src/share/vm/oops/methodData.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag,
   121     call_type_data_tag,
   122     virtual_call_type_data_tag,
   123     parameters_type_data_tag,
   124     speculative_trap_data_tag
   125   };
   127   enum {
   128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   129     // The trap state breaks down further as [recompile:1 | reason:3].
   130     // This further breakdown is defined in deoptimization.cpp.
   131     // See Deoptimization::trap_state_reason for an assert that
   132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   133     //
   134     // The trap_state is collected only if ProfileTraps is true.
   135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   136     trap_shift = BitsPerByte - trap_bits,
   137     trap_mask = right_n_bits(trap_bits),
   138     trap_mask_in_place = (trap_mask << trap_shift),
   139     flag_limit = trap_shift,
   140     flag_mask = right_n_bits(flag_limit),
   141     first_flag = 0
   142   };
   144   // Size computation
   145   static int header_size_in_bytes() {
   146     return cell_size;
   147   }
   148   static int header_size_in_cells() {
   149     return 1;
   150   }
   152   static int compute_size_in_bytes(int cell_count) {
   153     return header_size_in_bytes() + cell_count * cell_size;
   154   }
   156   // Initialization
   157   void initialize(u1 tag, u2 bci, int cell_count);
   159   // Accessors
   160   u1 tag() {
   161     return _header._struct._tag;
   162   }
   164   // Return a few bits of trap state.  Range is [0..trap_mask].
   165   // The state tells if traps with zero, one, or many reasons have occurred.
   166   // It also tells whether zero or many recompilations have occurred.
   167   // The associated trap histogram in the MDO itself tells whether
   168   // traps are common or not.  If a BCI shows that a trap X has
   169   // occurred, and the MDO shows N occurrences of X, we make the
   170   // simplifying assumption that all N occurrences can be blamed
   171   // on that BCI.
   172   int trap_state() const {
   173     return ((_header._struct._flags >> trap_shift) & trap_mask);
   174   }
   176   void set_trap_state(int new_state) {
   177     assert(ProfileTraps, "used only under +ProfileTraps");
   178     uint old_flags = (_header._struct._flags & flag_mask);
   179     _header._struct._flags = (new_state << trap_shift) | old_flags;
   180   }
   182   u1 flags() const {
   183     return _header._struct._flags;
   184   }
   186   u2 bci() const {
   187     return _header._struct._bci;
   188   }
   190   void set_header(intptr_t value) {
   191     _header._bits = value;
   192   }
   193   intptr_t header() {
   194     return _header._bits;
   195   }
   196   void set_cell_at(int index, intptr_t value) {
   197     _cells[index] = value;
   198   }
   199   void release_set_cell_at(int index, intptr_t value) {
   200     OrderAccess::release_store_ptr(&_cells[index], value);
   201   }
   202   intptr_t cell_at(int index) const {
   203     return _cells[index];
   204   }
   206   void set_flag_at(int flag_number) {
   207     assert(flag_number < flag_limit, "oob");
   208     _header._struct._flags |= (0x1 << flag_number);
   209   }
   210   bool flag_at(int flag_number) const {
   211     assert(flag_number < flag_limit, "oob");
   212     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   213   }
   215   // Low-level support for code generation.
   216   static ByteSize header_offset() {
   217     return byte_offset_of(DataLayout, _header);
   218   }
   219   static ByteSize tag_offset() {
   220     return byte_offset_of(DataLayout, _header._struct._tag);
   221   }
   222   static ByteSize flags_offset() {
   223     return byte_offset_of(DataLayout, _header._struct._flags);
   224   }
   225   static ByteSize bci_offset() {
   226     return byte_offset_of(DataLayout, _header._struct._bci);
   227   }
   228   static ByteSize cell_offset(int index) {
   229     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   230   }
   231 #ifdef CC_INTERP
   232   static int cell_offset_in_bytes(int index) {
   233     return (int)offset_of(DataLayout, _cells[index]);
   234   }
   235 #endif // CC_INTERP
   236   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   237   static int flag_number_to_byte_constant(int flag_number) {
   238     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   239     DataLayout temp; temp.set_header(0);
   240     temp.set_flag_at(flag_number);
   241     return temp._header._struct._flags;
   242   }
   243   // Return a value which, when or-ed as a word into _header, sets the flag.
   244   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   245     DataLayout temp; temp.set_header(0);
   246     temp._header._struct._flags = byte_constant;
   247     return temp._header._bits;
   248   }
   250   ProfileData* data_in();
   252   // GC support
   253   void clean_weak_klass_links(BoolObjectClosure* cl);
   254 };
   257 // ProfileData class hierarchy
   258 class ProfileData;
   259 class   BitData;
   260 class     CounterData;
   261 class       ReceiverTypeData;
   262 class         VirtualCallData;
   263 class           VirtualCallTypeData;
   264 class       RetData;
   265 class       CallTypeData;
   266 class   JumpData;
   267 class     BranchData;
   268 class   ArrayData;
   269 class     MultiBranchData;
   270 class     ArgInfoData;
   271 class     ParametersTypeData;
   272 class   SpeculativeTrapData;
   274 // ProfileData
   275 //
   276 // A ProfileData object is created to refer to a section of profiling
   277 // data in a structured way.
   278 class ProfileData : public ResourceObj {
   279   friend class TypeEntries;
   280   friend class ReturnTypeEntry;
   281   friend class TypeStackSlotEntries;
   282 private:
   283 #ifndef PRODUCT
   284   enum {
   285     tab_width_one = 16,
   286     tab_width_two = 36
   287   };
   288 #endif // !PRODUCT
   290   // This is a pointer to a section of profiling data.
   291   DataLayout* _data;
   293   char* print_data_on_helper(const MethodData* md) const;
   295 protected:
   296   DataLayout* data() { return _data; }
   297   const DataLayout* data() const { return _data; }
   299   enum {
   300     cell_size = DataLayout::cell_size
   301   };
   303 public:
   304   // How many cells are in this?
   305   virtual int cell_count() const {
   306     ShouldNotReachHere();
   307     return -1;
   308   }
   310   // Return the size of this data.
   311   int size_in_bytes() {
   312     return DataLayout::compute_size_in_bytes(cell_count());
   313   }
   315 protected:
   316   // Low-level accessors for underlying data
   317   void set_intptr_at(int index, intptr_t value) {
   318     assert(0 <= index && index < cell_count(), "oob");
   319     data()->set_cell_at(index, value);
   320   }
   321   void release_set_intptr_at(int index, intptr_t value) {
   322     assert(0 <= index && index < cell_count(), "oob");
   323     data()->release_set_cell_at(index, value);
   324   }
   325   intptr_t intptr_at(int index) const {
   326     assert(0 <= index && index < cell_count(), "oob");
   327     return data()->cell_at(index);
   328   }
   329   void set_uint_at(int index, uint value) {
   330     set_intptr_at(index, (intptr_t) value);
   331   }
   332   void release_set_uint_at(int index, uint value) {
   333     release_set_intptr_at(index, (intptr_t) value);
   334   }
   335   uint uint_at(int index) const {
   336     return (uint)intptr_at(index);
   337   }
   338   void set_int_at(int index, int value) {
   339     set_intptr_at(index, (intptr_t) value);
   340   }
   341   void release_set_int_at(int index, int value) {
   342     release_set_intptr_at(index, (intptr_t) value);
   343   }
   344   int int_at(int index) const {
   345     return (int)intptr_at(index);
   346   }
   347   int int_at_unchecked(int index) const {
   348     return (int)data()->cell_at(index);
   349   }
   350   void set_oop_at(int index, oop value) {
   351     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   352   }
   353   oop oop_at(int index) const {
   354     return cast_to_oop(intptr_at(index));
   355   }
   357   void set_flag_at(int flag_number) {
   358     data()->set_flag_at(flag_number);
   359   }
   360   bool flag_at(int flag_number) const {
   361     return data()->flag_at(flag_number);
   362   }
   364   // two convenient imports for use by subclasses:
   365   static ByteSize cell_offset(int index) {
   366     return DataLayout::cell_offset(index);
   367   }
   368   static int flag_number_to_byte_constant(int flag_number) {
   369     return DataLayout::flag_number_to_byte_constant(flag_number);
   370   }
   372   ProfileData(DataLayout* data) {
   373     _data = data;
   374   }
   376 #ifdef CC_INTERP
   377   // Static low level accessors for DataLayout with ProfileData's semantics.
   379   static int cell_offset_in_bytes(int index) {
   380     return DataLayout::cell_offset_in_bytes(index);
   381   }
   383   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
   384                                             int inc = DataLayout::counter_increment) {
   385     uint count = ((uint)layout->cell_at(index)) + inc;
   386     if (count == 0) return;
   387     layout->set_cell_at(index, (intptr_t) count);
   388   }
   390   static int int_at(DataLayout* layout, int index) {
   391     return (int)layout->cell_at(index);
   392   }
   394   static int uint_at(DataLayout* layout, int index) {
   395     return (uint)layout->cell_at(index);
   396   }
   398   static oop oop_at(DataLayout* layout, int index) {
   399     return cast_to_oop(layout->cell_at(index));
   400   }
   402   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
   403     layout->set_cell_at(index, (intptr_t) value);
   404   }
   406   static void set_flag_at(DataLayout* layout, int flag_number) {
   407     layout->set_flag_at(flag_number);
   408   }
   409 #endif // CC_INTERP
   411 public:
   412   // Constructor for invalid ProfileData.
   413   ProfileData();
   415   u2 bci() const {
   416     return data()->bci();
   417   }
   419   address dp() {
   420     return (address)_data;
   421   }
   423   int trap_state() const {
   424     return data()->trap_state();
   425   }
   426   void set_trap_state(int new_state) {
   427     data()->set_trap_state(new_state);
   428   }
   430   // Type checking
   431   virtual bool is_BitData()         const { return false; }
   432   virtual bool is_CounterData()     const { return false; }
   433   virtual bool is_JumpData()        const { return false; }
   434   virtual bool is_ReceiverTypeData()const { return false; }
   435   virtual bool is_VirtualCallData() const { return false; }
   436   virtual bool is_RetData()         const { return false; }
   437   virtual bool is_BranchData()      const { return false; }
   438   virtual bool is_ArrayData()       const { return false; }
   439   virtual bool is_MultiBranchData() const { return false; }
   440   virtual bool is_ArgInfoData()     const { return false; }
   441   virtual bool is_CallTypeData()    const { return false; }
   442   virtual bool is_VirtualCallTypeData()const { return false; }
   443   virtual bool is_ParametersTypeData() const { return false; }
   444   virtual bool is_SpeculativeTrapData()const { return false; }
   447   BitData* as_BitData() const {
   448     assert(is_BitData(), "wrong type");
   449     return is_BitData()         ? (BitData*)        this : NULL;
   450   }
   451   CounterData* as_CounterData() const {
   452     assert(is_CounterData(), "wrong type");
   453     return is_CounterData()     ? (CounterData*)    this : NULL;
   454   }
   455   JumpData* as_JumpData() const {
   456     assert(is_JumpData(), "wrong type");
   457     return is_JumpData()        ? (JumpData*)       this : NULL;
   458   }
   459   ReceiverTypeData* as_ReceiverTypeData() const {
   460     assert(is_ReceiverTypeData(), "wrong type");
   461     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   462   }
   463   VirtualCallData* as_VirtualCallData() const {
   464     assert(is_VirtualCallData(), "wrong type");
   465     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   466   }
   467   RetData* as_RetData() const {
   468     assert(is_RetData(), "wrong type");
   469     return is_RetData()         ? (RetData*)        this : NULL;
   470   }
   471   BranchData* as_BranchData() const {
   472     assert(is_BranchData(), "wrong type");
   473     return is_BranchData()      ? (BranchData*)     this : NULL;
   474   }
   475   ArrayData* as_ArrayData() const {
   476     assert(is_ArrayData(), "wrong type");
   477     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   478   }
   479   MultiBranchData* as_MultiBranchData() const {
   480     assert(is_MultiBranchData(), "wrong type");
   481     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   482   }
   483   ArgInfoData* as_ArgInfoData() const {
   484     assert(is_ArgInfoData(), "wrong type");
   485     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   486   }
   487   CallTypeData* as_CallTypeData() const {
   488     assert(is_CallTypeData(), "wrong type");
   489     return is_CallTypeData() ? (CallTypeData*)this : NULL;
   490   }
   491   VirtualCallTypeData* as_VirtualCallTypeData() const {
   492     assert(is_VirtualCallTypeData(), "wrong type");
   493     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
   494   }
   495   ParametersTypeData* as_ParametersTypeData() const {
   496     assert(is_ParametersTypeData(), "wrong type");
   497     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
   498   }
   499   SpeculativeTrapData* as_SpeculativeTrapData() const {
   500     assert(is_SpeculativeTrapData(), "wrong type");
   501     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
   502   }
   505   // Subclass specific initialization
   506   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   508   // GC support
   509   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   511   // CI translation: ProfileData can represent both MethodDataOop data
   512   // as well as CIMethodData data. This function is provided for translating
   513   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   514   // most ProfileData don't require any translation, so we provide the null
   515   // translation here, and the required translators are in the ci subclasses.
   516   virtual void translate_from(const ProfileData* data) {}
   518   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
   519     ShouldNotReachHere();
   520   }
   522   void print_data_on(outputStream* st, const MethodData* md) const;
   524 #ifndef PRODUCT
   525   void print_shared(outputStream* st, const char* name, const char* extra) const;
   526   void tab(outputStream* st, bool first = false) const;
   527 #endif
   528 };
   530 // BitData
   531 //
   532 // A BitData holds a flag or two in its header.
   533 class BitData : public ProfileData {
   534 protected:
   535   enum {
   536     // null_seen:
   537     //  saw a null operand (cast/aastore/instanceof)
   538     null_seen_flag              = DataLayout::first_flag + 0
   539   };
   540   enum { bit_cell_count = 0 };  // no additional data fields needed.
   541 public:
   542   BitData(DataLayout* layout) : ProfileData(layout) {
   543   }
   545   virtual bool is_BitData() const { return true; }
   547   static int static_cell_count() {
   548     return bit_cell_count;
   549   }
   551   virtual int cell_count() const {
   552     return static_cell_count();
   553   }
   555   // Accessor
   557   // The null_seen flag bit is specially known to the interpreter.
   558   // Consulting it allows the compiler to avoid setting up null_check traps.
   559   bool null_seen()     { return flag_at(null_seen_flag); }
   560   void set_null_seen()    { set_flag_at(null_seen_flag); }
   563   // Code generation support
   564   static int null_seen_byte_constant() {
   565     return flag_number_to_byte_constant(null_seen_flag);
   566   }
   568   static ByteSize bit_data_size() {
   569     return cell_offset(bit_cell_count);
   570   }
   572 #ifdef CC_INTERP
   573   static int bit_data_size_in_bytes() {
   574     return cell_offset_in_bytes(bit_cell_count);
   575   }
   577   static void set_null_seen(DataLayout* layout) {
   578     set_flag_at(layout, null_seen_flag);
   579   }
   581   static DataLayout* advance(DataLayout* layout) {
   582     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
   583   }
   584 #endif // CC_INTERP
   586 #ifndef PRODUCT
   587   void print_data_on(outputStream* st, const char* extra = NULL) const;
   588 #endif
   589 };
   591 // CounterData
   592 //
   593 // A CounterData corresponds to a simple counter.
   594 class CounterData : public BitData {
   595 protected:
   596   enum {
   597     count_off,
   598     counter_cell_count
   599   };
   600 public:
   601   CounterData(DataLayout* layout) : BitData(layout) {}
   603   virtual bool is_CounterData() const { return true; }
   605   static int static_cell_count() {
   606     return counter_cell_count;
   607   }
   609   virtual int cell_count() const {
   610     return static_cell_count();
   611   }
   613   // Direct accessor
   614   uint count() const {
   615     return uint_at(count_off);
   616   }
   618   // Code generation support
   619   static ByteSize count_offset() {
   620     return cell_offset(count_off);
   621   }
   622   static ByteSize counter_data_size() {
   623     return cell_offset(counter_cell_count);
   624   }
   626   void set_count(uint count) {
   627     set_uint_at(count_off, count);
   628   }
   630 #ifdef CC_INTERP
   631   static int counter_data_size_in_bytes() {
   632     return cell_offset_in_bytes(counter_cell_count);
   633   }
   635   static void increment_count_no_overflow(DataLayout* layout) {
   636     increment_uint_at_no_overflow(layout, count_off);
   637   }
   639   // Support counter decrementation at checkcast / subtype check failed.
   640   static void decrement_count(DataLayout* layout) {
   641     increment_uint_at_no_overflow(layout, count_off, -1);
   642   }
   644   static DataLayout* advance(DataLayout* layout) {
   645     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
   646   }
   647 #endif // CC_INTERP
   649 #ifndef PRODUCT
   650   void print_data_on(outputStream* st, const char* extra = NULL) const;
   651 #endif
   652 };
   654 // JumpData
   655 //
   656 // A JumpData is used to access profiling information for a direct
   657 // branch.  It is a counter, used for counting the number of branches,
   658 // plus a data displacement, used for realigning the data pointer to
   659 // the corresponding target bci.
   660 class JumpData : public ProfileData {
   661 protected:
   662   enum {
   663     taken_off_set,
   664     displacement_off_set,
   665     jump_cell_count
   666   };
   668   void set_displacement(int displacement) {
   669     set_int_at(displacement_off_set, displacement);
   670   }
   672 public:
   673   JumpData(DataLayout* layout) : ProfileData(layout) {
   674     assert(layout->tag() == DataLayout::jump_data_tag ||
   675       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   676   }
   678   virtual bool is_JumpData() const { return true; }
   680   static int static_cell_count() {
   681     return jump_cell_count;
   682   }
   684   virtual int cell_count() const {
   685     return static_cell_count();
   686   }
   688   // Direct accessor
   689   uint taken() const {
   690     return uint_at(taken_off_set);
   691   }
   693   void set_taken(uint cnt) {
   694     set_uint_at(taken_off_set, cnt);
   695   }
   697   // Saturating counter
   698   uint inc_taken() {
   699     uint cnt = taken() + 1;
   700     // Did we wrap? Will compiler screw us??
   701     if (cnt == 0) cnt--;
   702     set_uint_at(taken_off_set, cnt);
   703     return cnt;
   704   }
   706   int displacement() const {
   707     return int_at(displacement_off_set);
   708   }
   710   // Code generation support
   711   static ByteSize taken_offset() {
   712     return cell_offset(taken_off_set);
   713   }
   715   static ByteSize displacement_offset() {
   716     return cell_offset(displacement_off_set);
   717   }
   719 #ifdef CC_INTERP
   720   static void increment_taken_count_no_overflow(DataLayout* layout) {
   721     increment_uint_at_no_overflow(layout, taken_off_set);
   722   }
   724   static DataLayout* advance_taken(DataLayout* layout) {
   725     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
   726   }
   728   static uint taken_count(DataLayout* layout) {
   729     return (uint) uint_at(layout, taken_off_set);
   730   }
   731 #endif // CC_INTERP
   733   // Specific initialization.
   734   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   736 #ifndef PRODUCT
   737   void print_data_on(outputStream* st, const char* extra = NULL) const;
   738 #endif
   739 };
   741 // Entries in a ProfileData object to record types: it can either be
   742 // none (no profile), unknown (conflicting profile data) or a klass if
   743 // a single one is seen. Whether a null reference was seen is also
   744 // recorded. No counter is associated with the type and a single type
   745 // is tracked (unlike VirtualCallData).
   746 class TypeEntries {
   748 public:
   750   // A single cell is used to record information for a type:
   751   // - the cell is initialized to 0
   752   // - when a type is discovered it is stored in the cell
   753   // - bit zero of the cell is used to record whether a null reference
   754   // was encountered or not
   755   // - bit 1 is set to record a conflict in the type information
   757   enum {
   758     null_seen = 1,
   759     type_mask = ~null_seen,
   760     type_unknown = 2,
   761     status_bits = null_seen | type_unknown,
   762     type_klass_mask = ~status_bits
   763   };
   765   // what to initialize a cell to
   766   static intptr_t type_none() {
   767     return 0;
   768   }
   770   // null seen = bit 0 set?
   771   static bool was_null_seen(intptr_t v) {
   772     return (v & null_seen) != 0;
   773   }
   775   // conflicting type information = bit 1 set?
   776   static bool is_type_unknown(intptr_t v) {
   777     return (v & type_unknown) != 0;
   778   }
   780   // not type information yet = all bits cleared, ignoring bit 0?
   781   static bool is_type_none(intptr_t v) {
   782     return (v & type_mask) == 0;
   783   }
   785   // recorded type: cell without bit 0 and 1
   786   static intptr_t klass_part(intptr_t v) {
   787     intptr_t r = v & type_klass_mask;
   788     return r;
   789   }
   791   // type recorded
   792   static Klass* valid_klass(intptr_t k) {
   793     if (!is_type_none(k) &&
   794         !is_type_unknown(k)) {
   795       Klass* res = (Klass*)klass_part(k);
   796       assert(res != NULL, "invalid");
   797       return res;
   798     } else {
   799       return NULL;
   800     }
   801   }
   803   static intptr_t with_status(intptr_t k, intptr_t in) {
   804     return k | (in & status_bits);
   805   }
   807   static intptr_t with_status(Klass* k, intptr_t in) {
   808     return with_status((intptr_t)k, in);
   809   }
   811 #ifndef PRODUCT
   812   static void print_klass(outputStream* st, intptr_t k);
   813 #endif
   815   // GC support
   816   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
   818 protected:
   819   // ProfileData object these entries are part of
   820   ProfileData* _pd;
   821   // offset within the ProfileData object where the entries start
   822   const int _base_off;
   824   TypeEntries(int base_off)
   825     : _base_off(base_off), _pd(NULL) {}
   827   void set_intptr_at(int index, intptr_t value) {
   828     _pd->set_intptr_at(index, value);
   829   }
   831   intptr_t intptr_at(int index) const {
   832     return _pd->intptr_at(index);
   833   }
   835 public:
   836   void set_profile_data(ProfileData* pd) {
   837     _pd = pd;
   838   }
   839 };
   841 // Type entries used for arguments passed at a call and parameters on
   842 // method entry. 2 cells per entry: one for the type encoded as in
   843 // TypeEntries and one initialized with the stack slot where the
   844 // profiled object is to be found so that the interpreter can locate
   845 // it quickly.
   846 class TypeStackSlotEntries : public TypeEntries {
   848 private:
   849   enum {
   850     stack_slot_entry,
   851     type_entry,
   852     per_arg_cell_count
   853   };
   855   // offset of cell for stack slot for entry i within ProfileData object
   856   int stack_slot_offset(int i) const {
   857     return _base_off + stack_slot_local_offset(i);
   858   }
   860 protected:
   861   const int _number_of_entries;
   863   // offset of cell for type for entry i within ProfileData object
   864   int type_offset(int i) const {
   865     return _base_off + type_local_offset(i);
   866   }
   868 public:
   870   TypeStackSlotEntries(int base_off, int nb_entries)
   871     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
   873   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
   875   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
   877   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
   878   static int stack_slot_local_offset(int i) {
   879     return i * per_arg_cell_count + stack_slot_entry;
   880   }
   882   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
   883   static int type_local_offset(int i) {
   884     return i * per_arg_cell_count + type_entry;
   885   }
   887   // stack slot for entry i
   888   uint stack_slot(int i) const {
   889     assert(i >= 0 && i < _number_of_entries, "oob");
   890     return _pd->uint_at(stack_slot_offset(i));
   891   }
   893   // set stack slot for entry i
   894   void set_stack_slot(int i, uint num) {
   895     assert(i >= 0 && i < _number_of_entries, "oob");
   896     _pd->set_uint_at(stack_slot_offset(i), num);
   897   }
   899   // type for entry i
   900   intptr_t type(int i) const {
   901     assert(i >= 0 && i < _number_of_entries, "oob");
   902     return _pd->intptr_at(type_offset(i));
   903   }
   905   // set type for entry i
   906   void set_type(int i, intptr_t k) {
   907     assert(i >= 0 && i < _number_of_entries, "oob");
   908     _pd->set_intptr_at(type_offset(i), k);
   909   }
   911   static ByteSize per_arg_size() {
   912     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
   913   }
   915   static int per_arg_count() {
   916     return per_arg_cell_count ;
   917   }
   919   // GC support
   920   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   922 #ifndef PRODUCT
   923   void print_data_on(outputStream* st) const;
   924 #endif
   925 };
   927 // Type entry used for return from a call. A single cell to record the
   928 // type.
   929 class ReturnTypeEntry : public TypeEntries {
   931 private:
   932   enum {
   933     cell_count = 1
   934   };
   936 public:
   937   ReturnTypeEntry(int base_off)
   938     : TypeEntries(base_off) {}
   940   void post_initialize() {
   941     set_type(type_none());
   942   }
   944   intptr_t type() const {
   945     return _pd->intptr_at(_base_off);
   946   }
   948   void set_type(intptr_t k) {
   949     _pd->set_intptr_at(_base_off, k);
   950   }
   952   static int static_cell_count() {
   953     return cell_count;
   954   }
   956   static ByteSize size() {
   957     return in_ByteSize(cell_count * DataLayout::cell_size);
   958   }
   960   ByteSize type_offset() {
   961     return DataLayout::cell_offset(_base_off);
   962   }
   964   // GC support
   965   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   967 #ifndef PRODUCT
   968   void print_data_on(outputStream* st) const;
   969 #endif
   970 };
   972 // Entries to collect type information at a call: contains arguments
   973 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
   974 // number of cells. Because the number of cells for the return type is
   975 // smaller than the number of cells for the type of an arguments, the
   976 // number of cells is used to tell how many arguments are profiled and
   977 // whether a return value is profiled. See has_arguments() and
   978 // has_return().
   979 class TypeEntriesAtCall {
   980 private:
   981   static int stack_slot_local_offset(int i) {
   982     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
   983   }
   985   static int argument_type_local_offset(int i) {
   986     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
   987   }
   989 public:
   991   static int header_cell_count() {
   992     return 1;
   993   }
   995   static int cell_count_local_offset() {
   996     return 0;
   997   }
   999   static int compute_cell_count(BytecodeStream* stream);
  1001   static void initialize(DataLayout* dl, int base, int cell_count) {
  1002     int off = base + cell_count_local_offset();
  1003     dl->set_cell_at(off, cell_count - base - header_cell_count());
  1006   static bool arguments_profiling_enabled();
  1007   static bool return_profiling_enabled();
  1009   // Code generation support
  1010   static ByteSize cell_count_offset() {
  1011     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
  1014   static ByteSize args_data_offset() {
  1015     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
  1018   static ByteSize stack_slot_offset(int i) {
  1019     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
  1022   static ByteSize argument_type_offset(int i) {
  1023     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
  1026   static ByteSize return_only_size() {
  1027     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
  1030 };
  1032 // CallTypeData
  1033 //
  1034 // A CallTypeData is used to access profiling information about a non
  1035 // virtual call for which we collect type information about arguments
  1036 // and return value.
  1037 class CallTypeData : public CounterData {
  1038 private:
  1039   // entries for arguments if any
  1040   TypeStackSlotEntries _args;
  1041   // entry for return type if any
  1042   ReturnTypeEntry _ret;
  1044   int cell_count_global_offset() const {
  1045     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1048   // number of cells not counting the header
  1049   int cell_count_no_header() const {
  1050     return uint_at(cell_count_global_offset());
  1053   void check_number_of_arguments(int total) {
  1054     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1057 public:
  1058   CallTypeData(DataLayout* layout) :
  1059     CounterData(layout),
  1060     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1061     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1063     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
  1064     // Some compilers (VC++) don't want this passed in member initialization list
  1065     _args.set_profile_data(this);
  1066     _ret.set_profile_data(this);
  1069   const TypeStackSlotEntries* args() const {
  1070     assert(has_arguments(), "no profiling of arguments");
  1071     return &_args;
  1074   const ReturnTypeEntry* ret() const {
  1075     assert(has_return(), "no profiling of return value");
  1076     return &_ret;
  1079   virtual bool is_CallTypeData() const { return true; }
  1081   static int static_cell_count() {
  1082     return -1;
  1085   static int compute_cell_count(BytecodeStream* stream) {
  1086     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1089   static void initialize(DataLayout* dl, int cell_count) {
  1090     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
  1093   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1095   virtual int cell_count() const {
  1096     return CounterData::static_cell_count() +
  1097       TypeEntriesAtCall::header_cell_count() +
  1098       int_at_unchecked(cell_count_global_offset());
  1101   int number_of_arguments() const {
  1102     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1105   void set_argument_type(int i, Klass* k) {
  1106     assert(has_arguments(), "no arguments!");
  1107     intptr_t current = _args.type(i);
  1108     _args.set_type(i, TypeEntries::with_status(k, current));
  1111   void set_return_type(Klass* k) {
  1112     assert(has_return(), "no return!");
  1113     intptr_t current = _ret.type();
  1114     _ret.set_type(TypeEntries::with_status(k, current));
  1117   // An entry for a return value takes less space than an entry for an
  1118   // argument so if the number of cells exceeds the number of cells
  1119   // needed for an argument, this object contains type information for
  1120   // at least one argument.
  1121   bool has_arguments() const {
  1122     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1123     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1124     return res;
  1127   // An entry for a return value takes less space than an entry for an
  1128   // argument, so if the remainder of the number of cells divided by
  1129   // the number of cells for an argument is not null, a return value
  1130   // is profiled in this object.
  1131   bool has_return() const {
  1132     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1133     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1134     return res;
  1137   // Code generation support
  1138   static ByteSize args_data_offset() {
  1139     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1142   // GC support
  1143   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1144     if (has_arguments()) {
  1145       _args.clean_weak_klass_links(is_alive_closure);
  1147     if (has_return()) {
  1148       _ret.clean_weak_klass_links(is_alive_closure);
  1152 #ifndef PRODUCT
  1153   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1154 #endif
  1155 };
  1157 // ReceiverTypeData
  1158 //
  1159 // A ReceiverTypeData is used to access profiling information about a
  1160 // dynamic type check.  It consists of a counter which counts the total times
  1161 // that the check is reached, and a series of (Klass*, count) pairs
  1162 // which are used to store a type profile for the receiver of the check.
  1163 class ReceiverTypeData : public CounterData {
  1164 protected:
  1165   enum {
  1166     receiver0_offset = counter_cell_count,
  1167     count0_offset,
  1168     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
  1169   };
  1171 public:
  1172   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
  1173     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
  1174            layout->tag() == DataLayout::virtual_call_data_tag ||
  1175            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1178   virtual bool is_ReceiverTypeData() const { return true; }
  1180   static int static_cell_count() {
  1181     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
  1184   virtual int cell_count() const {
  1185     return static_cell_count();
  1188   // Direct accessors
  1189   static uint row_limit() {
  1190     return TypeProfileWidth;
  1192   static int receiver_cell_index(uint row) {
  1193     return receiver0_offset + row * receiver_type_row_cell_count;
  1195   static int receiver_count_cell_index(uint row) {
  1196     return count0_offset + row * receiver_type_row_cell_count;
  1199   Klass* receiver(uint row) const {
  1200     assert(row < row_limit(), "oob");
  1202     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
  1203     assert(recv == NULL || recv->is_klass(), "wrong type");
  1204     return recv;
  1207   void set_receiver(uint row, Klass* k) {
  1208     assert((uint)row < row_limit(), "oob");
  1209     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
  1212   uint receiver_count(uint row) const {
  1213     assert(row < row_limit(), "oob");
  1214     return uint_at(receiver_count_cell_index(row));
  1217   void set_receiver_count(uint row, uint count) {
  1218     assert(row < row_limit(), "oob");
  1219     set_uint_at(receiver_count_cell_index(row), count);
  1222   void clear_row(uint row) {
  1223     assert(row < row_limit(), "oob");
  1224     // Clear total count - indicator of polymorphic call site.
  1225     // The site may look like as monomorphic after that but
  1226     // it allow to have more accurate profiling information because
  1227     // there was execution phase change since klasses were unloaded.
  1228     // If the site is still polymorphic then MDO will be updated
  1229     // to reflect it. But it could be the case that the site becomes
  1230     // only bimorphic. Then keeping total count not 0 will be wrong.
  1231     // Even if we use monomorphic (when it is not) for compilation
  1232     // we will only have trap, deoptimization and recompile again
  1233     // with updated MDO after executing method in Interpreter.
  1234     // An additional receiver will be recorded in the cleaned row
  1235     // during next call execution.
  1236     //
  1237     // Note: our profiling logic works with empty rows in any slot.
  1238     // We do sorting a profiling info (ciCallProfile) for compilation.
  1239     //
  1240     set_count(0);
  1241     set_receiver(row, NULL);
  1242     set_receiver_count(row, 0);
  1245   // Code generation support
  1246   static ByteSize receiver_offset(uint row) {
  1247     return cell_offset(receiver_cell_index(row));
  1249   static ByteSize receiver_count_offset(uint row) {
  1250     return cell_offset(receiver_count_cell_index(row));
  1252   static ByteSize receiver_type_data_size() {
  1253     return cell_offset(static_cell_count());
  1256   // GC support
  1257   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
  1259 #ifdef CC_INTERP
  1260   static int receiver_type_data_size_in_bytes() {
  1261     return cell_offset_in_bytes(static_cell_count());
  1264   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
  1265     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
  1266     return recv;
  1269   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
  1270     const int num_rows = row_limit();
  1271     // Receiver already exists?
  1272     for (int row = 0; row < num_rows; row++) {
  1273       if (receiver_unchecked(layout, row) == rcvr) {
  1274         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
  1275         return;
  1278     // New receiver, find a free slot.
  1279     for (int row = 0; row < num_rows; row++) {
  1280       if (receiver_unchecked(layout, row) == NULL) {
  1281         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
  1282         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
  1283         return;
  1286     // Receiver did not match any saved receiver and there is no empty row for it.
  1287     // Increment total counter to indicate polymorphic case.
  1288     increment_count_no_overflow(layout);
  1291   static DataLayout* advance(DataLayout* layout) {
  1292     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
  1294 #endif // CC_INTERP
  1296 #ifndef PRODUCT
  1297   void print_receiver_data_on(outputStream* st) const;
  1298   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1299 #endif
  1300 };
  1302 // VirtualCallData
  1303 //
  1304 // A VirtualCallData is used to access profiling information about a
  1305 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
  1306 class VirtualCallData : public ReceiverTypeData {
  1307 public:
  1308   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
  1309     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
  1310            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1313   virtual bool is_VirtualCallData() const { return true; }
  1315   static int static_cell_count() {
  1316     // At this point we could add more profile state, e.g., for arguments.
  1317     // But for now it's the same size as the base record type.
  1318     return ReceiverTypeData::static_cell_count();
  1321   virtual int cell_count() const {
  1322     return static_cell_count();
  1325   // Direct accessors
  1326   static ByteSize virtual_call_data_size() {
  1327     return cell_offset(static_cell_count());
  1330 #ifdef CC_INTERP
  1331   static int virtual_call_data_size_in_bytes() {
  1332     return cell_offset_in_bytes(static_cell_count());
  1335   static DataLayout* advance(DataLayout* layout) {
  1336     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
  1338 #endif // CC_INTERP
  1340 #ifndef PRODUCT
  1341   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1342 #endif
  1343 };
  1345 // VirtualCallTypeData
  1346 //
  1347 // A VirtualCallTypeData is used to access profiling information about
  1348 // a virtual call for which we collect type information about
  1349 // arguments and return value.
  1350 class VirtualCallTypeData : public VirtualCallData {
  1351 private:
  1352   // entries for arguments if any
  1353   TypeStackSlotEntries _args;
  1354   // entry for return type if any
  1355   ReturnTypeEntry _ret;
  1357   int cell_count_global_offset() const {
  1358     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1361   // number of cells not counting the header
  1362   int cell_count_no_header() const {
  1363     return uint_at(cell_count_global_offset());
  1366   void check_number_of_arguments(int total) {
  1367     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1370 public:
  1371   VirtualCallTypeData(DataLayout* layout) :
  1372     VirtualCallData(layout),
  1373     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1374     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1376     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1377     // Some compilers (VC++) don't want this passed in member initialization list
  1378     _args.set_profile_data(this);
  1379     _ret.set_profile_data(this);
  1382   const TypeStackSlotEntries* args() const {
  1383     assert(has_arguments(), "no profiling of arguments");
  1384     return &_args;
  1387   const ReturnTypeEntry* ret() const {
  1388     assert(has_return(), "no profiling of return value");
  1389     return &_ret;
  1392   virtual bool is_VirtualCallTypeData() const { return true; }
  1394   static int static_cell_count() {
  1395     return -1;
  1398   static int compute_cell_count(BytecodeStream* stream) {
  1399     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1402   static void initialize(DataLayout* dl, int cell_count) {
  1403     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
  1406   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1408   virtual int cell_count() const {
  1409     return VirtualCallData::static_cell_count() +
  1410       TypeEntriesAtCall::header_cell_count() +
  1411       int_at_unchecked(cell_count_global_offset());
  1414   int number_of_arguments() const {
  1415     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1418   void set_argument_type(int i, Klass* k) {
  1419     assert(has_arguments(), "no arguments!");
  1420     intptr_t current = _args.type(i);
  1421     _args.set_type(i, TypeEntries::with_status(k, current));
  1424   void set_return_type(Klass* k) {
  1425     assert(has_return(), "no return!");
  1426     intptr_t current = _ret.type();
  1427     _ret.set_type(TypeEntries::with_status(k, current));
  1430   // An entry for a return value takes less space than an entry for an
  1431   // argument, so if the remainder of the number of cells divided by
  1432   // the number of cells for an argument is not null, a return value
  1433   // is profiled in this object.
  1434   bool has_return() const {
  1435     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1436     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1437     return res;
  1440   // An entry for a return value takes less space than an entry for an
  1441   // argument so if the number of cells exceeds the number of cells
  1442   // needed for an argument, this object contains type information for
  1443   // at least one argument.
  1444   bool has_arguments() const {
  1445     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1446     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1447     return res;
  1450   // Code generation support
  1451   static ByteSize args_data_offset() {
  1452     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1455   // GC support
  1456   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1457     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
  1458     if (has_arguments()) {
  1459       _args.clean_weak_klass_links(is_alive_closure);
  1461     if (has_return()) {
  1462       _ret.clean_weak_klass_links(is_alive_closure);
  1466 #ifndef PRODUCT
  1467   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1468 #endif
  1469 };
  1471 // RetData
  1472 //
  1473 // A RetData is used to access profiling information for a ret bytecode.
  1474 // It is composed of a count of the number of times that the ret has
  1475 // been executed, followed by a series of triples of the form
  1476 // (bci, count, di) which count the number of times that some bci was the
  1477 // target of the ret and cache a corresponding data displacement.
  1478 class RetData : public CounterData {
  1479 protected:
  1480   enum {
  1481     bci0_offset = counter_cell_count,
  1482     count0_offset,
  1483     displacement0_offset,
  1484     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
  1485   };
  1487   void set_bci(uint row, int bci) {
  1488     assert((uint)row < row_limit(), "oob");
  1489     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1491   void release_set_bci(uint row, int bci) {
  1492     assert((uint)row < row_limit(), "oob");
  1493     // 'release' when setting the bci acts as a valid flag for other
  1494     // threads wrt bci_count and bci_displacement.
  1495     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1497   void set_bci_count(uint row, uint count) {
  1498     assert((uint)row < row_limit(), "oob");
  1499     set_uint_at(count0_offset + row * ret_row_cell_count, count);
  1501   void set_bci_displacement(uint row, int disp) {
  1502     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
  1505 public:
  1506   RetData(DataLayout* layout) : CounterData(layout) {
  1507     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
  1510   virtual bool is_RetData() const { return true; }
  1512   enum {
  1513     no_bci = -1 // value of bci when bci1/2 are not in use.
  1514   };
  1516   static int static_cell_count() {
  1517     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
  1520   virtual int cell_count() const {
  1521     return static_cell_count();
  1524   static uint row_limit() {
  1525     return BciProfileWidth;
  1527   static int bci_cell_index(uint row) {
  1528     return bci0_offset + row * ret_row_cell_count;
  1530   static int bci_count_cell_index(uint row) {
  1531     return count0_offset + row * ret_row_cell_count;
  1533   static int bci_displacement_cell_index(uint row) {
  1534     return displacement0_offset + row * ret_row_cell_count;
  1537   // Direct accessors
  1538   int bci(uint row) const {
  1539     return int_at(bci_cell_index(row));
  1541   uint bci_count(uint row) const {
  1542     return uint_at(bci_count_cell_index(row));
  1544   int bci_displacement(uint row) const {
  1545     return int_at(bci_displacement_cell_index(row));
  1548   // Interpreter Runtime support
  1549   address fixup_ret(int return_bci, MethodData* mdo);
  1551   // Code generation support
  1552   static ByteSize bci_offset(uint row) {
  1553     return cell_offset(bci_cell_index(row));
  1555   static ByteSize bci_count_offset(uint row) {
  1556     return cell_offset(bci_count_cell_index(row));
  1558   static ByteSize bci_displacement_offset(uint row) {
  1559     return cell_offset(bci_displacement_cell_index(row));
  1562 #ifdef CC_INTERP
  1563   static DataLayout* advance(MethodData *md, int bci);
  1564 #endif // CC_INTERP
  1566   // Specific initialization.
  1567   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1569 #ifndef PRODUCT
  1570   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1571 #endif
  1572 };
  1574 // BranchData
  1575 //
  1576 // A BranchData is used to access profiling data for a two-way branch.
  1577 // It consists of taken and not_taken counts as well as a data displacement
  1578 // for the taken case.
  1579 class BranchData : public JumpData {
  1580 protected:
  1581   enum {
  1582     not_taken_off_set = jump_cell_count,
  1583     branch_cell_count
  1584   };
  1586   void set_displacement(int displacement) {
  1587     set_int_at(displacement_off_set, displacement);
  1590 public:
  1591   BranchData(DataLayout* layout) : JumpData(layout) {
  1592     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
  1595   virtual bool is_BranchData() const { return true; }
  1597   static int static_cell_count() {
  1598     return branch_cell_count;
  1601   virtual int cell_count() const {
  1602     return static_cell_count();
  1605   // Direct accessor
  1606   uint not_taken() const {
  1607     return uint_at(not_taken_off_set);
  1610   void set_not_taken(uint cnt) {
  1611     set_uint_at(not_taken_off_set, cnt);
  1614   uint inc_not_taken() {
  1615     uint cnt = not_taken() + 1;
  1616     // Did we wrap? Will compiler screw us??
  1617     if (cnt == 0) cnt--;
  1618     set_uint_at(not_taken_off_set, cnt);
  1619     return cnt;
  1622   // Code generation support
  1623   static ByteSize not_taken_offset() {
  1624     return cell_offset(not_taken_off_set);
  1626   static ByteSize branch_data_size() {
  1627     return cell_offset(branch_cell_count);
  1630 #ifdef CC_INTERP
  1631   static int branch_data_size_in_bytes() {
  1632     return cell_offset_in_bytes(branch_cell_count);
  1635   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
  1636     increment_uint_at_no_overflow(layout, not_taken_off_set);
  1639   static DataLayout* advance_not_taken(DataLayout* layout) {
  1640     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
  1642 #endif // CC_INTERP
  1644   // Specific initialization.
  1645   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1647 #ifndef PRODUCT
  1648   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1649 #endif
  1650 };
  1652 // ArrayData
  1653 //
  1654 // A ArrayData is a base class for accessing profiling data which does
  1655 // not have a statically known size.  It consists of an array length
  1656 // and an array start.
  1657 class ArrayData : public ProfileData {
  1658 protected:
  1659   friend class DataLayout;
  1661   enum {
  1662     array_len_off_set,
  1663     array_start_off_set
  1664   };
  1666   uint array_uint_at(int index) const {
  1667     int aindex = index + array_start_off_set;
  1668     return uint_at(aindex);
  1670   int array_int_at(int index) const {
  1671     int aindex = index + array_start_off_set;
  1672     return int_at(aindex);
  1674   oop array_oop_at(int index) const {
  1675     int aindex = index + array_start_off_set;
  1676     return oop_at(aindex);
  1678   void array_set_int_at(int index, int value) {
  1679     int aindex = index + array_start_off_set;
  1680     set_int_at(aindex, value);
  1683 #ifdef CC_INTERP
  1684   // Static low level accessors for DataLayout with ArrayData's semantics.
  1686   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
  1687     int aindex = index + array_start_off_set;
  1688     increment_uint_at_no_overflow(layout, aindex);
  1691   static int array_int_at(DataLayout* layout, int index) {
  1692     int aindex = index + array_start_off_set;
  1693     return int_at(layout, aindex);
  1695 #endif // CC_INTERP
  1697   // Code generation support for subclasses.
  1698   static ByteSize array_element_offset(int index) {
  1699     return cell_offset(array_start_off_set + index);
  1702 public:
  1703   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1705   virtual bool is_ArrayData() const { return true; }
  1707   static int static_cell_count() {
  1708     return -1;
  1711   int array_len() const {
  1712     return int_at_unchecked(array_len_off_set);
  1715   virtual int cell_count() const {
  1716     return array_len() + 1;
  1719   // Code generation support
  1720   static ByteSize array_len_offset() {
  1721     return cell_offset(array_len_off_set);
  1723   static ByteSize array_start_offset() {
  1724     return cell_offset(array_start_off_set);
  1726 };
  1728 // MultiBranchData
  1729 //
  1730 // A MultiBranchData is used to access profiling information for
  1731 // a multi-way branch (*switch bytecodes).  It consists of a series
  1732 // of (count, displacement) pairs, which count the number of times each
  1733 // case was taken and specify the data displacment for each branch target.
  1734 class MultiBranchData : public ArrayData {
  1735 protected:
  1736   enum {
  1737     default_count_off_set,
  1738     default_disaplacement_off_set,
  1739     case_array_start
  1740   };
  1741   enum {
  1742     relative_count_off_set,
  1743     relative_displacement_off_set,
  1744     per_case_cell_count
  1745   };
  1747   void set_default_displacement(int displacement) {
  1748     array_set_int_at(default_disaplacement_off_set, displacement);
  1750   void set_displacement_at(int index, int displacement) {
  1751     array_set_int_at(case_array_start +
  1752                      index * per_case_cell_count +
  1753                      relative_displacement_off_set,
  1754                      displacement);
  1757 public:
  1758   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1759     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1762   virtual bool is_MultiBranchData() const { return true; }
  1764   static int compute_cell_count(BytecodeStream* stream);
  1766   int number_of_cases() const {
  1767     int alen = array_len() - 2; // get rid of default case here.
  1768     assert(alen % per_case_cell_count == 0, "must be even");
  1769     return (alen / per_case_cell_count);
  1772   uint default_count() const {
  1773     return array_uint_at(default_count_off_set);
  1775   int default_displacement() const {
  1776     return array_int_at(default_disaplacement_off_set);
  1779   uint count_at(int index) const {
  1780     return array_uint_at(case_array_start +
  1781                          index * per_case_cell_count +
  1782                          relative_count_off_set);
  1784   int displacement_at(int index) const {
  1785     return array_int_at(case_array_start +
  1786                         index * per_case_cell_count +
  1787                         relative_displacement_off_set);
  1790   // Code generation support
  1791   static ByteSize default_count_offset() {
  1792     return array_element_offset(default_count_off_set);
  1794   static ByteSize default_displacement_offset() {
  1795     return array_element_offset(default_disaplacement_off_set);
  1797   static ByteSize case_count_offset(int index) {
  1798     return case_array_offset() +
  1799            (per_case_size() * index) +
  1800            relative_count_offset();
  1802   static ByteSize case_array_offset() {
  1803     return array_element_offset(case_array_start);
  1805   static ByteSize per_case_size() {
  1806     return in_ByteSize(per_case_cell_count) * cell_size;
  1808   static ByteSize relative_count_offset() {
  1809     return in_ByteSize(relative_count_off_set) * cell_size;
  1811   static ByteSize relative_displacement_offset() {
  1812     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1815 #ifdef CC_INTERP
  1816   static void increment_count_no_overflow(DataLayout* layout, int index) {
  1817     if (index == -1) {
  1818       increment_array_uint_at_no_overflow(layout, default_count_off_set);
  1819     } else {
  1820       increment_array_uint_at_no_overflow(layout, case_array_start +
  1821                                                   index * per_case_cell_count +
  1822                                                   relative_count_off_set);
  1826   static DataLayout* advance(DataLayout* layout, int index) {
  1827     if (index == -1) {
  1828       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
  1829     } else {
  1830       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
  1831                                                                               index * per_case_cell_count +
  1832                                                                               relative_displacement_off_set));
  1835 #endif // CC_INTERP
  1837   // Specific initialization.
  1838   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1840 #ifndef PRODUCT
  1841   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1842 #endif
  1843 };
  1845 class ArgInfoData : public ArrayData {
  1847 public:
  1848   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1849     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1852   virtual bool is_ArgInfoData() const { return true; }
  1855   int number_of_args() const {
  1856     return array_len();
  1859   uint arg_modified(int arg) const {
  1860     return array_uint_at(arg);
  1863   void set_arg_modified(int arg, uint val) {
  1864     array_set_int_at(arg, val);
  1867 #ifndef PRODUCT
  1868   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1869 #endif
  1870 };
  1872 // ParametersTypeData
  1873 //
  1874 // A ParametersTypeData is used to access profiling information about
  1875 // types of parameters to a method
  1876 class ParametersTypeData : public ArrayData {
  1878 private:
  1879   TypeStackSlotEntries _parameters;
  1881   static int stack_slot_local_offset(int i) {
  1882     assert_profiling_enabled();
  1883     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
  1886   static int type_local_offset(int i) {
  1887     assert_profiling_enabled();
  1888     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
  1891   static bool profiling_enabled();
  1892   static void assert_profiling_enabled() {
  1893     assert(profiling_enabled(), "method parameters profiling should be on");
  1896 public:
  1897   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
  1898     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
  1899     // Some compilers (VC++) don't want this passed in member initialization list
  1900     _parameters.set_profile_data(this);
  1903   static int compute_cell_count(Method* m);
  1905   virtual bool is_ParametersTypeData() const { return true; }
  1907   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1909   int number_of_parameters() const {
  1910     return array_len() / TypeStackSlotEntries::per_arg_count();
  1913   const TypeStackSlotEntries* parameters() const { return &_parameters; }
  1915   uint stack_slot(int i) const {
  1916     return _parameters.stack_slot(i);
  1919   void set_type(int i, Klass* k) {
  1920     intptr_t current = _parameters.type(i);
  1921     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
  1924   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1925     _parameters.clean_weak_klass_links(is_alive_closure);
  1928 #ifndef PRODUCT
  1929   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1930 #endif
  1932   static ByteSize stack_slot_offset(int i) {
  1933     return cell_offset(stack_slot_local_offset(i));
  1936   static ByteSize type_offset(int i) {
  1937     return cell_offset(type_local_offset(i));
  1939 };
  1941 // SpeculativeTrapData
  1942 //
  1943 // A SpeculativeTrapData is used to record traps due to type
  1944 // speculation. It records the root of the compilation: that type
  1945 // speculation is wrong in the context of one compilation (for
  1946 // method1) doesn't mean it's wrong in the context of another one (for
  1947 // method2). Type speculation could have more/different data in the
  1948 // context of the compilation of method2 and it's worthwhile to try an
  1949 // optimization that failed for compilation of method1 in the context
  1950 // of compilation of method2.
  1951 // Space for SpeculativeTrapData entries is allocated from the extra
  1952 // data space in the MDO. If we run out of space, the trap data for
  1953 // the ProfileData at that bci is updated.
  1954 class SpeculativeTrapData : public ProfileData {
  1955 protected:
  1956   enum {
  1957     method_offset,
  1958     speculative_trap_cell_count
  1959   };
  1960 public:
  1961   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
  1962     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
  1965   virtual bool is_SpeculativeTrapData() const { return true; }
  1967   static int static_cell_count() {
  1968     return speculative_trap_cell_count;
  1971   virtual int cell_count() const {
  1972     return static_cell_count();
  1975   // Direct accessor
  1976   Method* method() const {
  1977     return (Method*)intptr_at(method_offset);
  1980   void set_method(Method* m) {
  1981     set_intptr_at(method_offset, (intptr_t)m);
  1984 #ifndef PRODUCT
  1985   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1986 #endif
  1987 };
  1989 // MethodData*
  1990 //
  1991 // A MethodData* holds information which has been collected about
  1992 // a method.  Its layout looks like this:
  1993 //
  1994 // -----------------------------
  1995 // | header                    |
  1996 // | klass                     |
  1997 // -----------------------------
  1998 // | method                    |
  1999 // | size of the MethodData* |
  2000 // -----------------------------
  2001 // | Data entries...           |
  2002 // |   (variable size)         |
  2003 // |                           |
  2004 // .                           .
  2005 // .                           .
  2006 // .                           .
  2007 // |                           |
  2008 // -----------------------------
  2009 //
  2010 // The data entry area is a heterogeneous array of DataLayouts. Each
  2011 // DataLayout in the array corresponds to a specific bytecode in the
  2012 // method.  The entries in the array are sorted by the corresponding
  2013 // bytecode.  Access to the data is via resource-allocated ProfileData,
  2014 // which point to the underlying blocks of DataLayout structures.
  2015 //
  2016 // During interpretation, if profiling in enabled, the interpreter
  2017 // maintains a method data pointer (mdp), which points at the entry
  2018 // in the array corresponding to the current bci.  In the course of
  2019 // intepretation, when a bytecode is encountered that has profile data
  2020 // associated with it, the entry pointed to by mdp is updated, then the
  2021 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  2022 // is NULL to begin with, the interpreter assumes that the current method
  2023 // is not (yet) being profiled.
  2024 //
  2025 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  2026 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  2027 // from the base of the data entry array.  A "displacement" is the byte offset
  2028 // in certain ProfileData objects that indicate the amount the mdp must be
  2029 // adjusted in the event of a change in control flow.
  2030 //
  2032 CC_INTERP_ONLY(class BytecodeInterpreter;)
  2034 class MethodData : public Metadata {
  2035   friend class VMStructs;
  2036   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
  2037 private:
  2038   friend class ProfileData;
  2040   // Back pointer to the Method*
  2041   Method* _method;
  2043   // Size of this oop in bytes
  2044   int _size;
  2046   // Cached hint for bci_to_dp and bci_to_data
  2047   int _hint_di;
  2049   Mutex _extra_data_lock;
  2051   MethodData(methodHandle method, int size, TRAPS);
  2052 public:
  2053   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  2054   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
  2056   bool is_methodData() const volatile { return true; }
  2058   // Whole-method sticky bits and flags
  2059   enum {
  2060     _trap_hist_limit    = 19,   // decoupled from Deoptimization::Reason_LIMIT
  2061     _trap_hist_mask     = max_jubyte,
  2062     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  2063   }; // Public flag values
  2064 private:
  2065   uint _nof_decompiles;             // count of all nmethod removals
  2066   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  2067   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  2068   union {
  2069     intptr_t _align;
  2070     u1 _array[_trap_hist_limit];
  2071   } _trap_hist;
  2073   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2074   intx              _eflags;          // flags on escape information
  2075   intx              _arg_local;       // bit set of non-escaping arguments
  2076   intx              _arg_stack;       // bit set of stack-allocatable arguments
  2077   intx              _arg_returned;    // bit set of returned arguments
  2079   int _creation_mileage;              // method mileage at MDO creation
  2081   // How many invocations has this MDO seen?
  2082   // These counters are used to determine the exact age of MDO.
  2083   // We need those because in tiered a method can be concurrently
  2084   // executed at different levels.
  2085   InvocationCounter _invocation_counter;
  2086   // Same for backedges.
  2087   InvocationCounter _backedge_counter;
  2088   // Counter values at the time profiling started.
  2089   int               _invocation_counter_start;
  2090   int               _backedge_counter_start;
  2092 #if INCLUDE_RTM_OPT
  2093   // State of RTM code generation during compilation of the method
  2094   int               _rtm_state;
  2095 #endif
  2097   // Number of loops and blocks is computed when compiling the first
  2098   // time with C1. It is used to determine if method is trivial.
  2099   short             _num_loops;
  2100   short             _num_blocks;
  2101   // Highest compile level this method has ever seen.
  2102   u1                _highest_comp_level;
  2103   // Same for OSR level
  2104   u1                _highest_osr_comp_level;
  2105   // Does this method contain anything worth profiling?
  2106   bool              _would_profile;
  2108   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  2109   int _data_size;
  2111   // data index for the area dedicated to parameters. -1 if no
  2112   // parameter profiling.
  2113   int _parameters_type_data_di;
  2115   // Beginning of the data entries
  2116   intptr_t _data[1];
  2118   // Helper for size computation
  2119   static int compute_data_size(BytecodeStream* stream);
  2120   static int bytecode_cell_count(Bytecodes::Code code);
  2121   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
  2122   enum { no_profile_data = -1, variable_cell_count = -2 };
  2124   // Helper for initialization
  2125   DataLayout* data_layout_at(int data_index) const {
  2126     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  2127     return (DataLayout*) (((address)_data) + data_index);
  2130   // Initialize an individual data segment.  Returns the size of
  2131   // the segment in bytes.
  2132   int initialize_data(BytecodeStream* stream, int data_index);
  2134   // Helper for data_at
  2135   DataLayout* limit_data_position() const {
  2136     return (DataLayout*)((address)data_base() + _data_size);
  2138   bool out_of_bounds(int data_index) const {
  2139     return data_index >= data_size();
  2142   // Give each of the data entries a chance to perform specific
  2143   // data initialization.
  2144   void post_initialize(BytecodeStream* stream);
  2146   // hint accessors
  2147   int      hint_di() const  { return _hint_di; }
  2148   void set_hint_di(int di)  {
  2149     assert(!out_of_bounds(di), "hint_di out of bounds");
  2150     _hint_di = di;
  2152   ProfileData* data_before(int bci) {
  2153     // avoid SEGV on this edge case
  2154     if (data_size() == 0)
  2155       return NULL;
  2156     int hint = hint_di();
  2157     if (data_layout_at(hint)->bci() <= bci)
  2158       return data_at(hint);
  2159     return first_data();
  2162   // What is the index of the first data entry?
  2163   int first_di() const { return 0; }
  2165   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
  2166   // Find or create an extra ProfileData:
  2167   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
  2169   // return the argument info cell
  2170   ArgInfoData *arg_info();
  2172   enum {
  2173     no_type_profile = 0,
  2174     type_profile_jsr292 = 1,
  2175     type_profile_all = 2
  2176   };
  2178   static bool profile_jsr292(methodHandle m, int bci);
  2179   static int profile_arguments_flag();
  2180   static bool profile_all_arguments();
  2181   static bool profile_arguments_for_invoke(methodHandle m, int bci);
  2182   static int profile_return_flag();
  2183   static bool profile_all_return();
  2184   static bool profile_return_for_invoke(methodHandle m, int bci);
  2185   static int profile_parameters_flag();
  2186   static bool profile_parameters_jsr292_only();
  2187   static bool profile_all_parameters();
  2189   void clean_extra_data(BoolObjectClosure* is_alive);
  2190   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
  2191   void verify_extra_data_clean(BoolObjectClosure* is_alive);
  2193 public:
  2194   static int header_size() {
  2195     return sizeof(MethodData)/wordSize;
  2198   // Compute the size of a MethodData* before it is created.
  2199   static int compute_allocation_size_in_bytes(methodHandle method);
  2200   static int compute_allocation_size_in_words(methodHandle method);
  2201   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
  2203   // Determine if a given bytecode can have profile information.
  2204   static bool bytecode_has_profile(Bytecodes::Code code) {
  2205     return bytecode_cell_count(code) != no_profile_data;
  2208   // reset into original state
  2209   void init();
  2211   // My size
  2212   int size_in_bytes() const { return _size; }
  2213   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  2214 #if INCLUDE_SERVICES
  2215   void collect_statistics(KlassSizeStats *sz) const;
  2216 #endif
  2218   int      creation_mileage() const  { return _creation_mileage; }
  2219   void set_creation_mileage(int x)   { _creation_mileage = x; }
  2221   int invocation_count() {
  2222     if (invocation_counter()->carry()) {
  2223       return InvocationCounter::count_limit;
  2225     return invocation_counter()->count();
  2227   int backedge_count() {
  2228     if (backedge_counter()->carry()) {
  2229       return InvocationCounter::count_limit;
  2231     return backedge_counter()->count();
  2234   int invocation_count_start() {
  2235     if (invocation_counter()->carry()) {
  2236       return 0;
  2238     return _invocation_counter_start;
  2241   int backedge_count_start() {
  2242     if (backedge_counter()->carry()) {
  2243       return 0;
  2245     return _backedge_counter_start;
  2248   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  2249   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  2251   void reset_start_counters() {
  2252     _invocation_counter_start = invocation_count();
  2253     _backedge_counter_start = backedge_count();
  2256   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  2257   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  2259 #if INCLUDE_RTM_OPT
  2260   int rtm_state() const {
  2261     return _rtm_state;
  2263   void set_rtm_state(RTMState rstate) {
  2264     _rtm_state = (int)rstate;
  2266   void atomic_set_rtm_state(RTMState rstate) {
  2267     Atomic::store((int)rstate, &_rtm_state);
  2270   static int rtm_state_offset_in_bytes() {
  2271     return offset_of(MethodData, _rtm_state);
  2273 #endif
  2275   void set_would_profile(bool p)              { _would_profile = p;    }
  2276   bool would_profile() const                  { return _would_profile; }
  2278   int highest_comp_level() const              { return _highest_comp_level;      }
  2279   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  2280   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
  2281   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  2283   int num_loops() const                       { return _num_loops;  }
  2284   void set_num_loops(int n)                   { _num_loops = n;     }
  2285   int num_blocks() const                      { return _num_blocks; }
  2286   void set_num_blocks(int n)                  { _num_blocks = n;    }
  2288   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  2289   static int mileage_of(Method* m);
  2291   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2292   enum EscapeFlag {
  2293     estimated    = 1 << 0,
  2294     return_local = 1 << 1,
  2295     return_allocated = 1 << 2,
  2296     allocated_escapes = 1 << 3,
  2297     unknown_modified = 1 << 4
  2298   };
  2300   intx eflags()                                  { return _eflags; }
  2301   intx arg_local()                               { return _arg_local; }
  2302   intx arg_stack()                               { return _arg_stack; }
  2303   intx arg_returned()                            { return _arg_returned; }
  2304   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  2305                                                    assert(aid != NULL, "arg_info must be not null");
  2306                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2307                                                    return aid->arg_modified(a); }
  2309   void set_eflags(intx v)                        { _eflags = v; }
  2310   void set_arg_local(intx v)                     { _arg_local = v; }
  2311   void set_arg_stack(intx v)                     { _arg_stack = v; }
  2312   void set_arg_returned(intx v)                  { _arg_returned = v; }
  2313   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  2314                                                    assert(aid != NULL, "arg_info must be not null");
  2315                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2316                                                    aid->set_arg_modified(a, v); }
  2318   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  2320   // Location and size of data area
  2321   address data_base() const {
  2322     return (address) _data;
  2324   int data_size() const {
  2325     return _data_size;
  2328   // Accessors
  2329   Method* method() const { return _method; }
  2331   // Get the data at an arbitrary (sort of) data index.
  2332   ProfileData* data_at(int data_index) const;
  2334   // Walk through the data in order.
  2335   ProfileData* first_data() const { return data_at(first_di()); }
  2336   ProfileData* next_data(ProfileData* current) const;
  2337   bool is_valid(ProfileData* current) const { return current != NULL; }
  2339   // Convert a dp (data pointer) to a di (data index).
  2340   int dp_to_di(address dp) const {
  2341     return dp - ((address)_data);
  2344   address di_to_dp(int di) {
  2345     return (address)data_layout_at(di);
  2348   // bci to di/dp conversion.
  2349   address bci_to_dp(int bci);
  2350   int bci_to_di(int bci) {
  2351     return dp_to_di(bci_to_dp(bci));
  2354   // Get the data at an arbitrary bci, or NULL if there is none.
  2355   ProfileData* bci_to_data(int bci);
  2357   // Same, but try to create an extra_data record if one is needed:
  2358   ProfileData* allocate_bci_to_data(int bci, Method* m) {
  2359     ProfileData* data = NULL;
  2360     // If m not NULL, try to allocate a SpeculativeTrapData entry
  2361     if (m == NULL) {
  2362       data = bci_to_data(bci);
  2364     if (data != NULL) {
  2365       return data;
  2367     data = bci_to_extra_data(bci, m, true);
  2368     if (data != NULL) {
  2369       return data;
  2371     // If SpeculativeTrapData allocation fails try to allocate a
  2372     // regular entry
  2373     data = bci_to_data(bci);
  2374     if (data != NULL) {
  2375       return data;
  2377     return bci_to_extra_data(bci, NULL, true);
  2380   // Add a handful of extra data records, for trap tracking.
  2381   DataLayout* extra_data_base() const { return limit_data_position(); }
  2382   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  2383   int extra_data_size() const { return (address)extra_data_limit()
  2384                                - (address)extra_data_base(); }
  2385   static DataLayout* next_extra(DataLayout* dp);
  2387   // Return (uint)-1 for overflow.
  2388   uint trap_count(int reason) const {
  2389     assert((uint)reason < _trap_hist_limit, "oob");
  2390     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  2392   // For loops:
  2393   static uint trap_reason_limit() { return _trap_hist_limit; }
  2394   static uint trap_count_limit()  { return _trap_hist_mask; }
  2395   uint inc_trap_count(int reason) {
  2396     // Count another trap, anywhere in this method.
  2397     assert(reason >= 0, "must be single trap");
  2398     if ((uint)reason < _trap_hist_limit) {
  2399       uint cnt1 = 1 + _trap_hist._array[reason];
  2400       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  2401         _trap_hist._array[reason] = cnt1;
  2402         return cnt1;
  2403       } else {
  2404         return _trap_hist_mask + (++_nof_overflow_traps);
  2406     } else {
  2407       // Could not represent the count in the histogram.
  2408       return (++_nof_overflow_traps);
  2412   uint overflow_trap_count() const {
  2413     return _nof_overflow_traps;
  2415   uint overflow_recompile_count() const {
  2416     return _nof_overflow_recompiles;
  2418   void inc_overflow_recompile_count() {
  2419     _nof_overflow_recompiles += 1;
  2421   uint decompile_count() const {
  2422     return _nof_decompiles;
  2424   void inc_decompile_count() {
  2425     _nof_decompiles += 1;
  2426     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  2427       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  2431   // Return pointer to area dedicated to parameters in MDO
  2432   ParametersTypeData* parameters_type_data() const {
  2433     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
  2436   int parameters_type_data_di() const {
  2437     assert(_parameters_type_data_di != -1, "no args type data");
  2438     return _parameters_type_data_di;
  2441   // Support for code generation
  2442   static ByteSize data_offset() {
  2443     return byte_offset_of(MethodData, _data[0]);
  2446   static ByteSize invocation_counter_offset() {
  2447     return byte_offset_of(MethodData, _invocation_counter);
  2449   static ByteSize backedge_counter_offset() {
  2450     return byte_offset_of(MethodData, _backedge_counter);
  2453   static ByteSize parameters_type_data_di_offset() {
  2454     return byte_offset_of(MethodData, _parameters_type_data_di);
  2457   // Deallocation support - no pointer fields to deallocate
  2458   void deallocate_contents(ClassLoaderData* loader_data) {}
  2460   // GC support
  2461   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  2463   // Printing
  2464 #ifndef PRODUCT
  2465   void print_on      (outputStream* st) const;
  2466 #endif
  2467   void print_value_on(outputStream* st) const;
  2469 #ifndef PRODUCT
  2470   // printing support for method data
  2471   void print_data_on(outputStream* st) const;
  2472 #endif
  2474   const char* internal_name() const { return "{method data}"; }
  2476   // verification
  2477   void verify_on(outputStream* st);
  2478   void verify_data_on(outputStream* st);
  2480   static bool profile_parameters_for_method(methodHandle m);
  2481   static bool profile_arguments();
  2482   static bool profile_arguments_jsr292_only();
  2483   static bool profile_return();
  2484   static bool profile_parameters();
  2485   static bool profile_return_jsr292_only();
  2487   void clean_method_data(BoolObjectClosure* is_alive);
  2488 };
  2490 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial