src/cpu/x86/vm/vm_version_x86.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                clmul    : 1,
    65                         : 1,
    66                monitor  : 1,
    67                         : 1,
    68                vmx      : 1,
    69                         : 1,
    70                est      : 1,
    71                         : 1,
    72                ssse3    : 1,
    73                cid      : 1,
    74                         : 2,
    75                cmpxchg16: 1,
    76                         : 4,
    77                dca      : 1,
    78                sse4_1   : 1,
    79                sse4_2   : 1,
    80                         : 2,
    81                popcnt   : 1,
    82                         : 1,
    83                aes      : 1,
    84                         : 1,
    85                osxsave  : 1,
    86                avx      : 1,
    87                         : 3;
    88     } bits;
    89   };
    91   union StdCpuid1Edx {
    92     uint32_t value;
    93     struct {
    94       uint32_t          : 4,
    95                tsc      : 1,
    96                         : 3,
    97                cmpxchg8 : 1,
    98                         : 6,
    99                cmov     : 1,
   100                         : 3,
   101                clflush  : 1,
   102                         : 3,
   103                mmx      : 1,
   104                fxsr     : 1,
   105                sse      : 1,
   106                sse2     : 1,
   107                         : 1,
   108                ht       : 1,
   109                         : 3;
   110     } bits;
   111   };
   113   union DcpCpuid4Eax {
   114     uint32_t value;
   115     struct {
   116       uint32_t cache_type    : 5,
   117                              : 21,
   118                cores_per_cpu : 6;
   119     } bits;
   120   };
   122   union DcpCpuid4Ebx {
   123     uint32_t value;
   124     struct {
   125       uint32_t L1_line_size  : 12,
   126                partitions    : 10,
   127                associativity : 10;
   128     } bits;
   129   };
   131   union TplCpuidBEbx {
   132     uint32_t value;
   133     struct {
   134       uint32_t logical_cpus : 16,
   135                             : 16;
   136     } bits;
   137   };
   139   union ExtCpuid1Ecx {
   140     uint32_t value;
   141     struct {
   142       uint32_t LahfSahf     : 1,
   143                CmpLegacy    : 1,
   144                             : 3,
   145                lzcnt_intel  : 1,
   146                lzcnt        : 1,
   147                sse4a        : 1,
   148                misalignsse  : 1,
   149                prefetchw    : 1,
   150                             : 22;
   151     } bits;
   152   };
   154   union ExtCpuid1Edx {
   155     uint32_t value;
   156     struct {
   157       uint32_t           : 22,
   158                mmx_amd   : 1,
   159                mmx       : 1,
   160                fxsr      : 1,
   161                          : 4,
   162                long_mode : 1,
   163                tdnow2    : 1,
   164                tdnow     : 1;
   165     } bits;
   166   };
   168   union ExtCpuid5Ex {
   169     uint32_t value;
   170     struct {
   171       uint32_t L1_line_size : 8,
   172                L1_tag_lines : 8,
   173                L1_assoc     : 8,
   174                L1_size      : 8;
   175     } bits;
   176   };
   178   union ExtCpuid7Edx {
   179     uint32_t value;
   180     struct {
   181       uint32_t               : 8,
   182               tsc_invariance : 1,
   183                              : 23;
   184     } bits;
   185   };
   187   union ExtCpuid8Ecx {
   188     uint32_t value;
   189     struct {
   190       uint32_t cores_per_cpu : 8,
   191                              : 24;
   192     } bits;
   193   };
   195   union SefCpuid7Eax {
   196     uint32_t value;
   197   };
   199   union SefCpuid7Ebx {
   200     uint32_t value;
   201     struct {
   202       uint32_t fsgsbase : 1,
   203                         : 2,
   204                    bmi1 : 1,
   205                         : 1,
   206                    avx2 : 1,
   207                         : 2,
   208                    bmi2 : 1,
   209                    erms : 1,
   210                         : 1,
   211                    rtm  : 1,
   212                         : 20;
   213     } bits;
   214   };
   216   union XemXcr0Eax {
   217     uint32_t value;
   218     struct {
   219       uint32_t x87 : 1,
   220                sse : 1,
   221                ymm : 1,
   222                    : 29;
   223     } bits;
   224   };
   226 protected:
   227   static int _cpu;
   228   static int _model;
   229   static int _stepping;
   230   static int _cpuFeatures;     // features returned by the "cpuid" instruction
   231                                // 0 if this instruction is not available
   232   static const char* _features_str;
   234   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
   235   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
   237   enum {
   238     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   239     CPU_CMOV   = (1 << 1),
   240     CPU_FXSR   = (1 << 2),
   241     CPU_HT     = (1 << 3),
   242     CPU_MMX    = (1 << 4),
   243     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   244                                     // may not necessarily support other 3dnow instructions
   245     CPU_SSE    = (1 << 6),
   246     CPU_SSE2   = (1 << 7),
   247     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   248     CPU_SSSE3  = (1 << 9),
   249     CPU_SSE4A  = (1 << 10),
   250     CPU_SSE4_1 = (1 << 11),
   251     CPU_SSE4_2 = (1 << 12),
   252     CPU_POPCNT = (1 << 13),
   253     CPU_LZCNT  = (1 << 14),
   254     CPU_TSC    = (1 << 15),
   255     CPU_TSCINV = (1 << 16),
   256     CPU_AVX    = (1 << 17),
   257     CPU_AVX2   = (1 << 18),
   258     CPU_AES    = (1 << 19),
   259     CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
   260     CPU_CLMUL  = (1 << 21), // carryless multiply for CRC
   261     CPU_BMI1   = (1 << 22),
   262     CPU_BMI2   = (1 << 23),
   263     CPU_RTM    = (1 << 24)  // Restricted Transactional Memory instructions
   264   } cpuFeatureFlags;
   266   enum {
   267     // AMD
   268     CPU_FAMILY_AMD_11H       = 0x11,
   269     // Intel
   270     CPU_FAMILY_INTEL_CORE    = 6,
   271     CPU_MODEL_NEHALEM        = 0x1e,
   272     CPU_MODEL_NEHALEM_EP     = 0x1a,
   273     CPU_MODEL_NEHALEM_EX     = 0x2e,
   274     CPU_MODEL_WESTMERE       = 0x25,
   275     CPU_MODEL_WESTMERE_EP    = 0x2c,
   276     CPU_MODEL_WESTMERE_EX    = 0x2f,
   277     CPU_MODEL_SANDYBRIDGE    = 0x2a,
   278     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
   279     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
   280   } cpuExtendedFamily;
   282   // cpuid information block.  All info derived from executing cpuid with
   283   // various function numbers is stored here.  Intel and AMD info is
   284   // merged in this block: accessor methods disentangle it.
   285   //
   286   // The info block is laid out in subblocks of 4 dwords corresponding to
   287   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   288   struct CpuidInfo {
   289     // cpuid function 0
   290     uint32_t std_max_function;
   291     uint32_t std_vendor_name_0;
   292     uint32_t std_vendor_name_1;
   293     uint32_t std_vendor_name_2;
   295     // cpuid function 1
   296     StdCpuid1Eax std_cpuid1_eax;
   297     StdCpuid1Ebx std_cpuid1_ebx;
   298     StdCpuid1Ecx std_cpuid1_ecx;
   299     StdCpuid1Edx std_cpuid1_edx;
   301     // cpuid function 4 (deterministic cache parameters)
   302     DcpCpuid4Eax dcp_cpuid4_eax;
   303     DcpCpuid4Ebx dcp_cpuid4_ebx;
   304     uint32_t     dcp_cpuid4_ecx; // unused currently
   305     uint32_t     dcp_cpuid4_edx; // unused currently
   307     // cpuid function 7 (structured extended features)
   308     SefCpuid7Eax sef_cpuid7_eax;
   309     SefCpuid7Ebx sef_cpuid7_ebx;
   310     uint32_t     sef_cpuid7_ecx; // unused currently
   311     uint32_t     sef_cpuid7_edx; // unused currently
   313     // cpuid function 0xB (processor topology)
   314     // ecx = 0
   315     uint32_t     tpl_cpuidB0_eax;
   316     TplCpuidBEbx tpl_cpuidB0_ebx;
   317     uint32_t     tpl_cpuidB0_ecx; // unused currently
   318     uint32_t     tpl_cpuidB0_edx; // unused currently
   320     // ecx = 1
   321     uint32_t     tpl_cpuidB1_eax;
   322     TplCpuidBEbx tpl_cpuidB1_ebx;
   323     uint32_t     tpl_cpuidB1_ecx; // unused currently
   324     uint32_t     tpl_cpuidB1_edx; // unused currently
   326     // ecx = 2
   327     uint32_t     tpl_cpuidB2_eax;
   328     TplCpuidBEbx tpl_cpuidB2_ebx;
   329     uint32_t     tpl_cpuidB2_ecx; // unused currently
   330     uint32_t     tpl_cpuidB2_edx; // unused currently
   332     // cpuid function 0x80000000 // example, unused
   333     uint32_t ext_max_function;
   334     uint32_t ext_vendor_name_0;
   335     uint32_t ext_vendor_name_1;
   336     uint32_t ext_vendor_name_2;
   338     // cpuid function 0x80000001
   339     uint32_t     ext_cpuid1_eax; // reserved
   340     uint32_t     ext_cpuid1_ebx; // reserved
   341     ExtCpuid1Ecx ext_cpuid1_ecx;
   342     ExtCpuid1Edx ext_cpuid1_edx;
   344     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   345     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   346     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   347     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   349     // cpuid function 0x80000005 // AMD L1, Intel reserved
   350     uint32_t     ext_cpuid5_eax; // unused currently
   351     uint32_t     ext_cpuid5_ebx; // reserved
   352     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   353     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   355     // cpuid function 0x80000007
   356     uint32_t     ext_cpuid7_eax; // reserved
   357     uint32_t     ext_cpuid7_ebx; // reserved
   358     uint32_t     ext_cpuid7_ecx; // reserved
   359     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
   361     // cpuid function 0x80000008
   362     uint32_t     ext_cpuid8_eax; // unused currently
   363     uint32_t     ext_cpuid8_ebx; // reserved
   364     ExtCpuid8Ecx ext_cpuid8_ecx;
   365     uint32_t     ext_cpuid8_edx; // reserved
   367     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
   368     XemXcr0Eax   xem_xcr0_eax;
   369     uint32_t     xem_xcr0_edx; // reserved
   371     // Space to save ymm registers after signal handle
   372     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
   373   };
   375   // The actual cpuid info block
   376   static CpuidInfo _cpuid_info;
   378   // Extractors and predicates
   379   static uint32_t extended_cpu_family() {
   380     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   381     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   382     return result;
   383   }
   385   static uint32_t extended_cpu_model() {
   386     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   387     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   388     return result;
   389   }
   391   static uint32_t cpu_stepping() {
   392     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   393     return result;
   394   }
   396   static uint logical_processor_count() {
   397     uint result = threads_per_core();
   398     return result;
   399   }
   401   static uint32_t feature_flags() {
   402     uint32_t result = 0;
   403     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   404       result |= CPU_CX8;
   405     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   406       result |= CPU_CMOV;
   407     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   408         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   409       result |= CPU_FXSR;
   410     // HT flag is set for multi-core processors also.
   411     if (threads_per_core() > 1)
   412       result |= CPU_HT;
   413     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   414         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   415       result |= CPU_MMX;
   416     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   417       result |= CPU_SSE;
   418     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   419       result |= CPU_SSE2;
   420     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   421       result |= CPU_SSE3;
   422     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   423       result |= CPU_SSSE3;
   424     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   425       result |= CPU_SSE4_1;
   426     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   427       result |= CPU_SSE4_2;
   428     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   429       result |= CPU_POPCNT;
   430     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
   431         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
   432         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
   433         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
   434       result |= CPU_AVX;
   435       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
   436         result |= CPU_AVX2;
   437     }
   438     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
   439       result |= CPU_BMI1;
   440     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
   441       result |= CPU_TSC;
   442     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
   443       result |= CPU_TSCINV;
   444     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
   445       result |= CPU_AES;
   446     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
   447       result |= CPU_ERMS;
   448     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
   449       result |= CPU_CLMUL;
   450     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
   451       result |= CPU_RTM;
   453     // AMD features.
   454     if (is_amd()) {
   455       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   456           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   457         result |= CPU_3DNOW_PREFETCH;
   458       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   459         result |= CPU_LZCNT;
   460       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   461         result |= CPU_SSE4A;
   462     }
   463     // Intel features.
   464     if(is_intel()) {
   465       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
   466         result |= CPU_BMI2;
   467       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
   468         result |= CPU_LZCNT;
   469     }
   471     return result;
   472   }
   474   static bool os_supports_avx_vectors() {
   475     if (!supports_avx()) {
   476       return false;
   477     }
   478     // Verify that OS save/restore all bits of AVX registers
   479     // during signal processing.
   480     int nreg = 2 LP64_ONLY(+2);
   481     for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
   482       if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
   483         return false;
   484       }
   485     }
   486     return true;
   487   }
   489   static void get_processor_features();
   491 public:
   492   // Offsets for cpuid asm stub
   493   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   494   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   495   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   496   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
   497   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   498   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   499   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
   500   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   501   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   502   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   503   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   504   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
   505   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
   507   // The value used to check ymm register after signal handle
   508   static int ymm_test_value()    { return 0xCAFEBABE; }
   510   static void get_cpu_info_wrapper();
   511   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
   512   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
   513   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
   514   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
   516   static void clean_cpuFeatures()   { _cpuFeatures = 0; }
   517   static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
   520   // Initialization
   521   static void initialize();
   523   // Override Abstract_VM_Version implementation
   524   static bool use_biased_locking();
   526   // Asserts
   527   static void assert_is_initialized() {
   528     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   529   }
   531   //
   532   // Processor family:
   533   //       3   -  386
   534   //       4   -  486
   535   //       5   -  Pentium
   536   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   537   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   538   //    family 6 model:   9,        13,       14,        15
   539   //    0x0f   -  Pentium 4, Opteron
   540   //
   541   // Note: The cpu family should be used to select between
   542   //       instruction sequences which are valid on all Intel
   543   //       processors.  Use the feature test functions below to
   544   //       determine whether a particular instruction is supported.
   545   //
   546   static int  cpu_family()        { return _cpu;}
   547   static bool is_P6()             { return cpu_family() >= 6; }
   548   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   549   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   551   static bool supports_processor_topology() {
   552     return (_cpuid_info.std_max_function >= 0xB) &&
   553            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   554            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   555            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   556   }
   558   static uint cores_per_cpu()  {
   559     uint result = 1;
   560     if (is_intel()) {
   561       if (supports_processor_topology()) {
   562         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   563                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   564       } else {
   565         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   566       }
   567     } else if (is_amd()) {
   568       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   569     }
   570     return result;
   571   }
   573   static uint threads_per_core()  {
   574     uint result = 1;
   575     if (is_intel() && supports_processor_topology()) {
   576       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   577     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   578       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   579                cores_per_cpu();
   580     }
   581     return result;
   582   }
   584   static intx prefetch_data_size()  {
   585     intx result = 0;
   586     if (is_intel()) {
   587       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   588     } else if (is_amd()) {
   589       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   590     }
   591     if (result < 32) // not defined ?
   592       result = 32;   // 32 bytes by default on x86 and other x64
   593     return result;
   594   }
   596   //
   597   // Feature identification
   598   //
   599   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   600   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   601   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   602   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   603   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   604   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   605   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   606   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   607   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   608   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   609   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   610   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   611   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   612   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
   613   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
   614   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
   615   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
   616   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
   617   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
   618   static bool supports_rtm()      { return (_cpuFeatures & CPU_RTM) != 0; }
   619   static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
   620   static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
   621   // Intel features
   622   static bool is_intel_family_core() { return is_intel() &&
   623                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
   625   static bool is_intel_tsc_synched_at_init()  {
   626     if (is_intel_family_core()) {
   627       uint32_t ext_model = extended_cpu_model();
   628       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
   629           ext_model == CPU_MODEL_WESTMERE_EP    ||
   630           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
   631           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
   632         // <= 2-socket invariant tsc support. EX versions are usually used
   633         // in > 2-socket systems and likely don't synchronize tscs at
   634         // initialization.
   635         // Code that uses tsc values must be prepared for them to arbitrarily
   636         // jump forward or backward.
   637         return true;
   638       }
   639     }
   640     return false;
   641   }
   643   // AMD features
   644   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   645   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   646   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   647   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   649   static bool is_amd_Barcelona()  { return is_amd() &&
   650                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
   652   // Intel and AMD newer cores support fast timestamps well
   653   static bool supports_tscinv_bit() {
   654     return (_cpuFeatures & CPU_TSCINV) != 0;
   655   }
   656   static bool supports_tscinv() {
   657     return supports_tscinv_bit() &&
   658            ( (is_amd() && !is_amd_Barcelona()) ||
   659              is_intel_tsc_synched_at_init() );
   660   }
   662   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   663   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   664                                            supports_sse3() && _model != 0x1C; }
   666   static bool supports_compare_and_exchange() { return true; }
   668   static const char* cpu_features()           { return _features_str; }
   670   static intx allocate_prefetch_distance() {
   671     // This method should be called before allocate_prefetch_style().
   672     //
   673     // Hardware prefetching (distance/size in bytes):
   674     // Pentium 3 -  64 /  32
   675     // Pentium 4 - 256 / 128
   676     // Athlon    -  64 /  32 ????
   677     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   678     // Core      - 128 /  64
   679     //
   680     // Software prefetching (distance in bytes / instruction with best score):
   681     // Pentium 3 - 128 / prefetchnta
   682     // Pentium 4 - 512 / prefetchnta
   683     // Athlon    - 128 / prefetchnta
   684     // Opteron   - 256 / prefetchnta
   685     // Core      - 256 / prefetchnta
   686     // It will be used only when AllocatePrefetchStyle > 0
   688     intx count = AllocatePrefetchDistance;
   689     if (count < 0) {   // default ?
   690       if (is_amd()) {  // AMD
   691         if (supports_sse2())
   692           count = 256; // Opteron
   693         else
   694           count = 128; // Athlon
   695       } else {         // Intel
   696         if (supports_sse2())
   697           if (cpu_family() == 6) {
   698             count = 256; // Pentium M, Core, Core2
   699           } else {
   700             count = 512; // Pentium 4
   701           }
   702         else
   703           count = 128; // Pentium 3 (and all other old CPUs)
   704       }
   705     }
   706     return count;
   707   }
   708   static intx allocate_prefetch_style() {
   709     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   710     // Return 0 if AllocatePrefetchDistance was not defined.
   711     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   712   }
   714   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   715   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   716   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   717   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   719   // gc copy/scan is disabled if prefetchw isn't supported, because
   720   // Prefetch::write emits an inlined prefetchw on Linux.
   721   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   722   // The used prefetcht0 instruction works for both amd64 and em64t.
   723   static intx prefetch_copy_interval_in_bytes() {
   724     intx interval = PrefetchCopyIntervalInBytes;
   725     return interval >= 0 ? interval : 576;
   726   }
   727   static intx prefetch_scan_interval_in_bytes() {
   728     intx interval = PrefetchScanIntervalInBytes;
   729     return interval >= 0 ? interval : 576;
   730   }
   731   static intx prefetch_fields_ahead() {
   732     intx count = PrefetchFieldsAhead;
   733     return count >= 0 ? count : 1;
   734   }
   735 };
   737 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial