src/share/vm/utilities/growableArray.hpp

Sun, 11 Sep 2011 14:48:24 -0700

author
never
date
Sun, 11 Sep 2011 14:48:24 -0700
changeset 3138
f6f3bb0ee072
parent 2314
f95d63e2154a
child 3651
ee138854b3a6
permissions
-rw-r--r--

7088955: add C2 IR support to the SA
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    26 #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "utilities/debug.hpp"
    31 #include "utilities/globalDefinitions.hpp"
    32 #include "utilities/top.hpp"
    34 // A growable array.
    36 /*************************************************************************/
    37 /*                                                                       */
    38 /*     WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING   */
    39 /*                                                                       */
    40 /* Should you use GrowableArrays to contain handles you must be certain  */
    41 /* the the GrowableArray does not outlive the HandleMark that contains   */
    42 /* the handles. Since GrowableArrays are typically resource allocated    */
    43 /* the following is an example of INCORRECT CODE,                        */
    44 /*                                                                       */
    45 /* ResourceMark rm;                                                      */
    46 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size);         */
    47 /* if (blah) {                                                           */
    48 /*    while (...) {                                                      */
    49 /*      HandleMark hm;                                                   */
    50 /*      ...                                                              */
    51 /*      Handle h(THREAD, some_oop);                                      */
    52 /*      arr->append(h);                                                  */
    53 /*    }                                                                  */
    54 /* }                                                                     */
    55 /* if (arr->length() != 0 ) {                                            */
    56 /*    oop bad_oop = arr->at(0)(); // Handle is BAD HERE.                 */
    57 /*    ...                                                                */
    58 /* }                                                                     */
    59 /*                                                                       */
    60 /* If the GrowableArrays you are creating is C_Heap allocated then it    */
    61 /* hould not old handles since the handles could trivially try and       */
    62 /* outlive their HandleMark. In some situations you might need to do     */
    63 /* this and it would be legal but be very careful and see if you can do  */
    64 /* the code in some other manner.                                        */
    65 /*                                                                       */
    66 /*************************************************************************/
    68 // To call default constructor the placement operator new() is used.
    69 // It should be empty (it only returns the passed void* pointer).
    70 // The definition of placement operator new(size_t, void*) in the <new>.
    72 #include <new>
    74 // Need the correct linkage to call qsort without warnings
    75 extern "C" {
    76   typedef int (*_sort_Fn)(const void *, const void *);
    77 }
    79 class GenericGrowableArray : public ResourceObj {
    80   friend class VMStructs;
    82  protected:
    83   int    _len;          // current length
    84   int    _max;          // maximum length
    85   Arena* _arena;        // Indicates where allocation occurs:
    86                         //   0 means default ResourceArea
    87                         //   1 means on C heap
    88                         //   otherwise, allocate in _arena
    89 #ifdef ASSERT
    90   int    _nesting;      // resource area nesting at creation
    91   void   set_nesting();
    92   void   check_nesting();
    93 #else
    94 #define  set_nesting();
    95 #define  check_nesting();
    96 #endif
    98   // Where are we going to allocate memory?
    99   bool on_C_heap() { return _arena == (Arena*)1; }
   100   bool on_stack () { return _arena == NULL;      }
   101   bool on_arena () { return _arena >  (Arena*)1;  }
   103   // This GA will use the resource stack for storage if c_heap==false,
   104   // Else it will use the C heap.  Use clear_and_deallocate to avoid leaks.
   105   GenericGrowableArray(int initial_size, int initial_len, bool c_heap) {
   106     _len = initial_len;
   107     _max = initial_size;
   108     assert(_len >= 0 && _len <= _max, "initial_len too big");
   109     _arena = (c_heap ? (Arena*)1 : NULL);
   110     set_nesting();
   111     assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
   112     assert(!on_stack() ||
   113            (allocated_on_res_area() || allocated_on_stack()),
   114            "growable array must be on stack if elements are not on arena and not on C heap");
   115   }
   117   // This GA will use the given arena for storage.
   118   // Consider using new(arena) GrowableArray<T> to allocate the header.
   119   GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
   120     _len = initial_len;
   121     _max = initial_size;
   122     assert(_len >= 0 && _len <= _max, "initial_len too big");
   123     _arena = arena;
   124     assert(on_arena(), "arena has taken on reserved value 0 or 1");
   125     // Relax next assert to allow object allocation on resource area,
   126     // on stack or embedded into an other object.
   127     assert(allocated_on_arena() || allocated_on_stack(),
   128            "growable array must be on arena or on stack if elements are on arena");
   129   }
   131   void* raw_allocate(int elementSize);
   133   // some uses pass the Thread explicitly for speed (4990299 tuning)
   134   void* raw_allocate(Thread* thread, int elementSize) {
   135     assert(on_stack(), "fast ResourceObj path only");
   136     return (void*)resource_allocate_bytes(thread, elementSize * _max);
   137   }
   138 };
   140 template<class E> class GrowableArray : public GenericGrowableArray {
   141   friend class VMStructs;
   143  private:
   144   E*     _data;         // data array
   146   void grow(int j);
   147   void raw_at_put_grow(int i, const E& p, const E& fill);
   148   void  clear_and_deallocate();
   149  public:
   150   GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
   151     _data = (E*)raw_allocate(thread, sizeof(E));
   152     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   153   }
   155   GrowableArray(int initial_size, bool C_heap = false) : GenericGrowableArray(initial_size, 0, C_heap) {
   156     _data = (E*)raw_allocate(sizeof(E));
   157     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   158   }
   160   GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false) : GenericGrowableArray(initial_size, initial_len, C_heap) {
   161     _data = (E*)raw_allocate(sizeof(E));
   162     int i = 0;
   163     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   164     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   165   }
   167   GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
   168     _data = (E*)raw_allocate(sizeof(E));
   169     int i = 0;
   170     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   171     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   172   }
   174   GrowableArray() : GenericGrowableArray(2, 0, false) {
   175     _data = (E*)raw_allocate(sizeof(E));
   176     ::new ((void*)&_data[0]) E();
   177     ::new ((void*)&_data[1]) E();
   178   }
   180                                 // Does nothing for resource and arena objects
   181   ~GrowableArray()              { if (on_C_heap()) clear_and_deallocate(); }
   183   void  clear()                 { _len = 0; }
   184   int   length() const          { return _len; }
   185   void  trunc_to(int l)         { assert(l <= _len,"cannot increase length"); _len = l; }
   186   bool  is_empty() const        { return _len == 0; }
   187   bool  is_nonempty() const     { return _len != 0; }
   188   bool  is_full() const         { return _len == _max; }
   189   DEBUG_ONLY(E* data_addr() const      { return _data; })
   191   void print();
   193   int append(const E& elem) {
   194     check_nesting();
   195     if (_len == _max) grow(_len);
   196     int idx = _len++;
   197     _data[idx] = elem;
   198     return idx;
   199   }
   201   void append_if_missing(const E& elem) {
   202     if (!contains(elem)) append(elem);
   203   }
   205   E at(int i) const {
   206     assert(0 <= i && i < _len, "illegal index");
   207     return _data[i];
   208   }
   210   E* adr_at(int i) const {
   211     assert(0 <= i && i < _len, "illegal index");
   212     return &_data[i];
   213   }
   215   E first() const {
   216     assert(_len > 0, "empty list");
   217     return _data[0];
   218   }
   220   E top() const {
   221     assert(_len > 0, "empty list");
   222     return _data[_len-1];
   223   }
   225   void push(const E& elem) { append(elem); }
   227   E pop() {
   228     assert(_len > 0, "empty list");
   229     return _data[--_len];
   230   }
   232   void at_put(int i, const E& elem) {
   233     assert(0 <= i && i < _len, "illegal index");
   234     _data[i] = elem;
   235   }
   237   E at_grow(int i, const E& fill = E()) {
   238     assert(0 <= i, "negative index");
   239     check_nesting();
   240     if (i >= _len) {
   241       if (i >= _max) grow(i);
   242       for (int j = _len; j <= i; j++)
   243         _data[j] = fill;
   244       _len = i+1;
   245     }
   246     return _data[i];
   247   }
   249   void at_put_grow(int i, const E& elem, const E& fill = E()) {
   250     assert(0 <= i, "negative index");
   251     check_nesting();
   252     raw_at_put_grow(i, elem, fill);
   253   }
   255   bool contains(const E& elem) const {
   256     for (int i = 0; i < _len; i++) {
   257       if (_data[i] == elem) return true;
   258     }
   259     return false;
   260   }
   262   int  find(const E& elem) const {
   263     for (int i = 0; i < _len; i++) {
   264       if (_data[i] == elem) return i;
   265     }
   266     return -1;
   267   }
   269   int  find(void* token, bool f(void*, E)) const {
   270     for (int i = 0; i < _len; i++) {
   271       if (f(token, _data[i])) return i;
   272     }
   273     return -1;
   274   }
   276   int  find_at_end(void* token, bool f(void*, E)) const {
   277     // start at the end of the array
   278     for (int i = _len-1; i >= 0; i--) {
   279       if (f(token, _data[i])) return i;
   280     }
   281     return -1;
   282   }
   284   void remove(const E& elem) {
   285     for (int i = 0; i < _len; i++) {
   286       if (_data[i] == elem) {
   287         for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
   288         _len--;
   289         return;
   290       }
   291     }
   292     ShouldNotReachHere();
   293   }
   295   void remove_at(int index) {
   296     assert(0 <= index && index < _len, "illegal index");
   297     for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
   298     _len--;
   299   }
   301   // inserts the given element before the element at index i
   302   void insert_before(const int idx, const E& elem) {
   303     check_nesting();
   304     if (_len == _max) grow(_len);
   305     for (int j = _len - 1; j >= idx; j--) {
   306       _data[j + 1] = _data[j];
   307     }
   308     _len++;
   309     _data[idx] = elem;
   310   }
   312   void appendAll(const GrowableArray<E>* l) {
   313     for (int i = 0; i < l->_len; i++) {
   314       raw_at_put_grow(_len, l->_data[i], 0);
   315     }
   316   }
   318   void sort(int f(E*,E*)) {
   319     qsort(_data, length(), sizeof(E), (_sort_Fn)f);
   320   }
   321   // sort by fixed-stride sub arrays:
   322   void sort(int f(E*,E*), int stride) {
   323     qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
   324   }
   325 };
   327 // Global GrowableArray methods (one instance in the library per each 'E' type).
   329 template<class E> void GrowableArray<E>::grow(int j) {
   330     // grow the array by doubling its size (amortized growth)
   331     int old_max = _max;
   332     if (_max == 0) _max = 1; // prevent endless loop
   333     while (j >= _max) _max = _max*2;
   334     // j < _max
   335     E* newData = (E*)raw_allocate(sizeof(E));
   336     int i = 0;
   337     for (     ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
   338     for (     ; i < _max; i++) ::new ((void*)&newData[i]) E();
   339     for (i = 0; i < old_max; i++) _data[i].~E();
   340     if (on_C_heap() && _data != NULL) {
   341       FreeHeap(_data);
   342     }
   343     _data = newData;
   344 }
   346 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
   347     if (i >= _len) {
   348       if (i >= _max) grow(i);
   349       for (int j = _len; j < i; j++)
   350         _data[j] = fill;
   351       _len = i+1;
   352     }
   353     _data[i] = p;
   354 }
   356 // This function clears and deallocate the data in the growable array that
   357 // has been allocated on the C heap.  It's not public - called by the
   358 // destructor.
   359 template<class E> void GrowableArray<E>::clear_and_deallocate() {
   360     assert(on_C_heap(),
   361            "clear_and_deallocate should only be called when on C heap");
   362     clear();
   363     if (_data != NULL) {
   364       for (int i = 0; i < _max; i++) _data[i].~E();
   365       FreeHeap(_data);
   366       _data = NULL;
   367     }
   368 }
   370 template<class E> void GrowableArray<E>::print() {
   371     tty->print("Growable Array " INTPTR_FORMAT, this);
   372     tty->print(": length %ld (_max %ld) { ", _len, _max);
   373     for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
   374     tty->print("}\n");
   375 }
   377 #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP

mercurial