src/share/vm/opto/type.hpp

Mon, 26 Nov 2012 17:25:11 -0800

author
twisti
date
Mon, 26 Nov 2012 17:25:11 -0800
changeset 4313
beebba0acc11
parent 4159
8e47bac5643a
child 5110
6f3fd5150b67
permissions
-rw-r--r--

7172640: C2: instrinsic implementations in LibraryCallKit should use argument() instead of pop()
Reviewed-by: kvn, jrose

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowPtr;
    52 class     TypeNarrowOop;
    53 class     TypeNarrowKlass;
    54 class   TypeAry;
    55 class   TypeTuple;
    56 class   TypeVect;
    57 class     TypeVectS;
    58 class     TypeVectD;
    59 class     TypeVectX;
    60 class     TypeVectY;
    61 class   TypePtr;
    62 class     TypeRawPtr;
    63 class     TypeOopPtr;
    64 class       TypeInstPtr;
    65 class       TypeAryPtr;
    66 class       TypeKlassPtr;
    67 class     TypeMetadataPtr;
    69 //------------------------------Type-------------------------------------------
    70 // Basic Type object, represents a set of primitive Values.
    71 // Types are hash-cons'd into a private class dictionary, so only one of each
    72 // different kind of Type exists.  Types are never modified after creation, so
    73 // all their interesting fields are constant.
    74 class Type {
    75   friend class VMStructs;
    77 public:
    78   enum TYPES {
    79     Bad=0,                      // Type check
    80     Control,                    // Control of code (not in lattice)
    81     Top,                        // Top of the lattice
    82     Int,                        // Integer range (lo-hi)
    83     Long,                       // Long integer range (lo-hi)
    84     Half,                       // Placeholder half of doubleword
    85     NarrowOop,                  // Compressed oop pointer
    86     NarrowKlass,                // Compressed klass pointer
    88     Tuple,                      // Method signature or object layout
    89     Array,                      // Array types
    90     VectorS,                    //  32bit Vector types
    91     VectorD,                    //  64bit Vector types
    92     VectorX,                    // 128bit Vector types
    93     VectorY,                    // 256bit Vector types
    95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    96     RawPtr,                     // Raw (non-oop) pointers
    97     OopPtr,                     // Any and all Java heap entities
    98     InstPtr,                    // Instance pointers (non-array objects)
    99     AryPtr,                     // Array pointers
   100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
   102     MetadataPtr,                // Generic metadata
   103     KlassPtr,                   // Klass pointers
   105     Function,                   // Function signature
   106     Abio,                       // Abstract I/O
   107     Return_Address,             // Subroutine return address
   108     Memory,                     // Abstract store
   109     FloatTop,                   // No float value
   110     FloatCon,                   // Floating point constant
   111     FloatBot,                   // Any float value
   112     DoubleTop,                  // No double value
   113     DoubleCon,                  // Double precision constant
   114     DoubleBot,                  // Any double value
   115     Bottom,                     // Bottom of lattice
   116     lastype                     // Bogus ending type (not in lattice)
   117   };
   119   // Signal values for offsets from a base pointer
   120   enum OFFSET_SIGNALS {
   121     OffsetTop = -2000000000,    // undefined offset
   122     OffsetBot = -2000000001     // any possible offset
   123   };
   125   // Min and max WIDEN values.
   126   enum WIDEN {
   127     WidenMin = 0,
   128     WidenMax = 3
   129   };
   131 private:
   132   typedef struct {
   133     const TYPES                dual_type;
   134     const BasicType            basic_type;
   135     const char*                msg;
   136     const bool                 isa_oop;
   137     const int                  ideal_reg;
   138     const relocInfo::relocType reloc;
   139   } TypeInfo;
   141   // Dictionary of types shared among compilations.
   142   static Dict* _shared_type_dict;
   143   static TypeInfo _type_info[];
   145   static int uhash( const Type *const t );
   146   // Structural equality check.  Assumes that cmp() has already compared
   147   // the _base types and thus knows it can cast 't' appropriately.
   148   virtual bool eq( const Type *t ) const;
   150   // Top-level hash-table of types
   151   static Dict *type_dict() {
   152     return Compile::current()->type_dict();
   153   }
   155   // DUAL operation: reflect around lattice centerline.  Used instead of
   156   // join to ensure my lattice is symmetric up and down.  Dual is computed
   157   // lazily, on demand, and cached in _dual.
   158   const Type *_dual;            // Cached dual value
   159   // Table for efficient dualing of base types
   160   static const TYPES dual_type[lastype];
   162 protected:
   163   // Each class of type is also identified by its base.
   164   const TYPES _base;            // Enum of Types type
   166   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   167   // ~Type();                   // Use fast deallocation
   168   const Type *hashcons();       // Hash-cons the type
   170 public:
   172   inline void* operator new( size_t x ) {
   173     Compile* compile = Compile::current();
   174     compile->set_type_last_size(x);
   175     void *temp = compile->type_arena()->Amalloc_D(x);
   176     compile->set_type_hwm(temp);
   177     return temp;
   178   }
   179   inline void operator delete( void* ptr ) {
   180     Compile* compile = Compile::current();
   181     compile->type_arena()->Afree(ptr,compile->type_last_size());
   182   }
   184   // Initialize the type system for a particular compilation.
   185   static void Initialize(Compile* compile);
   187   // Initialize the types shared by all compilations.
   188   static void Initialize_shared(Compile* compile);
   190   TYPES base() const {
   191     assert(_base > Bad && _base < lastype, "sanity");
   192     return _base;
   193   }
   195   // Create a new hash-consd type
   196   static const Type *make(enum TYPES);
   197   // Test for equivalence of types
   198   static int cmp( const Type *const t1, const Type *const t2 );
   199   // Test for higher or equal in lattice
   200   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   202   // MEET operation; lower in lattice.
   203   const Type *meet( const Type *t ) const;
   204   // WIDEN: 'widens' for Ints and other range types
   205   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   206   // NARROW: complement for widen, used by pessimistic phases
   207   virtual const Type *narrow( const Type *old ) const { return this; }
   209   // DUAL operation: reflect around lattice centerline.  Used instead of
   210   // join to ensure my lattice is symmetric up and down.
   211   const Type *dual() const { return _dual; }
   213   // Compute meet dependent on base type
   214   virtual const Type *xmeet( const Type *t ) const;
   215   virtual const Type *xdual() const;    // Compute dual right now.
   217   // JOIN operation; higher in lattice.  Done by finding the dual of the
   218   // meet of the dual of the 2 inputs.
   219   const Type *join( const Type *t ) const {
   220     return dual()->meet(t->dual())->dual(); }
   222   // Modified version of JOIN adapted to the needs Node::Value.
   223   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   224   // Currently, it also works around limitations involving interface types.
   225   virtual const Type *filter( const Type *kills ) const;
   227 #ifdef ASSERT
   228   // One type is interface, the other is oop
   229   virtual bool interface_vs_oop(const Type *t) const;
   230 #endif
   232   // Returns true if this pointer points at memory which contains a
   233   // compressed oop references.
   234   bool is_ptr_to_narrowoop() const;
   235   bool is_ptr_to_narrowklass() const;
   237   // Convenience access
   238   float getf() const;
   239   double getd() const;
   241   const TypeInt    *is_int() const;
   242   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   243   const TypeLong   *is_long() const;
   244   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   245   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
   246   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   247   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   248   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
   249   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   250   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   251   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   252   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   253   const TypeVect   *is_vect() const;             // Vector
   254   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
   255   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   256   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   257   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   258   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   259   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   260   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   261   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
   262   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
   263   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   264   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   265   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   266   const TypeInstPtr  *is_instptr() const;        // Instance
   267   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   268   const TypeAryPtr   *is_aryptr() const;         // Array oop
   270   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
   271   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
   272   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
   273   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
   275   virtual bool      is_finite() const;           // Has a finite value
   276   virtual bool      is_nan()    const;           // Is not a number (NaN)
   278   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   279   const TypePtr* make_ptr() const;
   281   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   282   // Asserts if the underlying type is not an oopptr or narrowoop.
   283   const TypeOopPtr* make_oopptr() const;
   285   // Returns this compressed pointer or the equivalent compressed version
   286   // of this pointer type.
   287   const TypeNarrowOop* make_narrowoop() const;
   289   // Returns this compressed klass pointer or the equivalent
   290   // compressed version of this pointer type.
   291   const TypeNarrowKlass* make_narrowklass() const;
   293   // Special test for register pressure heuristic
   294   bool is_floatingpoint() const;        // True if Float or Double base type
   296   // Do you have memory, directly or through a tuple?
   297   bool has_memory( ) const;
   299   // TRUE if type is a singleton
   300   virtual bool singleton(void) const;
   302   // TRUE if type is above the lattice centerline, and is therefore vacuous
   303   virtual bool empty(void) const;
   305   // Return a hash for this type.  The hash function is public so ConNode
   306   // (constants) can hash on their constant, which is represented by a Type.
   307   virtual int hash() const;
   309   // Map ideal registers (machine types) to ideal types
   310   static const Type *mreg2type[];
   312   // Printing, statistics
   313 #ifndef PRODUCT
   314   void         dump_on(outputStream *st) const;
   315   void         dump() const {
   316     dump_on(tty);
   317   }
   318   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   319   static  void dump_stats();
   320 #endif
   321   void typerr(const Type *t) const; // Mixing types error
   323   // Create basic type
   324   static const Type* get_const_basic_type(BasicType type) {
   325     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   326     return _const_basic_type[type];
   327   }
   329   // Mapping to the array element's basic type.
   330   BasicType array_element_basic_type() const;
   332   // Create standard type for a ciType:
   333   static const Type* get_const_type(ciType* type);
   335   // Create standard zero value:
   336   static const Type* get_zero_type(BasicType type) {
   337     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   338     return _zero_type[type];
   339   }
   341   // Report if this is a zero value (not top).
   342   bool is_zero_type() const {
   343     BasicType type = basic_type();
   344     if (type == T_VOID || type >= T_CONFLICT)
   345       return false;
   346     else
   347       return (this == _zero_type[type]);
   348   }
   350   // Convenience common pre-built types.
   351   static const Type *ABIO;
   352   static const Type *BOTTOM;
   353   static const Type *CONTROL;
   354   static const Type *DOUBLE;
   355   static const Type *FLOAT;
   356   static const Type *HALF;
   357   static const Type *MEMORY;
   358   static const Type *MULTI;
   359   static const Type *RETURN_ADDRESS;
   360   static const Type *TOP;
   362   // Mapping from compiler type to VM BasicType
   363   BasicType basic_type() const       { return _type_info[_base].basic_type; }
   364   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
   365   const char* msg() const            { return _type_info[_base].msg; }
   366   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
   367   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
   369   // Mapping from CI type system to compiler type:
   370   static const Type* get_typeflow_type(ciType* type);
   372 private:
   373   // support arrays
   374   static const BasicType _basic_type[];
   375   static const Type*        _zero_type[T_CONFLICT+1];
   376   static const Type* _const_basic_type[T_CONFLICT+1];
   377 };
   379 //------------------------------TypeF------------------------------------------
   380 // Class of Float-Constant Types.
   381 class TypeF : public Type {
   382   TypeF( float f ) : Type(FloatCon), _f(f) {};
   383 public:
   384   virtual bool eq( const Type *t ) const;
   385   virtual int  hash() const;             // Type specific hashing
   386   virtual bool singleton(void) const;    // TRUE if type is a singleton
   387   virtual bool empty(void) const;        // TRUE if type is vacuous
   388 public:
   389   const float _f;               // Float constant
   391   static const TypeF *make(float f);
   393   virtual bool        is_finite() const;  // Has a finite value
   394   virtual bool        is_nan()    const;  // Is not a number (NaN)
   396   virtual const Type *xmeet( const Type *t ) const;
   397   virtual const Type *xdual() const;    // Compute dual right now.
   398   // Convenience common pre-built types.
   399   static const TypeF *ZERO; // positive zero only
   400   static const TypeF *ONE;
   401 #ifndef PRODUCT
   402   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   403 #endif
   404 };
   406 //------------------------------TypeD------------------------------------------
   407 // Class of Double-Constant Types.
   408 class TypeD : public Type {
   409   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   410 public:
   411   virtual bool eq( const Type *t ) const;
   412   virtual int  hash() const;             // Type specific hashing
   413   virtual bool singleton(void) const;    // TRUE if type is a singleton
   414   virtual bool empty(void) const;        // TRUE if type is vacuous
   415 public:
   416   const double _d;              // Double constant
   418   static const TypeD *make(double d);
   420   virtual bool        is_finite() const;  // Has a finite value
   421   virtual bool        is_nan()    const;  // Is not a number (NaN)
   423   virtual const Type *xmeet( const Type *t ) const;
   424   virtual const Type *xdual() const;    // Compute dual right now.
   425   // Convenience common pre-built types.
   426   static const TypeD *ZERO; // positive zero only
   427   static const TypeD *ONE;
   428 #ifndef PRODUCT
   429   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   430 #endif
   431 };
   433 //------------------------------TypeInt----------------------------------------
   434 // Class of integer ranges, the set of integers between a lower bound and an
   435 // upper bound, inclusive.
   436 class TypeInt : public Type {
   437   TypeInt( jint lo, jint hi, int w );
   438 public:
   439   virtual bool eq( const Type *t ) const;
   440   virtual int  hash() const;             // Type specific hashing
   441   virtual bool singleton(void) const;    // TRUE if type is a singleton
   442   virtual bool empty(void) const;        // TRUE if type is vacuous
   443 public:
   444   const jint _lo, _hi;          // Lower bound, upper bound
   445   const short _widen;           // Limit on times we widen this sucker
   447   static const TypeInt *make(jint lo);
   448   // must always specify w
   449   static const TypeInt *make(jint lo, jint hi, int w);
   451   // Check for single integer
   452   int is_con() const { return _lo==_hi; }
   453   bool is_con(int i) const { return is_con() && _lo == i; }
   454   jint get_con() const { assert( is_con(), "" );  return _lo; }
   456   virtual bool        is_finite() const;  // Has a finite value
   458   virtual const Type *xmeet( const Type *t ) const;
   459   virtual const Type *xdual() const;    // Compute dual right now.
   460   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   461   virtual const Type *narrow( const Type *t ) const;
   462   // Do not kill _widen bits.
   463   virtual const Type *filter( const Type *kills ) const;
   464   // Convenience common pre-built types.
   465   static const TypeInt *MINUS_1;
   466   static const TypeInt *ZERO;
   467   static const TypeInt *ONE;
   468   static const TypeInt *BOOL;
   469   static const TypeInt *CC;
   470   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   471   static const TypeInt *CC_GT;  // [1]   == ONE
   472   static const TypeInt *CC_EQ;  // [0]   == ZERO
   473   static const TypeInt *CC_LE;  // [-1,0]
   474   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   475   static const TypeInt *BYTE;
   476   static const TypeInt *UBYTE;
   477   static const TypeInt *CHAR;
   478   static const TypeInt *SHORT;
   479   static const TypeInt *POS;
   480   static const TypeInt *POS1;
   481   static const TypeInt *INT;
   482   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   483 #ifndef PRODUCT
   484   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   485 #endif
   486 };
   489 //------------------------------TypeLong---------------------------------------
   490 // Class of long integer ranges, the set of integers between a lower bound and
   491 // an upper bound, inclusive.
   492 class TypeLong : public Type {
   493   TypeLong( jlong lo, jlong hi, int w );
   494 public:
   495   virtual bool eq( const Type *t ) const;
   496   virtual int  hash() const;             // Type specific hashing
   497   virtual bool singleton(void) const;    // TRUE if type is a singleton
   498   virtual bool empty(void) const;        // TRUE if type is vacuous
   499 public:
   500   const jlong _lo, _hi;         // Lower bound, upper bound
   501   const short _widen;           // Limit on times we widen this sucker
   503   static const TypeLong *make(jlong lo);
   504   // must always specify w
   505   static const TypeLong *make(jlong lo, jlong hi, int w);
   507   // Check for single integer
   508   int is_con() const { return _lo==_hi; }
   509   bool is_con(int i) const { return is_con() && _lo == i; }
   510   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   512   virtual bool        is_finite() const;  // Has a finite value
   514   virtual const Type *xmeet( const Type *t ) const;
   515   virtual const Type *xdual() const;    // Compute dual right now.
   516   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   517   virtual const Type *narrow( const Type *t ) const;
   518   // Do not kill _widen bits.
   519   virtual const Type *filter( const Type *kills ) const;
   520   // Convenience common pre-built types.
   521   static const TypeLong *MINUS_1;
   522   static const TypeLong *ZERO;
   523   static const TypeLong *ONE;
   524   static const TypeLong *POS;
   525   static const TypeLong *LONG;
   526   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   527   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   528 #ifndef PRODUCT
   529   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   530 #endif
   531 };
   533 //------------------------------TypeTuple--------------------------------------
   534 // Class of Tuple Types, essentially type collections for function signatures
   535 // and class layouts.  It happens to also be a fast cache for the HotSpot
   536 // signature types.
   537 class TypeTuple : public Type {
   538   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   539 public:
   540   virtual bool eq( const Type *t ) const;
   541   virtual int  hash() const;             // Type specific hashing
   542   virtual bool singleton(void) const;    // TRUE if type is a singleton
   543   virtual bool empty(void) const;        // TRUE if type is vacuous
   545 public:
   546   const uint          _cnt;              // Count of fields
   547   const Type ** const _fields;           // Array of field types
   549   // Accessors:
   550   uint cnt() const { return _cnt; }
   551   const Type* field_at(uint i) const {
   552     assert(i < _cnt, "oob");
   553     return _fields[i];
   554   }
   555   void set_field_at(uint i, const Type* t) {
   556     assert(i < _cnt, "oob");
   557     _fields[i] = t;
   558   }
   560   static const TypeTuple *make( uint cnt, const Type **fields );
   561   static const TypeTuple *make_range(ciSignature *sig);
   562   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   564   // Subroutine call type with space allocated for argument types
   565   static const Type **fields( uint arg_cnt );
   567   virtual const Type *xmeet( const Type *t ) const;
   568   virtual const Type *xdual() const;    // Compute dual right now.
   569   // Convenience common pre-built types.
   570   static const TypeTuple *IFBOTH;
   571   static const TypeTuple *IFFALSE;
   572   static const TypeTuple *IFTRUE;
   573   static const TypeTuple *IFNEITHER;
   574   static const TypeTuple *LOOPBODY;
   575   static const TypeTuple *MEMBAR;
   576   static const TypeTuple *STORECONDITIONAL;
   577   static const TypeTuple *START_I2C;
   578   static const TypeTuple *INT_PAIR;
   579   static const TypeTuple *LONG_PAIR;
   580 #ifndef PRODUCT
   581   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   582 #endif
   583 };
   585 //------------------------------TypeAry----------------------------------------
   586 // Class of Array Types
   587 class TypeAry : public Type {
   588   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   589     _elem(elem), _size(size) {}
   590 public:
   591   virtual bool eq( const Type *t ) const;
   592   virtual int  hash() const;             // Type specific hashing
   593   virtual bool singleton(void) const;    // TRUE if type is a singleton
   594   virtual bool empty(void) const;        // TRUE if type is vacuous
   596 private:
   597   const Type *_elem;            // Element type of array
   598   const TypeInt *_size;         // Elements in array
   599   friend class TypeAryPtr;
   601 public:
   602   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   604   virtual const Type *xmeet( const Type *t ) const;
   605   virtual const Type *xdual() const;    // Compute dual right now.
   606   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   607 #ifdef ASSERT
   608   // One type is interface, the other is oop
   609   virtual bool interface_vs_oop(const Type *t) const;
   610 #endif
   611 #ifndef PRODUCT
   612   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   613 #endif
   614 };
   616 //------------------------------TypeVect---------------------------------------
   617 // Class of Vector Types
   618 class TypeVect : public Type {
   619   const Type*   _elem;  // Vector's element type
   620   const uint  _length;  // Elements in vector (power of 2)
   622 protected:
   623   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
   624     _elem(elem), _length(length) {}
   626 public:
   627   const Type* element_type() const { return _elem; }
   628   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
   629   uint length() const { return _length; }
   630   uint length_in_bytes() const {
   631    return _length * type2aelembytes(element_basic_type());
   632   }
   634   virtual bool eq(const Type *t) const;
   635   virtual int  hash() const;             // Type specific hashing
   636   virtual bool singleton(void) const;    // TRUE if type is a singleton
   637   virtual bool empty(void) const;        // TRUE if type is vacuous
   639   static const TypeVect *make(const BasicType elem_bt, uint length) {
   640     // Use bottom primitive type.
   641     return make(get_const_basic_type(elem_bt), length);
   642   }
   643   // Used directly by Replicate nodes to construct singleton vector.
   644   static const TypeVect *make(const Type* elem, uint length);
   646   virtual const Type *xmeet( const Type *t) const;
   647   virtual const Type *xdual() const;     // Compute dual right now.
   649   static const TypeVect *VECTS;
   650   static const TypeVect *VECTD;
   651   static const TypeVect *VECTX;
   652   static const TypeVect *VECTY;
   654 #ifndef PRODUCT
   655   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
   656 #endif
   657 };
   659 class TypeVectS : public TypeVect {
   660   friend class TypeVect;
   661   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
   662 };
   664 class TypeVectD : public TypeVect {
   665   friend class TypeVect;
   666   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
   667 };
   669 class TypeVectX : public TypeVect {
   670   friend class TypeVect;
   671   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
   672 };
   674 class TypeVectY : public TypeVect {
   675   friend class TypeVect;
   676   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
   677 };
   679 //------------------------------TypePtr----------------------------------------
   680 // Class of machine Pointer Types: raw data, instances or arrays.
   681 // If the _base enum is AnyPtr, then this refers to all of the above.
   682 // Otherwise the _base will indicate which subset of pointers is affected,
   683 // and the class will be inherited from.
   684 class TypePtr : public Type {
   685   friend class TypeNarrowPtr;
   686 public:
   687   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   688 protected:
   689   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   690   virtual bool eq( const Type *t ) const;
   691   virtual int  hash() const;             // Type specific hashing
   692   static const PTR ptr_meet[lastPTR][lastPTR];
   693   static const PTR ptr_dual[lastPTR];
   694   static const char * const ptr_msg[lastPTR];
   696 public:
   697   const int _offset;            // Offset into oop, with TOP & BOT
   698   const PTR _ptr;               // Pointer equivalence class
   700   const int offset() const { return _offset; }
   701   const PTR ptr()    const { return _ptr; }
   703   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   705   // Return a 'ptr' version of this type
   706   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   708   virtual intptr_t get_con() const;
   710   int xadd_offset( intptr_t offset ) const;
   711   virtual const TypePtr *add_offset( intptr_t offset ) const;
   713   virtual bool singleton(void) const;    // TRUE if type is a singleton
   714   virtual bool empty(void) const;        // TRUE if type is vacuous
   715   virtual const Type *xmeet( const Type *t ) const;
   716   int meet_offset( int offset ) const;
   717   int dual_offset( ) const;
   718   virtual const Type *xdual() const;    // Compute dual right now.
   720   // meet, dual and join over pointer equivalence sets
   721   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   722   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   724   // This is textually confusing unless one recalls that
   725   // join(t) == dual()->meet(t->dual())->dual().
   726   PTR join_ptr( const PTR in_ptr ) const {
   727     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   728   }
   730   // Tests for relation to centerline of type lattice:
   731   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   732   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   733   // Convenience common pre-built types.
   734   static const TypePtr *NULL_PTR;
   735   static const TypePtr *NOTNULL;
   736   static const TypePtr *BOTTOM;
   737 #ifndef PRODUCT
   738   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   739 #endif
   740 };
   742 //------------------------------TypeRawPtr-------------------------------------
   743 // Class of raw pointers, pointers to things other than Oops.  Examples
   744 // include the stack pointer, top of heap, card-marking area, handles, etc.
   745 class TypeRawPtr : public TypePtr {
   746 protected:
   747   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   748 public:
   749   virtual bool eq( const Type *t ) const;
   750   virtual int  hash() const;     // Type specific hashing
   752   const address _bits;          // Constant value, if applicable
   754   static const TypeRawPtr *make( PTR ptr );
   755   static const TypeRawPtr *make( address bits );
   757   // Return a 'ptr' version of this type
   758   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   760   virtual intptr_t get_con() const;
   762   virtual const TypePtr *add_offset( intptr_t offset ) const;
   764   virtual const Type *xmeet( const Type *t ) const;
   765   virtual const Type *xdual() const;    // Compute dual right now.
   766   // Convenience common pre-built types.
   767   static const TypeRawPtr *BOTTOM;
   768   static const TypeRawPtr *NOTNULL;
   769 #ifndef PRODUCT
   770   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   771 #endif
   772 };
   774 //------------------------------TypeOopPtr-------------------------------------
   775 // Some kind of oop (Java pointer), either klass or instance or array.
   776 class TypeOopPtr : public TypePtr {
   777 protected:
   778   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   779 public:
   780   virtual bool eq( const Type *t ) const;
   781   virtual int  hash() const;             // Type specific hashing
   782   virtual bool singleton(void) const;    // TRUE if type is a singleton
   783   enum {
   784    InstanceTop = -1,   // undefined instance
   785    InstanceBot = 0     // any possible instance
   786   };
   787 protected:
   789   // Oop is NULL, unless this is a constant oop.
   790   ciObject*     _const_oop;   // Constant oop
   791   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   792   ciKlass*      _klass;       // Klass object
   793   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   794   bool          _klass_is_exact;
   795   bool          _is_ptr_to_narrowoop;
   796   bool          _is_ptr_to_narrowklass;
   798   // If not InstanceTop or InstanceBot, indicates that this is
   799   // a particular instance of this type which is distinct.
   800   // This is the the node index of the allocation node creating this instance.
   801   int           _instance_id;
   803   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   805   int dual_instance_id() const;
   806   int meet_instance_id(int uid) const;
   808 public:
   809   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   810   // Respects UseUniqueSubclasses.
   811   // If the klass is final, the resulting type will be exact.
   812   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   813     return make_from_klass_common(klass, true, false);
   814   }
   815   // Same as before, but will produce an exact type, even if
   816   // the klass is not final, as long as it has exactly one implementation.
   817   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   818     return make_from_klass_common(klass, true, true);
   819   }
   820   // Same as before, but does not respects UseUniqueSubclasses.
   821   // Use this only for creating array element types.
   822   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   823     return make_from_klass_common(klass, false, false);
   824   }
   825   // Creates a singleton type given an object.
   826   // If the object cannot be rendered as a constant,
   827   // may return a non-singleton type.
   828   // If require_constant, produce a NULL if a singleton is not possible.
   829   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
   831   // Make a generic (unclassed) pointer to an oop.
   832   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
   834   ciObject* const_oop()    const { return _const_oop; }
   835   virtual ciKlass* klass() const { return _klass;     }
   836   bool klass_is_exact()    const { return _klass_is_exact; }
   838   // Returns true if this pointer points at memory which contains a
   839   // compressed oop references.
   840   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   841   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
   843   bool is_known_instance()       const { return _instance_id > 0; }
   844   int  instance_id()             const { return _instance_id; }
   845   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   847   virtual intptr_t get_con() const;
   849   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   851   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   853   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   855   // corresponding pointer to klass, for a given instance
   856   const TypeKlassPtr* as_klass_type() const;
   858   virtual const TypePtr *add_offset( intptr_t offset ) const;
   860   virtual const Type *xmeet( const Type *t ) const;
   861   virtual const Type *xdual() const;    // Compute dual right now.
   863   // Do not allow interface-vs.-noninterface joins to collapse to top.
   864   virtual const Type *filter( const Type *kills ) const;
   866   // Convenience common pre-built type.
   867   static const TypeOopPtr *BOTTOM;
   868 #ifndef PRODUCT
   869   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   870 #endif
   871 };
   873 //------------------------------TypeInstPtr------------------------------------
   874 // Class of Java object pointers, pointing either to non-array Java instances
   875 // or to a Klass* (including array klasses).
   876 class TypeInstPtr : public TypeOopPtr {
   877   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   878   virtual bool eq( const Type *t ) const;
   879   virtual int  hash() const;             // Type specific hashing
   881   ciSymbol*  _name;        // class name
   883  public:
   884   ciSymbol* name()         const { return _name; }
   886   bool  is_loaded() const { return _klass->is_loaded(); }
   888   // Make a pointer to a constant oop.
   889   static const TypeInstPtr *make(ciObject* o) {
   890     return make(TypePtr::Constant, o->klass(), true, o, 0);
   891   }
   892   // Make a pointer to a constant oop with offset.
   893   static const TypeInstPtr *make(ciObject* o, int offset) {
   894     return make(TypePtr::Constant, o->klass(), true, o, offset);
   895   }
   897   // Make a pointer to some value of type klass.
   898   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   899     return make(ptr, klass, false, NULL, 0);
   900   }
   902   // Make a pointer to some non-polymorphic value of exactly type klass.
   903   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   904     return make(ptr, klass, true, NULL, 0);
   905   }
   907   // Make a pointer to some value of type klass with offset.
   908   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   909     return make(ptr, klass, false, NULL, offset);
   910   }
   912   // Make a pointer to an oop.
   913   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   915   // If this is a java.lang.Class constant, return the type for it or NULL.
   916   // Pass to Type::get_const_type to turn it to a type, which will usually
   917   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   918   ciType* java_mirror_type() const;
   920   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   922   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   924   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   926   virtual const TypePtr *add_offset( intptr_t offset ) const;
   928   virtual const Type *xmeet( const Type *t ) const;
   929   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   930   virtual const Type *xdual() const;    // Compute dual right now.
   932   // Convenience common pre-built types.
   933   static const TypeInstPtr *NOTNULL;
   934   static const TypeInstPtr *BOTTOM;
   935   static const TypeInstPtr *MIRROR;
   936   static const TypeInstPtr *MARK;
   937   static const TypeInstPtr *KLASS;
   938 #ifndef PRODUCT
   939   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   940 #endif
   941 };
   943 //------------------------------TypeAryPtr-------------------------------------
   944 // Class of Java array pointers
   945 class TypeAryPtr : public TypeOopPtr {
   946   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
   947 #ifdef ASSERT
   948     if (k != NULL) {
   949       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
   950       ciKlass* ck = compute_klass(true);
   951       if (k != ck) {
   952         this->dump(); tty->cr();
   953         tty->print(" k: ");
   954         k->print(); tty->cr();
   955         tty->print("ck: ");
   956         if (ck != NULL) ck->print();
   957         else tty->print("<NULL>");
   958         tty->cr();
   959         assert(false, "unexpected TypeAryPtr::_klass");
   960       }
   961     }
   962 #endif
   963   }
   964   virtual bool eq( const Type *t ) const;
   965   virtual int hash() const;     // Type specific hashing
   966   const TypeAry *_ary;          // Array we point into
   968   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
   970 public:
   971   // Accessors
   972   ciKlass* klass() const;
   973   const TypeAry* ary() const  { return _ary; }
   974   const Type*    elem() const { return _ary->_elem; }
   975   const TypeInt* size() const { return _ary->_size; }
   977   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   978   // Constant pointer to array
   979   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   981   // Return a 'ptr' version of this type
   982   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   984   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   986   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   988   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   989   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
   991   virtual bool empty(void) const;        // TRUE if type is vacuous
   992   virtual const TypePtr *add_offset( intptr_t offset ) const;
   994   virtual const Type *xmeet( const Type *t ) const;
   995   virtual const Type *xdual() const;    // Compute dual right now.
   997   // Convenience common pre-built types.
   998   static const TypeAryPtr *RANGE;
   999   static const TypeAryPtr *OOPS;
  1000   static const TypeAryPtr *NARROWOOPS;
  1001   static const TypeAryPtr *BYTES;
  1002   static const TypeAryPtr *SHORTS;
  1003   static const TypeAryPtr *CHARS;
  1004   static const TypeAryPtr *INTS;
  1005   static const TypeAryPtr *LONGS;
  1006   static const TypeAryPtr *FLOATS;
  1007   static const TypeAryPtr *DOUBLES;
  1008   // selects one of the above:
  1009   static const TypeAryPtr *get_array_body_type(BasicType elem) {
  1010     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
  1011     return _array_body_type[elem];
  1013   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
  1014   // sharpen the type of an int which is used as an array size
  1015 #ifdef ASSERT
  1016   // One type is interface, the other is oop
  1017   virtual bool interface_vs_oop(const Type *t) const;
  1018 #endif
  1019 #ifndef PRODUCT
  1020   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1021 #endif
  1022 };
  1024 //------------------------------TypeMetadataPtr-------------------------------------
  1025 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
  1026 class TypeMetadataPtr : public TypePtr {
  1027 protected:
  1028   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
  1029 public:
  1030   virtual bool eq( const Type *t ) const;
  1031   virtual int  hash() const;             // Type specific hashing
  1032   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1034 private:
  1035   ciMetadata*   _metadata;
  1037 public:
  1038   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
  1040   static const TypeMetadataPtr* make(ciMethod* m);
  1041   static const TypeMetadataPtr* make(ciMethodData* m);
  1043   ciMetadata* metadata() const { return _metadata; }
  1045   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1047   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1049   virtual const Type *xmeet( const Type *t ) const;
  1050   virtual const Type *xdual() const;    // Compute dual right now.
  1052   virtual intptr_t get_con() const;
  1054   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1055   virtual const Type *filter( const Type *kills ) const;
  1057   // Convenience common pre-built types.
  1058   static const TypeMetadataPtr *BOTTOM;
  1060 #ifndef PRODUCT
  1061   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1062 #endif
  1063 };
  1065 //------------------------------TypeKlassPtr-----------------------------------
  1066 // Class of Java Klass pointers
  1067 class TypeKlassPtr : public TypePtr {
  1068   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
  1070  public:
  1071   virtual bool eq( const Type *t ) const;
  1072   virtual int hash() const;             // Type specific hashing
  1073   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1074  private:
  1076   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
  1078   ciKlass* _klass;
  1080   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
  1081   bool          _klass_is_exact;
  1083 public:
  1084   ciSymbol* name()  const { return klass()->name(); }
  1086   ciKlass* klass() const { return  _klass; }
  1087   bool klass_is_exact()    const { return _klass_is_exact; }
  1089   bool  is_loaded() const { return klass()->is_loaded(); }
  1091   // Creates a type given a klass. Correctly handles multi-dimensional arrays
  1092   // Respects UseUniqueSubclasses.
  1093   // If the klass is final, the resulting type will be exact.
  1094   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
  1095     return make_from_klass_common(klass, true, false);
  1097   // Same as before, but will produce an exact type, even if
  1098   // the klass is not final, as long as it has exactly one implementation.
  1099   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
  1100     return make_from_klass_common(klass, true, true);
  1102   // Same as before, but does not respects UseUniqueSubclasses.
  1103   // Use this only for creating array element types.
  1104   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
  1105     return make_from_klass_common(klass, false, false);
  1108   // Make a generic (unclassed) pointer to metadata.
  1109   static const TypeKlassPtr* make(PTR ptr, int offset);
  1111   // ptr to klass 'k'
  1112   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
  1113   // ptr to klass 'k' with offset
  1114   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
  1115   // ptr to klass 'k' or sub-klass
  1116   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
  1118   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1120   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1122   // corresponding pointer to instance, for a given class
  1123   const TypeOopPtr* as_instance_type() const;
  1125   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1126   virtual const Type    *xmeet( const Type *t ) const;
  1127   virtual const Type    *xdual() const;      // Compute dual right now.
  1129   virtual intptr_t get_con() const;
  1131   // Convenience common pre-built types.
  1132   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
  1133   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
  1134 #ifndef PRODUCT
  1135   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1136 #endif
  1137 };
  1139 class TypeNarrowPtr : public Type {
  1140 protected:
  1141   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
  1143   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
  1144                                                   Type(t) {
  1145     assert(ptrtype->offset() == 0 ||
  1146            ptrtype->offset() == OffsetBot ||
  1147            ptrtype->offset() == OffsetTop, "no real offsets");
  1150   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
  1151   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
  1152   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
  1153   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
  1154 public:
  1155   virtual bool eq( const Type *t ) const;
  1156   virtual int  hash() const;             // Type specific hashing
  1157   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1159   virtual const Type *xmeet( const Type *t ) const;
  1160   virtual const Type *xdual() const;    // Compute dual right now.
  1162   virtual intptr_t get_con() const;
  1164   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1165   virtual const Type *filter( const Type *kills ) const;
  1167   virtual bool empty(void) const;        // TRUE if type is vacuous
  1169   // returns the equivalent ptr type for this compressed pointer
  1170   const TypePtr *get_ptrtype() const {
  1171     return _ptrtype;
  1174 #ifndef PRODUCT
  1175   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1176 #endif
  1177 };
  1179 //------------------------------TypeNarrowOop----------------------------------
  1180 // A compressed reference to some kind of Oop.  This type wraps around
  1181 // a preexisting TypeOopPtr and forwards most of it's operations to
  1182 // the underlying type.  It's only real purpose is to track the
  1183 // oopness of the compressed oop value when we expose the conversion
  1184 // between the normal and the compressed form.
  1185 class TypeNarrowOop : public TypeNarrowPtr {
  1186 protected:
  1187   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
  1190   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1191     return t->isa_narrowoop();
  1194   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1195     return t->is_narrowoop();
  1198   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1199     return new TypeNarrowOop(t);
  1202   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1203     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
  1206 public:
  1208   static const TypeNarrowOop *make( const TypePtr* type);
  1210   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
  1211     return make(TypeOopPtr::make_from_constant(con, require_constant));
  1214   static const TypeNarrowOop *BOTTOM;
  1215   static const TypeNarrowOop *NULL_PTR;
  1217 #ifndef PRODUCT
  1218   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1219 #endif
  1220 };
  1222 //------------------------------TypeNarrowKlass----------------------------------
  1223 // A compressed reference to klass pointer.  This type wraps around a
  1224 // preexisting TypeKlassPtr and forwards most of it's operations to
  1225 // the underlying type.
  1226 class TypeNarrowKlass : public TypeNarrowPtr {
  1227 protected:
  1228   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
  1231   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1232     return t->isa_narrowklass();
  1235   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1236     return t->is_narrowklass();
  1239   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1240     return new TypeNarrowKlass(t);
  1243   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1244     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
  1247 public:
  1248   static const TypeNarrowKlass *make( const TypePtr* type);
  1250   // static const TypeNarrowKlass *BOTTOM;
  1251   static const TypeNarrowKlass *NULL_PTR;
  1253 #ifndef PRODUCT
  1254   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1255 #endif
  1256 };
  1258 //------------------------------TypeFunc---------------------------------------
  1259 // Class of Array Types
  1260 class TypeFunc : public Type {
  1261   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1262   virtual bool eq( const Type *t ) const;
  1263   virtual int  hash() const;             // Type specific hashing
  1264   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1265   virtual bool empty(void) const;        // TRUE if type is vacuous
  1266 public:
  1267   // Constants are shared among ADLC and VM
  1268   enum { Control    = AdlcVMDeps::Control,
  1269          I_O        = AdlcVMDeps::I_O,
  1270          Memory     = AdlcVMDeps::Memory,
  1271          FramePtr   = AdlcVMDeps::FramePtr,
  1272          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1273          Parms      = AdlcVMDeps::Parms
  1274   };
  1276   const TypeTuple* const _domain;     // Domain of inputs
  1277   const TypeTuple* const _range;      // Range of results
  1279   // Accessors:
  1280   const TypeTuple* domain() const { return _domain; }
  1281   const TypeTuple* range()  const { return _range; }
  1283   static const TypeFunc *make(ciMethod* method);
  1284   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1285   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1287   virtual const Type *xmeet( const Type *t ) const;
  1288   virtual const Type *xdual() const;    // Compute dual right now.
  1290   BasicType return_type() const;
  1292 #ifndef PRODUCT
  1293   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1294 #endif
  1295   // Convenience common pre-built types.
  1296 };
  1298 //------------------------------accessors--------------------------------------
  1299 inline bool Type::is_ptr_to_narrowoop() const {
  1300 #ifdef _LP64
  1301   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1302 #else
  1303   return false;
  1304 #endif
  1307 inline bool Type::is_ptr_to_narrowklass() const {
  1308 #ifdef _LP64
  1309   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
  1310 #else
  1311   return false;
  1312 #endif
  1315 inline float Type::getf() const {
  1316   assert( _base == FloatCon, "Not a FloatCon" );
  1317   return ((TypeF*)this)->_f;
  1320 inline double Type::getd() const {
  1321   assert( _base == DoubleCon, "Not a DoubleCon" );
  1322   return ((TypeD*)this)->_d;
  1325 inline const TypeInt *Type::is_int() const {
  1326   assert( _base == Int, "Not an Int" );
  1327   return (TypeInt*)this;
  1330 inline const TypeInt *Type::isa_int() const {
  1331   return ( _base == Int ? (TypeInt*)this : NULL);
  1334 inline const TypeLong *Type::is_long() const {
  1335   assert( _base == Long, "Not a Long" );
  1336   return (TypeLong*)this;
  1339 inline const TypeLong *Type::isa_long() const {
  1340   return ( _base == Long ? (TypeLong*)this : NULL);
  1343 inline const TypeF *Type::isa_float() const {
  1344   return ((_base == FloatTop ||
  1345            _base == FloatCon ||
  1346            _base == FloatBot) ? (TypeF*)this : NULL);
  1349 inline const TypeF *Type::is_float_constant() const {
  1350   assert( _base == FloatCon, "Not a Float" );
  1351   return (TypeF*)this;
  1354 inline const TypeF *Type::isa_float_constant() const {
  1355   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1358 inline const TypeD *Type::isa_double() const {
  1359   return ((_base == DoubleTop ||
  1360            _base == DoubleCon ||
  1361            _base == DoubleBot) ? (TypeD*)this : NULL);
  1364 inline const TypeD *Type::is_double_constant() const {
  1365   assert( _base == DoubleCon, "Not a Double" );
  1366   return (TypeD*)this;
  1369 inline const TypeD *Type::isa_double_constant() const {
  1370   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1373 inline const TypeTuple *Type::is_tuple() const {
  1374   assert( _base == Tuple, "Not a Tuple" );
  1375   return (TypeTuple*)this;
  1378 inline const TypeAry *Type::is_ary() const {
  1379   assert( _base == Array , "Not an Array" );
  1380   return (TypeAry*)this;
  1383 inline const TypeVect *Type::is_vect() const {
  1384   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
  1385   return (TypeVect*)this;
  1388 inline const TypeVect *Type::isa_vect() const {
  1389   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
  1392 inline const TypePtr *Type::is_ptr() const {
  1393   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1394   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1395   return (TypePtr*)this;
  1398 inline const TypePtr *Type::isa_ptr() const {
  1399   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1400   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1403 inline const TypeOopPtr *Type::is_oopptr() const {
  1404   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1405   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
  1406   return (TypeOopPtr*)this;
  1409 inline const TypeOopPtr *Type::isa_oopptr() const {
  1410   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1411   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
  1414 inline const TypeRawPtr *Type::isa_rawptr() const {
  1415   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1418 inline const TypeRawPtr *Type::is_rawptr() const {
  1419   assert( _base == RawPtr, "Not a raw pointer" );
  1420   return (TypeRawPtr*)this;
  1423 inline const TypeInstPtr *Type::isa_instptr() const {
  1424   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1427 inline const TypeInstPtr *Type::is_instptr() const {
  1428   assert( _base == InstPtr, "Not an object pointer" );
  1429   return (TypeInstPtr*)this;
  1432 inline const TypeAryPtr *Type::isa_aryptr() const {
  1433   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1436 inline const TypeAryPtr *Type::is_aryptr() const {
  1437   assert( _base == AryPtr, "Not an array pointer" );
  1438   return (TypeAryPtr*)this;
  1441 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1442   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1443   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1444   return (TypeNarrowOop*)this;
  1447 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1448   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1449   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1452 inline const TypeNarrowKlass *Type::is_narrowklass() const {
  1453   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
  1454   return (TypeNarrowKlass*)this;
  1457 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
  1458   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
  1461 inline const TypeMetadataPtr *Type::is_metadataptr() const {
  1462   // MetadataPtr is the first and CPCachePtr the last
  1463   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
  1464   return (TypeMetadataPtr*)this;
  1467 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
  1468   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
  1471 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1472   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1475 inline const TypeKlassPtr *Type::is_klassptr() const {
  1476   assert( _base == KlassPtr, "Not a klass pointer" );
  1477   return (TypeKlassPtr*)this;
  1480 inline const TypePtr* Type::make_ptr() const {
  1481   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1482     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
  1483      (isa_ptr() ? is_ptr() : NULL));
  1486 inline const TypeOopPtr* Type::make_oopptr() const {
  1487   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1490 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1491   return (_base == NarrowOop) ? is_narrowoop() :
  1492                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1495 inline const TypeNarrowKlass* Type::make_narrowklass() const {
  1496   return (_base == NarrowKlass) ? is_narrowklass() :
  1497                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
  1500 inline bool Type::is_floatingpoint() const {
  1501   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1502       (_base == DoubleCon) || (_base == DoubleBot) )
  1503     return true;
  1504   return false;
  1508 // ===============================================================
  1509 // Things that need to be 64-bits in the 64-bit build but
  1510 // 32-bits in the 32-bit build.  Done this way to get full
  1511 // optimization AND strong typing.
  1512 #ifdef _LP64
  1514 // For type queries and asserts
  1515 #define is_intptr_t  is_long
  1516 #define isa_intptr_t isa_long
  1517 #define find_intptr_t_type find_long_type
  1518 #define find_intptr_t_con  find_long_con
  1519 #define TypeX        TypeLong
  1520 #define Type_X       Type::Long
  1521 #define TypeX_X      TypeLong::LONG
  1522 #define TypeX_ZERO   TypeLong::ZERO
  1523 // For 'ideal_reg' machine registers
  1524 #define Op_RegX      Op_RegL
  1525 // For phase->intcon variants
  1526 #define MakeConX     longcon
  1527 #define ConXNode     ConLNode
  1528 // For array index arithmetic
  1529 #define MulXNode     MulLNode
  1530 #define AndXNode     AndLNode
  1531 #define OrXNode      OrLNode
  1532 #define CmpXNode     CmpLNode
  1533 #define SubXNode     SubLNode
  1534 #define LShiftXNode  LShiftLNode
  1535 // For object size computation:
  1536 #define AddXNode     AddLNode
  1537 #define RShiftXNode  RShiftLNode
  1538 // For card marks and hashcodes
  1539 #define URShiftXNode URShiftLNode
  1540 // UseOptoBiasInlining
  1541 #define XorXNode     XorLNode
  1542 #define StoreXConditionalNode StoreLConditionalNode
  1543 // Opcodes
  1544 #define Op_LShiftX   Op_LShiftL
  1545 #define Op_AndX      Op_AndL
  1546 #define Op_AddX      Op_AddL
  1547 #define Op_SubX      Op_SubL
  1548 #define Op_XorX      Op_XorL
  1549 #define Op_URShiftX  Op_URShiftL
  1550 // conversions
  1551 #define ConvI2X(x)   ConvI2L(x)
  1552 #define ConvL2X(x)   (x)
  1553 #define ConvX2I(x)   ConvL2I(x)
  1554 #define ConvX2L(x)   (x)
  1556 #else
  1558 // For type queries and asserts
  1559 #define is_intptr_t  is_int
  1560 #define isa_intptr_t isa_int
  1561 #define find_intptr_t_type find_int_type
  1562 #define find_intptr_t_con  find_int_con
  1563 #define TypeX        TypeInt
  1564 #define Type_X       Type::Int
  1565 #define TypeX_X      TypeInt::INT
  1566 #define TypeX_ZERO   TypeInt::ZERO
  1567 // For 'ideal_reg' machine registers
  1568 #define Op_RegX      Op_RegI
  1569 // For phase->intcon variants
  1570 #define MakeConX     intcon
  1571 #define ConXNode     ConINode
  1572 // For array index arithmetic
  1573 #define MulXNode     MulINode
  1574 #define AndXNode     AndINode
  1575 #define OrXNode      OrINode
  1576 #define CmpXNode     CmpINode
  1577 #define SubXNode     SubINode
  1578 #define LShiftXNode  LShiftINode
  1579 // For object size computation:
  1580 #define AddXNode     AddINode
  1581 #define RShiftXNode  RShiftINode
  1582 // For card marks and hashcodes
  1583 #define URShiftXNode URShiftINode
  1584 // UseOptoBiasInlining
  1585 #define XorXNode     XorINode
  1586 #define StoreXConditionalNode StoreIConditionalNode
  1587 // Opcodes
  1588 #define Op_LShiftX   Op_LShiftI
  1589 #define Op_AndX      Op_AndI
  1590 #define Op_AddX      Op_AddI
  1591 #define Op_SubX      Op_SubI
  1592 #define Op_XorX      Op_XorI
  1593 #define Op_URShiftX  Op_URShiftI
  1594 // conversions
  1595 #define ConvI2X(x)   (x)
  1596 #define ConvL2X(x)   ConvL2I(x)
  1597 #define ConvX2I(x)   (x)
  1598 #define ConvX2L(x)   ConvI2L(x)
  1600 #endif
  1602 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial