src/share/vm/oops/methodData.hpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
27
28 #include "interpreter/bytecodes.hpp"
29 #include "memory/universe.hpp"
30 #include "oops/method.hpp"
31 #include "oops/oop.hpp"
32 #include "runtime/orderAccess.hpp"
33
34 class BytecodeStream;
35 class KlassSizeStats;
36
37 // The MethodData object collects counts and other profile information
38 // during zeroth-tier (interpretive) and first-tier execution.
39 // The profile is used later by compilation heuristics. Some heuristics
40 // enable use of aggressive (or "heroic") optimizations. An aggressive
41 // optimization often has a down-side, a corner case that it handles
42 // poorly, but which is thought to be rare. The profile provides
43 // evidence of this rarity for a given method or even BCI. It allows
44 // the compiler to back out of the optimization at places where it
45 // has historically been a poor choice. Other heuristics try to use
46 // specific information gathered about types observed at a given site.
47 //
48 // All data in the profile is approximate. It is expected to be accurate
49 // on the whole, but the system expects occasional inaccuraces, due to
50 // counter overflow, multiprocessor races during data collection, space
51 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
52 // optimization quality but will not affect correctness. Also, each MDO
53 // is marked with its birth-date ("creation_mileage") which can be used
54 // to assess the quality ("maturity") of its data.
55 //
56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
57 // state. Also, certain recorded per-BCI events are given one-bit counters
58 // which overflow to a saturated state which applied to all counters at
59 // that BCI. In other words, there is a small lattice which approximates
60 // the ideal of an infinite-precision counter for each event at each BCI,
61 // and the lattice quickly "bottoms out" in a state where all counters
62 // are taken to be indefinitely large.
63 //
64 // The reader will find many data races in profile gathering code, starting
65 // with invocation counter incrementation. None of these races harm correct
66 // execution of the compiled code.
67
68 // forward decl
69 class ProfileData;
70
71 // DataLayout
72 //
73 // Overlay for generic profiling data.
74 class DataLayout VALUE_OBJ_CLASS_SPEC {
75 friend class VMStructs;
76
77 private:
78 // Every data layout begins with a header. This header
79 // contains a tag, which is used to indicate the size/layout
80 // of the data, 4 bits of flags, which can be used in any way,
81 // 4 bits of trap history (none/one reason/many reasons),
82 // and a bci, which is used to tie this piece of data to a
83 // specific bci in the bytecodes.
84 union {
85 intptr_t _bits;
86 struct {
87 u1 _tag;
88 u1 _flags;
89 u2 _bci;
90 } _struct;
91 } _header;
92
93 // The data layout has an arbitrary number of cells, each sized
94 // to accomodate a pointer or an integer.
95 intptr_t _cells[1];
96
97 // Some types of data layouts need a length field.
98 static bool needs_array_len(u1 tag);
99
100 public:
101 enum {
102 counter_increment = 1
103 };
104
105 enum {
106 cell_size = sizeof(intptr_t)
107 };
108
109 // Tag values
110 enum {
111 no_tag,
112 bit_data_tag,
113 counter_data_tag,
114 jump_data_tag,
115 receiver_type_data_tag,
116 virtual_call_data_tag,
117 ret_data_tag,
118 branch_data_tag,
119 multi_branch_data_tag,
120 arg_info_data_tag,
121 call_type_data_tag,
122 virtual_call_type_data_tag,
123 parameters_type_data_tag,
124 speculative_trap_data_tag
125 };
126
127 enum {
128 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
129 // The trap state breaks down further as [recompile:1 | reason:3].
130 // This further breakdown is defined in deoptimization.cpp.
131 // See Deoptimization::trap_state_reason for an assert that
132 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
133 //
134 // The trap_state is collected only if ProfileTraps is true.
135 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
136 trap_shift = BitsPerByte - trap_bits,
137 trap_mask = right_n_bits(trap_bits),
138 trap_mask_in_place = (trap_mask << trap_shift),
139 flag_limit = trap_shift,
140 flag_mask = right_n_bits(flag_limit),
141 first_flag = 0
142 };
143
144 // Size computation
145 static int header_size_in_bytes() {
146 return cell_size;
147 }
148 static int header_size_in_cells() {
149 return 1;
150 }
151
152 static int compute_size_in_bytes(int cell_count) {
153 return header_size_in_bytes() + cell_count * cell_size;
154 }
155
156 // Initialization
157 void initialize(u1 tag, u2 bci, int cell_count);
158
159 // Accessors
160 u1 tag() {
161 return _header._struct._tag;
162 }
163
164 // Return a few bits of trap state. Range is [0..trap_mask].
165 // The state tells if traps with zero, one, or many reasons have occurred.
166 // It also tells whether zero or many recompilations have occurred.
167 // The associated trap histogram in the MDO itself tells whether
168 // traps are common or not. If a BCI shows that a trap X has
169 // occurred, and the MDO shows N occurrences of X, we make the
170 // simplifying assumption that all N occurrences can be blamed
171 // on that BCI.
172 int trap_state() const {
173 return ((_header._struct._flags >> trap_shift) & trap_mask);
174 }
175
176 void set_trap_state(int new_state) {
177 assert(ProfileTraps, "used only under +ProfileTraps");
178 uint old_flags = (_header._struct._flags & flag_mask);
179 _header._struct._flags = (new_state << trap_shift) | old_flags;
180 }
181
182 u1 flags() const {
183 return _header._struct._flags;
184 }
185
186 u2 bci() const {
187 return _header._struct._bci;
188 }
189
190 void set_header(intptr_t value) {
191 _header._bits = value;
192 }
193 intptr_t header() {
194 return _header._bits;
195 }
196 void set_cell_at(int index, intptr_t value) {
197 _cells[index] = value;
198 }
199 void release_set_cell_at(int index, intptr_t value) {
200 OrderAccess::release_store_ptr(&_cells[index], value);
201 }
202 intptr_t cell_at(int index) const {
203 return _cells[index];
204 }
205
206 void set_flag_at(int flag_number) {
207 assert(flag_number < flag_limit, "oob");
208 _header._struct._flags |= (0x1 << flag_number);
209 }
210 bool flag_at(int flag_number) const {
211 assert(flag_number < flag_limit, "oob");
212 return (_header._struct._flags & (0x1 << flag_number)) != 0;
213 }
214
215 // Low-level support for code generation.
216 static ByteSize header_offset() {
217 return byte_offset_of(DataLayout, _header);
218 }
219 static ByteSize tag_offset() {
220 return byte_offset_of(DataLayout, _header._struct._tag);
221 }
222 static ByteSize flags_offset() {
223 return byte_offset_of(DataLayout, _header._struct._flags);
224 }
225 static ByteSize bci_offset() {
226 return byte_offset_of(DataLayout, _header._struct._bci);
227 }
228 static ByteSize cell_offset(int index) {
229 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
230 }
231 #ifdef CC_INTERP
232 static int cell_offset_in_bytes(int index) {
233 return (int)offset_of(DataLayout, _cells[index]);
234 }
235 #endif // CC_INTERP
236 // Return a value which, when or-ed as a byte into _flags, sets the flag.
237 static int flag_number_to_byte_constant(int flag_number) {
238 assert(0 <= flag_number && flag_number < flag_limit, "oob");
239 DataLayout temp; temp.set_header(0);
240 temp.set_flag_at(flag_number);
241 return temp._header._struct._flags;
242 }
243 // Return a value which, when or-ed as a word into _header, sets the flag.
244 static intptr_t flag_mask_to_header_mask(int byte_constant) {
245 DataLayout temp; temp.set_header(0);
246 temp._header._struct._flags = byte_constant;
247 return temp._header._bits;
248 }
249
250 ProfileData* data_in();
251
252 // GC support
253 void clean_weak_klass_links(BoolObjectClosure* cl);
254 };
255
256
257 // ProfileData class hierarchy
258 class ProfileData;
259 class BitData;
260 class CounterData;
261 class ReceiverTypeData;
262 class VirtualCallData;
263 class VirtualCallTypeData;
264 class RetData;
265 class CallTypeData;
266 class JumpData;
267 class BranchData;
268 class ArrayData;
269 class MultiBranchData;
270 class ArgInfoData;
271 class ParametersTypeData;
272 class SpeculativeTrapData;
273
274 // ProfileData
275 //
276 // A ProfileData object is created to refer to a section of profiling
277 // data in a structured way.
278 class ProfileData : public ResourceObj {
279 friend class TypeEntries;
280 friend class ReturnTypeEntry;
281 friend class TypeStackSlotEntries;
282 private:
283 #ifndef PRODUCT
284 enum {
285 tab_width_one = 16,
286 tab_width_two = 36
287 };
288 #endif // !PRODUCT
289
290 // This is a pointer to a section of profiling data.
291 DataLayout* _data;
292
293 char* print_data_on_helper(const MethodData* md) const;
294
295 protected:
296 DataLayout* data() { return _data; }
297 const DataLayout* data() const { return _data; }
298
299 enum {
300 cell_size = DataLayout::cell_size
301 };
302
303 public:
304 // How many cells are in this?
305 virtual int cell_count() const {
306 ShouldNotReachHere();
307 return -1;
308 }
309
310 // Return the size of this data.
311 int size_in_bytes() {
312 return DataLayout::compute_size_in_bytes(cell_count());
313 }
314
315 protected:
316 // Low-level accessors for underlying data
317 void set_intptr_at(int index, intptr_t value) {
318 assert(0 <= index && index < cell_count(), "oob");
319 data()->set_cell_at(index, value);
320 }
321 void release_set_intptr_at(int index, intptr_t value) {
322 assert(0 <= index && index < cell_count(), "oob");
323 data()->release_set_cell_at(index, value);
324 }
325 intptr_t intptr_at(int index) const {
326 assert(0 <= index && index < cell_count(), "oob");
327 return data()->cell_at(index);
328 }
329 void set_uint_at(int index, uint value) {
330 set_intptr_at(index, (intptr_t) value);
331 }
332 void release_set_uint_at(int index, uint value) {
333 release_set_intptr_at(index, (intptr_t) value);
334 }
335 uint uint_at(int index) const {
336 return (uint)intptr_at(index);
337 }
338 void set_int_at(int index, int value) {
339 set_intptr_at(index, (intptr_t) value);
340 }
341 void release_set_int_at(int index, int value) {
342 release_set_intptr_at(index, (intptr_t) value);
343 }
344 int int_at(int index) const {
345 return (int)intptr_at(index);
346 }
347 int int_at_unchecked(int index) const {
348 return (int)data()->cell_at(index);
349 }
350 void set_oop_at(int index, oop value) {
351 set_intptr_at(index, cast_from_oop<intptr_t>(value));
352 }
353 oop oop_at(int index) const {
354 return cast_to_oop(intptr_at(index));
355 }
356
357 void set_flag_at(int flag_number) {
358 data()->set_flag_at(flag_number);
359 }
360 bool flag_at(int flag_number) const {
361 return data()->flag_at(flag_number);
362 }
363
364 // two convenient imports for use by subclasses:
365 static ByteSize cell_offset(int index) {
366 return DataLayout::cell_offset(index);
367 }
368 static int flag_number_to_byte_constant(int flag_number) {
369 return DataLayout::flag_number_to_byte_constant(flag_number);
370 }
371
372 ProfileData(DataLayout* data) {
373 _data = data;
374 }
375
376 #ifdef CC_INTERP
377 // Static low level accessors for DataLayout with ProfileData's semantics.
378
379 static int cell_offset_in_bytes(int index) {
380 return DataLayout::cell_offset_in_bytes(index);
381 }
382
383 static void increment_uint_at_no_overflow(DataLayout* layout, int index,
384 int inc = DataLayout::counter_increment) {
385 uint count = ((uint)layout->cell_at(index)) + inc;
386 if (count == 0) return;
387 layout->set_cell_at(index, (intptr_t) count);
388 }
389
390 static int int_at(DataLayout* layout, int index) {
391 return (int)layout->cell_at(index);
392 }
393
394 static int uint_at(DataLayout* layout, int index) {
395 return (uint)layout->cell_at(index);
396 }
397
398 static oop oop_at(DataLayout* layout, int index) {
399 return cast_to_oop(layout->cell_at(index));
400 }
401
402 static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
403 layout->set_cell_at(index, (intptr_t) value);
404 }
405
406 static void set_flag_at(DataLayout* layout, int flag_number) {
407 layout->set_flag_at(flag_number);
408 }
409 #endif // CC_INTERP
410
411 public:
412 // Constructor for invalid ProfileData.
413 ProfileData();
414
415 u2 bci() const {
416 return data()->bci();
417 }
418
419 address dp() {
420 return (address)_data;
421 }
422
423 int trap_state() const {
424 return data()->trap_state();
425 }
426 void set_trap_state(int new_state) {
427 data()->set_trap_state(new_state);
428 }
429
430 // Type checking
431 virtual bool is_BitData() const { return false; }
432 virtual bool is_CounterData() const { return false; }
433 virtual bool is_JumpData() const { return false; }
434 virtual bool is_ReceiverTypeData()const { return false; }
435 virtual bool is_VirtualCallData() const { return false; }
436 virtual bool is_RetData() const { return false; }
437 virtual bool is_BranchData() const { return false; }
438 virtual bool is_ArrayData() const { return false; }
439 virtual bool is_MultiBranchData() const { return false; }
440 virtual bool is_ArgInfoData() const { return false; }
441 virtual bool is_CallTypeData() const { return false; }
442 virtual bool is_VirtualCallTypeData()const { return false; }
443 virtual bool is_ParametersTypeData() const { return false; }
444 virtual bool is_SpeculativeTrapData()const { return false; }
445
446
447 BitData* as_BitData() const {
448 assert(is_BitData(), "wrong type");
449 return is_BitData() ? (BitData*) this : NULL;
450 }
451 CounterData* as_CounterData() const {
452 assert(is_CounterData(), "wrong type");
453 return is_CounterData() ? (CounterData*) this : NULL;
454 }
455 JumpData* as_JumpData() const {
456 assert(is_JumpData(), "wrong type");
457 return is_JumpData() ? (JumpData*) this : NULL;
458 }
459 ReceiverTypeData* as_ReceiverTypeData() const {
460 assert(is_ReceiverTypeData(), "wrong type");
461 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
462 }
463 VirtualCallData* as_VirtualCallData() const {
464 assert(is_VirtualCallData(), "wrong type");
465 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
466 }
467 RetData* as_RetData() const {
468 assert(is_RetData(), "wrong type");
469 return is_RetData() ? (RetData*) this : NULL;
470 }
471 BranchData* as_BranchData() const {
472 assert(is_BranchData(), "wrong type");
473 return is_BranchData() ? (BranchData*) this : NULL;
474 }
475 ArrayData* as_ArrayData() const {
476 assert(is_ArrayData(), "wrong type");
477 return is_ArrayData() ? (ArrayData*) this : NULL;
478 }
479 MultiBranchData* as_MultiBranchData() const {
480 assert(is_MultiBranchData(), "wrong type");
481 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
482 }
483 ArgInfoData* as_ArgInfoData() const {
484 assert(is_ArgInfoData(), "wrong type");
485 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
486 }
487 CallTypeData* as_CallTypeData() const {
488 assert(is_CallTypeData(), "wrong type");
489 return is_CallTypeData() ? (CallTypeData*)this : NULL;
490 }
491 VirtualCallTypeData* as_VirtualCallTypeData() const {
492 assert(is_VirtualCallTypeData(), "wrong type");
493 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
494 }
495 ParametersTypeData* as_ParametersTypeData() const {
496 assert(is_ParametersTypeData(), "wrong type");
497 return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
498 }
499 SpeculativeTrapData* as_SpeculativeTrapData() const {
500 assert(is_SpeculativeTrapData(), "wrong type");
501 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
502 }
503
504
505 // Subclass specific initialization
506 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
507
508 // GC support
509 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
510
511 // CI translation: ProfileData can represent both MethodDataOop data
512 // as well as CIMethodData data. This function is provided for translating
513 // an oop in a ProfileData to the ci equivalent. Generally speaking,
514 // most ProfileData don't require any translation, so we provide the null
515 // translation here, and the required translators are in the ci subclasses.
516 virtual void translate_from(const ProfileData* data) {}
517
518 virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
519 ShouldNotReachHere();
520 }
521
522 void print_data_on(outputStream* st, const MethodData* md) const;
523
524 #ifndef PRODUCT
525 void print_shared(outputStream* st, const char* name, const char* extra) const;
526 void tab(outputStream* st, bool first = false) const;
527 #endif
528 };
529
530 // BitData
531 //
532 // A BitData holds a flag or two in its header.
533 class BitData : public ProfileData {
534 protected:
535 enum {
536 // null_seen:
537 // saw a null operand (cast/aastore/instanceof)
538 null_seen_flag = DataLayout::first_flag + 0
539 };
540 enum { bit_cell_count = 0 }; // no additional data fields needed.
541 public:
542 BitData(DataLayout* layout) : ProfileData(layout) {
543 }
544
545 virtual bool is_BitData() const { return true; }
546
547 static int static_cell_count() {
548 return bit_cell_count;
549 }
550
551 virtual int cell_count() const {
552 return static_cell_count();
553 }
554
555 // Accessor
556
557 // The null_seen flag bit is specially known to the interpreter.
558 // Consulting it allows the compiler to avoid setting up null_check traps.
559 bool null_seen() { return flag_at(null_seen_flag); }
560 void set_null_seen() { set_flag_at(null_seen_flag); }
561
562
563 // Code generation support
564 static int null_seen_byte_constant() {
565 return flag_number_to_byte_constant(null_seen_flag);
566 }
567
568 static ByteSize bit_data_size() {
569 return cell_offset(bit_cell_count);
570 }
571
572 #ifdef CC_INTERP
573 static int bit_data_size_in_bytes() {
574 return cell_offset_in_bytes(bit_cell_count);
575 }
576
577 static void set_null_seen(DataLayout* layout) {
578 set_flag_at(layout, null_seen_flag);
579 }
580
581 static DataLayout* advance(DataLayout* layout) {
582 return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
583 }
584 #endif // CC_INTERP
585
586 #ifndef PRODUCT
587 void print_data_on(outputStream* st, const char* extra = NULL) const;
588 #endif
589 };
590
591 // CounterData
592 //
593 // A CounterData corresponds to a simple counter.
594 class CounterData : public BitData {
595 protected:
596 enum {
597 count_off,
598 counter_cell_count
599 };
600 public:
601 CounterData(DataLayout* layout) : BitData(layout) {}
602
603 virtual bool is_CounterData() const { return true; }
604
605 static int static_cell_count() {
606 return counter_cell_count;
607 }
608
609 virtual int cell_count() const {
610 return static_cell_count();
611 }
612
613 // Direct accessor
614 uint count() const {
615 return uint_at(count_off);
616 }
617
618 // Code generation support
619 static ByteSize count_offset() {
620 return cell_offset(count_off);
621 }
622 static ByteSize counter_data_size() {
623 return cell_offset(counter_cell_count);
624 }
625
626 void set_count(uint count) {
627 set_uint_at(count_off, count);
628 }
629
630 #ifdef CC_INTERP
631 static int counter_data_size_in_bytes() {
632 return cell_offset_in_bytes(counter_cell_count);
633 }
634
635 static void increment_count_no_overflow(DataLayout* layout) {
636 increment_uint_at_no_overflow(layout, count_off);
637 }
638
639 // Support counter decrementation at checkcast / subtype check failed.
640 static void decrement_count(DataLayout* layout) {
641 increment_uint_at_no_overflow(layout, count_off, -1);
642 }
643
644 static DataLayout* advance(DataLayout* layout) {
645 return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
646 }
647 #endif // CC_INTERP
648
649 #ifndef PRODUCT
650 void print_data_on(outputStream* st, const char* extra = NULL) const;
651 #endif
652 };
653
654 // JumpData
655 //
656 // A JumpData is used to access profiling information for a direct
657 // branch. It is a counter, used for counting the number of branches,
658 // plus a data displacement, used for realigning the data pointer to
659 // the corresponding target bci.
660 class JumpData : public ProfileData {
661 protected:
662 enum {
663 taken_off_set,
664 displacement_off_set,
665 jump_cell_count
666 };
667
668 void set_displacement(int displacement) {
669 set_int_at(displacement_off_set, displacement);
670 }
671
672 public:
673 JumpData(DataLayout* layout) : ProfileData(layout) {
674 assert(layout->tag() == DataLayout::jump_data_tag ||
675 layout->tag() == DataLayout::branch_data_tag, "wrong type");
676 }
677
678 virtual bool is_JumpData() const { return true; }
679
680 static int static_cell_count() {
681 return jump_cell_count;
682 }
683
684 virtual int cell_count() const {
685 return static_cell_count();
686 }
687
688 // Direct accessor
689 uint taken() const {
690 return uint_at(taken_off_set);
691 }
692
693 void set_taken(uint cnt) {
694 set_uint_at(taken_off_set, cnt);
695 }
696
697 // Saturating counter
698 uint inc_taken() {
699 uint cnt = taken() + 1;
700 // Did we wrap? Will compiler screw us??
701 if (cnt == 0) cnt--;
702 set_uint_at(taken_off_set, cnt);
703 return cnt;
704 }
705
706 int displacement() const {
707 return int_at(displacement_off_set);
708 }
709
710 // Code generation support
711 static ByteSize taken_offset() {
712 return cell_offset(taken_off_set);
713 }
714
715 static ByteSize displacement_offset() {
716 return cell_offset(displacement_off_set);
717 }
718
719 #ifdef CC_INTERP
720 static void increment_taken_count_no_overflow(DataLayout* layout) {
721 increment_uint_at_no_overflow(layout, taken_off_set);
722 }
723
724 static DataLayout* advance_taken(DataLayout* layout) {
725 return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
726 }
727
728 static uint taken_count(DataLayout* layout) {
729 return (uint) uint_at(layout, taken_off_set);
730 }
731 #endif // CC_INTERP
732
733 // Specific initialization.
734 void post_initialize(BytecodeStream* stream, MethodData* mdo);
735
736 #ifndef PRODUCT
737 void print_data_on(outputStream* st, const char* extra = NULL) const;
738 #endif
739 };
740
741 // Entries in a ProfileData object to record types: it can either be
742 // none (no profile), unknown (conflicting profile data) or a klass if
743 // a single one is seen. Whether a null reference was seen is also
744 // recorded. No counter is associated with the type and a single type
745 // is tracked (unlike VirtualCallData).
746 class TypeEntries {
747
748 public:
749
750 // A single cell is used to record information for a type:
751 // - the cell is initialized to 0
752 // - when a type is discovered it is stored in the cell
753 // - bit zero of the cell is used to record whether a null reference
754 // was encountered or not
755 // - bit 1 is set to record a conflict in the type information
756
757 enum {
758 null_seen = 1,
759 type_mask = ~null_seen,
760 type_unknown = 2,
761 status_bits = null_seen | type_unknown,
762 type_klass_mask = ~status_bits
763 };
764
765 // what to initialize a cell to
766 static intptr_t type_none() {
767 return 0;
768 }
769
770 // null seen = bit 0 set?
771 static bool was_null_seen(intptr_t v) {
772 return (v & null_seen) != 0;
773 }
774
775 // conflicting type information = bit 1 set?
776 static bool is_type_unknown(intptr_t v) {
777 return (v & type_unknown) != 0;
778 }
779
780 // not type information yet = all bits cleared, ignoring bit 0?
781 static bool is_type_none(intptr_t v) {
782 return (v & type_mask) == 0;
783 }
784
785 // recorded type: cell without bit 0 and 1
786 static intptr_t klass_part(intptr_t v) {
787 intptr_t r = v & type_klass_mask;
788 return r;
789 }
790
791 // type recorded
792 static Klass* valid_klass(intptr_t k) {
793 if (!is_type_none(k) &&
794 !is_type_unknown(k)) {
795 Klass* res = (Klass*)klass_part(k);
796 assert(res != NULL, "invalid");
797 return res;
798 } else {
799 return NULL;
800 }
801 }
802
803 static intptr_t with_status(intptr_t k, intptr_t in) {
804 return k | (in & status_bits);
805 }
806
807 static intptr_t with_status(Klass* k, intptr_t in) {
808 return with_status((intptr_t)k, in);
809 }
810
811 #ifndef PRODUCT
812 static void print_klass(outputStream* st, intptr_t k);
813 #endif
814
815 // GC support
816 static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
817
818 protected:
819 // ProfileData object these entries are part of
820 ProfileData* _pd;
821 // offset within the ProfileData object where the entries start
822 const int _base_off;
823
824 TypeEntries(int base_off)
825 : _base_off(base_off), _pd(NULL) {}
826
827 void set_intptr_at(int index, intptr_t value) {
828 _pd->set_intptr_at(index, value);
829 }
830
831 intptr_t intptr_at(int index) const {
832 return _pd->intptr_at(index);
833 }
834
835 public:
836 void set_profile_data(ProfileData* pd) {
837 _pd = pd;
838 }
839 };
840
841 // Type entries used for arguments passed at a call and parameters on
842 // method entry. 2 cells per entry: one for the type encoded as in
843 // TypeEntries and one initialized with the stack slot where the
844 // profiled object is to be found so that the interpreter can locate
845 // it quickly.
846 class TypeStackSlotEntries : public TypeEntries {
847
848 private:
849 enum {
850 stack_slot_entry,
851 type_entry,
852 per_arg_cell_count
853 };
854
855 // offset of cell for stack slot for entry i within ProfileData object
856 int stack_slot_offset(int i) const {
857 return _base_off + stack_slot_local_offset(i);
858 }
859
860 protected:
861 const int _number_of_entries;
862
863 // offset of cell for type for entry i within ProfileData object
864 int type_offset(int i) const {
865 return _base_off + type_local_offset(i);
866 }
867
868 public:
869
870 TypeStackSlotEntries(int base_off, int nb_entries)
871 : TypeEntries(base_off), _number_of_entries(nb_entries) {}
872
873 static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
874
875 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
876
877 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
878 static int stack_slot_local_offset(int i) {
879 return i * per_arg_cell_count + stack_slot_entry;
880 }
881
882 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
883 static int type_local_offset(int i) {
884 return i * per_arg_cell_count + type_entry;
885 }
886
887 // stack slot for entry i
888 uint stack_slot(int i) const {
889 assert(i >= 0 && i < _number_of_entries, "oob");
890 return _pd->uint_at(stack_slot_offset(i));
891 }
892
893 // set stack slot for entry i
894 void set_stack_slot(int i, uint num) {
895 assert(i >= 0 && i < _number_of_entries, "oob");
896 _pd->set_uint_at(stack_slot_offset(i), num);
897 }
898
899 // type for entry i
900 intptr_t type(int i) const {
901 assert(i >= 0 && i < _number_of_entries, "oob");
902 return _pd->intptr_at(type_offset(i));
903 }
904
905 // set type for entry i
906 void set_type(int i, intptr_t k) {
907 assert(i >= 0 && i < _number_of_entries, "oob");
908 _pd->set_intptr_at(type_offset(i), k);
909 }
910
911 static ByteSize per_arg_size() {
912 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
913 }
914
915 static int per_arg_count() {
916 return per_arg_cell_count ;
917 }
918
919 // GC support
920 void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
921
922 #ifndef PRODUCT
923 void print_data_on(outputStream* st) const;
924 #endif
925 };
926
927 // Type entry used for return from a call. A single cell to record the
928 // type.
929 class ReturnTypeEntry : public TypeEntries {
930
931 private:
932 enum {
933 cell_count = 1
934 };
935
936 public:
937 ReturnTypeEntry(int base_off)
938 : TypeEntries(base_off) {}
939
940 void post_initialize() {
941 set_type(type_none());
942 }
943
944 intptr_t type() const {
945 return _pd->intptr_at(_base_off);
946 }
947
948 void set_type(intptr_t k) {
949 _pd->set_intptr_at(_base_off, k);
950 }
951
952 static int static_cell_count() {
953 return cell_count;
954 }
955
956 static ByteSize size() {
957 return in_ByteSize(cell_count * DataLayout::cell_size);
958 }
959
960 ByteSize type_offset() {
961 return DataLayout::cell_offset(_base_off);
962 }
963
964 // GC support
965 void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
966
967 #ifndef PRODUCT
968 void print_data_on(outputStream* st) const;
969 #endif
970 };
971
972 // Entries to collect type information at a call: contains arguments
973 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
974 // number of cells. Because the number of cells for the return type is
975 // smaller than the number of cells for the type of an arguments, the
976 // number of cells is used to tell how many arguments are profiled and
977 // whether a return value is profiled. See has_arguments() and
978 // has_return().
979 class TypeEntriesAtCall {
980 private:
981 static int stack_slot_local_offset(int i) {
982 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
983 }
984
985 static int argument_type_local_offset(int i) {
986 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
987 }
988
989 public:
990
991 static int header_cell_count() {
992 return 1;
993 }
994
995 static int cell_count_local_offset() {
996 return 0;
997 }
998
999 static int compute_cell_count(BytecodeStream* stream);
1000
1001 static void initialize(DataLayout* dl, int base, int cell_count) {
1002 int off = base + cell_count_local_offset();
1003 dl->set_cell_at(off, cell_count - base - header_cell_count());
1004 }
1005
1006 static bool arguments_profiling_enabled();
1007 static bool return_profiling_enabled();
1008
1009 // Code generation support
1010 static ByteSize cell_count_offset() {
1011 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1012 }
1013
1014 static ByteSize args_data_offset() {
1015 return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1016 }
1017
1018 static ByteSize stack_slot_offset(int i) {
1019 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1020 }
1021
1022 static ByteSize argument_type_offset(int i) {
1023 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1024 }
1025
1026 static ByteSize return_only_size() {
1027 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1028 }
1029
1030 };
1031
1032 // CallTypeData
1033 //
1034 // A CallTypeData is used to access profiling information about a non
1035 // virtual call for which we collect type information about arguments
1036 // and return value.
1037 class CallTypeData : public CounterData {
1038 private:
1039 // entries for arguments if any
1040 TypeStackSlotEntries _args;
1041 // entry for return type if any
1042 ReturnTypeEntry _ret;
1043
1044 int cell_count_global_offset() const {
1045 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1046 }
1047
1048 // number of cells not counting the header
1049 int cell_count_no_header() const {
1050 return uint_at(cell_count_global_offset());
1051 }
1052
1053 void check_number_of_arguments(int total) {
1054 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1055 }
1056
1057 public:
1058 CallTypeData(DataLayout* layout) :
1059 CounterData(layout),
1060 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1061 _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1062 {
1063 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1064 // Some compilers (VC++) don't want this passed in member initialization list
1065 _args.set_profile_data(this);
1066 _ret.set_profile_data(this);
1067 }
1068
1069 const TypeStackSlotEntries* args() const {
1070 assert(has_arguments(), "no profiling of arguments");
1071 return &_args;
1072 }
1073
1074 const ReturnTypeEntry* ret() const {
1075 assert(has_return(), "no profiling of return value");
1076 return &_ret;
1077 }
1078
1079 virtual bool is_CallTypeData() const { return true; }
1080
1081 static int static_cell_count() {
1082 return -1;
1083 }
1084
1085 static int compute_cell_count(BytecodeStream* stream) {
1086 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1087 }
1088
1089 static void initialize(DataLayout* dl, int cell_count) {
1090 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1091 }
1092
1093 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1094
1095 virtual int cell_count() const {
1096 return CounterData::static_cell_count() +
1097 TypeEntriesAtCall::header_cell_count() +
1098 int_at_unchecked(cell_count_global_offset());
1099 }
1100
1101 int number_of_arguments() const {
1102 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1103 }
1104
1105 void set_argument_type(int i, Klass* k) {
1106 assert(has_arguments(), "no arguments!");
1107 intptr_t current = _args.type(i);
1108 _args.set_type(i, TypeEntries::with_status(k, current));
1109 }
1110
1111 void set_return_type(Klass* k) {
1112 assert(has_return(), "no return!");
1113 intptr_t current = _ret.type();
1114 _ret.set_type(TypeEntries::with_status(k, current));
1115 }
1116
1117 // An entry for a return value takes less space than an entry for an
1118 // argument so if the number of cells exceeds the number of cells
1119 // needed for an argument, this object contains type information for
1120 // at least one argument.
1121 bool has_arguments() const {
1122 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1123 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1124 return res;
1125 }
1126
1127 // An entry for a return value takes less space than an entry for an
1128 // argument, so if the remainder of the number of cells divided by
1129 // the number of cells for an argument is not null, a return value
1130 // is profiled in this object.
1131 bool has_return() const {
1132 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1133 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1134 return res;
1135 }
1136
1137 // Code generation support
1138 static ByteSize args_data_offset() {
1139 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1140 }
1141
1142 // GC support
1143 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1144 if (has_arguments()) {
1145 _args.clean_weak_klass_links(is_alive_closure);
1146 }
1147 if (has_return()) {
1148 _ret.clean_weak_klass_links(is_alive_closure);
1149 }
1150 }
1151
1152 #ifndef PRODUCT
1153 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1154 #endif
1155 };
1156
1157 // ReceiverTypeData
1158 //
1159 // A ReceiverTypeData is used to access profiling information about a
1160 // dynamic type check. It consists of a counter which counts the total times
1161 // that the check is reached, and a series of (Klass*, count) pairs
1162 // which are used to store a type profile for the receiver of the check.
1163 class ReceiverTypeData : public CounterData {
1164 protected:
1165 enum {
1166 receiver0_offset = counter_cell_count,
1167 count0_offset,
1168 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1169 };
1170
1171 public:
1172 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1173 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1174 layout->tag() == DataLayout::virtual_call_data_tag ||
1175 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1176 }
1177
1178 virtual bool is_ReceiverTypeData() const { return true; }
1179
1180 static int static_cell_count() {
1181 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1182 }
1183
1184 virtual int cell_count() const {
1185 return static_cell_count();
1186 }
1187
1188 // Direct accessors
1189 static uint row_limit() {
1190 return TypeProfileWidth;
1191 }
1192 static int receiver_cell_index(uint row) {
1193 return receiver0_offset + row * receiver_type_row_cell_count;
1194 }
1195 static int receiver_count_cell_index(uint row) {
1196 return count0_offset + row * receiver_type_row_cell_count;
1197 }
1198
1199 Klass* receiver(uint row) const {
1200 assert(row < row_limit(), "oob");
1201
1202 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1203 assert(recv == NULL || recv->is_klass(), "wrong type");
1204 return recv;
1205 }
1206
1207 void set_receiver(uint row, Klass* k) {
1208 assert((uint)row < row_limit(), "oob");
1209 set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1210 }
1211
1212 uint receiver_count(uint row) const {
1213 assert(row < row_limit(), "oob");
1214 return uint_at(receiver_count_cell_index(row));
1215 }
1216
1217 void set_receiver_count(uint row, uint count) {
1218 assert(row < row_limit(), "oob");
1219 set_uint_at(receiver_count_cell_index(row), count);
1220 }
1221
1222 void clear_row(uint row) {
1223 assert(row < row_limit(), "oob");
1224 // Clear total count - indicator of polymorphic call site.
1225 // The site may look like as monomorphic after that but
1226 // it allow to have more accurate profiling information because
1227 // there was execution phase change since klasses were unloaded.
1228 // If the site is still polymorphic then MDO will be updated
1229 // to reflect it. But it could be the case that the site becomes
1230 // only bimorphic. Then keeping total count not 0 will be wrong.
1231 // Even if we use monomorphic (when it is not) for compilation
1232 // we will only have trap, deoptimization and recompile again
1233 // with updated MDO after executing method in Interpreter.
1234 // An additional receiver will be recorded in the cleaned row
1235 // during next call execution.
1236 //
1237 // Note: our profiling logic works with empty rows in any slot.
1238 // We do sorting a profiling info (ciCallProfile) for compilation.
1239 //
1240 set_count(0);
1241 set_receiver(row, NULL);
1242 set_receiver_count(row, 0);
1243 }
1244
1245 // Code generation support
1246 static ByteSize receiver_offset(uint row) {
1247 return cell_offset(receiver_cell_index(row));
1248 }
1249 static ByteSize receiver_count_offset(uint row) {
1250 return cell_offset(receiver_count_cell_index(row));
1251 }
1252 static ByteSize receiver_type_data_size() {
1253 return cell_offset(static_cell_count());
1254 }
1255
1256 // GC support
1257 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1258
1259 #ifdef CC_INTERP
1260 static int receiver_type_data_size_in_bytes() {
1261 return cell_offset_in_bytes(static_cell_count());
1262 }
1263
1264 static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1265 Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1266 return recv;
1267 }
1268
1269 static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1270 const int num_rows = row_limit();
1271 // Receiver already exists?
1272 for (int row = 0; row < num_rows; row++) {
1273 if (receiver_unchecked(layout, row) == rcvr) {
1274 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1275 return;
1276 }
1277 }
1278 // New receiver, find a free slot.
1279 for (int row = 0; row < num_rows; row++) {
1280 if (receiver_unchecked(layout, row) == NULL) {
1281 set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1282 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1283 return;
1284 }
1285 }
1286 // Receiver did not match any saved receiver and there is no empty row for it.
1287 // Increment total counter to indicate polymorphic case.
1288 increment_count_no_overflow(layout);
1289 }
1290
1291 static DataLayout* advance(DataLayout* layout) {
1292 return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1293 }
1294 #endif // CC_INTERP
1295
1296 #ifndef PRODUCT
1297 void print_receiver_data_on(outputStream* st) const;
1298 void print_data_on(outputStream* st, const char* extra = NULL) const;
1299 #endif
1300 };
1301
1302 // VirtualCallData
1303 //
1304 // A VirtualCallData is used to access profiling information about a
1305 // virtual call. For now, it has nothing more than a ReceiverTypeData.
1306 class VirtualCallData : public ReceiverTypeData {
1307 public:
1308 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1309 assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1310 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1311 }
1312
1313 virtual bool is_VirtualCallData() const { return true; }
1314
1315 static int static_cell_count() {
1316 // At this point we could add more profile state, e.g., for arguments.
1317 // But for now it's the same size as the base record type.
1318 return ReceiverTypeData::static_cell_count();
1319 }
1320
1321 virtual int cell_count() const {
1322 return static_cell_count();
1323 }
1324
1325 // Direct accessors
1326 static ByteSize virtual_call_data_size() {
1327 return cell_offset(static_cell_count());
1328 }
1329
1330 #ifdef CC_INTERP
1331 static int virtual_call_data_size_in_bytes() {
1332 return cell_offset_in_bytes(static_cell_count());
1333 }
1334
1335 static DataLayout* advance(DataLayout* layout) {
1336 return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1337 }
1338 #endif // CC_INTERP
1339
1340 #ifndef PRODUCT
1341 void print_data_on(outputStream* st, const char* extra = NULL) const;
1342 #endif
1343 };
1344
1345 // VirtualCallTypeData
1346 //
1347 // A VirtualCallTypeData is used to access profiling information about
1348 // a virtual call for which we collect type information about
1349 // arguments and return value.
1350 class VirtualCallTypeData : public VirtualCallData {
1351 private:
1352 // entries for arguments if any
1353 TypeStackSlotEntries _args;
1354 // entry for return type if any
1355 ReturnTypeEntry _ret;
1356
1357 int cell_count_global_offset() const {
1358 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1359 }
1360
1361 // number of cells not counting the header
1362 int cell_count_no_header() const {
1363 return uint_at(cell_count_global_offset());
1364 }
1365
1366 void check_number_of_arguments(int total) {
1367 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1368 }
1369
1370 public:
1371 VirtualCallTypeData(DataLayout* layout) :
1372 VirtualCallData(layout),
1373 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1374 _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1375 {
1376 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1377 // Some compilers (VC++) don't want this passed in member initialization list
1378 _args.set_profile_data(this);
1379 _ret.set_profile_data(this);
1380 }
1381
1382 const TypeStackSlotEntries* args() const {
1383 assert(has_arguments(), "no profiling of arguments");
1384 return &_args;
1385 }
1386
1387 const ReturnTypeEntry* ret() const {
1388 assert(has_return(), "no profiling of return value");
1389 return &_ret;
1390 }
1391
1392 virtual bool is_VirtualCallTypeData() const { return true; }
1393
1394 static int static_cell_count() {
1395 return -1;
1396 }
1397
1398 static int compute_cell_count(BytecodeStream* stream) {
1399 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1400 }
1401
1402 static void initialize(DataLayout* dl, int cell_count) {
1403 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1404 }
1405
1406 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1407
1408 virtual int cell_count() const {
1409 return VirtualCallData::static_cell_count() +
1410 TypeEntriesAtCall::header_cell_count() +
1411 int_at_unchecked(cell_count_global_offset());
1412 }
1413
1414 int number_of_arguments() const {
1415 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1416 }
1417
1418 void set_argument_type(int i, Klass* k) {
1419 assert(has_arguments(), "no arguments!");
1420 intptr_t current = _args.type(i);
1421 _args.set_type(i, TypeEntries::with_status(k, current));
1422 }
1423
1424 void set_return_type(Klass* k) {
1425 assert(has_return(), "no return!");
1426 intptr_t current = _ret.type();
1427 _ret.set_type(TypeEntries::with_status(k, current));
1428 }
1429
1430 // An entry for a return value takes less space than an entry for an
1431 // argument, so if the remainder of the number of cells divided by
1432 // the number of cells for an argument is not null, a return value
1433 // is profiled in this object.
1434 bool has_return() const {
1435 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1436 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1437 return res;
1438 }
1439
1440 // An entry for a return value takes less space than an entry for an
1441 // argument so if the number of cells exceeds the number of cells
1442 // needed for an argument, this object contains type information for
1443 // at least one argument.
1444 bool has_arguments() const {
1445 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1446 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1447 return res;
1448 }
1449
1450 // Code generation support
1451 static ByteSize args_data_offset() {
1452 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1453 }
1454
1455 // GC support
1456 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1457 ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1458 if (has_arguments()) {
1459 _args.clean_weak_klass_links(is_alive_closure);
1460 }
1461 if (has_return()) {
1462 _ret.clean_weak_klass_links(is_alive_closure);
1463 }
1464 }
1465
1466 #ifndef PRODUCT
1467 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1468 #endif
1469 };
1470
1471 // RetData
1472 //
1473 // A RetData is used to access profiling information for a ret bytecode.
1474 // It is composed of a count of the number of times that the ret has
1475 // been executed, followed by a series of triples of the form
1476 // (bci, count, di) which count the number of times that some bci was the
1477 // target of the ret and cache a corresponding data displacement.
1478 class RetData : public CounterData {
1479 protected:
1480 enum {
1481 bci0_offset = counter_cell_count,
1482 count0_offset,
1483 displacement0_offset,
1484 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1485 };
1486
1487 void set_bci(uint row, int bci) {
1488 assert((uint)row < row_limit(), "oob");
1489 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1490 }
1491 void release_set_bci(uint row, int bci) {
1492 assert((uint)row < row_limit(), "oob");
1493 // 'release' when setting the bci acts as a valid flag for other
1494 // threads wrt bci_count and bci_displacement.
1495 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1496 }
1497 void set_bci_count(uint row, uint count) {
1498 assert((uint)row < row_limit(), "oob");
1499 set_uint_at(count0_offset + row * ret_row_cell_count, count);
1500 }
1501 void set_bci_displacement(uint row, int disp) {
1502 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1503 }
1504
1505 public:
1506 RetData(DataLayout* layout) : CounterData(layout) {
1507 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1508 }
1509
1510 virtual bool is_RetData() const { return true; }
1511
1512 enum {
1513 no_bci = -1 // value of bci when bci1/2 are not in use.
1514 };
1515
1516 static int static_cell_count() {
1517 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1518 }
1519
1520 virtual int cell_count() const {
1521 return static_cell_count();
1522 }
1523
1524 static uint row_limit() {
1525 return BciProfileWidth;
1526 }
1527 static int bci_cell_index(uint row) {
1528 return bci0_offset + row * ret_row_cell_count;
1529 }
1530 static int bci_count_cell_index(uint row) {
1531 return count0_offset + row * ret_row_cell_count;
1532 }
1533 static int bci_displacement_cell_index(uint row) {
1534 return displacement0_offset + row * ret_row_cell_count;
1535 }
1536
1537 // Direct accessors
1538 int bci(uint row) const {
1539 return int_at(bci_cell_index(row));
1540 }
1541 uint bci_count(uint row) const {
1542 return uint_at(bci_count_cell_index(row));
1543 }
1544 int bci_displacement(uint row) const {
1545 return int_at(bci_displacement_cell_index(row));
1546 }
1547
1548 // Interpreter Runtime support
1549 address fixup_ret(int return_bci, MethodData* mdo);
1550
1551 // Code generation support
1552 static ByteSize bci_offset(uint row) {
1553 return cell_offset(bci_cell_index(row));
1554 }
1555 static ByteSize bci_count_offset(uint row) {
1556 return cell_offset(bci_count_cell_index(row));
1557 }
1558 static ByteSize bci_displacement_offset(uint row) {
1559 return cell_offset(bci_displacement_cell_index(row));
1560 }
1561
1562 #ifdef CC_INTERP
1563 static DataLayout* advance(MethodData *md, int bci);
1564 #endif // CC_INTERP
1565
1566 // Specific initialization.
1567 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1568
1569 #ifndef PRODUCT
1570 void print_data_on(outputStream* st, const char* extra = NULL) const;
1571 #endif
1572 };
1573
1574 // BranchData
1575 //
1576 // A BranchData is used to access profiling data for a two-way branch.
1577 // It consists of taken and not_taken counts as well as a data displacement
1578 // for the taken case.
1579 class BranchData : public JumpData {
1580 protected:
1581 enum {
1582 not_taken_off_set = jump_cell_count,
1583 branch_cell_count
1584 };
1585
1586 void set_displacement(int displacement) {
1587 set_int_at(displacement_off_set, displacement);
1588 }
1589
1590 public:
1591 BranchData(DataLayout* layout) : JumpData(layout) {
1592 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1593 }
1594
1595 virtual bool is_BranchData() const { return true; }
1596
1597 static int static_cell_count() {
1598 return branch_cell_count;
1599 }
1600
1601 virtual int cell_count() const {
1602 return static_cell_count();
1603 }
1604
1605 // Direct accessor
1606 uint not_taken() const {
1607 return uint_at(not_taken_off_set);
1608 }
1609
1610 void set_not_taken(uint cnt) {
1611 set_uint_at(not_taken_off_set, cnt);
1612 }
1613
1614 uint inc_not_taken() {
1615 uint cnt = not_taken() + 1;
1616 // Did we wrap? Will compiler screw us??
1617 if (cnt == 0) cnt--;
1618 set_uint_at(not_taken_off_set, cnt);
1619 return cnt;
1620 }
1621
1622 // Code generation support
1623 static ByteSize not_taken_offset() {
1624 return cell_offset(not_taken_off_set);
1625 }
1626 static ByteSize branch_data_size() {
1627 return cell_offset(branch_cell_count);
1628 }
1629
1630 #ifdef CC_INTERP
1631 static int branch_data_size_in_bytes() {
1632 return cell_offset_in_bytes(branch_cell_count);
1633 }
1634
1635 static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1636 increment_uint_at_no_overflow(layout, not_taken_off_set);
1637 }
1638
1639 static DataLayout* advance_not_taken(DataLayout* layout) {
1640 return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1641 }
1642 #endif // CC_INTERP
1643
1644 // Specific initialization.
1645 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1646
1647 #ifndef PRODUCT
1648 void print_data_on(outputStream* st, const char* extra = NULL) const;
1649 #endif
1650 };
1651
1652 // ArrayData
1653 //
1654 // A ArrayData is a base class for accessing profiling data which does
1655 // not have a statically known size. It consists of an array length
1656 // and an array start.
1657 class ArrayData : public ProfileData {
1658 protected:
1659 friend class DataLayout;
1660
1661 enum {
1662 array_len_off_set,
1663 array_start_off_set
1664 };
1665
1666 uint array_uint_at(int index) const {
1667 int aindex = index + array_start_off_set;
1668 return uint_at(aindex);
1669 }
1670 int array_int_at(int index) const {
1671 int aindex = index + array_start_off_set;
1672 return int_at(aindex);
1673 }
1674 oop array_oop_at(int index) const {
1675 int aindex = index + array_start_off_set;
1676 return oop_at(aindex);
1677 }
1678 void array_set_int_at(int index, int value) {
1679 int aindex = index + array_start_off_set;
1680 set_int_at(aindex, value);
1681 }
1682
1683 #ifdef CC_INTERP
1684 // Static low level accessors for DataLayout with ArrayData's semantics.
1685
1686 static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1687 int aindex = index + array_start_off_set;
1688 increment_uint_at_no_overflow(layout, aindex);
1689 }
1690
1691 static int array_int_at(DataLayout* layout, int index) {
1692 int aindex = index + array_start_off_set;
1693 return int_at(layout, aindex);
1694 }
1695 #endif // CC_INTERP
1696
1697 // Code generation support for subclasses.
1698 static ByteSize array_element_offset(int index) {
1699 return cell_offset(array_start_off_set + index);
1700 }
1701
1702 public:
1703 ArrayData(DataLayout* layout) : ProfileData(layout) {}
1704
1705 virtual bool is_ArrayData() const { return true; }
1706
1707 static int static_cell_count() {
1708 return -1;
1709 }
1710
1711 int array_len() const {
1712 return int_at_unchecked(array_len_off_set);
1713 }
1714
1715 virtual int cell_count() const {
1716 return array_len() + 1;
1717 }
1718
1719 // Code generation support
1720 static ByteSize array_len_offset() {
1721 return cell_offset(array_len_off_set);
1722 }
1723 static ByteSize array_start_offset() {
1724 return cell_offset(array_start_off_set);
1725 }
1726 };
1727
1728 // MultiBranchData
1729 //
1730 // A MultiBranchData is used to access profiling information for
1731 // a multi-way branch (*switch bytecodes). It consists of a series
1732 // of (count, displacement) pairs, which count the number of times each
1733 // case was taken and specify the data displacment for each branch target.
1734 class MultiBranchData : public ArrayData {
1735 protected:
1736 enum {
1737 default_count_off_set,
1738 default_disaplacement_off_set,
1739 case_array_start
1740 };
1741 enum {
1742 relative_count_off_set,
1743 relative_displacement_off_set,
1744 per_case_cell_count
1745 };
1746
1747 void set_default_displacement(int displacement) {
1748 array_set_int_at(default_disaplacement_off_set, displacement);
1749 }
1750 void set_displacement_at(int index, int displacement) {
1751 array_set_int_at(case_array_start +
1752 index * per_case_cell_count +
1753 relative_displacement_off_set,
1754 displacement);
1755 }
1756
1757 public:
1758 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1759 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1760 }
1761
1762 virtual bool is_MultiBranchData() const { return true; }
1763
1764 static int compute_cell_count(BytecodeStream* stream);
1765
1766 int number_of_cases() const {
1767 int alen = array_len() - 2; // get rid of default case here.
1768 assert(alen % per_case_cell_count == 0, "must be even");
1769 return (alen / per_case_cell_count);
1770 }
1771
1772 uint default_count() const {
1773 return array_uint_at(default_count_off_set);
1774 }
1775 int default_displacement() const {
1776 return array_int_at(default_disaplacement_off_set);
1777 }
1778
1779 uint count_at(int index) const {
1780 return array_uint_at(case_array_start +
1781 index * per_case_cell_count +
1782 relative_count_off_set);
1783 }
1784 int displacement_at(int index) const {
1785 return array_int_at(case_array_start +
1786 index * per_case_cell_count +
1787 relative_displacement_off_set);
1788 }
1789
1790 // Code generation support
1791 static ByteSize default_count_offset() {
1792 return array_element_offset(default_count_off_set);
1793 }
1794 static ByteSize default_displacement_offset() {
1795 return array_element_offset(default_disaplacement_off_set);
1796 }
1797 static ByteSize case_count_offset(int index) {
1798 return case_array_offset() +
1799 (per_case_size() * index) +
1800 relative_count_offset();
1801 }
1802 static ByteSize case_array_offset() {
1803 return array_element_offset(case_array_start);
1804 }
1805 static ByteSize per_case_size() {
1806 return in_ByteSize(per_case_cell_count) * cell_size;
1807 }
1808 static ByteSize relative_count_offset() {
1809 return in_ByteSize(relative_count_off_set) * cell_size;
1810 }
1811 static ByteSize relative_displacement_offset() {
1812 return in_ByteSize(relative_displacement_off_set) * cell_size;
1813 }
1814
1815 #ifdef CC_INTERP
1816 static void increment_count_no_overflow(DataLayout* layout, int index) {
1817 if (index == -1) {
1818 increment_array_uint_at_no_overflow(layout, default_count_off_set);
1819 } else {
1820 increment_array_uint_at_no_overflow(layout, case_array_start +
1821 index * per_case_cell_count +
1822 relative_count_off_set);
1823 }
1824 }
1825
1826 static DataLayout* advance(DataLayout* layout, int index) {
1827 if (index == -1) {
1828 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1829 } else {
1830 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1831 index * per_case_cell_count +
1832 relative_displacement_off_set));
1833 }
1834 }
1835 #endif // CC_INTERP
1836
1837 // Specific initialization.
1838 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1839
1840 #ifndef PRODUCT
1841 void print_data_on(outputStream* st, const char* extra = NULL) const;
1842 #endif
1843 };
1844
1845 class ArgInfoData : public ArrayData {
1846
1847 public:
1848 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1849 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1850 }
1851
1852 virtual bool is_ArgInfoData() const { return true; }
1853
1854
1855 int number_of_args() const {
1856 return array_len();
1857 }
1858
1859 uint arg_modified(int arg) const {
1860 return array_uint_at(arg);
1861 }
1862
1863 void set_arg_modified(int arg, uint val) {
1864 array_set_int_at(arg, val);
1865 }
1866
1867 #ifndef PRODUCT
1868 void print_data_on(outputStream* st, const char* extra = NULL) const;
1869 #endif
1870 };
1871
1872 // ParametersTypeData
1873 //
1874 // A ParametersTypeData is used to access profiling information about
1875 // types of parameters to a method
1876 class ParametersTypeData : public ArrayData {
1877
1878 private:
1879 TypeStackSlotEntries _parameters;
1880
1881 static int stack_slot_local_offset(int i) {
1882 assert_profiling_enabled();
1883 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1884 }
1885
1886 static int type_local_offset(int i) {
1887 assert_profiling_enabled();
1888 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1889 }
1890
1891 static bool profiling_enabled();
1892 static void assert_profiling_enabled() {
1893 assert(profiling_enabled(), "method parameters profiling should be on");
1894 }
1895
1896 public:
1897 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1898 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1899 // Some compilers (VC++) don't want this passed in member initialization list
1900 _parameters.set_profile_data(this);
1901 }
1902
1903 static int compute_cell_count(Method* m);
1904
1905 virtual bool is_ParametersTypeData() const { return true; }
1906
1907 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1908
1909 int number_of_parameters() const {
1910 return array_len() / TypeStackSlotEntries::per_arg_count();
1911 }
1912
1913 const TypeStackSlotEntries* parameters() const { return &_parameters; }
1914
1915 uint stack_slot(int i) const {
1916 return _parameters.stack_slot(i);
1917 }
1918
1919 void set_type(int i, Klass* k) {
1920 intptr_t current = _parameters.type(i);
1921 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1922 }
1923
1924 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1925 _parameters.clean_weak_klass_links(is_alive_closure);
1926 }
1927
1928 #ifndef PRODUCT
1929 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1930 #endif
1931
1932 static ByteSize stack_slot_offset(int i) {
1933 return cell_offset(stack_slot_local_offset(i));
1934 }
1935
1936 static ByteSize type_offset(int i) {
1937 return cell_offset(type_local_offset(i));
1938 }
1939 };
1940
1941 // SpeculativeTrapData
1942 //
1943 // A SpeculativeTrapData is used to record traps due to type
1944 // speculation. It records the root of the compilation: that type
1945 // speculation is wrong in the context of one compilation (for
1946 // method1) doesn't mean it's wrong in the context of another one (for
1947 // method2). Type speculation could have more/different data in the
1948 // context of the compilation of method2 and it's worthwhile to try an
1949 // optimization that failed for compilation of method1 in the context
1950 // of compilation of method2.
1951 // Space for SpeculativeTrapData entries is allocated from the extra
1952 // data space in the MDO. If we run out of space, the trap data for
1953 // the ProfileData at that bci is updated.
1954 class SpeculativeTrapData : public ProfileData {
1955 protected:
1956 enum {
1957 method_offset,
1958 speculative_trap_cell_count
1959 };
1960 public:
1961 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1962 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1963 }
1964
1965 virtual bool is_SpeculativeTrapData() const { return true; }
1966
1967 static int static_cell_count() {
1968 return speculative_trap_cell_count;
1969 }
1970
1971 virtual int cell_count() const {
1972 return static_cell_count();
1973 }
1974
1975 // Direct accessor
1976 Method* method() const {
1977 return (Method*)intptr_at(method_offset);
1978 }
1979
1980 void set_method(Method* m) {
1981 set_intptr_at(method_offset, (intptr_t)m);
1982 }
1983
1984 #ifndef PRODUCT
1985 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1986 #endif
1987 };
1988
1989 // MethodData*
1990 //
1991 // A MethodData* holds information which has been collected about
1992 // a method. Its layout looks like this:
1993 //
1994 // -----------------------------
1995 // | header |
1996 // | klass |
1997 // -----------------------------
1998 // | method |
1999 // | size of the MethodData* |
2000 // -----------------------------
2001 // | Data entries... |
2002 // | (variable size) |
2003 // | |
2004 // . .
2005 // . .
2006 // . .
2007 // | |
2008 // -----------------------------
2009 //
2010 // The data entry area is a heterogeneous array of DataLayouts. Each
2011 // DataLayout in the array corresponds to a specific bytecode in the
2012 // method. The entries in the array are sorted by the corresponding
2013 // bytecode. Access to the data is via resource-allocated ProfileData,
2014 // which point to the underlying blocks of DataLayout structures.
2015 //
2016 // During interpretation, if profiling in enabled, the interpreter
2017 // maintains a method data pointer (mdp), which points at the entry
2018 // in the array corresponding to the current bci. In the course of
2019 // intepretation, when a bytecode is encountered that has profile data
2020 // associated with it, the entry pointed to by mdp is updated, then the
2021 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
2022 // is NULL to begin with, the interpreter assumes that the current method
2023 // is not (yet) being profiled.
2024 //
2025 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2026 // of a DataLayout element. A "di" is a "data index", the offset in bytes
2027 // from the base of the data entry array. A "displacement" is the byte offset
2028 // in certain ProfileData objects that indicate the amount the mdp must be
2029 // adjusted in the event of a change in control flow.
2030 //
2031
2032 CC_INTERP_ONLY(class BytecodeInterpreter;)
2033
2034 class MethodData : public Metadata {
2035 friend class VMStructs;
2036 CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2037 private:
2038 friend class ProfileData;
2039
2040 // Back pointer to the Method*
2041 Method* _method;
2042
2043 // Size of this oop in bytes
2044 int _size;
2045
2046 // Cached hint for bci_to_dp and bci_to_data
2047 int _hint_di;
2048
2049 Mutex _extra_data_lock;
2050
2051 MethodData(methodHandle method, int size, TRAPS);
2052 public:
2053 static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
2054 MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2055
2056 bool is_methodData() const volatile { return true; }
2057
2058 // Whole-method sticky bits and flags
2059 enum {
2060 _trap_hist_limit = 19, // decoupled from Deoptimization::Reason_LIMIT
2061 _trap_hist_mask = max_jubyte,
2062 _extra_data_count = 4 // extra DataLayout headers, for trap history
2063 }; // Public flag values
2064 private:
2065 uint _nof_decompiles; // count of all nmethod removals
2066 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
2067 uint _nof_overflow_traps; // trap count, excluding _trap_hist
2068 union {
2069 intptr_t _align;
2070 u1 _array[_trap_hist_limit];
2071 } _trap_hist;
2072
2073 // Support for interprocedural escape analysis, from Thomas Kotzmann.
2074 intx _eflags; // flags on escape information
2075 intx _arg_local; // bit set of non-escaping arguments
2076 intx _arg_stack; // bit set of stack-allocatable arguments
2077 intx _arg_returned; // bit set of returned arguments
2078
2079 int _creation_mileage; // method mileage at MDO creation
2080
2081 // How many invocations has this MDO seen?
2082 // These counters are used to determine the exact age of MDO.
2083 // We need those because in tiered a method can be concurrently
2084 // executed at different levels.
2085 InvocationCounter _invocation_counter;
2086 // Same for backedges.
2087 InvocationCounter _backedge_counter;
2088 // Counter values at the time profiling started.
2089 int _invocation_counter_start;
2090 int _backedge_counter_start;
2091
2092 #if INCLUDE_RTM_OPT
2093 // State of RTM code generation during compilation of the method
2094 int _rtm_state;
2095 #endif
2096
2097 // Number of loops and blocks is computed when compiling the first
2098 // time with C1. It is used to determine if method is trivial.
2099 short _num_loops;
2100 short _num_blocks;
2101 // Highest compile level this method has ever seen.
2102 u1 _highest_comp_level;
2103 // Same for OSR level
2104 u1 _highest_osr_comp_level;
2105 // Does this method contain anything worth profiling?
2106 bool _would_profile;
2107
2108 // Size of _data array in bytes. (Excludes header and extra_data fields.)
2109 int _data_size;
2110
2111 // data index for the area dedicated to parameters. -1 if no
2112 // parameter profiling.
2113 int _parameters_type_data_di;
2114
2115 // Beginning of the data entries
2116 intptr_t _data[1];
2117
2118 // Helper for size computation
2119 static int compute_data_size(BytecodeStream* stream);
2120 static int bytecode_cell_count(Bytecodes::Code code);
2121 static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2122 enum { no_profile_data = -1, variable_cell_count = -2 };
2123
2124 // Helper for initialization
2125 DataLayout* data_layout_at(int data_index) const {
2126 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2127 return (DataLayout*) (((address)_data) + data_index);
2128 }
2129
2130 // Initialize an individual data segment. Returns the size of
2131 // the segment in bytes.
2132 int initialize_data(BytecodeStream* stream, int data_index);
2133
2134 // Helper for data_at
2135 DataLayout* limit_data_position() const {
2136 return (DataLayout*)((address)data_base() + _data_size);
2137 }
2138 bool out_of_bounds(int data_index) const {
2139 return data_index >= data_size();
2140 }
2141
2142 // Give each of the data entries a chance to perform specific
2143 // data initialization.
2144 void post_initialize(BytecodeStream* stream);
2145
2146 // hint accessors
2147 int hint_di() const { return _hint_di; }
2148 void set_hint_di(int di) {
2149 assert(!out_of_bounds(di), "hint_di out of bounds");
2150 _hint_di = di;
2151 }
2152 ProfileData* data_before(int bci) {
2153 // avoid SEGV on this edge case
2154 if (data_size() == 0)
2155 return NULL;
2156 int hint = hint_di();
2157 if (data_layout_at(hint)->bci() <= bci)
2158 return data_at(hint);
2159 return first_data();
2160 }
2161
2162 // What is the index of the first data entry?
2163 int first_di() const { return 0; }
2164
2165 ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2166 // Find or create an extra ProfileData:
2167 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2168
2169 // return the argument info cell
2170 ArgInfoData *arg_info();
2171
2172 enum {
2173 no_type_profile = 0,
2174 type_profile_jsr292 = 1,
2175 type_profile_all = 2
2176 };
2177
2178 static bool profile_jsr292(methodHandle m, int bci);
2179 static int profile_arguments_flag();
2180 static bool profile_all_arguments();
2181 static bool profile_arguments_for_invoke(methodHandle m, int bci);
2182 static int profile_return_flag();
2183 static bool profile_all_return();
2184 static bool profile_return_for_invoke(methodHandle m, int bci);
2185 static int profile_parameters_flag();
2186 static bool profile_parameters_jsr292_only();
2187 static bool profile_all_parameters();
2188
2189 void clean_extra_data(BoolObjectClosure* is_alive);
2190 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2191 void verify_extra_data_clean(BoolObjectClosure* is_alive);
2192
2193 public:
2194 static int header_size() {
2195 return sizeof(MethodData)/wordSize;
2196 }
2197
2198 // Compute the size of a MethodData* before it is created.
2199 static int compute_allocation_size_in_bytes(methodHandle method);
2200 static int compute_allocation_size_in_words(methodHandle method);
2201 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2202
2203 // Determine if a given bytecode can have profile information.
2204 static bool bytecode_has_profile(Bytecodes::Code code) {
2205 return bytecode_cell_count(code) != no_profile_data;
2206 }
2207
2208 // reset into original state
2209 void init();
2210
2211 // My size
2212 int size_in_bytes() const { return _size; }
2213 int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2214 #if INCLUDE_SERVICES
2215 void collect_statistics(KlassSizeStats *sz) const;
2216 #endif
2217
2218 int creation_mileage() const { return _creation_mileage; }
2219 void set_creation_mileage(int x) { _creation_mileage = x; }
2220
2221 int invocation_count() {
2222 if (invocation_counter()->carry()) {
2223 return InvocationCounter::count_limit;
2224 }
2225 return invocation_counter()->count();
2226 }
2227 int backedge_count() {
2228 if (backedge_counter()->carry()) {
2229 return InvocationCounter::count_limit;
2230 }
2231 return backedge_counter()->count();
2232 }
2233
2234 int invocation_count_start() {
2235 if (invocation_counter()->carry()) {
2236 return 0;
2237 }
2238 return _invocation_counter_start;
2239 }
2240
2241 int backedge_count_start() {
2242 if (backedge_counter()->carry()) {
2243 return 0;
2244 }
2245 return _backedge_counter_start;
2246 }
2247
2248 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2249 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
2250
2251 void reset_start_counters() {
2252 _invocation_counter_start = invocation_count();
2253 _backedge_counter_start = backedge_count();
2254 }
2255
2256 InvocationCounter* invocation_counter() { return &_invocation_counter; }
2257 InvocationCounter* backedge_counter() { return &_backedge_counter; }
2258
2259 #if INCLUDE_RTM_OPT
2260 int rtm_state() const {
2261 return _rtm_state;
2262 }
2263 void set_rtm_state(RTMState rstate) {
2264 _rtm_state = (int)rstate;
2265 }
2266 void atomic_set_rtm_state(RTMState rstate) {
2267 Atomic::store((int)rstate, &_rtm_state);
2268 }
2269
2270 static int rtm_state_offset_in_bytes() {
2271 return offset_of(MethodData, _rtm_state);
2272 }
2273 #endif
2274
2275 void set_would_profile(bool p) { _would_profile = p; }
2276 bool would_profile() const { return _would_profile; }
2277
2278 int highest_comp_level() const { return _highest_comp_level; }
2279 void set_highest_comp_level(int level) { _highest_comp_level = level; }
2280 int highest_osr_comp_level() const { return _highest_osr_comp_level; }
2281 void set_highest_osr_comp_level(int level) { _highest_osr_comp_level = level; }
2282
2283 int num_loops() const { return _num_loops; }
2284 void set_num_loops(int n) { _num_loops = n; }
2285 int num_blocks() const { return _num_blocks; }
2286 void set_num_blocks(int n) { _num_blocks = n; }
2287
2288 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
2289 static int mileage_of(Method* m);
2290
2291 // Support for interprocedural escape analysis, from Thomas Kotzmann.
2292 enum EscapeFlag {
2293 estimated = 1 << 0,
2294 return_local = 1 << 1,
2295 return_allocated = 1 << 2,
2296 allocated_escapes = 1 << 3,
2297 unknown_modified = 1 << 4
2298 };
2299
2300 intx eflags() { return _eflags; }
2301 intx arg_local() { return _arg_local; }
2302 intx arg_stack() { return _arg_stack; }
2303 intx arg_returned() { return _arg_returned; }
2304 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
2305 assert(aid != NULL, "arg_info must be not null");
2306 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2307 return aid->arg_modified(a); }
2308
2309 void set_eflags(intx v) { _eflags = v; }
2310 void set_arg_local(intx v) { _arg_local = v; }
2311 void set_arg_stack(intx v) { _arg_stack = v; }
2312 void set_arg_returned(intx v) { _arg_returned = v; }
2313 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
2314 assert(aid != NULL, "arg_info must be not null");
2315 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2316 aid->set_arg_modified(a, v); }
2317
2318 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2319
2320 // Location and size of data area
2321 address data_base() const {
2322 return (address) _data;
2323 }
2324 int data_size() const {
2325 return _data_size;
2326 }
2327
2328 // Accessors
2329 Method* method() const { return _method; }
2330
2331 // Get the data at an arbitrary (sort of) data index.
2332 ProfileData* data_at(int data_index) const;
2333
2334 // Walk through the data in order.
2335 ProfileData* first_data() const { return data_at(first_di()); }
2336 ProfileData* next_data(ProfileData* current) const;
2337 bool is_valid(ProfileData* current) const { return current != NULL; }
2338
2339 // Convert a dp (data pointer) to a di (data index).
2340 int dp_to_di(address dp) const {
2341 return dp - ((address)_data);
2342 }
2343
2344 address di_to_dp(int di) {
2345 return (address)data_layout_at(di);
2346 }
2347
2348 // bci to di/dp conversion.
2349 address bci_to_dp(int bci);
2350 int bci_to_di(int bci) {
2351 return dp_to_di(bci_to_dp(bci));
2352 }
2353
2354 // Get the data at an arbitrary bci, or NULL if there is none.
2355 ProfileData* bci_to_data(int bci);
2356
2357 // Same, but try to create an extra_data record if one is needed:
2358 ProfileData* allocate_bci_to_data(int bci, Method* m) {
2359 ProfileData* data = NULL;
2360 // If m not NULL, try to allocate a SpeculativeTrapData entry
2361 if (m == NULL) {
2362 data = bci_to_data(bci);
2363 }
2364 if (data != NULL) {
2365 return data;
2366 }
2367 data = bci_to_extra_data(bci, m, true);
2368 if (data != NULL) {
2369 return data;
2370 }
2371 // If SpeculativeTrapData allocation fails try to allocate a
2372 // regular entry
2373 data = bci_to_data(bci);
2374 if (data != NULL) {
2375 return data;
2376 }
2377 return bci_to_extra_data(bci, NULL, true);
2378 }
2379
2380 // Add a handful of extra data records, for trap tracking.
2381 DataLayout* extra_data_base() const { return limit_data_position(); }
2382 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2383 int extra_data_size() const { return (address)extra_data_limit()
2384 - (address)extra_data_base(); }
2385 static DataLayout* next_extra(DataLayout* dp);
2386
2387 // Return (uint)-1 for overflow.
2388 uint trap_count(int reason) const {
2389 assert((uint)reason < _trap_hist_limit, "oob");
2390 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2391 }
2392 // For loops:
2393 static uint trap_reason_limit() { return _trap_hist_limit; }
2394 static uint trap_count_limit() { return _trap_hist_mask; }
2395 uint inc_trap_count(int reason) {
2396 // Count another trap, anywhere in this method.
2397 assert(reason >= 0, "must be single trap");
2398 if ((uint)reason < _trap_hist_limit) {
2399 uint cnt1 = 1 + _trap_hist._array[reason];
2400 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
2401 _trap_hist._array[reason] = cnt1;
2402 return cnt1;
2403 } else {
2404 return _trap_hist_mask + (++_nof_overflow_traps);
2405 }
2406 } else {
2407 // Could not represent the count in the histogram.
2408 return (++_nof_overflow_traps);
2409 }
2410 }
2411
2412 uint overflow_trap_count() const {
2413 return _nof_overflow_traps;
2414 }
2415 uint overflow_recompile_count() const {
2416 return _nof_overflow_recompiles;
2417 }
2418 void inc_overflow_recompile_count() {
2419 _nof_overflow_recompiles += 1;
2420 }
2421 uint decompile_count() const {
2422 return _nof_decompiles;
2423 }
2424 void inc_decompile_count() {
2425 _nof_decompiles += 1;
2426 if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2427 method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2428 }
2429 }
2430
2431 // Return pointer to area dedicated to parameters in MDO
2432 ParametersTypeData* parameters_type_data() const {
2433 return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2434 }
2435
2436 int parameters_type_data_di() const {
2437 assert(_parameters_type_data_di != -1, "no args type data");
2438 return _parameters_type_data_di;
2439 }
2440
2441 // Support for code generation
2442 static ByteSize data_offset() {
2443 return byte_offset_of(MethodData, _data[0]);
2444 }
2445
2446 static ByteSize invocation_counter_offset() {
2447 return byte_offset_of(MethodData, _invocation_counter);
2448 }
2449 static ByteSize backedge_counter_offset() {
2450 return byte_offset_of(MethodData, _backedge_counter);
2451 }
2452
2453 static ByteSize parameters_type_data_di_offset() {
2454 return byte_offset_of(MethodData, _parameters_type_data_di);
2455 }
2456
2457 // Deallocation support - no pointer fields to deallocate
2458 void deallocate_contents(ClassLoaderData* loader_data) {}
2459
2460 // GC support
2461 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2462
2463 // Printing
2464 #ifndef PRODUCT
2465 void print_on (outputStream* st) const;
2466 #endif
2467 void print_value_on(outputStream* st) const;
2468
2469 #ifndef PRODUCT
2470 // printing support for method data
2471 void print_data_on(outputStream* st) const;
2472 #endif
2473
2474 const char* internal_name() const { return "{method data}"; }
2475
2476 // verification
2477 void verify_on(outputStream* st);
2478 void verify_data_on(outputStream* st);
2479
2480 static bool profile_parameters_for_method(methodHandle m);
2481 static bool profile_arguments();
2482 static bool profile_arguments_jsr292_only();
2483 static bool profile_return();
2484 static bool profile_parameters();
2485 static bool profile_return_jsr292_only();
2486
2487 void clean_method_data(BoolObjectClosure* is_alive);
2488 };
2489
2490 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial