src/share/vm/opto/type.hpp

Tue, 09 Oct 2012 12:40:05 -0700

author
vlivanov
date
Tue, 09 Oct 2012 12:40:05 -0700
changeset 4160
f6badecb7ea7
parent 4159
8e47bac5643a
child 4313
beebba0acc11
permissions
-rw-r--r--

7199654: Remove LoadUI2LNode
Summary: Removed LoadUI2L node from Ideal nodes, use match rule in .ad files instead.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowPtr;
    52 class     TypeNarrowOop;
    53 class     TypeNarrowKlass;
    54 class   TypeAry;
    55 class   TypeTuple;
    56 class   TypeVect;
    57 class     TypeVectS;
    58 class     TypeVectD;
    59 class     TypeVectX;
    60 class     TypeVectY;
    61 class   TypePtr;
    62 class     TypeRawPtr;
    63 class     TypeOopPtr;
    64 class       TypeInstPtr;
    65 class       TypeAryPtr;
    66 class       TypeKlassPtr;
    67 class     TypeMetadataPtr;
    69 //------------------------------Type-------------------------------------------
    70 // Basic Type object, represents a set of primitive Values.
    71 // Types are hash-cons'd into a private class dictionary, so only one of each
    72 // different kind of Type exists.  Types are never modified after creation, so
    73 // all their interesting fields are constant.
    74 class Type {
    75   friend class VMStructs;
    77 public:
    78   enum TYPES {
    79     Bad=0,                      // Type check
    80     Control,                    // Control of code (not in lattice)
    81     Top,                        // Top of the lattice
    82     Int,                        // Integer range (lo-hi)
    83     Long,                       // Long integer range (lo-hi)
    84     Half,                       // Placeholder half of doubleword
    85     NarrowOop,                  // Compressed oop pointer
    86     NarrowKlass,                // Compressed klass pointer
    88     Tuple,                      // Method signature or object layout
    89     Array,                      // Array types
    90     VectorS,                    //  32bit Vector types
    91     VectorD,                    //  64bit Vector types
    92     VectorX,                    // 128bit Vector types
    93     VectorY,                    // 256bit Vector types
    95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    96     RawPtr,                     // Raw (non-oop) pointers
    97     OopPtr,                     // Any and all Java heap entities
    98     InstPtr,                    // Instance pointers (non-array objects)
    99     AryPtr,                     // Array pointers
   100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
   102     MetadataPtr,                // Generic metadata
   103     KlassPtr,                   // Klass pointers
   105     Function,                   // Function signature
   106     Abio,                       // Abstract I/O
   107     Return_Address,             // Subroutine return address
   108     Memory,                     // Abstract store
   109     FloatTop,                   // No float value
   110     FloatCon,                   // Floating point constant
   111     FloatBot,                   // Any float value
   112     DoubleTop,                  // No double value
   113     DoubleCon,                  // Double precision constant
   114     DoubleBot,                  // Any double value
   115     Bottom,                     // Bottom of lattice
   116     lastype                     // Bogus ending type (not in lattice)
   117   };
   119   // Signal values for offsets from a base pointer
   120   enum OFFSET_SIGNALS {
   121     OffsetTop = -2000000000,    // undefined offset
   122     OffsetBot = -2000000001     // any possible offset
   123   };
   125   // Min and max WIDEN values.
   126   enum WIDEN {
   127     WidenMin = 0,
   128     WidenMax = 3
   129   };
   131 private:
   132   typedef struct {
   133     const TYPES                dual_type;
   134     const BasicType            basic_type;
   135     const char*                msg;
   136     const bool                 isa_oop;
   137     const int                  ideal_reg;
   138     const relocInfo::relocType reloc;
   139   } TypeInfo;
   141   // Dictionary of types shared among compilations.
   142   static Dict* _shared_type_dict;
   143   static TypeInfo _type_info[];
   145   static int uhash( const Type *const t );
   146   // Structural equality check.  Assumes that cmp() has already compared
   147   // the _base types and thus knows it can cast 't' appropriately.
   148   virtual bool eq( const Type *t ) const;
   150   // Top-level hash-table of types
   151   static Dict *type_dict() {
   152     return Compile::current()->type_dict();
   153   }
   155   // DUAL operation: reflect around lattice centerline.  Used instead of
   156   // join to ensure my lattice is symmetric up and down.  Dual is computed
   157   // lazily, on demand, and cached in _dual.
   158   const Type *_dual;            // Cached dual value
   159   // Table for efficient dualing of base types
   160   static const TYPES dual_type[lastype];
   162 protected:
   163   // Each class of type is also identified by its base.
   164   const TYPES _base;            // Enum of Types type
   166   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   167   // ~Type();                   // Use fast deallocation
   168   const Type *hashcons();       // Hash-cons the type
   170 public:
   172   inline void* operator new( size_t x ) {
   173     Compile* compile = Compile::current();
   174     compile->set_type_last_size(x);
   175     void *temp = compile->type_arena()->Amalloc_D(x);
   176     compile->set_type_hwm(temp);
   177     return temp;
   178   }
   179   inline void operator delete( void* ptr ) {
   180     Compile* compile = Compile::current();
   181     compile->type_arena()->Afree(ptr,compile->type_last_size());
   182   }
   184   // Initialize the type system for a particular compilation.
   185   static void Initialize(Compile* compile);
   187   // Initialize the types shared by all compilations.
   188   static void Initialize_shared(Compile* compile);
   190   TYPES base() const {
   191     assert(_base > Bad && _base < lastype, "sanity");
   192     return _base;
   193   }
   195   // Create a new hash-consd type
   196   static const Type *make(enum TYPES);
   197   // Test for equivalence of types
   198   static int cmp( const Type *const t1, const Type *const t2 );
   199   // Test for higher or equal in lattice
   200   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   202   // MEET operation; lower in lattice.
   203   const Type *meet( const Type *t ) const;
   204   // WIDEN: 'widens' for Ints and other range types
   205   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   206   // NARROW: complement for widen, used by pessimistic phases
   207   virtual const Type *narrow( const Type *old ) const { return this; }
   209   // DUAL operation: reflect around lattice centerline.  Used instead of
   210   // join to ensure my lattice is symmetric up and down.
   211   const Type *dual() const { return _dual; }
   213   // Compute meet dependent on base type
   214   virtual const Type *xmeet( const Type *t ) const;
   215   virtual const Type *xdual() const;    // Compute dual right now.
   217   // JOIN operation; higher in lattice.  Done by finding the dual of the
   218   // meet of the dual of the 2 inputs.
   219   const Type *join( const Type *t ) const {
   220     return dual()->meet(t->dual())->dual(); }
   222   // Modified version of JOIN adapted to the needs Node::Value.
   223   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   224   // Currently, it also works around limitations involving interface types.
   225   virtual const Type *filter( const Type *kills ) const;
   227 #ifdef ASSERT
   228   // One type is interface, the other is oop
   229   virtual bool interface_vs_oop(const Type *t) const;
   230 #endif
   232   // Returns true if this pointer points at memory which contains a
   233   // compressed oop references.
   234   bool is_ptr_to_narrowoop() const;
   235   bool is_ptr_to_narrowklass() const;
   237   // Convenience access
   238   float getf() const;
   239   double getd() const;
   241   const TypeInt    *is_int() const;
   242   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   243   const TypeLong   *is_long() const;
   244   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   245   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   246   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   247   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   248   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   249   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   250   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   251   const TypeVect   *is_vect() const;             // Vector
   252   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
   253   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   254   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   255   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   256   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   257   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   258   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   259   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
   260   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
   261   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   262   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   263   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   264   const TypeInstPtr  *is_instptr() const;        // Instance
   265   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   266   const TypeAryPtr   *is_aryptr() const;         // Array oop
   268   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
   269   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
   270   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
   271   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
   273   virtual bool      is_finite() const;           // Has a finite value
   274   virtual bool      is_nan()    const;           // Is not a number (NaN)
   276   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   277   const TypePtr* make_ptr() const;
   279   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   280   // Asserts if the underlying type is not an oopptr or narrowoop.
   281   const TypeOopPtr* make_oopptr() const;
   283   // Returns this compressed pointer or the equivalent compressed version
   284   // of this pointer type.
   285   const TypeNarrowOop* make_narrowoop() const;
   287   // Returns this compressed klass pointer or the equivalent
   288   // compressed version of this pointer type.
   289   const TypeNarrowKlass* make_narrowklass() const;
   291   // Special test for register pressure heuristic
   292   bool is_floatingpoint() const;        // True if Float or Double base type
   294   // Do you have memory, directly or through a tuple?
   295   bool has_memory( ) const;
   297   // TRUE if type is a singleton
   298   virtual bool singleton(void) const;
   300   // TRUE if type is above the lattice centerline, and is therefore vacuous
   301   virtual bool empty(void) const;
   303   // Return a hash for this type.  The hash function is public so ConNode
   304   // (constants) can hash on their constant, which is represented by a Type.
   305   virtual int hash() const;
   307   // Map ideal registers (machine types) to ideal types
   308   static const Type *mreg2type[];
   310   // Printing, statistics
   311 #ifndef PRODUCT
   312   void         dump_on(outputStream *st) const;
   313   void         dump() const {
   314     dump_on(tty);
   315   }
   316   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   317   static  void dump_stats();
   318 #endif
   319   void typerr(const Type *t) const; // Mixing types error
   321   // Create basic type
   322   static const Type* get_const_basic_type(BasicType type) {
   323     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   324     return _const_basic_type[type];
   325   }
   327   // Mapping to the array element's basic type.
   328   BasicType array_element_basic_type() const;
   330   // Create standard type for a ciType:
   331   static const Type* get_const_type(ciType* type);
   333   // Create standard zero value:
   334   static const Type* get_zero_type(BasicType type) {
   335     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   336     return _zero_type[type];
   337   }
   339   // Report if this is a zero value (not top).
   340   bool is_zero_type() const {
   341     BasicType type = basic_type();
   342     if (type == T_VOID || type >= T_CONFLICT)
   343       return false;
   344     else
   345       return (this == _zero_type[type]);
   346   }
   348   // Convenience common pre-built types.
   349   static const Type *ABIO;
   350   static const Type *BOTTOM;
   351   static const Type *CONTROL;
   352   static const Type *DOUBLE;
   353   static const Type *FLOAT;
   354   static const Type *HALF;
   355   static const Type *MEMORY;
   356   static const Type *MULTI;
   357   static const Type *RETURN_ADDRESS;
   358   static const Type *TOP;
   360   // Mapping from compiler type to VM BasicType
   361   BasicType basic_type() const       { return _type_info[_base].basic_type; }
   362   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
   363   const char* msg() const            { return _type_info[_base].msg; }
   364   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
   365   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
   367   // Mapping from CI type system to compiler type:
   368   static const Type* get_typeflow_type(ciType* type);
   370 private:
   371   // support arrays
   372   static const BasicType _basic_type[];
   373   static const Type*        _zero_type[T_CONFLICT+1];
   374   static const Type* _const_basic_type[T_CONFLICT+1];
   375 };
   377 //------------------------------TypeF------------------------------------------
   378 // Class of Float-Constant Types.
   379 class TypeF : public Type {
   380   TypeF( float f ) : Type(FloatCon), _f(f) {};
   381 public:
   382   virtual bool eq( const Type *t ) const;
   383   virtual int  hash() const;             // Type specific hashing
   384   virtual bool singleton(void) const;    // TRUE if type is a singleton
   385   virtual bool empty(void) const;        // TRUE if type is vacuous
   386 public:
   387   const float _f;               // Float constant
   389   static const TypeF *make(float f);
   391   virtual bool        is_finite() const;  // Has a finite value
   392   virtual bool        is_nan()    const;  // Is not a number (NaN)
   394   virtual const Type *xmeet( const Type *t ) const;
   395   virtual const Type *xdual() const;    // Compute dual right now.
   396   // Convenience common pre-built types.
   397   static const TypeF *ZERO; // positive zero only
   398   static const TypeF *ONE;
   399 #ifndef PRODUCT
   400   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   401 #endif
   402 };
   404 //------------------------------TypeD------------------------------------------
   405 // Class of Double-Constant Types.
   406 class TypeD : public Type {
   407   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   408 public:
   409   virtual bool eq( const Type *t ) const;
   410   virtual int  hash() const;             // Type specific hashing
   411   virtual bool singleton(void) const;    // TRUE if type is a singleton
   412   virtual bool empty(void) const;        // TRUE if type is vacuous
   413 public:
   414   const double _d;              // Double constant
   416   static const TypeD *make(double d);
   418   virtual bool        is_finite() const;  // Has a finite value
   419   virtual bool        is_nan()    const;  // Is not a number (NaN)
   421   virtual const Type *xmeet( const Type *t ) const;
   422   virtual const Type *xdual() const;    // Compute dual right now.
   423   // Convenience common pre-built types.
   424   static const TypeD *ZERO; // positive zero only
   425   static const TypeD *ONE;
   426 #ifndef PRODUCT
   427   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   428 #endif
   429 };
   431 //------------------------------TypeInt----------------------------------------
   432 // Class of integer ranges, the set of integers between a lower bound and an
   433 // upper bound, inclusive.
   434 class TypeInt : public Type {
   435   TypeInt( jint lo, jint hi, int w );
   436 public:
   437   virtual bool eq( const Type *t ) const;
   438   virtual int  hash() const;             // Type specific hashing
   439   virtual bool singleton(void) const;    // TRUE if type is a singleton
   440   virtual bool empty(void) const;        // TRUE if type is vacuous
   441 public:
   442   const jint _lo, _hi;          // Lower bound, upper bound
   443   const short _widen;           // Limit on times we widen this sucker
   445   static const TypeInt *make(jint lo);
   446   // must always specify w
   447   static const TypeInt *make(jint lo, jint hi, int w);
   449   // Check for single integer
   450   int is_con() const { return _lo==_hi; }
   451   bool is_con(int i) const { return is_con() && _lo == i; }
   452   jint get_con() const { assert( is_con(), "" );  return _lo; }
   454   virtual bool        is_finite() const;  // Has a finite value
   456   virtual const Type *xmeet( const Type *t ) const;
   457   virtual const Type *xdual() const;    // Compute dual right now.
   458   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   459   virtual const Type *narrow( const Type *t ) const;
   460   // Do not kill _widen bits.
   461   virtual const Type *filter( const Type *kills ) const;
   462   // Convenience common pre-built types.
   463   static const TypeInt *MINUS_1;
   464   static const TypeInt *ZERO;
   465   static const TypeInt *ONE;
   466   static const TypeInt *BOOL;
   467   static const TypeInt *CC;
   468   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   469   static const TypeInt *CC_GT;  // [1]   == ONE
   470   static const TypeInt *CC_EQ;  // [0]   == ZERO
   471   static const TypeInt *CC_LE;  // [-1,0]
   472   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   473   static const TypeInt *BYTE;
   474   static const TypeInt *UBYTE;
   475   static const TypeInt *CHAR;
   476   static const TypeInt *SHORT;
   477   static const TypeInt *POS;
   478   static const TypeInt *POS1;
   479   static const TypeInt *INT;
   480   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   481 #ifndef PRODUCT
   482   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   483 #endif
   484 };
   487 //------------------------------TypeLong---------------------------------------
   488 // Class of long integer ranges, the set of integers between a lower bound and
   489 // an upper bound, inclusive.
   490 class TypeLong : public Type {
   491   TypeLong( jlong lo, jlong hi, int w );
   492 public:
   493   virtual bool eq( const Type *t ) const;
   494   virtual int  hash() const;             // Type specific hashing
   495   virtual bool singleton(void) const;    // TRUE if type is a singleton
   496   virtual bool empty(void) const;        // TRUE if type is vacuous
   497 public:
   498   const jlong _lo, _hi;         // Lower bound, upper bound
   499   const short _widen;           // Limit on times we widen this sucker
   501   static const TypeLong *make(jlong lo);
   502   // must always specify w
   503   static const TypeLong *make(jlong lo, jlong hi, int w);
   505   // Check for single integer
   506   int is_con() const { return _lo==_hi; }
   507   bool is_con(int i) const { return is_con() && _lo == i; }
   508   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   510   virtual bool        is_finite() const;  // Has a finite value
   512   virtual const Type *xmeet( const Type *t ) const;
   513   virtual const Type *xdual() const;    // Compute dual right now.
   514   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   515   virtual const Type *narrow( const Type *t ) const;
   516   // Do not kill _widen bits.
   517   virtual const Type *filter( const Type *kills ) const;
   518   // Convenience common pre-built types.
   519   static const TypeLong *MINUS_1;
   520   static const TypeLong *ZERO;
   521   static const TypeLong *ONE;
   522   static const TypeLong *POS;
   523   static const TypeLong *LONG;
   524   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   525   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   526 #ifndef PRODUCT
   527   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   528 #endif
   529 };
   531 //------------------------------TypeTuple--------------------------------------
   532 // Class of Tuple Types, essentially type collections for function signatures
   533 // and class layouts.  It happens to also be a fast cache for the HotSpot
   534 // signature types.
   535 class TypeTuple : public Type {
   536   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   537 public:
   538   virtual bool eq( const Type *t ) const;
   539   virtual int  hash() const;             // Type specific hashing
   540   virtual bool singleton(void) const;    // TRUE if type is a singleton
   541   virtual bool empty(void) const;        // TRUE if type is vacuous
   543 public:
   544   const uint          _cnt;              // Count of fields
   545   const Type ** const _fields;           // Array of field types
   547   // Accessors:
   548   uint cnt() const { return _cnt; }
   549   const Type* field_at(uint i) const {
   550     assert(i < _cnt, "oob");
   551     return _fields[i];
   552   }
   553   void set_field_at(uint i, const Type* t) {
   554     assert(i < _cnt, "oob");
   555     _fields[i] = t;
   556   }
   558   static const TypeTuple *make( uint cnt, const Type **fields );
   559   static const TypeTuple *make_range(ciSignature *sig);
   560   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   562   // Subroutine call type with space allocated for argument types
   563   static const Type **fields( uint arg_cnt );
   565   virtual const Type *xmeet( const Type *t ) const;
   566   virtual const Type *xdual() const;    // Compute dual right now.
   567   // Convenience common pre-built types.
   568   static const TypeTuple *IFBOTH;
   569   static const TypeTuple *IFFALSE;
   570   static const TypeTuple *IFTRUE;
   571   static const TypeTuple *IFNEITHER;
   572   static const TypeTuple *LOOPBODY;
   573   static const TypeTuple *MEMBAR;
   574   static const TypeTuple *STORECONDITIONAL;
   575   static const TypeTuple *START_I2C;
   576   static const TypeTuple *INT_PAIR;
   577   static const TypeTuple *LONG_PAIR;
   578 #ifndef PRODUCT
   579   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   580 #endif
   581 };
   583 //------------------------------TypeAry----------------------------------------
   584 // Class of Array Types
   585 class TypeAry : public Type {
   586   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   587     _elem(elem), _size(size) {}
   588 public:
   589   virtual bool eq( const Type *t ) const;
   590   virtual int  hash() const;             // Type specific hashing
   591   virtual bool singleton(void) const;    // TRUE if type is a singleton
   592   virtual bool empty(void) const;        // TRUE if type is vacuous
   594 private:
   595   const Type *_elem;            // Element type of array
   596   const TypeInt *_size;         // Elements in array
   597   friend class TypeAryPtr;
   599 public:
   600   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   602   virtual const Type *xmeet( const Type *t ) const;
   603   virtual const Type *xdual() const;    // Compute dual right now.
   604   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   605 #ifdef ASSERT
   606   // One type is interface, the other is oop
   607   virtual bool interface_vs_oop(const Type *t) const;
   608 #endif
   609 #ifndef PRODUCT
   610   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   611 #endif
   612 };
   614 //------------------------------TypeVect---------------------------------------
   615 // Class of Vector Types
   616 class TypeVect : public Type {
   617   const Type*   _elem;  // Vector's element type
   618   const uint  _length;  // Elements in vector (power of 2)
   620 protected:
   621   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
   622     _elem(elem), _length(length) {}
   624 public:
   625   const Type* element_type() const { return _elem; }
   626   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
   627   uint length() const { return _length; }
   628   uint length_in_bytes() const {
   629    return _length * type2aelembytes(element_basic_type());
   630   }
   632   virtual bool eq(const Type *t) const;
   633   virtual int  hash() const;             // Type specific hashing
   634   virtual bool singleton(void) const;    // TRUE if type is a singleton
   635   virtual bool empty(void) const;        // TRUE if type is vacuous
   637   static const TypeVect *make(const BasicType elem_bt, uint length) {
   638     // Use bottom primitive type.
   639     return make(get_const_basic_type(elem_bt), length);
   640   }
   641   // Used directly by Replicate nodes to construct singleton vector.
   642   static const TypeVect *make(const Type* elem, uint length);
   644   virtual const Type *xmeet( const Type *t) const;
   645   virtual const Type *xdual() const;     // Compute dual right now.
   647   static const TypeVect *VECTS;
   648   static const TypeVect *VECTD;
   649   static const TypeVect *VECTX;
   650   static const TypeVect *VECTY;
   652 #ifndef PRODUCT
   653   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
   654 #endif
   655 };
   657 class TypeVectS : public TypeVect {
   658   friend class TypeVect;
   659   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
   660 };
   662 class TypeVectD : public TypeVect {
   663   friend class TypeVect;
   664   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
   665 };
   667 class TypeVectX : public TypeVect {
   668   friend class TypeVect;
   669   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
   670 };
   672 class TypeVectY : public TypeVect {
   673   friend class TypeVect;
   674   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
   675 };
   677 //------------------------------TypePtr----------------------------------------
   678 // Class of machine Pointer Types: raw data, instances or arrays.
   679 // If the _base enum is AnyPtr, then this refers to all of the above.
   680 // Otherwise the _base will indicate which subset of pointers is affected,
   681 // and the class will be inherited from.
   682 class TypePtr : public Type {
   683   friend class TypeNarrowPtr;
   684 public:
   685   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   686 protected:
   687   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   688   virtual bool eq( const Type *t ) const;
   689   virtual int  hash() const;             // Type specific hashing
   690   static const PTR ptr_meet[lastPTR][lastPTR];
   691   static const PTR ptr_dual[lastPTR];
   692   static const char * const ptr_msg[lastPTR];
   694 public:
   695   const int _offset;            // Offset into oop, with TOP & BOT
   696   const PTR _ptr;               // Pointer equivalence class
   698   const int offset() const { return _offset; }
   699   const PTR ptr()    const { return _ptr; }
   701   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   703   // Return a 'ptr' version of this type
   704   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   706   virtual intptr_t get_con() const;
   708   int xadd_offset( intptr_t offset ) const;
   709   virtual const TypePtr *add_offset( intptr_t offset ) const;
   711   virtual bool singleton(void) const;    // TRUE if type is a singleton
   712   virtual bool empty(void) const;        // TRUE if type is vacuous
   713   virtual const Type *xmeet( const Type *t ) const;
   714   int meet_offset( int offset ) const;
   715   int dual_offset( ) const;
   716   virtual const Type *xdual() const;    // Compute dual right now.
   718   // meet, dual and join over pointer equivalence sets
   719   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   720   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   722   // This is textually confusing unless one recalls that
   723   // join(t) == dual()->meet(t->dual())->dual().
   724   PTR join_ptr( const PTR in_ptr ) const {
   725     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   726   }
   728   // Tests for relation to centerline of type lattice:
   729   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   730   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   731   // Convenience common pre-built types.
   732   static const TypePtr *NULL_PTR;
   733   static const TypePtr *NOTNULL;
   734   static const TypePtr *BOTTOM;
   735 #ifndef PRODUCT
   736   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   737 #endif
   738 };
   740 //------------------------------TypeRawPtr-------------------------------------
   741 // Class of raw pointers, pointers to things other than Oops.  Examples
   742 // include the stack pointer, top of heap, card-marking area, handles, etc.
   743 class TypeRawPtr : public TypePtr {
   744 protected:
   745   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   746 public:
   747   virtual bool eq( const Type *t ) const;
   748   virtual int  hash() const;     // Type specific hashing
   750   const address _bits;          // Constant value, if applicable
   752   static const TypeRawPtr *make( PTR ptr );
   753   static const TypeRawPtr *make( address bits );
   755   // Return a 'ptr' version of this type
   756   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   758   virtual intptr_t get_con() const;
   760   virtual const TypePtr *add_offset( intptr_t offset ) const;
   762   virtual const Type *xmeet( const Type *t ) const;
   763   virtual const Type *xdual() const;    // Compute dual right now.
   764   // Convenience common pre-built types.
   765   static const TypeRawPtr *BOTTOM;
   766   static const TypeRawPtr *NOTNULL;
   767 #ifndef PRODUCT
   768   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   769 #endif
   770 };
   772 //------------------------------TypeOopPtr-------------------------------------
   773 // Some kind of oop (Java pointer), either klass or instance or array.
   774 class TypeOopPtr : public TypePtr {
   775 protected:
   776   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   777 public:
   778   virtual bool eq( const Type *t ) const;
   779   virtual int  hash() const;             // Type specific hashing
   780   virtual bool singleton(void) const;    // TRUE if type is a singleton
   781   enum {
   782    InstanceTop = -1,   // undefined instance
   783    InstanceBot = 0     // any possible instance
   784   };
   785 protected:
   787   // Oop is NULL, unless this is a constant oop.
   788   ciObject*     _const_oop;   // Constant oop
   789   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   790   ciKlass*      _klass;       // Klass object
   791   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   792   bool          _klass_is_exact;
   793   bool          _is_ptr_to_narrowoop;
   794   bool          _is_ptr_to_narrowklass;
   796   // If not InstanceTop or InstanceBot, indicates that this is
   797   // a particular instance of this type which is distinct.
   798   // This is the the node index of the allocation node creating this instance.
   799   int           _instance_id;
   801   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   803   int dual_instance_id() const;
   804   int meet_instance_id(int uid) const;
   806 public:
   807   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   808   // Respects UseUniqueSubclasses.
   809   // If the klass is final, the resulting type will be exact.
   810   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   811     return make_from_klass_common(klass, true, false);
   812   }
   813   // Same as before, but will produce an exact type, even if
   814   // the klass is not final, as long as it has exactly one implementation.
   815   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   816     return make_from_klass_common(klass, true, true);
   817   }
   818   // Same as before, but does not respects UseUniqueSubclasses.
   819   // Use this only for creating array element types.
   820   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   821     return make_from_klass_common(klass, false, false);
   822   }
   823   // Creates a singleton type given an object.
   824   // If the object cannot be rendered as a constant,
   825   // may return a non-singleton type.
   826   // If require_constant, produce a NULL if a singleton is not possible.
   827   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
   829   // Make a generic (unclassed) pointer to an oop.
   830   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
   832   ciObject* const_oop()    const { return _const_oop; }
   833   virtual ciKlass* klass() const { return _klass;     }
   834   bool klass_is_exact()    const { return _klass_is_exact; }
   836   // Returns true if this pointer points at memory which contains a
   837   // compressed oop references.
   838   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   839   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
   841   bool is_known_instance()       const { return _instance_id > 0; }
   842   int  instance_id()             const { return _instance_id; }
   843   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   845   virtual intptr_t get_con() const;
   847   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   849   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   851   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   853   // corresponding pointer to klass, for a given instance
   854   const TypeKlassPtr* as_klass_type() const;
   856   virtual const TypePtr *add_offset( intptr_t offset ) const;
   858   virtual const Type *xmeet( const Type *t ) const;
   859   virtual const Type *xdual() const;    // Compute dual right now.
   861   // Do not allow interface-vs.-noninterface joins to collapse to top.
   862   virtual const Type *filter( const Type *kills ) const;
   864   // Convenience common pre-built type.
   865   static const TypeOopPtr *BOTTOM;
   866 #ifndef PRODUCT
   867   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   868 #endif
   869 };
   871 //------------------------------TypeInstPtr------------------------------------
   872 // Class of Java object pointers, pointing either to non-array Java instances
   873 // or to a Klass* (including array klasses).
   874 class TypeInstPtr : public TypeOopPtr {
   875   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   876   virtual bool eq( const Type *t ) const;
   877   virtual int  hash() const;             // Type specific hashing
   879   ciSymbol*  _name;        // class name
   881  public:
   882   ciSymbol* name()         const { return _name; }
   884   bool  is_loaded() const { return _klass->is_loaded(); }
   886   // Make a pointer to a constant oop.
   887   static const TypeInstPtr *make(ciObject* o) {
   888     return make(TypePtr::Constant, o->klass(), true, o, 0);
   889   }
   890   // Make a pointer to a constant oop with offset.
   891   static const TypeInstPtr *make(ciObject* o, int offset) {
   892     return make(TypePtr::Constant, o->klass(), true, o, offset);
   893   }
   895   // Make a pointer to some value of type klass.
   896   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   897     return make(ptr, klass, false, NULL, 0);
   898   }
   900   // Make a pointer to some non-polymorphic value of exactly type klass.
   901   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   902     return make(ptr, klass, true, NULL, 0);
   903   }
   905   // Make a pointer to some value of type klass with offset.
   906   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   907     return make(ptr, klass, false, NULL, offset);
   908   }
   910   // Make a pointer to an oop.
   911   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   913   // If this is a java.lang.Class constant, return the type for it or NULL.
   914   // Pass to Type::get_const_type to turn it to a type, which will usually
   915   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   916   ciType* java_mirror_type() const;
   918   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   920   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   922   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   924   virtual const TypePtr *add_offset( intptr_t offset ) const;
   926   virtual const Type *xmeet( const Type *t ) const;
   927   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   928   virtual const Type *xdual() const;    // Compute dual right now.
   930   // Convenience common pre-built types.
   931   static const TypeInstPtr *NOTNULL;
   932   static const TypeInstPtr *BOTTOM;
   933   static const TypeInstPtr *MIRROR;
   934   static const TypeInstPtr *MARK;
   935   static const TypeInstPtr *KLASS;
   936 #ifndef PRODUCT
   937   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   938 #endif
   939 };
   941 //------------------------------TypeAryPtr-------------------------------------
   942 // Class of Java array pointers
   943 class TypeAryPtr : public TypeOopPtr {
   944   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
   945 #ifdef ASSERT
   946     if (k != NULL) {
   947       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
   948       ciKlass* ck = compute_klass(true);
   949       if (k != ck) {
   950         this->dump(); tty->cr();
   951         tty->print(" k: ");
   952         k->print(); tty->cr();
   953         tty->print("ck: ");
   954         if (ck != NULL) ck->print();
   955         else tty->print("<NULL>");
   956         tty->cr();
   957         assert(false, "unexpected TypeAryPtr::_klass");
   958       }
   959     }
   960 #endif
   961   }
   962   virtual bool eq( const Type *t ) const;
   963   virtual int hash() const;     // Type specific hashing
   964   const TypeAry *_ary;          // Array we point into
   966   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
   968 public:
   969   // Accessors
   970   ciKlass* klass() const;
   971   const TypeAry* ary() const  { return _ary; }
   972   const Type*    elem() const { return _ary->_elem; }
   973   const TypeInt* size() const { return _ary->_size; }
   975   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   976   // Constant pointer to array
   977   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   979   // Return a 'ptr' version of this type
   980   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   982   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   984   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   986   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   987   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
   989   virtual bool empty(void) const;        // TRUE if type is vacuous
   990   virtual const TypePtr *add_offset( intptr_t offset ) const;
   992   virtual const Type *xmeet( const Type *t ) const;
   993   virtual const Type *xdual() const;    // Compute dual right now.
   995   // Convenience common pre-built types.
   996   static const TypeAryPtr *RANGE;
   997   static const TypeAryPtr *OOPS;
   998   static const TypeAryPtr *NARROWOOPS;
   999   static const TypeAryPtr *BYTES;
  1000   static const TypeAryPtr *SHORTS;
  1001   static const TypeAryPtr *CHARS;
  1002   static const TypeAryPtr *INTS;
  1003   static const TypeAryPtr *LONGS;
  1004   static const TypeAryPtr *FLOATS;
  1005   static const TypeAryPtr *DOUBLES;
  1006   // selects one of the above:
  1007   static const TypeAryPtr *get_array_body_type(BasicType elem) {
  1008     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
  1009     return _array_body_type[elem];
  1011   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
  1012   // sharpen the type of an int which is used as an array size
  1013 #ifdef ASSERT
  1014   // One type is interface, the other is oop
  1015   virtual bool interface_vs_oop(const Type *t) const;
  1016 #endif
  1017 #ifndef PRODUCT
  1018   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1019 #endif
  1020 };
  1022 //------------------------------TypeMetadataPtr-------------------------------------
  1023 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
  1024 class TypeMetadataPtr : public TypePtr {
  1025 protected:
  1026   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
  1027 public:
  1028   virtual bool eq( const Type *t ) const;
  1029   virtual int  hash() const;             // Type specific hashing
  1030   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1032 private:
  1033   ciMetadata*   _metadata;
  1035 public:
  1036   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
  1038   static const TypeMetadataPtr* make(ciMethod* m);
  1039   static const TypeMetadataPtr* make(ciMethodData* m);
  1041   ciMetadata* metadata() const { return _metadata; }
  1043   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1045   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1047   virtual const Type *xmeet( const Type *t ) const;
  1048   virtual const Type *xdual() const;    // Compute dual right now.
  1050   virtual intptr_t get_con() const;
  1052   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1053   virtual const Type *filter( const Type *kills ) const;
  1055   // Convenience common pre-built types.
  1056   static const TypeMetadataPtr *BOTTOM;
  1058 #ifndef PRODUCT
  1059   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1060 #endif
  1061 };
  1063 //------------------------------TypeKlassPtr-----------------------------------
  1064 // Class of Java Klass pointers
  1065 class TypeKlassPtr : public TypePtr {
  1066   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
  1068  public:
  1069   virtual bool eq( const Type *t ) const;
  1070   virtual int hash() const;             // Type specific hashing
  1071   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1072  private:
  1074   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
  1076   ciKlass* _klass;
  1078   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
  1079   bool          _klass_is_exact;
  1081 public:
  1082   ciSymbol* name()  const { return klass()->name(); }
  1084   ciKlass* klass() const { return  _klass; }
  1085   bool klass_is_exact()    const { return _klass_is_exact; }
  1087   bool  is_loaded() const { return klass()->is_loaded(); }
  1089   // Creates a type given a klass. Correctly handles multi-dimensional arrays
  1090   // Respects UseUniqueSubclasses.
  1091   // If the klass is final, the resulting type will be exact.
  1092   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
  1093     return make_from_klass_common(klass, true, false);
  1095   // Same as before, but will produce an exact type, even if
  1096   // the klass is not final, as long as it has exactly one implementation.
  1097   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
  1098     return make_from_klass_common(klass, true, true);
  1100   // Same as before, but does not respects UseUniqueSubclasses.
  1101   // Use this only for creating array element types.
  1102   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
  1103     return make_from_klass_common(klass, false, false);
  1106   // Make a generic (unclassed) pointer to metadata.
  1107   static const TypeKlassPtr* make(PTR ptr, int offset);
  1109   // ptr to klass 'k'
  1110   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
  1111   // ptr to klass 'k' with offset
  1112   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
  1113   // ptr to klass 'k' or sub-klass
  1114   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
  1116   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1118   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1120   // corresponding pointer to instance, for a given class
  1121   const TypeOopPtr* as_instance_type() const;
  1123   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1124   virtual const Type    *xmeet( const Type *t ) const;
  1125   virtual const Type    *xdual() const;      // Compute dual right now.
  1127   virtual intptr_t get_con() const;
  1129   // Convenience common pre-built types.
  1130   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
  1131   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
  1132 #ifndef PRODUCT
  1133   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1134 #endif
  1135 };
  1137 class TypeNarrowPtr : public Type {
  1138 protected:
  1139   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
  1141   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
  1142                                                   Type(t) {
  1143     assert(ptrtype->offset() == 0 ||
  1144            ptrtype->offset() == OffsetBot ||
  1145            ptrtype->offset() == OffsetTop, "no real offsets");
  1148   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
  1149   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
  1150   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
  1151   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
  1152 public:
  1153   virtual bool eq( const Type *t ) const;
  1154   virtual int  hash() const;             // Type specific hashing
  1155   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1157   virtual const Type *xmeet( const Type *t ) const;
  1158   virtual const Type *xdual() const;    // Compute dual right now.
  1160   virtual intptr_t get_con() const;
  1162   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1163   virtual const Type *filter( const Type *kills ) const;
  1165   virtual bool empty(void) const;        // TRUE if type is vacuous
  1167   // returns the equivalent ptr type for this compressed pointer
  1168   const TypePtr *get_ptrtype() const {
  1169     return _ptrtype;
  1172 #ifndef PRODUCT
  1173   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1174 #endif
  1175 };
  1177 //------------------------------TypeNarrowOop----------------------------------
  1178 // A compressed reference to some kind of Oop.  This type wraps around
  1179 // a preexisting TypeOopPtr and forwards most of it's operations to
  1180 // the underlying type.  It's only real purpose is to track the
  1181 // oopness of the compressed oop value when we expose the conversion
  1182 // between the normal and the compressed form.
  1183 class TypeNarrowOop : public TypeNarrowPtr {
  1184 protected:
  1185   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
  1188   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1189     return t->isa_narrowoop();
  1192   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1193     return t->is_narrowoop();
  1196   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1197     return new TypeNarrowOop(t);
  1200   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1201     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
  1204 public:
  1206   static const TypeNarrowOop *make( const TypePtr* type);
  1208   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
  1209     return make(TypeOopPtr::make_from_constant(con, require_constant));
  1212   static const TypeNarrowOop *BOTTOM;
  1213   static const TypeNarrowOop *NULL_PTR;
  1215 #ifndef PRODUCT
  1216   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1217 #endif
  1218 };
  1220 //------------------------------TypeNarrowKlass----------------------------------
  1221 // A compressed reference to klass pointer.  This type wraps around a
  1222 // preexisting TypeKlassPtr and forwards most of it's operations to
  1223 // the underlying type.
  1224 class TypeNarrowKlass : public TypeNarrowPtr {
  1225 protected:
  1226   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
  1229   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1230     return t->isa_narrowklass();
  1233   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1234     return t->is_narrowklass();
  1237   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1238     return new TypeNarrowKlass(t);
  1241   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1242     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
  1245 public:
  1246   static const TypeNarrowKlass *make( const TypePtr* type);
  1248   // static const TypeNarrowKlass *BOTTOM;
  1249   static const TypeNarrowKlass *NULL_PTR;
  1251 #ifndef PRODUCT
  1252   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1253 #endif
  1254 };
  1256 //------------------------------TypeFunc---------------------------------------
  1257 // Class of Array Types
  1258 class TypeFunc : public Type {
  1259   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1260   virtual bool eq( const Type *t ) const;
  1261   virtual int  hash() const;             // Type specific hashing
  1262   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1263   virtual bool empty(void) const;        // TRUE if type is vacuous
  1264 public:
  1265   // Constants are shared among ADLC and VM
  1266   enum { Control    = AdlcVMDeps::Control,
  1267          I_O        = AdlcVMDeps::I_O,
  1268          Memory     = AdlcVMDeps::Memory,
  1269          FramePtr   = AdlcVMDeps::FramePtr,
  1270          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1271          Parms      = AdlcVMDeps::Parms
  1272   };
  1274   const TypeTuple* const _domain;     // Domain of inputs
  1275   const TypeTuple* const _range;      // Range of results
  1277   // Accessors:
  1278   const TypeTuple* domain() const { return _domain; }
  1279   const TypeTuple* range()  const { return _range; }
  1281   static const TypeFunc *make(ciMethod* method);
  1282   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1283   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1285   virtual const Type *xmeet( const Type *t ) const;
  1286   virtual const Type *xdual() const;    // Compute dual right now.
  1288   BasicType return_type() const;
  1290 #ifndef PRODUCT
  1291   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1292 #endif
  1293   // Convenience common pre-built types.
  1294 };
  1296 //------------------------------accessors--------------------------------------
  1297 inline bool Type::is_ptr_to_narrowoop() const {
  1298 #ifdef _LP64
  1299   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1300 #else
  1301   return false;
  1302 #endif
  1305 inline bool Type::is_ptr_to_narrowklass() const {
  1306 #ifdef _LP64
  1307   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
  1308 #else
  1309   return false;
  1310 #endif
  1313 inline float Type::getf() const {
  1314   assert( _base == FloatCon, "Not a FloatCon" );
  1315   return ((TypeF*)this)->_f;
  1318 inline double Type::getd() const {
  1319   assert( _base == DoubleCon, "Not a DoubleCon" );
  1320   return ((TypeD*)this)->_d;
  1323 inline const TypeF *Type::is_float_constant() const {
  1324   assert( _base == FloatCon, "Not a Float" );
  1325   return (TypeF*)this;
  1328 inline const TypeF *Type::isa_float_constant() const {
  1329   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1332 inline const TypeD *Type::is_double_constant() const {
  1333   assert( _base == DoubleCon, "Not a Double" );
  1334   return (TypeD*)this;
  1337 inline const TypeD *Type::isa_double_constant() const {
  1338   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1341 inline const TypeInt *Type::is_int() const {
  1342   assert( _base == Int, "Not an Int" );
  1343   return (TypeInt*)this;
  1346 inline const TypeInt *Type::isa_int() const {
  1347   return ( _base == Int ? (TypeInt*)this : NULL);
  1350 inline const TypeLong *Type::is_long() const {
  1351   assert( _base == Long, "Not a Long" );
  1352   return (TypeLong*)this;
  1355 inline const TypeLong *Type::isa_long() const {
  1356   return ( _base == Long ? (TypeLong*)this : NULL);
  1359 inline const TypeTuple *Type::is_tuple() const {
  1360   assert( _base == Tuple, "Not a Tuple" );
  1361   return (TypeTuple*)this;
  1364 inline const TypeAry *Type::is_ary() const {
  1365   assert( _base == Array , "Not an Array" );
  1366   return (TypeAry*)this;
  1369 inline const TypeVect *Type::is_vect() const {
  1370   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
  1371   return (TypeVect*)this;
  1374 inline const TypeVect *Type::isa_vect() const {
  1375   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
  1378 inline const TypePtr *Type::is_ptr() const {
  1379   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1380   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1381   return (TypePtr*)this;
  1384 inline const TypePtr *Type::isa_ptr() const {
  1385   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1386   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1389 inline const TypeOopPtr *Type::is_oopptr() const {
  1390   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1391   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
  1392   return (TypeOopPtr*)this;
  1395 inline const TypeOopPtr *Type::isa_oopptr() const {
  1396   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1397   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
  1400 inline const TypeRawPtr *Type::isa_rawptr() const {
  1401   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1404 inline const TypeRawPtr *Type::is_rawptr() const {
  1405   assert( _base == RawPtr, "Not a raw pointer" );
  1406   return (TypeRawPtr*)this;
  1409 inline const TypeInstPtr *Type::isa_instptr() const {
  1410   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1413 inline const TypeInstPtr *Type::is_instptr() const {
  1414   assert( _base == InstPtr, "Not an object pointer" );
  1415   return (TypeInstPtr*)this;
  1418 inline const TypeAryPtr *Type::isa_aryptr() const {
  1419   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1422 inline const TypeAryPtr *Type::is_aryptr() const {
  1423   assert( _base == AryPtr, "Not an array pointer" );
  1424   return (TypeAryPtr*)this;
  1427 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1428   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1429   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1430   return (TypeNarrowOop*)this;
  1433 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1434   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1435   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1438 inline const TypeNarrowKlass *Type::is_narrowklass() const {
  1439   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
  1440   return (TypeNarrowKlass*)this;
  1443 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
  1444   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
  1447 inline const TypeMetadataPtr *Type::is_metadataptr() const {
  1448   // MetadataPtr is the first and CPCachePtr the last
  1449   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
  1450   return (TypeMetadataPtr*)this;
  1453 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
  1454   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
  1457 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1458   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1461 inline const TypeKlassPtr *Type::is_klassptr() const {
  1462   assert( _base == KlassPtr, "Not a klass pointer" );
  1463   return (TypeKlassPtr*)this;
  1466 inline const TypePtr* Type::make_ptr() const {
  1467   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1468     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
  1469      (isa_ptr() ? is_ptr() : NULL));
  1472 inline const TypeOopPtr* Type::make_oopptr() const {
  1473   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1476 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1477   return (_base == NarrowOop) ? is_narrowoop() :
  1478                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1481 inline const TypeNarrowKlass* Type::make_narrowklass() const {
  1482   return (_base == NarrowKlass) ? is_narrowklass() :
  1483                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
  1486 inline bool Type::is_floatingpoint() const {
  1487   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1488       (_base == DoubleCon) || (_base == DoubleBot) )
  1489     return true;
  1490   return false;
  1494 // ===============================================================
  1495 // Things that need to be 64-bits in the 64-bit build but
  1496 // 32-bits in the 32-bit build.  Done this way to get full
  1497 // optimization AND strong typing.
  1498 #ifdef _LP64
  1500 // For type queries and asserts
  1501 #define is_intptr_t  is_long
  1502 #define isa_intptr_t isa_long
  1503 #define find_intptr_t_type find_long_type
  1504 #define find_intptr_t_con  find_long_con
  1505 #define TypeX        TypeLong
  1506 #define Type_X       Type::Long
  1507 #define TypeX_X      TypeLong::LONG
  1508 #define TypeX_ZERO   TypeLong::ZERO
  1509 // For 'ideal_reg' machine registers
  1510 #define Op_RegX      Op_RegL
  1511 // For phase->intcon variants
  1512 #define MakeConX     longcon
  1513 #define ConXNode     ConLNode
  1514 // For array index arithmetic
  1515 #define MulXNode     MulLNode
  1516 #define AndXNode     AndLNode
  1517 #define OrXNode      OrLNode
  1518 #define CmpXNode     CmpLNode
  1519 #define SubXNode     SubLNode
  1520 #define LShiftXNode  LShiftLNode
  1521 // For object size computation:
  1522 #define AddXNode     AddLNode
  1523 #define RShiftXNode  RShiftLNode
  1524 // For card marks and hashcodes
  1525 #define URShiftXNode URShiftLNode
  1526 // UseOptoBiasInlining
  1527 #define XorXNode     XorLNode
  1528 #define StoreXConditionalNode StoreLConditionalNode
  1529 // Opcodes
  1530 #define Op_LShiftX   Op_LShiftL
  1531 #define Op_AndX      Op_AndL
  1532 #define Op_AddX      Op_AddL
  1533 #define Op_SubX      Op_SubL
  1534 #define Op_XorX      Op_XorL
  1535 #define Op_URShiftX  Op_URShiftL
  1536 // conversions
  1537 #define ConvI2X(x)   ConvI2L(x)
  1538 #define ConvL2X(x)   (x)
  1539 #define ConvX2I(x)   ConvL2I(x)
  1540 #define ConvX2L(x)   (x)
  1542 #else
  1544 // For type queries and asserts
  1545 #define is_intptr_t  is_int
  1546 #define isa_intptr_t isa_int
  1547 #define find_intptr_t_type find_int_type
  1548 #define find_intptr_t_con  find_int_con
  1549 #define TypeX        TypeInt
  1550 #define Type_X       Type::Int
  1551 #define TypeX_X      TypeInt::INT
  1552 #define TypeX_ZERO   TypeInt::ZERO
  1553 // For 'ideal_reg' machine registers
  1554 #define Op_RegX      Op_RegI
  1555 // For phase->intcon variants
  1556 #define MakeConX     intcon
  1557 #define ConXNode     ConINode
  1558 // For array index arithmetic
  1559 #define MulXNode     MulINode
  1560 #define AndXNode     AndINode
  1561 #define OrXNode      OrINode
  1562 #define CmpXNode     CmpINode
  1563 #define SubXNode     SubINode
  1564 #define LShiftXNode  LShiftINode
  1565 // For object size computation:
  1566 #define AddXNode     AddINode
  1567 #define RShiftXNode  RShiftINode
  1568 // For card marks and hashcodes
  1569 #define URShiftXNode URShiftINode
  1570 // UseOptoBiasInlining
  1571 #define XorXNode     XorINode
  1572 #define StoreXConditionalNode StoreIConditionalNode
  1573 // Opcodes
  1574 #define Op_LShiftX   Op_LShiftI
  1575 #define Op_AndX      Op_AndI
  1576 #define Op_AddX      Op_AddI
  1577 #define Op_SubX      Op_SubI
  1578 #define Op_XorX      Op_XorI
  1579 #define Op_URShiftX  Op_URShiftI
  1580 // conversions
  1581 #define ConvI2X(x)   (x)
  1582 #define ConvL2X(x)   ConvL2I(x)
  1583 #define ConvX2I(x)   (x)
  1584 #define ConvX2L(x)   ConvI2L(x)
  1586 #endif
  1588 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial