapP:
   686     case Op_CompareAndSwapN:
   687     case Op_GetAndSetP:
   688     case Op_GetAndSetN: {
   689       Node* adr = n->in(MemNode::Address);
   690       const Type *adr_type = _igvn->type(adr);
   691       adr_type = adr_type->make_ptr();
   692 #ifdef ASSERT
   693       if (adr_type == NULL) {
   694         n->dump(1);
   695         assert(adr_type != NULL, "dead node should not be on list");
   696         break;
   697       }
   698 #endif
   699       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   700         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   701       }
   702       if (adr_type->isa_oopptr() ||
   703           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   704                         (adr_type == TypeRawPtr::NOTNULL &&
   705                          adr->in(AddPNode::Address)->is_Proj() &&
   706                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   707         // Point Address to Value
   708         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   709         assert(adr_ptn != NULL &&
   710                adr_ptn->as_Field()->is_oop(), "node should be registered");
   711         Node *val = n->in(MemNode::ValueIn);
   712         PointsToNode* ptn = ptnode_adr(val->_idx);
   713         assert(ptn != NULL, "node should be registered");
   714         add_edge(adr_ptn, ptn);
   715         break;
   716       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   717         // Stored value escapes in unsafe access.
   718         Node *val = n->in(MemNode::ValueIn);
   719         PointsToNode* ptn = ptnode_adr(val->_idx);
   720         assert(ptn != NULL, "node should be registered");
   721         set_escape_state(ptn, PointsToNode::GlobalEscape);
   722         // Add edge to object for unsafe access with offset.
   723         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   724         assert(adr_ptn != NULL, "node should be registered");
   725         if (adr_ptn->is_Field()) {
   726           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   727           add_edge(adr_ptn, ptn);
   728         }
   729         break;
   730       }
   731       ELSE_FAIL("Op_StoreP");
   732     }
   733     case Op_AryEq:
   734     case Op_StrComp:
   735     case Op_StrEquals:
   736     case Op_StrIndexOf:
   737     case Op_EncodeISOArray: {
   738       // char[] arrays passed to string intrinsic do not escape but
   739       // they are not scalar replaceable. Adjust escape state for them.
   740       // Start from in(2) edge since in(1) is memory edge.
   741       for (uint i = 2; i < n->req(); i++) {
   742         Node* adr = n->in(i);
   743         const Type* at = _igvn->type(adr);
   744         if (!adr->is_top() && at->isa_ptr()) {
   745           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   746                  at->isa_ptr() != NULL, "expecting a pointer");
   747           if (adr->is_AddP()) {
   748             adr = get_addp_base(adr);
   749           }
   750           PointsToNode* ptn = ptnode_adr(adr->_idx);
   751           assert(ptn != NULL, "node should be registered");
   752           add_edge(n_ptn, ptn);
   753         }
   754       }
   755       break;
   756     }
   757     default: {
   758       // This method should be called only for EA specific nodes which may
   759       // miss some edges when they were created.
   760 #ifdef ASSERT
   761       n->dump(1);
   762 #endif
   763       guarantee(false, "unknown node");
   764     }
   765   }
   766   return;
   767 }
   769 void ConnectionGraph::add_call_node(CallNode* call) {
   770   assert(call->returns_pointer(), "only for call which returns pointer");
   771   uint call_idx = call->_idx;
   772   if (call->is_Allocate()) {
   773     Node* k = call->in(AllocateNode::KlassNode);
   774     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   775     assert(kt != NULL, "TypeKlassPtr  required.");
   776     ciKlass* cik = kt->klass();
   777     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   778     bool scalar_replaceable = true;
   779     if (call->is_AllocateArray()) {
   780       if (!cik->is_array_klass()) { // StressReflectiveCode
   781         es = PointsToNode::GlobalEscape;
   782       } else {
   783         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   784         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   785           // Not scalar replaceable if the length is not constant or too big.
   786           scalar_replaceable = false;
   787         }
   788       }
   789     } else {  // Allocate instance
   790       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   791           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
   792          !cik->is_instance_klass() || // StressReflectiveCode
   793           cik->as_instance_klass()->has_finalizer()) {
   794         es = PointsToNode::GlobalEscape;
   795       }
   796     }
   797     add_java_object(call, es);
   798     PointsToNode* ptn = ptnode_adr(call_idx);
   799     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   800       ptn->set_scalar_replaceable(false);
   801     }
   802   } else if (call->is_CallStaticJava()) {
   803     // Call nodes could be different types:
   804     //
   805     // 1. CallDynamicJavaNode (what happened during call is unknown):
   806     //
   807     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   808     //
   809     //    - all oop arguments are escaping globally;
   810     //
   811     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   812     //
   813     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   814     //
   815     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   816     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   817     //      during call is returned;
   818     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   819     //      which are returned and does not escape during call;
   820     //
   821     //    - oop arguments escaping status is defined by bytecode analysis;
   822     //
   823     // For a static call, we know exactly what method is being called.
   824     // Use bytecode estimator to record whether the call's return value escapes.
   825     ciMethod* meth = call->as_CallJava()->method();
   826     if (meth == NULL) {
   827       const char* name = call->as_CallStaticJava()->_name;
   828       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   829       // Returns a newly allocated unescaped object.
   830       add_java_object(call, PointsToNode::NoEscape);
   831       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   832     } else if (meth->is_boxing_method()) {
   833       // Returns boxing object
   834       PointsToNode::EscapeState es;
   835       vmIntrinsics::ID intr = meth->intrinsic_id();
   836       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
   837         // It does not escape if object is always allocated.
   838         es = PointsToNode::NoEscape;
   839       } else {
   840         // It escapes globally if object could be loaded from cache.
   841         es = PointsToNode::GlobalEscape;
   842       }
   843       add_java_object(call, es);
   844     } else {
   845       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   846       call_analyzer->copy_dependencies(_compile->dependencies());
   847       if (call_analyzer->is_return_allocated()) {
   848         // Returns a newly allocated unescaped object, simply
   849         // update dependency information.
   850         // Mark it as NoEscape so that objects referenced by
   851         // it's fields will be marked as NoEscape at least.
   852         add_java_object(call, PointsToNode::NoEscape);
   853         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   854       } else {
   855         // Determine whether any arguments are returned.
   856         const TypeTuple* d = call->tf()->domain();
   857         bool ret_arg = false;
   858         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   859           if (d->field_at(i)->isa_ptr() != NULL &&
   860               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   861             ret_arg = true;
   862             break;
   863           }
   864         }
   865         if (ret_arg) {
   866           add_local_var(call, PointsToNode::ArgEscape);
   867         } else {
   868           // Returns unknown object.
   869           map_ideal_node(call, phantom_obj);
   870         }
   871       }
   872     }
   873   } else {
   874     // An other type of call, assume the worst case:
   875     // returned value is unknown and globally escapes.
   876     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   877     map_ideal_node(call, phantom_obj);
   878   }
   879 }
   881 void ConnectionGraph::process_call_arguments(CallNode *call) {
   882     bool is_arraycopy = false;
   883     switch (call->Opcode()) {
   884 #ifdef ASSERT
   885     case Op_Allocate:
   886     case Op_AllocateArray:
   887     case Op_Lock:
   888     case Op_Unlock:
   889       assert(false, "should be done already");
   890       break;
   891 #endif
   892     case Op_CallLeafNoFP:
   893       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   894                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   895       // fall through
   896     case Op_CallLeaf: {
   897       // Stub calls, objects do not escape but they are not scale replaceable.
   898       // Adjust escape state for outgoing arguments.
   899       const TypeTuple * d = call->tf()->domain();
   900       bool src_has_oops = false;
   901       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   902         const Type* at = d->field_at(i);
   903         Node *arg = call->in(i);
   904         const Type *aat = _igvn->type(arg);
   905         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   906           continue;
   907         if (arg->is_AddP()) {
   908           //
   909           // The inline_native_clone() case when the arraycopy stub is called
   910           // after the allocation before Initialize and CheckCastPP nodes.
   911           // Or normal arraycopy for object arrays case.
   912           //
   913           // Set AddP's base (Allocate) as not scalar replaceable since
   914           // pointer to the base (with offset) is passed as argument.
   915           //
   916           arg = get_addp_base(arg);
   917         }
   918         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   919         assert(arg_ptn != NULL, "should be registered");
   920         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   921         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   922           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   923                  aat->isa_ptr() != NULL, "expecting an Ptr");
   924           bool arg_has_oops = aat->isa_oopptr() &&
   925                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   926                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   927           if (i == TypeFunc::Parms) {
   928             src_has_oops = arg_has_oops;
   929           }
   930           //
   931           // src or dst could be j.l.Object when other is basic type array:
   932           //
   933           //   arraycopy(char[],0,Object*,0,size);
   934           //   arraycopy(Object*,0,char[],0,size);
   935           //
   936           // Don't add edges in such cases.
   937           //
   938           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   939                                        arg_has_oops && (i > TypeFunc::Parms);
   940 #ifdef ASSERT
   941           if (!(is_arraycopy ||
   942                 (call->as_CallLeaf()->_name != NULL &&
   943                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   944                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   945                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
   946                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   947                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   948                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   949                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
   950                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
   951                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
   952                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
   953                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
   954                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
   955                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
   956                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0)
   957                   ))) {
   958             call->dump();
   959             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   960           }
   961 #endif
   962           // Always process arraycopy's destination object since
   963           // we need to add all possible edges to references in
   964           // source object.
   965           if (arg_esc >= PointsToNode::ArgEscape &&
   966               !arg_is_arraycopy_dest) {
   967             continue;
   968           }
   969           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   970           if (arg_is_arraycopy_dest) {
   971             Node* src = call->in(TypeFunc::Parms);
   972             if (src->is_AddP()) {
   973               src = get_addp_base(src);
   974             }
   975             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   976             assert(src_ptn != NULL, "should be registered");
   977             if (arg_ptn != src_ptn) {
   978               // Special arraycopy edge:
   979               // A destination object's field can't have the source object
   980               // as base since objects escape states are not related.
   981               // Only escape state of destination object's fields affects
   982               // escape state of fields in source object.
   983               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   984             }
   985           }
   986         }
   987       }
   988       break;
   989     }
   990     case Op_CallStaticJava: {
   991       // For a static call, we know exactly what method is being called.
   992       // Use bytecode estimator to record the call's escape affects
   993 #ifdef ASSERT
   994       const char* name = call->as_CallStaticJava()->_name;
   995       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
   996 #endif
   997       ciMethod* meth = call->as_CallJava()->method();
   998       if ((meth != NULL) && meth->is_boxing_method()) {
   999         break; // Boxing methods do not modify any oops.
  1001       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1002       // fall-through if not a Java method or no analyzer information
  1003       if (call_analyzer != NULL) {
  1004         PointsToNode* call_ptn = ptnode_adr(call->_idx);
  1005         const TypeTuple* d = call->tf()->domain();
  1006         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1007           const Type* at = d->field_at(i);
  1008           int k = i - TypeFunc::Parms;
  1009           Node* arg = call->in(i);
  1010           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
  1011           if (at->isa_ptr() != NULL &&
  1012               call_analyzer->is_arg_returned(k)) {
  1013             // The call returns arguments.
  1014             if (call_ptn != NULL) { // Is call's result used?
  1015               assert(call_ptn->is_LocalVar(), "node should be registered");
  1016               assert(arg_ptn != NULL, "node should be registered");
  1017               add_edge(call_ptn, arg_ptn);
  1020           if (at->isa_oopptr() != NULL &&
  1021               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
  1022             if (!call_analyzer->is_arg_stack(k)) {
  1023               // The argument global escapes
  1024               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1025             } else {
  1026               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
  1027               if (!call_analyzer->is_arg_local(k)) {
  1028                 // The argument itself doesn't escape, but any fields might
  1029                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1034         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
  1035           // The call returns arguments.
  1036           assert(call_ptn->edge_count() > 0, "sanity");
  1037           if (!call_analyzer->is_return_local()) {
  1038             // Returns also unknown object.
  1039             add_edge(call_ptn, phantom_obj);
  1042         break;
  1045     default: {
  1046       // Fall-through here if not a Java method or no analyzer information
  1047       // or some other type of call, assume the worst case: all arguments
  1048       // globally escape.
  1049       const TypeTuple* d = call->tf()->domain();
  1050       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1051         const Type* at = d->field_at(i);
  1052         if (at->isa_oopptr() != NULL) {
  1053           Node* arg = call->in(i);
  1054           if (arg->is_AddP()) {
  1055             arg = get_addp_base(arg);
  1057           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1058           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1066 // Finish Graph construction.
  1067 bool ConnectionGraph::complete_connection_graph(
  1068                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1069                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1070                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1071                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1072   // Normally only 1-3 passes needed to build Connection Graph depending
  1073   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1074   // Set limit to 20 to catch situation when something did go wrong and
  1075   // bailout Escape Analysis.
  1076   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
  1077 #define CG_BUILD_ITER_LIMIT 20
  1079   // Propagate GlobalEscape and ArgEscape escape states and check that
  1080   // we still have non-escaping objects. The method pushs on _worklist
  1081   // Field nodes which reference phantom_object.
  1082   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1083     return false; // Nothing to do.
  1085   // Now propagate references to all JavaObject nodes.
  1086   int java_objects_length = java_objects_worklist.length();
  1087   elapsedTimer time;
  1088   bool timeout = false;
  1089   int new_edges = 1;
  1090   int iterations = 0;
  1091   do {
  1092     while ((new_edges > 0) &&
  1093            (iterations++ < CG_BUILD_ITER_LIMIT)) {
  1094       double start_time = time.seconds();
  1095       time.start();
  1096       new_edges = 0;
  1097       // Propagate references to phantom_object for nodes pushed on _worklist
  1098       // by find_non_escaped_objects() and find_field_value().
  1099       new_edges += add_java_object_edges(phantom_obj, false);
  1100       for (int next = 0; next < java_objects_length; ++next) {
  1101         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1102         new_edges += add_java_object_edges(ptn, true);
  1104 #define SAMPLE_SIZE 4
  1105         if ((next % SAMPLE_SIZE) == 0) {
  1106           // Each 4 iterations calculate how much time it will take
  1107           // to complete graph construction.
  1108           time.stop();
  1109           // Poll for requests from shutdown mechanism to quiesce compiler
  1110           // because Connection graph construction may take long time.
  1111           CompileBroker::maybe_block();
  1112           double stop_time = time.seconds();
  1113           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
  1114           double time_until_end = time_per_iter * (double)(java_objects_length - next);
  1115           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
  1116             timeout = true;
  1117             break; // Timeout
  1119           start_time = stop_time;
  1120           time.start();
  1122 #undef SAMPLE_SIZE
  1125       if (timeout) break;
  1126       if (new_edges > 0) {
  1127         // Update escape states on each iteration if graph was updated.
  1128         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1129           return false; // Nothing to do.
  1132       time.stop();
  1133       if (time.seconds() >= EscapeAnalysisTimeout) {
  1134         timeout = true;
  1135         break;
  1138     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
  1139       time.start();
  1140       // Find fields which have unknown value.
  1141       int fields_length = oop_fields_worklist.length();
  1142       for (int next = 0; next < fields_length; next++) {
  1143         FieldNode* field = oop_fields_worklist.at(next);
  1144         if (field->edge_count() == 0) {
  1145           new_edges += find_field_value(field);
  1146           // This code may added new edges to phantom_object.
  1147           // Need an other cycle to propagate references to phantom_object.
  1150       time.stop();
  1151       if (time.seconds() >= EscapeAnalysisTimeout) {
  1152         timeout = true;
  1153         break;
  1155     } else {
  1156       new_edges = 0; // Bailout
  1158   } while (new_edges > 0);
  1160   // Bailout if passed limits.
  1161   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
  1162     Compile* C = _compile;
  1163     if (C->log() != NULL) {
  1164       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1165       C->log()->text("%s", timeout ? "time" : "iterations");
  1166       C->log()->end_elem(" limit'");
  1168     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1169            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1170     // Possible infinite build_connection_graph loop,
  1171     // bailout (no changes to ideal graph were made).
  1172     return false;
  1174 #ifdef ASSERT
  1175   if (Verbose && PrintEscapeAnalysis) {
  1176     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1177                   iterations, nodes_size(), ptnodes_worklist.length());
  1179 #endif
  1181 #undef CG_BUILD_ITER_LIMIT
  1183   // Find fields initialized by NULL for non-escaping Allocations.
  1184   int non_escaped_length = non_escaped_worklist.length();
  1185   for (int next = 0; next < non_escaped_length; next++) {
  1186     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1187     PointsToNode::EscapeState es = ptn->escape_state();
  1188     assert(es <= PointsToNode::ArgEscape, "sanity");
  1189     if (es == PointsToNode::NoEscape) {
  1190       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1191         // Adding references to NULL object does not change escape states
  1192         // since it does not escape. Also no fields are added to NULL object.
  1193         add_java_object_edges(null_obj, false);
  1196     Node* n = ptn->ideal_node();
  1197     if (n->is_Allocate()) {
  1198       // The object allocated by this Allocate node will never be
  1199       // seen by an other thread. Mark it so that when it is
  1200       // expanded no MemBarStoreStore is added.
  1201       InitializeNode* ini = n->as_Allocate()->initialization();
  1202       if (ini != NULL)
  1203         ini->set_does_not_escape();
  1206   return true; // Finished graph construction.
  1209 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1210 // and check that we still have non-escaping java objects.
  1211 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1212                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1213   GrowableArray<PointsToNode*> escape_worklist;
  1214   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1215   int ptnodes_length = ptnodes_worklist.length();
  1216   for (int next = 0; next < ptnodes_length; ++next) {
  1217     PointsToNode* ptn = ptnodes_worklist.at(next);
  1218     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1219         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1220       escape_worklist.push(ptn);
  1223   // Set escape states to referenced nodes (edges list).
  1224   while (escape_worklist.length() > 0) {
  1225     PointsToNode* ptn = escape_worklist.pop();
  1226     PointsToNode::EscapeState es  = ptn->escape_state();
  1227     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1228     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1229         es >= PointsToNode::ArgEscape) {
  1230       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1231       if (add_edge(ptn, phantom_obj)) {
  1232         // New edge was added
  1233         add_field_uses_to_worklist(ptn->as_Field());
  1236     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1237       PointsToNode* e = i.get();
  1238       if (e->is_Arraycopy()) {
  1239         assert(ptn->arraycopy_dst(), "sanity");
  1240         // Propagate only fields escape state through arraycopy edge.
  1241         if (e->fields_escape_state() < field_es) {
  1242           set_fields_escape_state(e, field_es);
  1243           escape_worklist.push(e);
  1245       } else if (es >= field_es) {
  1246         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1247         if (e->escape_state() < es) {
  1248           set_escape_state(e, es);
  1249           escape_worklist.push(e);
  1251       } else {
  1252         // Propagate field escape state.
  1253         bool es_changed = false;
  1254         if (e->fields_escape_state() < field_es) {
  1255           set_fields_escape_state(e, field_es);
  1256           es_changed = true;
  1258         if ((e->escape_state() < field_es) &&
  1259             e->is_Field() && ptn->is_JavaObject() &&
  1260             e->as_Field()->is_oop()) {
  1261           // Change escape state of referenced fileds.
  1262           set_escape_state(e, field_es);
  1263           es_changed = true;;
  1264         } else if (e->escape_state() < es) {
  1265           set_escape_state(e, es);
  1266           es_changed = true;;
  1268         if (es_changed) {
  1269           escape_worklist.push(e);
  1274   // Remove escaped objects from non_escaped list.
  1275   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1276     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1277     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1278       non_escaped_worklist.delete_at(next);
  1280     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1281       // Find fields in non-escaped allocations which have unknown value.
  1282       find_init_values(ptn, phantom_obj, NULL);
  1285   return (non_escaped_worklist.length() > 0);
  1288 // Add all references to JavaObject node by walking over all uses.
  1289 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1290   int new_edges = 0;
  1291   if (populate_worklist) {
  1292     // Populate _worklist by uses of jobj's uses.
  1293     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1294       PointsToNode* use = i.get();
  1295       if (use->is_Arraycopy())
  1296         continue;
  1297       add_uses_to_worklist(use);
  1298       if (use->is_Field() && use->as_Field()->is_oop()) {
  1299         // Put on worklist all field's uses (loads) and
  1300         // related field nodes (same base and offset).
  1301         add_field_uses_to_worklist(use->as_Field());
  1305   for (int l = 0; l < _worklist.length(); l++) {
  1306     PointsToNode* use = _worklist.at(l);
  1307     if (PointsToNode::is_base_use(use)) {
  1308       // Add reference from jobj to field and from field to jobj (field's base).
  1309       use = PointsToNode::get_use_node(use)->as_Field();
  1310       if (add_base(use->as_Field(), jobj)) {
  1311         new_edges++;
  1313       continue;
  1315     assert(!use->is_JavaObject(), "sanity");
  1316     if (use->is_Arraycopy()) {
  1317       if (jobj == null_obj) // NULL object does not have field edges
  1318         continue;
  1319       // Added edge from Arraycopy node to arraycopy's source java object
  1320       if (add_edge(use, jobj)) {
  1321         jobj->set_arraycopy_src();
  1322         new_edges++;
  1324       // and stop here.
  1325       continue;
  1327     if (!add_edge(use, jobj))
  1328       continue; // No new edge added, there was such edge already.
  1329     new_edges++;
  1330     if (use->is_LocalVar()) {
  1331       add_uses_to_worklist(use);
  1332       if (use->arraycopy_dst()) {
  1333         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1334           PointsToNode* e = i.get();
  1335           if (e->is_Arraycopy()) {
  1336             if (jobj == null_obj) // NULL object does not have field edges
  1337               continue;
  1338             // Add edge from arraycopy's destination java object to Arraycopy node.
  1339             if (add_edge(jobj, e)) {
  1340               new_edges++;
  1341               jobj->set_arraycopy_dst();
  1346     } else {
  1347       // Added new edge to stored in field values.
  1348       // Put on worklist all field's uses (loads) and
  1349       // related field nodes (same base and offset).
  1350       add_field_uses_to_worklist(use->as_Field());
  1353   _worklist.clear();
  1354   _in_worklist.Reset();
  1355   return new_edges;
  1358 // Put on worklist all related field nodes.
  1359 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1360   assert(field->is_oop(), "sanity");
  1361   int offset = field->offset();
  1362   add_uses_to_worklist(field);
  1363   // Loop over all bases of this field and push on worklist Field nodes
  1364   // with the same offset and base (since they may reference the same field).
  1365   for (BaseIterator i(field); i.has_next(); i.next()) {
  1366     PointsToNode* base = i.get();
  1367     add_fields_to_worklist(field, base);
  1368     // Check if the base was source object of arraycopy and go over arraycopy's
  1369     // destination objects since values stored to a field of source object are
  1370     // accessable by uses (loads) of fields of destination objects.
  1371     if (base->arraycopy_src()) {
  1372       for (UseIterator j(base); j.has_next(); j.next()) {
  1373         PointsToNode* arycp = j.get();
  1374         if (arycp->is_Arraycopy()) {
  1375           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1376             PointsToNode* abase = k.get();
  1377             if (abase->arraycopy_dst() && abase != base) {
  1378               // Look for the same arracopy reference.
  1379               add_fields_to_worklist(field, abase);
  1388 // Put on worklist all related field nodes.
  1389 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1390   int offset = field->offset();
  1391   if (base->is_LocalVar()) {
  1392     for (UseIterator j(base); j.has_next(); j.next()) {
  1393       PointsToNode* f = j.get();
  1394       if (PointsToNode::is_base_use(f)) { // Field
  1395         f = PointsToNode::get_use_node(f);
  1396         if (f == field || !f->as_Field()->is_oop())
  1397           continue;
  1398         int offs = f->as_Field()->offset();
  1399         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1400           add_to_worklist(f);
  1404   } else {
  1405     assert(base->is_JavaObject(), "sanity");
  1406     if (// Skip phantom_object since it is only used to indicate that
  1407         // this field's content globally escapes.
  1408         (base != phantom_obj) &&
  1409         // NULL object node does not have fields.
  1410         (base != null_obj)) {
  1411       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1412         PointsToNode* f = i.get();
  1413         // Skip arraycopy edge since store to destination object field
  1414         // does not update value in source object field.
  1415         if (f->is_Arraycopy()) {
  1416           assert(base->arraycopy_dst(), "sanity");
  1417           continue;
  1419         if (f == field || !f->as_Field()->is_oop())
  1420           continue;
  1421         int offs = f->as_Field()->offset();
  1422         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1423           add_to_worklist(f);
  1430 // Find fields which have unknown value.
  1431 int ConnectionGraph::find_field_value(FieldNode* field) {
  1432   // Escaped fields should have init value already.
  1433   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1434   int new_edges = 0;
  1435   for (BaseIterator i(field); i.has_next(); i.next()) {
  1436     PointsToNode* base = i.get();
  1437     if (base->is_JavaObject()) {
  1438       // Skip Allocate's fields which will be processed later.
  1439       if (base->ideal_node()->is_Allocate())
  1440         return 0;
  1441       assert(base == null_obj, "only NULL ptr base expected here");
  1444   if (add_edge(field, phantom_obj)) {
  1445     // New edge was added
  1446     new_edges++;
  1447     add_field_uses_to_worklist(field);
  1449   return new_edges;
  1452 // Find fields initializing values for allocations.
  1453 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1454   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1455   int new_edges = 0;
  1456   Node* alloc = pta->ideal_node();
  1457   if (init_val == phantom_obj) {
  1458     // Do nothing for Allocate nodes since its fields values are "known".
  1459     if (alloc->is_Allocate())
  1460       return 0;
  1461     assert(alloc->as_CallStaticJava(), "sanity");
  1462 #ifdef ASSERT
  1463     if (alloc->as_CallStaticJava()->method() == NULL) {
  1464       const char* name = alloc->as_CallStaticJava()->_name;
  1465       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1467 #endif
  1468     // Non-escaped allocation returned from Java or runtime call have
  1469     // unknown values in fields.
  1470     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1471       PointsToNode* field = i.get();
  1472       if (field->is_Field() && field->as_Field()->is_oop()) {
  1473         if (add_edge(field, phantom_obj)) {
  1474           // New edge was added
  1475           new_edges++;
  1476           add_field_uses_to_worklist(field->as_Field());
  1480     return new_edges;
  1482   assert(init_val == null_obj, "sanity");
  1483   // Do nothing for Call nodes since its fields values are unknown.
  1484   if (!alloc->is_Allocate())
  1485     return 0;
  1487   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1488   Compile* C = _compile;
  1489   bool visited_bottom_offset = false;
  1490   GrowableArray<int> offsets_worklist;
  1492   // Check if an oop field's initializing value is recorded and add
  1493   // a corresponding NULL if field's value if it is not recorded.
  1494   // Connection Graph does not record a default initialization by NULL
  1495   // captured by Initialize node.
  1496   //
  1497   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1498     PointsToNode* field = i.get(); // Field (AddP)
  1499     if (!field->is_Field() || !field->as_Field()->is_oop())
  1500       continue; // Not oop field
  1501     int offset = field->as_Field()->offset();
  1502     if (offset == Type::OffsetBot) {
  1503       if (!visited_bottom_offset) {
  1504         // OffsetBot is used to reference array's element,
  1505         // always add reference to NULL to all Field nodes since we don't
  1506         // known which element is referenced.
  1507         if (add_edge(field, null_obj)) {
  1508           // New edge was added
  1509           new_edges++;
  1510           add_field_uses_to_worklist(field->as_Field());
  1511           visited_bottom_offset = true;
  1514     } else {
  1515       // Check only oop fields.
  1516       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1517       if (adr_type->isa_rawptr()) {
  1518 #ifdef ASSERT
  1519         // Raw pointers are used for initializing stores so skip it
  1520         // since it should be recorded already
  1521         Node* base = get_addp_base(field->ideal_node());
  1522         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1523                (base->in(0) == alloc),"unexpected pointer type");
  1524 #endif
  1525         continue;
  1527       if (!offsets_worklist.contains(offset)) {
  1528         offsets_worklist.append(offset);
  1529         Node* value = NULL;
  1530         if (ini != NULL) {
  1531           // StoreP::memory_type() == T_ADDRESS
  1532           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1533           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1534           // Make sure initializing store has the same type as this AddP.
  1535           // This AddP may reference non existing field because it is on a
  1536           // dead branch of bimorphic call which is not eliminated yet.
  1537           if (store != NULL && store->is_Store() &&
  1538               store->as_Store()->memory_type() == ft) {
  1539             value = store->in(MemNode::ValueIn);
  1540 #ifdef ASSERT
  1541             if (VerifyConnectionGraph) {
  1542               // Verify that AddP already points to all objects the value points to.
  1543               PointsToNode* val = ptnode_adr(value->_idx);
  1544               assert((val != NULL), "should be processed already");
  1545               PointsToNode* missed_obj = NULL;
  1546               if (val->is_JavaObject()) {
  1547                 if (!field->points_to(val->as_JavaObject())) {
  1548                   missed_obj = val;
  1550               } else {
  1551                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1552                   tty->print_cr("----------init store has invalid value -----");
  1553                   store->dump();
  1554                   val->dump();
  1555                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1557                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1558                   PointsToNode* obj = j.get();
  1559                   if (obj->is_JavaObject()) {
  1560                     if (!field->points_to(obj->as_JavaObject())) {
  1561                       missed_obj = obj;
  1562                       break;
  1567               if (missed_obj != NULL) {
  1568                 tty->print_cr("----------field---------------------------------");
  1569                 field->dump();
  1570                 tty->print_cr("----------missed referernce to object-----------");
  1571                 missed_obj->dump();
  1572                 tty->print_cr("----------object referernced by init store -----");
  1573                 store->dump();
  1574                 val->dump();
  1575                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1578 #endif
  1579           } else {
  1580             // There could be initializing stores which follow allocation.
  1581             // For example, a volatile field store is not collected
  1582             // by Initialize node.
  1583             //
  1584             // Need to check for dependent loads to separate such stores from
  1585             // stores which follow loads. For now, add initial value NULL so
  1586             // that compare pointers optimization works correctly.
  1589         if (value == NULL) {
  1590           // A field's initializing value was not recorded. Add NULL.
  1591           if (add_edge(field, null_obj)) {
  1592             // New edge was added
  1593             new_edges++;
  1594             add_field_uses_to_worklist(field->as_Field());
  1600   return new_edges;
  1603 // Adjust scalar_replaceable state after Connection Graph is built.
  1604 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1605   // Search for non-escaping objects which are not scalar replaceable
  1606   // and mark them to propagate the state to referenced objects.
  1608   // 1. An object is not scalar replaceable if the field into which it is
  1609   // stored has unknown offset (stored into unknown element of an array).
  1610   //
  1611   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1612     PointsToNode* use = i.get();
  1613     assert(!use->is_Arraycopy(), "sanity");
  1614     if (use->is_Field()) {
  1615       FieldNode* field = use->as_Field();
  1616       assert(field->is_oop() && field->scalar_replaceable() &&
  1617              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1618       if (field->offset() == Type::OffsetBot) {
  1619         jobj->set_scalar_replaceable(false);
  1620         return;
  1622       // 2. An object is not scalar replaceable if the field into which it is
  1623       // stored has multiple bases one of which is null.
  1624       if (field->base_count() > 1) {
  1625         for (BaseIterator i(field); i.has_next(); i.next()) {
  1626           PointsToNode* base = i.get();
  1627           if (base == null_obj) {
  1628             jobj->set_scalar_replaceable(false);
  1629             return;
  1634     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1635     // 3. An object is not scalar replaceable if it is merged with other objects.
  1636     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1637       PointsToNode* ptn = j.get();
  1638       if (ptn->is_JavaObject() && ptn != jobj) {
  1639         // Mark all objects.
  1640         jobj->set_scalar_replaceable(false);
  1641          ptn->set_scalar_replaceable(false);
  1644     if (!jobj->scalar_replaceable()) {
  1645       return;
  1649   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1650     // Non-escaping object node should point only to field nodes.
  1651     FieldNode* field = j.get()->as_Field();
  1652     int offset = field->as_Field()->offset();
  1654     // 4. An object is not scalar replaceable if it has a field with unknown
  1655     // offset (array's element is accessed in loop).
  1656     if (offset == Type::OffsetBot) {
  1657       jobj->set_scalar_replaceable(false);
  1658       return;
  1660     // 5. Currently an object is not scalar replaceable if a LoadStore node
  1661     // access its field since the field value is unknown after it.
  1662     //
  1663     Node* n = field->ideal_node();
  1664     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1665       if (n->fast_out(i)->is_LoadStore()) {
  1666         jobj->set_scalar_replaceable(false);
  1667         return;
  1671     // 6. Or the address may point to more then one object. This may produce
  1672     // the false positive result (set not scalar replaceable)
  1673     // since the flow-insensitive escape analysis can't separate
  1674     // the case when stores overwrite the field's value from the case
  1675     // when stores happened on different control branches.
  1676     //
  1677     // Note: it will disable scalar replacement in some cases:
  1678     //
  1679     //    Point p[] = new Point[1];
  1680     //    p[0] = new Point(); // Will be not scalar replaced
  1681     //
  1682     // but it will save us from incorrect optimizations in next cases:
  1683     //
  1684     //    Point p[] = new Point[1];
  1685     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1686     //
  1687     if (field->base_count() > 1) {
  1688       for (BaseIterator i(field); i.has_next(); i.next()) {
  1689         PointsToNode* base = i.get();
  1690         // Don't take into account LocalVar nodes which
  1691         // may point to only one object which should be also
  1692         // this field's base by now.
  1693         if (base->is_JavaObject() && base != jobj) {
  1694           // Mark all bases.
  1695           jobj->set_scalar_replaceable(false);
  1696           base->set_scalar_replaceable(false);
  1703 #ifdef ASSERT
  1704 void ConnectionGraph::verify_connection_graph(
  1705                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1706                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1707                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1708                          GrowableArray<Node*>& addp_worklist) {
  1709   // Verify that graph is complete - no new edges could be added.
  1710   int java_objects_length = java_objects_worklist.length();
  1711   int non_escaped_length  = non_escaped_worklist.length();
  1712   int new_edges = 0;
  1713   for (int next = 0; next < java_objects_length; ++next) {
  1714     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1715     new_edges += add_java_object_edges(ptn, true);
  1717   assert(new_edges == 0, "graph was not complete");
  1718   // Verify that escape state is final.
  1719   int length = non_escaped_worklist.length();
  1720   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1721   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1722          (non_escaped_length == length) &&
  1723          (_worklist.length() == 0), "escape state was not final");
  1725   // Verify fields information.
  1726   int addp_length = addp_worklist.length();
  1727   for (int next = 0; next < addp_length; ++next ) {
  1728     Node* n = addp_worklist.at(next);
  1729     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1730     if (field->is_oop()) {
  1731       // Verify that field has all bases
  1732       Node* base = get_addp_base(n);
  1733       PointsToNode* ptn = ptnode_adr(base->_idx);
  1734       if (ptn->is_JavaObject()) {
  1735         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1736       } else {
  1737         assert(ptn->is_LocalVar(), "sanity");
  1738         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1739           PointsToNode* e = i.get();
  1740           if (e->is_JavaObject()) {
  1741             assert(field->has_base(e->as_JavaObject()), "sanity");
  1745       // Verify that all fields have initializing values.
  1746       if (field->edge_count() == 0) {
  1747         tty->print_cr("----------field does not have references----------");
  1748         field->dump();
  1749         for (BaseIterator i(field); i.has_next(); i.next()) {
  1750           PointsToNode* base = i.get();
  1751           tty->print_cr("----------field has next base---------------------");
  1752           base->dump();
  1753           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1754             tty->print_cr("----------base has fields-------------------------");
  1755             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1756               j.get()->dump();
  1758             tty->print_cr("----------base has references---------------------");
  1759             for (UseIterator j(base); j.has_next(); j.next()) {
  1760               j.get()->dump();
  1764         for (UseIterator i(field); i.has_next(); i.next()) {
  1765           i.get()->dump();
  1767         assert(field->edge_count() > 0, "sanity");
  1772 #endif
  1774 // Optimize ideal graph.
  1775 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1776                                            GrowableArray<Node*>& storestore_worklist) {
  1777   Compile* C = _compile;
  1778   PhaseIterGVN* igvn = _igvn;
  1779   if (EliminateLocks) {
  1780     // Mark locks before changing ideal graph.
  1781     int cnt = C->macro_count();
  1782     for( int i=0; i < cnt; i++ ) {
  1783       Node *n = C->macro_node(i);
  1784       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1785         AbstractLockNode* alock = n->as_AbstractLock();
  1786         if (!alock->is_non_esc_obj()) {
  1787           if (not_global_escape(alock->obj_node())) {
  1788             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1789             // The lock could be marked eliminated by lock coarsening
  1790             // code during first IGVN before EA. Replace coarsened flag
  1791             // to eliminate all associated locks/unlocks.
  1792             alock->set_non_esc_obj();
  1799   if (OptimizePtrCompare) {
  1800     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1801     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1802     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1803     // Optimize objects compare.
  1804     while (ptr_cmp_worklist.length() != 0) {
  1805       Node *n = ptr_cmp_worklist.pop();
  1806       Node *res = optimize_ptr_compare(n);
  1807       if (res != NULL) {
  1808 #ifndef PRODUCT
  1809         if (PrintOptimizePtrCompare) {
  1810           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1811           if (Verbose) {
  1812             n->dump(1);
  1815 #endif
  1816         igvn->replace_node(n, res);
  1819     // cleanup
  1820     if (_pcmp_neq->outcnt() == 0)
  1821       igvn->hash_delete(_pcmp_neq);
  1822     if (_pcmp_eq->outcnt()  == 0)
  1823       igvn->hash_delete(_pcmp_eq);
  1826   // For MemBarStoreStore nodes added in library_call.cpp, check
  1827   // escape status of associated AllocateNode and optimize out
  1828   // MemBarStoreStore node if the allocated object never escapes.
  1829   while (storestore_worklist.length() != 0) {
  1830     Node *n = storestore_worklist.pop();
  1831     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1832     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1833     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1834     if (not_global_escape(alloc)) {
  1835       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1836       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1837       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1838       igvn->register_new_node_with_optimizer(mb);
  1839       igvn->replace_node(storestore, mb);
  1844 // Optimize objects compare.
  1845 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1846   assert(OptimizePtrCompare, "sanity");
  1847   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1848   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1849   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1850   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1851   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1852   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1854   // Check simple cases first.
  1855   if (jobj1 != NULL) {
  1856     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1857       if (jobj1 == jobj2) {
  1858         // Comparing the same not escaping object.
  1859         return _pcmp_eq;
  1861       Node* obj = jobj1->ideal_node();
  1862       // Comparing not escaping allocation.
  1863       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1864           !ptn2->points_to(jobj1)) {
  1865         return _pcmp_neq; // This includes nullness check.
  1869   if (jobj2 != NULL) {
  1870     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1871       Node* obj = jobj2->ideal_node();
  1872       // Comparing not escaping allocation.
  1873       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1874           !ptn1->points_to(jobj2)) {
  1875         return _pcmp_neq; // This includes nullness check.
  1879   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1880       jobj2 != NULL && jobj2 != phantom_obj &&
  1881       jobj1->ideal_node()->is_Con() &&
  1882       jobj2->ideal_node()->is_Con()) {
  1883     // Klass or String constants compare. Need to be careful with
  1884     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1885     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
  1886     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
  1887     if (t1->make_ptr() == t2->make_ptr()) {
  1888       return _pcmp_eq;
  1889     } else {
  1890       return _pcmp_neq;
  1893   if (ptn1->meet(ptn2)) {
  1894     return NULL; // Sets are not disjoint
  1897   // Sets are disjoint.
  1898   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1899   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1900   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1901   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1902   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1903       set2_has_unknown_ptr && set1_has_null_ptr) {
  1904     // Check nullness of unknown object.
  1905     return NULL;
  1908   // Disjointness by itself is not sufficient since
  1909   // alias analysis is not complete for escaped objects.
  1910   // Disjoint sets are definitely unrelated only when
  1911   // at least one set has only not escaping allocations.
  1912   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1913     if (ptn1->non_escaping_allocation()) {
  1914       return _pcmp_neq;
  1917   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1918     if (ptn2->non_escaping_allocation()) {
  1919       return _pcmp_neq;
  1922   return NULL;
  1925 // Connection Graph constuction functions.
  1927 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1928   PointsToNode* ptadr = _nodes.at(n->_idx);
  1929   if (ptadr != NULL) {
  1930     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1931     return;
  1933   Compile* C = _compile;
  1934   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
  1935   _nodes.at_put(n->_idx, ptadr);
  1938 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1939   PointsToNode* ptadr = _nodes.at(n->_idx);
  1940   if (ptadr != NULL) {
  1941     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1942     return;
  1944   Compile* C = _compile;
  1945   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
  1946   _nodes.at_put(n->_idx, ptadr);
  1949 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1950   PointsToNode* ptadr = _nodes.at(n->_idx);
  1951   if (ptadr != NULL) {
  1952     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1953     return;
  1955   bool unsafe = false;
  1956   bool is_oop = is_oop_field(n, offset, &unsafe);
  1957   if (unsafe) {
  1958     es = PointsToNode::GlobalEscape;
  1960   Compile* C = _compile;
  1961   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
  1962   _nodes.at_put(n->_idx, field);
  1965 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1966                                     PointsToNode* src, PointsToNode* dst) {
  1967   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1968   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1969   PointsToNode* ptadr = _nodes.at(n->_idx);
  1970   if (ptadr != NULL) {
  1971     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1972     return;
  1974   Compile* C = _compile;
  1975   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
  1976   _nodes.at_put(n->_idx, ptadr);
  1977   // Add edge from arraycopy node to source object.
  1978   (void)add_edge(ptadr, src);
  1979   src->set_arraycopy_src();
  1980   // Add edge from destination object to arraycopy node.
  1981   (void)add_edge(dst, ptadr);
  1982   dst->set_arraycopy_dst();
  1985 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1986   const Type* adr_type = n->as_AddP()->bottom_type();
  1987   BasicType bt = T_INT;
  1988   if (offset == Type::OffsetBot) {
  1989     // Check only oop fields.
  1990     if (!adr_type->isa_aryptr() ||
  1991         (adr_type->isa_aryptr()->klass() == NULL) ||
  1992          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  1993       // OffsetBot is used to reference array's element. Ignore first AddP.
  1994       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  1995         bt = T_OBJECT;
  1998   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  1999     if (adr_type->isa_instptr()) {
  2000       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  2001       if (field != NULL) {
  2002         bt = field->layout_type();
  2003       } else {
  2004         // Check for unsafe oop field access
  2005         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2006           int opcode = n->fast_out(i)->Opcode();
  2007           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  2008               opcode == Op_StoreN || opcode == Op_LoadN) {
  2009             bt = T_OBJECT;
  2010             (*unsafe) = true;
  2011             break;
  2015     } else if (adr_type->isa_aryptr()) {
  2016       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2017         // Ignore array length load.
  2018       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  2019         // Ignore first AddP.
  2020       } else {
  2021         const Type* elemtype = adr_type->isa_aryptr()->elem();
  2022         bt = elemtype->array_element_basic_type();
  2024     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  2025       // Allocation initialization, ThreadLocal field access, unsafe access
  2026       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2027         int opcode = n->fast_out(i)->Opcode();
  2028         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  2029             opcode == Op_StoreN || opcode == Op_LoadN) {
  2030           bt = T_OBJECT;
  2031           break;
  2036   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  2039 // Returns unique pointed java object or NULL.
  2040 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  2041   assert(!_collecting, "should not call when contructed graph");
  2042   // If the node was created after the escape computation we can't answer.
  2043   uint idx = n->_idx;
  2044   if (idx >= nodes_size()) {
  2045     return NULL;
  2047   PointsToNode* ptn = ptnode_adr(idx);
  2048   if (ptn->is_JavaObject()) {
  2049     return ptn->as_JavaObject();
  2051   assert(ptn->is_LocalVar(), "sanity");
  2052   // Check all java objects it points to.
  2053   JavaObjectNode* jobj = NULL;
  2054   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2055     PointsToNode* e = i.get();
  2056     if (e->is_JavaObject()) {
  2057       if (jobj == NULL) {
  2058         jobj = e->as_JavaObject();
  2059       } else if (jobj != e) {
  2060         return NULL;
  2064   return jobj;
  2067 // Return true if this node points only to non-escaping allocations.
  2068 bool PointsToNode::non_escaping_allocation() {
  2069   if (is_JavaObject()) {
  2070     Node* n = ideal_node();
  2071     if (n->is_Allocate() || n->is_CallStaticJava()) {
  2072       return (escape_state() == PointsToNode::NoEscape);
  2073     } else {
  2074       return false;
  2077   assert(is_LocalVar(), "sanity");
  2078   // Check all java objects it points to.
  2079   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2080     PointsToNode* e = i.get();
  2081     if (e->is_JavaObject()) {
  2082       Node* n = e->ideal_node();
  2083       if ((e->escape_state() != PointsToNode::NoEscape) ||
  2084           !(n->is_Allocate() || n->is_CallStaticJava())) {
  2085         return false;
  2089   return true;
  2092 // Return true if we know the node does not escape globally.
  2093 bool ConnectionGraph::not_global_escape(Node *n) {
  2094   assert(!_collecting, "should not call during graph construction");
  2095   // If the node was created after the escape computation we can't answer.
  2096   uint idx = n->_idx;
  2097   if (idx >= nodes_size()) {
  2098     return false;
  2100   PointsToNode* ptn = ptnode_adr(idx);
  2101   PointsToNode::EscapeState es = ptn->escape_state();
  2102   // If we have already computed a value, return it.
  2103   if (es >= PointsToNode::GlobalEscape)
  2104     return false;
  2105   if (ptn->is_JavaObject()) {
  2106     return true; // (es < PointsToNode::GlobalEscape);
  2108   assert(ptn->is_LocalVar(), "sanity");
  2109   // Check all java objects it points to.
  2110   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2111     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2112       return false;
  2114   return true;
  2118 // Helper functions
  2120 // Return true if this node points to specified node or nodes it points to.
  2121 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2122   if (is_JavaObject()) {
  2123     return (this == ptn);
  2125   assert(is_LocalVar() || is_Field(), "sanity");
  2126   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2127     if (i.get() == ptn)
  2128       return true;
  2130   return false;
  2133 // Return true if one node points to an other.
  2134 bool PointsToNode::meet(PointsToNode* ptn) {
  2135   if (this == ptn) {
  2136     return true;
  2137   } else if (ptn->is_JavaObject()) {
  2138     return this->points_to(ptn->as_JavaObject());
  2139   } else if (this->is_JavaObject()) {
  2140     return ptn->points_to(this->as_JavaObject());
  2142   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2143   int ptn_count =  ptn->edge_count();
  2144   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2145     PointsToNode* this_e = i.get();
  2146     for (int j = 0; j < ptn_count; j++) {
  2147       if (this_e == ptn->edge(j))
  2148         return true;
  2151   return false;
  2154 #ifdef ASSERT
  2155 // Return true if bases point to this java object.
  2156 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2157   for (BaseIterator i(this); i.has_next(); i.next()) {
  2158     if (i.get() == jobj)
  2159       return true;
  2161   return false;
  2163 #endif
  2165 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2166   const Type *adr_type = phase->type(adr);
  2167   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2168       adr->in(AddPNode::Address)->is_Proj() &&
  2169       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2170     // We are computing a raw address for a store captured by an Initialize
  2171     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2172     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2173     assert(offs != Type::OffsetBot ||
  2174            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2175            "offset must be a constant or it is initialization of array");
  2176     return offs;
  2178   const TypePtr *t_ptr = adr_type->isa_ptr();
  2179   assert(t_ptr != NULL, "must be a pointer type");
  2180   return t_ptr->offset();
  2183 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2184   assert(addp->is_AddP(), "must be AddP");
  2185   //
  2186   // AddP cases for Base and Address inputs:
  2187   // case #1. Direct object's field reference:
  2188   //     Allocate
  2189   //       |
  2190   //     Proj #5 ( oop result )
  2191   //       |
  2192   //     CheckCastPP (cast to instance type)
  2193   //      | |
  2194   //     AddP  ( base == address )
  2195   //
  2196   // case #2. Indirect object's field reference:
  2197   //      Phi
  2198   //       |
  2199   //     CastPP (cast to instance type)
  2200   //      | |
  2201   //     AddP  ( base == address )
  2202   //
  2203   // case #3. Raw object's field reference for Initialize node:
  2204   //      Allocate
  2205   //        |
  2206   //      Proj #5 ( oop result )
  2207   //  top   |
  2208   //     \  |
  2209   //     AddP  ( base == top )
  2210   //
  2211   // case #4. Array's element reference:
  2212   //   {CheckCastPP | CastPP}
  2213   //     |  | |
  2214   //     |  AddP ( array's element offset )
  2215   //     |  |
  2216   //     AddP ( array's offset )
  2217   //
  2218   // case #5. Raw object's field reference for arraycopy stub call:
  2219   //          The inline_native_clone() case when the arraycopy stub is called
  2220   //          after the allocation before Initialize and CheckCastPP nodes.
  2221   //      Allocate
  2222   //        |
  2223   //      Proj #5 ( oop result )
  2224   //       | |
  2225   //       AddP  ( base == address )
  2226   //
  2227   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2228   //          Raw object's field reference:
  2229   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2230   //  top   |
  2231   //     \  |
  2232   //     AddP  ( base == top )
  2233   //
  2234   // case #7. Klass's field reference.
  2235   //      LoadKlass
  2236   //       | |
  2237   //       AddP  ( base == address )
  2238   //
  2239   // case #8. narrow Klass's field reference.
  2240   //      LoadNKlass
  2241   //       |
  2242   //      DecodeN
  2243   //       | |
  2244   //       AddP  ( base == address )
  2245   //
  2246   Node *base = addp->in(AddPNode::Base);
  2247   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2248     base = addp->in(AddPNode::Address);
  2249     while (base->is_AddP()) {
  2250       // Case #6 (unsafe access) may have several chained AddP nodes.
  2251       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2252       base = base->in(AddPNode::Address);
  2254     Node* uncast_base = base->uncast();
  2255     int opcode = uncast_base->Opcode();
  2256     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2257            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2258            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
  2259            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2261   return base;
  2264 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2265   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2266   Node* addp2 = addp->raw_out(0);
  2267   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2268       addp2->in(AddPNode::Base) == n &&
  2269       addp2->in(AddPNode::Address) == addp) {
  2270     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2271     //
  2272     // Find array's offset to push it on worklist first and
  2273     // as result process an array's element offset first (pushed second)
  2274     // to avoid CastPP for the array's offset.
  2275     // Otherwise the inserted CastPP (LocalVar) will point to what
  2276     // the AddP (Field) points to. Which would be wrong since
  2277     // the algorithm expects the CastPP has the same point as
  2278     // as AddP's base CheckCastPP (LocalVar).
  2279     //
  2280     //    ArrayAllocation
  2281     //     |
  2282     //    CheckCastPP
  2283     //     |
  2284     //    memProj (from ArrayAllocation CheckCastPP)
  2285     //     |  ||
  2286     //     |  ||   Int (element index)
  2287     //     |  ||    |   ConI (log(element size))
  2288     //     |  ||    |   /
  2289     //     |  ||   LShift
  2290     //     |  ||  /
  2291     //     |  AddP (array's element offset)
  2292     //     |  |
  2293     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2294     //     | / /
  2295     //     AddP (array's offset)
  2296     //      |
  2297     //     Load/Store (memory operation on array's element)
  2298     //
  2299     return addp2;
  2301   return NULL;
  2304 //
  2305 // Adjust the type and inputs of an AddP which computes the
  2306 // address of a field of an instance
  2307 //
  2308 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2309   PhaseGVN* igvn = _igvn;
  2310   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2311   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2312   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2313   if (t == NULL) {
  2314     // We are computing a raw address for a store captured by an Initialize
  2315     // compute an appropriate address type (cases #3 and #5).
  2316     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2317     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2318     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2319     assert(offs != Type::OffsetBot, "offset must be a constant");
  2320     t = base_t->add_offset(offs)->is_oopptr();
  2322   int inst_id =  base_t->instance_id();
  2323   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2324                              "old type must be non-instance or match new type");
  2326   // The type 't' could be subclass of 'base_t'.
  2327   // As result t->offset() could be large then base_t's size and it will
  2328   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2329   // constructor verifies correctness of the offset.
  2330   //
  2331   // It could happened on subclass's branch (from the type profiling
  2332   // inlining) which was not eliminated during parsing since the exactness
  2333   // of the allocation type was not propagated to the subclass type check.
  2334   //
  2335   // Or the type 't' could be not related to 'base_t' at all.
  2336   // It could happened when CHA type is different from MDO type on a dead path
  2337   // (for example, from instanceof check) which is not collapsed during parsing.
  2338   //
  2339   // Do nothing for such AddP node and don't process its users since
  2340   // this code branch will go away.
  2341   //
  2342   if (!t->is_known_instance() &&
  2343       !base_t->klass()->is_subtype_of(t->klass())) {
  2344      return false; // bail out
  2346   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2347   // Do NOT remove the next line: ensure a new alias index is allocated
  2348   // for the instance type. Note: C++ will not remove it since the call
  2349   // has side effect.
  2350   int alias_idx = _compile->get_alias_index(tinst);
  2351   igvn->set_type(addp, tinst);
  2352   // record the allocation in the node map
  2353   set_map(addp, get_map(base->_idx));
  2354   // Set addp's Base and Address to 'base'.
  2355   Node *abase = addp->in(AddPNode::Base);
  2356   Node *adr   = addp->in(AddPNode::Address);
  2357   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2358       adr->in(0)->_idx == (uint)inst_id) {
  2359     // Skip AddP cases #3 and #5.
  2360   } else {
  2361     assert(!abase->is_top(), "sanity"); // AddP case #3
  2362     if (abase != base) {
  2363       igvn->hash_delete(addp);
  2364       addp->set_req(AddPNode::Base, base);
  2365       if (abase == adr) {
  2366         addp->set_req(AddPNode::Address, base);
  2367       } else {
  2368         // AddP case #4 (adr is array's element offset AddP node)
  2369 #ifdef ASSERT
  2370         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2371         assert(adr->is_AddP() && atype != NULL &&
  2372                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2373 #endif
  2375       igvn->hash_insert(addp);
  2378   // Put on IGVN worklist since at least addp's type was changed above.
  2379   record_for_optimizer(addp);
  2380   return true;
  2383 //
  2384 // Create a new version of orig_phi if necessary. Returns either the newly
  2385 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2386 // phi was created.  Cache the last newly created phi in the node map.
  2387 //
  2388 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2389   Compile *C = _compile;
  2390   PhaseGVN* igvn = _igvn;
  2391   new_created = false;
  2392   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2393   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2394   if (phi_alias_idx == alias_idx) {
  2395     return orig_phi;
  2397   // Have we recently created a Phi for this alias index?
  2398   PhiNode *result = get_map_phi(orig_phi->_idx);
  2399   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2400     return result;
  2402   // Previous check may fail when the same wide memory Phi was split into Phis
  2403   // for different memory slices. Search all Phis for this region.
  2404   if (result != NULL) {
  2405     Node* region = orig_phi->in(0);
  2406     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2407       Node* phi = region->fast_out(i);
  2408       if (phi->is_Phi() &&
  2409           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2410         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2411         return phi->as_Phi();
  2415   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
  2416     if (C->do_escape_analysis() == true && !C->failing()) {
  2417       // Retry compilation without escape analysis.
  2418       // If this is the first failure, the sentinel string will "stick"
  2419       // to the Compile object, and the C2Compiler will see it and retry.
  2420       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2422     return NULL;
  2424   orig_phi_worklist.append_if_missing(orig_phi);
  2425   const TypePtr *atype = C->get_adr_type(alias_idx);
  2426   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2427   C->copy_node_notes_to(result, orig_phi);
  2428   igvn->set_type(result, result->bottom_type());
  2429   record_for_optimizer(result);
  2430   set_map(orig_phi, result);
  2431   new_created = true;
  2432   return result;
  2435 //
  2436 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2437 // specified alias index.
  2438 //
  2439 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2440   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2441   Compile *C = _compile;
  2442   PhaseGVN* igvn = _igvn;
  2443   bool new_phi_created;
  2444   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2445   if (!new_phi_created) {
  2446     return result;
  2448   GrowableArray<PhiNode *>  phi_list;
  2449   GrowableArray<uint>  cur_input;
  2450   PhiNode *phi = orig_phi;
  2451   uint idx = 1;
  2452   bool finished = false;
  2453   while(!finished) {
  2454     while (idx < phi->req()) {
  2455       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2456       if (mem != NULL && mem->is_Phi()) {
  2457         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2458         if (new_phi_created) {
  2459           // found an phi for which we created a new split, push current one on worklist and begin
  2460           // processing new one
  2461           phi_list.push(phi);
  2462           cur_input.push(idx);
  2463           phi = mem->as_Phi();
  2464           result = newphi;
  2465           idx = 1;
  2466           continue;
  2467         } else {
  2468           mem = newphi;
  2471       if (C->failing()) {
  2472         return NULL;
  2474       result->set_req(idx++, mem);
  2476 #ifdef ASSERT
  2477     // verify that the new Phi has an input for each input of the original
  2478     assert( phi->req() == result->req(), "must have same number of inputs.");
  2479     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2480 #endif
  2481     // Check if all new phi's inputs have specified alias index.
  2482     // Otherwise use old phi.
  2483     for (uint i = 1; i < phi->req(); i++) {
  2484       Node* in = result->in(i);
  2485       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2487     // we have finished processing a Phi, see if there are any more to do
  2488     finished = (phi_list.length() == 0 );
  2489     if (!finished) {
  2490       phi = phi_list.pop();
  2491       idx = cur_input.pop();
  2492       PhiNode *prev_result = get_map_phi(phi->_idx);
  2493       prev_result->set_req(idx++, result);
  2494       result = prev_result;
  2497   return result;
  2500 //
  2501 // The next methods are derived from methods in MemNode.
  2502 //
  2503 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2504   Node *mem = mmem;
  2505   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2506   // means an array I have not precisely typed yet.  Do not do any
  2507   // alias stuff with it any time soon.
  2508   if (toop->base() != Type::AnyPtr &&
  2509       !(toop->klass() != NULL &&
  2510         toop->klass()->is_java_lang_Object() &&
  2511         toop->offset() == Type::OffsetBot)) {
  2512     mem = mmem->memory_at(alias_idx);
  2513     // Update input if it is progress over what we have now
  2515   return mem;
  2518 //
  2519 // Move memory users to their memory slices.
  2520 //
  2521 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2522   Compile* C = _compile;
  2523   PhaseGVN* igvn = _igvn;
  2524   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2525   assert(tp != NULL, "ptr type");
  2526   int alias_idx = C->get_alias_index(tp);
  2527   int general_idx = C->get_general_index(alias_idx);
  2529   // Move users first
  2530   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2531     Node* use = n->fast_out(i);
  2532     if (use->is_MergeMem()) {
  2533       MergeMemNode* mmem = use->as_MergeMem();
  2534       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2535       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2536         continue; // Nothing to do
  2538       // Replace previous general reference to mem node.
  2539       uint orig_uniq = C->unique();
  2540       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2541       assert(orig_uniq == C->unique(), "no new nodes");
  2542       mmem->set_memory_at(general_idx, m);
  2543       --imax;
  2544       --i;
  2545     } else if (use->is_MemBar()) {
  2546       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2547       if (use->req() > MemBarNode::Precedent &&
  2548           use->in(MemBarNode::Precedent) == n) {
  2549         // Don't move related membars.
  2550         record_for_optimizer(use);
  2551         continue;
  2553       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2554       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2555           alias_idx == general_idx) {
  2556         continue; // Nothing to do
  2558       // Move to general memory slice.
  2559       uint orig_uniq = C->unique();
  2560       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2561       assert(orig_uniq == C->unique(), "no new nodes");
  2562       igvn->hash_delete(use);
  2563       imax -= use->replace_edge(n, m);
  2564       igvn->hash_insert(use);
  2565       record_for_optimizer(use);
  2566       --i;
  2567 #ifdef ASSERT
  2568     } else if (use->is_Mem()) {
  2569       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2570         // Don't move related cardmark.
  2571         continue;
  2573       // Memory nodes should have new memory input.
  2574       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2575       assert(tp != NULL, "ptr type");
  2576       int idx = C->get_alias_index(tp);
  2577       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2578              "Following memory nodes should have new memory input or be on the same memory slice");
  2579     } else if (use->is_Phi()) {
  2580       // Phi nodes should be split and moved already.
  2581       tp = use->as_Phi()->adr_type()->isa_ptr();
  2582       assert(tp != NULL, "ptr type");
  2583       int idx = C->get_alias_index(tp);
  2584       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2585     } else {
  2586       use->dump();
  2587       assert(false, "should not be here");
  2588 #endif
  2593 //
  2594 // Search memory chain of "mem" to find a MemNode whose address
  2595 // is the specified alias index.
  2596 //
  2597 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2598   if (orig_mem == NULL)
  2599     return orig_mem;
  2600   Compile* C = _compile;
  2601   PhaseGVN* igvn = _igvn;
  2602   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2603   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2604   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2605   Node *prev = NULL;
  2606   Node *result = orig_mem;
  2607   while (prev != result) {
  2608     prev = result;
  2609     if (result == start_mem)
  2610       break;  // hit one of our sentinels
  2611     if (result->is_Mem()) {
  2612       const Type *at = igvn->type(result->in(MemNode::Address));
  2613       if (at == Type::TOP)
  2614         break; // Dead
  2615       assert (at->isa_ptr() != NULL, "pointer type required.");
  2616       int idx = C->get_alias_index(at->is_ptr());
  2617       if (idx == alias_idx)
  2618         break; // Found
  2619       if (!is_instance && (at->isa_oopptr() == NULL ||
  2620                            !at->is_oopptr()->is_known_instance())) {
  2621         break; // Do not skip store to general memory slice.
  2623       result = result->in(MemNode::Memory);
  2625     if (!is_instance)
  2626       continue;  // don't search further for non-instance types
  2627     // skip over a call which does not affect this memory slice
  2628     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2629       Node *proj_in = result->in(0);
  2630       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2631         break;  // hit one of our sentinels
  2632       } else if (proj_in->is_Call()) {
  2633         CallNode *call = proj_in->as_Call();
  2634         if (!call->may_modify(toop, igvn)) {
  2635           result = call->in(TypeFunc::Memory);
  2637       } else if (proj_in->is_Initialize()) {
  2638         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2639         // Stop if this is the initialization for the object instance which
  2640         // which contains this memory slice, otherwise skip over it.
  2641         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2642           result = proj_in->in(TypeFunc::Memory);
  2644       } else if (proj_in->is_MemBar()) {
  2645         result = proj_in->in(TypeFunc::Memory);
  2647     } else if (result->is_MergeMem()) {
  2648       MergeMemNode *mmem = result->as_MergeMem();
  2649       result = step_through_mergemem(mmem, alias_idx, toop);
  2650       if (result == mmem->base_memory()) {
  2651         // Didn't find instance memory, search through general slice recursively.
  2652         result = mmem->memory_at(C->get_general_index(alias_idx));
  2653         result = find_inst_mem(result, alias_idx, orig_phis);
  2654         if (C->failing()) {
  2655           return NULL;
  2657         mmem->set_memory_at(alias_idx, result);
  2659     } else if (result->is_Phi() &&
  2660                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2661       Node *un = result->as_Phi()->unique_input(igvn);
  2662       if (un != NULL) {
  2663         orig_phis.append_if_missing(result->as_Phi());
  2664         result = un;
  2665       } else {
  2666         break;
  2668     } else if (result->is_ClearArray()) {
  2669       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2670         // Can not bypass initialization of the instance
  2671         // we are looking for.
  2672         break;
  2674       // Otherwise skip it (the call updated 'result' value).
  2675     } else if (result->Opcode() == Op_SCMemProj) {
  2676       Node* mem = result->in(0);
  2677       Node* adr = NULL;
  2678       if (mem->is_LoadStore()) {
  2679         adr = mem->in(MemNode::Address);
  2680       } else {
  2681         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2682         adr = mem->in(3); // Memory edge corresponds to destination array
  2684       const Type *at = igvn->type(adr);
  2685       if (at != Type::TOP) {
  2686         assert (at->isa_ptr() != NULL, "pointer type required.");
  2687         int idx = C->get_alias_index(at->is_ptr());
  2688         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2689         break;
  2691       result = mem->in(MemNode::Memory);
  2694   if (result->is_Phi()) {
  2695     PhiNode *mphi = result->as_Phi();
  2696     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2697     const TypePtr *t = mphi->adr_type();
  2698     if (!is_instance) {
  2699       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2700       // during Phase 4 if needed.
  2701       orig_phis.append_if_missing(mphi);
  2702     } else if (C->get_alias_index(t) != alias_idx) {
  2703       // Create a new Phi with the specified alias index type.
  2704       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2707   // the result is either MemNode, PhiNode, InitializeNode.
  2708   return result;
  2711 //
  2712 //  Convert the types of unescaped object to instance types where possible,
  2713 //  propagate the new type information through the graph, and update memory
  2714 //  edges and MergeMem inputs to reflect the new type.
  2715 //
  2716 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2717 //  The processing is done in 4 phases:
  2718 //
  2719 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2720 //            types for the CheckCastPP for allocations where possible.
  2721 //            Propagate the the new types through users as follows:
  2722 //               casts and Phi:  push users on alloc_worklist
  2723 //               AddP:  cast Base and Address inputs to the instance type
  2724 //                      push any AddP users on alloc_worklist and push any memnode
  2725 //                      users onto memnode_worklist.
  2726 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2727 //            search the Memory chain for a store with the appropriate type
  2728 //            address type.  If a Phi is found, create a new version with
  2729 //            the appropriate memory slices from each of the Phi inputs.
  2730 //            For stores, process the users as follows:
  2731 //               MemNode:  push on memnode_worklist
  2732 //               MergeMem: push on mergemem_worklist
  2733 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2734 //            moving the first node encountered of each  instance type to the
  2735 //            the input corresponding to its alias index.
  2736 //            appropriate memory slice.
  2737 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2738 //
  2739 // In the following example, the CheckCastPP nodes are the cast of allocation
  2740 // results and the allocation of node 29 is unescaped and eligible to be an
  2741 // instance type.
  2742 //
  2743 // We start with:
  2744 //
  2745 //     7 Parm #memory
  2746 //    10  ConI  "12"
  2747 //    19  CheckCastPP   "Foo"
  2748 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2749 //    29  CheckCastPP   "Foo"
  2750 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2751 //
  2752 //    40  StoreP  25   7  20   ... alias_index=4
  2753 //    50  StoreP  35  40  30   ... alias_index=4
  2754 //    60  StoreP  45  50  20   ... alias_index=4
  2755 //    70  LoadP    _  60  30   ... alias_index=4
  2756 //    80  Phi     75  50  60   Memory alias_index=4
  2757 //    90  LoadP    _  80  30   ... alias_index=4
  2758 //   100  LoadP    _  80  20   ... alias_index=4
  2759 //
  2760 //
  2761 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2762 // and creating a new alias index for node 30.  This gives:
  2763 //
  2764 //     7 Parm #memory
  2765 //    10  ConI  "12"
  2766 //    19  CheckCastPP   "Foo"
  2767 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2768 //    29  CheckCastPP   "Foo"  iid=24
  2769 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2770 //
  2771 //    40  StoreP  25   7  20   ... alias_index=4
  2772 //    50  StoreP  35  40  30   ... alias_index=6
  2773 //    60  StoreP  45  50  20   ... alias_index=4
  2774 //    70  LoadP    _  60  30   ... alias_index=6
  2775 //    80  Phi     75  50  60   Memory alias_index=4
  2776 //    90  LoadP    _  80  30   ... alias_index=6
  2777 //   100  LoadP    _  80  20   ... alias_index=4
  2778 //
  2779 // In phase 2, new memory inputs are computed for the loads and stores,
  2780 // And a new version of the phi is created.  In phase 4, the inputs to
  2781 // node 80 are updated and then the memory nodes are updated with the
  2782 // values computed in phase 2.  This results in:
  2783 //
  2784 //     7 Parm #memory
  2785 //    10  ConI  "12"
  2786 //    19  CheckCastPP   "Foo"
  2787 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2788 //    29  CheckCastPP   "Foo"  iid=24
  2789 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2790 //
  2791 //    40  StoreP  25  7   20   ... alias_index=4
  2792 //    50  StoreP  35  7   30   ... alias_index=6
  2793 //    60  StoreP  45  40  20   ... alias_index=4
  2794 //    70  LoadP    _  50  30   ... alias_index=6
  2795 //    80  Phi     75  40  60   Memory alias_index=4
  2796 //   120  Phi     75  50  50   Memory alias_index=6
  2797 //    90  LoadP    _ 120  30   ... alias_index=6
  2798 //   100  LoadP    _  80  20   ... alias_index=4
  2799 //
  2800 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2801   GrowableArray<Node *>  memnode_worklist;
  2802   GrowableArray<PhiNode *>  orig_phis;
  2803   PhaseIterGVN  *igvn = _igvn;
  2804   uint new_index_start = (uint) _compile->num_alias_types();
  2805   Arena* arena = Thread::current()->resource_area();
  2806   VectorSet visited(arena);
  2807   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2808   uint unique_old = _compile->unique();
  2810   //  Phase 1:  Process possible allocations from alloc_worklist.
  2811   //  Create instance types for the CheckCastPP for allocations where possible.
  2812   //
  2813   // (Note: don't forget to change the order of the second AddP node on
  2814   //  the alloc_worklist if the order of the worklist processing is changed,
  2815   //  see the comment in find_second_addp().)
  2816   //
  2817   while (alloc_worklist.length() != 0) {
  2818     Node *n = alloc_worklist.pop();
  2819     uint ni = n->_idx;
  2820     if (n->is_Call()) {
  2821       CallNode *alloc = n->as_Call();
  2822       // copy escape information to call node
  2823       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2824       PointsToNode::EscapeState es = ptn->escape_state();
  2825       // We have an allocation or call which returns a Java object,
  2826       // see if it is unescaped.
  2827       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2828         continue;
  2829       // Find CheckCastPP for the allocate or for the return value of a call
  2830       n = alloc->result_cast();
  2831       if (n == NULL) {            // No uses except Initialize node
  2832         if (alloc->is_Allocate()) {
  2833           // Set the scalar_replaceable flag for allocation
  2834           // so it could be eliminated if it has no uses.
  2835           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2837         if (alloc->is_CallStaticJava()) {
  2838           // Set the scalar_replaceable flag for boxing method
  2839           // so it could be eliminated if it has no uses.
  2840           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2842         continue;
  2844       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2845         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2846         continue;
  2849       // The inline code for Object.clone() casts the allocation result to
  2850       // java.lang.Object and then to the actual type of the allocated
  2851       // object. Detect this case and use the second cast.
  2852       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2853       // the allocation result is cast to java.lang.Object and then
  2854       // to the actual Array type.
  2855       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2856           && (alloc->is_AllocateArray() ||
  2857               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2858         Node *cast2 = NULL;
  2859         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2860           Node *use = n->fast_out(i);
  2861           if (use->is_CheckCastPP()) {
  2862             cast2 = use;
  2863             break;
  2866         if (cast2 != NULL) {
  2867           n = cast2;
  2868         } else {
  2869           // Non-scalar replaceable if the allocation type is unknown statically
  2870           // (reflection allocation), the object can't be restored during
  2871           // deoptimization without precise type.
  2872           continue;
  2876       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2877       if (t == NULL)
  2878         continue;  // not a TypeOopPtr
  2879       if (!t->klass_is_exact())
  2880         continue; // not an unique type
  2882       if (alloc->is_Allocate()) {
  2883         // Set the scalar_replaceable flag for allocation
  2884         // so it could be eliminated.
  2885         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2887       if (alloc->is_CallStaticJava()) {
  2888         // Set the scalar_replaceable flag for boxing method
  2889         // so it could be eliminated.
  2890         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2892       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2893       // in order for an object to be scalar-replaceable, it must be:
  2894       //   - a direct allocation (not a call returning an object)
  2895       //   - non-escaping
  2896       //   - eligible to be a unique type
  2897       //   - not determined to be ineligible by escape analysis
  2898       set_map(alloc, n);
  2899       set_map(n, alloc);
  2900       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
  2901       igvn->hash_delete(n);
  2902       igvn->set_type(n,  tinst);
  2903       n->raise_bottom_type(tinst);
  2904       igvn->hash_insert(n);
  2905       record_for_optimizer(n);
  2906       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2908         // First, put on the worklist all Field edges from Connection Graph
  2909         // which is more accurate then putting immediate users from Ideal Graph.
  2910         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2911           PointsToNode* tgt = e.get();
  2912           Node* use = tgt->ideal_node();
  2913           assert(tgt->is_Field() && use->is_AddP(),
  2914                  "only AddP nodes are Field edges in CG");
  2915           if (use->outcnt() > 0) { // Don't process dead nodes
  2916             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2917             if (addp2 != NULL) {
  2918               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2919               alloc_worklist.append_if_missing(addp2);
  2921             alloc_worklist.append_if_missing(use);
  2925         // An allocation may have an Initialize which has raw stores. Scan
  2926         // the users of the raw allocation result and push AddP users
  2927         // on alloc_worklist.
  2928         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2929         assert (raw_result != NULL, "must have an allocation result");
  2930         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2931           Node *use = raw_result->fast_out(i);
  2932           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2933             Node* addp2 = find_second_addp(use, raw_result);
  2934             if (addp2 != NULL) {
  2935               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2936               alloc_worklist.append_if_missing(addp2);
  2938             alloc_worklist.append_if_missing(use);
  2939           } else if (use->is_MemBar()) {
  2940             memnode_worklist.append_if_missing(use);
  2944     } else if (n->is_AddP()) {
  2945       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2946       if (jobj == NULL || jobj == phantom_obj) {
  2947 #ifdef ASSERT
  2948         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2949         ptnode_adr(n->_idx)->dump();
  2950         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2951 #endif
  2952         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2953         return;
  2955       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2956       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2957     } else if (n->is_Phi() ||
  2958                n->is_CheckCastPP() ||
  2959                n->is_EncodeP() ||
  2960                n->is_DecodeN() ||
  2961                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2962       if (visited.test_set(n->_idx)) {
  2963         assert(n->is_Phi(), "loops only through Phi's");
  2964         continue;  // already processed
  2966       JavaObjectNode* jobj = unique_java_object(n);
  2967       if (jobj == NULL || jobj == phantom_obj) {
  2968 #ifdef ASSERT
  2969         ptnode_adr(n->_idx)->dump();
  2970         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2971 #endif
  2972         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2973         return;
  2974       } else {
  2975         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2976         TypeNode *tn = n->as_Type();
  2977         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2978         assert(tinst != NULL && tinst->is_known_instance() &&
  2979                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2981         const Type *tn_type = igvn->type(tn);
  2982         const TypeOopPtr *tn_t;
  2983         if (tn_type->isa_narrowoop()) {
  2984           tn_t = tn_type->make_ptr()->isa_oopptr();
  2985         } else {
  2986           tn_t = tn_type->isa_oopptr();
  2988         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2989           if (tn_type->isa_narrowoop()) {
  2990             tn_type = tinst->make_narrowoop();
  2991           } else {
  2992             tn_type = tinst;
  2994           igvn->hash_delete(tn);
  2995           igvn->set_type(tn, tn_type);
  2996           tn->set_type(tn_type);
  2997           igvn->hash_insert(tn);
  2998           record_for_optimizer(n);
  2999         } else {
  3000           assert(tn_type == TypePtr::NULL_PTR ||
  3001                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  3002                  "unexpected type");
  3003           continue; // Skip dead path with different type
  3006     } else {
  3007       debug_only(n->dump();)
  3008       assert(false, "EA: unexpected node");
  3009       continue;
  3011     // push allocation's users on appropriate worklist
  3012     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3013       Node *use = n->fast_out(i);
  3014       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  3015         // Load/store to instance's field
  3016         memnode_worklist.append_if_missing(use);
  3017       } else if (use->is_MemBar()) {
  3018         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3019           memnode_worklist.append_if_missing(use);
  3021       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  3022         Node* addp2 = find_second_addp(use, n);
  3023         if (addp2 != NULL) {
  3024           alloc_worklist.append_if_missing(addp2);
  3026         alloc_worklist.append_if_missing(use);
  3027       } else if (use->is_Phi() ||
  3028                  use->is_CheckCastPP() ||
  3029                  use->is_EncodeNarrowPtr() ||
  3030                  use->is_DecodeNarrowPtr() ||
  3031                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  3032         alloc_worklist.append_if_missing(use);
  3033 #ifdef ASSERT
  3034       } else if (use->is_Mem()) {
  3035         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  3036       } else if (use->is_MergeMem()) {
  3037         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3038       } else if (use->is_SafePoint()) {
  3039         // Look for MergeMem nodes for calls which reference unique allocation
  3040         // (through CheckCastPP nodes) even for debug info.
  3041         Node* m = use->in(TypeFunc::Memory);
  3042         if (m->is_MergeMem()) {
  3043           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3045       } else if (use->Opcode() == Op_EncodeISOArray) {
  3046         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3047           // EncodeISOArray overwrites destination array
  3048           memnode_worklist.append_if_missing(use);
  3050       } else {
  3051         uint op = use->Opcode();
  3052         if (!(op == Op_CmpP || op == Op_Conv2B ||
  3053               op == Op_CastP2X || op == Op_StoreCM ||
  3054               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  3055               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3056           n->dump();
  3057           use->dump();
  3058           assert(false, "EA: missing allocation reference path");
  3060 #endif
  3065   // New alias types were created in split_AddP().
  3066   uint new_index_end = (uint) _compile->num_alias_types();
  3067   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  3069   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  3070   //            compute new values for Memory inputs  (the Memory inputs are not
  3071   //            actually updated until phase 4.)
  3072   if (memnode_worklist.length() == 0)
  3073     return;  // nothing to do
  3074   while (memnode_worklist.length() != 0) {
  3075     Node *n = memnode_worklist.pop();
  3076     if (visited.test_set(n->_idx))
  3077       continue;
  3078     if (n->is_Phi() || n->is_ClearArray()) {
  3079       // we don't need to do anything, but the users must be pushed
  3080     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  3081       // we don't need to do anything, but the users must be pushed
  3082       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  3083       if (n == NULL)
  3084         continue;
  3085     } else if (n->Opcode() == Op_EncodeISOArray) {
  3086       // get the memory projection
  3087       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3088         Node *use = n->fast_out(i);
  3089         if (use->Opcode() == Op_SCMemProj) {
  3090           n = use;
  3091           break;
  3094       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3095     } else {
  3096       assert(n->is_Mem(), "memory node required.");
  3097       Node *addr = n->in(MemNode::Address);
  3098       const Type *addr_t = igvn->type(addr);
  3099       if (addr_t == Type::TOP)
  3100         continue;
  3101       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  3102       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  3103       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  3104       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  3105       if (_compile->failing()) {
  3106         return;
  3108       if (mem != n->in(MemNode::Memory)) {
  3109         // We delay the memory edge update since we need old one in
  3110         // MergeMem code below when instances memory slices are separated.
  3111         set_map(n, mem);
  3113       if (n->is_Load()) {
  3114         continue;  // don't push users
  3115       } else if (n->is_LoadStore()) {
  3116         // get the memory projection
  3117         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3118           Node *use = n->fast_out(i);
  3119           if (use->Opcode() == Op_SCMemProj) {
  3120             n = use;
  3121             break;
  3124         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3127     // push user on appropriate worklist
  3128     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3129       Node *use = n->fast_out(i);
  3130       if (use->is_Phi() || use->is_ClearArray()) {
  3131         memnode_worklist.append_if_missing(use);
  3132       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3133         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3134           continue;
  3135         memnode_worklist.append_if_missing(use);
  3136       } else if (use->is_MemBar()) {
  3137         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3138           memnode_worklist.append_if_missing(use);
  3140 #ifdef ASSERT
  3141       } else if(use->is_Mem()) {
  3142         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3143       } else if (use->is_MergeMem()) {
  3144         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3145       } else if (use->Opcode() == Op_EncodeISOArray) {
  3146         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3147           // EncodeISOArray overwrites destination array
  3148           memnode_worklist.append_if_missing(use);
  3150       } else {
  3151         uint op = use->Opcode();
  3152         if (!(op == Op_StoreCM ||
  3153               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3154                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3155               op == Op_AryEq || op == Op_StrComp ||
  3156               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3157           n->dump();
  3158           use->dump();
  3159           assert(false, "EA: missing memory path");
  3161 #endif
  3166   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3167   //            Walk each memory slice moving the first node encountered of each
  3168   //            instance type to the the input corresponding to its alias index.
  3169   uint length = _mergemem_worklist.length();
  3170   for( uint next = 0; next < length; ++next ) {
  3171     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3172     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3173     // Note: we don't want to use MergeMemStream here because we only want to
  3174     // scan inputs which exist at the start, not ones we add during processing.
  3175     // Note 2: MergeMem may already contains instance memory slices added
  3176     // during find_inst_mem() call when memory nodes were processed above.
  3177     igvn->hash_delete(nmm);
  3178     uint nslices = nmm->req();
  3179     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3180       Node* mem = nmm->in(i);
  3181       Node* cur = NULL;
  3182       if (mem == NULL || mem->is_top())
  3183         continue;
  3184       // First, update mergemem by moving memory nodes to corresponding slices
  3185       // if their type became more precise since this mergemem was created.
  3186       while (mem->is_Mem()) {
  3187         const Type *at = igvn->type(mem->in(MemNode::Address));
  3188         if (at != Type::TOP) {
  3189           assert (at->isa_ptr() != NULL, "pointer type required.");
  3190           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3191           if (idx == i) {
  3192             if (cur == NULL)
  3193               cur = mem;
  3194           } else {
  3195             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3196               nmm->set_memory_at(idx, mem);
  3200         mem = mem->in(MemNode::Memory);
  3202       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3203       // Find any instance of the current type if we haven't encountered
  3204       // already a memory slice of the instance along the memory chain.
  3205       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3206         if((uint)_compile->get_general_index(ni) == i) {
  3207           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3208           if (nmm->is_empty_memory(m)) {
  3209             Node* result = find_inst_mem(mem, ni, orig_phis);
  3210             if (_compile->failing()) {
  3211               return;
  3213             nmm->set_memory_at(ni, result);
  3218     // Find the rest of instances values
  3219     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3220       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3221       Node* result = step_through_mergemem(nmm, ni, tinst);
  3222       if (result == nmm->base_memory()) {
  3223         // Didn't find instance memory, search through general slice recursively.
  3224         result = nmm->memory_at(_compile->get_general_index(ni));
  3225         result = find_inst_mem(result, ni, orig_phis);
  3226         if (_compile->failing()) {
  3227           return;
  3229         nmm->set_memory_at(ni, result);
  3232     igvn->hash_insert(nmm);
  3233     record_for_optimizer(nmm);
  3236   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3237   //            the Memory input of memnodes
  3238   // First update the inputs of any non-instance Phi's from
  3239   // which we split out an instance Phi.  Note we don't have
  3240   // to recursively process Phi's encounted on the input memory
  3241   // chains as is done in split_memory_phi() since they  will
  3242   // also be processed here.
  3243   for (int j = 0; j < orig_phis.length(); j++) {
  3244     PhiNode *phi = orig_phis.at(j);
  3245     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3246     igvn->hash_delete(phi);
  3247     for (uint i = 1; i < phi->req(); i++) {
  3248       Node *mem = phi->in(i);
  3249       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3250       if (_compile->failing()) {
  3251         return;
  3253       if (mem != new_mem) {
  3254         phi->set_req(i, new_mem);
  3257     igvn->hash_insert(phi);
  3258     record_for_optimizer(phi);
  3261   // Update the memory inputs of MemNodes with the value we computed
  3262   // in Phase 2 and move stores memory users to corresponding memory slices.
  3263   // Disable memory split verification code until the fix for 6984348.
  3264   // Currently it produces false negative results since it does not cover all cases.
  3265 #if 0 // ifdef ASSERT
  3266   visited.Reset();
  3267   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3268 #endif
  3269   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3270     Node*    n = ideal_nodes.at(i);
  3271     Node* nmem = get_map(n->_idx);
  3272     assert(nmem != NULL, "sanity");
  3273     if (n->is_Mem()) {
  3274 #if 0 // ifdef ASSERT
  3275       Node* old_mem = n->in(MemNode::Memory);
  3276       if (!visited.test_set(old_mem->_idx)) {
  3277         old_mems.push(old_mem, old_mem->outcnt());
  3279 #endif
  3280       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3281       if (!n->is_Load()) {
  3282         // Move memory users of a store first.
  3283         move_inst_mem(n, orig_phis);
  3285       // Now update memory input
  3286       igvn->hash_delete(n);
  3287       n->set_req(MemNode::Memory, nmem);
  3288       igvn->hash_insert(n);
  3289       record_for_optimizer(n);
  3290     } else {
  3291       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3292              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3295 #if 0 // ifdef ASSERT
  3296   // Verify that memory was split correctly
  3297   while (old_mems.is_nonempty()) {
  3298     Node* old_mem = old_mems.node();
  3299     uint  old_cnt = old_mems.index();
  3300     old_mems.pop();
  3301     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3303 #endif
  3306 #ifndef PRODUCT
  3307 static const char *node_type_names[] = {
  3308   "UnknownType",
  3309   "JavaObject",
  3310   "LocalVar",
  3311   "Field",
  3312   "Arraycopy"
  3313 };
  3315 static const char *esc_names[] = {
  3316   "UnknownEscape",
  3317   "NoEscape",
  3318   "ArgEscape",
  3319   "GlobalEscape"
  3320 };
  3322 void PointsToNode::dump(bool print_state) const {
  3323   NodeType nt = node_type();
  3324   tty->print("%s ", node_type_names[(int) nt]);
  3325   if (print_state) {
  3326     EscapeState es = escape_state();
  3327     EscapeState fields_es = fields_escape_state();
  3328     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3329     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3330       tty->print("NSR ");
  3332   if (is_Field()) {
  3333     FieldNode* f = (FieldNode*)this;
  3334     if (f->is_oop())
  3335       tty->print("oop ");
  3336     if (f->offset() > 0)
  3337       tty->print("+%d ", f->offset());
  3338     tty->print("(");
  3339     for (BaseIterator i(f); i.has_next(); i.next()) {
  3340       PointsToNode* b = i.get();
  3341       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3343     tty->print(" )");
  3345   tty->print("[");
  3346   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3347     PointsToNode* e = i.get();
  3348     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3350   tty->print(" [");
  3351   for (UseIterator i(this); i.has_next(); i.next()) {
  3352     PointsToNode* u = i.get();
  3353     bool is_base = false;
  3354     if (PointsToNode::is_base_use(u)) {
  3355       is_base = true;
  3356       u = PointsToNode::get_use_node(u)->as_Field();
  3358     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3360   tty->print(" ]]  ");
  3361   if (_node == NULL)
  3362     tty->print_cr("<null>");
  3363   else
  3364     _node->dump();
  3367 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3368   bool first = true;
  3369   int ptnodes_length = ptnodes_worklist.length();
  3370   for (int i = 0; i < ptnodes_length; i++) {
  3371     PointsToNode *ptn = ptnodes_worklist.at(i);
  3372     if (ptn == NULL || !ptn->is_JavaObject())
  3373       continue;
  3374     PointsToNode::EscapeState es = ptn->escape_state();
  3375     if ((es != PointsToNode::NoEscape) && !Verbose) {
  3376       continue;
  3378     Node* n = ptn->ideal_node();
  3379     if (n->is_Allocate() || (n->is_CallStaticJava() &&
  3380                              n->as_CallStaticJava()->is_boxing_method())) {
  3381       if (first) {
  3382         tty->cr();
  3383         tty->print("======== Connection graph for ");
  3384         _compile->method()->print_short_name();
  3385         tty->cr();
  3386         first = false;
  3388       ptn->dump();
  3389       // Print all locals and fields which reference this allocation
  3390       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3391         PointsToNode* use = j.get();
  3392         if (use->is_LocalVar()) {
  3393           use->dump(Verbose);
  3394         } else if (Verbose) {
  3395           use->dump();
  3398       tty->cr();
  3402 #endif

mercurial