src/cpu/x86/vm/x86_32.ad

Tue, 09 Oct 2012 12:40:05 -0700

author
vlivanov
date
Tue, 09 Oct 2012 12:40:05 -0700
changeset 4160
f6badecb7ea7
parent 4159
8e47bac5643a
child 4164
d804e148cff8
permissions
-rw-r--r--

7199654: Remove LoadUI2LNode
Summary: Removed LoadUI2L node from Ideal nodes, use match rule in .ad files instead.
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for all registers
   127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   128 // Class for general registers
   129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   130 // Class for general registers which may be used for implicit null checks on win95
   131 // Also safe for use by tailjump. We don't want to allocate in rbp,
   132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   133 // Class of "X" registers
   134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   135 // Class of registers that can appear in an address with no offset.
   136 // EBP and ESP require an extra instruction byte for zero offset.
   137 // Used in fast-unlock
   138 reg_class p_reg(EDX, EDI, ESI, EBX);
   139 // Class for general registers not including ECX
   140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   141 // Class for general registers not including EAX
   142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   143 // Class for general registers not including EAX or EBX.
   144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   145 // Class of EAX (for multiply and divide operations)
   146 reg_class eax_reg(EAX);
   147 // Class of EBX (for atomic add)
   148 reg_class ebx_reg(EBX);
   149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   150 reg_class ecx_reg(ECX);
   151 // Class of EDX (for multiply and divide operations)
   152 reg_class edx_reg(EDX);
   153 // Class of EDI (for synchronization)
   154 reg_class edi_reg(EDI);
   155 // Class of ESI (for synchronization)
   156 reg_class esi_reg(ESI);
   157 // Singleton class for interpreter's stack pointer
   158 reg_class ebp_reg(EBP);
   159 // Singleton class for stack pointer
   160 reg_class sp_reg(ESP);
   161 // Singleton class for instruction pointer
   162 // reg_class ip_reg(EIP);
   163 // Class of integer register pairs
   164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   165 // Class of integer register pairs that aligns with calling convention
   166 reg_class eadx_reg( EAX,EDX );
   167 reg_class ebcx_reg( ECX,EBX );
   168 // Not AX or DX, used in divides
   169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   171 // Floating point registers.  Notice FPR0 is not a choice.
   172 // FPR0 is not ever allocated; we use clever encodings to fake
   173 // a 2-address instructions out of Intels FP stack.
   174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   178                       FPR7L,FPR7H );
   180 reg_class fp_flt_reg0( FPR1L );
   181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   186 %}
   189 //----------SOURCE BLOCK-------------------------------------------------------
   190 // This is a block of C++ code which provides values, functions, and
   191 // definitions necessary in the rest of the architecture description
   192 source_hpp %{
   193 // Must be visible to the DFA in dfa_x86_32.cpp
   194 extern bool is_operand_hi32_zero(Node* n);
   195 %}
   197 source %{
   198 #define   RELOC_IMM32    Assembler::imm_operand
   199 #define   RELOC_DISP32   Assembler::disp32_operand
   201 #define __ _masm.
   203 // How to find the high register of a Long pair, given the low register
   204 #define   HIGH_FROM_LOW(x) ((x)+2)
   206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   208 // fast versions of NegF/NegD and AbsF/AbsD.
   210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   213   // of 128-bits operands for SSE instructions.
   214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   215   // Store the value to a 128-bits operand.
   216   operand[0] = lo;
   217   operand[1] = hi;
   218   return operand;
   219 }
   221 // Buffer for 128-bits masks used by SSE instructions.
   222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   224 // Static initialization during VM startup.
   225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   230 // Offset hacking within calls.
   231 static int pre_call_FPU_size() {
   232   if (Compile::current()->in_24_bit_fp_mode())
   233     return 6; // fldcw
   234   return 0;
   235 }
   237 static int preserve_SP_size() {
   238   return 2;  // op, rm(reg/reg)
   239 }
   241 // !!!!! Special hack to get all type of calls to specify the byte offset
   242 //       from the start of the call to the point where the return address
   243 //       will point.
   244 int MachCallStaticJavaNode::ret_addr_offset() {
   245   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   246   if (_method_handle_invoke)
   247     offset += preserve_SP_size();
   248   return offset;
   249 }
   251 int MachCallDynamicJavaNode::ret_addr_offset() {
   252   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   253 }
   255 static int sizeof_FFree_Float_Stack_All = -1;
   257 int MachCallRuntimeNode::ret_addr_offset() {
   258   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   259   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   260 }
   262 // Indicate if the safepoint node needs the polling page as an input.
   263 // Since x86 does have absolute addressing, it doesn't.
   264 bool SafePointNode::needs_polling_address_input() {
   265   return false;
   266 }
   268 //
   269 // Compute padding required for nodes which need alignment
   270 //
   272 // The address of the call instruction needs to be 4-byte aligned to
   273 // ensure that it does not span a cache line so that it can be patched.
   274 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   275   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   276   current_offset += 1;      // skip call opcode byte
   277   return round_to(current_offset, alignment_required()) - current_offset;
   278 }
   280 // The address of the call instruction needs to be 4-byte aligned to
   281 // ensure that it does not span a cache line so that it can be patched.
   282 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   283   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   284   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   285   current_offset += 1;      // skip call opcode byte
   286   return round_to(current_offset, alignment_required()) - current_offset;
   287 }
   289 // The address of the call instruction needs to be 4-byte aligned to
   290 // ensure that it does not span a cache line so that it can be patched.
   291 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   292   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   293   current_offset += 5;      // skip MOV instruction
   294   current_offset += 1;      // skip call opcode byte
   295   return round_to(current_offset, alignment_required()) - current_offset;
   296 }
   298 // EMIT_RM()
   299 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   300   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   301   cbuf.insts()->emit_int8(c);
   302 }
   304 // EMIT_CC()
   305 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   306   unsigned char c = (unsigned char)( f1 | f2 );
   307   cbuf.insts()->emit_int8(c);
   308 }
   310 // EMIT_OPCODE()
   311 void emit_opcode(CodeBuffer &cbuf, int code) {
   312   cbuf.insts()->emit_int8((unsigned char) code);
   313 }
   315 // EMIT_OPCODE() w/ relocation information
   316 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   317   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   318   emit_opcode(cbuf, code);
   319 }
   321 // EMIT_D8()
   322 void emit_d8(CodeBuffer &cbuf, int d8) {
   323   cbuf.insts()->emit_int8((unsigned char) d8);
   324 }
   326 // EMIT_D16()
   327 void emit_d16(CodeBuffer &cbuf, int d16) {
   328   cbuf.insts()->emit_int16(d16);
   329 }
   331 // EMIT_D32()
   332 void emit_d32(CodeBuffer &cbuf, int d32) {
   333   cbuf.insts()->emit_int32(d32);
   334 }
   336 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   337 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   338         int format) {
   339   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   340   cbuf.insts()->emit_int32(d32);
   341 }
   343 // emit 32 bit value and construct relocation entry from RelocationHolder
   344 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   345         int format) {
   346 #ifdef ASSERT
   347   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   348     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   349   }
   350 #endif
   351   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   352   cbuf.insts()->emit_int32(d32);
   353 }
   355 // Access stack slot for load or store
   356 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   357   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   358   if( -128 <= disp && disp <= 127 ) {
   359     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   360     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   361     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   362   } else {
   363     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   364     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   365     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   366   }
   367 }
   369    // rRegI ereg, memory mem) %{    // emit_reg_mem
   370 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
   371   // There is no index & no scale, use form without SIB byte
   372   if ((index == 0x4) &&
   373       (scale == 0) && (base != ESP_enc)) {
   374     // If no displacement, mode is 0x0; unless base is [EBP]
   375     if ( (displace == 0) && (base != EBP_enc) ) {
   376       emit_rm(cbuf, 0x0, reg_encoding, base);
   377     }
   378     else {                    // If 8-bit displacement, mode 0x1
   379       if ((displace >= -128) && (displace <= 127)
   380           && (disp_reloc == relocInfo::none) ) {
   381         emit_rm(cbuf, 0x1, reg_encoding, base);
   382         emit_d8(cbuf, displace);
   383       }
   384       else {                  // If 32-bit displacement
   385         if (base == -1) { // Special flag for absolute address
   386           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   387           // (manual lies; no SIB needed here)
   388           if ( disp_reloc != relocInfo::none ) {
   389             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   390           } else {
   391             emit_d32      (cbuf, displace);
   392           }
   393         }
   394         else {                // Normal base + offset
   395           emit_rm(cbuf, 0x2, reg_encoding, base);
   396           if ( disp_reloc != relocInfo::none ) {
   397             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   398           } else {
   399             emit_d32      (cbuf, displace);
   400           }
   401         }
   402       }
   403     }
   404   }
   405   else {                      // Else, encode with the SIB byte
   406     // If no displacement, mode is 0x0; unless base is [EBP]
   407     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   408       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   409       emit_rm(cbuf, scale, index, base);
   410     }
   411     else {                    // If 8-bit displacement, mode 0x1
   412       if ((displace >= -128) && (displace <= 127)
   413           && (disp_reloc == relocInfo::none) ) {
   414         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   415         emit_rm(cbuf, scale, index, base);
   416         emit_d8(cbuf, displace);
   417       }
   418       else {                  // If 32-bit displacement
   419         if (base == 0x04 ) {
   420           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   421           emit_rm(cbuf, scale, index, 0x04);
   422         } else {
   423           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   424           emit_rm(cbuf, scale, index, base);
   425         }
   426         if ( disp_reloc != relocInfo::none ) {
   427           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   428         } else {
   429           emit_d32      (cbuf, displace);
   430         }
   431       }
   432     }
   433   }
   434 }
   437 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   438   if( dst_encoding == src_encoding ) {
   439     // reg-reg copy, use an empty encoding
   440   } else {
   441     emit_opcode( cbuf, 0x8B );
   442     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   443   }
   444 }
   446 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   447   Label exit;
   448   __ jccb(Assembler::noParity, exit);
   449   __ pushf();
   450   //
   451   // comiss/ucomiss instructions set ZF,PF,CF flags and
   452   // zero OF,AF,SF for NaN values.
   453   // Fixup flags by zeroing ZF,PF so that compare of NaN
   454   // values returns 'less than' result (CF is set).
   455   // Leave the rest of flags unchanged.
   456   //
   457   //    7 6 5 4 3 2 1 0
   458   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   459   //    0 0 1 0 1 0 1 1   (0x2B)
   460   //
   461   __ andl(Address(rsp, 0), 0xffffff2b);
   462   __ popf();
   463   __ bind(exit);
   464 }
   466 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   467   Label done;
   468   __ movl(dst, -1);
   469   __ jcc(Assembler::parity, done);
   470   __ jcc(Assembler::below, done);
   471   __ setb(Assembler::notEqual, dst);
   472   __ movzbl(dst, dst);
   473   __ bind(done);
   474 }
   477 //=============================================================================
   478 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   480 int Compile::ConstantTable::calculate_table_base_offset() const {
   481   return 0;  // absolute addressing, no offset
   482 }
   484 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   485   // Empty encoding
   486 }
   488 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   489   return 0;
   490 }
   492 #ifndef PRODUCT
   493 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   494   st->print("# MachConstantBaseNode (empty encoding)");
   495 }
   496 #endif
   499 //=============================================================================
   500 #ifndef PRODUCT
   501 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   502   Compile* C = ra_->C;
   504   int framesize = C->frame_slots() << LogBytesPerInt;
   505   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   506   // Remove wordSize for return addr which is already pushed.
   507   framesize -= wordSize;
   509   if (C->need_stack_bang(framesize)) {
   510     framesize -= wordSize;
   511     st->print("# stack bang");
   512     st->print("\n\t");
   513     st->print("PUSH   EBP\t# Save EBP");
   514     if (framesize) {
   515       st->print("\n\t");
   516       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   517     }
   518   } else {
   519     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   520     st->print("\n\t");
   521     framesize -= wordSize;
   522     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   523   }
   525   if (VerifyStackAtCalls) {
   526     st->print("\n\t");
   527     framesize -= wordSize;
   528     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   529   }
   531   if( C->in_24_bit_fp_mode() ) {
   532     st->print("\n\t");
   533     st->print("FLDCW  \t# load 24 bit fpu control word");
   534   }
   535   if (UseSSE >= 2 && VerifyFPU) {
   536     st->print("\n\t");
   537     st->print("# verify FPU stack (must be clean on entry)");
   538   }
   540 #ifdef ASSERT
   541   if (VerifyStackAtCalls) {
   542     st->print("\n\t");
   543     st->print("# stack alignment check");
   544   }
   545 #endif
   546   st->cr();
   547 }
   548 #endif
   551 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   552   Compile* C = ra_->C;
   553   MacroAssembler _masm(&cbuf);
   555   int framesize = C->frame_slots() << LogBytesPerInt;
   557   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   559   C->set_frame_complete(cbuf.insts_size());
   561   if (C->has_mach_constant_base_node()) {
   562     // NOTE: We set the table base offset here because users might be
   563     // emitted before MachConstantBaseNode.
   564     Compile::ConstantTable& constant_table = C->constant_table();
   565     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   566   }
   567 }
   569 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   570   return MachNode::size(ra_); // too many variables; just compute it the hard way
   571 }
   573 int MachPrologNode::reloc() const {
   574   return 0; // a large enough number
   575 }
   577 //=============================================================================
   578 #ifndef PRODUCT
   579 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   580   Compile *C = ra_->C;
   581   int framesize = C->frame_slots() << LogBytesPerInt;
   582   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   583   // Remove two words for return addr and rbp,
   584   framesize -= 2*wordSize;
   586   if( C->in_24_bit_fp_mode() ) {
   587     st->print("FLDCW  standard control word");
   588     st->cr(); st->print("\t");
   589   }
   590   if( framesize ) {
   591     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   592     st->cr(); st->print("\t");
   593   }
   594   st->print_cr("POPL   EBP"); st->print("\t");
   595   if( do_polling() && C->is_method_compilation() ) {
   596     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   597     st->cr(); st->print("\t");
   598   }
   599 }
   600 #endif
   602 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   603   Compile *C = ra_->C;
   605   // If method set FPU control word, restore to standard control word
   606   if( C->in_24_bit_fp_mode() ) {
   607     MacroAssembler masm(&cbuf);
   608     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   609   }
   611   int framesize = C->frame_slots() << LogBytesPerInt;
   612   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   613   // Remove two words for return addr and rbp,
   614   framesize -= 2*wordSize;
   616   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   618   if( framesize >= 128 ) {
   619     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   620     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   621     emit_d32(cbuf, framesize);
   622   }
   623   else if( framesize ) {
   624     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   625     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   626     emit_d8(cbuf, framesize);
   627   }
   629   emit_opcode(cbuf, 0x58 | EBP_enc);
   631   if( do_polling() && C->is_method_compilation() ) {
   632     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   633     emit_opcode(cbuf,0x85);
   634     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   635     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   636   }
   637 }
   639 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   640   Compile *C = ra_->C;
   641   // If method set FPU control word, restore to standard control word
   642   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   643   if( do_polling() && C->is_method_compilation() ) size += 6;
   645   int framesize = C->frame_slots() << LogBytesPerInt;
   646   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   647   // Remove two words for return addr and rbp,
   648   framesize -= 2*wordSize;
   650   size++; // popl rbp,
   652   if( framesize >= 128 ) {
   653     size += 6;
   654   } else {
   655     size += framesize ? 3 : 0;
   656   }
   657   return size;
   658 }
   660 int MachEpilogNode::reloc() const {
   661   return 0; // a large enough number
   662 }
   664 const Pipeline * MachEpilogNode::pipeline() const {
   665   return MachNode::pipeline_class();
   666 }
   668 int MachEpilogNode::safepoint_offset() const { return 0; }
   670 //=============================================================================
   672 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   673 static enum RC rc_class( OptoReg::Name reg ) {
   675   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   676   if (OptoReg::is_stack(reg)) return rc_stack;
   678   VMReg r = OptoReg::as_VMReg(reg);
   679   if (r->is_Register()) return rc_int;
   680   if (r->is_FloatRegister()) {
   681     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   682     return rc_float;
   683   }
   684   assert(r->is_XMMRegister(), "must be");
   685   return rc_xmm;
   686 }
   688 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   689                         int opcode, const char *op_str, int size, outputStream* st ) {
   690   if( cbuf ) {
   691     emit_opcode  (*cbuf, opcode );
   692     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
   693 #ifndef PRODUCT
   694   } else if( !do_size ) {
   695     if( size != 0 ) st->print("\n\t");
   696     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   697       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   698       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   699     } else { // FLD, FST, PUSH, POP
   700       st->print("%s [ESP + #%d]",op_str,offset);
   701     }
   702 #endif
   703   }
   704   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   705   return size+3+offset_size;
   706 }
   708 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   709 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   710                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   711   if (cbuf) {
   712     MacroAssembler _masm(cbuf);
   713     if (reg_lo+1 == reg_hi) { // double move?
   714       if (is_load) {
   715         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   716       } else {
   717         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   718       }
   719     } else {
   720       if (is_load) {
   721         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   722       } else {
   723         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   724       }
   725     }
   726 #ifndef PRODUCT
   727   } else if (!do_size) {
   728     if (size != 0) st->print("\n\t");
   729     if (reg_lo+1 == reg_hi) { // double move?
   730       if (is_load) st->print("%s %s,[ESP + #%d]",
   731                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   732                               Matcher::regName[reg_lo], offset);
   733       else         st->print("MOVSD  [ESP + #%d],%s",
   734                               offset, Matcher::regName[reg_lo]);
   735     } else {
   736       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   737                               Matcher::regName[reg_lo], offset);
   738       else         st->print("MOVSS  [ESP + #%d],%s",
   739                               offset, Matcher::regName[reg_lo]);
   740     }
   741 #endif
   742   }
   743   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   744   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   745   return size+5+offset_size;
   746 }
   749 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   750                             int src_hi, int dst_hi, int size, outputStream* st ) {
   751   if (cbuf) {
   752     MacroAssembler _masm(cbuf);
   753     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   754       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   755                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   756     } else {
   757       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   758                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   759     }
   760 #ifndef PRODUCT
   761   } else if (!do_size) {
   762     if (size != 0) st->print("\n\t");
   763     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   764       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   765         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   766       } else {
   767         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   768       }
   769     } else {
   770       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   771         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   772       } else {
   773         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   774       }
   775     }
   776 #endif
   777   }
   778   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   779   // Only MOVAPS SSE prefix uses 1 byte.
   780   int sz = 4;
   781   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   782       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   783   return size + sz;
   784 }
   786 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   787                             int src_hi, int dst_hi, int size, outputStream* st ) {
   788   // 32-bit
   789   if (cbuf) {
   790     MacroAssembler _masm(cbuf);
   791     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   792              as_Register(Matcher::_regEncode[src_lo]));
   793 #ifndef PRODUCT
   794   } else if (!do_size) {
   795     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   796 #endif
   797   }
   798   return 4;
   799 }
   802 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   803                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   804   // 32-bit
   805   if (cbuf) {
   806     MacroAssembler _masm(cbuf);
   807     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   808              as_XMMRegister(Matcher::_regEncode[src_lo]));
   809 #ifndef PRODUCT
   810   } else if (!do_size) {
   811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   812 #endif
   813   }
   814   return 4;
   815 }
   817 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   818   if( cbuf ) {
   819     emit_opcode(*cbuf, 0x8B );
   820     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   821 #ifndef PRODUCT
   822   } else if( !do_size ) {
   823     if( size != 0 ) st->print("\n\t");
   824     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   825 #endif
   826   }
   827   return size+2;
   828 }
   830 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   831                                  int offset, int size, outputStream* st ) {
   832   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   833     if( cbuf ) {
   834       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   835       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   836 #ifndef PRODUCT
   837     } else if( !do_size ) {
   838       if( size != 0 ) st->print("\n\t");
   839       st->print("FLD    %s",Matcher::regName[src_lo]);
   840 #endif
   841     }
   842     size += 2;
   843   }
   845   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   846   const char *op_str;
   847   int op;
   848   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   849     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   850     op = 0xDD;
   851   } else {                   // 32-bit store
   852     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   853     op = 0xD9;
   854     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   855   }
   857   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   858 }
   860 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   861 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   862                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   864 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   865                             int stack_offset, int reg, uint ireg, outputStream* st);
   867 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   868                                      int dst_offset, uint ireg, outputStream* st) {
   869   int calc_size = 0;
   870   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   871   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   872   switch (ireg) {
   873   case Op_VecS:
   874     calc_size = 3+src_offset_size + 3+dst_offset_size;
   875     break;
   876   case Op_VecD:
   877     calc_size = 3+src_offset_size + 3+dst_offset_size;
   878     src_offset += 4;
   879     dst_offset += 4;
   880     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   881     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   882     calc_size += 3+src_offset_size + 3+dst_offset_size;
   883     break;
   884   case Op_VecX:
   885     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   886     break;
   887   case Op_VecY:
   888     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   889     break;
   890   default:
   891     ShouldNotReachHere();
   892   }
   893   if (cbuf) {
   894     MacroAssembler _masm(cbuf);
   895     int offset = __ offset();
   896     switch (ireg) {
   897     case Op_VecS:
   898       __ pushl(Address(rsp, src_offset));
   899       __ popl (Address(rsp, dst_offset));
   900       break;
   901     case Op_VecD:
   902       __ pushl(Address(rsp, src_offset));
   903       __ popl (Address(rsp, dst_offset));
   904       __ pushl(Address(rsp, src_offset+4));
   905       __ popl (Address(rsp, dst_offset+4));
   906       break;
   907     case Op_VecX:
   908       __ movdqu(Address(rsp, -16), xmm0);
   909       __ movdqu(xmm0, Address(rsp, src_offset));
   910       __ movdqu(Address(rsp, dst_offset), xmm0);
   911       __ movdqu(xmm0, Address(rsp, -16));
   912       break;
   913     case Op_VecY:
   914       __ vmovdqu(Address(rsp, -32), xmm0);
   915       __ vmovdqu(xmm0, Address(rsp, src_offset));
   916       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   917       __ vmovdqu(xmm0, Address(rsp, -32));
   918       break;
   919     default:
   920       ShouldNotReachHere();
   921     }
   922     int size = __ offset() - offset;
   923     assert(size == calc_size, "incorrect size calculattion");
   924     return size;
   925 #ifndef PRODUCT
   926   } else if (!do_size) {
   927     switch (ireg) {
   928     case Op_VecS:
   929       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   930                 "popl    [rsp + #%d]",
   931                 src_offset, dst_offset);
   932       break;
   933     case Op_VecD:
   934       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   935                 "popq    [rsp + #%d]\n\t"
   936                 "pushl   [rsp + #%d]\n\t"
   937                 "popq    [rsp + #%d]",
   938                 src_offset, dst_offset, src_offset+4, dst_offset+4);
   939       break;
   940      case Op_VecX:
   941       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
   942                 "movdqu  xmm0, [rsp + #%d]\n\t"
   943                 "movdqu  [rsp + #%d], xmm0\n\t"
   944                 "movdqu  xmm0, [rsp - #16]",
   945                 src_offset, dst_offset);
   946       break;
   947     case Op_VecY:
   948       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
   949                 "vmovdqu xmm0, [rsp + #%d]\n\t"
   950                 "vmovdqu [rsp + #%d], xmm0\n\t"
   951                 "vmovdqu xmm0, [rsp - #32]",
   952                 src_offset, dst_offset);
   953       break;
   954     default:
   955       ShouldNotReachHere();
   956     }
   957 #endif
   958   }
   959   return calc_size;
   960 }
   962 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   963   // Get registers to move
   964   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   965   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   966   OptoReg::Name dst_second = ra_->get_reg_second(this );
   967   OptoReg::Name dst_first = ra_->get_reg_first(this );
   969   enum RC src_second_rc = rc_class(src_second);
   970   enum RC src_first_rc = rc_class(src_first);
   971   enum RC dst_second_rc = rc_class(dst_second);
   972   enum RC dst_first_rc = rc_class(dst_first);
   974   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   976   // Generate spill code!
   977   int size = 0;
   979   if( src_first == dst_first && src_second == dst_second )
   980     return size;            // Self copy, no move
   982   if (bottom_type()->isa_vect() != NULL) {
   983     uint ireg = ideal_reg();
   984     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
   985     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
   986     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
   987     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   988       // mem -> mem
   989       int src_offset = ra_->reg2offset(src_first);
   990       int dst_offset = ra_->reg2offset(dst_first);
   991       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
   992     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
   993       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
   994     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
   995       int stack_offset = ra_->reg2offset(dst_first);
   996       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
   997     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
   998       int stack_offset = ra_->reg2offset(src_first);
   999       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1000     } else {
  1001       ShouldNotReachHere();
  1005   // --------------------------------------
  1006   // Check for mem-mem move.  push/pop to move.
  1007   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1008     if( src_second == dst_first ) { // overlapping stack copy ranges
  1009       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1010       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1011       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1012       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1014     // move low bits
  1015     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1016     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1017     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1018       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1019       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1021     return size;
  1024   // --------------------------------------
  1025   // Check for integer reg-reg copy
  1026   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1027     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1029   // Check for integer store
  1030   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1031     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1033   // Check for integer load
  1034   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1035     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1037   // Check for integer reg-xmm reg copy
  1038   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1039     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1040             "no 64 bit integer-float reg moves" );
  1041     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1043   // --------------------------------------
  1044   // Check for float reg-reg copy
  1045   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1046     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1047             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1048     if( cbuf ) {
  1050       // Note the mucking with the register encode to compensate for the 0/1
  1051       // indexing issue mentioned in a comment in the reg_def sections
  1052       // for FPR registers many lines above here.
  1054       if( src_first != FPR1L_num ) {
  1055         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1056         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1057         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1058         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1059      } else {
  1060         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1061         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1063 #ifndef PRODUCT
  1064     } else if( !do_size ) {
  1065       if( size != 0 ) st->print("\n\t");
  1066       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1067       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1068 #endif
  1070     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1073   // Check for float store
  1074   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1075     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1078   // Check for float load
  1079   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1080     int offset = ra_->reg2offset(src_first);
  1081     const char *op_str;
  1082     int op;
  1083     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1084       op_str = "FLD_D";
  1085       op = 0xDD;
  1086     } else {                   // 32-bit load
  1087       op_str = "FLD_S";
  1088       op = 0xD9;
  1089       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1091     if( cbuf ) {
  1092       emit_opcode  (*cbuf, op );
  1093       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
  1094       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1095       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1096 #ifndef PRODUCT
  1097     } else if( !do_size ) {
  1098       if( size != 0 ) st->print("\n\t");
  1099       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1100 #endif
  1102     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1103     return size + 3+offset_size+2;
  1106   // Check for xmm reg-reg copy
  1107   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1108     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1109             (src_first+1 == src_second && dst_first+1 == dst_second),
  1110             "no non-adjacent float-moves" );
  1111     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1114   // Check for xmm reg-integer reg copy
  1115   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1116     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1117             "no 64 bit float-integer reg moves" );
  1118     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1121   // Check for xmm store
  1122   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1123     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1126   // Check for float xmm load
  1127   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1128     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1131   // Copy from float reg to xmm reg
  1132   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1133     // copy to the top of stack from floating point reg
  1134     // and use LEA to preserve flags
  1135     if( cbuf ) {
  1136       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1137       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1138       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1139       emit_d8(*cbuf,0xF8);
  1140 #ifndef PRODUCT
  1141     } else if( !do_size ) {
  1142       if( size != 0 ) st->print("\n\t");
  1143       st->print("LEA    ESP,[ESP-8]");
  1144 #endif
  1146     size += 4;
  1148     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1150     // Copy from the temp memory to the xmm reg.
  1151     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1153     if( cbuf ) {
  1154       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1155       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1156       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1157       emit_d8(*cbuf,0x08);
  1158 #ifndef PRODUCT
  1159     } else if( !do_size ) {
  1160       if( size != 0 ) st->print("\n\t");
  1161       st->print("LEA    ESP,[ESP+8]");
  1162 #endif
  1164     size += 4;
  1165     return size;
  1168   assert( size > 0, "missed a case" );
  1170   // --------------------------------------------------------------------
  1171   // Check for second bits still needing moving.
  1172   if( src_second == dst_second )
  1173     return size;               // Self copy; no move
  1174   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1176   // Check for second word int-int move
  1177   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1178     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1180   // Check for second word integer store
  1181   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1182     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1184   // Check for second word integer load
  1185   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1186     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1189   Unimplemented();
  1192 #ifndef PRODUCT
  1193 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1194   implementation( NULL, ra_, false, st );
  1196 #endif
  1198 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1199   implementation( &cbuf, ra_, false, NULL );
  1202 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1203   return implementation( NULL, ra_, true, NULL );
  1207 //=============================================================================
  1208 #ifndef PRODUCT
  1209 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1210   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1211   int reg = ra_->get_reg_first(this);
  1212   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1214 #endif
  1216 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1217   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1218   int reg = ra_->get_encode(this);
  1219   if( offset >= 128 ) {
  1220     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1221     emit_rm(cbuf, 0x2, reg, 0x04);
  1222     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1223     emit_d32(cbuf, offset);
  1225   else {
  1226     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1227     emit_rm(cbuf, 0x1, reg, 0x04);
  1228     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1229     emit_d8(cbuf, offset);
  1233 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1234   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1235   if( offset >= 128 ) {
  1236     return 7;
  1238   else {
  1239     return 4;
  1243 //=============================================================================
  1245 // emit call stub, compiled java to interpreter
  1246 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1247   // Stub is fixed up when the corresponding call is converted from calling
  1248   // compiled code to calling interpreted code.
  1249   // mov rbx,0
  1250   // jmp -1
  1252   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1254   // Note that the code buffer's insts_mark is always relative to insts.
  1255   // That's why we must use the macroassembler to generate a stub.
  1256   MacroAssembler _masm(&cbuf);
  1258   address base =
  1259   __ start_a_stub(Compile::MAX_stubs_size);
  1260   if (base == NULL)  return;  // CodeBuffer::expand failed
  1261   // static stub relocation stores the instruction address of the call
  1262   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1263   // static stub relocation also tags the Method* in the code-stream.
  1264   __ mov_metadata(rbx, (Metadata*)NULL);  // method is zapped till fixup time
  1265   // This is recognized as unresolved by relocs/nativeInst/ic code
  1266   __ jump(RuntimeAddress(__ pc()));
  1268   __ end_a_stub();
  1269   // Update current stubs pointer and restore insts_end.
  1271 // size of call stub, compiled java to interpretor
  1272 uint size_java_to_interp() {
  1273   return 10;  // movl; jmp
  1275 // relocation entries for call stub, compiled java to interpretor
  1276 uint reloc_java_to_interp() {
  1277   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1280 //=============================================================================
  1281 #ifndef PRODUCT
  1282 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1283   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1284   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1285   st->print_cr("\tNOP");
  1286   st->print_cr("\tNOP");
  1287   if( !OptoBreakpoint )
  1288     st->print_cr("\tNOP");
  1290 #endif
  1292 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1293   MacroAssembler masm(&cbuf);
  1294 #ifdef ASSERT
  1295   uint insts_size = cbuf.insts_size();
  1296 #endif
  1297   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1298   masm.jump_cc(Assembler::notEqual,
  1299                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1300   /* WARNING these NOPs are critical so that verified entry point is properly
  1301      aligned for patching by NativeJump::patch_verified_entry() */
  1302   int nops_cnt = 2;
  1303   if( !OptoBreakpoint ) // Leave space for int3
  1304      nops_cnt += 1;
  1305   masm.nop(nops_cnt);
  1307   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1310 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1311   return OptoBreakpoint ? 11 : 12;
  1315 //=============================================================================
  1316 uint size_exception_handler() {
  1317   // NativeCall instruction size is the same as NativeJump.
  1318   // exception handler starts out as jump and can be patched to
  1319   // a call be deoptimization.  (4932387)
  1320   // Note that this value is also credited (in output.cpp) to
  1321   // the size of the code section.
  1322   return NativeJump::instruction_size;
  1325 // Emit exception handler code.  Stuff framesize into a register
  1326 // and call a VM stub routine.
  1327 int emit_exception_handler(CodeBuffer& cbuf) {
  1329   // Note that the code buffer's insts_mark is always relative to insts.
  1330   // That's why we must use the macroassembler to generate a handler.
  1331   MacroAssembler _masm(&cbuf);
  1332   address base =
  1333   __ start_a_stub(size_exception_handler());
  1334   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1335   int offset = __ offset();
  1336   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1337   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1338   __ end_a_stub();
  1339   return offset;
  1342 uint size_deopt_handler() {
  1343   // NativeCall instruction size is the same as NativeJump.
  1344   // exception handler starts out as jump and can be patched to
  1345   // a call be deoptimization.  (4932387)
  1346   // Note that this value is also credited (in output.cpp) to
  1347   // the size of the code section.
  1348   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1351 // Emit deopt handler code.
  1352 int emit_deopt_handler(CodeBuffer& cbuf) {
  1354   // Note that the code buffer's insts_mark is always relative to insts.
  1355   // That's why we must use the macroassembler to generate a handler.
  1356   MacroAssembler _masm(&cbuf);
  1357   address base =
  1358   __ start_a_stub(size_exception_handler());
  1359   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1360   int offset = __ offset();
  1361   InternalAddress here(__ pc());
  1362   __ pushptr(here.addr());
  1364   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1365   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1366   __ end_a_stub();
  1367   return offset;
  1370 int Matcher::regnum_to_fpu_offset(int regnum) {
  1371   return regnum - 32; // The FP registers are in the second chunk
  1374 // This is UltraSparc specific, true just means we have fast l2f conversion
  1375 const bool Matcher::convL2FSupported(void) {
  1376   return true;
  1379 // Is this branch offset short enough that a short branch can be used?
  1380 //
  1381 // NOTE: If the platform does not provide any short branch variants, then
  1382 //       this method should return false for offset 0.
  1383 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1384   // The passed offset is relative to address of the branch.
  1385   // On 86 a branch displacement is calculated relative to address
  1386   // of a next instruction.
  1387   offset -= br_size;
  1389   // the short version of jmpConUCF2 contains multiple branches,
  1390   // making the reach slightly less
  1391   if (rule == jmpConUCF2_rule)
  1392     return (-126 <= offset && offset <= 125);
  1393   return (-128 <= offset && offset <= 127);
  1396 const bool Matcher::isSimpleConstant64(jlong value) {
  1397   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1398   return false;
  1401 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1402 const bool Matcher::init_array_count_is_in_bytes = false;
  1404 // Threshold size for cleararray.
  1405 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1407 // Needs 2 CMOV's for longs.
  1408 const int Matcher::long_cmove_cost() { return 1; }
  1410 // No CMOVF/CMOVD with SSE/SSE2
  1411 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1413 // Should the Matcher clone shifts on addressing modes, expecting them to
  1414 // be subsumed into complex addressing expressions or compute them into
  1415 // registers?  True for Intel but false for most RISCs
  1416 const bool Matcher::clone_shift_expressions = true;
  1418 // Do we need to mask the count passed to shift instructions or does
  1419 // the cpu only look at the lower 5/6 bits anyway?
  1420 const bool Matcher::need_masked_shift_count = false;
  1422 bool Matcher::narrow_oop_use_complex_address() {
  1423   ShouldNotCallThis();
  1424   return true;
  1427 bool Matcher::narrow_klass_use_complex_address() {
  1428   ShouldNotCallThis();
  1429   return true;
  1433 // Is it better to copy float constants, or load them directly from memory?
  1434 // Intel can load a float constant from a direct address, requiring no
  1435 // extra registers.  Most RISCs will have to materialize an address into a
  1436 // register first, so they would do better to copy the constant from stack.
  1437 const bool Matcher::rematerialize_float_constants = true;
  1439 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1440 // needed.  Else we split the double into 2 integer pieces and move it
  1441 // piece-by-piece.  Only happens when passing doubles into C code as the
  1442 // Java calling convention forces doubles to be aligned.
  1443 const bool Matcher::misaligned_doubles_ok = true;
  1446 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1447   // Get the memory operand from the node
  1448   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1449   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1450   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1451   uint opcnt     = 1;                 // First operand
  1452   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1453   while( idx >= skipped+num_edges ) {
  1454     skipped += num_edges;
  1455     opcnt++;                          // Bump operand count
  1456     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1457     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1460   MachOper *memory = node->_opnds[opcnt];
  1461   MachOper *new_memory = NULL;
  1462   switch (memory->opcode()) {
  1463   case DIRECT:
  1464   case INDOFFSET32X:
  1465     // No transformation necessary.
  1466     return;
  1467   case INDIRECT:
  1468     new_memory = new (C) indirect_win95_safeOper( );
  1469     break;
  1470   case INDOFFSET8:
  1471     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1472     break;
  1473   case INDOFFSET32:
  1474     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1475     break;
  1476   case INDINDEXOFFSET:
  1477     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1478     break;
  1479   case INDINDEXSCALE:
  1480     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1481     break;
  1482   case INDINDEXSCALEOFFSET:
  1483     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1484     break;
  1485   case LOAD_LONG_INDIRECT:
  1486   case LOAD_LONG_INDOFFSET32:
  1487     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1488     return;
  1489   default:
  1490     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1491     return;
  1493   node->_opnds[opcnt] = new_memory;
  1496 // Advertise here if the CPU requires explicit rounding operations
  1497 // to implement the UseStrictFP mode.
  1498 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1500 // Are floats conerted to double when stored to stack during deoptimization?
  1501 // On x32 it is stored with convertion only when FPU is used for floats.
  1502 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1504 // Do ints take an entire long register or just half?
  1505 const bool Matcher::int_in_long = false;
  1507 // Return whether or not this register is ever used as an argument.  This
  1508 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1509 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1510 // arguments in those registers not be available to the callee.
  1511 bool Matcher::can_be_java_arg( int reg ) {
  1512   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1513   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1514   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1515   return false;
  1518 bool Matcher::is_spillable_arg( int reg ) {
  1519   return can_be_java_arg(reg);
  1522 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1523   // Use hardware integer DIV instruction when
  1524   // it is faster than a code which use multiply.
  1525   // Only when constant divisor fits into 32 bit
  1526   // (min_jint is excluded to get only correct
  1527   // positive 32 bit values from negative).
  1528   return VM_Version::has_fast_idiv() &&
  1529          (divisor == (int)divisor && divisor != min_jint);
  1532 // Register for DIVI projection of divmodI
  1533 RegMask Matcher::divI_proj_mask() {
  1534   return EAX_REG_mask();
  1537 // Register for MODI projection of divmodI
  1538 RegMask Matcher::modI_proj_mask() {
  1539   return EDX_REG_mask();
  1542 // Register for DIVL projection of divmodL
  1543 RegMask Matcher::divL_proj_mask() {
  1544   ShouldNotReachHere();
  1545   return RegMask();
  1548 // Register for MODL projection of divmodL
  1549 RegMask Matcher::modL_proj_mask() {
  1550   ShouldNotReachHere();
  1551   return RegMask();
  1554 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1555   return EBP_REG_mask();
  1558 // Returns true if the high 32 bits of the value is known to be zero.
  1559 bool is_operand_hi32_zero(Node* n) {
  1560   int opc = n->Opcode();
  1561   if (opc == Op_AndL) {
  1562     Node* o2 = n->in(2);
  1563     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1564       return true;
  1567   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1568     return true;
  1570   return false;
  1573 %}
  1575 //----------ENCODING BLOCK-----------------------------------------------------
  1576 // This block specifies the encoding classes used by the compiler to output
  1577 // byte streams.  Encoding classes generate functions which are called by
  1578 // Machine Instruction Nodes in order to generate the bit encoding of the
  1579 // instruction.  Operands specify their base encoding interface with the
  1580 // interface keyword.  There are currently supported four interfaces,
  1581 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1582 // operand to generate a function which returns its register number when
  1583 // queried.   CONST_INTER causes an operand to generate a function which
  1584 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1585 // operand to generate four functions which return the Base Register, the
  1586 // Index Register, the Scale Value, and the Offset Value of the operand when
  1587 // queried.  COND_INTER causes an operand to generate six functions which
  1588 // return the encoding code (ie - encoding bits for the instruction)
  1589 // associated with each basic boolean condition for a conditional instruction.
  1590 // Instructions specify two basic values for encoding.  They use the
  1591 // ins_encode keyword to specify their encoding class (which must be one of
  1592 // the class names specified in the encoding block), and they use the
  1593 // opcode keyword to specify, in order, their primary, secondary, and
  1594 // tertiary opcode.  Only the opcode sections which a particular instruction
  1595 // needs for encoding need to be specified.
  1596 encode %{
  1597   // Build emit functions for each basic byte or larger field in the intel
  1598   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1599   // code in the enc_class source block.  Emit functions will live in the
  1600   // main source block for now.  In future, we can generalize this by
  1601   // adding a syntax that specifies the sizes of fields in an order,
  1602   // so that the adlc can build the emit functions automagically
  1604   // Emit primary opcode
  1605   enc_class OpcP %{
  1606     emit_opcode(cbuf, $primary);
  1607   %}
  1609   // Emit secondary opcode
  1610   enc_class OpcS %{
  1611     emit_opcode(cbuf, $secondary);
  1612   %}
  1614   // Emit opcode directly
  1615   enc_class Opcode(immI d8) %{
  1616     emit_opcode(cbuf, $d8$$constant);
  1617   %}
  1619   enc_class SizePrefix %{
  1620     emit_opcode(cbuf,0x66);
  1621   %}
  1623   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1624     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1625   %}
  1627   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1628     emit_opcode(cbuf,$opcode$$constant);
  1629     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1630   %}
  1632   enc_class mov_r32_imm0( rRegI dst ) %{
  1633     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1634     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1635   %}
  1637   enc_class cdq_enc %{
  1638     // Full implementation of Java idiv and irem; checks for
  1639     // special case as described in JVM spec., p.243 & p.271.
  1640     //
  1641     //         normal case                           special case
  1642     //
  1643     // input : rax,: dividend                         min_int
  1644     //         reg: divisor                          -1
  1645     //
  1646     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1647     //         rdx: remainder (= rax, irem reg)       0
  1648     //
  1649     //  Code sequnce:
  1650     //
  1651     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1652     //  0F 85 0B 00 00 00    jne         normal_case
  1653     //  33 D2                xor         rdx,edx
  1654     //  83 F9 FF             cmp         rcx,0FFh
  1655     //  0F 84 03 00 00 00    je          done
  1656     //                  normal_case:
  1657     //  99                   cdq
  1658     //  F7 F9                idiv        rax,ecx
  1659     //                  done:
  1660     //
  1661     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1662     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1663     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1664     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1665     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1666     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1667     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1668     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1669     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1670     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1671     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1672     // normal_case:
  1673     emit_opcode(cbuf,0x99);                                         // cdq
  1674     // idiv (note: must be emitted by the user of this rule)
  1675     // normal:
  1676   %}
  1678   // Dense encoding for older common ops
  1679   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1680     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1681   %}
  1684   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1685   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1686     // Check for 8-bit immediate, and set sign extend bit in opcode
  1687     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1688       emit_opcode(cbuf, $primary | 0x02);
  1690     else {                          // If 32-bit immediate
  1691       emit_opcode(cbuf, $primary);
  1693   %}
  1695   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1696     // Emit primary opcode and set sign-extend bit
  1697     // Check for 8-bit immediate, and set sign extend bit in opcode
  1698     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1699       emit_opcode(cbuf, $primary | 0x02);    }
  1700     else {                          // If 32-bit immediate
  1701       emit_opcode(cbuf, $primary);
  1703     // Emit r/m byte with secondary opcode, after primary opcode.
  1704     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1705   %}
  1707   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1708     // Check for 8-bit immediate, and set sign extend bit in opcode
  1709     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1710       $$$emit8$imm$$constant;
  1712     else {                          // If 32-bit immediate
  1713       // Output immediate
  1714       $$$emit32$imm$$constant;
  1716   %}
  1718   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1719     // Emit primary opcode and set sign-extend bit
  1720     // Check for 8-bit immediate, and set sign extend bit in opcode
  1721     int con = (int)$imm$$constant; // Throw away top bits
  1722     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1723     // Emit r/m byte with secondary opcode, after primary opcode.
  1724     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1725     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1726     else                               emit_d32(cbuf,con);
  1727   %}
  1729   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1730     // Emit primary opcode and set sign-extend bit
  1731     // Check for 8-bit immediate, and set sign extend bit in opcode
  1732     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1733     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1734     // Emit r/m byte with tertiary opcode, after primary opcode.
  1735     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1736     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1737     else                               emit_d32(cbuf,con);
  1738   %}
  1740   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1741     emit_cc(cbuf, $secondary, $dst$$reg );
  1742   %}
  1744   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1745     int destlo = $dst$$reg;
  1746     int desthi = HIGH_FROM_LOW(destlo);
  1747     // bswap lo
  1748     emit_opcode(cbuf, 0x0F);
  1749     emit_cc(cbuf, 0xC8, destlo);
  1750     // bswap hi
  1751     emit_opcode(cbuf, 0x0F);
  1752     emit_cc(cbuf, 0xC8, desthi);
  1753     // xchg lo and hi
  1754     emit_opcode(cbuf, 0x87);
  1755     emit_rm(cbuf, 0x3, destlo, desthi);
  1756   %}
  1758   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1759     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1760   %}
  1762   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1763     $$$emit8$primary;
  1764     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1765   %}
  1767   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1768     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1769     emit_d8(cbuf, op >> 8 );
  1770     emit_d8(cbuf, op & 255);
  1771   %}
  1773   // emulate a CMOV with a conditional branch around a MOV
  1774   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1775     // Invert sense of branch from sense of CMOV
  1776     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1777     emit_d8( cbuf, $brOffs$$constant );
  1778   %}
  1780   enc_class enc_PartialSubtypeCheck( ) %{
  1781     Register Redi = as_Register(EDI_enc); // result register
  1782     Register Reax = as_Register(EAX_enc); // super class
  1783     Register Recx = as_Register(ECX_enc); // killed
  1784     Register Resi = as_Register(ESI_enc); // sub class
  1785     Label miss;
  1787     MacroAssembler _masm(&cbuf);
  1788     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1789                                      NULL, &miss,
  1790                                      /*set_cond_codes:*/ true);
  1791     if ($primary) {
  1792       __ xorptr(Redi, Redi);
  1794     __ bind(miss);
  1795   %}
  1797   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1798     MacroAssembler masm(&cbuf);
  1799     int start = masm.offset();
  1800     if (UseSSE >= 2) {
  1801       if (VerifyFPU) {
  1802         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1804     } else {
  1805       // External c_calling_convention expects the FPU stack to be 'clean'.
  1806       // Compiled code leaves it dirty.  Do cleanup now.
  1807       masm.empty_FPU_stack();
  1809     if (sizeof_FFree_Float_Stack_All == -1) {
  1810       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1811     } else {
  1812       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1814   %}
  1816   enc_class Verify_FPU_For_Leaf %{
  1817     if( VerifyFPU ) {
  1818       MacroAssembler masm(&cbuf);
  1819       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1821   %}
  1823   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1824     // This is the instruction starting address for relocation info.
  1825     cbuf.set_insts_mark();
  1826     $$$emit8$primary;
  1827     // CALL directly to the runtime
  1828     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1829                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1831     if (UseSSE >= 2) {
  1832       MacroAssembler _masm(&cbuf);
  1833       BasicType rt = tf()->return_type();
  1835       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1836         // A C runtime call where the return value is unused.  In SSE2+
  1837         // mode the result needs to be removed from the FPU stack.  It's
  1838         // likely that this function call could be removed by the
  1839         // optimizer if the C function is a pure function.
  1840         __ ffree(0);
  1841       } else if (rt == T_FLOAT) {
  1842         __ lea(rsp, Address(rsp, -4));
  1843         __ fstp_s(Address(rsp, 0));
  1844         __ movflt(xmm0, Address(rsp, 0));
  1845         __ lea(rsp, Address(rsp,  4));
  1846       } else if (rt == T_DOUBLE) {
  1847         __ lea(rsp, Address(rsp, -8));
  1848         __ fstp_d(Address(rsp, 0));
  1849         __ movdbl(xmm0, Address(rsp, 0));
  1850         __ lea(rsp, Address(rsp,  8));
  1853   %}
  1856   enc_class pre_call_FPU %{
  1857     // If method sets FPU control word restore it here
  1858     debug_only(int off0 = cbuf.insts_size());
  1859     if( Compile::current()->in_24_bit_fp_mode() ) {
  1860       MacroAssembler masm(&cbuf);
  1861       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1863     debug_only(int off1 = cbuf.insts_size());
  1864     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1865   %}
  1867   enc_class post_call_FPU %{
  1868     // If method sets FPU control word do it here also
  1869     if( Compile::current()->in_24_bit_fp_mode() ) {
  1870       MacroAssembler masm(&cbuf);
  1871       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1873   %}
  1875   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1876     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1877     // who we intended to call.
  1878     cbuf.set_insts_mark();
  1879     $$$emit8$primary;
  1880     if ( !_method ) {
  1881       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1882                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1883     } else if(_optimized_virtual) {
  1884       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1885                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1886     } else {
  1887       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1888                      static_call_Relocation::spec(), RELOC_IMM32 );
  1890     if( _method ) {  // Emit stub for static call
  1891       emit_java_to_interp(cbuf);
  1893   %}
  1895   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1896     MacroAssembler _masm(&cbuf);
  1897     __ ic_call((address)$meth$$method);
  1898   %}
  1900   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1901     int disp = in_bytes(Method::from_compiled_offset());
  1902     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1904     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
  1905     cbuf.set_insts_mark();
  1906     $$$emit8$primary;
  1907     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1908     emit_d8(cbuf, disp);             // Displacement
  1910   %}
  1912 //   Following encoding is no longer used, but may be restored if calling
  1913 //   convention changes significantly.
  1914 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1915 //
  1916 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1917 //     // int ic_reg     = Matcher::inline_cache_reg();
  1918 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1919 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1920 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1921 //
  1922 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1923 //     // // so we load it immediately before the call
  1924 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1925 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1926 //
  1927 //     // xor rbp,ebp
  1928 //     emit_opcode(cbuf, 0x33);
  1929 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1930 //
  1931 //     // CALL to interpreter.
  1932 //     cbuf.set_insts_mark();
  1933 //     $$$emit8$primary;
  1934 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1935 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1936 //   %}
  1938   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1939     $$$emit8$primary;
  1940     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1941     $$$emit8$shift$$constant;
  1942   %}
  1944   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1945     // Load immediate does not have a zero or sign extended version
  1946     // for 8-bit immediates
  1947     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1948     $$$emit32$src$$constant;
  1949   %}
  1951   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1952     // Load immediate does not have a zero or sign extended version
  1953     // for 8-bit immediates
  1954     emit_opcode(cbuf, $primary + $dst$$reg);
  1955     $$$emit32$src$$constant;
  1956   %}
  1958   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1959     // Load immediate does not have a zero or sign extended version
  1960     // for 8-bit immediates
  1961     int dst_enc = $dst$$reg;
  1962     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1963     if (src_con == 0) {
  1964       // xor dst, dst
  1965       emit_opcode(cbuf, 0x33);
  1966       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1967     } else {
  1968       emit_opcode(cbuf, $primary + dst_enc);
  1969       emit_d32(cbuf, src_con);
  1971   %}
  1973   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1974     // Load immediate does not have a zero or sign extended version
  1975     // for 8-bit immediates
  1976     int dst_enc = $dst$$reg + 2;
  1977     int src_con = ((julong)($src$$constant)) >> 32;
  1978     if (src_con == 0) {
  1979       // xor dst, dst
  1980       emit_opcode(cbuf, 0x33);
  1981       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1982     } else {
  1983       emit_opcode(cbuf, $primary + dst_enc);
  1984       emit_d32(cbuf, src_con);
  1986   %}
  1989   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1990   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  1991     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1992   %}
  1994   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  1995     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1996   %}
  1998   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1999     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2000   %}
  2002   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2003     $$$emit8$primary;
  2004     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2005   %}
  2007   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2008     $$$emit8$secondary;
  2009     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2010   %}
  2012   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2013     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2014   %}
  2016   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2017     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2018   %}
  2020   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  2021     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2022   %}
  2024   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2025     // Output immediate
  2026     $$$emit32$src$$constant;
  2027   %}
  2029   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2030     // Output Float immediate bits
  2031     jfloat jf = $src$$constant;
  2032     int    jf_as_bits = jint_cast( jf );
  2033     emit_d32(cbuf, jf_as_bits);
  2034   %}
  2036   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2037     // Output Float immediate bits
  2038     jfloat jf = $src$$constant;
  2039     int    jf_as_bits = jint_cast( jf );
  2040     emit_d32(cbuf, jf_as_bits);
  2041   %}
  2043   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2044     // Output immediate
  2045     $$$emit16$src$$constant;
  2046   %}
  2048   enc_class Con_d32(immI src) %{
  2049     emit_d32(cbuf,$src$$constant);
  2050   %}
  2052   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2053     // Output immediate memory reference
  2054     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2055     emit_d32(cbuf, 0x00);
  2056   %}
  2058   enc_class lock_prefix( ) %{
  2059     if( os::is_MP() )
  2060       emit_opcode(cbuf,0xF0);         // [Lock]
  2061   %}
  2063   // Cmp-xchg long value.
  2064   // Note: we need to swap rbx, and rcx before and after the
  2065   //       cmpxchg8 instruction because the instruction uses
  2066   //       rcx as the high order word of the new value to store but
  2067   //       our register encoding uses rbx,.
  2068   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2070     // XCHG  rbx,ecx
  2071     emit_opcode(cbuf,0x87);
  2072     emit_opcode(cbuf,0xD9);
  2073     // [Lock]
  2074     if( os::is_MP() )
  2075       emit_opcode(cbuf,0xF0);
  2076     // CMPXCHG8 [Eptr]
  2077     emit_opcode(cbuf,0x0F);
  2078     emit_opcode(cbuf,0xC7);
  2079     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2080     // XCHG  rbx,ecx
  2081     emit_opcode(cbuf,0x87);
  2082     emit_opcode(cbuf,0xD9);
  2083   %}
  2085   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2086     // [Lock]
  2087     if( os::is_MP() )
  2088       emit_opcode(cbuf,0xF0);
  2090     // CMPXCHG [Eptr]
  2091     emit_opcode(cbuf,0x0F);
  2092     emit_opcode(cbuf,0xB1);
  2093     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2094   %}
  2096   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2097     int res_encoding = $res$$reg;
  2099     // MOV  res,0
  2100     emit_opcode( cbuf, 0xB8 + res_encoding);
  2101     emit_d32( cbuf, 0 );
  2102     // JNE,s  fail
  2103     emit_opcode(cbuf,0x75);
  2104     emit_d8(cbuf, 5 );
  2105     // MOV  res,1
  2106     emit_opcode( cbuf, 0xB8 + res_encoding);
  2107     emit_d32( cbuf, 1 );
  2108     // fail:
  2109   %}
  2111   enc_class set_instruction_start( ) %{
  2112     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2113   %}
  2115   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2116     int reg_encoding = $ereg$$reg;
  2117     int base  = $mem$$base;
  2118     int index = $mem$$index;
  2119     int scale = $mem$$scale;
  2120     int displace = $mem$$disp;
  2121     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2122     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2123   %}
  2125   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2126     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2127     int base  = $mem$$base;
  2128     int index = $mem$$index;
  2129     int scale = $mem$$scale;
  2130     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2131     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
  2132     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
  2133   %}
  2135   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2136     int r1, r2;
  2137     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2138     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2139     emit_opcode(cbuf,0x0F);
  2140     emit_opcode(cbuf,$tertiary);
  2141     emit_rm(cbuf, 0x3, r1, r2);
  2142     emit_d8(cbuf,$cnt$$constant);
  2143     emit_d8(cbuf,$primary);
  2144     emit_rm(cbuf, 0x3, $secondary, r1);
  2145     emit_d8(cbuf,$cnt$$constant);
  2146   %}
  2148   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2149     emit_opcode( cbuf, 0x8B ); // Move
  2150     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2151     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2152       emit_d8(cbuf,$primary);
  2153       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2154       emit_d8(cbuf,$cnt$$constant-32);
  2156     emit_d8(cbuf,$primary);
  2157     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2158     emit_d8(cbuf,31);
  2159   %}
  2161   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2162     int r1, r2;
  2163     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2164     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2166     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2167     emit_rm(cbuf, 0x3, r1, r2);
  2168     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2169       emit_opcode(cbuf,$primary);
  2170       emit_rm(cbuf, 0x3, $secondary, r1);
  2171       emit_d8(cbuf,$cnt$$constant-32);
  2173     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2174     emit_rm(cbuf, 0x3, r2, r2);
  2175   %}
  2177   // Clone of RegMem but accepts an extra parameter to access each
  2178   // half of a double in memory; it never needs relocation info.
  2179   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2180     emit_opcode(cbuf,$opcode$$constant);
  2181     int reg_encoding = $rm_reg$$reg;
  2182     int base     = $mem$$base;
  2183     int index    = $mem$$index;
  2184     int scale    = $mem$$scale;
  2185     int displace = $mem$$disp + $disp_for_half$$constant;
  2186     relocInfo::relocType disp_reloc = relocInfo::none;
  2187     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2188   %}
  2190   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2191   //
  2192   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2193   // and it never needs relocation information.
  2194   // Frequently used to move data between FPU's Stack Top and memory.
  2195   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2196     int rm_byte_opcode = $rm_opcode$$constant;
  2197     int base     = $mem$$base;
  2198     int index    = $mem$$index;
  2199     int scale    = $mem$$scale;
  2200     int displace = $mem$$disp;
  2201     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
  2202     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
  2203   %}
  2205   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2206     int rm_byte_opcode = $rm_opcode$$constant;
  2207     int base     = $mem$$base;
  2208     int index    = $mem$$index;
  2209     int scale    = $mem$$scale;
  2210     int displace = $mem$$disp;
  2211     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2212     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  2213   %}
  2215   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2216     int reg_encoding = $dst$$reg;
  2217     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2218     int index        = 0x04;            // 0x04 indicates no index
  2219     int scale        = 0x00;            // 0x00 indicates no scale
  2220     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2221     relocInfo::relocType disp_reloc = relocInfo::none;
  2222     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2223   %}
  2225   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2226     // Compare dst,src
  2227     emit_opcode(cbuf,0x3B);
  2228     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2229     // jmp dst < src around move
  2230     emit_opcode(cbuf,0x7C);
  2231     emit_d8(cbuf,2);
  2232     // move dst,src
  2233     emit_opcode(cbuf,0x8B);
  2234     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2235   %}
  2237   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2238     // Compare dst,src
  2239     emit_opcode(cbuf,0x3B);
  2240     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2241     // jmp dst > src around move
  2242     emit_opcode(cbuf,0x7F);
  2243     emit_d8(cbuf,2);
  2244     // move dst,src
  2245     emit_opcode(cbuf,0x8B);
  2246     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2247   %}
  2249   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2250     // If src is FPR1, we can just FST to store it.
  2251     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2252     int reg_encoding = 0x2; // Just store
  2253     int base  = $mem$$base;
  2254     int index = $mem$$index;
  2255     int scale = $mem$$scale;
  2256     int displace = $mem$$disp;
  2257     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2258     if( $src$$reg != FPR1L_enc ) {
  2259       reg_encoding = 0x3;  // Store & pop
  2260       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2261       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2263     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2264     emit_opcode(cbuf,$primary);
  2265     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2266   %}
  2268   enc_class neg_reg(rRegI dst) %{
  2269     // NEG $dst
  2270     emit_opcode(cbuf,0xF7);
  2271     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2272   %}
  2274   enc_class setLT_reg(eCXRegI dst) %{
  2275     // SETLT $dst
  2276     emit_opcode(cbuf,0x0F);
  2277     emit_opcode(cbuf,0x9C);
  2278     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2279   %}
  2281   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2282     int tmpReg = $tmp$$reg;
  2284     // SUB $p,$q
  2285     emit_opcode(cbuf,0x2B);
  2286     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2287     // SBB $tmp,$tmp
  2288     emit_opcode(cbuf,0x1B);
  2289     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2290     // AND $tmp,$y
  2291     emit_opcode(cbuf,0x23);
  2292     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2293     // ADD $p,$tmp
  2294     emit_opcode(cbuf,0x03);
  2295     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2296   %}
  2298   enc_class enc_cmpLTP_mem(rRegI p, rRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2299     int tmpReg = $tmp$$reg;
  2301     // SUB $p,$q
  2302     emit_opcode(cbuf,0x2B);
  2303     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2304     // SBB $tmp,$tmp
  2305     emit_opcode(cbuf,0x1B);
  2306     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2307     // AND $tmp,$y
  2308     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2309     emit_opcode(cbuf,0x23);
  2310     int reg_encoding = tmpReg;
  2311     int base  = $mem$$base;
  2312     int index = $mem$$index;
  2313     int scale = $mem$$scale;
  2314     int displace = $mem$$disp;
  2315     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2316     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2317     // ADD $p,$tmp
  2318     emit_opcode(cbuf,0x03);
  2319     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2320   %}
  2322   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2323     // TEST shift,32
  2324     emit_opcode(cbuf,0xF7);
  2325     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2326     emit_d32(cbuf,0x20);
  2327     // JEQ,s small
  2328     emit_opcode(cbuf, 0x74);
  2329     emit_d8(cbuf, 0x04);
  2330     // MOV    $dst.hi,$dst.lo
  2331     emit_opcode( cbuf, 0x8B );
  2332     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2333     // CLR    $dst.lo
  2334     emit_opcode(cbuf, 0x33);
  2335     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2336 // small:
  2337     // SHLD   $dst.hi,$dst.lo,$shift
  2338     emit_opcode(cbuf,0x0F);
  2339     emit_opcode(cbuf,0xA5);
  2340     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2341     // SHL    $dst.lo,$shift"
  2342     emit_opcode(cbuf,0xD3);
  2343     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2344   %}
  2346   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2347     // TEST shift,32
  2348     emit_opcode(cbuf,0xF7);
  2349     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2350     emit_d32(cbuf,0x20);
  2351     // JEQ,s small
  2352     emit_opcode(cbuf, 0x74);
  2353     emit_d8(cbuf, 0x04);
  2354     // MOV    $dst.lo,$dst.hi
  2355     emit_opcode( cbuf, 0x8B );
  2356     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2357     // CLR    $dst.hi
  2358     emit_opcode(cbuf, 0x33);
  2359     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2360 // small:
  2361     // SHRD   $dst.lo,$dst.hi,$shift
  2362     emit_opcode(cbuf,0x0F);
  2363     emit_opcode(cbuf,0xAD);
  2364     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2365     // SHR    $dst.hi,$shift"
  2366     emit_opcode(cbuf,0xD3);
  2367     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2368   %}
  2370   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2371     // TEST shift,32
  2372     emit_opcode(cbuf,0xF7);
  2373     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2374     emit_d32(cbuf,0x20);
  2375     // JEQ,s small
  2376     emit_opcode(cbuf, 0x74);
  2377     emit_d8(cbuf, 0x05);
  2378     // MOV    $dst.lo,$dst.hi
  2379     emit_opcode( cbuf, 0x8B );
  2380     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2381     // SAR    $dst.hi,31
  2382     emit_opcode(cbuf, 0xC1);
  2383     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2384     emit_d8(cbuf, 0x1F );
  2385 // small:
  2386     // SHRD   $dst.lo,$dst.hi,$shift
  2387     emit_opcode(cbuf,0x0F);
  2388     emit_opcode(cbuf,0xAD);
  2389     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2390     // SAR    $dst.hi,$shift"
  2391     emit_opcode(cbuf,0xD3);
  2392     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2393   %}
  2396   // ----------------- Encodings for floating point unit -----------------
  2397   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2398   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2399     $$$emit8$primary;
  2400     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2401   %}
  2403   // Pop argument in FPR0 with FSTP ST(0)
  2404   enc_class PopFPU() %{
  2405     emit_opcode( cbuf, 0xDD );
  2406     emit_d8( cbuf, 0xD8 );
  2407   %}
  2409   // !!!!! equivalent to Pop_Reg_F
  2410   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2411     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2412     emit_d8( cbuf, 0xD8+$dst$$reg );
  2413   %}
  2415   enc_class Push_Reg_DPR( regDPR dst ) %{
  2416     emit_opcode( cbuf, 0xD9 );
  2417     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2418   %}
  2420   enc_class strictfp_bias1( regDPR dst ) %{
  2421     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2422     emit_opcode( cbuf, 0x2D );
  2423     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2424     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2425     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2426   %}
  2428   enc_class strictfp_bias2( regDPR dst ) %{
  2429     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2430     emit_opcode( cbuf, 0x2D );
  2431     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2432     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2433     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2434   %}
  2436   // Special case for moving an integer register to a stack slot.
  2437   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2438     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2439   %}
  2441   // Special case for moving a register to a stack slot.
  2442   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2443     // Opcode already emitted
  2444     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2445     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2446     emit_d32(cbuf, $dst$$disp);   // Displacement
  2447   %}
  2449   // Push the integer in stackSlot 'src' onto FP-stack
  2450   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2451     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2452   %}
  2454   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2455   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2456     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2457   %}
  2459   // Same as Pop_Mem_F except for opcode
  2460   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2461   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2462     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2463   %}
  2465   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2466     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2467     emit_d8( cbuf, 0xD8+$dst$$reg );
  2468   %}
  2470   enc_class Push_Reg_FPR( regFPR dst ) %{
  2471     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2472     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2473   %}
  2475   // Push FPU's float to a stack-slot, and pop FPU-stack
  2476   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2477     int pop = 0x02;
  2478     if ($src$$reg != FPR1L_enc) {
  2479       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2480       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2481       pop = 0x03;
  2483     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2484   %}
  2486   // Push FPU's double to a stack-slot, and pop FPU-stack
  2487   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2488     int pop = 0x02;
  2489     if ($src$$reg != FPR1L_enc) {
  2490       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2491       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2492       pop = 0x03;
  2494     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2495   %}
  2497   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2498   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2499     int pop = 0xD0 - 1; // -1 since we skip FLD
  2500     if ($src$$reg != FPR1L_enc) {
  2501       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2502       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2503       pop = 0xD8;
  2505     emit_opcode( cbuf, 0xDD );
  2506     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2507   %}
  2510   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2511     // load dst in FPR0
  2512     emit_opcode( cbuf, 0xD9 );
  2513     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2514     if ($src$$reg != FPR1L_enc) {
  2515       // fincstp
  2516       emit_opcode (cbuf, 0xD9);
  2517       emit_opcode (cbuf, 0xF7);
  2518       // swap src with FPR1:
  2519       // FXCH FPR1 with src
  2520       emit_opcode(cbuf, 0xD9);
  2521       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2522       // fdecstp
  2523       emit_opcode (cbuf, 0xD9);
  2524       emit_opcode (cbuf, 0xF6);
  2526   %}
  2528   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ subptr(rsp, 8);
  2531     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2532     __ fld_d(Address(rsp, 0));
  2533     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2534     __ fld_d(Address(rsp, 0));
  2535   %}
  2537   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2538     MacroAssembler _masm(&cbuf);
  2539     __ subptr(rsp, 4);
  2540     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2541     __ fld_s(Address(rsp, 0));
  2542     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2543     __ fld_s(Address(rsp, 0));
  2544   %}
  2546   enc_class Push_ResultD(regD dst) %{
  2547     MacroAssembler _masm(&cbuf);
  2548     __ fstp_d(Address(rsp, 0));
  2549     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2550     __ addptr(rsp, 8);
  2551   %}
  2553   enc_class Push_ResultF(regF dst, immI d8) %{
  2554     MacroAssembler _masm(&cbuf);
  2555     __ fstp_s(Address(rsp, 0));
  2556     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2557     __ addptr(rsp, $d8$$constant);
  2558   %}
  2560   enc_class Push_SrcD(regD src) %{
  2561     MacroAssembler _masm(&cbuf);
  2562     __ subptr(rsp, 8);
  2563     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2564     __ fld_d(Address(rsp, 0));
  2565   %}
  2567   enc_class push_stack_temp_qword() %{
  2568     MacroAssembler _masm(&cbuf);
  2569     __ subptr(rsp, 8);
  2570   %}
  2572   enc_class pop_stack_temp_qword() %{
  2573     MacroAssembler _masm(&cbuf);
  2574     __ addptr(rsp, 8);
  2575   %}
  2577   enc_class push_xmm_to_fpr1(regD src) %{
  2578     MacroAssembler _masm(&cbuf);
  2579     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2580     __ fld_d(Address(rsp, 0));
  2581   %}
  2583   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2584     if ($src$$reg != FPR1L_enc) {
  2585       // fincstp
  2586       emit_opcode (cbuf, 0xD9);
  2587       emit_opcode (cbuf, 0xF7);
  2588       // FXCH FPR1 with src
  2589       emit_opcode(cbuf, 0xD9);
  2590       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2591       // fdecstp
  2592       emit_opcode (cbuf, 0xD9);
  2593       emit_opcode (cbuf, 0xF6);
  2595     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2596     // // FSTP   FPR$dst$$reg
  2597     // emit_opcode( cbuf, 0xDD );
  2598     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2599   %}
  2601   enc_class fnstsw_sahf_skip_parity() %{
  2602     // fnstsw ax
  2603     emit_opcode( cbuf, 0xDF );
  2604     emit_opcode( cbuf, 0xE0 );
  2605     // sahf
  2606     emit_opcode( cbuf, 0x9E );
  2607     // jnp  ::skip
  2608     emit_opcode( cbuf, 0x7B );
  2609     emit_opcode( cbuf, 0x05 );
  2610   %}
  2612   enc_class emitModDPR() %{
  2613     // fprem must be iterative
  2614     // :: loop
  2615     // fprem
  2616     emit_opcode( cbuf, 0xD9 );
  2617     emit_opcode( cbuf, 0xF8 );
  2618     // wait
  2619     emit_opcode( cbuf, 0x9b );
  2620     // fnstsw ax
  2621     emit_opcode( cbuf, 0xDF );
  2622     emit_opcode( cbuf, 0xE0 );
  2623     // sahf
  2624     emit_opcode( cbuf, 0x9E );
  2625     // jp  ::loop
  2626     emit_opcode( cbuf, 0x0F );
  2627     emit_opcode( cbuf, 0x8A );
  2628     emit_opcode( cbuf, 0xF4 );
  2629     emit_opcode( cbuf, 0xFF );
  2630     emit_opcode( cbuf, 0xFF );
  2631     emit_opcode( cbuf, 0xFF );
  2632   %}
  2634   enc_class fpu_flags() %{
  2635     // fnstsw_ax
  2636     emit_opcode( cbuf, 0xDF);
  2637     emit_opcode( cbuf, 0xE0);
  2638     // test ax,0x0400
  2639     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2640     emit_opcode( cbuf, 0xA9 );
  2641     emit_d16   ( cbuf, 0x0400 );
  2642     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2643     // // test rax,0x0400
  2644     // emit_opcode( cbuf, 0xA9 );
  2645     // emit_d32   ( cbuf, 0x00000400 );
  2646     //
  2647     // jz exit (no unordered comparison)
  2648     emit_opcode( cbuf, 0x74 );
  2649     emit_d8    ( cbuf, 0x02 );
  2650     // mov ah,1 - treat as LT case (set carry flag)
  2651     emit_opcode( cbuf, 0xB4 );
  2652     emit_d8    ( cbuf, 0x01 );
  2653     // sahf
  2654     emit_opcode( cbuf, 0x9E);
  2655   %}
  2657   enc_class cmpF_P6_fixup() %{
  2658     // Fixup the integer flags in case comparison involved a NaN
  2659     //
  2660     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2661     emit_opcode( cbuf, 0x7B );
  2662     emit_d8    ( cbuf, 0x03 );
  2663     // MOV AH,1 - treat as LT case (set carry flag)
  2664     emit_opcode( cbuf, 0xB4 );
  2665     emit_d8    ( cbuf, 0x01 );
  2666     // SAHF
  2667     emit_opcode( cbuf, 0x9E);
  2668     // NOP     // target for branch to avoid branch to branch
  2669     emit_opcode( cbuf, 0x90);
  2670   %}
  2672 //     fnstsw_ax();
  2673 //     sahf();
  2674 //     movl(dst, nan_result);
  2675 //     jcc(Assembler::parity, exit);
  2676 //     movl(dst, less_result);
  2677 //     jcc(Assembler::below, exit);
  2678 //     movl(dst, equal_result);
  2679 //     jcc(Assembler::equal, exit);
  2680 //     movl(dst, greater_result);
  2682 // less_result     =  1;
  2683 // greater_result  = -1;
  2684 // equal_result    = 0;
  2685 // nan_result      = -1;
  2687   enc_class CmpF_Result(rRegI dst) %{
  2688     // fnstsw_ax();
  2689     emit_opcode( cbuf, 0xDF);
  2690     emit_opcode( cbuf, 0xE0);
  2691     // sahf
  2692     emit_opcode( cbuf, 0x9E);
  2693     // movl(dst, nan_result);
  2694     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2695     emit_d32( cbuf, -1 );
  2696     // jcc(Assembler::parity, exit);
  2697     emit_opcode( cbuf, 0x7A );
  2698     emit_d8    ( cbuf, 0x13 );
  2699     // movl(dst, less_result);
  2700     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2701     emit_d32( cbuf, -1 );
  2702     // jcc(Assembler::below, exit);
  2703     emit_opcode( cbuf, 0x72 );
  2704     emit_d8    ( cbuf, 0x0C );
  2705     // movl(dst, equal_result);
  2706     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2707     emit_d32( cbuf, 0 );
  2708     // jcc(Assembler::equal, exit);
  2709     emit_opcode( cbuf, 0x74 );
  2710     emit_d8    ( cbuf, 0x05 );
  2711     // movl(dst, greater_result);
  2712     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2713     emit_d32( cbuf, 1 );
  2714   %}
  2717   // Compare the longs and set flags
  2718   // BROKEN!  Do Not use as-is
  2719   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2720     // CMP    $src1.hi,$src2.hi
  2721     emit_opcode( cbuf, 0x3B );
  2722     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2723     // JNE,s  done
  2724     emit_opcode(cbuf,0x75);
  2725     emit_d8(cbuf, 2 );
  2726     // CMP    $src1.lo,$src2.lo
  2727     emit_opcode( cbuf, 0x3B );
  2728     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2729 // done:
  2730   %}
  2732   enc_class convert_int_long( regL dst, rRegI src ) %{
  2733     // mov $dst.lo,$src
  2734     int dst_encoding = $dst$$reg;
  2735     int src_encoding = $src$$reg;
  2736     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2737     // mov $dst.hi,$src
  2738     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2739     // sar $dst.hi,31
  2740     emit_opcode( cbuf, 0xC1 );
  2741     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2742     emit_d8(cbuf, 0x1F );
  2743   %}
  2745   enc_class convert_long_double( eRegL src ) %{
  2746     // push $src.hi
  2747     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2748     // push $src.lo
  2749     emit_opcode(cbuf, 0x50+$src$$reg  );
  2750     // fild 64-bits at [SP]
  2751     emit_opcode(cbuf,0xdf);
  2752     emit_d8(cbuf, 0x6C);
  2753     emit_d8(cbuf, 0x24);
  2754     emit_d8(cbuf, 0x00);
  2755     // pop stack
  2756     emit_opcode(cbuf, 0x83); // add  SP, #8
  2757     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2758     emit_d8(cbuf, 0x8);
  2759   %}
  2761   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2762     // IMUL   EDX:EAX,$src1
  2763     emit_opcode( cbuf, 0xF7 );
  2764     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2765     // SAR    EDX,$cnt-32
  2766     int shift_count = ((int)$cnt$$constant) - 32;
  2767     if (shift_count > 0) {
  2768       emit_opcode(cbuf, 0xC1);
  2769       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2770       emit_d8(cbuf, shift_count);
  2772   %}
  2774   // this version doesn't have add sp, 8
  2775   enc_class convert_long_double2( eRegL src ) %{
  2776     // push $src.hi
  2777     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2778     // push $src.lo
  2779     emit_opcode(cbuf, 0x50+$src$$reg  );
  2780     // fild 64-bits at [SP]
  2781     emit_opcode(cbuf,0xdf);
  2782     emit_d8(cbuf, 0x6C);
  2783     emit_d8(cbuf, 0x24);
  2784     emit_d8(cbuf, 0x00);
  2785   %}
  2787   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2788     // Basic idea: long = (long)int * (long)int
  2789     // IMUL EDX:EAX, src
  2790     emit_opcode( cbuf, 0xF7 );
  2791     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2792   %}
  2794   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2795     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2796     // MUL EDX:EAX, src
  2797     emit_opcode( cbuf, 0xF7 );
  2798     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2799   %}
  2801   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2802     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2803     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2804     // MOV    $tmp,$src.lo
  2805     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2806     // IMUL   $tmp,EDX
  2807     emit_opcode( cbuf, 0x0F );
  2808     emit_opcode( cbuf, 0xAF );
  2809     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2810     // MOV    EDX,$src.hi
  2811     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2812     // IMUL   EDX,EAX
  2813     emit_opcode( cbuf, 0x0F );
  2814     emit_opcode( cbuf, 0xAF );
  2815     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2816     // ADD    $tmp,EDX
  2817     emit_opcode( cbuf, 0x03 );
  2818     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2819     // MUL   EDX:EAX,$src.lo
  2820     emit_opcode( cbuf, 0xF7 );
  2821     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2822     // ADD    EDX,ESI
  2823     emit_opcode( cbuf, 0x03 );
  2824     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2825   %}
  2827   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2828     // Basic idea: lo(result) = lo(src * y_lo)
  2829     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2830     // IMUL   $tmp,EDX,$src
  2831     emit_opcode( cbuf, 0x6B );
  2832     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2833     emit_d8( cbuf, (int)$src$$constant );
  2834     // MOV    EDX,$src
  2835     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2836     emit_d32( cbuf, (int)$src$$constant );
  2837     // MUL   EDX:EAX,EDX
  2838     emit_opcode( cbuf, 0xF7 );
  2839     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2840     // ADD    EDX,ESI
  2841     emit_opcode( cbuf, 0x03 );
  2842     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2843   %}
  2845   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2846     // PUSH src1.hi
  2847     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2848     // PUSH src1.lo
  2849     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2850     // PUSH src2.hi
  2851     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2852     // PUSH src2.lo
  2853     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2854     // CALL directly to the runtime
  2855     cbuf.set_insts_mark();
  2856     emit_opcode(cbuf,0xE8);       // Call into runtime
  2857     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2858     // Restore stack
  2859     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2860     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2861     emit_d8(cbuf, 4*4);
  2862   %}
  2864   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2865     // PUSH src1.hi
  2866     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2867     // PUSH src1.lo
  2868     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2869     // PUSH src2.hi
  2870     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2871     // PUSH src2.lo
  2872     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2873     // CALL directly to the runtime
  2874     cbuf.set_insts_mark();
  2875     emit_opcode(cbuf,0xE8);       // Call into runtime
  2876     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2877     // Restore stack
  2878     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2879     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2880     emit_d8(cbuf, 4*4);
  2881   %}
  2883   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2884     // MOV   $tmp,$src.lo
  2885     emit_opcode(cbuf, 0x8B);
  2886     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2887     // OR    $tmp,$src.hi
  2888     emit_opcode(cbuf, 0x0B);
  2889     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2890   %}
  2892   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2893     // CMP    $src1.lo,$src2.lo
  2894     emit_opcode( cbuf, 0x3B );
  2895     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2896     // JNE,s  skip
  2897     emit_cc(cbuf, 0x70, 0x5);
  2898     emit_d8(cbuf,2);
  2899     // CMP    $src1.hi,$src2.hi
  2900     emit_opcode( cbuf, 0x3B );
  2901     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2902   %}
  2904   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2905     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2906     emit_opcode( cbuf, 0x3B );
  2907     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2908     // MOV    $tmp,$src1.hi
  2909     emit_opcode( cbuf, 0x8B );
  2910     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2911     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2912     emit_opcode( cbuf, 0x1B );
  2913     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2914   %}
  2916   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2917     // XOR    $tmp,$tmp
  2918     emit_opcode(cbuf,0x33);  // XOR
  2919     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2920     // CMP    $tmp,$src.lo
  2921     emit_opcode( cbuf, 0x3B );
  2922     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2923     // SBB    $tmp,$src.hi
  2924     emit_opcode( cbuf, 0x1B );
  2925     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2926   %}
  2928  // Sniff, sniff... smells like Gnu Superoptimizer
  2929   enc_class neg_long( eRegL dst ) %{
  2930     emit_opcode(cbuf,0xF7);    // NEG hi
  2931     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2932     emit_opcode(cbuf,0xF7);    // NEG lo
  2933     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2934     emit_opcode(cbuf,0x83);    // SBB hi,0
  2935     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2936     emit_d8    (cbuf,0 );
  2937   %}
  2940   // Because the transitions from emitted code to the runtime
  2941   // monitorenter/exit helper stubs are so slow it's critical that
  2942   // we inline both the stack-locking fast-path and the inflated fast path.
  2943   //
  2944   // See also: cmpFastLock and cmpFastUnlock.
  2945   //
  2946   // What follows is a specialized inline transliteration of the code
  2947   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2948   // another option would be to emit TrySlowEnter and TrySlowExit methods
  2949   // at startup-time.  These methods would accept arguments as
  2950   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2951   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2952   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2953   // In practice, however, the # of lock sites is bounded and is usually small.
  2954   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2955   // if the processor uses simple bimodal branch predictors keyed by EIP
  2956   // Since the helper routines would be called from multiple synchronization
  2957   // sites.
  2958   //
  2959   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2960   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2961   // to those specialized methods.  That'd give us a mostly platform-independent
  2962   // implementation that the JITs could optimize and inline at their pleasure.
  2963   // Done correctly, the only time we'd need to cross to native could would be
  2964   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2965   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2966   // (b) explicit barriers or fence operations.
  2967   //
  2968   // TODO:
  2969   //
  2970   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2971   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2972   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2973   //    the lock operators would typically be faster than reifying Self.
  2974   //
  2975   // *  Ideally I'd define the primitives as:
  2976   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2977   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2978   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2979   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2980   //    Furthermore the register assignments are overconstrained, possibly resulting in
  2981   //    sub-optimal code near the synchronization site.
  2982   //
  2983   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2984   //    Alternately, use a better sp-proximity test.
  2985   //
  2986   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2987   //    Either one is sufficient to uniquely identify a thread.
  2988   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2989   //
  2990   // *  Intrinsify notify() and notifyAll() for the common cases where the
  2991   //    object is locked by the calling thread but the waitlist is empty.
  2992   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2993   //
  2994   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2995   //    But beware of excessive branch density on AMD Opterons.
  2996   //
  2997   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2998   //    or failure of the fast-path.  If the fast-path fails then we pass
  2999   //    control to the slow-path, typically in C.  In Fast_Lock and
  3000   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3001   //    will emit a conditional branch immediately after the node.
  3002   //    So we have branches to branches and lots of ICC.ZF games.
  3003   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3004   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3005   //    will drop through the node.  ICC.ZF is undefined at exit.
  3006   //    In the case of failure, the node will branch directly to the
  3007   //    FailureLabel
  3010   // obj: object to lock
  3011   // box: on-stack box address (displaced header location) - KILLED
  3012   // rax,: tmp -- KILLED
  3013   // scr: tmp -- KILLED
  3014   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3016     Register objReg = as_Register($obj$$reg);
  3017     Register boxReg = as_Register($box$$reg);
  3018     Register tmpReg = as_Register($tmp$$reg);
  3019     Register scrReg = as_Register($scr$$reg);
  3021     // Ensure the register assignents are disjoint
  3022     guarantee (objReg != boxReg, "") ;
  3023     guarantee (objReg != tmpReg, "") ;
  3024     guarantee (objReg != scrReg, "") ;
  3025     guarantee (boxReg != tmpReg, "") ;
  3026     guarantee (boxReg != scrReg, "") ;
  3027     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3029     MacroAssembler masm(&cbuf);
  3031     if (_counters != NULL) {
  3032       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3034     if (EmitSync & 1) {
  3035         // set box->dhw = unused_mark (3)
  3036         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3037         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3038         masm.cmpptr (rsp, (int32_t)0) ;                        
  3039     } else 
  3040     if (EmitSync & 2) { 
  3041         Label DONE_LABEL ;           
  3042         if (UseBiasedLocking) {
  3043            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3044            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3047         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3048         masm.orptr (tmpReg, 0x1);
  3049         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3050         if (os::is_MP()) { masm.lock();  }
  3051         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3052         masm.jcc(Assembler::equal, DONE_LABEL);
  3053         // Recursive locking
  3054         masm.subptr(tmpReg, rsp);
  3055         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3056         masm.movptr(Address(boxReg, 0), tmpReg);
  3057         masm.bind(DONE_LABEL) ; 
  3058     } else {  
  3059       // Possible cases that we'll encounter in fast_lock 
  3060       // ------------------------------------------------
  3061       // * Inflated
  3062       //    -- unlocked
  3063       //    -- Locked
  3064       //       = by self
  3065       //       = by other
  3066       // * biased
  3067       //    -- by Self
  3068       //    -- by other
  3069       // * neutral
  3070       // * stack-locked
  3071       //    -- by self
  3072       //       = sp-proximity test hits
  3073       //       = sp-proximity test generates false-negative
  3074       //    -- by other
  3075       //
  3077       Label IsInflated, DONE_LABEL, PopDone ;
  3079       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3080       // order to reduce the number of conditional branches in the most common cases.
  3081       // Beware -- there's a subtle invariant that fetch of the markword
  3082       // at [FETCH], below, will never observe a biased encoding (*101b).
  3083       // If this invariant is not held we risk exclusion (safety) failure.
  3084       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3085         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3088       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3089       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3090       masm.jccb  (Assembler::notZero, IsInflated) ;
  3092       // Attempt stack-locking ...
  3093       masm.orptr (tmpReg, 0x1);
  3094       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3095       if (os::is_MP()) { masm.lock();  }
  3096       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3097       if (_counters != NULL) {
  3098         masm.cond_inc32(Assembler::equal,
  3099                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3101       masm.jccb (Assembler::equal, DONE_LABEL);
  3103       // Recursive locking
  3104       masm.subptr(tmpReg, rsp);
  3105       masm.andptr(tmpReg, 0xFFFFF003 );
  3106       masm.movptr(Address(boxReg, 0), tmpReg);
  3107       if (_counters != NULL) {
  3108         masm.cond_inc32(Assembler::equal,
  3109                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3111       masm.jmp  (DONE_LABEL) ;
  3113       masm.bind (IsInflated) ;
  3115       // The object is inflated.
  3116       //
  3117       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3118       //   Use markOopDesc::monitor_value instead of "2".
  3119       //   use markOop::unused_mark() instead of "3".
  3120       // The tmpReg value is an objectMonitor reference ORed with
  3121       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3122       // objectmonitor pointer by masking off the "2" bit or we can just
  3123       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3124       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3125       //
  3126       // I use the latter as it avoids AGI stalls.
  3127       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3128       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3129       //
  3130       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3132       // boxReg refers to the on-stack BasicLock in the current frame.
  3133       // We'd like to write:
  3134       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3135       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3136       // additional latency as we have another ST in the store buffer that must drain.
  3138       if (EmitSync & 8192) { 
  3139          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3140          masm.get_thread (scrReg) ; 
  3141          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3142          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3143          if (os::is_MP()) { masm.lock(); } 
  3144          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3145       } else 
  3146       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3147          masm.movptr(scrReg, boxReg) ; 
  3148          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3150          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3151          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3152             // prefetchw [eax + Offset(_owner)-2]
  3153             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3156          if ((EmitSync & 64) == 0) {
  3157            // Optimistic form: consider XORL tmpReg,tmpReg
  3158            masm.movptr(tmpReg, NULL_WORD) ; 
  3159          } else { 
  3160            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3161            // Test-And-CAS instead of CAS
  3162            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3163            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3164            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3167          // Appears unlocked - try to swing _owner from null to non-null.
  3168          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3169          // to CAS the register containing Self into m->Owner.
  3170          // But we don't have enough registers, so instead we can either try to CAS
  3171          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3172          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3173          // (rsp or the address of the box) into  m->owner is harmless.
  3174          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3175          if (os::is_MP()) { masm.lock();  }
  3176          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3177          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3178          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3179          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3180          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3181          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3183          // If the CAS fails we can either retry or pass control to the slow-path.  
  3184          // We use the latter tactic.  
  3185          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3186          // If the CAS was successful ...
  3187          //   Self has acquired the lock
  3188          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3189          // Intentional fall-through into DONE_LABEL ...
  3190       } else {
  3191          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3192          masm.movptr(boxReg, tmpReg) ; 
  3194          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3195          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3196             // prefetchw [eax + Offset(_owner)-2]
  3197             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3200          if ((EmitSync & 64) == 0) {
  3201            // Optimistic form
  3202            masm.xorptr  (tmpReg, tmpReg) ; 
  3203          } else { 
  3204            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3205            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3206            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3207            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3210          // Appears unlocked - try to swing _owner from null to non-null.
  3211          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3212          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3213          masm.get_thread (scrReg) ;
  3214          if (os::is_MP()) { masm.lock(); }
  3215          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3217          // If the CAS fails we can either retry or pass control to the slow-path.
  3218          // We use the latter tactic.
  3219          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3220          // If the CAS was successful ...
  3221          //   Self has acquired the lock
  3222          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3223          // Intentional fall-through into DONE_LABEL ...
  3226       // DONE_LABEL is a hot target - we'd really like to place it at the
  3227       // start of cache line by padding with NOPs.
  3228       // See the AMD and Intel software optimization manuals for the
  3229       // most efficient "long" NOP encodings.
  3230       // Unfortunately none of our alignment mechanisms suffice.
  3231       masm.bind(DONE_LABEL);
  3233       // Avoid branch-to-branch on AMD processors
  3234       // This appears to be superstition.
  3235       if (EmitSync & 32) masm.nop() ;
  3238       // At DONE_LABEL the icc ZFlag is set as follows ...
  3239       // Fast_Unlock uses the same protocol.
  3240       // ZFlag == 1 -> Success
  3241       // ZFlag == 0 -> Failure - force control through the slow-path
  3243   %}
  3245   // obj: object to unlock
  3246   // box: box address (displaced header location), killed.  Must be EAX.
  3247   // rbx,: killed tmp; cannot be obj nor box.
  3248   //
  3249   // Some commentary on balanced locking:
  3250   //
  3251   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3252   // Methods that don't have provably balanced locking are forced to run in the
  3253   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3254   // The interpreter provides two properties:
  3255   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3256   //      objects acquired the current activation (frame).  Recall that the
  3257   //      interpreter maintains an on-stack list of locks currently held by
  3258   //      a frame.
  3259   // I2:  If a method attempts to unlock an object that is not held by the
  3260   //      the frame the interpreter throws IMSX.
  3261   //
  3262   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3263   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3264   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3265   // is still locked by A().
  3266   //
  3267   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3268   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3269   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3270   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3272   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3274     Register objReg = as_Register($obj$$reg);
  3275     Register boxReg = as_Register($box$$reg);
  3276     Register tmpReg = as_Register($tmp$$reg);
  3278     guarantee (objReg != boxReg, "") ;
  3279     guarantee (objReg != tmpReg, "") ;
  3280     guarantee (boxReg != tmpReg, "") ;
  3281     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3282     MacroAssembler masm(&cbuf);
  3284     if (EmitSync & 4) {
  3285       // Disable - inhibit all inlining.  Force control through the slow-path
  3286       masm.cmpptr (rsp, 0) ; 
  3287     } else 
  3288     if (EmitSync & 8) {
  3289       Label DONE_LABEL ;
  3290       if (UseBiasedLocking) {
  3291          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3293       // classic stack-locking code ...
  3294       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3295       masm.testptr(tmpReg, tmpReg) ;
  3296       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3297       if (os::is_MP()) { masm.lock(); }
  3298       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3299       masm.bind(DONE_LABEL);
  3300     } else {
  3301       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3303       // Critically, the biased locking test must have precedence over
  3304       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3305       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3306          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3309       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3310       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3311       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3313       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3314       masm.jccb  (Assembler::zero, Stacked) ;
  3316       masm.bind  (Inflated) ;
  3317       // It's inflated.
  3318       // Despite our balanced locking property we still check that m->_owner == Self
  3319       // as java routines or native JNI code called by this thread might
  3320       // have released the lock.
  3321       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3322       // state in _succ so we can avoid fetching EntryList|cxq.
  3323       //
  3324       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3325       // such as recursive enter and exit -- but we have to be wary of
  3326       // I$ bloat, T$ effects and BP$ effects.
  3327       //
  3328       // If there's no contention try a 1-0 exit.  That is, exit without
  3329       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3330       // we detect and recover from the race that the 1-0 exit admits.
  3331       //
  3332       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3333       // before it STs null into _owner, releasing the lock.  Updates
  3334       // to data protected by the critical section must be visible before
  3335       // we drop the lock (and thus before any other thread could acquire
  3336       // the lock and observe the fields protected by the lock).
  3337       // IA32's memory-model is SPO, so STs are ordered with respect to
  3338       // each other and there's no need for an explicit barrier (fence).
  3339       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3341       masm.get_thread (boxReg) ;
  3342       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3343         // prefetchw [ebx + Offset(_owner)-2]
  3344         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3347       // Note that we could employ various encoding schemes to reduce
  3348       // the number of loads below (currently 4) to just 2 or 3.
  3349       // Refer to the comments in synchronizer.cpp.
  3350       // In practice the chain of fetches doesn't seem to impact performance, however.
  3351       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3352          // Attempt to reduce branch density - AMD's branch predictor.
  3353          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3354          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3355          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3356          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3357          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3358          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3359          masm.jmpb  (DONE_LABEL) ; 
  3360       } else { 
  3361          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3362          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3363          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3364          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3365          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3366          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3367          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3368          masm.jmpb  (DONE_LABEL) ; 
  3371       // The Following code fragment (EmitSync & 65536) improves the performance of
  3372       // contended applications and contended synchronization microbenchmarks.
  3373       // Unfortunately the emission of the code - even though not executed - causes regressions
  3374       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3375       // with an equal number of never-executed NOPs results in the same regression.
  3376       // We leave it off by default.
  3378       if ((EmitSync & 65536) != 0) {
  3379          Label LSuccess, LGoSlowPath ;
  3381          masm.bind  (CheckSucc) ;
  3383          // Optional pre-test ... it's safe to elide this
  3384          if ((EmitSync & 16) == 0) { 
  3385             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3386             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3389          // We have a classic Dekker-style idiom:
  3390          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3391          // There are a number of ways to implement the barrier:
  3392          // (1) lock:andl &m->_owner, 0
  3393          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3394          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3395          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3396          // (2) If supported, an explicit MFENCE is appealing.
  3397          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3398          //     particularly if the write-buffer is full as might be the case if
  3399          //     if stores closely precede the fence or fence-equivalent instruction.
  3400          //     In more modern implementations MFENCE appears faster, however.
  3401          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3402          //     The $lines underlying the top-of-stack should be in M-state.
  3403          //     The locked add instruction is serializing, of course.
  3404          // (4) Use xchg, which is serializing
  3405          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3406          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3407          //     The integer condition codes will tell us if succ was 0.
  3408          //     Since _succ and _owner should reside in the same $line and
  3409          //     we just stored into _owner, it's likely that the $line
  3410          //     remains in M-state for the lock:orl.
  3411          //
  3412          // We currently use (3), although it's likely that switching to (2)
  3413          // is correct for the future.
  3415          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3416          if (os::is_MP()) { 
  3417             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3418               masm.mfence();
  3419             } else { 
  3420               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3423          // Ratify _succ remains non-null
  3424          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3425          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3427          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3428          if (os::is_MP()) { masm.lock(); }
  3429          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3430          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3431          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3432          // Now install Self over rsp.  This is safe as we're transitioning from
  3433          // non-null to non=null
  3434          masm.get_thread (boxReg) ;
  3435          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3436          // Intentional fall-through into LGoSlowPath ...
  3438          masm.bind  (LGoSlowPath) ; 
  3439          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3440          masm.jmpb  (DONE_LABEL) ; 
  3442          masm.bind  (LSuccess) ; 
  3443          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3444          masm.jmpb  (DONE_LABEL) ; 
  3447       masm.bind (Stacked) ;
  3448       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3449       // It must be stack-locked.
  3450       // Try to reset the header to displaced header.
  3451       // The "box" value on the stack is stable, so we can reload
  3452       // and be assured we observe the same value as above.
  3453       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3454       if (os::is_MP()) {   masm.lock();    }
  3455       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3456       // Intention fall-thru into DONE_LABEL
  3459       // DONE_LABEL is a hot target - we'd really like to place it at the
  3460       // start of cache line by padding with NOPs.
  3461       // See the AMD and Intel software optimization manuals for the
  3462       // most efficient "long" NOP encodings.
  3463       // Unfortunately none of our alignment mechanisms suffice.
  3464       if ((EmitSync & 65536) == 0) {
  3465          masm.bind (CheckSucc) ;
  3467       masm.bind(DONE_LABEL);
  3469       // Avoid branch to branch on AMD processors
  3470       if (EmitSync & 32768) { masm.nop() ; }
  3472   %}
  3475   enc_class enc_pop_rdx() %{
  3476     emit_opcode(cbuf,0x5A);
  3477   %}
  3479   enc_class enc_rethrow() %{
  3480     cbuf.set_insts_mark();
  3481     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3482     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3483                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3484   %}
  3487   // Convert a double to an int.  Java semantics require we do complex
  3488   // manglelations in the corner cases.  So we set the rounding mode to
  3489   // 'zero', store the darned double down as an int, and reset the
  3490   // rounding mode to 'nearest'.  The hardware throws an exception which
  3491   // patches up the correct value directly to the stack.
  3492   enc_class DPR2I_encoding( regDPR src ) %{
  3493     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3494     // exceptions here, so that a NAN or other corner-case value will
  3495     // thrown an exception (but normal values get converted at full speed).
  3496     // However, I2C adapters and other float-stack manglers leave pending
  3497     // invalid-op exceptions hanging.  We would have to clear them before
  3498     // enabling them and that is more expensive than just testing for the
  3499     // invalid value Intel stores down in the corner cases.
  3500     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3501     emit_opcode(cbuf,0x2D);
  3502     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3503     // Allocate a word
  3504     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3505     emit_opcode(cbuf,0xEC);
  3506     emit_d8(cbuf,0x04);
  3507     // Encoding assumes a double has been pushed into FPR0.
  3508     // Store down the double as an int, popping the FPU stack
  3509     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3510     emit_opcode(cbuf,0x1C);
  3511     emit_d8(cbuf,0x24);
  3512     // Restore the rounding mode; mask the exception
  3513     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3514     emit_opcode(cbuf,0x2D);
  3515     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3516         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3517         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3519     // Load the converted int; adjust CPU stack
  3520     emit_opcode(cbuf,0x58);       // POP EAX
  3521     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3522     emit_d32   (cbuf,0x80000000); //         0x80000000
  3523     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3524     emit_d8    (cbuf,0x07);       // Size of slow_call
  3525     // Push src onto stack slow-path
  3526     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3527     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3528     // CALL directly to the runtime
  3529     cbuf.set_insts_mark();
  3530     emit_opcode(cbuf,0xE8);       // Call into runtime
  3531     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3532     // Carry on here...
  3533   %}
  3535   enc_class DPR2L_encoding( regDPR src ) %{
  3536     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3537     emit_opcode(cbuf,0x2D);
  3538     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3539     // Allocate a word
  3540     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3541     emit_opcode(cbuf,0xEC);
  3542     emit_d8(cbuf,0x08);
  3543     // Encoding assumes a double has been pushed into FPR0.
  3544     // Store down the double as a long, popping the FPU stack
  3545     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3546     emit_opcode(cbuf,0x3C);
  3547     emit_d8(cbuf,0x24);
  3548     // Restore the rounding mode; mask the exception
  3549     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3550     emit_opcode(cbuf,0x2D);
  3551     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3552         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3553         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3555     // Load the converted int; adjust CPU stack
  3556     emit_opcode(cbuf,0x58);       // POP EAX
  3557     emit_opcode(cbuf,0x5A);       // POP EDX
  3558     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3559     emit_d8    (cbuf,0xFA);       // rdx
  3560     emit_d32   (cbuf,0x80000000); //         0x80000000
  3561     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3562     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3563     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3564     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3565     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3566     emit_d8    (cbuf,0x07);       // Size of slow_call
  3567     // Push src onto stack slow-path
  3568     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3569     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3570     // CALL directly to the runtime
  3571     cbuf.set_insts_mark();
  3572     emit_opcode(cbuf,0xE8);       // Call into runtime
  3573     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3574     // Carry on here...
  3575   %}
  3577   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3578     // Operand was loaded from memory into fp ST (stack top)
  3579     // FMUL   ST,$src  /* D8 C8+i */
  3580     emit_opcode(cbuf, 0xD8);
  3581     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3582   %}
  3584   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3585     // FADDP  ST,src2  /* D8 C0+i */
  3586     emit_opcode(cbuf, 0xD8);
  3587     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3588     //could use FADDP  src2,fpST  /* DE C0+i */
  3589   %}
  3591   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3592     // FADDP  src2,ST  /* DE C0+i */
  3593     emit_opcode(cbuf, 0xDE);
  3594     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3595   %}
  3597   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3598     // Operand has been loaded into fp ST (stack top)
  3599       // FSUB   ST,$src1
  3600       emit_opcode(cbuf, 0xD8);
  3601       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3603       // FDIV
  3604       emit_opcode(cbuf, 0xD8);
  3605       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3606   %}
  3608   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3609     // Operand was loaded from memory into fp ST (stack top)
  3610     // FADD   ST,$src  /* D8 C0+i */
  3611     emit_opcode(cbuf, 0xD8);
  3612     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3614     // FMUL  ST,src2  /* D8 C*+i */
  3615     emit_opcode(cbuf, 0xD8);
  3616     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3617   %}
  3620   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3621     // Operand was loaded from memory into fp ST (stack top)
  3622     // FADD   ST,$src  /* D8 C0+i */
  3623     emit_opcode(cbuf, 0xD8);
  3624     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3626     // FMULP  src2,ST  /* DE C8+i */
  3627     emit_opcode(cbuf, 0xDE);
  3628     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3629   %}
  3631   // Atomically load the volatile long
  3632   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3633     emit_opcode(cbuf,0xDF);
  3634     int rm_byte_opcode = 0x05;
  3635     int base     = $mem$$base;
  3636     int index    = $mem$$index;
  3637     int scale    = $mem$$scale;
  3638     int displace = $mem$$disp;
  3639     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3640     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3641     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3642   %}
  3644   // Volatile Store Long.  Must be atomic, so move it into
  3645   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3646   // target address before the store (for null-ptr checks)
  3647   // so the memory operand is used twice in the encoding.
  3648   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3649     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3650     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3651     emit_opcode(cbuf,0xDF);
  3652     int rm_byte_opcode = 0x07;
  3653     int base     = $mem$$base;
  3654     int index    = $mem$$index;
  3655     int scale    = $mem$$scale;
  3656     int displace = $mem$$disp;
  3657     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3658     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3659   %}
  3661   // Safepoint Poll.  This polls the safepoint page, and causes an
  3662   // exception if it is not readable. Unfortunately, it kills the condition code
  3663   // in the process
  3664   // We current use TESTL [spp],EDI
  3665   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3667   enc_class Safepoint_Poll() %{
  3668     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3669     emit_opcode(cbuf,0x85);
  3670     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3671     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3672   %}
  3673 %}
  3676 //----------FRAME--------------------------------------------------------------
  3677 // Definition of frame structure and management information.
  3678 //
  3679 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3680 //                             |   (to get allocators register number
  3681 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3682 //  r   CALLER     |        |
  3683 //  o     |        +--------+      pad to even-align allocators stack-slot
  3684 //  w     V        |  pad0  |        numbers; owned by CALLER
  3685 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3686 //  h     ^        |   in   |  5
  3687 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3688 //  |     |        |        |  3
  3689 //  |     |        +--------+
  3690 //  V     |        | old out|      Empty on Intel, window on Sparc
  3691 //        |    old |preserve|      Must be even aligned.
  3692 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3693 //        |        |   in   |  3   area for Intel ret address
  3694 //     Owned by    |preserve|      Empty on Sparc.
  3695 //       SELF      +--------+
  3696 //        |        |  pad2  |  2   pad to align old SP
  3697 //        |        +--------+  1
  3698 //        |        | locks  |  0
  3699 //        |        +--------+----> OptoReg::stack0(), even aligned
  3700 //        |        |  pad1  | 11   pad to align new SP
  3701 //        |        +--------+
  3702 //        |        |        | 10
  3703 //        |        | spills |  9   spills
  3704 //        V        |        |  8   (pad0 slot for callee)
  3705 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3706 //        ^        |  out   |  7
  3707 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3708 //     Owned by    +--------+
  3709 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3710 //        |    new |preserve|      Must be even-aligned.
  3711 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3712 //        |        |        |
  3713 //
  3714 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3715 //         known from SELF's arguments and the Java calling convention.
  3716 //         Region 6-7 is determined per call site.
  3717 // Note 2: If the calling convention leaves holes in the incoming argument
  3718 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3719 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3720 //         incoming area, as the Java calling convention is completely under
  3721 //         the control of the AD file.  Doubles can be sorted and packed to
  3722 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3723 //         varargs C calling conventions.
  3724 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3725 //         even aligned with pad0 as needed.
  3726 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3727 //         region 6-11 is even aligned; it may be padded out more so that
  3728 //         the region from SP to FP meets the minimum stack alignment.
  3730 frame %{
  3731   // What direction does stack grow in (assumed to be same for C & Java)
  3732   stack_direction(TOWARDS_LOW);
  3734   // These three registers define part of the calling convention
  3735   // between compiled code and the interpreter.
  3736   inline_cache_reg(EAX);                // Inline Cache Register
  3737   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3739   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3740   cisc_spilling_operand_name(indOffset32);
  3742   // Number of stack slots consumed by locking an object
  3743   sync_stack_slots(1);
  3745   // Compiled code's Frame Pointer
  3746   frame_pointer(ESP);
  3747   // Interpreter stores its frame pointer in a register which is
  3748   // stored to the stack by I2CAdaptors.
  3749   // I2CAdaptors convert from interpreted java to compiled java.
  3750   interpreter_frame_pointer(EBP);
  3752   // Stack alignment requirement
  3753   // Alignment size in bytes (128-bit -> 16 bytes)
  3754   stack_alignment(StackAlignmentInBytes);
  3756   // Number of stack slots between incoming argument block and the start of
  3757   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3758   // EPILOG must remove this many slots.  Intel needs one slot for
  3759   // return address and one for rbp, (must save rbp)
  3760   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3762   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3763   // for calls to C.  Supports the var-args backing area for register parms.
  3764   varargs_C_out_slots_killed(0);
  3766   // The after-PROLOG location of the return address.  Location of
  3767   // return address specifies a type (REG or STACK) and a number
  3768   // representing the register number (i.e. - use a register name) or
  3769   // stack slot.
  3770   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3771   // Otherwise, it is above the locks and verification slot and alignment word
  3772   return_addr(STACK - 1 +
  3773               round_to((Compile::current()->in_preserve_stack_slots() +
  3774                         Compile::current()->fixed_slots()),
  3775                        stack_alignment_in_slots()));
  3777   // Body of function which returns an integer array locating
  3778   // arguments either in registers or in stack slots.  Passed an array
  3779   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3780   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3781   // arguments for a CALLEE.  Incoming stack arguments are
  3782   // automatically biased by the preserve_stack_slots field above.
  3783   calling_convention %{
  3784     // No difference between ingoing/outgoing just pass false
  3785     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3786   %}
  3789   // Body of function which returns an integer array locating
  3790   // arguments either in registers or in stack slots.  Passed an array
  3791   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3792   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3793   // arguments for a CALLEE.  Incoming stack arguments are
  3794   // automatically biased by the preserve_stack_slots field above.
  3795   c_calling_convention %{
  3796     // This is obviously always outgoing
  3797     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3798   %}
  3800   // Location of C & interpreter return values
  3801   c_return_value %{
  3802     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3803     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3804     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3806     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3807     // that C functions return float and double results in XMM0.
  3808     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3809       return OptoRegPair(XMM0b_num,XMM0_num);
  3810     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3811       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3813     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3814   %}
  3816   // Location of return values
  3817   return_value %{
  3818     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3819     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3820     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3821     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3822       return OptoRegPair(XMM0b_num,XMM0_num);
  3823     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3824       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3825     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3826   %}
  3828 %}
  3830 //----------ATTRIBUTES---------------------------------------------------------
  3831 //----------Operand Attributes-------------------------------------------------
  3832 op_attrib op_cost(0);        // Required cost attribute
  3834 //----------Instruction Attributes---------------------------------------------
  3835 ins_attrib ins_cost(100);       // Required cost attribute
  3836 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3837 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3838                                 // non-matching short branch variant of some
  3839                                                             // long branch?
  3840 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3841                                 // specifies the alignment that some part of the instruction (not
  3842                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3843                                 // function must be provided for the instruction
  3845 //----------OPERANDS-----------------------------------------------------------
  3846 // Operand definitions must precede instruction definitions for correct parsing
  3847 // in the ADLC because operands constitute user defined types which are used in
  3848 // instruction definitions.
  3850 //----------Simple Operands----------------------------------------------------
  3851 // Immediate Operands
  3852 // Integer Immediate
  3853 operand immI() %{
  3854   match(ConI);
  3856   op_cost(10);
  3857   format %{ %}
  3858   interface(CONST_INTER);
  3859 %}
  3861 // Constant for test vs zero
  3862 operand immI0() %{
  3863   predicate(n->get_int() == 0);
  3864   match(ConI);
  3866   op_cost(0);
  3867   format %{ %}
  3868   interface(CONST_INTER);
  3869 %}
  3871 // Constant for increment
  3872 operand immI1() %{
  3873   predicate(n->get_int() == 1);
  3874   match(ConI);
  3876   op_cost(0);
  3877   format %{ %}
  3878   interface(CONST_INTER);
  3879 %}
  3881 // Constant for decrement
  3882 operand immI_M1() %{
  3883   predicate(n->get_int() == -1);
  3884   match(ConI);
  3886   op_cost(0);
  3887   format %{ %}
  3888   interface(CONST_INTER);
  3889 %}
  3891 // Valid scale values for addressing modes
  3892 operand immI2() %{
  3893   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3894   match(ConI);
  3896   format %{ %}
  3897   interface(CONST_INTER);
  3898 %}
  3900 operand immI8() %{
  3901   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3902   match(ConI);
  3904   op_cost(5);
  3905   format %{ %}
  3906   interface(CONST_INTER);
  3907 %}
  3909 operand immI16() %{
  3910   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3911   match(ConI);
  3913   op_cost(10);
  3914   format %{ %}
  3915   interface(CONST_INTER);
  3916 %}
  3918 // Constant for long shifts
  3919 operand immI_32() %{
  3920   predicate( n->get_int() == 32 );
  3921   match(ConI);
  3923   op_cost(0);
  3924   format %{ %}
  3925   interface(CONST_INTER);
  3926 %}
  3928 operand immI_1_31() %{
  3929   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3930   match(ConI);
  3932   op_cost(0);
  3933   format %{ %}
  3934   interface(CONST_INTER);
  3935 %}
  3937 operand immI_32_63() %{
  3938   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3939   match(ConI);
  3940   op_cost(0);
  3942   format %{ %}
  3943   interface(CONST_INTER);
  3944 %}
  3946 operand immI_1() %{
  3947   predicate( n->get_int() == 1 );
  3948   match(ConI);
  3950   op_cost(0);
  3951   format %{ %}
  3952   interface(CONST_INTER);
  3953 %}
  3955 operand immI_2() %{
  3956   predicate( n->get_int() == 2 );
  3957   match(ConI);
  3959   op_cost(0);
  3960   format %{ %}
  3961   interface(CONST_INTER);
  3962 %}
  3964 operand immI_3() %{
  3965   predicate( n->get_int() == 3 );
  3966   match(ConI);
  3968   op_cost(0);
  3969   format %{ %}
  3970   interface(CONST_INTER);
  3971 %}
  3973 // Pointer Immediate
  3974 operand immP() %{
  3975   match(ConP);
  3977   op_cost(10);
  3978   format %{ %}
  3979   interface(CONST_INTER);
  3980 %}
  3982 // NULL Pointer Immediate
  3983 operand immP0() %{
  3984   predicate( n->get_ptr() == 0 );
  3985   match(ConP);
  3986   op_cost(0);
  3988   format %{ %}
  3989   interface(CONST_INTER);
  3990 %}
  3992 // Long Immediate
  3993 operand immL() %{
  3994   match(ConL);
  3996   op_cost(20);
  3997   format %{ %}
  3998   interface(CONST_INTER);
  3999 %}
  4001 // Long Immediate zero
  4002 operand immL0() %{
  4003   predicate( n->get_long() == 0L );
  4004   match(ConL);
  4005   op_cost(0);
  4007   format %{ %}
  4008   interface(CONST_INTER);
  4009 %}
  4011 // Long Immediate zero
  4012 operand immL_M1() %{
  4013   predicate( n->get_long() == -1L );
  4014   match(ConL);
  4015   op_cost(0);
  4017   format %{ %}
  4018   interface(CONST_INTER);
  4019 %}
  4021 // Long immediate from 0 to 127.
  4022 // Used for a shorter form of long mul by 10.
  4023 operand immL_127() %{
  4024   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4025   match(ConL);
  4026   op_cost(0);
  4028   format %{ %}
  4029   interface(CONST_INTER);
  4030 %}
  4032 // Long Immediate: low 32-bit mask
  4033 operand immL_32bits() %{
  4034   predicate(n->get_long() == 0xFFFFFFFFL);
  4035   match(ConL);
  4036   op_cost(0);
  4038   format %{ %}
  4039   interface(CONST_INTER);
  4040 %}
  4042 // Long Immediate: low 32-bit mask
  4043 operand immL32() %{
  4044   predicate(n->get_long() == (int)(n->get_long()));
  4045   match(ConL);
  4046   op_cost(20);
  4048   format %{ %}
  4049   interface(CONST_INTER);
  4050 %}
  4052 //Double Immediate zero
  4053 operand immDPR0() %{
  4054   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4055   // bug that generates code such that NaNs compare equal to 0.0
  4056   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4057   match(ConD);
  4059   op_cost(5);
  4060   format %{ %}
  4061   interface(CONST_INTER);
  4062 %}
  4064 // Double Immediate one
  4065 operand immDPR1() %{
  4066   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4067   match(ConD);
  4069   op_cost(5);
  4070   format %{ %}
  4071   interface(CONST_INTER);
  4072 %}
  4074 // Double Immediate
  4075 operand immDPR() %{
  4076   predicate(UseSSE<=1);
  4077   match(ConD);
  4079   op_cost(5);
  4080   format %{ %}
  4081   interface(CONST_INTER);
  4082 %}
  4084 operand immD() %{
  4085   predicate(UseSSE>=2);
  4086   match(ConD);
  4088   op_cost(5);
  4089   format %{ %}
  4090   interface(CONST_INTER);
  4091 %}
  4093 // Double Immediate zero
  4094 operand immD0() %{
  4095   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4096   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4097   // compare equal to -0.0.
  4098   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4099   match(ConD);
  4101   format %{ %}
  4102   interface(CONST_INTER);
  4103 %}
  4105 // Float Immediate zero
  4106 operand immFPR0() %{
  4107   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4108   match(ConF);
  4110   op_cost(5);
  4111   format %{ %}
  4112   interface(CONST_INTER);
  4113 %}
  4115 // Float Immediate one
  4116 operand immFPR1() %{
  4117   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4118   match(ConF);
  4120   op_cost(5);
  4121   format %{ %}
  4122   interface(CONST_INTER);
  4123 %}
  4125 // Float Immediate
  4126 operand immFPR() %{
  4127   predicate( UseSSE == 0 );
  4128   match(ConF);
  4130   op_cost(5);
  4131   format %{ %}
  4132   interface(CONST_INTER);
  4133 %}
  4135 // Float Immediate
  4136 operand immF() %{
  4137   predicate(UseSSE >= 1);
  4138   match(ConF);
  4140   op_cost(5);
  4141   format %{ %}
  4142   interface(CONST_INTER);
  4143 %}
  4145 // Float Immediate zero.  Zero and not -0.0
  4146 operand immF0() %{
  4147   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4148   match(ConF);
  4150   op_cost(5);
  4151   format %{ %}
  4152   interface(CONST_INTER);
  4153 %}
  4155 // Immediates for special shifts (sign extend)
  4157 // Constants for increment
  4158 operand immI_16() %{
  4159   predicate( n->get_int() == 16 );
  4160   match(ConI);
  4162   format %{ %}
  4163   interface(CONST_INTER);
  4164 %}
  4166 operand immI_24() %{
  4167   predicate( n->get_int() == 24 );
  4168   match(ConI);
  4170   format %{ %}
  4171   interface(CONST_INTER);
  4172 %}
  4174 // Constant for byte-wide masking
  4175 operand immI_255() %{
  4176   predicate( n->get_int() == 255 );
  4177   match(ConI);
  4179   format %{ %}
  4180   interface(CONST_INTER);
  4181 %}
  4183 // Constant for short-wide masking
  4184 operand immI_65535() %{
  4185   predicate(n->get_int() == 65535);
  4186   match(ConI);
  4188   format %{ %}
  4189   interface(CONST_INTER);
  4190 %}
  4192 // Register Operands
  4193 // Integer Register
  4194 operand rRegI() %{
  4195   constraint(ALLOC_IN_RC(int_reg));
  4196   match(RegI);
  4197   match(xRegI);
  4198   match(eAXRegI);
  4199   match(eBXRegI);
  4200   match(eCXRegI);
  4201   match(eDXRegI);
  4202   match(eDIRegI);
  4203   match(eSIRegI);
  4205   format %{ %}
  4206   interface(REG_INTER);
  4207 %}
  4209 // Subset of Integer Register
  4210 operand xRegI(rRegI reg) %{
  4211   constraint(ALLOC_IN_RC(int_x_reg));
  4212   match(reg);
  4213   match(eAXRegI);
  4214   match(eBXRegI);
  4215   match(eCXRegI);
  4216   match(eDXRegI);
  4218   format %{ %}
  4219   interface(REG_INTER);
  4220 %}
  4222 // Special Registers
  4223 operand eAXRegI(xRegI reg) %{
  4224   constraint(ALLOC_IN_RC(eax_reg));
  4225   match(reg);
  4226   match(rRegI);
  4228   format %{ "EAX" %}
  4229   interface(REG_INTER);
  4230 %}
  4232 // Special Registers
  4233 operand eBXRegI(xRegI reg) %{
  4234   constraint(ALLOC_IN_RC(ebx_reg));
  4235   match(reg);
  4236   match(rRegI);
  4238   format %{ "EBX" %}
  4239   interface(REG_INTER);
  4240 %}
  4242 operand eCXRegI(xRegI reg) %{
  4243   constraint(ALLOC_IN_RC(ecx_reg));
  4244   match(reg);
  4245   match(rRegI);
  4247   format %{ "ECX" %}
  4248   interface(REG_INTER);
  4249 %}
  4251 operand eDXRegI(xRegI reg) %{
  4252   constraint(ALLOC_IN_RC(edx_reg));
  4253   match(reg);
  4254   match(rRegI);
  4256   format %{ "EDX" %}
  4257   interface(REG_INTER);
  4258 %}
  4260 operand eDIRegI(xRegI reg) %{
  4261   constraint(ALLOC_IN_RC(edi_reg));
  4262   match(reg);
  4263   match(rRegI);
  4265   format %{ "EDI" %}
  4266   interface(REG_INTER);
  4267 %}
  4269 operand naxRegI() %{
  4270   constraint(ALLOC_IN_RC(nax_reg));
  4271   match(RegI);
  4272   match(eCXRegI);
  4273   match(eDXRegI);
  4274   match(eSIRegI);
  4275   match(eDIRegI);
  4277   format %{ %}
  4278   interface(REG_INTER);
  4279 %}
  4281 operand nadxRegI() %{
  4282   constraint(ALLOC_IN_RC(nadx_reg));
  4283   match(RegI);
  4284   match(eBXRegI);
  4285   match(eCXRegI);
  4286   match(eSIRegI);
  4287   match(eDIRegI);
  4289   format %{ %}
  4290   interface(REG_INTER);
  4291 %}
  4293 operand ncxRegI() %{
  4294   constraint(ALLOC_IN_RC(ncx_reg));
  4295   match(RegI);
  4296   match(eAXRegI);
  4297   match(eDXRegI);
  4298   match(eSIRegI);
  4299   match(eDIRegI);
  4301   format %{ %}
  4302   interface(REG_INTER);
  4303 %}
  4305 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4306 // //
  4307 operand eSIRegI(xRegI reg) %{
  4308    constraint(ALLOC_IN_RC(esi_reg));
  4309    match(reg);
  4310    match(rRegI);
  4312    format %{ "ESI" %}
  4313    interface(REG_INTER);
  4314 %}
  4316 // Pointer Register
  4317 operand anyRegP() %{
  4318   constraint(ALLOC_IN_RC(any_reg));
  4319   match(RegP);
  4320   match(eAXRegP);
  4321   match(eBXRegP);
  4322   match(eCXRegP);
  4323   match(eDIRegP);
  4324   match(eRegP);
  4326   format %{ %}
  4327   interface(REG_INTER);
  4328 %}
  4330 operand eRegP() %{
  4331   constraint(ALLOC_IN_RC(int_reg));
  4332   match(RegP);
  4333   match(eAXRegP);
  4334   match(eBXRegP);
  4335   match(eCXRegP);
  4336   match(eDIRegP);
  4338   format %{ %}
  4339   interface(REG_INTER);
  4340 %}
  4342 // On windows95, EBP is not safe to use for implicit null tests.
  4343 operand eRegP_no_EBP() %{
  4344   constraint(ALLOC_IN_RC(int_reg_no_rbp));
  4345   match(RegP);
  4346   match(eAXRegP);
  4347   match(eBXRegP);
  4348   match(eCXRegP);
  4349   match(eDIRegP);
  4351   op_cost(100);
  4352   format %{ %}
  4353   interface(REG_INTER);
  4354 %}
  4356 operand naxRegP() %{
  4357   constraint(ALLOC_IN_RC(nax_reg));
  4358   match(RegP);
  4359   match(eBXRegP);
  4360   match(eDXRegP);
  4361   match(eCXRegP);
  4362   match(eSIRegP);
  4363   match(eDIRegP);
  4365   format %{ %}
  4366   interface(REG_INTER);
  4367 %}
  4369 operand nabxRegP() %{
  4370   constraint(ALLOC_IN_RC(nabx_reg));
  4371   match(RegP);
  4372   match(eCXRegP);
  4373   match(eDXRegP);
  4374   match(eSIRegP);
  4375   match(eDIRegP);
  4377   format %{ %}
  4378   interface(REG_INTER);
  4379 %}
  4381 operand pRegP() %{
  4382   constraint(ALLOC_IN_RC(p_reg));
  4383   match(RegP);
  4384   match(eBXRegP);
  4385   match(eDXRegP);
  4386   match(eSIRegP);
  4387   match(eDIRegP);
  4389   format %{ %}
  4390   interface(REG_INTER);
  4391 %}
  4393 // Special Registers
  4394 // Return a pointer value
  4395 operand eAXRegP(eRegP reg) %{
  4396   constraint(ALLOC_IN_RC(eax_reg));
  4397   match(reg);
  4398   format %{ "EAX" %}
  4399   interface(REG_INTER);
  4400 %}
  4402 // Used in AtomicAdd
  4403 operand eBXRegP(eRegP reg) %{
  4404   constraint(ALLOC_IN_RC(ebx_reg));
  4405   match(reg);
  4406   format %{ "EBX" %}
  4407   interface(REG_INTER);
  4408 %}
  4410 // Tail-call (interprocedural jump) to interpreter
  4411 operand eCXRegP(eRegP reg) %{
  4412   constraint(ALLOC_IN_RC(ecx_reg));
  4413   match(reg);
  4414   format %{ "ECX" %}
  4415   interface(REG_INTER);
  4416 %}
  4418 operand eSIRegP(eRegP reg) %{
  4419   constraint(ALLOC_IN_RC(esi_reg));
  4420   match(reg);
  4421   format %{ "ESI" %}
  4422   interface(REG_INTER);
  4423 %}
  4425 // Used in rep stosw
  4426 operand eDIRegP(eRegP reg) %{
  4427   constraint(ALLOC_IN_RC(edi_reg));
  4428   match(reg);
  4429   format %{ "EDI" %}
  4430   interface(REG_INTER);
  4431 %}
  4433 operand eBPRegP() %{
  4434   constraint(ALLOC_IN_RC(ebp_reg));
  4435   match(RegP);
  4436   format %{ "EBP" %}
  4437   interface(REG_INTER);
  4438 %}
  4440 operand eRegL() %{
  4441   constraint(ALLOC_IN_RC(long_reg));
  4442   match(RegL);
  4443   match(eADXRegL);
  4445   format %{ %}
  4446   interface(REG_INTER);
  4447 %}
  4449 operand eADXRegL( eRegL reg ) %{
  4450   constraint(ALLOC_IN_RC(eadx_reg));
  4451   match(reg);
  4453   format %{ "EDX:EAX" %}
  4454   interface(REG_INTER);
  4455 %}
  4457 operand eBCXRegL( eRegL reg ) %{
  4458   constraint(ALLOC_IN_RC(ebcx_reg));
  4459   match(reg);
  4461   format %{ "EBX:ECX" %}
  4462   interface(REG_INTER);
  4463 %}
  4465 // Special case for integer high multiply
  4466 operand eADXRegL_low_only() %{
  4467   constraint(ALLOC_IN_RC(eadx_reg));
  4468   match(RegL);
  4470   format %{ "EAX" %}
  4471   interface(REG_INTER);
  4472 %}
  4474 // Flags register, used as output of compare instructions
  4475 operand eFlagsReg() %{
  4476   constraint(ALLOC_IN_RC(int_flags));
  4477   match(RegFlags);
  4479   format %{ "EFLAGS" %}
  4480   interface(REG_INTER);
  4481 %}
  4483 // Flags register, used as output of FLOATING POINT compare instructions
  4484 operand eFlagsRegU() %{
  4485   constraint(ALLOC_IN_RC(int_flags));
  4486   match(RegFlags);
  4488   format %{ "EFLAGS_U" %}
  4489   interface(REG_INTER);
  4490 %}
  4492 operand eFlagsRegUCF() %{
  4493   constraint(ALLOC_IN_RC(int_flags));
  4494   match(RegFlags);
  4495   predicate(false);
  4497   format %{ "EFLAGS_U_CF" %}
  4498   interface(REG_INTER);
  4499 %}
  4501 // Condition Code Register used by long compare
  4502 operand flagsReg_long_LTGE() %{
  4503   constraint(ALLOC_IN_RC(int_flags));
  4504   match(RegFlags);
  4505   format %{ "FLAGS_LTGE" %}
  4506   interface(REG_INTER);
  4507 %}
  4508 operand flagsReg_long_EQNE() %{
  4509   constraint(ALLOC_IN_RC(int_flags));
  4510   match(RegFlags);
  4511   format %{ "FLAGS_EQNE" %}
  4512   interface(REG_INTER);
  4513 %}
  4514 operand flagsReg_long_LEGT() %{
  4515   constraint(ALLOC_IN_RC(int_flags));
  4516   match(RegFlags);
  4517   format %{ "FLAGS_LEGT" %}
  4518   interface(REG_INTER);
  4519 %}
  4521 // Float register operands
  4522 operand regDPR() %{
  4523   predicate( UseSSE < 2 );
  4524   constraint(ALLOC_IN_RC(fp_dbl_reg));
  4525   match(RegD);
  4526   match(regDPR1);
  4527   match(regDPR2);
  4528   format %{ %}
  4529   interface(REG_INTER);
  4530 %}
  4532 operand regDPR1(regDPR reg) %{
  4533   predicate( UseSSE < 2 );
  4534   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  4535   match(reg);
  4536   format %{ "FPR1" %}
  4537   interface(REG_INTER);
  4538 %}
  4540 operand regDPR2(regDPR reg) %{
  4541   predicate( UseSSE < 2 );
  4542   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  4543   match(reg);
  4544   format %{ "FPR2" %}
  4545   interface(REG_INTER);
  4546 %}
  4548 operand regnotDPR1(regDPR reg) %{
  4549   predicate( UseSSE < 2 );
  4550   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  4551   match(reg);
  4552   format %{ %}
  4553   interface(REG_INTER);
  4554 %}
  4556 // Float register operands
  4557 operand regFPR() %{
  4558   predicate( UseSSE < 2 );
  4559   constraint(ALLOC_IN_RC(fp_flt_reg));
  4560   match(RegF);
  4561   match(regFPR1);
  4562   format %{ %}
  4563   interface(REG_INTER);
  4564 %}
  4566 // Float register operands
  4567 operand regFPR1(regFPR reg) %{
  4568   predicate( UseSSE < 2 );
  4569   constraint(ALLOC_IN_RC(fp_flt_reg0));
  4570   match(reg);
  4571   format %{ "FPR1" %}
  4572   interface(REG_INTER);
  4573 %}
  4575 // XMM Float register operands
  4576 operand regF() %{
  4577   predicate( UseSSE>=1 );
  4578   constraint(ALLOC_IN_RC(float_reg));
  4579   match(RegF);
  4580   format %{ %}
  4581   interface(REG_INTER);
  4582 %}
  4584 // XMM Double register operands
  4585 operand regD() %{
  4586   predicate( UseSSE>=2 );
  4587   constraint(ALLOC_IN_RC(double_reg));
  4588   match(RegD);
  4589   format %{ %}
  4590   interface(REG_INTER);
  4591 %}
  4594 //----------Memory Operands----------------------------------------------------
  4595 // Direct Memory Operand
  4596 operand direct(immP addr) %{
  4597   match(addr);
  4599   format %{ "[$addr]" %}
  4600   interface(MEMORY_INTER) %{
  4601     base(0xFFFFFFFF);
  4602     index(0x4);
  4603     scale(0x0);
  4604     disp($addr);
  4605   %}
  4606 %}
  4608 // Indirect Memory Operand
  4609 operand indirect(eRegP reg) %{
  4610   constraint(ALLOC_IN_RC(int_reg));
  4611   match(reg);
  4613   format %{ "[$reg]" %}
  4614   interface(MEMORY_INTER) %{
  4615     base($reg);
  4616     index(0x4);
  4617     scale(0x0);
  4618     disp(0x0);
  4619   %}
  4620 %}
  4622 // Indirect Memory Plus Short Offset Operand
  4623 operand indOffset8(eRegP reg, immI8 off) %{
  4624   match(AddP reg off);
  4626   format %{ "[$reg + $off]" %}
  4627   interface(MEMORY_INTER) %{
  4628     base($reg);
  4629     index(0x4);
  4630     scale(0x0);
  4631     disp($off);
  4632   %}
  4633 %}
  4635 // Indirect Memory Plus Long Offset Operand
  4636 operand indOffset32(eRegP reg, immI off) %{
  4637   match(AddP reg off);
  4639   format %{ "[$reg + $off]" %}
  4640   interface(MEMORY_INTER) %{
  4641     base($reg);
  4642     index(0x4);
  4643     scale(0x0);
  4644     disp($off);
  4645   %}
  4646 %}
  4648 // Indirect Memory Plus Long Offset Operand
  4649 operand indOffset32X(rRegI reg, immP off) %{
  4650   match(AddP off reg);
  4652   format %{ "[$reg + $off]" %}
  4653   interface(MEMORY_INTER) %{
  4654     base($reg);
  4655     index(0x4);
  4656     scale(0x0);
  4657     disp($off);
  4658   %}
  4659 %}
  4661 // Indirect Memory Plus Index Register Plus Offset Operand
  4662 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4663   match(AddP (AddP reg ireg) off);
  4665   op_cost(10);
  4666   format %{"[$reg + $off + $ireg]" %}
  4667   interface(MEMORY_INTER) %{
  4668     base($reg);
  4669     index($ireg);
  4670     scale(0x0);
  4671     disp($off);
  4672   %}
  4673 %}
  4675 // Indirect Memory Plus Index Register Plus Offset Operand
  4676 operand indIndex(eRegP reg, rRegI ireg) %{
  4677   match(AddP reg ireg);
  4679   op_cost(10);
  4680   format %{"[$reg + $ireg]" %}
  4681   interface(MEMORY_INTER) %{
  4682     base($reg);
  4683     index($ireg);
  4684     scale(0x0);
  4685     disp(0x0);
  4686   %}
  4687 %}
  4689 // // -------------------------------------------------------------------------
  4690 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4691 // // -------------------------------------------------------------------------
  4692 // // Scaled Memory Operands
  4693 // // Indirect Memory Times Scale Plus Offset Operand
  4694 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4695 //   match(AddP off (LShiftI ireg scale));
  4696 //
  4697 //   op_cost(10);
  4698 //   format %{"[$off + $ireg << $scale]" %}
  4699 //   interface(MEMORY_INTER) %{
  4700 //     base(0x4);
  4701 //     index($ireg);
  4702 //     scale($scale);
  4703 //     disp($off);
  4704 //   %}
  4705 // %}
  4707 // Indirect Memory Times Scale Plus Index Register
  4708 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4709   match(AddP reg (LShiftI ireg scale));
  4711   op_cost(10);
  4712   format %{"[$reg + $ireg << $scale]" %}
  4713   interface(MEMORY_INTER) %{
  4714     base($reg);
  4715     index($ireg);
  4716     scale($scale);
  4717     disp(0x0);
  4718   %}
  4719 %}
  4721 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4722 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4723   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4725   op_cost(10);
  4726   format %{"[$reg + $off + $ireg << $scale]" %}
  4727   interface(MEMORY_INTER) %{
  4728     base($reg);
  4729     index($ireg);
  4730     scale($scale);
  4731     disp($off);
  4732   %}
  4733 %}
  4735 //----------Load Long Memory Operands------------------------------------------
  4736 // The load-long idiom will use it's address expression again after loading
  4737 // the first word of the long.  If the load-long destination overlaps with
  4738 // registers used in the addressing expression, the 2nd half will be loaded
  4739 // from a clobbered address.  Fix this by requiring that load-long use
  4740 // address registers that do not overlap with the load-long target.
  4742 // load-long support
  4743 operand load_long_RegP() %{
  4744   constraint(ALLOC_IN_RC(esi_reg));
  4745   match(RegP);
  4746   match(eSIRegP);
  4747   op_cost(100);
  4748   format %{  %}
  4749   interface(REG_INTER);
  4750 %}
  4752 // Indirect Memory Operand Long
  4753 operand load_long_indirect(load_long_RegP reg) %{
  4754   constraint(ALLOC_IN_RC(esi_reg));
  4755   match(reg);
  4757   format %{ "[$reg]" %}
  4758   interface(MEMORY_INTER) %{
  4759     base($reg);
  4760     index(0x4);
  4761     scale(0x0);
  4762     disp(0x0);
  4763   %}
  4764 %}
  4766 // Indirect Memory Plus Long Offset Operand
  4767 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4768   match(AddP reg off);
  4770   format %{ "[$reg + $off]" %}
  4771   interface(MEMORY_INTER) %{
  4772     base($reg);
  4773     index(0x4);
  4774     scale(0x0);
  4775     disp($off);
  4776   %}
  4777 %}
  4779 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4782 //----------Special Memory Operands--------------------------------------------
  4783 // Stack Slot Operand - This operand is used for loading and storing temporary
  4784 //                      values on the stack where a match requires a value to
  4785 //                      flow through memory.
  4786 operand stackSlotP(sRegP reg) %{
  4787   constraint(ALLOC_IN_RC(stack_slots));
  4788   // No match rule because this operand is only generated in matching
  4789   format %{ "[$reg]" %}
  4790   interface(MEMORY_INTER) %{
  4791     base(0x4);   // ESP
  4792     index(0x4);  // No Index
  4793     scale(0x0);  // No Scale
  4794     disp($reg);  // Stack Offset
  4795   %}
  4796 %}
  4798 operand stackSlotI(sRegI reg) %{
  4799   constraint(ALLOC_IN_RC(stack_slots));
  4800   // No match rule because this operand is only generated in matching
  4801   format %{ "[$reg]" %}
  4802   interface(MEMORY_INTER) %{
  4803     base(0x4);   // ESP
  4804     index(0x4);  // No Index
  4805     scale(0x0);  // No Scale
  4806     disp($reg);  // Stack Offset
  4807   %}
  4808 %}
  4810 operand stackSlotF(sRegF reg) %{
  4811   constraint(ALLOC_IN_RC(stack_slots));
  4812   // No match rule because this operand is only generated in matching
  4813   format %{ "[$reg]" %}
  4814   interface(MEMORY_INTER) %{
  4815     base(0x4);   // ESP
  4816     index(0x4);  // No Index
  4817     scale(0x0);  // No Scale
  4818     disp($reg);  // Stack Offset
  4819   %}
  4820 %}
  4822 operand stackSlotD(sRegD reg) %{
  4823   constraint(ALLOC_IN_RC(stack_slots));
  4824   // No match rule because this operand is only generated in matching
  4825   format %{ "[$reg]" %}
  4826   interface(MEMORY_INTER) %{
  4827     base(0x4);   // ESP
  4828     index(0x4);  // No Index
  4829     scale(0x0);  // No Scale
  4830     disp($reg);  // Stack Offset
  4831   %}
  4832 %}
  4834 operand stackSlotL(sRegL reg) %{
  4835   constraint(ALLOC_IN_RC(stack_slots));
  4836   // No match rule because this operand is only generated in matching
  4837   format %{ "[$reg]" %}
  4838   interface(MEMORY_INTER) %{
  4839     base(0x4);   // ESP
  4840     index(0x4);  // No Index
  4841     scale(0x0);  // No Scale
  4842     disp($reg);  // Stack Offset
  4843   %}
  4844 %}
  4846 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4847 // Indirect Memory Operand
  4848 operand indirect_win95_safe(eRegP_no_EBP reg)
  4849 %{
  4850   constraint(ALLOC_IN_RC(int_reg));
  4851   match(reg);
  4853   op_cost(100);
  4854   format %{ "[$reg]" %}
  4855   interface(MEMORY_INTER) %{
  4856     base($reg);
  4857     index(0x4);
  4858     scale(0x0);
  4859     disp(0x0);
  4860   %}
  4861 %}
  4863 // Indirect Memory Plus Short Offset Operand
  4864 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4865 %{
  4866   match(AddP reg off);
  4868   op_cost(100);
  4869   format %{ "[$reg + $off]" %}
  4870   interface(MEMORY_INTER) %{
  4871     base($reg);
  4872     index(0x4);
  4873     scale(0x0);
  4874     disp($off);
  4875   %}
  4876 %}
  4878 // Indirect Memory Plus Long Offset Operand
  4879 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4880 %{
  4881   match(AddP reg off);
  4883   op_cost(100);
  4884   format %{ "[$reg + $off]" %}
  4885   interface(MEMORY_INTER) %{
  4886     base($reg);
  4887     index(0x4);
  4888     scale(0x0);
  4889     disp($off);
  4890   %}
  4891 %}
  4893 // Indirect Memory Plus Index Register Plus Offset Operand
  4894 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4895 %{
  4896   match(AddP (AddP reg ireg) off);
  4898   op_cost(100);
  4899   format %{"[$reg + $off + $ireg]" %}
  4900   interface(MEMORY_INTER) %{
  4901     base($reg);
  4902     index($ireg);
  4903     scale(0x0);
  4904     disp($off);
  4905   %}
  4906 %}
  4908 // Indirect Memory Times Scale Plus Index Register
  4909 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4910 %{
  4911   match(AddP reg (LShiftI ireg scale));
  4913   op_cost(100);
  4914   format %{"[$reg + $ireg << $scale]" %}
  4915   interface(MEMORY_INTER) %{
  4916     base($reg);
  4917     index($ireg);
  4918     scale($scale);
  4919     disp(0x0);
  4920   %}
  4921 %}
  4923 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4924 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4925 %{
  4926   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4928   op_cost(100);
  4929   format %{"[$reg + $off + $ireg << $scale]" %}
  4930   interface(MEMORY_INTER) %{
  4931     base($reg);
  4932     index($ireg);
  4933     scale($scale);
  4934     disp($off);
  4935   %}
  4936 %}
  4938 //----------Conditional Branch Operands----------------------------------------
  4939 // Comparison Op  - This is the operation of the comparison, and is limited to
  4940 //                  the following set of codes:
  4941 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4942 //
  4943 // Other attributes of the comparison, such as unsignedness, are specified
  4944 // by the comparison instruction that sets a condition code flags register.
  4945 // That result is represented by a flags operand whose subtype is appropriate
  4946 // to the unsignedness (etc.) of the comparison.
  4947 //
  4948 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4949 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4950 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4952 // Comparision Code
  4953 operand cmpOp() %{
  4954   match(Bool);
  4956   format %{ "" %}
  4957   interface(COND_INTER) %{
  4958     equal(0x4, "e");
  4959     not_equal(0x5, "ne");
  4960     less(0xC, "l");
  4961     greater_equal(0xD, "ge");
  4962     less_equal(0xE, "le");
  4963     greater(0xF, "g");
  4964   %}
  4965 %}
  4967 // Comparison Code, unsigned compare.  Used by FP also, with
  4968 // C2 (unordered) turned into GT or LT already.  The other bits
  4969 // C0 and C3 are turned into Carry & Zero flags.
  4970 operand cmpOpU() %{
  4971   match(Bool);
  4973   format %{ "" %}
  4974   interface(COND_INTER) %{
  4975     equal(0x4, "e");
  4976     not_equal(0x5, "ne");
  4977     less(0x2, "b");
  4978     greater_equal(0x3, "nb");
  4979     less_equal(0x6, "be");
  4980     greater(0x7, "nbe");
  4981   %}
  4982 %}
  4984 // Floating comparisons that don't require any fixup for the unordered case
  4985 operand cmpOpUCF() %{
  4986   match(Bool);
  4987   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4988             n->as_Bool()->_test._test == BoolTest::ge ||
  4989             n->as_Bool()->_test._test == BoolTest::le ||
  4990             n->as_Bool()->_test._test == BoolTest::gt);
  4991   format %{ "" %}
  4992   interface(COND_INTER) %{
  4993     equal(0x4, "e");
  4994     not_equal(0x5, "ne");
  4995     less(0x2, "b");
  4996     greater_equal(0x3, "nb");
  4997     less_equal(0x6, "be");
  4998     greater(0x7, "nbe");
  4999   %}
  5000 %}
  5003 // Floating comparisons that can be fixed up with extra conditional jumps
  5004 operand cmpOpUCF2() %{
  5005   match(Bool);
  5006   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5007             n->as_Bool()->_test._test == BoolTest::eq);
  5008   format %{ "" %}
  5009   interface(COND_INTER) %{
  5010     equal(0x4, "e");
  5011     not_equal(0x5, "ne");
  5012     less(0x2, "b");
  5013     greater_equal(0x3, "nb");
  5014     less_equal(0x6, "be");
  5015     greater(0x7, "nbe");
  5016   %}
  5017 %}
  5019 // Comparison Code for FP conditional move
  5020 operand cmpOp_fcmov() %{
  5021   match(Bool);
  5023   format %{ "" %}
  5024   interface(COND_INTER) %{
  5025     equal        (0x0C8);
  5026     not_equal    (0x1C8);
  5027     less         (0x0C0);
  5028     greater_equal(0x1C0);
  5029     less_equal   (0x0D0);
  5030     greater      (0x1D0);
  5031   %}
  5032 %}
  5034 // Comparision Code used in long compares
  5035 operand cmpOp_commute() %{
  5036   match(Bool);
  5038   format %{ "" %}
  5039   interface(COND_INTER) %{
  5040     equal(0x4, "e");
  5041     not_equal(0x5, "ne");
  5042     less(0xF, "g");
  5043     greater_equal(0xE, "le");
  5044     less_equal(0xD, "ge");
  5045     greater(0xC, "l");
  5046   %}
  5047 %}
  5049 //----------OPERAND CLASSES----------------------------------------------------
  5050 // Operand Classes are groups of operands that are used as to simplify
  5051 // instruction definitions by not requiring the AD writer to specify separate
  5052 // instructions for every form of operand when the instruction accepts
  5053 // multiple operand types with the same basic encoding and format.  The classic
  5054 // case of this is memory operands.
  5056 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5057                indIndex, indIndexScale, indIndexScaleOffset);
  5059 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5060 // This means some kind of offset is always required and you cannot use
  5061 // an oop as the offset (done when working on static globals).
  5062 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5063                     indIndex, indIndexScale, indIndexScaleOffset);
  5066 //----------PIPELINE-----------------------------------------------------------
  5067 // Rules which define the behavior of the target architectures pipeline.
  5068 pipeline %{
  5070 //----------ATTRIBUTES---------------------------------------------------------
  5071 attributes %{
  5072   variable_size_instructions;        // Fixed size instructions
  5073   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5074   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5075   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5076   instruction_fetch_units = 1;       // of 16 bytes
  5078   // List of nop instructions
  5079   nops( MachNop );
  5080 %}
  5082 //----------RESOURCES----------------------------------------------------------
  5083 // Resources are the functional units available to the machine
  5085 // Generic P2/P3 pipeline
  5086 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5087 // 3 instructions decoded per cycle.
  5088 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5089 // 2 ALU op, only ALU0 handles mul/div instructions.
  5090 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5091            MS0, MS1, MEM = MS0 | MS1,
  5092            BR, FPU,
  5093            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5095 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5096 // Pipeline Description specifies the stages in the machine's pipeline
  5098 // Generic P2/P3 pipeline
  5099 pipe_desc(S0, S1, S2, S3, S4, S5);
  5101 //----------PIPELINE CLASSES---------------------------------------------------
  5102 // Pipeline Classes describe the stages in which input and output are
  5103 // referenced by the hardware pipeline.
  5105 // Naming convention: ialu or fpu
  5106 // Then: _reg
  5107 // Then: _reg if there is a 2nd register
  5108 // Then: _long if it's a pair of instructions implementing a long
  5109 // Then: _fat if it requires the big decoder
  5110 //   Or: _mem if it requires the big decoder and a memory unit.
  5112 // Integer ALU reg operation
  5113 pipe_class ialu_reg(rRegI dst) %{
  5114     single_instruction;
  5115     dst    : S4(write);
  5116     dst    : S3(read);
  5117     DECODE : S0;        // any decoder
  5118     ALU    : S3;        // any alu
  5119 %}
  5121 // Long ALU reg operation
  5122 pipe_class ialu_reg_long(eRegL dst) %{
  5123     instruction_count(2);
  5124     dst    : S4(write);
  5125     dst    : S3(read);
  5126     DECODE : S0(2);     // any 2 decoders
  5127     ALU    : S3(2);     // both alus
  5128 %}
  5130 // Integer ALU reg operation using big decoder
  5131 pipe_class ialu_reg_fat(rRegI dst) %{
  5132     single_instruction;
  5133     dst    : S4(write);
  5134     dst    : S3(read);
  5135     D0     : S0;        // big decoder only
  5136     ALU    : S3;        // any alu
  5137 %}
  5139 // Long ALU reg operation using big decoder
  5140 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5141     instruction_count(2);
  5142     dst    : S4(write);
  5143     dst    : S3(read);
  5144     D0     : S0(2);     // big decoder only; twice
  5145     ALU    : S3(2);     // any 2 alus
  5146 %}
  5148 // Integer ALU reg-reg operation
  5149 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  5150     single_instruction;
  5151     dst    : S4(write);
  5152     src    : S3(read);
  5153     DECODE : S0;        // any decoder
  5154     ALU    : S3;        // any alu
  5155 %}
  5157 // Long ALU reg-reg operation
  5158 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5159     instruction_count(2);
  5160     dst    : S4(write);
  5161     src    : S3(read);
  5162     DECODE : S0(2);     // any 2 decoders
  5163     ALU    : S3(2);     // both alus
  5164 %}
  5166 // Integer ALU reg-reg operation
  5167 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  5168     single_instruction;
  5169     dst    : S4(write);
  5170     src    : S3(read);
  5171     D0     : S0;        // big decoder only
  5172     ALU    : S3;        // any alu
  5173 %}
  5175 // Long ALU reg-reg operation
  5176 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5177     instruction_count(2);
  5178     dst    : S4(write);
  5179     src    : S3(read);
  5180     D0     : S0(2);     // big decoder only; twice
  5181     ALU    : S3(2);     // both alus
  5182 %}
  5184 // Integer ALU reg-mem operation
  5185 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  5186     single_instruction;
  5187     dst    : S5(write);
  5188     mem    : S3(read);
  5189     D0     : S0;        // big decoder only
  5190     ALU    : S4;        // any alu
  5191     MEM    : S3;        // any mem
  5192 %}
  5194 // Long ALU reg-mem operation
  5195 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5196     instruction_count(2);
  5197     dst    : S5(write);
  5198     mem    : S3(read);
  5199     D0     : S0(2);     // big decoder only; twice
  5200     ALU    : S4(2);     // any 2 alus
  5201     MEM    : S3(2);     // both mems
  5202 %}
  5204 // Integer mem operation (prefetch)
  5205 pipe_class ialu_mem(memory mem)
  5206 %{
  5207     single_instruction;
  5208     mem    : S3(read);
  5209     D0     : S0;        // big decoder only
  5210     MEM    : S3;        // any mem
  5211 %}
  5213 // Integer Store to Memory
  5214 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  5215     single_instruction;
  5216     mem    : S3(read);
  5217     src    : S5(read);
  5218     D0     : S0;        // big decoder only
  5219     ALU    : S4;        // any alu
  5220     MEM    : S3;
  5221 %}
  5223 // Long Store to Memory
  5224 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5225     instruction_count(2);
  5226     mem    : S3(read);
  5227     src    : S5(read);
  5228     D0     : S0(2);     // big decoder only; twice
  5229     ALU    : S4(2);     // any 2 alus
  5230     MEM    : S3(2);     // Both mems
  5231 %}
  5233 // Integer Store to Memory
  5234 pipe_class ialu_mem_imm(memory mem) %{
  5235     single_instruction;
  5236     mem    : S3(read);
  5237     D0     : S0;        // big decoder only
  5238     ALU    : S4;        // any alu
  5239     MEM    : S3;
  5240 %}
  5242 // Integer ALU0 reg-reg operation
  5243 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  5244     single_instruction;
  5245     dst    : S4(write);
  5246     src    : S3(read);
  5247     D0     : S0;        // Big decoder only
  5248     ALU0   : S3;        // only alu0
  5249 %}
  5251 // Integer ALU0 reg-mem operation
  5252 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  5253     single_instruction;
  5254     dst    : S5(write);
  5255     mem    : S3(read);
  5256     D0     : S0;        // big decoder only
  5257     ALU0   : S4;        // ALU0 only
  5258     MEM    : S3;        // any mem
  5259 %}
  5261 // Integer ALU reg-reg operation
  5262 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  5263     single_instruction;
  5264     cr     : S4(write);
  5265     src1   : S3(read);
  5266     src2   : S3(read);
  5267     DECODE : S0;        // any decoder
  5268     ALU    : S3;        // any alu
  5269 %}
  5271 // Integer ALU reg-imm operation
  5272 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  5273     single_instruction;
  5274     cr     : S4(write);
  5275     src1   : S3(read);
  5276     DECODE : S0;        // any decoder
  5277     ALU    : S3;        // any alu
  5278 %}
  5280 // Integer ALU reg-mem operation
  5281 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  5282     single_instruction;
  5283     cr     : S4(write);
  5284     src1   : S3(read);
  5285     src2   : S3(read);
  5286     D0     : S0;        // big decoder only
  5287     ALU    : S4;        // any alu
  5288     MEM    : S3;
  5289 %}
  5291 // Conditional move reg-reg
  5292 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  5293     instruction_count(4);
  5294     y      : S4(read);
  5295     q      : S3(read);
  5296     p      : S3(read);
  5297     DECODE : S0(4);     // any decoder
  5298 %}
  5300 // Conditional move reg-reg
  5301 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  5302     single_instruction;
  5303     dst    : S4(write);
  5304     src    : S3(read);
  5305     cr     : S3(read);
  5306     DECODE : S0;        // any decoder
  5307 %}
  5309 // Conditional move reg-mem
  5310 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  5311     single_instruction;
  5312     dst    : S4(write);
  5313     src    : S3(read);
  5314     cr     : S3(read);
  5315     DECODE : S0;        // any decoder
  5316     MEM    : S3;
  5317 %}
  5319 // Conditional move reg-reg long
  5320 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5321     single_instruction;
  5322     dst    : S4(write);
  5323     src    : S3(read);
  5324     cr     : S3(read);
  5325     DECODE : S0(2);     // any 2 decoders
  5326 %}
  5328 // Conditional move double reg-reg
  5329 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5330     single_instruction;
  5331     dst    : S4(write);
  5332     src    : S3(read);
  5333     cr     : S3(read);
  5334     DECODE : S0;        // any decoder
  5335 %}
  5337 // Float reg-reg operation
  5338 pipe_class fpu_reg(regDPR dst) %{
  5339     instruction_count(2);
  5340     dst    : S3(read);
  5341     DECODE : S0(2);     // any 2 decoders
  5342     FPU    : S3;
  5343 %}
  5345 // Float reg-reg operation
  5346 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5347     instruction_count(2);
  5348     dst    : S4(write);
  5349     src    : S3(read);
  5350     DECODE : S0(2);     // any 2 decoders
  5351     FPU    : S3;
  5352 %}
  5354 // Float reg-reg operation
  5355 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5356     instruction_count(3);
  5357     dst    : S4(write);
  5358     src1   : S3(read);
  5359     src2   : S3(read);
  5360     DECODE : S0(3);     // any 3 decoders
  5361     FPU    : S3(2);
  5362 %}
  5364 // Float reg-reg operation
  5365 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5366     instruction_count(4);
  5367     dst    : S4(write);
  5368     src1   : S3(read);
  5369     src2   : S3(read);
  5370     src3   : S3(read);
  5371     DECODE : S0(4);     // any 3 decoders
  5372     FPU    : S3(2);
  5373 %}
  5375 // Float reg-reg operation
  5376 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5377     instruction_count(4);
  5378     dst    : S4(write);
  5379     src1   : S3(read);
  5380     src2   : S3(read);
  5381     src3   : S3(read);
  5382     DECODE : S1(3);     // any 3 decoders
  5383     D0     : S0;        // Big decoder only
  5384     FPU    : S3(2);
  5385     MEM    : S3;
  5386 %}
  5388 // Float reg-mem operation
  5389 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5390     instruction_count(2);
  5391     dst    : S5(write);
  5392     mem    : S3(read);
  5393     D0     : S0;        // big decoder only
  5394     DECODE : S1;        // any decoder for FPU POP
  5395     FPU    : S4;
  5396     MEM    : S3;        // any mem
  5397 %}
  5399 // Float reg-mem operation
  5400 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5401     instruction_count(3);
  5402     dst    : S5(write);
  5403     src1   : S3(read);
  5404     mem    : S3(read);
  5405     D0     : S0;        // big decoder only
  5406     DECODE : S1(2);     // any decoder for FPU POP
  5407     FPU    : S4;
  5408     MEM    : S3;        // any mem
  5409 %}
  5411 // Float mem-reg operation
  5412 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5413     instruction_count(2);
  5414     src    : S5(read);
  5415     mem    : S3(read);
  5416     DECODE : S0;        // any decoder for FPU PUSH
  5417     D0     : S1;        // big decoder only
  5418     FPU    : S4;
  5419     MEM    : S3;        // any mem
  5420 %}
  5422 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5423     instruction_count(3);
  5424     src1   : S3(read);
  5425     src2   : S3(read);
  5426     mem    : S3(read);
  5427     DECODE : S0(2);     // any decoder for FPU PUSH
  5428     D0     : S1;        // big decoder only
  5429     FPU    : S4;
  5430     MEM    : S3;        // any mem
  5431 %}
  5433 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5434     instruction_count(3);
  5435     src1   : S3(read);
  5436     src2   : S3(read);
  5437     mem    : S4(read);
  5438     DECODE : S0;        // any decoder for FPU PUSH
  5439     D0     : S0(2);     // big decoder only
  5440     FPU    : S4;
  5441     MEM    : S3(2);     // any mem
  5442 %}
  5444 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5445     instruction_count(2);
  5446     src1   : S3(read);
  5447     dst    : S4(read);
  5448     D0     : S0(2);     // big decoder only
  5449     MEM    : S3(2);     // any mem
  5450 %}
  5452 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5453     instruction_count(3);
  5454     src1   : S3(read);
  5455     src2   : S3(read);
  5456     dst    : S4(read);
  5457     D0     : S0(3);     // big decoder only
  5458     FPU    : S4;
  5459     MEM    : S3(3);     // any mem
  5460 %}
  5462 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5463     instruction_count(3);
  5464     src1   : S4(read);
  5465     mem    : S4(read);
  5466     DECODE : S0;        // any decoder for FPU PUSH
  5467     D0     : S0(2);     // big decoder only
  5468     FPU    : S4;
  5469     MEM    : S3(2);     // any mem
  5470 %}
  5472 // Float load constant
  5473 pipe_class fpu_reg_con(regDPR dst) %{
  5474     instruction_count(2);
  5475     dst    : S5(write);
  5476     D0     : S0;        // big decoder only for the load
  5477     DECODE : S1;        // any decoder for FPU POP
  5478     FPU    : S4;
  5479     MEM    : S3;        // any mem
  5480 %}
  5482 // Float load constant
  5483 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5484     instruction_count(3);
  5485     dst    : S5(write);
  5486     src    : S3(read);
  5487     D0     : S0;        // big decoder only for the load
  5488     DECODE : S1(2);     // any decoder for FPU POP
  5489     FPU    : S4;
  5490     MEM    : S3;        // any mem
  5491 %}
  5493 // UnConditional branch
  5494 pipe_class pipe_jmp( label labl ) %{
  5495     single_instruction;
  5496     BR   : S3;
  5497 %}
  5499 // Conditional branch
  5500 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5501     single_instruction;
  5502     cr    : S1(read);
  5503     BR    : S3;
  5504 %}
  5506 // Allocation idiom
  5507 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5508     instruction_count(1); force_serialization;
  5509     fixed_latency(6);
  5510     heap_ptr : S3(read);
  5511     DECODE   : S0(3);
  5512     D0       : S2;
  5513     MEM      : S3;
  5514     ALU      : S3(2);
  5515     dst      : S5(write);
  5516     BR       : S5;
  5517 %}
  5519 // Generic big/slow expanded idiom
  5520 pipe_class pipe_slow(  ) %{
  5521     instruction_count(10); multiple_bundles; force_serialization;
  5522     fixed_latency(100);
  5523     D0  : S0(2);
  5524     MEM : S3(2);
  5525 %}
  5527 // The real do-nothing guy
  5528 pipe_class empty( ) %{
  5529     instruction_count(0);
  5530 %}
  5532 // Define the class for the Nop node
  5533 define %{
  5534    MachNop = empty;
  5535 %}
  5537 %}
  5539 //----------INSTRUCTIONS-------------------------------------------------------
  5540 //
  5541 // match      -- States which machine-independent subtree may be replaced
  5542 //               by this instruction.
  5543 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5544 //               selection to identify a minimum cost tree of machine
  5545 //               instructions that matches a tree of machine-independent
  5546 //               instructions.
  5547 // format     -- A string providing the disassembly for this instruction.
  5548 //               The value of an instruction's operand may be inserted
  5549 //               by referring to it with a '$' prefix.
  5550 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5551 //               to within an encode class as $primary, $secondary, and $tertiary
  5552 //               respectively.  The primary opcode is commonly used to
  5553 //               indicate the type of machine instruction, while secondary
  5554 //               and tertiary are often used for prefix options or addressing
  5555 //               modes.
  5556 // ins_encode -- A list of encode classes with parameters. The encode class
  5557 //               name must have been defined in an 'enc_class' specification
  5558 //               in the encode section of the architecture description.
  5560 //----------BSWAP-Instruction--------------------------------------------------
  5561 instruct bytes_reverse_int(rRegI dst) %{
  5562   match(Set dst (ReverseBytesI dst));
  5564   format %{ "BSWAP  $dst" %}
  5565   opcode(0x0F, 0xC8);
  5566   ins_encode( OpcP, OpcSReg(dst) );
  5567   ins_pipe( ialu_reg );
  5568 %}
  5570 instruct bytes_reverse_long(eRegL dst) %{
  5571   match(Set dst (ReverseBytesL dst));
  5573   format %{ "BSWAP  $dst.lo\n\t"
  5574             "BSWAP  $dst.hi\n\t"
  5575             "XCHG   $dst.lo $dst.hi" %}
  5577   ins_cost(125);
  5578   ins_encode( bswap_long_bytes(dst) );
  5579   ins_pipe( ialu_reg_reg);
  5580 %}
  5582 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  5583   match(Set dst (ReverseBytesUS dst));
  5584   effect(KILL cr);
  5586   format %{ "BSWAP  $dst\n\t" 
  5587             "SHR    $dst,16\n\t" %}
  5588   ins_encode %{
  5589     __ bswapl($dst$$Register);
  5590     __ shrl($dst$$Register, 16); 
  5591   %}
  5592   ins_pipe( ialu_reg );
  5593 %}
  5595 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5596   match(Set dst (ReverseBytesS dst));
  5597   effect(KILL cr);
  5599   format %{ "BSWAP  $dst\n\t" 
  5600             "SAR    $dst,16\n\t" %}
  5601   ins_encode %{
  5602     __ bswapl($dst$$Register);
  5603     __ sarl($dst$$Register, 16); 
  5604   %}
  5605   ins_pipe( ialu_reg );
  5606 %}
  5609 //---------- Zeros Count Instructions ------------------------------------------
  5611 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5612   predicate(UseCountLeadingZerosInstruction);
  5613   match(Set dst (CountLeadingZerosI src));
  5614   effect(KILL cr);
  5616   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5617   ins_encode %{
  5618     __ lzcntl($dst$$Register, $src$$Register);
  5619   %}
  5620   ins_pipe(ialu_reg);
  5621 %}
  5623 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5624   predicate(!UseCountLeadingZerosInstruction);
  5625   match(Set dst (CountLeadingZerosI src));
  5626   effect(KILL cr);
  5628   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5629             "JNZ    skip\n\t"
  5630             "MOV    $dst, -1\n"
  5631       "skip:\n\t"
  5632             "NEG    $dst\n\t"
  5633             "ADD    $dst, 31" %}
  5634   ins_encode %{
  5635     Register Rdst = $dst$$Register;
  5636     Register Rsrc = $src$$Register;
  5637     Label skip;
  5638     __ bsrl(Rdst, Rsrc);
  5639     __ jccb(Assembler::notZero, skip);
  5640     __ movl(Rdst, -1);
  5641     __ bind(skip);
  5642     __ negl(Rdst);
  5643     __ addl(Rdst, BitsPerInt - 1);
  5644   %}
  5645   ins_pipe(ialu_reg);
  5646 %}
  5648 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5649   predicate(UseCountLeadingZerosInstruction);
  5650   match(Set dst (CountLeadingZerosL src));
  5651   effect(TEMP dst, KILL cr);
  5653   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5654             "JNC    done\n\t"
  5655             "LZCNT  $dst, $src.lo\n\t"
  5656             "ADD    $dst, 32\n"
  5657       "done:" %}
  5658   ins_encode %{
  5659     Register Rdst = $dst$$Register;
  5660     Register Rsrc = $src$$Register;
  5661     Label done;
  5662     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5663     __ jccb(Assembler::carryClear, done);
  5664     __ lzcntl(Rdst, Rsrc);
  5665     __ addl(Rdst, BitsPerInt);
  5666     __ bind(done);
  5667   %}
  5668   ins_pipe(ialu_reg);
  5669 %}
  5671 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5672   predicate(!UseCountLeadingZerosInstruction);
  5673   match(Set dst (CountLeadingZerosL src));
  5674   effect(TEMP dst, KILL cr);
  5676   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5677             "JZ     msw_is_zero\n\t"
  5678             "ADD    $dst, 32\n\t"
  5679             "JMP    not_zero\n"
  5680       "msw_is_zero:\n\t"
  5681             "BSR    $dst, $src.lo\n\t"
  5682             "JNZ    not_zero\n\t"
  5683             "MOV    $dst, -1\n"
  5684       "not_zero:\n\t"
  5685             "NEG    $dst\n\t"
  5686             "ADD    $dst, 63\n" %}
  5687  ins_encode %{
  5688     Register Rdst = $dst$$Register;
  5689     Register Rsrc = $src$$Register;
  5690     Label msw_is_zero;
  5691     Label not_zero;
  5692     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5693     __ jccb(Assembler::zero, msw_is_zero);
  5694     __ addl(Rdst, BitsPerInt);
  5695     __ jmpb(not_zero);
  5696     __ bind(msw_is_zero);
  5697     __ bsrl(Rdst, Rsrc);
  5698     __ jccb(Assembler::notZero, not_zero);
  5699     __ movl(Rdst, -1);
  5700     __ bind(not_zero);
  5701     __ negl(Rdst);
  5702     __ addl(Rdst, BitsPerLong - 1);
  5703   %}
  5704   ins_pipe(ialu_reg);
  5705 %}
  5707 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5708   match(Set dst (CountTrailingZerosI src));
  5709   effect(KILL cr);
  5711   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5712             "JNZ    done\n\t"
  5713             "MOV    $dst, 32\n"
  5714       "done:" %}
  5715   ins_encode %{
  5716     Register Rdst = $dst$$Register;
  5717     Label done;
  5718     __ bsfl(Rdst, $src$$Register);
  5719     __ jccb(Assembler::notZero, done);
  5720     __ movl(Rdst, BitsPerInt);
  5721     __ bind(done);
  5722   %}
  5723   ins_pipe(ialu_reg);
  5724 %}
  5726 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5727   match(Set dst (CountTrailingZerosL src));
  5728   effect(TEMP dst, KILL cr);
  5730   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5731             "JNZ    done\n\t"
  5732             "BSF    $dst, $src.hi\n\t"
  5733             "JNZ    msw_not_zero\n\t"
  5734             "MOV    $dst, 32\n"
  5735       "msw_not_zero:\n\t"
  5736             "ADD    $dst, 32\n"
  5737       "done:" %}
  5738   ins_encode %{
  5739     Register Rdst = $dst$$Register;
  5740     Register Rsrc = $src$$Register;
  5741     Label msw_not_zero;
  5742     Label done;
  5743     __ bsfl(Rdst, Rsrc);
  5744     __ jccb(Assembler::notZero, done);
  5745     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5746     __ jccb(Assembler::notZero, msw_not_zero);
  5747     __ movl(Rdst, BitsPerInt);
  5748     __ bind(msw_not_zero);
  5749     __ addl(Rdst, BitsPerInt);
  5750     __ bind(done);
  5751   %}
  5752   ins_pipe(ialu_reg);
  5753 %}
  5756 //---------- Population Count Instructions -------------------------------------
  5758 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5759   predicate(UsePopCountInstruction);
  5760   match(Set dst (PopCountI src));
  5761   effect(KILL cr);
  5763   format %{ "POPCNT $dst, $src" %}
  5764   ins_encode %{
  5765     __ popcntl($dst$$Register, $src$$Register);
  5766   %}
  5767   ins_pipe(ialu_reg);
  5768 %}
  5770 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5771   predicate(UsePopCountInstruction);
  5772   match(Set dst (PopCountI (LoadI mem)));
  5773   effect(KILL cr);
  5775   format %{ "POPCNT $dst, $mem" %}
  5776   ins_encode %{
  5777     __ popcntl($dst$$Register, $mem$$Address);
  5778   %}
  5779   ins_pipe(ialu_reg);
  5780 %}
  5782 // Note: Long.bitCount(long) returns an int.
  5783 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5784   predicate(UsePopCountInstruction);
  5785   match(Set dst (PopCountL src));
  5786   effect(KILL cr, TEMP tmp, TEMP dst);
  5788   format %{ "POPCNT $dst, $src.lo\n\t"
  5789             "POPCNT $tmp, $src.hi\n\t"
  5790             "ADD    $dst, $tmp" %}
  5791   ins_encode %{
  5792     __ popcntl($dst$$Register, $src$$Register);
  5793     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5794     __ addl($dst$$Register, $tmp$$Register);
  5795   %}
  5796   ins_pipe(ialu_reg);
  5797 %}
  5799 // Note: Long.bitCount(long) returns an int.
  5800 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5801   predicate(UsePopCountInstruction);
  5802   match(Set dst (PopCountL (LoadL mem)));
  5803   effect(KILL cr, TEMP tmp, TEMP dst);
  5805   format %{ "POPCNT $dst, $mem\n\t"
  5806             "POPCNT $tmp, $mem+4\n\t"
  5807             "ADD    $dst, $tmp" %}
  5808   ins_encode %{
  5809     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5810     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5811     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
  5812     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
  5813     __ addl($dst$$Register, $tmp$$Register);
  5814   %}
  5815   ins_pipe(ialu_reg);
  5816 %}
  5819 //----------Load/Store/Move Instructions---------------------------------------
  5820 //----------Load Instructions--------------------------------------------------
  5821 // Load Byte (8bit signed)
  5822 instruct loadB(xRegI dst, memory mem) %{
  5823   match(Set dst (LoadB mem));
  5825   ins_cost(125);
  5826   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5828   ins_encode %{
  5829     __ movsbl($dst$$Register, $mem$$Address);
  5830   %}
  5832   ins_pipe(ialu_reg_mem);
  5833 %}
  5835 // Load Byte (8bit signed) into Long Register
  5836 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5837   match(Set dst (ConvI2L (LoadB mem)));
  5838   effect(KILL cr);
  5840   ins_cost(375);
  5841   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5842             "MOV    $dst.hi,$dst.lo\n\t"
  5843             "SAR    $dst.hi,7" %}
  5845   ins_encode %{
  5846     __ movsbl($dst$$Register, $mem$$Address);
  5847     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5848     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5849   %}
  5851   ins_pipe(ialu_reg_mem);
  5852 %}
  5854 // Load Unsigned Byte (8bit UNsigned)
  5855 instruct loadUB(xRegI dst, memory mem) %{
  5856   match(Set dst (LoadUB mem));
  5858   ins_cost(125);
  5859   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5861   ins_encode %{
  5862     __ movzbl($dst$$Register, $mem$$Address);
  5863   %}
  5865   ins_pipe(ialu_reg_mem);
  5866 %}
  5868 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5869 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5870   match(Set dst (ConvI2L (LoadUB mem)));
  5871   effect(KILL cr);
  5873   ins_cost(250);
  5874   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5875             "XOR    $dst.hi,$dst.hi" %}
  5877   ins_encode %{
  5878     Register Rdst = $dst$$Register;
  5879     __ movzbl(Rdst, $mem$$Address);
  5880     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5881   %}
  5883   ins_pipe(ialu_reg_mem);
  5884 %}
  5886 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5887 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5888   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5889   effect(KILL cr);
  5891   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5892             "XOR    $dst.hi,$dst.hi\n\t"
  5893             "AND    $dst.lo,$mask" %}
  5894   ins_encode %{
  5895     Register Rdst = $dst$$Register;
  5896     __ movzbl(Rdst, $mem$$Address);
  5897     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5898     __ andl(Rdst, $mask$$constant);
  5899   %}
  5900   ins_pipe(ialu_reg_mem);
  5901 %}
  5903 // Load Short (16bit signed)
  5904 instruct loadS(rRegI dst, memory mem) %{
  5905   match(Set dst (LoadS mem));
  5907   ins_cost(125);
  5908   format %{ "MOVSX  $dst,$mem\t# short" %}
  5910   ins_encode %{
  5911     __ movswl($dst$$Register, $mem$$Address);
  5912   %}
  5914   ins_pipe(ialu_reg_mem);
  5915 %}
  5917 // Load Short (16 bit signed) to Byte (8 bit signed)
  5918 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5919   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5921   ins_cost(125);
  5922   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5923   ins_encode %{
  5924     __ movsbl($dst$$Register, $mem$$Address);
  5925   %}
  5926   ins_pipe(ialu_reg_mem);
  5927 %}
  5929 // Load Short (16bit signed) into Long Register
  5930 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5931   match(Set dst (ConvI2L (LoadS mem)));
  5932   effect(KILL cr);
  5934   ins_cost(375);
  5935   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5936             "MOV    $dst.hi,$dst.lo\n\t"
  5937             "SAR    $dst.hi,15" %}
  5939   ins_encode %{
  5940     __ movswl($dst$$Register, $mem$$Address);
  5941     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5942     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5943   %}
  5945   ins_pipe(ialu_reg_mem);
  5946 %}
  5948 // Load Unsigned Short/Char (16bit unsigned)
  5949 instruct loadUS(rRegI dst, memory mem) %{
  5950   match(Set dst (LoadUS mem));
  5952   ins_cost(125);
  5953   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5955   ins_encode %{
  5956     __ movzwl($dst$$Register, $mem$$Address);
  5957   %}
  5959   ins_pipe(ialu_reg_mem);
  5960 %}
  5962 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5963 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5964   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5966   ins_cost(125);
  5967   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5968   ins_encode %{
  5969     __ movsbl($dst$$Register, $mem$$Address);
  5970   %}
  5971   ins_pipe(ialu_reg_mem);
  5972 %}
  5974 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5975 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5976   match(Set dst (ConvI2L (LoadUS mem)));
  5977   effect(KILL cr);
  5979   ins_cost(250);
  5980   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5981             "XOR    $dst.hi,$dst.hi" %}
  5983   ins_encode %{
  5984     __ movzwl($dst$$Register, $mem$$Address);
  5985     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5986   %}
  5988   ins_pipe(ialu_reg_mem);
  5989 %}
  5991 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5992 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5993   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5994   effect(KILL cr);
  5996   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5997             "XOR    $dst.hi,$dst.hi" %}
  5998   ins_encode %{
  5999     Register Rdst = $dst$$Register;
  6000     __ movzbl(Rdst, $mem$$Address);
  6001     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6002   %}
  6003   ins_pipe(ialu_reg_mem);
  6004 %}
  6006 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6007 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6008   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6009   effect(KILL cr);
  6011   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6012             "XOR    $dst.hi,$dst.hi\n\t"
  6013             "AND    $dst.lo,$mask" %}
  6014   ins_encode %{
  6015     Register Rdst = $dst$$Register;
  6016     __ movzwl(Rdst, $mem$$Address);
  6017     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6018     __ andl(Rdst, $mask$$constant);
  6019   %}
  6020   ins_pipe(ialu_reg_mem);
  6021 %}
  6023 // Load Integer
  6024 instruct loadI(rRegI dst, memory mem) %{
  6025   match(Set dst (LoadI mem));
  6027   ins_cost(125);
  6028   format %{ "MOV    $dst,$mem\t# int" %}
  6030   ins_encode %{
  6031     __ movl($dst$$Register, $mem$$Address);
  6032   %}
  6034   ins_pipe(ialu_reg_mem);
  6035 %}
  6037 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6038 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  6039   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6041   ins_cost(125);
  6042   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6043   ins_encode %{
  6044     __ movsbl($dst$$Register, $mem$$Address);
  6045   %}
  6046   ins_pipe(ialu_reg_mem);
  6047 %}
  6049 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6050 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  6051   match(Set dst (AndI (LoadI mem) mask));
  6053   ins_cost(125);
  6054   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6055   ins_encode %{
  6056     __ movzbl($dst$$Register, $mem$$Address);
  6057   %}
  6058   ins_pipe(ialu_reg_mem);
  6059 %}
  6061 // Load Integer (32 bit signed) to Short (16 bit signed)
  6062 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  6063   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6065   ins_cost(125);
  6066   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6067   ins_encode %{
  6068     __ movswl($dst$$Register, $mem$$Address);
  6069   %}
  6070   ins_pipe(ialu_reg_mem);
  6071 %}
  6073 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6074 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  6075   match(Set dst (AndI (LoadI mem) mask));
  6077   ins_cost(125);
  6078   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6079   ins_encode %{
  6080     __ movzwl($dst$$Register, $mem$$Address);
  6081   %}
  6082   ins_pipe(ialu_reg_mem);
  6083 %}
  6085 // Load Integer into Long Register
  6086 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6087   match(Set dst (ConvI2L (LoadI mem)));
  6088   effect(KILL cr);
  6090   ins_cost(375);
  6091   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6092             "MOV    $dst.hi,$dst.lo\n\t"
  6093             "SAR    $dst.hi,31" %}
  6095   ins_encode %{
  6096     __ movl($dst$$Register, $mem$$Address);
  6097     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6098     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6099   %}
  6101   ins_pipe(ialu_reg_mem);
  6102 %}
  6104 // Load Integer with mask 0xFF into Long Register
  6105 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6106   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6107   effect(KILL cr);
  6109   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6110             "XOR    $dst.hi,$dst.hi" %}
  6111   ins_encode %{
  6112     Register Rdst = $dst$$Register;
  6113     __ movzbl(Rdst, $mem$$Address);
  6114     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6115   %}
  6116   ins_pipe(ialu_reg_mem);
  6117 %}
  6119 // Load Integer with mask 0xFFFF into Long Register
  6120 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6121   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6122   effect(KILL cr);
  6124   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6125             "XOR    $dst.hi,$dst.hi" %}
  6126   ins_encode %{
  6127     Register Rdst = $dst$$Register;
  6128     __ movzwl(Rdst, $mem$$Address);
  6129     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6130   %}
  6131   ins_pipe(ialu_reg_mem);
  6132 %}
  6134 // Load Integer with 32-bit mask into Long Register
  6135 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6136   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6137   effect(KILL cr);
  6139   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6140             "XOR    $dst.hi,$dst.hi\n\t"
  6141             "AND    $dst.lo,$mask" %}
  6142   ins_encode %{
  6143     Register Rdst = $dst$$Register;
  6144     __ movl(Rdst, $mem$$Address);
  6145     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6146     __ andl(Rdst, $mask$$constant);
  6147   %}
  6148   ins_pipe(ialu_reg_mem);
  6149 %}
  6151 // Load Unsigned Integer into Long Register
  6152 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
  6153   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  6154   effect(KILL cr);
  6156   ins_cost(250);
  6157   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6158             "XOR    $dst.hi,$dst.hi" %}
  6160   ins_encode %{
  6161     __ movl($dst$$Register, $mem$$Address);
  6162     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6163   %}
  6165   ins_pipe(ialu_reg_mem);
  6166 %}
  6168 // Load Long.  Cannot clobber address while loading, so restrict address
  6169 // register to ESI
  6170 instruct loadL(eRegL dst, load_long_memory mem) %{
  6171   predicate(!((LoadLNode*)n)->require_atomic_access());
  6172   match(Set dst (LoadL mem));
  6174   ins_cost(250);
  6175   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6176             "MOV    $dst.hi,$mem+4" %}
  6178   ins_encode %{
  6179     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
  6180     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
  6181     __ movl($dst$$Register, Amemlo);
  6182     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6183   %}
  6185   ins_pipe(ialu_reg_long_mem);
  6186 %}
  6188 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6189 // then store it down to the stack and reload on the int
  6190 // side.
  6191 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6192   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6193   match(Set dst (LoadL mem));
  6195   ins_cost(200);
  6196   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6197             "FISTp  $dst" %}
  6198   ins_encode(enc_loadL_volatile(mem,dst));
  6199   ins_pipe( fpu_reg_mem );
  6200 %}
  6202 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6203   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6204   match(Set dst (LoadL mem));
  6205   effect(TEMP tmp);
  6206   ins_cost(180);
  6207   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6208             "MOVSD  $dst,$tmp" %}
  6209   ins_encode %{
  6210     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6211     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6212   %}
  6213   ins_pipe( pipe_slow );
  6214 %}
  6216 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6217   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6218   match(Set dst (LoadL mem));
  6219   effect(TEMP tmp);
  6220   ins_cost(160);
  6221   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6222             "MOVD   $dst.lo,$tmp\n\t"
  6223             "PSRLQ  $tmp,32\n\t"
  6224             "MOVD   $dst.hi,$tmp" %}
  6225   ins_encode %{
  6226     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6227     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6228     __ psrlq($tmp$$XMMRegister, 32);
  6229     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6230   %}
  6231   ins_pipe( pipe_slow );
  6232 %}
  6234 // Load Range
  6235 instruct loadRange(rRegI dst, memory mem) %{
  6236   match(Set dst (LoadRange mem));
  6238   ins_cost(125);
  6239   format %{ "MOV    $dst,$mem" %}
  6240   opcode(0x8B);
  6241   ins_encode( OpcP, RegMem(dst,mem));
  6242   ins_pipe( ialu_reg_mem );
  6243 %}
  6246 // Load Pointer
  6247 instruct loadP(eRegP dst, memory mem) %{
  6248   match(Set dst (LoadP mem));
  6250   ins_cost(125);
  6251   format %{ "MOV    $dst,$mem" %}
  6252   opcode(0x8B);
  6253   ins_encode( OpcP, RegMem(dst,mem));
  6254   ins_pipe( ialu_reg_mem );
  6255 %}
  6257 // Load Klass Pointer
  6258 instruct loadKlass(eRegP dst, memory mem) %{
  6259   match(Set dst (LoadKlass mem));
  6261   ins_cost(125);
  6262   format %{ "MOV    $dst,$mem" %}
  6263   opcode(0x8B);
  6264   ins_encode( OpcP, RegMem(dst,mem));
  6265   ins_pipe( ialu_reg_mem );
  6266 %}
  6268 // Load Double
  6269 instruct loadDPR(regDPR dst, memory mem) %{
  6270   predicate(UseSSE<=1);
  6271   match(Set dst (LoadD mem));
  6273   ins_cost(150);
  6274   format %{ "FLD_D  ST,$mem\n\t"
  6275             "FSTP   $dst" %}
  6276   opcode(0xDD);               /* DD /0 */
  6277   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6278               Pop_Reg_DPR(dst) );
  6279   ins_pipe( fpu_reg_mem );
  6280 %}
  6282 // Load Double to XMM
  6283 instruct loadD(regD dst, memory mem) %{
  6284   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6285   match(Set dst (LoadD mem));
  6286   ins_cost(145);
  6287   format %{ "MOVSD  $dst,$mem" %}
  6288   ins_encode %{
  6289     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6290   %}
  6291   ins_pipe( pipe_slow );
  6292 %}
  6294 instruct loadD_partial(regD dst, memory mem) %{
  6295   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6296   match(Set dst (LoadD mem));
  6297   ins_cost(145);
  6298   format %{ "MOVLPD $dst,$mem" %}
  6299   ins_encode %{
  6300     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6301   %}
  6302   ins_pipe( pipe_slow );
  6303 %}
  6305 // Load to XMM register (single-precision floating point)
  6306 // MOVSS instruction
  6307 instruct loadF(regF dst, memory mem) %{
  6308   predicate(UseSSE>=1);
  6309   match(Set dst (LoadF mem));
  6310   ins_cost(145);
  6311   format %{ "MOVSS  $dst,$mem" %}
  6312   ins_encode %{
  6313     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6314   %}
  6315   ins_pipe( pipe_slow );
  6316 %}
  6318 // Load Float
  6319 instruct loadFPR(regFPR dst, memory mem) %{
  6320   predicate(UseSSE==0);
  6321   match(Set dst (LoadF mem));
  6323   ins_cost(150);
  6324   format %{ "FLD_S  ST,$mem\n\t"
  6325             "FSTP   $dst" %}
  6326   opcode(0xD9);               /* D9 /0 */
  6327   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6328               Pop_Reg_FPR(dst) );
  6329   ins_pipe( fpu_reg_mem );
  6330 %}
  6332 // Load Effective Address
  6333 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6334   match(Set dst mem);
  6336   ins_cost(110);
  6337   format %{ "LEA    $dst,$mem" %}
  6338   opcode(0x8D);
  6339   ins_encode( OpcP, RegMem(dst,mem));
  6340   ins_pipe( ialu_reg_reg_fat );
  6341 %}
  6343 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6344   match(Set dst mem);
  6346   ins_cost(110);
  6347   format %{ "LEA    $dst,$mem" %}
  6348   opcode(0x8D);
  6349   ins_encode( OpcP, RegMem(dst,mem));
  6350   ins_pipe( ialu_reg_reg_fat );
  6351 %}
  6353 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6354   match(Set dst mem);
  6356   ins_cost(110);
  6357   format %{ "LEA    $dst,$mem" %}
  6358   opcode(0x8D);
  6359   ins_encode( OpcP, RegMem(dst,mem));
  6360   ins_pipe( ialu_reg_reg_fat );
  6361 %}
  6363 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6364   match(Set dst mem);
  6366   ins_cost(110);
  6367   format %{ "LEA    $dst,$mem" %}
  6368   opcode(0x8D);
  6369   ins_encode( OpcP, RegMem(dst,mem));
  6370   ins_pipe( ialu_reg_reg_fat );
  6371 %}
  6373 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6374   match(Set dst mem);
  6376   ins_cost(110);
  6377   format %{ "LEA    $dst,$mem" %}
  6378   opcode(0x8D);
  6379   ins_encode( OpcP, RegMem(dst,mem));
  6380   ins_pipe( ialu_reg_reg_fat );
  6381 %}
  6383 // Load Constant
  6384 instruct loadConI(rRegI dst, immI src) %{
  6385   match(Set dst src);
  6387   format %{ "MOV    $dst,$src" %}
  6388   ins_encode( LdImmI(dst, src) );
  6389   ins_pipe( ialu_reg_fat );
  6390 %}
  6392 // Load Constant zero
  6393 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  6394   match(Set dst src);
  6395   effect(KILL cr);
  6397   ins_cost(50);
  6398   format %{ "XOR    $dst,$dst" %}
  6399   opcode(0x33);  /* + rd */
  6400   ins_encode( OpcP, RegReg( dst, dst ) );
  6401   ins_pipe( ialu_reg );
  6402 %}
  6404 instruct loadConP(eRegP dst, immP src) %{
  6405   match(Set dst src);
  6407   format %{ "MOV    $dst,$src" %}
  6408   opcode(0xB8);  /* + rd */
  6409   ins_encode( LdImmP(dst, src) );
  6410   ins_pipe( ialu_reg_fat );
  6411 %}
  6413 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6414   match(Set dst src);
  6415   effect(KILL cr);
  6416   ins_cost(200);
  6417   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6418             "MOV    $dst.hi,$src.hi" %}
  6419   opcode(0xB8);
  6420   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6421   ins_pipe( ialu_reg_long_fat );
  6422 %}
  6424 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6425   match(Set dst src);
  6426   effect(KILL cr);
  6427   ins_cost(150);
  6428   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6429             "XOR    $dst.hi,$dst.hi" %}
  6430   opcode(0x33,0x33);
  6431   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6432   ins_pipe( ialu_reg_long );
  6433 %}
  6435 // The instruction usage is guarded by predicate in operand immFPR().
  6436 instruct loadConFPR(regFPR dst, immFPR con) %{
  6437   match(Set dst con);
  6438   ins_cost(125);
  6439   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6440             "FSTP   $dst" %}
  6441   ins_encode %{
  6442     __ fld_s($constantaddress($con));
  6443     __ fstp_d($dst$$reg);
  6444   %}
  6445   ins_pipe(fpu_reg_con);
  6446 %}
  6448 // The instruction usage is guarded by predicate in operand immFPR0().
  6449 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6450   match(Set dst con);
  6451   ins_cost(125);
  6452   format %{ "FLDZ   ST\n\t"
  6453             "FSTP   $dst" %}
  6454   ins_encode %{
  6455     __ fldz();
  6456     __ fstp_d($dst$$reg);
  6457   %}
  6458   ins_pipe(fpu_reg_con);
  6459 %}
  6461 // The instruction usage is guarded by predicate in operand immFPR1().
  6462 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6463   match(Set dst con);
  6464   ins_cost(125);
  6465   format %{ "FLD1   ST\n\t"
  6466             "FSTP   $dst" %}
  6467   ins_encode %{
  6468     __ fld1();
  6469     __ fstp_d($dst$$reg);
  6470   %}
  6471   ins_pipe(fpu_reg_con);
  6472 %}
  6474 // The instruction usage is guarded by predicate in operand immF().
  6475 instruct loadConF(regF dst, immF con) %{
  6476   match(Set dst con);
  6477   ins_cost(125);
  6478   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6479   ins_encode %{
  6480     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6481   %}
  6482   ins_pipe(pipe_slow);
  6483 %}
  6485 // The instruction usage is guarded by predicate in operand immF0().
  6486 instruct loadConF0(regF dst, immF0 src) %{
  6487   match(Set dst src);
  6488   ins_cost(100);
  6489   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6490   ins_encode %{
  6491     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6492   %}
  6493   ins_pipe(pipe_slow);
  6494 %}
  6496 // The instruction usage is guarded by predicate in operand immDPR().
  6497 instruct loadConDPR(regDPR dst, immDPR con) %{
  6498   match(Set dst con);
  6499   ins_cost(125);
  6501   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6502             "FSTP   $dst" %}
  6503   ins_encode %{
  6504     __ fld_d($constantaddress($con));
  6505     __ fstp_d($dst$$reg);
  6506   %}
  6507   ins_pipe(fpu_reg_con);
  6508 %}
  6510 // The instruction usage is guarded by predicate in operand immDPR0().
  6511 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6512   match(Set dst con);
  6513   ins_cost(125);
  6515   format %{ "FLDZ   ST\n\t"
  6516             "FSTP   $dst" %}
  6517   ins_encode %{
  6518     __ fldz();
  6519     __ fstp_d($dst$$reg);
  6520   %}
  6521   ins_pipe(fpu_reg_con);
  6522 %}
  6524 // The instruction usage is guarded by predicate in operand immDPR1().
  6525 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6526   match(Set dst con);
  6527   ins_cost(125);
  6529   format %{ "FLD1   ST\n\t"
  6530             "FSTP   $dst" %}
  6531   ins_encode %{
  6532     __ fld1();
  6533     __ fstp_d($dst$$reg);
  6534   %}
  6535   ins_pipe(fpu_reg_con);
  6536 %}
  6538 // The instruction usage is guarded by predicate in operand immD().
  6539 instruct loadConD(regD dst, immD con) %{
  6540   match(Set dst con);
  6541   ins_cost(125);
  6542   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6543   ins_encode %{
  6544     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6545   %}
  6546   ins_pipe(pipe_slow);
  6547 %}
  6549 // The instruction usage is guarded by predicate in operand immD0().
  6550 instruct loadConD0(regD dst, immD0 src) %{
  6551   match(Set dst src);
  6552   ins_cost(100);
  6553   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6554   ins_encode %{
  6555     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6556   %}
  6557   ins_pipe( pipe_slow );
  6558 %}
  6560 // Load Stack Slot
  6561 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6562   match(Set dst src);
  6563   ins_cost(125);
  6565   format %{ "MOV    $dst,$src" %}
  6566   opcode(0x8B);
  6567   ins_encode( OpcP, RegMem(dst,src));
  6568   ins_pipe( ialu_reg_mem );
  6569 %}
  6571 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6572   match(Set dst src);
  6574   ins_cost(200);
  6575   format %{ "MOV    $dst,$src.lo\n\t"
  6576             "MOV    $dst+4,$src.hi" %}
  6577   opcode(0x8B, 0x8B);
  6578   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6579   ins_pipe( ialu_mem_long_reg );
  6580 %}
  6582 // Load Stack Slot
  6583 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6584   match(Set dst src);
  6585   ins_cost(125);
  6587   format %{ "MOV    $dst,$src" %}
  6588   opcode(0x8B);
  6589   ins_encode( OpcP, RegMem(dst,src));
  6590   ins_pipe( ialu_reg_mem );
  6591 %}
  6593 // Load Stack Slot
  6594 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6595   match(Set dst src);
  6596   ins_cost(125);
  6598   format %{ "FLD_S  $src\n\t"
  6599             "FSTP   $dst" %}
  6600   opcode(0xD9);               /* D9 /0, FLD m32real */
  6601   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6602               Pop_Reg_FPR(dst) );
  6603   ins_pipe( fpu_reg_mem );
  6604 %}
  6606 // Load Stack Slot
  6607 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6608   match(Set dst src);
  6609   ins_cost(125);
  6611   format %{ "FLD_D  $src\n\t"
  6612             "FSTP   $dst" %}
  6613   opcode(0xDD);               /* DD /0, FLD m64real */
  6614   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6615               Pop_Reg_DPR(dst) );
  6616   ins_pipe( fpu_reg_mem );
  6617 %}
  6619 // Prefetch instructions.
  6620 // Must be safe to execute with invalid address (cannot fault).
  6622 instruct prefetchr0( memory mem ) %{
  6623   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6624   match(PrefetchRead mem);
  6625   ins_cost(0);
  6626   size(0);
  6627   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6628   ins_encode();
  6629   ins_pipe(empty);
  6630 %}
  6632 instruct prefetchr( memory mem ) %{
  6633   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6634   match(PrefetchRead mem);
  6635   ins_cost(100);
  6637   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6638   ins_encode %{
  6639     __ prefetchr($mem$$Address);
  6640   %}
  6641   ins_pipe(ialu_mem);
  6642 %}
  6644 instruct prefetchrNTA( memory mem ) %{
  6645   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6646   match(PrefetchRead mem);
  6647   ins_cost(100);
  6649   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6650   ins_encode %{
  6651     __ prefetchnta($mem$$Address);
  6652   %}
  6653   ins_pipe(ialu_mem);
  6654 %}
  6656 instruct prefetchrT0( memory mem ) %{
  6657   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6658   match(PrefetchRead mem);
  6659   ins_cost(100);
  6661   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6662   ins_encode %{
  6663     __ prefetcht0($mem$$Address);
  6664   %}
  6665   ins_pipe(ialu_mem);
  6666 %}
  6668 instruct prefetchrT2( memory mem ) %{
  6669   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6670   match(PrefetchRead mem);
  6671   ins_cost(100);
  6673   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6674   ins_encode %{
  6675     __ prefetcht2($mem$$Address);
  6676   %}
  6677   ins_pipe(ialu_mem);
  6678 %}
  6680 instruct prefetchw0( memory mem ) %{
  6681   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6682   match(PrefetchWrite mem);
  6683   ins_cost(0);
  6684   size(0);
  6685   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6686   ins_encode();
  6687   ins_pipe(empty);
  6688 %}
  6690 instruct prefetchw( memory mem ) %{
  6691   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6692   match( PrefetchWrite mem );
  6693   ins_cost(100);
  6695   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6696   ins_encode %{
  6697     __ prefetchw($mem$$Address);
  6698   %}
  6699   ins_pipe(ialu_mem);
  6700 %}
  6702 instruct prefetchwNTA( memory mem ) %{
  6703   predicate(UseSSE>=1);
  6704   match(PrefetchWrite mem);
  6705   ins_cost(100);
  6707   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6708   ins_encode %{
  6709     __ prefetchnta($mem$$Address);
  6710   %}
  6711   ins_pipe(ialu_mem);
  6712 %}
  6714 // Prefetch instructions for allocation.
  6716 instruct prefetchAlloc0( memory mem ) %{
  6717   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6718   match(PrefetchAllocation mem);
  6719   ins_cost(0);
  6720   size(0);
  6721   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6722   ins_encode();
  6723   ins_pipe(empty);
  6724 %}
  6726 instruct prefetchAlloc( memory mem ) %{
  6727   predicate(AllocatePrefetchInstr==3);
  6728   match( PrefetchAllocation mem );
  6729   ins_cost(100);
  6731   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6732   ins_encode %{
  6733     __ prefetchw($mem$$Address);
  6734   %}
  6735   ins_pipe(ialu_mem);
  6736 %}
  6738 instruct prefetchAllocNTA( memory mem ) %{
  6739   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6740   match(PrefetchAllocation mem);
  6741   ins_cost(100);
  6743   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6744   ins_encode %{
  6745     __ prefetchnta($mem$$Address);
  6746   %}
  6747   ins_pipe(ialu_mem);
  6748 %}
  6750 instruct prefetchAllocT0( memory mem ) %{
  6751   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6752   match(PrefetchAllocation mem);
  6753   ins_cost(100);
  6755   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6756   ins_encode %{
  6757     __ prefetcht0($mem$$Address);
  6758   %}
  6759   ins_pipe(ialu_mem);
  6760 %}
  6762 instruct prefetchAllocT2( memory mem ) %{
  6763   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6764   match(PrefetchAllocation mem);
  6765   ins_cost(100);
  6767   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6768   ins_encode %{
  6769     __ prefetcht2($mem$$Address);
  6770   %}
  6771   ins_pipe(ialu_mem);
  6772 %}
  6774 //----------Store Instructions-------------------------------------------------
  6776 // Store Byte
  6777 instruct storeB(memory mem, xRegI src) %{
  6778   match(Set mem (StoreB mem src));
  6780   ins_cost(125);
  6781   format %{ "MOV8   $mem,$src" %}
  6782   opcode(0x88);
  6783   ins_encode( OpcP, RegMem( src, mem ) );
  6784   ins_pipe( ialu_mem_reg );
  6785 %}
  6787 // Store Char/Short
  6788 instruct storeC(memory mem, rRegI src) %{
  6789   match(Set mem (StoreC mem src));
  6791   ins_cost(125);
  6792   format %{ "MOV16  $mem,$src" %}
  6793   opcode(0x89, 0x66);
  6794   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6795   ins_pipe( ialu_mem_reg );
  6796 %}
  6798 // Store Integer
  6799 instruct storeI(memory mem, rRegI src) %{
  6800   match(Set mem (StoreI mem src));
  6802   ins_cost(125);
  6803   format %{ "MOV    $mem,$src" %}
  6804   opcode(0x89);
  6805   ins_encode( OpcP, RegMem( src, mem ) );
  6806   ins_pipe( ialu_mem_reg );
  6807 %}
  6809 // Store Long
  6810 instruct storeL(long_memory mem, eRegL src) %{
  6811   predicate(!((StoreLNode*)n)->require_atomic_access());
  6812   match(Set mem (StoreL mem src));
  6814   ins_cost(200);
  6815   format %{ "MOV    $mem,$src.lo\n\t"
  6816             "MOV    $mem+4,$src.hi" %}
  6817   opcode(0x89, 0x89);
  6818   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6819   ins_pipe( ialu_mem_long_reg );
  6820 %}
  6822 // Store Long to Integer
  6823 instruct storeL2I(memory mem, eRegL src) %{
  6824   match(Set mem (StoreI mem (ConvL2I src)));
  6826   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6827   ins_encode %{
  6828     __ movl($mem$$Address, $src$$Register);
  6829   %}
  6830   ins_pipe(ialu_mem_reg);
  6831 %}
  6833 // Volatile Store Long.  Must be atomic, so move it into
  6834 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6835 // target address before the store (for null-ptr checks)
  6836 // so the memory operand is used twice in the encoding.
  6837 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6838   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6839   match(Set mem (StoreL mem src));
  6840   effect( KILL cr );
  6841   ins_cost(400);
  6842   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6843             "FILD   $src\n\t"
  6844             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6845   opcode(0x3B);
  6846   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6847   ins_pipe( fpu_reg_mem );
  6848 %}
  6850 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6851   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6852   match(Set mem (StoreL mem src));
  6853   effect( TEMP tmp, KILL cr );
  6854   ins_cost(380);
  6855   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6856             "MOVSD  $tmp,$src\n\t"
  6857             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6858   ins_encode %{
  6859     __ cmpl(rax, $mem$$Address);
  6860     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6861     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6862   %}
  6863   ins_pipe( pipe_slow );
  6864 %}
  6866 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6867   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6868   match(Set mem (StoreL mem src));
  6869   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6870   ins_cost(360);
  6871   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6872             "MOVD   $tmp,$src.lo\n\t"
  6873             "MOVD   $tmp2,$src.hi\n\t"
  6874             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6875             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6876   ins_encode %{
  6877     __ cmpl(rax, $mem$$Address);
  6878     __ movdl($tmp$$XMMRegister, $src$$Register);
  6879     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6880     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6881     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6882   %}
  6883   ins_pipe( pipe_slow );
  6884 %}
  6886 // Store Pointer; for storing unknown oops and raw pointers
  6887 instruct storeP(memory mem, anyRegP src) %{
  6888   match(Set mem (StoreP mem src));
  6890   ins_cost(125);
  6891   format %{ "MOV    $mem,$src" %}
  6892   opcode(0x89);
  6893   ins_encode( OpcP, RegMem( src, mem ) );
  6894   ins_pipe( ialu_mem_reg );
  6895 %}
  6897 // Store Integer Immediate
  6898 instruct storeImmI(memory mem, immI src) %{
  6899   match(Set mem (StoreI mem src));
  6901   ins_cost(150);
  6902   format %{ "MOV    $mem,$src" %}
  6903   opcode(0xC7);               /* C7 /0 */
  6904   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6905   ins_pipe( ialu_mem_imm );
  6906 %}
  6908 // Store Short/Char Immediate
  6909 instruct storeImmI16(memory mem, immI16 src) %{
  6910   predicate(UseStoreImmI16);
  6911   match(Set mem (StoreC mem src));
  6913   ins_cost(150);
  6914   format %{ "MOV16  $mem,$src" %}
  6915   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6916   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6917   ins_pipe( ialu_mem_imm );
  6918 %}
  6920 // Store Pointer Immediate; null pointers or constant oops that do not
  6921 // need card-mark barriers.
  6922 instruct storeImmP(memory mem, immP src) %{
  6923   match(Set mem (StoreP mem src));
  6925   ins_cost(150);
  6926   format %{ "MOV    $mem,$src" %}
  6927   opcode(0xC7);               /* C7 /0 */
  6928   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6929   ins_pipe( ialu_mem_imm );
  6930 %}
  6932 // Store Byte Immediate
  6933 instruct storeImmB(memory mem, immI8 src) %{
  6934   match(Set mem (StoreB mem src));
  6936   ins_cost(150);
  6937   format %{ "MOV8   $mem,$src" %}
  6938   opcode(0xC6);               /* C6 /0 */
  6939   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6940   ins_pipe( ialu_mem_imm );
  6941 %}
  6943 // Store CMS card-mark Immediate
  6944 instruct storeImmCM(memory mem, immI8 src) %{
  6945   match(Set mem (StoreCM mem src));
  6947   ins_cost(150);
  6948   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6949   opcode(0xC6);               /* C6 /0 */
  6950   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6951   ins_pipe( ialu_mem_imm );
  6952 %}
  6954 // Store Double
  6955 instruct storeDPR( memory mem, regDPR1 src) %{
  6956   predicate(UseSSE<=1);
  6957   match(Set mem (StoreD mem src));
  6959   ins_cost(100);
  6960   format %{ "FST_D  $mem,$src" %}
  6961   opcode(0xDD);       /* DD /2 */
  6962   ins_encode( enc_FPR_store(mem,src) );
  6963   ins_pipe( fpu_mem_reg );
  6964 %}
  6966 // Store double does rounding on x86
  6967 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6968   predicate(UseSSE<=1);
  6969   match(Set mem (StoreD mem (RoundDouble src)));
  6971   ins_cost(100);
  6972   format %{ "FST_D  $mem,$src\t# round" %}
  6973   opcode(0xDD);       /* DD /2 */
  6974   ins_encode( enc_FPR_store(mem,src) );
  6975   ins_pipe( fpu_mem_reg );
  6976 %}
  6978 // Store XMM register to memory (double-precision floating points)
  6979 // MOVSD instruction
  6980 instruct storeD(memory mem, regD src) %{
  6981   predicate(UseSSE>=2);
  6982   match(Set mem (StoreD mem src));
  6983   ins_cost(95);
  6984   format %{ "MOVSD  $mem,$src" %}
  6985   ins_encode %{
  6986     __ movdbl($mem$$Address, $src$$XMMRegister);
  6987   %}
  6988   ins_pipe( pipe_slow );
  6989 %}
  6991 // Store XMM register to memory (single-precision floating point)
  6992 // MOVSS instruction
  6993 instruct storeF(memory mem, regF src) %{
  6994   predicate(UseSSE>=1);
  6995   match(Set mem (StoreF mem src));
  6996   ins_cost(95);
  6997   format %{ "MOVSS  $mem,$src" %}
  6998   ins_encode %{
  6999     __ movflt($mem$$Address, $src$$XMMRegister);
  7000   %}
  7001   ins_pipe( pipe_slow );
  7002 %}
  7004 // Store Float
  7005 instruct storeFPR( memory mem, regFPR1 src) %{
  7006   predicate(UseSSE==0);
  7007   match(Set mem (StoreF mem src));
  7009   ins_cost(100);
  7010   format %{ "FST_S  $mem,$src" %}
  7011   opcode(0xD9);       /* D9 /2 */
  7012   ins_encode( enc_FPR_store(mem,src) );
  7013   ins_pipe( fpu_mem_reg );
  7014 %}
  7016 // Store Float does rounding on x86
  7017 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  7018   predicate(UseSSE==0);
  7019   match(Set mem (StoreF mem (RoundFloat src)));
  7021   ins_cost(100);
  7022   format %{ "FST_S  $mem,$src\t# round" %}
  7023   opcode(0xD9);       /* D9 /2 */
  7024   ins_encode( enc_FPR_store(mem,src) );
  7025   ins_pipe( fpu_mem_reg );
  7026 %}
  7028 // Store Float does rounding on x86
  7029 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  7030   predicate(UseSSE<=1);
  7031   match(Set mem (StoreF mem (ConvD2F src)));
  7033   ins_cost(100);
  7034   format %{ "FST_S  $mem,$src\t# D-round" %}
  7035   opcode(0xD9);       /* D9 /2 */
  7036   ins_encode( enc_FPR_store(mem,src) );
  7037   ins_pipe( fpu_mem_reg );
  7038 %}
  7040 // Store immediate Float value (it is faster than store from FPU register)
  7041 // The instruction usage is guarded by predicate in operand immFPR().
  7042 instruct storeFPR_imm( memory mem, immFPR src) %{
  7043   match(Set mem (StoreF mem src));
  7045   ins_cost(50);
  7046   format %{ "MOV    $mem,$src\t# store float" %}
  7047   opcode(0xC7);               /* C7 /0 */
  7048   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7049   ins_pipe( ialu_mem_imm );
  7050 %}
  7052 // Store immediate Float value (it is faster than store from XMM register)
  7053 // The instruction usage is guarded by predicate in operand immF().
  7054 instruct storeF_imm( memory mem, immF src) %{
  7055   match(Set mem (StoreF mem src));
  7057   ins_cost(50);
  7058   format %{ "MOV    $mem,$src\t# store float" %}
  7059   opcode(0xC7);               /* C7 /0 */
  7060   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7061   ins_pipe( ialu_mem_imm );
  7062 %}
  7064 // Store Integer to stack slot
  7065 instruct storeSSI(stackSlotI dst, rRegI src) %{
  7066   match(Set dst src);
  7068   ins_cost(100);
  7069   format %{ "MOV    $dst,$src" %}
  7070   opcode(0x89);
  7071   ins_encode( OpcPRegSS( dst, src ) );
  7072   ins_pipe( ialu_mem_reg );
  7073 %}
  7075 // Store Integer to stack slot
  7076 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7077   match(Set dst src);
  7079   ins_cost(100);
  7080   format %{ "MOV    $dst,$src" %}
  7081   opcode(0x89);
  7082   ins_encode( OpcPRegSS( dst, src ) );
  7083   ins_pipe( ialu_mem_reg );
  7084 %}
  7086 // Store Long to stack slot
  7087 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7088   match(Set dst src);
  7090   ins_cost(200);
  7091   format %{ "MOV    $dst,$src.lo\n\t"
  7092             "MOV    $dst+4,$src.hi" %}
  7093   opcode(0x89, 0x89);
  7094   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7095   ins_pipe( ialu_mem_long_reg );
  7096 %}
  7098 //----------MemBar Instructions-----------------------------------------------
  7099 // Memory barrier flavors
  7101 instruct membar_acquire() %{
  7102   match(MemBarAcquire);
  7103   ins_cost(400);
  7105   size(0);
  7106   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7107   ins_encode();
  7108   ins_pipe(empty);
  7109 %}
  7111 instruct membar_acquire_lock() %{
  7112   match(MemBarAcquireLock);
  7113   ins_cost(0);
  7115   size(0);
  7116   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7117   ins_encode( );
  7118   ins_pipe(empty);
  7119 %}
  7121 instruct membar_release() %{
  7122   match(MemBarRelease);
  7123   ins_cost(400);
  7125   size(0);
  7126   format %{ "MEMBAR-release ! (empty encoding)" %}
  7127   ins_encode( );
  7128   ins_pipe(empty);
  7129 %}
  7131 instruct membar_release_lock() %{
  7132   match(MemBarReleaseLock);
  7133   ins_cost(0);
  7135   size(0);
  7136   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7137   ins_encode( );
  7138   ins_pipe(empty);
  7139 %}
  7141 instruct membar_volatile(eFlagsReg cr) %{
  7142   match(MemBarVolatile);
  7143   effect(KILL cr);
  7144   ins_cost(400);
  7146   format %{ 
  7147     $$template
  7148     if (os::is_MP()) {
  7149       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7150     } else {
  7151       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7153   %}
  7154   ins_encode %{
  7155     __ membar(Assembler::StoreLoad);
  7156   %}
  7157   ins_pipe(pipe_slow);
  7158 %}
  7160 instruct unnecessary_membar_volatile() %{
  7161   match(MemBarVolatile);
  7162   predicate(Matcher::post_store_load_barrier(n));
  7163   ins_cost(0);
  7165   size(0);
  7166   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7167   ins_encode( );
  7168   ins_pipe(empty);
  7169 %}
  7171 instruct membar_storestore() %{
  7172   match(MemBarStoreStore);
  7173   ins_cost(0);
  7175   size(0);
  7176   format %{ "MEMBAR-storestore (empty encoding)" %}
  7177   ins_encode( );
  7178   ins_pipe(empty);
  7179 %}
  7181 //----------Move Instructions--------------------------------------------------
  7182 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7183   match(Set dst (CastX2P src));
  7184   format %{ "# X2P  $dst, $src" %}
  7185   ins_encode( /*empty encoding*/ );
  7186   ins_cost(0);
  7187   ins_pipe(empty);
  7188 %}
  7190 instruct castP2X(rRegI dst, eRegP src ) %{
  7191   match(Set dst (CastP2X src));
  7192   ins_cost(50);
  7193   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7194   ins_encode( enc_Copy( dst, src) );
  7195   ins_pipe( ialu_reg_reg );
  7196 %}
  7198 //----------Conditional Move---------------------------------------------------
  7199 // Conditional move
  7200 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  7201   predicate(!VM_Version::supports_cmov() );
  7202   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7203   ins_cost(200);
  7204   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7205             "MOV    $dst,$src\n"
  7206       "skip:" %}
  7207   ins_encode %{
  7208     Label Lskip;
  7209     // Invert sense of branch from sense of CMOV
  7210     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7211     __ movl($dst$$Register, $src$$Register);
  7212     __ bind(Lskip);
  7213   %}
  7214   ins_pipe( pipe_cmov_reg );
  7215 %}
  7217 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  7218   predicate(!VM_Version::supports_cmov() );
  7219   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7220   ins_cost(200);
  7221   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7222             "MOV    $dst,$src\n"
  7223       "skip:" %}
  7224   ins_encode %{
  7225     Label Lskip;
  7226     // Invert sense of branch from sense of CMOV
  7227     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7228     __ movl($dst$$Register, $src$$Register);
  7229     __ bind(Lskip);
  7230   %}
  7231   ins_pipe( pipe_cmov_reg );
  7232 %}
  7234 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  7235   predicate(VM_Version::supports_cmov() );
  7236   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7237   ins_cost(200);
  7238   format %{ "CMOV$cop $dst,$src" %}
  7239   opcode(0x0F,0x40);
  7240   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7241   ins_pipe( pipe_cmov_reg );
  7242 %}
  7244 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  7245   predicate(VM_Version::supports_cmov() );
  7246   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7247   ins_cost(200);
  7248   format %{ "CMOV$cop $dst,$src" %}
  7249   opcode(0x0F,0x40);
  7250   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7251   ins_pipe( pipe_cmov_reg );
  7252 %}
  7254 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  7255   predicate(VM_Version::supports_cmov() );
  7256   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7257   ins_cost(200);
  7258   expand %{
  7259     cmovI_regU(cop, cr, dst, src);
  7260   %}
  7261 %}
  7263 // Conditional move
  7264 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  7265   predicate(VM_Version::supports_cmov() );
  7266   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7267   ins_cost(250);
  7268   format %{ "CMOV$cop $dst,$src" %}
  7269   opcode(0x0F,0x40);
  7270   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7271   ins_pipe( pipe_cmov_mem );
  7272 %}
  7274 // Conditional move
  7275 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  7276   predicate(VM_Version::supports_cmov() );
  7277   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7278   ins_cost(250);
  7279   format %{ "CMOV$cop $dst,$src" %}
  7280   opcode(0x0F,0x40);
  7281   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7282   ins_pipe( pipe_cmov_mem );
  7283 %}
  7285 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  7286   predicate(VM_Version::supports_cmov() );
  7287   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7288   ins_cost(250);
  7289   expand %{
  7290     cmovI_memU(cop, cr, dst, src);
  7291   %}
  7292 %}
  7294 // Conditional move
  7295 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7296   predicate(VM_Version::supports_cmov() );
  7297   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7298   ins_cost(200);
  7299   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7300   opcode(0x0F,0x40);
  7301   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7302   ins_pipe( pipe_cmov_reg );
  7303 %}
  7305 // Conditional move (non-P6 version)
  7306 // Note:  a CMoveP is generated for  stubs and native wrappers
  7307 //        regardless of whether we are on a P6, so we
  7308 //        emulate a cmov here
  7309 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7310   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7311   ins_cost(300);
  7312   format %{ "Jn$cop   skip\n\t"
  7313           "MOV    $dst,$src\t# pointer\n"
  7314       "skip:" %}
  7315   opcode(0x8b);
  7316   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7317   ins_pipe( pipe_cmov_reg );
  7318 %}
  7320 // Conditional move
  7321 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7322   predicate(VM_Version::supports_cmov() );
  7323   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7324   ins_cost(200);
  7325   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7326   opcode(0x0F,0x40);
  7327   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7328   ins_pipe( pipe_cmov_reg );
  7329 %}
  7331 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7332   predicate(VM_Version::supports_cmov() );
  7333   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7334   ins_cost(200);
  7335   expand %{
  7336     cmovP_regU(cop, cr, dst, src);
  7337   %}
  7338 %}
  7340 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7341 // correctly meets the two pointer arguments; one is an incoming
  7342 // register but the other is a memory operand.  ALSO appears to
  7343 // be buggy with implicit null checks.
  7344 //
  7345 //// Conditional move
  7346 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7347 //  predicate(VM_Version::supports_cmov() );
  7348 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7349 //  ins_cost(250);
  7350 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7351 //  opcode(0x0F,0x40);
  7352 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7353 //  ins_pipe( pipe_cmov_mem );
  7354 //%}
  7355 //
  7356 //// Conditional move
  7357 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7358 //  predicate(VM_Version::supports_cmov() );
  7359 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7360 //  ins_cost(250);
  7361 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7362 //  opcode(0x0F,0x40);
  7363 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7364 //  ins_pipe( pipe_cmov_mem );
  7365 //%}
  7367 // Conditional move
  7368 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7369   predicate(UseSSE<=1);
  7370   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7371   ins_cost(200);
  7372   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7373   opcode(0xDA);
  7374   ins_encode( enc_cmov_dpr(cop,src) );
  7375   ins_pipe( pipe_cmovDPR_reg );
  7376 %}
  7378 // Conditional move
  7379 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7380   predicate(UseSSE==0);
  7381   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7382   ins_cost(200);
  7383   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7384   opcode(0xDA);
  7385   ins_encode( enc_cmov_dpr(cop,src) );
  7386   ins_pipe( pipe_cmovDPR_reg );
  7387 %}
  7389 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7390 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7391   predicate(UseSSE<=1);
  7392   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7393   ins_cost(200);
  7394   format %{ "Jn$cop   skip\n\t"
  7395             "MOV    $dst,$src\t# double\n"
  7396       "skip:" %}
  7397   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7398   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7399   ins_pipe( pipe_cmovDPR_reg );
  7400 %}
  7402 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7403 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7404   predicate(UseSSE==0);
  7405   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7406   ins_cost(200);
  7407   format %{ "Jn$cop    skip\n\t"
  7408             "MOV    $dst,$src\t# float\n"
  7409       "skip:" %}
  7410   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7411   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7412   ins_pipe( pipe_cmovDPR_reg );
  7413 %}
  7415 // No CMOVE with SSE/SSE2
  7416 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7417   predicate (UseSSE>=1);
  7418   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7419   ins_cost(200);
  7420   format %{ "Jn$cop   skip\n\t"
  7421             "MOVSS  $dst,$src\t# float\n"
  7422       "skip:" %}
  7423   ins_encode %{
  7424     Label skip;
  7425     // Invert sense of branch from sense of CMOV
  7426     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7427     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7428     __ bind(skip);
  7429   %}
  7430   ins_pipe( pipe_slow );
  7431 %}
  7433 // No CMOVE with SSE/SSE2
  7434 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7435   predicate (UseSSE>=2);
  7436   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7437   ins_cost(200);
  7438   format %{ "Jn$cop   skip\n\t"
  7439             "MOVSD  $dst,$src\t# float\n"
  7440       "skip:" %}
  7441   ins_encode %{
  7442     Label skip;
  7443     // Invert sense of branch from sense of CMOV
  7444     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7445     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7446     __ bind(skip);
  7447   %}
  7448   ins_pipe( pipe_slow );
  7449 %}
  7451 // unsigned version
  7452 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7453   predicate (UseSSE>=1);
  7454   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7455   ins_cost(200);
  7456   format %{ "Jn$cop   skip\n\t"
  7457             "MOVSS  $dst,$src\t# float\n"
  7458       "skip:" %}
  7459   ins_encode %{
  7460     Label skip;
  7461     // Invert sense of branch from sense of CMOV
  7462     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7463     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7464     __ bind(skip);
  7465   %}
  7466   ins_pipe( pipe_slow );
  7467 %}
  7469 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7470   predicate (UseSSE>=1);
  7471   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7472   ins_cost(200);
  7473   expand %{
  7474     fcmovF_regU(cop, cr, dst, src);
  7475   %}
  7476 %}
  7478 // unsigned version
  7479 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7480   predicate (UseSSE>=2);
  7481   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7482   ins_cost(200);
  7483   format %{ "Jn$cop   skip\n\t"
  7484             "MOVSD  $dst,$src\t# float\n"
  7485       "skip:" %}
  7486   ins_encode %{
  7487     Label skip;
  7488     // Invert sense of branch from sense of CMOV
  7489     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7490     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7491     __ bind(skip);
  7492   %}
  7493   ins_pipe( pipe_slow );
  7494 %}
  7496 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7497   predicate (UseSSE>=2);
  7498   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7499   ins_cost(200);
  7500   expand %{
  7501     fcmovD_regU(cop, cr, dst, src);
  7502   %}
  7503 %}
  7505 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7506   predicate(VM_Version::supports_cmov() );
  7507   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7508   ins_cost(200);
  7509   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7510             "CMOV$cop $dst.hi,$src.hi" %}
  7511   opcode(0x0F,0x40);
  7512   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7513   ins_pipe( pipe_cmov_reg_long );
  7514 %}
  7516 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7517   predicate(VM_Version::supports_cmov() );
  7518   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7519   ins_cost(200);
  7520   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7521             "CMOV$cop $dst.hi,$src.hi" %}
  7522   opcode(0x0F,0x40);
  7523   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7524   ins_pipe( pipe_cmov_reg_long );
  7525 %}
  7527 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7528   predicate(VM_Version::supports_cmov() );
  7529   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7530   ins_cost(200);
  7531   expand %{
  7532     cmovL_regU(cop, cr, dst, src);
  7533   %}
  7534 %}
  7536 //----------Arithmetic Instructions--------------------------------------------
  7537 //----------Addition Instructions----------------------------------------------
  7538 // Integer Addition Instructions
  7539 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7540   match(Set dst (AddI dst src));
  7541   effect(KILL cr);
  7543   size(2);
  7544   format %{ "ADD    $dst,$src" %}
  7545   opcode(0x03);
  7546   ins_encode( OpcP, RegReg( dst, src) );
  7547   ins_pipe( ialu_reg_reg );
  7548 %}
  7550 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7551   match(Set dst (AddI dst src));
  7552   effect(KILL cr);
  7554   format %{ "ADD    $dst,$src" %}
  7555   opcode(0x81, 0x00); /* /0 id */
  7556   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7557   ins_pipe( ialu_reg );
  7558 %}
  7560 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7561   predicate(UseIncDec);
  7562   match(Set dst (AddI dst src));
  7563   effect(KILL cr);
  7565   size(1);
  7566   format %{ "INC    $dst" %}
  7567   opcode(0x40); /*  */
  7568   ins_encode( Opc_plus( primary, dst ) );
  7569   ins_pipe( ialu_reg );
  7570 %}
  7572 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7573   match(Set dst (AddI src0 src1));
  7574   ins_cost(110);
  7576   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7577   opcode(0x8D); /* 0x8D /r */
  7578   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7579   ins_pipe( ialu_reg_reg );
  7580 %}
  7582 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7583   match(Set dst (AddP src0 src1));
  7584   ins_cost(110);
  7586   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7587   opcode(0x8D); /* 0x8D /r */
  7588   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7589   ins_pipe( ialu_reg_reg );
  7590 %}
  7592 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7593   predicate(UseIncDec);
  7594   match(Set dst (AddI dst src));
  7595   effect(KILL cr);
  7597   size(1);
  7598   format %{ "DEC    $dst" %}
  7599   opcode(0x48); /*  */
  7600   ins_encode( Opc_plus( primary, dst ) );
  7601   ins_pipe( ialu_reg );
  7602 %}
  7604 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7605   match(Set dst (AddP dst src));
  7606   effect(KILL cr);
  7608   size(2);
  7609   format %{ "ADD    $dst,$src" %}
  7610   opcode(0x03);
  7611   ins_encode( OpcP, RegReg( dst, src) );
  7612   ins_pipe( ialu_reg_reg );
  7613 %}
  7615 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7616   match(Set dst (AddP dst src));
  7617   effect(KILL cr);
  7619   format %{ "ADD    $dst,$src" %}
  7620   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7621   // ins_encode( RegImm( dst, src) );
  7622   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7623   ins_pipe( ialu_reg );
  7624 %}
  7626 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7627   match(Set dst (AddI dst (LoadI src)));
  7628   effect(KILL cr);
  7630   ins_cost(125);
  7631   format %{ "ADD    $dst,$src" %}
  7632   opcode(0x03);
  7633   ins_encode( OpcP, RegMem( dst, src) );
  7634   ins_pipe( ialu_reg_mem );
  7635 %}
  7637 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7638   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7639   effect(KILL cr);
  7641   ins_cost(150);
  7642   format %{ "ADD    $dst,$src" %}
  7643   opcode(0x01);  /* Opcode 01 /r */
  7644   ins_encode( OpcP, RegMem( src, dst ) );
  7645   ins_pipe( ialu_mem_reg );
  7646 %}
  7648 // Add Memory with Immediate
  7649 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7650   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7651   effect(KILL cr);
  7653   ins_cost(125);
  7654   format %{ "ADD    $dst,$src" %}
  7655   opcode(0x81);               /* Opcode 81 /0 id */
  7656   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7657   ins_pipe( ialu_mem_imm );
  7658 %}
  7660 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7661   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7662   effect(KILL cr);
  7664   ins_cost(125);
  7665   format %{ "INC    $dst" %}
  7666   opcode(0xFF);               /* Opcode FF /0 */
  7667   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7668   ins_pipe( ialu_mem_imm );
  7669 %}
  7671 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7672   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7673   effect(KILL cr);
  7675   ins_cost(125);
  7676   format %{ "DEC    $dst" %}
  7677   opcode(0xFF);               /* Opcode FF /1 */
  7678   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7679   ins_pipe( ialu_mem_imm );
  7680 %}
  7683 instruct checkCastPP( eRegP dst ) %{
  7684   match(Set dst (CheckCastPP dst));
  7686   size(0);
  7687   format %{ "#checkcastPP of $dst" %}
  7688   ins_encode( /*empty encoding*/ );
  7689   ins_pipe( empty );
  7690 %}
  7692 instruct castPP( eRegP dst ) %{
  7693   match(Set dst (CastPP dst));
  7694   format %{ "#castPP of $dst" %}
  7695   ins_encode( /*empty encoding*/ );
  7696   ins_pipe( empty );
  7697 %}
  7699 instruct castII( rRegI dst ) %{
  7700   match(Set dst (CastII dst));
  7701   format %{ "#castII of $dst" %}
  7702   ins_encode( /*empty encoding*/ );
  7703   ins_cost(0);
  7704   ins_pipe( empty );
  7705 %}
  7708 // Load-locked - same as a regular pointer load when used with compare-swap
  7709 instruct loadPLocked(eRegP dst, memory mem) %{
  7710   match(Set dst (LoadPLocked mem));
  7712   ins_cost(125);
  7713   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7714   opcode(0x8B);
  7715   ins_encode( OpcP, RegMem(dst,mem));
  7716   ins_pipe( ialu_reg_mem );
  7717 %}
  7719 // Conditional-store of the updated heap-top.
  7720 // Used during allocation of the shared heap.
  7721 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7722 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7723   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7724   // EAX is killed if there is contention, but then it's also unused.
  7725   // In the common case of no contention, EAX holds the new oop address.
  7726   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7727   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7728   ins_pipe( pipe_cmpxchg );
  7729 %}
  7731 // Conditional-store of an int value.
  7732 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7733 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7734   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7735   effect(KILL oldval);
  7736   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7737   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7738   ins_pipe( pipe_cmpxchg );
  7739 %}
  7741 // Conditional-store of a long value.
  7742 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7743 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7744   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7745   effect(KILL oldval);
  7746   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7747             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7748             "XCHG   EBX,ECX"
  7749   %}
  7750   ins_encode %{
  7751     // Note: we need to swap rbx, and rcx before and after the
  7752     //       cmpxchg8 instruction because the instruction uses
  7753     //       rcx as the high order word of the new value to store but
  7754     //       our register encoding uses rbx.
  7755     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7756     if( os::is_MP() )
  7757       __ lock();
  7758     __ cmpxchg8($mem$$Address);
  7759     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7760   %}
  7761   ins_pipe( pipe_cmpxchg );
  7762 %}
  7764 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7766 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7767   predicate(VM_Version::supports_cx8());
  7768   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7769   effect(KILL cr, KILL oldval);
  7770   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7771             "MOV    $res,0\n\t"
  7772             "JNE,s  fail\n\t"
  7773             "MOV    $res,1\n"
  7774           "fail:" %}
  7775   ins_encode( enc_cmpxchg8(mem_ptr),
  7776               enc_flags_ne_to_boolean(res) );
  7777   ins_pipe( pipe_cmpxchg );
  7778 %}
  7780 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7781   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7782   effect(KILL cr, KILL oldval);
  7783   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7784             "MOV    $res,0\n\t"
  7785             "JNE,s  fail\n\t"
  7786             "MOV    $res,1\n"
  7787           "fail:" %}
  7788   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7789   ins_pipe( pipe_cmpxchg );
  7790 %}
  7792 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7793   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7794   effect(KILL cr, KILL oldval);
  7795   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7796             "MOV    $res,0\n\t"
  7797             "JNE,s  fail\n\t"
  7798             "MOV    $res,1\n"
  7799           "fail:" %}
  7800   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7801   ins_pipe( pipe_cmpxchg );
  7802 %}
  7804 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
  7805   predicate(n->as_LoadStore()->result_not_used());
  7806   match(Set dummy (GetAndAddI mem add));
  7807   effect(KILL cr);
  7808   format %{ "ADDL  [$mem],$add" %}
  7809   ins_encode %{
  7810     if (os::is_MP()) { __ lock(); }
  7811     __ addl($mem$$Address, $add$$constant);
  7812   %}
  7813   ins_pipe( pipe_cmpxchg );
  7814 %}
  7816 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
  7817   match(Set newval (GetAndAddI mem newval));
  7818   effect(KILL cr);
  7819   format %{ "XADDL  [$mem],$newval" %}
  7820   ins_encode %{
  7821     if (os::is_MP()) { __ lock(); }
  7822     __ xaddl($mem$$Address, $newval$$Register);
  7823   %}
  7824   ins_pipe( pipe_cmpxchg );
  7825 %}
  7827 instruct xchgI( memory mem, rRegI newval) %{
  7828   match(Set newval (GetAndSetI mem newval));
  7829   format %{ "XCHGL  $newval,[$mem]" %}
  7830   ins_encode %{
  7831     __ xchgl($newval$$Register, $mem$$Address);
  7832   %}
  7833   ins_pipe( pipe_cmpxchg );
  7834 %}
  7836 instruct xchgP( memory mem, pRegP newval) %{
  7837   match(Set newval (GetAndSetP mem newval));
  7838   format %{ "XCHGL  $newval,[$mem]" %}
  7839   ins_encode %{
  7840     __ xchgl($newval$$Register, $mem$$Address);
  7841   %}
  7842   ins_pipe( pipe_cmpxchg );
  7843 %}
  7845 //----------Subtraction Instructions-------------------------------------------
  7846 // Integer Subtraction Instructions
  7847 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7848   match(Set dst (SubI dst src));
  7849   effect(KILL cr);
  7851   size(2);
  7852   format %{ "SUB    $dst,$src" %}
  7853   opcode(0x2B);
  7854   ins_encode( OpcP, RegReg( dst, src) );
  7855   ins_pipe( ialu_reg_reg );
  7856 %}
  7858 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7859   match(Set dst (SubI dst src));
  7860   effect(KILL cr);
  7862   format %{ "SUB    $dst,$src" %}
  7863   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7864   // ins_encode( RegImm( dst, src) );
  7865   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7866   ins_pipe( ialu_reg );
  7867 %}
  7869 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7870   match(Set dst (SubI dst (LoadI src)));
  7871   effect(KILL cr);
  7873   ins_cost(125);
  7874   format %{ "SUB    $dst,$src" %}
  7875   opcode(0x2B);
  7876   ins_encode( OpcP, RegMem( dst, src) );
  7877   ins_pipe( ialu_reg_mem );
  7878 %}
  7880 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7881   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7882   effect(KILL cr);
  7884   ins_cost(150);
  7885   format %{ "SUB    $dst,$src" %}
  7886   opcode(0x29);  /* Opcode 29 /r */
  7887   ins_encode( OpcP, RegMem( src, dst ) );
  7888   ins_pipe( ialu_mem_reg );
  7889 %}
  7891 // Subtract from a pointer
  7892 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7893   match(Set dst (AddP dst (SubI zero src)));
  7894   effect(KILL cr);
  7896   size(2);
  7897   format %{ "SUB    $dst,$src" %}
  7898   opcode(0x2B);
  7899   ins_encode( OpcP, RegReg( dst, src) );
  7900   ins_pipe( ialu_reg_reg );
  7901 %}
  7903 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7904   match(Set dst (SubI zero dst));
  7905   effect(KILL cr);
  7907   size(2);
  7908   format %{ "NEG    $dst" %}
  7909   opcode(0xF7,0x03);  // Opcode F7 /3
  7910   ins_encode( OpcP, RegOpc( dst ) );
  7911   ins_pipe( ialu_reg );
  7912 %}
  7915 //----------Multiplication/Division Instructions-------------------------------
  7916 // Integer Multiplication Instructions
  7917 // Multiply Register
  7918 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7919   match(Set dst (MulI dst src));
  7920   effect(KILL cr);
  7922   size(3);
  7923   ins_cost(300);
  7924   format %{ "IMUL   $dst,$src" %}
  7925   opcode(0xAF, 0x0F);
  7926   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  7927   ins_pipe( ialu_reg_reg_alu0 );
  7928 %}
  7930 // Multiply 32-bit Immediate
  7931 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  7932   match(Set dst (MulI src imm));
  7933   effect(KILL cr);
  7935   ins_cost(300);
  7936   format %{ "IMUL   $dst,$src,$imm" %}
  7937   opcode(0x69);  /* 69 /r id */
  7938   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  7939   ins_pipe( ialu_reg_reg_alu0 );
  7940 %}
  7942 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  7943   match(Set dst src);
  7944   effect(KILL cr);
  7946   // Note that this is artificially increased to make it more expensive than loadConL
  7947   ins_cost(250);
  7948   format %{ "MOV    EAX,$src\t// low word only" %}
  7949   opcode(0xB8);
  7950   ins_encode( LdImmL_Lo(dst, src) );
  7951   ins_pipe( ialu_reg_fat );
  7952 %}
  7954 // Multiply by 32-bit Immediate, taking the shifted high order results
  7955 //  (special case for shift by 32)
  7956 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  7957   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7958   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7959              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7960              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7961   effect(USE src1, KILL cr);
  7963   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7964   ins_cost(0*100 + 1*400 - 150);
  7965   format %{ "IMUL   EDX:EAX,$src1" %}
  7966   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7967   ins_pipe( pipe_slow );
  7968 %}
  7970 // Multiply by 32-bit Immediate, taking the shifted high order results
  7971 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  7972   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7973   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7974              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7975              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7976   effect(USE src1, KILL cr);
  7978   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7979   ins_cost(1*100 + 1*400 - 150);
  7980   format %{ "IMUL   EDX:EAX,$src1\n\t"
  7981             "SAR    EDX,$cnt-32" %}
  7982   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7983   ins_pipe( pipe_slow );
  7984 %}
  7986 // Multiply Memory 32-bit Immediate
  7987 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  7988   match(Set dst (MulI (LoadI src) imm));
  7989   effect(KILL cr);
  7991   ins_cost(300);
  7992   format %{ "IMUL   $dst,$src,$imm" %}
  7993   opcode(0x69);  /* 69 /r id */
  7994   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  7995   ins_pipe( ialu_reg_mem_alu0 );
  7996 %}
  7998 // Multiply Memory
  7999 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  8000   match(Set dst (MulI dst (LoadI src)));
  8001   effect(KILL cr);
  8003   ins_cost(350);
  8004   format %{ "IMUL   $dst,$src" %}
  8005   opcode(0xAF, 0x0F);
  8006   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8007   ins_pipe( ialu_reg_mem_alu0 );
  8008 %}
  8010 // Multiply Register Int to Long
  8011 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8012   // Basic Idea: long = (long)int * (long)int
  8013   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8014   effect(DEF dst, USE src, USE src1, KILL flags);
  8016   ins_cost(300);
  8017   format %{ "IMUL   $dst,$src1" %}
  8019   ins_encode( long_int_multiply( dst, src1 ) );
  8020   ins_pipe( ialu_reg_reg_alu0 );
  8021 %}
  8023 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8024   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8025   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8026   effect(KILL flags);
  8028   ins_cost(300);
  8029   format %{ "MUL    $dst,$src1" %}
  8031   ins_encode( long_uint_multiply(dst, src1) );
  8032   ins_pipe( ialu_reg_reg_alu0 );
  8033 %}
  8035 // Multiply Register Long
  8036 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8037   match(Set dst (MulL dst src));
  8038   effect(KILL cr, TEMP tmp);
  8039   ins_cost(4*100+3*400);
  8040 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8041 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8042   format %{ "MOV    $tmp,$src.lo\n\t"
  8043             "IMUL   $tmp,EDX\n\t"
  8044             "MOV    EDX,$src.hi\n\t"
  8045             "IMUL   EDX,EAX\n\t"
  8046             "ADD    $tmp,EDX\n\t"
  8047             "MUL    EDX:EAX,$src.lo\n\t"
  8048             "ADD    EDX,$tmp" %}
  8049   ins_encode( long_multiply( dst, src, tmp ) );
  8050   ins_pipe( pipe_slow );
  8051 %}
  8053 // Multiply Register Long where the left operand's high 32 bits are zero
  8054 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8055   predicate(is_operand_hi32_zero(n->in(1)));
  8056   match(Set dst (MulL dst src));
  8057   effect(KILL cr, TEMP tmp);
  8058   ins_cost(2*100+2*400);
  8059 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8060 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8061   format %{ "MOV    $tmp,$src.hi\n\t"
  8062             "IMUL   $tmp,EAX\n\t"
  8063             "MUL    EDX:EAX,$src.lo\n\t"
  8064             "ADD    EDX,$tmp" %}
  8065   ins_encode %{
  8066     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8067     __ imull($tmp$$Register, rax);
  8068     __ mull($src$$Register);
  8069     __ addl(rdx, $tmp$$Register);
  8070   %}
  8071   ins_pipe( pipe_slow );
  8072 %}
  8074 // Multiply Register Long where the right operand's high 32 bits are zero
  8075 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8076   predicate(is_operand_hi32_zero(n->in(2)));
  8077   match(Set dst (MulL dst src));
  8078   effect(KILL cr, TEMP tmp);
  8079   ins_cost(2*100+2*400);
  8080 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8081 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8082   format %{ "MOV    $tmp,$src.lo\n\t"
  8083             "IMUL   $tmp,EDX\n\t"
  8084             "MUL    EDX:EAX,$src.lo\n\t"
  8085             "ADD    EDX,$tmp" %}
  8086   ins_encode %{
  8087     __ movl($tmp$$Register, $src$$Register);
  8088     __ imull($tmp$$Register, rdx);
  8089     __ mull($src$$Register);
  8090     __ addl(rdx, $tmp$$Register);
  8091   %}
  8092   ins_pipe( pipe_slow );
  8093 %}
  8095 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8096 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8097   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8098   match(Set dst (MulL dst src));
  8099   effect(KILL cr);
  8100   ins_cost(1*400);
  8101 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8102 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8103   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8104   ins_encode %{
  8105     __ mull($src$$Register);
  8106   %}
  8107   ins_pipe( pipe_slow );
  8108 %}
  8110 // Multiply Register Long by small constant
  8111 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  8112   match(Set dst (MulL dst src));
  8113   effect(KILL cr, TEMP tmp);
  8114   ins_cost(2*100+2*400);
  8115   size(12);
  8116 // Basic idea: lo(result) = lo(src * EAX)
  8117 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8118   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8119             "MOV    EDX,$src\n\t"
  8120             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8121             "ADD    EDX,$tmp" %}
  8122   ins_encode( long_multiply_con( dst, src, tmp ) );
  8123   ins_pipe( pipe_slow );
  8124 %}
  8126 // Integer DIV with Register
  8127 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8128   match(Set rax (DivI rax div));
  8129   effect(KILL rdx, KILL cr);
  8130   size(26);
  8131   ins_cost(30*100+10*100);
  8132   format %{ "CMP    EAX,0x80000000\n\t"
  8133             "JNE,s  normal\n\t"
  8134             "XOR    EDX,EDX\n\t"
  8135             "CMP    ECX,-1\n\t"
  8136             "JE,s   done\n"
  8137     "normal: CDQ\n\t"
  8138             "IDIV   $div\n\t"
  8139     "done:"        %}
  8140   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8141   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8142   ins_pipe( ialu_reg_reg_alu0 );
  8143 %}
  8145 // Divide Register Long
  8146 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8147   match(Set dst (DivL src1 src2));
  8148   effect( KILL cr, KILL cx, KILL bx );
  8149   ins_cost(10000);
  8150   format %{ "PUSH   $src1.hi\n\t"
  8151             "PUSH   $src1.lo\n\t"
  8152             "PUSH   $src2.hi\n\t"
  8153             "PUSH   $src2.lo\n\t"
  8154             "CALL   SharedRuntime::ldiv\n\t"
  8155             "ADD    ESP,16" %}
  8156   ins_encode( long_div(src1,src2) );
  8157   ins_pipe( pipe_slow );
  8158 %}
  8160 // Integer DIVMOD with Register, both quotient and mod results
  8161 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8162   match(DivModI rax div);
  8163   effect(KILL cr);
  8164   size(26);
  8165   ins_cost(30*100+10*100);
  8166   format %{ "CMP    EAX,0x80000000\n\t"
  8167             "JNE,s  normal\n\t"
  8168             "XOR    EDX,EDX\n\t"
  8169             "CMP    ECX,-1\n\t"
  8170             "JE,s   done\n"
  8171     "normal: CDQ\n\t"
  8172             "IDIV   $div\n\t"
  8173     "done:"        %}
  8174   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8175   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8176   ins_pipe( pipe_slow );
  8177 %}
  8179 // Integer MOD with Register
  8180 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8181   match(Set rdx (ModI rax div));
  8182   effect(KILL rax, KILL cr);
  8184   size(26);
  8185   ins_cost(300);
  8186   format %{ "CDQ\n\t"
  8187             "IDIV   $div" %}
  8188   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8189   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8190   ins_pipe( ialu_reg_reg_alu0 );
  8191 %}
  8193 // Remainder Register Long
  8194 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8195   match(Set dst (ModL src1 src2));
  8196   effect( KILL cr, KILL cx, KILL bx );
  8197   ins_cost(10000);
  8198   format %{ "PUSH   $src1.hi\n\t"
  8199             "PUSH   $src1.lo\n\t"
  8200             "PUSH   $src2.hi\n\t"
  8201             "PUSH   $src2.lo\n\t"
  8202             "CALL   SharedRuntime::lrem\n\t"
  8203             "ADD    ESP,16" %}
  8204   ins_encode( long_mod(src1,src2) );
  8205   ins_pipe( pipe_slow );
  8206 %}
  8208 // Divide Register Long (no special case since divisor != -1)
  8209 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8210   match(Set dst (DivL dst imm));
  8211   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8212   ins_cost(1000);
  8213   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8214             "XOR    $tmp2,$tmp2\n\t"
  8215             "CMP    $tmp,EDX\n\t"
  8216             "JA,s   fast\n\t"
  8217             "MOV    $tmp2,EAX\n\t"
  8218             "MOV    EAX,EDX\n\t"
  8219             "MOV    EDX,0\n\t"
  8220             "JLE,s  pos\n\t"
  8221             "LNEG   EAX : $tmp2\n\t"
  8222             "DIV    $tmp # unsigned division\n\t"
  8223             "XCHG   EAX,$tmp2\n\t"
  8224             "DIV    $tmp\n\t"
  8225             "LNEG   $tmp2 : EAX\n\t"
  8226             "JMP,s  done\n"
  8227     "pos:\n\t"
  8228             "DIV    $tmp\n\t"
  8229             "XCHG   EAX,$tmp2\n"
  8230     "fast:\n\t"
  8231             "DIV    $tmp\n"
  8232     "done:\n\t"
  8233             "MOV    EDX,$tmp2\n\t"
  8234             "NEG    EDX:EAX # if $imm < 0" %}
  8235   ins_encode %{
  8236     int con = (int)$imm$$constant;
  8237     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8238     int pcon = (con > 0) ? con : -con;
  8239     Label Lfast, Lpos, Ldone;
  8241     __ movl($tmp$$Register, pcon);
  8242     __ xorl($tmp2$$Register,$tmp2$$Register);
  8243     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8244     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8246     __ movl($tmp2$$Register, $dst$$Register); // save
  8247     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8248     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8249     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8251     // Negative dividend.
  8252     // convert value to positive to use unsigned division
  8253     __ lneg($dst$$Register, $tmp2$$Register);
  8254     __ divl($tmp$$Register);
  8255     __ xchgl($dst$$Register, $tmp2$$Register);
  8256     __ divl($tmp$$Register);
  8257     // revert result back to negative
  8258     __ lneg($tmp2$$Register, $dst$$Register);
  8259     __ jmpb(Ldone);
  8261     __ bind(Lpos);
  8262     __ divl($tmp$$Register); // Use unsigned division
  8263     __ xchgl($dst$$Register, $tmp2$$Register);
  8264     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8266     __ bind(Lfast);
  8267     // fast path: src is positive
  8268     __ divl($tmp$$Register); // Use unsigned division
  8270     __ bind(Ldone);
  8271     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8272     if (con < 0) {
  8273       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8275   %}
  8276   ins_pipe( pipe_slow );
  8277 %}
  8279 // Remainder Register Long (remainder fit into 32 bits)
  8280 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8281   match(Set dst (ModL dst imm));
  8282   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8283   ins_cost(1000);
  8284   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8285             "CMP    $tmp,EDX\n\t"
  8286             "JA,s   fast\n\t"
  8287             "MOV    $tmp2,EAX\n\t"
  8288             "MOV    EAX,EDX\n\t"
  8289             "MOV    EDX,0\n\t"
  8290             "JLE,s  pos\n\t"
  8291             "LNEG   EAX : $tmp2\n\t"
  8292             "DIV    $tmp # unsigned division\n\t"
  8293             "MOV    EAX,$tmp2\n\t"
  8294             "DIV    $tmp\n\t"
  8295             "NEG    EDX\n\t"
  8296             "JMP,s  done\n"
  8297     "pos:\n\t"
  8298             "DIV    $tmp\n\t"
  8299             "MOV    EAX,$tmp2\n"
  8300     "fast:\n\t"
  8301             "DIV    $tmp\n"
  8302     "done:\n\t"
  8303             "MOV    EAX,EDX\n\t"
  8304             "SAR    EDX,31\n\t" %}
  8305   ins_encode %{
  8306     int con = (int)$imm$$constant;
  8307     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8308     int pcon = (con > 0) ? con : -con;
  8309     Label  Lfast, Lpos, Ldone;
  8311     __ movl($tmp$$Register, pcon);
  8312     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8313     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8315     __ movl($tmp2$$Register, $dst$$Register); // save
  8316     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8317     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8318     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8320     // Negative dividend.
  8321     // convert value to positive to use unsigned division
  8322     __ lneg($dst$$Register, $tmp2$$Register);
  8323     __ divl($tmp$$Register);
  8324     __ movl($dst$$Register, $tmp2$$Register);
  8325     __ divl($tmp$$Register);
  8326     // revert remainder back to negative
  8327     __ negl(HIGH_FROM_LOW($dst$$Register));
  8328     __ jmpb(Ldone);
  8330     __ bind(Lpos);
  8331     __ divl($tmp$$Register);
  8332     __ movl($dst$$Register, $tmp2$$Register);
  8334     __ bind(Lfast);
  8335     // fast path: src is positive
  8336     __ divl($tmp$$Register);
  8338     __ bind(Ldone);
  8339     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8340     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8342   %}
  8343   ins_pipe( pipe_slow );
  8344 %}
  8346 // Integer Shift Instructions
  8347 // Shift Left by one
  8348 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8349   match(Set dst (LShiftI dst shift));
  8350   effect(KILL cr);
  8352   size(2);
  8353   format %{ "SHL    $dst,$shift" %}
  8354   opcode(0xD1, 0x4);  /* D1 /4 */
  8355   ins_encode( OpcP, RegOpc( dst ) );
  8356   ins_pipe( ialu_reg );
  8357 %}
  8359 // Shift Left by 8-bit immediate
  8360 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8361   match(Set dst (LShiftI dst shift));
  8362   effect(KILL cr);
  8364   size(3);
  8365   format %{ "SHL    $dst,$shift" %}
  8366   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8367   ins_encode( RegOpcImm( dst, shift) );
  8368   ins_pipe( ialu_reg );
  8369 %}
  8371 // Shift Left by variable
  8372 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8373   match(Set dst (LShiftI dst shift));
  8374   effect(KILL cr);
  8376   size(2);
  8377   format %{ "SHL    $dst,$shift" %}
  8378   opcode(0xD3, 0x4);  /* D3 /4 */
  8379   ins_encode( OpcP, RegOpc( dst ) );
  8380   ins_pipe( ialu_reg_reg );
  8381 %}
  8383 // Arithmetic shift right by one
  8384 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8385   match(Set dst (RShiftI dst shift));
  8386   effect(KILL cr);
  8388   size(2);
  8389   format %{ "SAR    $dst,$shift" %}
  8390   opcode(0xD1, 0x7);  /* D1 /7 */
  8391   ins_encode( OpcP, RegOpc( dst ) );
  8392   ins_pipe( ialu_reg );
  8393 %}
  8395 // Arithmetic shift right by one
  8396 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8397   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8398   effect(KILL cr);
  8399   format %{ "SAR    $dst,$shift" %}
  8400   opcode(0xD1, 0x7);  /* D1 /7 */
  8401   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8402   ins_pipe( ialu_mem_imm );
  8403 %}
  8405 // Arithmetic Shift Right by 8-bit immediate
  8406 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8407   match(Set dst (RShiftI dst shift));
  8408   effect(KILL cr);
  8410   size(3);
  8411   format %{ "SAR    $dst,$shift" %}
  8412   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8413   ins_encode( RegOpcImm( dst, shift ) );
  8414   ins_pipe( ialu_mem_imm );
  8415 %}
  8417 // Arithmetic Shift Right by 8-bit immediate
  8418 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8419   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8420   effect(KILL cr);
  8422   format %{ "SAR    $dst,$shift" %}
  8423   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8424   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8425   ins_pipe( ialu_mem_imm );
  8426 %}
  8428 // Arithmetic Shift Right by variable
  8429 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8430   match(Set dst (RShiftI dst shift));
  8431   effect(KILL cr);
  8433   size(2);
  8434   format %{ "SAR    $dst,$shift" %}
  8435   opcode(0xD3, 0x7);  /* D3 /7 */
  8436   ins_encode( OpcP, RegOpc( dst ) );
  8437   ins_pipe( ialu_reg_reg );
  8438 %}
  8440 // Logical shift right by one
  8441 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8442   match(Set dst (URShiftI dst shift));
  8443   effect(KILL cr);
  8445   size(2);
  8446   format %{ "SHR    $dst,$shift" %}
  8447   opcode(0xD1, 0x5);  /* D1 /5 */
  8448   ins_encode( OpcP, RegOpc( dst ) );
  8449   ins_pipe( ialu_reg );
  8450 %}
  8452 // Logical Shift Right by 8-bit immediate
  8453 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8454   match(Set dst (URShiftI dst shift));
  8455   effect(KILL cr);
  8457   size(3);
  8458   format %{ "SHR    $dst,$shift" %}
  8459   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8460   ins_encode( RegOpcImm( dst, shift) );
  8461   ins_pipe( ialu_reg );
  8462 %}
  8465 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8466 // This idiom is used by the compiler for the i2b bytecode.
  8467 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  8468   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8470   size(3);
  8471   format %{ "MOVSX  $dst,$src :8" %}
  8472   ins_encode %{
  8473     __ movsbl($dst$$Register, $src$$Register);
  8474   %}
  8475   ins_pipe(ialu_reg_reg);
  8476 %}
  8478 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8479 // This idiom is used by the compiler the i2s bytecode.
  8480 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  8481   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8483   size(3);
  8484   format %{ "MOVSX  $dst,$src :16" %}
  8485   ins_encode %{
  8486     __ movswl($dst$$Register, $src$$Register);
  8487   %}
  8488   ins_pipe(ialu_reg_reg);
  8489 %}
  8492 // Logical Shift Right by variable
  8493 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8494   match(Set dst (URShiftI dst shift));
  8495   effect(KILL cr);
  8497   size(2);
  8498   format %{ "SHR    $dst,$shift" %}
  8499   opcode(0xD3, 0x5);  /* D3 /5 */
  8500   ins_encode( OpcP, RegOpc( dst ) );
  8501   ins_pipe( ialu_reg_reg );
  8502 %}
  8505 //----------Logical Instructions-----------------------------------------------
  8506 //----------Integer Logical Instructions---------------------------------------
  8507 // And Instructions
  8508 // And Register with Register
  8509 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8510   match(Set dst (AndI dst src));
  8511   effect(KILL cr);
  8513   size(2);
  8514   format %{ "AND    $dst,$src" %}
  8515   opcode(0x23);
  8516   ins_encode( OpcP, RegReg( dst, src) );
  8517   ins_pipe( ialu_reg_reg );
  8518 %}
  8520 // And Register with Immediate
  8521 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8522   match(Set dst (AndI dst src));
  8523   effect(KILL cr);
  8525   format %{ "AND    $dst,$src" %}
  8526   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8527   // ins_encode( RegImm( dst, src) );
  8528   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8529   ins_pipe( ialu_reg );
  8530 %}
  8532 // And Register with Memory
  8533 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8534   match(Set dst (AndI dst (LoadI src)));
  8535   effect(KILL cr);
  8537   ins_cost(125);
  8538   format %{ "AND    $dst,$src" %}
  8539   opcode(0x23);
  8540   ins_encode( OpcP, RegMem( dst, src) );
  8541   ins_pipe( ialu_reg_mem );
  8542 %}
  8544 // And Memory with Register
  8545 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8546   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8547   effect(KILL cr);
  8549   ins_cost(150);
  8550   format %{ "AND    $dst,$src" %}
  8551   opcode(0x21);  /* Opcode 21 /r */
  8552   ins_encode( OpcP, RegMem( src, dst ) );
  8553   ins_pipe( ialu_mem_reg );
  8554 %}
  8556 // And Memory with Immediate
  8557 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8558   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8559   effect(KILL cr);
  8561   ins_cost(125);
  8562   format %{ "AND    $dst,$src" %}
  8563   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8564   // ins_encode( MemImm( dst, src) );
  8565   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8566   ins_pipe( ialu_mem_imm );
  8567 %}
  8569 // Or Instructions
  8570 // Or Register with Register
  8571 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8572   match(Set dst (OrI dst src));
  8573   effect(KILL cr);
  8575   size(2);
  8576   format %{ "OR     $dst,$src" %}
  8577   opcode(0x0B);
  8578   ins_encode( OpcP, RegReg( dst, src) );
  8579   ins_pipe( ialu_reg_reg );
  8580 %}
  8582 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8583   match(Set dst (OrI dst (CastP2X src)));
  8584   effect(KILL cr);
  8586   size(2);
  8587   format %{ "OR     $dst,$src" %}
  8588   opcode(0x0B);
  8589   ins_encode( OpcP, RegReg( dst, src) );
  8590   ins_pipe( ialu_reg_reg );
  8591 %}
  8594 // Or Register with Immediate
  8595 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8596   match(Set dst (OrI dst src));
  8597   effect(KILL cr);
  8599   format %{ "OR     $dst,$src" %}
  8600   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8601   // ins_encode( RegImm( dst, src) );
  8602   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8603   ins_pipe( ialu_reg );
  8604 %}
  8606 // Or Register with Memory
  8607 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8608   match(Set dst (OrI dst (LoadI src)));
  8609   effect(KILL cr);
  8611   ins_cost(125);
  8612   format %{ "OR     $dst,$src" %}
  8613   opcode(0x0B);
  8614   ins_encode( OpcP, RegMem( dst, src) );
  8615   ins_pipe( ialu_reg_mem );
  8616 %}
  8618 // Or Memory with Register
  8619 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8620   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8621   effect(KILL cr);
  8623   ins_cost(150);
  8624   format %{ "OR     $dst,$src" %}
  8625   opcode(0x09);  /* Opcode 09 /r */
  8626   ins_encode( OpcP, RegMem( src, dst ) );
  8627   ins_pipe( ialu_mem_reg );
  8628 %}
  8630 // Or Memory with Immediate
  8631 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8632   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8633   effect(KILL cr);
  8635   ins_cost(125);
  8636   format %{ "OR     $dst,$src" %}
  8637   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8638   // ins_encode( MemImm( dst, src) );
  8639   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8640   ins_pipe( ialu_mem_imm );
  8641 %}
  8643 // ROL/ROR
  8644 // ROL expand
  8645 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8646   effect(USE_DEF dst, USE shift, KILL cr);
  8648   format %{ "ROL    $dst, $shift" %}
  8649   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8650   ins_encode( OpcP, RegOpc( dst ));
  8651   ins_pipe( ialu_reg );
  8652 %}
  8654 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8655   effect(USE_DEF dst, USE shift, KILL cr);
  8657   format %{ "ROL    $dst, $shift" %}
  8658   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8659   ins_encode( RegOpcImm(dst, shift) );
  8660   ins_pipe(ialu_reg);
  8661 %}
  8663 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8664   effect(USE_DEF dst, USE shift, KILL cr);
  8666   format %{ "ROL    $dst, $shift" %}
  8667   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8668   ins_encode(OpcP, RegOpc(dst));
  8669   ins_pipe( ialu_reg_reg );
  8670 %}
  8671 // end of ROL expand
  8673 // ROL 32bit by one once
  8674 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8675   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8677   expand %{
  8678     rolI_eReg_imm1(dst, lshift, cr);
  8679   %}
  8680 %}
  8682 // ROL 32bit var by imm8 once
  8683 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8684   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8685   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8687   expand %{
  8688     rolI_eReg_imm8(dst, lshift, cr);
  8689   %}
  8690 %}
  8692 // ROL 32bit var by var once
  8693 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8694   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8696   expand %{
  8697     rolI_eReg_CL(dst, shift, cr);
  8698   %}
  8699 %}
  8701 // ROL 32bit var by var once
  8702 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8703   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8705   expand %{
  8706     rolI_eReg_CL(dst, shift, cr);
  8707   %}
  8708 %}
  8710 // ROR expand
  8711 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8712   effect(USE_DEF dst, USE shift, KILL cr);
  8714   format %{ "ROR    $dst, $shift" %}
  8715   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8716   ins_encode( OpcP, RegOpc( dst ) );
  8717   ins_pipe( ialu_reg );
  8718 %}
  8720 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8721   effect (USE_DEF dst, USE shift, KILL cr);
  8723   format %{ "ROR    $dst, $shift" %}
  8724   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8725   ins_encode( RegOpcImm(dst, shift) );
  8726   ins_pipe( ialu_reg );
  8727 %}
  8729 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8730   effect(USE_DEF dst, USE shift, KILL cr);
  8732   format %{ "ROR    $dst, $shift" %}
  8733   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8734   ins_encode(OpcP, RegOpc(dst));
  8735   ins_pipe( ialu_reg_reg );
  8736 %}
  8737 // end of ROR expand
  8739 // ROR right once
  8740 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8741   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8743   expand %{
  8744     rorI_eReg_imm1(dst, rshift, cr);
  8745   %}
  8746 %}
  8748 // ROR 32bit by immI8 once
  8749 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8750   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8751   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8753   expand %{
  8754     rorI_eReg_imm8(dst, rshift, cr);
  8755   %}
  8756 %}
  8758 // ROR 32bit var by var once
  8759 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8760   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8762   expand %{
  8763     rorI_eReg_CL(dst, shift, cr);
  8764   %}
  8765 %}
  8767 // ROR 32bit var by var once
  8768 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8769   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8771   expand %{
  8772     rorI_eReg_CL(dst, shift, cr);
  8773   %}
  8774 %}
  8776 // Xor Instructions
  8777 // Xor Register with Register
  8778 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8779   match(Set dst (XorI dst src));
  8780   effect(KILL cr);
  8782   size(2);
  8783   format %{ "XOR    $dst,$src" %}
  8784   opcode(0x33);
  8785   ins_encode( OpcP, RegReg( dst, src) );
  8786   ins_pipe( ialu_reg_reg );
  8787 %}
  8789 // Xor Register with Immediate -1
  8790 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8791   match(Set dst (XorI dst imm));  
  8793   size(2);
  8794   format %{ "NOT    $dst" %}  
  8795   ins_encode %{
  8796      __ notl($dst$$Register);
  8797   %}
  8798   ins_pipe( ialu_reg );
  8799 %}
  8801 // Xor Register with Immediate
  8802 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8803   match(Set dst (XorI dst src));
  8804   effect(KILL cr);
  8806   format %{ "XOR    $dst,$src" %}
  8807   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8808   // ins_encode( RegImm( dst, src) );
  8809   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8810   ins_pipe( ialu_reg );
  8811 %}
  8813 // Xor Register with Memory
  8814 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8815   match(Set dst (XorI dst (LoadI src)));
  8816   effect(KILL cr);
  8818   ins_cost(125);
  8819   format %{ "XOR    $dst,$src" %}
  8820   opcode(0x33);
  8821   ins_encode( OpcP, RegMem(dst, src) );
  8822   ins_pipe( ialu_reg_mem );
  8823 %}
  8825 // Xor Memory with Register
  8826 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8827   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8828   effect(KILL cr);
  8830   ins_cost(150);
  8831   format %{ "XOR    $dst,$src" %}
  8832   opcode(0x31);  /* Opcode 31 /r */
  8833   ins_encode( OpcP, RegMem( src, dst ) );
  8834   ins_pipe( ialu_mem_reg );
  8835 %}
  8837 // Xor Memory with Immediate
  8838 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8839   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8840   effect(KILL cr);
  8842   ins_cost(125);
  8843   format %{ "XOR    $dst,$src" %}
  8844   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8845   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8846   ins_pipe( ialu_mem_imm );
  8847 %}
  8849 //----------Convert Int to Boolean---------------------------------------------
  8851 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8852   effect( DEF dst, USE src );
  8853   format %{ "MOV    $dst,$src" %}
  8854   ins_encode( enc_Copy( dst, src) );
  8855   ins_pipe( ialu_reg_reg );
  8856 %}
  8858 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8859   effect( USE_DEF dst, USE src, KILL cr );
  8861   size(4);
  8862   format %{ "NEG    $dst\n\t"
  8863             "ADC    $dst,$src" %}
  8864   ins_encode( neg_reg(dst),
  8865               OpcRegReg(0x13,dst,src) );
  8866   ins_pipe( ialu_reg_reg_long );
  8867 %}
  8869 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8870   match(Set dst (Conv2B src));
  8872   expand %{
  8873     movI_nocopy(dst,src);
  8874     ci2b(dst,src,cr);
  8875   %}
  8876 %}
  8878 instruct movP_nocopy(rRegI dst, eRegP src) %{
  8879   effect( DEF dst, USE src );
  8880   format %{ "MOV    $dst,$src" %}
  8881   ins_encode( enc_Copy( dst, src) );
  8882   ins_pipe( ialu_reg_reg );
  8883 %}
  8885 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8886   effect( USE_DEF dst, USE src, KILL cr );
  8887   format %{ "NEG    $dst\n\t"
  8888             "ADC    $dst,$src" %}
  8889   ins_encode( neg_reg(dst),
  8890               OpcRegReg(0x13,dst,src) );
  8891   ins_pipe( ialu_reg_reg_long );
  8892 %}
  8894 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8895   match(Set dst (Conv2B src));
  8897   expand %{
  8898     movP_nocopy(dst,src);
  8899     cp2b(dst,src,cr);
  8900   %}
  8901 %}
  8903 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  8904   match(Set dst (CmpLTMask p q));
  8905   effect( KILL cr );
  8906   ins_cost(400);
  8908   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8909   format %{ "XOR    $dst,$dst\n\t"
  8910             "CMP    $p,$q\n\t"
  8911             "SETlt  $dst\n\t"
  8912             "NEG    $dst" %}
  8913   ins_encode( OpcRegReg(0x33,dst,dst),
  8914               OpcRegReg(0x3B,p,q),
  8915               setLT_reg(dst), neg_reg(dst) );
  8916   ins_pipe( pipe_slow );
  8917 %}
  8919 instruct cmpLTMask0( rRegI dst, immI0 zero, eFlagsReg cr ) %{
  8920   match(Set dst (CmpLTMask dst zero));
  8921   effect( DEF dst, KILL cr );
  8922   ins_cost(100);
  8924   format %{ "SAR    $dst,31" %}
  8925   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8926   ins_encode( RegOpcImm( dst, 0x1F ) );
  8927   ins_pipe( ialu_reg );
  8928 %}
  8931 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  8932   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8933   effect( KILL tmp, KILL cr );
  8934   ins_cost(400);
  8935   // annoyingly, $tmp has no edges so you cant ask for it in
  8936   // any format or encoding
  8937   format %{ "SUB    $p,$q\n\t"
  8938             "SBB    ECX,ECX\n\t"
  8939             "AND    ECX,$y\n\t"
  8940             "ADD    $p,ECX" %}
  8941   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  8942   ins_pipe( pipe_cmplt );
  8943 %}
  8945 /* If I enable this, I encourage spilling in the inner loop of compress.
  8946 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  8947   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  8948   effect( USE_KILL tmp, KILL cr );
  8949   ins_cost(400);
  8951   format %{ "SUB    $p,$q\n\t"
  8952             "SBB    ECX,ECX\n\t"
  8953             "AND    ECX,$y\n\t"
  8954             "ADD    $p,ECX" %}
  8955   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  8956 %}
  8957 */
  8959 //----------Long Instructions------------------------------------------------
  8960 // Add Long Register with Register
  8961 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8962   match(Set dst (AddL dst src));
  8963   effect(KILL cr);
  8964   ins_cost(200);
  8965   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8966             "ADC    $dst.hi,$src.hi" %}
  8967   opcode(0x03, 0x13);
  8968   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8969   ins_pipe( ialu_reg_reg_long );
  8970 %}
  8972 // Add Long Register with Immediate
  8973 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8974   match(Set dst (AddL dst src));
  8975   effect(KILL cr);
  8976   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8977             "ADC    $dst.hi,$src.hi" %}
  8978   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  8979   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8980   ins_pipe( ialu_reg_long );
  8981 %}
  8983 // Add Long Register with Memory
  8984 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8985   match(Set dst (AddL dst (LoadL mem)));
  8986   effect(KILL cr);
  8987   ins_cost(125);
  8988   format %{ "ADD    $dst.lo,$mem\n\t"
  8989             "ADC    $dst.hi,$mem+4" %}
  8990   opcode(0x03, 0x13);
  8991   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8992   ins_pipe( ialu_reg_long_mem );
  8993 %}
  8995 // Subtract Long Register with Register.
  8996 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8997   match(Set dst (SubL dst src));
  8998   effect(KILL cr);
  8999   ins_cost(200);
  9000   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9001             "SBB    $dst.hi,$src.hi" %}
  9002   opcode(0x2B, 0x1B);
  9003   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9004   ins_pipe( ialu_reg_reg_long );
  9005 %}
  9007 // Subtract Long Register with Immediate
  9008 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9009   match(Set dst (SubL dst src));
  9010   effect(KILL cr);
  9011   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9012             "SBB    $dst.hi,$src.hi" %}
  9013   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9014   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9015   ins_pipe( ialu_reg_long );
  9016 %}
  9018 // Subtract Long Register with Memory
  9019 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9020   match(Set dst (SubL dst (LoadL mem)));
  9021   effect(KILL cr);
  9022   ins_cost(125);
  9023   format %{ "SUB    $dst.lo,$mem\n\t"
  9024             "SBB    $dst.hi,$mem+4" %}
  9025   opcode(0x2B, 0x1B);
  9026   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9027   ins_pipe( ialu_reg_long_mem );
  9028 %}
  9030 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9031   match(Set dst (SubL zero dst));
  9032   effect(KILL cr);
  9033   ins_cost(300);
  9034   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9035   ins_encode( neg_long(dst) );
  9036   ins_pipe( ialu_reg_reg_long );
  9037 %}
  9039 // And Long Register with Register
  9040 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9041   match(Set dst (AndL dst src));
  9042   effect(KILL cr);
  9043   format %{ "AND    $dst.lo,$src.lo\n\t"
  9044             "AND    $dst.hi,$src.hi" %}
  9045   opcode(0x23,0x23);
  9046   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9047   ins_pipe( ialu_reg_reg_long );
  9048 %}
  9050 // And Long Register with Immediate
  9051 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9052   match(Set dst (AndL dst src));
  9053   effect(KILL cr);
  9054   format %{ "AND    $dst.lo,$src.lo\n\t"
  9055             "AND    $dst.hi,$src.hi" %}
  9056   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9057   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9058   ins_pipe( ialu_reg_long );
  9059 %}
  9061 // And Long Register with Memory
  9062 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9063   match(Set dst (AndL dst (LoadL mem)));
  9064   effect(KILL cr);
  9065   ins_cost(125);
  9066   format %{ "AND    $dst.lo,$mem\n\t"
  9067             "AND    $dst.hi,$mem+4" %}
  9068   opcode(0x23, 0x23);
  9069   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9070   ins_pipe( ialu_reg_long_mem );
  9071 %}
  9073 // Or Long Register with Register
  9074 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9075   match(Set dst (OrL dst src));
  9076   effect(KILL cr);
  9077   format %{ "OR     $dst.lo,$src.lo\n\t"
  9078             "OR     $dst.hi,$src.hi" %}
  9079   opcode(0x0B,0x0B);
  9080   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9081   ins_pipe( ialu_reg_reg_long );
  9082 %}
  9084 // Or Long Register with Immediate
  9085 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9086   match(Set dst (OrL dst src));
  9087   effect(KILL cr);
  9088   format %{ "OR     $dst.lo,$src.lo\n\t"
  9089             "OR     $dst.hi,$src.hi" %}
  9090   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9091   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9092   ins_pipe( ialu_reg_long );
  9093 %}
  9095 // Or Long Register with Memory
  9096 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9097   match(Set dst (OrL dst (LoadL mem)));
  9098   effect(KILL cr);
  9099   ins_cost(125);
  9100   format %{ "OR     $dst.lo,$mem\n\t"
  9101             "OR     $dst.hi,$mem+4" %}
  9102   opcode(0x0B,0x0B);
  9103   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9104   ins_pipe( ialu_reg_long_mem );
  9105 %}
  9107 // Xor Long Register with Register
  9108 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9109   match(Set dst (XorL dst src));
  9110   effect(KILL cr);
  9111   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9112             "XOR    $dst.hi,$src.hi" %}
  9113   opcode(0x33,0x33);
  9114   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9115   ins_pipe( ialu_reg_reg_long );
  9116 %}
  9118 // Xor Long Register with Immediate -1
  9119 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9120   match(Set dst (XorL dst imm));  
  9121   format %{ "NOT    $dst.lo\n\t"
  9122             "NOT    $dst.hi" %}
  9123   ins_encode %{
  9124      __ notl($dst$$Register);
  9125      __ notl(HIGH_FROM_LOW($dst$$Register));
  9126   %}
  9127   ins_pipe( ialu_reg_long );
  9128 %}
  9130 // Xor Long Register with Immediate
  9131 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9132   match(Set dst (XorL dst src));
  9133   effect(KILL cr);
  9134   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9135             "XOR    $dst.hi,$src.hi" %}
  9136   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9137   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9138   ins_pipe( ialu_reg_long );
  9139 %}
  9141 // Xor Long Register with Memory
  9142 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9143   match(Set dst (XorL dst (LoadL mem)));
  9144   effect(KILL cr);
  9145   ins_cost(125);
  9146   format %{ "XOR    $dst.lo,$mem\n\t"
  9147             "XOR    $dst.hi,$mem+4" %}
  9148   opcode(0x33,0x33);
  9149   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9150   ins_pipe( ialu_reg_long_mem );
  9151 %}
  9153 // Shift Left Long by 1
  9154 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9155   predicate(UseNewLongLShift);
  9156   match(Set dst (LShiftL dst cnt));
  9157   effect(KILL cr);
  9158   ins_cost(100);
  9159   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9160             "ADC    $dst.hi,$dst.hi" %}
  9161   ins_encode %{
  9162     __ addl($dst$$Register,$dst$$Register);
  9163     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9164   %}
  9165   ins_pipe( ialu_reg_long );
  9166 %}
  9168 // Shift Left Long by 2
  9169 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9170   predicate(UseNewLongLShift);
  9171   match(Set dst (LShiftL dst cnt));
  9172   effect(KILL cr);
  9173   ins_cost(100);
  9174   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9175             "ADC    $dst.hi,$dst.hi\n\t" 
  9176             "ADD    $dst.lo,$dst.lo\n\t"
  9177             "ADC    $dst.hi,$dst.hi" %}
  9178   ins_encode %{
  9179     __ addl($dst$$Register,$dst$$Register);
  9180     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9181     __ addl($dst$$Register,$dst$$Register);
  9182     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9183   %}
  9184   ins_pipe( ialu_reg_long );
  9185 %}
  9187 // Shift Left Long by 3
  9188 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9189   predicate(UseNewLongLShift);
  9190   match(Set dst (LShiftL dst cnt));
  9191   effect(KILL cr);
  9192   ins_cost(100);
  9193   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9194             "ADC    $dst.hi,$dst.hi\n\t" 
  9195             "ADD    $dst.lo,$dst.lo\n\t"
  9196             "ADC    $dst.hi,$dst.hi\n\t" 
  9197             "ADD    $dst.lo,$dst.lo\n\t"
  9198             "ADC    $dst.hi,$dst.hi" %}
  9199   ins_encode %{
  9200     __ addl($dst$$Register,$dst$$Register);
  9201     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9202     __ addl($dst$$Register,$dst$$Register);
  9203     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9204     __ addl($dst$$Register,$dst$$Register);
  9205     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9206   %}
  9207   ins_pipe( ialu_reg_long );
  9208 %}
  9210 // Shift Left Long by 1-31
  9211 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9212   match(Set dst (LShiftL dst cnt));
  9213   effect(KILL cr);
  9214   ins_cost(200);
  9215   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9216             "SHL    $dst.lo,$cnt" %}
  9217   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9218   ins_encode( move_long_small_shift(dst,cnt) );
  9219   ins_pipe( ialu_reg_long );
  9220 %}
  9222 // Shift Left Long by 32-63
  9223 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9224   match(Set dst (LShiftL dst cnt));
  9225   effect(KILL cr);
  9226   ins_cost(300);
  9227   format %{ "MOV    $dst.hi,$dst.lo\n"
  9228           "\tSHL    $dst.hi,$cnt-32\n"
  9229           "\tXOR    $dst.lo,$dst.lo" %}
  9230   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9231   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9232   ins_pipe( ialu_reg_long );
  9233 %}
  9235 // Shift Left Long by variable
  9236 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9237   match(Set dst (LShiftL dst shift));
  9238   effect(KILL cr);
  9239   ins_cost(500+200);
  9240   size(17);
  9241   format %{ "TEST   $shift,32\n\t"
  9242             "JEQ,s  small\n\t"
  9243             "MOV    $dst.hi,$dst.lo\n\t"
  9244             "XOR    $dst.lo,$dst.lo\n"
  9245     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9246             "SHL    $dst.lo,$shift" %}
  9247   ins_encode( shift_left_long( dst, shift ) );
  9248   ins_pipe( pipe_slow );
  9249 %}
  9251 // Shift Right Long by 1-31
  9252 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9253   match(Set dst (URShiftL dst cnt));
  9254   effect(KILL cr);
  9255   ins_cost(200);
  9256   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9257             "SHR    $dst.hi,$cnt" %}
  9258   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9259   ins_encode( move_long_small_shift(dst,cnt) );
  9260   ins_pipe( ialu_reg_long );
  9261 %}
  9263 // Shift Right Long by 32-63
  9264 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9265   match(Set dst (URShiftL dst cnt));
  9266   effect(KILL cr);
  9267   ins_cost(300);
  9268   format %{ "MOV    $dst.lo,$dst.hi\n"
  9269           "\tSHR    $dst.lo,$cnt-32\n"
  9270           "\tXOR    $dst.hi,$dst.hi" %}
  9271   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9272   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9273   ins_pipe( ialu_reg_long );
  9274 %}
  9276 // Shift Right Long by variable
  9277 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9278   match(Set dst (URShiftL dst shift));
  9279   effect(KILL cr);
  9280   ins_cost(600);
  9281   size(17);
  9282   format %{ "TEST   $shift,32\n\t"
  9283             "JEQ,s  small\n\t"
  9284             "MOV    $dst.lo,$dst.hi\n\t"
  9285             "XOR    $dst.hi,$dst.hi\n"
  9286     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9287             "SHR    $dst.hi,$shift" %}
  9288   ins_encode( shift_right_long( dst, shift ) );
  9289   ins_pipe( pipe_slow );
  9290 %}
  9292 // Shift Right Long by 1-31
  9293 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9294   match(Set dst (RShiftL dst cnt));
  9295   effect(KILL cr);
  9296   ins_cost(200);
  9297   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9298             "SAR    $dst.hi,$cnt" %}
  9299   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9300   ins_encode( move_long_small_shift(dst,cnt) );
  9301   ins_pipe( ialu_reg_long );
  9302 %}
  9304 // Shift Right Long by 32-63
  9305 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9306   match(Set dst (RShiftL dst cnt));
  9307   effect(KILL cr);
  9308   ins_cost(300);
  9309   format %{ "MOV    $dst.lo,$dst.hi\n"
  9310           "\tSAR    $dst.lo,$cnt-32\n"
  9311           "\tSAR    $dst.hi,31" %}
  9312   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9313   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9314   ins_pipe( ialu_reg_long );
  9315 %}
  9317 // Shift Right arithmetic Long by variable
  9318 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9319   match(Set dst (RShiftL dst shift));
  9320   effect(KILL cr);
  9321   ins_cost(600);
  9322   size(18);
  9323   format %{ "TEST   $shift,32\n\t"
  9324             "JEQ,s  small\n\t"
  9325             "MOV    $dst.lo,$dst.hi\n\t"
  9326             "SAR    $dst.hi,31\n"
  9327     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9328             "SAR    $dst.hi,$shift" %}
  9329   ins_encode( shift_right_arith_long( dst, shift ) );
  9330   ins_pipe( pipe_slow );
  9331 %}
  9334 //----------Double Instructions------------------------------------------------
  9335 // Double Math
  9337 // Compare & branch
  9339 // P6 version of float compare, sets condition codes in EFLAGS
  9340 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9341   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9342   match(Set cr (CmpD src1 src2));
  9343   effect(KILL rax);
  9344   ins_cost(150);
  9345   format %{ "FLD    $src1\n\t"
  9346             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9347             "JNP    exit\n\t"
  9348             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9349             "SAHF\n"
  9350      "exit:\tNOP               // avoid branch to branch" %}
  9351   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9352   ins_encode( Push_Reg_DPR(src1),
  9353               OpcP, RegOpc(src2),
  9354               cmpF_P6_fixup );
  9355   ins_pipe( pipe_slow );
  9356 %}
  9358 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9359   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9360   match(Set cr (CmpD src1 src2));
  9361   ins_cost(150);
  9362   format %{ "FLD    $src1\n\t"
  9363             "FUCOMIP ST,$src2  // P6 instruction" %}
  9364   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9365   ins_encode( Push_Reg_DPR(src1),
  9366               OpcP, RegOpc(src2));
  9367   ins_pipe( pipe_slow );
  9368 %}
  9370 // Compare & branch
  9371 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9372   predicate(UseSSE<=1);
  9373   match(Set cr (CmpD src1 src2));
  9374   effect(KILL rax);
  9375   ins_cost(200);
  9376   format %{ "FLD    $src1\n\t"
  9377             "FCOMp  $src2\n\t"
  9378             "FNSTSW AX\n\t"
  9379             "TEST   AX,0x400\n\t"
  9380             "JZ,s   flags\n\t"
  9381             "MOV    AH,1\t# unordered treat as LT\n"
  9382     "flags:\tSAHF" %}
  9383   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9384   ins_encode( Push_Reg_DPR(src1),
  9385               OpcP, RegOpc(src2),
  9386               fpu_flags);
  9387   ins_pipe( pipe_slow );
  9388 %}
  9390 // Compare vs zero into -1,0,1
  9391 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9392   predicate(UseSSE<=1);
  9393   match(Set dst (CmpD3 src1 zero));
  9394   effect(KILL cr, KILL rax);
  9395   ins_cost(280);
  9396   format %{ "FTSTD  $dst,$src1" %}
  9397   opcode(0xE4, 0xD9);
  9398   ins_encode( Push_Reg_DPR(src1),
  9399               OpcS, OpcP, PopFPU,
  9400               CmpF_Result(dst));
  9401   ins_pipe( pipe_slow );
  9402 %}
  9404 // Compare into -1,0,1
  9405 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9406   predicate(UseSSE<=1);
  9407   match(Set dst (CmpD3 src1 src2));
  9408   effect(KILL cr, KILL rax);
  9409   ins_cost(300);
  9410   format %{ "FCMPD  $dst,$src1,$src2" %}
  9411   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9412   ins_encode( Push_Reg_DPR(src1),
  9413               OpcP, RegOpc(src2),
  9414               CmpF_Result(dst));
  9415   ins_pipe( pipe_slow );
  9416 %}
  9418 // float compare and set condition codes in EFLAGS by XMM regs
  9419 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9420   predicate(UseSSE>=2);
  9421   match(Set cr (CmpD src1 src2));
  9422   ins_cost(145);
  9423   format %{ "UCOMISD $src1,$src2\n\t"
  9424             "JNP,s   exit\n\t"
  9425             "PUSHF\t# saw NaN, set CF\n\t"
  9426             "AND     [rsp], #0xffffff2b\n\t"
  9427             "POPF\n"
  9428     "exit:" %}
  9429   ins_encode %{
  9430     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9431     emit_cmpfp_fixup(_masm);
  9432   %}
  9433   ins_pipe( pipe_slow );
  9434 %}
  9436 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9437   predicate(UseSSE>=2);
  9438   match(Set cr (CmpD src1 src2));
  9439   ins_cost(100);
  9440   format %{ "UCOMISD $src1,$src2" %}
  9441   ins_encode %{
  9442     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9443   %}
  9444   ins_pipe( pipe_slow );
  9445 %}
  9447 // float compare and set condition codes in EFLAGS by XMM regs
  9448 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9449   predicate(UseSSE>=2);
  9450   match(Set cr (CmpD src1 (LoadD src2)));
  9451   ins_cost(145);
  9452   format %{ "UCOMISD $src1,$src2\n\t"
  9453             "JNP,s   exit\n\t"
  9454             "PUSHF\t# saw NaN, set CF\n\t"
  9455             "AND     [rsp], #0xffffff2b\n\t"
  9456             "POPF\n"
  9457     "exit:" %}
  9458   ins_encode %{
  9459     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9460     emit_cmpfp_fixup(_masm);
  9461   %}
  9462   ins_pipe( pipe_slow );
  9463 %}
  9465 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9466   predicate(UseSSE>=2);
  9467   match(Set cr (CmpD src1 (LoadD src2)));
  9468   ins_cost(100);
  9469   format %{ "UCOMISD $src1,$src2" %}
  9470   ins_encode %{
  9471     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9472   %}
  9473   ins_pipe( pipe_slow );
  9474 %}
  9476 // Compare into -1,0,1 in XMM
  9477 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9478   predicate(UseSSE>=2);
  9479   match(Set dst (CmpD3 src1 src2));
  9480   effect(KILL cr);
  9481   ins_cost(255);
  9482   format %{ "UCOMISD $src1, $src2\n\t"
  9483             "MOV     $dst, #-1\n\t"
  9484             "JP,s    done\n\t"
  9485             "JB,s    done\n\t"
  9486             "SETNE   $dst\n\t"
  9487             "MOVZB   $dst, $dst\n"
  9488     "done:" %}
  9489   ins_encode %{
  9490     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9491     emit_cmpfp3(_masm, $dst$$Register);
  9492   %}
  9493   ins_pipe( pipe_slow );
  9494 %}
  9496 // Compare into -1,0,1 in XMM and memory
  9497 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9498   predicate(UseSSE>=2);
  9499   match(Set dst (CmpD3 src1 (LoadD src2)));
  9500   effect(KILL cr);
  9501   ins_cost(275);
  9502   format %{ "UCOMISD $src1, $src2\n\t"
  9503             "MOV     $dst, #-1\n\t"
  9504             "JP,s    done\n\t"
  9505             "JB,s    done\n\t"
  9506             "SETNE   $dst\n\t"
  9507             "MOVZB   $dst, $dst\n"
  9508     "done:" %}
  9509   ins_encode %{
  9510     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9511     emit_cmpfp3(_masm, $dst$$Register);
  9512   %}
  9513   ins_pipe( pipe_slow );
  9514 %}
  9517 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9518   predicate (UseSSE <=1);
  9519   match(Set dst (SubD dst src));
  9521   format %{ "FLD    $src\n\t"
  9522             "DSUBp  $dst,ST" %}
  9523   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9524   ins_cost(150);
  9525   ins_encode( Push_Reg_DPR(src),
  9526               OpcP, RegOpc(dst) );
  9527   ins_pipe( fpu_reg_reg );
  9528 %}
  9530 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9531   predicate (UseSSE <=1);
  9532   match(Set dst (RoundDouble (SubD src1 src2)));
  9533   ins_cost(250);
  9535   format %{ "FLD    $src2\n\t"
  9536             "DSUB   ST,$src1\n\t"
  9537             "FSTP_D $dst\t# D-round" %}
  9538   opcode(0xD8, 0x5);
  9539   ins_encode( Push_Reg_DPR(src2),
  9540               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9541   ins_pipe( fpu_mem_reg_reg );
  9542 %}
  9545 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9546   predicate (UseSSE <=1);
  9547   match(Set dst (SubD dst (LoadD src)));
  9548   ins_cost(150);
  9550   format %{ "FLD    $src\n\t"
  9551             "DSUBp  $dst,ST" %}
  9552   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9553   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9554               OpcP, RegOpc(dst) );
  9555   ins_pipe( fpu_reg_mem );
  9556 %}
  9558 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9559   predicate (UseSSE<=1);
  9560   match(Set dst (AbsD src));
  9561   ins_cost(100);
  9562   format %{ "FABS" %}
  9563   opcode(0xE1, 0xD9);
  9564   ins_encode( OpcS, OpcP );
  9565   ins_pipe( fpu_reg_reg );
  9566 %}
  9568 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9569   predicate(UseSSE<=1);
  9570   match(Set dst (NegD src));
  9571   ins_cost(100);
  9572   format %{ "FCHS" %}
  9573   opcode(0xE0, 0xD9);
  9574   ins_encode( OpcS, OpcP );
  9575   ins_pipe( fpu_reg_reg );
  9576 %}
  9578 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9579   predicate(UseSSE<=1);
  9580   match(Set dst (AddD dst src));
  9581   format %{ "FLD    $src\n\t"
  9582             "DADD   $dst,ST" %}
  9583   size(4);
  9584   ins_cost(150);
  9585   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9586   ins_encode( Push_Reg_DPR(src),
  9587               OpcP, RegOpc(dst) );
  9588   ins_pipe( fpu_reg_reg );
  9589 %}
  9592 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9593   predicate(UseSSE<=1);
  9594   match(Set dst (RoundDouble (AddD src1 src2)));
  9595   ins_cost(250);
  9597   format %{ "FLD    $src2\n\t"
  9598             "DADD   ST,$src1\n\t"
  9599             "FSTP_D $dst\t# D-round" %}
  9600   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9601   ins_encode( Push_Reg_DPR(src2),
  9602               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9603   ins_pipe( fpu_mem_reg_reg );
  9604 %}
  9607 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9608   predicate(UseSSE<=1);
  9609   match(Set dst (AddD dst (LoadD src)));
  9610   ins_cost(150);
  9612   format %{ "FLD    $src\n\t"
  9613             "DADDp  $dst,ST" %}
  9614   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9615   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9616               OpcP, RegOpc(dst) );
  9617   ins_pipe( fpu_reg_mem );
  9618 %}
  9620 // add-to-memory
  9621 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9622   predicate(UseSSE<=1);
  9623   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9624   ins_cost(150);
  9626   format %{ "FLD_D  $dst\n\t"
  9627             "DADD   ST,$src\n\t"
  9628             "FST_D  $dst" %}
  9629   opcode(0xDD, 0x0);
  9630   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9631               Opcode(0xD8), RegOpc(src),
  9632               set_instruction_start,
  9633               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9634   ins_pipe( fpu_reg_mem );
  9635 %}
  9637 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9638   predicate(UseSSE<=1);
  9639   match(Set dst (AddD dst con));
  9640   ins_cost(125);
  9641   format %{ "FLD1\n\t"
  9642             "DADDp  $dst,ST" %}
  9643   ins_encode %{
  9644     __ fld1();
  9645     __ faddp($dst$$reg);
  9646   %}
  9647   ins_pipe(fpu_reg);
  9648 %}
  9650 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9651   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9652   match(Set dst (AddD dst con));
  9653   ins_cost(200);
  9654   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9655             "DADDp  $dst,ST" %}
  9656   ins_encode %{
  9657     __ fld_d($constantaddress($con));
  9658     __ faddp($dst$$reg);
  9659   %}
  9660   ins_pipe(fpu_reg_mem);
  9661 %}
  9663 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9664   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9665   match(Set dst (RoundDouble (AddD src con)));
  9666   ins_cost(200);
  9667   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9668             "DADD   ST,$src\n\t"
  9669             "FSTP_D $dst\t# D-round" %}
  9670   ins_encode %{
  9671     __ fld_d($constantaddress($con));
  9672     __ fadd($src$$reg);
  9673     __ fstp_d(Address(rsp, $dst$$disp));
  9674   %}
  9675   ins_pipe(fpu_mem_reg_con);
  9676 %}
  9678 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9679   predicate(UseSSE<=1);
  9680   match(Set dst (MulD dst src));
  9681   format %{ "FLD    $src\n\t"
  9682             "DMULp  $dst,ST" %}
  9683   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9684   ins_cost(150);
  9685   ins_encode( Push_Reg_DPR(src),
  9686               OpcP, RegOpc(dst) );
  9687   ins_pipe( fpu_reg_reg );
  9688 %}
  9690 // Strict FP instruction biases argument before multiply then
  9691 // biases result to avoid double rounding of subnormals.
  9692 //
  9693 // scale arg1 by multiplying arg1 by 2^(-15360)
  9694 // load arg2
  9695 // multiply scaled arg1 by arg2
  9696 // rescale product by 2^(15360)
  9697 //
  9698 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9699   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9700   match(Set dst (MulD dst src));
  9701   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9703   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9704             "DMULp  $dst,ST\n\t"
  9705             "FLD    $src\n\t"
  9706             "DMULp  $dst,ST\n\t"
  9707             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9708             "DMULp  $dst,ST\n\t" %}
  9709   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9710   ins_encode( strictfp_bias1(dst),
  9711               Push_Reg_DPR(src),
  9712               OpcP, RegOpc(dst),
  9713               strictfp_bias2(dst) );
  9714   ins_pipe( fpu_reg_reg );
  9715 %}
  9717 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9718   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9719   match(Set dst (MulD dst con));
  9720   ins_cost(200);
  9721   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9722             "DMULp  $dst,ST" %}
  9723   ins_encode %{
  9724     __ fld_d($constantaddress($con));
  9725     __ fmulp($dst$$reg);
  9726   %}
  9727   ins_pipe(fpu_reg_mem);
  9728 %}
  9731 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9732   predicate( UseSSE<=1 );
  9733   match(Set dst (MulD dst (LoadD src)));
  9734   ins_cost(200);
  9735   format %{ "FLD_D  $src\n\t"
  9736             "DMULp  $dst,ST" %}
  9737   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9738   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9739               OpcP, RegOpc(dst) );
  9740   ins_pipe( fpu_reg_mem );
  9741 %}
  9743 //
  9744 // Cisc-alternate to reg-reg multiply
  9745 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9746   predicate( UseSSE<=1 );
  9747   match(Set dst (MulD src (LoadD mem)));
  9748   ins_cost(250);
  9749   format %{ "FLD_D  $mem\n\t"
  9750             "DMUL   ST,$src\n\t"
  9751             "FSTP_D $dst" %}
  9752   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9753   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9754               OpcReg_FPR(src),
  9755               Pop_Reg_DPR(dst) );
  9756   ins_pipe( fpu_reg_reg_mem );
  9757 %}
  9760 // MACRO3 -- addDPR a mulDPR
  9761 // This instruction is a '2-address' instruction in that the result goes
  9762 // back to src2.  This eliminates a move from the macro; possibly the
  9763 // register allocator will have to add it back (and maybe not).
  9764 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9765   predicate( UseSSE<=1 );
  9766   match(Set src2 (AddD (MulD src0 src1) src2));
  9767   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9768             "DMUL   ST,$src1\n\t"
  9769             "DADDp  $src2,ST" %}
  9770   ins_cost(250);
  9771   opcode(0xDD); /* LoadD DD /0 */
  9772   ins_encode( Push_Reg_FPR(src0),
  9773               FMul_ST_reg(src1),
  9774               FAddP_reg_ST(src2) );
  9775   ins_pipe( fpu_reg_reg_reg );
  9776 %}
  9779 // MACRO3 -- subDPR a mulDPR
  9780 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9781   predicate( UseSSE<=1 );
  9782   match(Set src2 (SubD (MulD src0 src1) src2));
  9783   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9784             "DMUL   ST,$src1\n\t"
  9785             "DSUBRp $src2,ST" %}
  9786   ins_cost(250);
  9787   ins_encode( Push_Reg_FPR(src0),
  9788               FMul_ST_reg(src1),
  9789               Opcode(0xDE), Opc_plus(0xE0,src2));
  9790   ins_pipe( fpu_reg_reg_reg );
  9791 %}
  9794 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9795   predicate( UseSSE<=1 );
  9796   match(Set dst (DivD dst src));
  9798   format %{ "FLD    $src\n\t"
  9799             "FDIVp  $dst,ST" %}
  9800   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9801   ins_cost(150);
  9802   ins_encode( Push_Reg_DPR(src),
  9803               OpcP, RegOpc(dst) );
  9804   ins_pipe( fpu_reg_reg );
  9805 %}
  9807 // Strict FP instruction biases argument before division then
  9808 // biases result, to avoid double rounding of subnormals.
  9809 //
  9810 // scale dividend by multiplying dividend by 2^(-15360)
  9811 // load divisor
  9812 // divide scaled dividend by divisor
  9813 // rescale quotient by 2^(15360)
  9814 //
  9815 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9816   predicate (UseSSE<=1);
  9817   match(Set dst (DivD dst src));
  9818   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9819   ins_cost(01);
  9821   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9822             "DMULp  $dst,ST\n\t"
  9823             "FLD    $src\n\t"
  9824             "FDIVp  $dst,ST\n\t"
  9825             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9826             "DMULp  $dst,ST\n\t" %}
  9827   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9828   ins_encode( strictfp_bias1(dst),
  9829               Push_Reg_DPR(src),
  9830               OpcP, RegOpc(dst),
  9831               strictfp_bias2(dst) );
  9832   ins_pipe( fpu_reg_reg );
  9833 %}
  9835 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9836   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9837   match(Set dst (RoundDouble (DivD src1 src2)));
  9839   format %{ "FLD    $src1\n\t"
  9840             "FDIV   ST,$src2\n\t"
  9841             "FSTP_D $dst\t# D-round" %}
  9842   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9843   ins_encode( Push_Reg_DPR(src1),
  9844               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9845   ins_pipe( fpu_mem_reg_reg );
  9846 %}
  9849 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9850   predicate(UseSSE<=1);
  9851   match(Set dst (ModD dst src));
  9852   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9854   format %{ "DMOD   $dst,$src" %}
  9855   ins_cost(250);
  9856   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9857               emitModDPR(),
  9858               Push_Result_Mod_DPR(src),
  9859               Pop_Reg_DPR(dst));
  9860   ins_pipe( pipe_slow );
  9861 %}
  9863 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9864   predicate(UseSSE>=2);
  9865   match(Set dst (ModD src0 src1));
  9866   effect(KILL rax, KILL cr);
  9868   format %{ "SUB    ESP,8\t # DMOD\n"
  9869           "\tMOVSD  [ESP+0],$src1\n"
  9870           "\tFLD_D  [ESP+0]\n"
  9871           "\tMOVSD  [ESP+0],$src0\n"
  9872           "\tFLD_D  [ESP+0]\n"
  9873      "loop:\tFPREM\n"
  9874           "\tFWAIT\n"
  9875           "\tFNSTSW AX\n"
  9876           "\tSAHF\n"
  9877           "\tJP     loop\n"
  9878           "\tFSTP_D [ESP+0]\n"
  9879           "\tMOVSD  $dst,[ESP+0]\n"
  9880           "\tADD    ESP,8\n"
  9881           "\tFSTP   ST0\t # Restore FPU Stack"
  9882     %}
  9883   ins_cost(250);
  9884   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9885   ins_pipe( pipe_slow );
  9886 %}
  9888 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9889   predicate (UseSSE<=1);
  9890   match(Set dst (SinD src));
  9891   ins_cost(1800);
  9892   format %{ "DSIN   $dst" %}
  9893   opcode(0xD9, 0xFE);
  9894   ins_encode( OpcP, OpcS );
  9895   ins_pipe( pipe_slow );
  9896 %}
  9898 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9899   predicate (UseSSE>=2);
  9900   match(Set dst (SinD dst));
  9901   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9902   ins_cost(1800);
  9903   format %{ "DSIN   $dst" %}
  9904   opcode(0xD9, 0xFE);
  9905   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9906   ins_pipe( pipe_slow );
  9907 %}
  9909 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9910   predicate (UseSSE<=1);
  9911   match(Set dst (CosD src));
  9912   ins_cost(1800);
  9913   format %{ "DCOS   $dst" %}
  9914   opcode(0xD9, 0xFF);
  9915   ins_encode( OpcP, OpcS );
  9916   ins_pipe( pipe_slow );
  9917 %}
  9919 instruct cosD_reg(regD dst, eFlagsReg cr) %{
  9920   predicate (UseSSE>=2);
  9921   match(Set dst (CosD dst));
  9922   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9923   ins_cost(1800);
  9924   format %{ "DCOS   $dst" %}
  9925   opcode(0xD9, 0xFF);
  9926   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9927   ins_pipe( pipe_slow );
  9928 %}
  9930 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
  9931   predicate (UseSSE<=1);
  9932   match(Set dst(TanD src));
  9933   format %{ "DTAN   $dst" %}
  9934   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
  9935               Opcode(0xDD), Opcode(0xD8));   // fstp st
  9936   ins_pipe( pipe_slow );
  9937 %}
  9939 instruct tanD_reg(regD dst, eFlagsReg cr) %{
  9940   predicate (UseSSE>=2);
  9941   match(Set dst(TanD dst));
  9942   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9943   format %{ "DTAN   $dst" %}
  9944   ins_encode( Push_SrcD(dst),
  9945               Opcode(0xD9), Opcode(0xF2),    // fptan
  9946               Opcode(0xDD), Opcode(0xD8),   // fstp st
  9947               Push_ResultD(dst) );
  9948   ins_pipe( pipe_slow );
  9949 %}
  9951 instruct atanDPR_reg(regDPR dst, regDPR src) %{
  9952   predicate (UseSSE<=1);
  9953   match(Set dst(AtanD dst src));
  9954   format %{ "DATA   $dst,$src" %}
  9955   opcode(0xD9, 0xF3);
  9956   ins_encode( Push_Reg_DPR(src),
  9957               OpcP, OpcS, RegOpc(dst) );
  9958   ins_pipe( pipe_slow );
  9959 %}
  9961 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
  9962   predicate (UseSSE>=2);
  9963   match(Set dst(AtanD dst src));
  9964   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9965   format %{ "DATA   $dst,$src" %}
  9966   opcode(0xD9, 0xF3);
  9967   ins_encode( Push_SrcD(src),
  9968               OpcP, OpcS, Push_ResultD(dst) );
  9969   ins_pipe( pipe_slow );
  9970 %}
  9972 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
  9973   predicate (UseSSE<=1);
  9974   match(Set dst (SqrtD src));
  9975   format %{ "DSQRT  $dst,$src" %}
  9976   opcode(0xFA, 0xD9);
  9977   ins_encode( Push_Reg_DPR(src),
  9978               OpcS, OpcP, Pop_Reg_DPR(dst) );
  9979   ins_pipe( pipe_slow );
  9980 %}
  9982 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9983   predicate (UseSSE<=1);
  9984   match(Set Y (PowD X Y));  // Raise X to the Yth power
  9985   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9986   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
  9987   ins_encode %{
  9988     __ subptr(rsp, 8);
  9989     __ fld_s($X$$reg - 1);
  9990     __ fast_pow();
  9991     __ addptr(rsp, 8);
  9992   %}
  9993   ins_pipe( pipe_slow );
  9994 %}
  9996 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9997   predicate (UseSSE>=2);
  9998   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  9999   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
 10000   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
 10001   ins_encode %{
 10002     __ subptr(rsp, 8);
 10003     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
 10004     __ fld_d(Address(rsp, 0));
 10005     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
 10006     __ fld_d(Address(rsp, 0));
 10007     __ fast_pow();
 10008     __ fstp_d(Address(rsp, 0));
 10009     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10010     __ addptr(rsp, 8);
 10011   %}
 10012   ins_pipe( pipe_slow );
 10013 %}
 10016 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10017   predicate (UseSSE<=1);
 10018   match(Set dpr1 (ExpD dpr1));
 10019   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10020   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
 10021   ins_encode %{
 10022     __ fast_exp();
 10023   %}
 10024   ins_pipe( pipe_slow );
 10025 %}
 10027 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10028   predicate (UseSSE>=2);
 10029   match(Set dst (ExpD src));
 10030   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10031   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
 10032   ins_encode %{
 10033     __ subptr(rsp, 8);
 10034     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10035     __ fld_d(Address(rsp, 0));
 10036     __ fast_exp();
 10037     __ fstp_d(Address(rsp, 0));
 10038     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10039     __ addptr(rsp, 8);
 10040   %}
 10041   ins_pipe( pipe_slow );
 10042 %}
 10044 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10045   predicate (UseSSE<=1);
 10046   // The source Double operand on FPU stack
 10047   match(Set dst (Log10D src));
 10048   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10049   // fxch         ; swap ST(0) with ST(1)
 10050   // fyl2x        ; compute log_10(2) * log_2(x)
 10051   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10052             "FXCH   \n\t"
 10053             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10054          %}
 10055   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10056               Opcode(0xD9), Opcode(0xC9),   // fxch
 10057               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10059   ins_pipe( pipe_slow );
 10060 %}
 10062 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10063   predicate (UseSSE>=2);
 10064   effect(KILL cr);
 10065   match(Set dst (Log10D src));
 10066   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10067   // fyl2x        ; compute log_10(2) * log_2(x)
 10068   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10069             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10070          %}
 10071   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10072               Push_SrcD(src),
 10073               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10074               Push_ResultD(dst));
 10076   ins_pipe( pipe_slow );
 10077 %}
 10079 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10080   predicate (UseSSE<=1);
 10081   // The source Double operand on FPU stack
 10082   match(Set dst (LogD src));
 10083   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10084   // fxch         ; swap ST(0) with ST(1)
 10085   // fyl2x        ; compute log_e(2) * log_2(x)
 10086   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10087             "FXCH   \n\t"
 10088             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10089          %}
 10090   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10091               Opcode(0xD9), Opcode(0xC9),   // fxch
 10092               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10094   ins_pipe( pipe_slow );
 10095 %}
 10097 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10098   predicate (UseSSE>=2);
 10099   effect(KILL cr);
 10100   // The source and result Double operands in XMM registers
 10101   match(Set dst (LogD src));
 10102   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10103   // fyl2x        ; compute log_e(2) * log_2(x)
 10104   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10105             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10106          %}
 10107   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10108               Push_SrcD(src),
 10109               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10110               Push_ResultD(dst));
 10111   ins_pipe( pipe_slow );
 10112 %}
 10114 //-------------Float Instructions-------------------------------
 10115 // Float Math
 10117 // Code for float compare:
 10118 //     fcompp();
 10119 //     fwait(); fnstsw_ax();
 10120 //     sahf();
 10121 //     movl(dst, unordered_result);
 10122 //     jcc(Assembler::parity, exit);
 10123 //     movl(dst, less_result);
 10124 //     jcc(Assembler::below, exit);
 10125 //     movl(dst, equal_result);
 10126 //     jcc(Assembler::equal, exit);
 10127 //     movl(dst, greater_result);
 10128 //   exit:
 10130 // P6 version of float compare, sets condition codes in EFLAGS
 10131 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10132   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10133   match(Set cr (CmpF src1 src2));
 10134   effect(KILL rax);
 10135   ins_cost(150);
 10136   format %{ "FLD    $src1\n\t"
 10137             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10138             "JNP    exit\n\t"
 10139             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10140             "SAHF\n"
 10141      "exit:\tNOP               // avoid branch to branch" %}
 10142   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10143   ins_encode( Push_Reg_DPR(src1),
 10144               OpcP, RegOpc(src2),
 10145               cmpF_P6_fixup );
 10146   ins_pipe( pipe_slow );
 10147 %}
 10149 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10150   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10151   match(Set cr (CmpF src1 src2));
 10152   ins_cost(100);
 10153   format %{ "FLD    $src1\n\t"
 10154             "FUCOMIP ST,$src2  // P6 instruction" %}
 10155   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10156   ins_encode( Push_Reg_DPR(src1),
 10157               OpcP, RegOpc(src2));
 10158   ins_pipe( pipe_slow );
 10159 %}
 10162 // Compare & branch
 10163 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10164   predicate(UseSSE == 0);
 10165   match(Set cr (CmpF src1 src2));
 10166   effect(KILL rax);
 10167   ins_cost(200);
 10168   format %{ "FLD    $src1\n\t"
 10169             "FCOMp  $src2\n\t"
 10170             "FNSTSW AX\n\t"
 10171             "TEST   AX,0x400\n\t"
 10172             "JZ,s   flags\n\t"
 10173             "MOV    AH,1\t# unordered treat as LT\n"
 10174     "flags:\tSAHF" %}
 10175   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10176   ins_encode( Push_Reg_DPR(src1),
 10177               OpcP, RegOpc(src2),
 10178               fpu_flags);
 10179   ins_pipe( pipe_slow );
 10180 %}
 10182 // Compare vs zero into -1,0,1
 10183 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10184   predicate(UseSSE == 0);
 10185   match(Set dst (CmpF3 src1 zero));
 10186   effect(KILL cr, KILL rax);
 10187   ins_cost(280);
 10188   format %{ "FTSTF  $dst,$src1" %}
 10189   opcode(0xE4, 0xD9);
 10190   ins_encode( Push_Reg_DPR(src1),
 10191               OpcS, OpcP, PopFPU,
 10192               CmpF_Result(dst));
 10193   ins_pipe( pipe_slow );
 10194 %}
 10196 // Compare into -1,0,1
 10197 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10198   predicate(UseSSE == 0);
 10199   match(Set dst (CmpF3 src1 src2));
 10200   effect(KILL cr, KILL rax);
 10201   ins_cost(300);
 10202   format %{ "FCMPF  $dst,$src1,$src2" %}
 10203   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10204   ins_encode( Push_Reg_DPR(src1),
 10205               OpcP, RegOpc(src2),
 10206               CmpF_Result(dst));
 10207   ins_pipe( pipe_slow );
 10208 %}
 10210 // float compare and set condition codes in EFLAGS by XMM regs
 10211 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10212   predicate(UseSSE>=1);
 10213   match(Set cr (CmpF src1 src2));
 10214   ins_cost(145);
 10215   format %{ "UCOMISS $src1,$src2\n\t"
 10216             "JNP,s   exit\n\t"
 10217             "PUSHF\t# saw NaN, set CF\n\t"
 10218             "AND     [rsp], #0xffffff2b\n\t"
 10219             "POPF\n"
 10220     "exit:" %}
 10221   ins_encode %{
 10222     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10223     emit_cmpfp_fixup(_masm);
 10224   %}
 10225   ins_pipe( pipe_slow );
 10226 %}
 10228 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10229   predicate(UseSSE>=1);
 10230   match(Set cr (CmpF src1 src2));
 10231   ins_cost(100);
 10232   format %{ "UCOMISS $src1,$src2" %}
 10233   ins_encode %{
 10234     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10235   %}
 10236   ins_pipe( pipe_slow );
 10237 %}
 10239 // float compare and set condition codes in EFLAGS by XMM regs
 10240 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10241   predicate(UseSSE>=1);
 10242   match(Set cr (CmpF src1 (LoadF src2)));
 10243   ins_cost(165);
 10244   format %{ "UCOMISS $src1,$src2\n\t"
 10245             "JNP,s   exit\n\t"
 10246             "PUSHF\t# saw NaN, set CF\n\t"
 10247             "AND     [rsp], #0xffffff2b\n\t"
 10248             "POPF\n"
 10249     "exit:" %}
 10250   ins_encode %{
 10251     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10252     emit_cmpfp_fixup(_masm);
 10253   %}
 10254   ins_pipe( pipe_slow );
 10255 %}
 10257 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10258   predicate(UseSSE>=1);
 10259   match(Set cr (CmpF src1 (LoadF src2)));
 10260   ins_cost(100);
 10261   format %{ "UCOMISS $src1,$src2" %}
 10262   ins_encode %{
 10263     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10264   %}
 10265   ins_pipe( pipe_slow );
 10266 %}
 10268 // Compare into -1,0,1 in XMM
 10269 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10270   predicate(UseSSE>=1);
 10271   match(Set dst (CmpF3 src1 src2));
 10272   effect(KILL cr);
 10273   ins_cost(255);
 10274   format %{ "UCOMISS $src1, $src2\n\t"
 10275             "MOV     $dst, #-1\n\t"
 10276             "JP,s    done\n\t"
 10277             "JB,s    done\n\t"
 10278             "SETNE   $dst\n\t"
 10279             "MOVZB   $dst, $dst\n"
 10280     "done:" %}
 10281   ins_encode %{
 10282     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10283     emit_cmpfp3(_masm, $dst$$Register);
 10284   %}
 10285   ins_pipe( pipe_slow );
 10286 %}
 10288 // Compare into -1,0,1 in XMM and memory
 10289 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10290   predicate(UseSSE>=1);
 10291   match(Set dst (CmpF3 src1 (LoadF src2)));
 10292   effect(KILL cr);
 10293   ins_cost(275);
 10294   format %{ "UCOMISS $src1, $src2\n\t"
 10295             "MOV     $dst, #-1\n\t"
 10296             "JP,s    done\n\t"
 10297             "JB,s    done\n\t"
 10298             "SETNE   $dst\n\t"
 10299             "MOVZB   $dst, $dst\n"
 10300     "done:" %}
 10301   ins_encode %{
 10302     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10303     emit_cmpfp3(_masm, $dst$$Register);
 10304   %}
 10305   ins_pipe( pipe_slow );
 10306 %}
 10308 // Spill to obtain 24-bit precision
 10309 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10310   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10311   match(Set dst (SubF src1 src2));
 10313   format %{ "FSUB   $dst,$src1 - $src2" %}
 10314   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10315   ins_encode( Push_Reg_FPR(src1),
 10316               OpcReg_FPR(src2),
 10317               Pop_Mem_FPR(dst) );
 10318   ins_pipe( fpu_mem_reg_reg );
 10319 %}
 10320 //
 10321 // This instruction does not round to 24-bits
 10322 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10323   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10324   match(Set dst (SubF dst src));
 10326   format %{ "FSUB   $dst,$src" %}
 10327   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10328   ins_encode( Push_Reg_FPR(src),
 10329               OpcP, RegOpc(dst) );
 10330   ins_pipe( fpu_reg_reg );
 10331 %}
 10333 // Spill to obtain 24-bit precision
 10334 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10335   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10336   match(Set dst (AddF src1 src2));
 10338   format %{ "FADD   $dst,$src1,$src2" %}
 10339   opcode(0xD8, 0x0); /* D8 C0+i */
 10340   ins_encode( Push_Reg_FPR(src2),
 10341               OpcReg_FPR(src1),
 10342               Pop_Mem_FPR(dst) );
 10343   ins_pipe( fpu_mem_reg_reg );
 10344 %}
 10345 //
 10346 // This instruction does not round to 24-bits
 10347 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10348   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10349   match(Set dst (AddF dst src));
 10351   format %{ "FLD    $src\n\t"
 10352             "FADDp  $dst,ST" %}
 10353   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10354   ins_encode( Push_Reg_FPR(src),
 10355               OpcP, RegOpc(dst) );
 10356   ins_pipe( fpu_reg_reg );
 10357 %}
 10359 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10360   predicate(UseSSE==0);
 10361   match(Set dst (AbsF src));
 10362   ins_cost(100);
 10363   format %{ "FABS" %}
 10364   opcode(0xE1, 0xD9);
 10365   ins_encode( OpcS, OpcP );
 10366   ins_pipe( fpu_reg_reg );
 10367 %}
 10369 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10370   predicate(UseSSE==0);
 10371   match(Set dst (NegF src));
 10372   ins_cost(100);
 10373   format %{ "FCHS" %}
 10374   opcode(0xE0, 0xD9);
 10375   ins_encode( OpcS, OpcP );
 10376   ins_pipe( fpu_reg_reg );
 10377 %}
 10379 // Cisc-alternate to addFPR_reg
 10380 // Spill to obtain 24-bit precision
 10381 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10382   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10383   match(Set dst (AddF src1 (LoadF src2)));
 10385   format %{ "FLD    $src2\n\t"
 10386             "FADD   ST,$src1\n\t"
 10387             "FSTP_S $dst" %}
 10388   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10389   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10390               OpcReg_FPR(src1),
 10391               Pop_Mem_FPR(dst) );
 10392   ins_pipe( fpu_mem_reg_mem );
 10393 %}
 10394 //
 10395 // Cisc-alternate to addFPR_reg
 10396 // This instruction does not round to 24-bits
 10397 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10398   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10399   match(Set dst (AddF dst (LoadF src)));
 10401   format %{ "FADD   $dst,$src" %}
 10402   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10403   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10404               OpcP, RegOpc(dst) );
 10405   ins_pipe( fpu_reg_mem );
 10406 %}
 10408 // // Following two instructions for _222_mpegaudio
 10409 // Spill to obtain 24-bit precision
 10410 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10411   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10412   match(Set dst (AddF src1 src2));
 10414   format %{ "FADD   $dst,$src1,$src2" %}
 10415   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10416   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10417               OpcReg_FPR(src2),
 10418               Pop_Mem_FPR(dst) );
 10419   ins_pipe( fpu_mem_reg_mem );
 10420 %}
 10422 // Cisc-spill variant
 10423 // Spill to obtain 24-bit precision
 10424 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10425   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10426   match(Set dst (AddF src1 (LoadF src2)));
 10428   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10429   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10430   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10431               set_instruction_start,
 10432               OpcP, RMopc_Mem(secondary,src1),
 10433               Pop_Mem_FPR(dst) );
 10434   ins_pipe( fpu_mem_mem_mem );
 10435 %}
 10437 // Spill to obtain 24-bit precision
 10438 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10439   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10440   match(Set dst (AddF src1 src2));
 10442   format %{ "FADD   $dst,$src1,$src2" %}
 10443   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10444   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10445               set_instruction_start,
 10446               OpcP, RMopc_Mem(secondary,src1),
 10447               Pop_Mem_FPR(dst) );
 10448   ins_pipe( fpu_mem_mem_mem );
 10449 %}
 10452 // Spill to obtain 24-bit precision
 10453 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10454   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10455   match(Set dst (AddF src con));
 10456   format %{ "FLD    $src\n\t"
 10457             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10458             "FSTP_S $dst"  %}
 10459   ins_encode %{
 10460     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10461     __ fadd_s($constantaddress($con));
 10462     __ fstp_s(Address(rsp, $dst$$disp));
 10463   %}
 10464   ins_pipe(fpu_mem_reg_con);
 10465 %}
 10466 //
 10467 // This instruction does not round to 24-bits
 10468 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10469   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10470   match(Set dst (AddF src con));
 10471   format %{ "FLD    $src\n\t"
 10472             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10473             "FSTP   $dst"  %}
 10474   ins_encode %{
 10475     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10476     __ fadd_s($constantaddress($con));
 10477     __ fstp_d($dst$$reg);
 10478   %}
 10479   ins_pipe(fpu_reg_reg_con);
 10480 %}
 10482 // Spill to obtain 24-bit precision
 10483 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10484   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10485   match(Set dst (MulF src1 src2));
 10487   format %{ "FLD    $src1\n\t"
 10488             "FMUL   $src2\n\t"
 10489             "FSTP_S $dst"  %}
 10490   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10491   ins_encode( Push_Reg_FPR(src1),
 10492               OpcReg_FPR(src2),
 10493               Pop_Mem_FPR(dst) );
 10494   ins_pipe( fpu_mem_reg_reg );
 10495 %}
 10496 //
 10497 // This instruction does not round to 24-bits
 10498 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10499   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10500   match(Set dst (MulF src1 src2));
 10502   format %{ "FLD    $src1\n\t"
 10503             "FMUL   $src2\n\t"
 10504             "FSTP_S $dst"  %}
 10505   opcode(0xD8, 0x1); /* D8 C8+i */
 10506   ins_encode( Push_Reg_FPR(src2),
 10507               OpcReg_FPR(src1),
 10508               Pop_Reg_FPR(dst) );
 10509   ins_pipe( fpu_reg_reg_reg );
 10510 %}
 10513 // Spill to obtain 24-bit precision
 10514 // Cisc-alternate to reg-reg multiply
 10515 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10516   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10517   match(Set dst (MulF src1 (LoadF src2)));
 10519   format %{ "FLD_S  $src2\n\t"
 10520             "FMUL   $src1\n\t"
 10521             "FSTP_S $dst"  %}
 10522   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10523   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10524               OpcReg_FPR(src1),
 10525               Pop_Mem_FPR(dst) );
 10526   ins_pipe( fpu_mem_reg_mem );
 10527 %}
 10528 //
 10529 // This instruction does not round to 24-bits
 10530 // Cisc-alternate to reg-reg multiply
 10531 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10532   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10533   match(Set dst (MulF src1 (LoadF src2)));
 10535   format %{ "FMUL   $dst,$src1,$src2" %}
 10536   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10537   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10538               OpcReg_FPR(src1),
 10539               Pop_Reg_FPR(dst) );
 10540   ins_pipe( fpu_reg_reg_mem );
 10541 %}
 10543 // Spill to obtain 24-bit precision
 10544 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10545   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10546   match(Set dst (MulF src1 src2));
 10548   format %{ "FMUL   $dst,$src1,$src2" %}
 10549   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10550   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10551               set_instruction_start,
 10552               OpcP, RMopc_Mem(secondary,src1),
 10553               Pop_Mem_FPR(dst) );
 10554   ins_pipe( fpu_mem_mem_mem );
 10555 %}
 10557 // Spill to obtain 24-bit precision
 10558 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10559   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10560   match(Set dst (MulF src con));
 10562   format %{ "FLD    $src\n\t"
 10563             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10564             "FSTP_S $dst"  %}
 10565   ins_encode %{
 10566     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10567     __ fmul_s($constantaddress($con));
 10568     __ fstp_s(Address(rsp, $dst$$disp));
 10569   %}
 10570   ins_pipe(fpu_mem_reg_con);
 10571 %}
 10572 //
 10573 // This instruction does not round to 24-bits
 10574 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10575   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10576   match(Set dst (MulF src con));
 10578   format %{ "FLD    $src\n\t"
 10579             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10580             "FSTP   $dst"  %}
 10581   ins_encode %{
 10582     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10583     __ fmul_s($constantaddress($con));
 10584     __ fstp_d($dst$$reg);
 10585   %}
 10586   ins_pipe(fpu_reg_reg_con);
 10587 %}
 10590 //
 10591 // MACRO1 -- subsume unshared load into mulFPR
 10592 // This instruction does not round to 24-bits
 10593 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10594   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10595   match(Set dst (MulF (LoadF mem1) src));
 10597   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10598             "FMUL   ST,$src\n\t"
 10599             "FSTP   $dst" %}
 10600   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10601   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10602               OpcReg_FPR(src),
 10603               Pop_Reg_FPR(dst) );
 10604   ins_pipe( fpu_reg_reg_mem );
 10605 %}
 10606 //
 10607 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10608 // This instruction does not round to 24-bits
 10609 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10610   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10611   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10612   ins_cost(95);
 10614   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10615             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10616             "FADD   ST,$src2\n\t"
 10617             "FSTP   $dst" %}
 10618   opcode(0xD9); /* LoadF D9 /0 */
 10619   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10620               FMul_ST_reg(src1),
 10621               FAdd_ST_reg(src2),
 10622               Pop_Reg_FPR(dst) );
 10623   ins_pipe( fpu_reg_mem_reg_reg );
 10624 %}
 10626 // MACRO3 -- addFPR a mulFPR
 10627 // This instruction does not round to 24-bits.  It is a '2-address'
 10628 // instruction in that the result goes back to src2.  This eliminates
 10629 // a move from the macro; possibly the register allocator will have
 10630 // to add it back (and maybe not).
 10631 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10632   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10633   match(Set src2 (AddF (MulF src0 src1) src2));
 10635   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10636             "FMUL   ST,$src1\n\t"
 10637             "FADDP  $src2,ST" %}
 10638   opcode(0xD9); /* LoadF D9 /0 */
 10639   ins_encode( Push_Reg_FPR(src0),
 10640               FMul_ST_reg(src1),
 10641               FAddP_reg_ST(src2) );
 10642   ins_pipe( fpu_reg_reg_reg );
 10643 %}
 10645 // MACRO4 -- divFPR subFPR
 10646 // This instruction does not round to 24-bits
 10647 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10648   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10649   match(Set dst (DivF (SubF src2 src1) src3));
 10651   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10652             "FSUB   ST,$src1\n\t"
 10653             "FDIV   ST,$src3\n\t"
 10654             "FSTP  $dst" %}
 10655   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10656   ins_encode( Push_Reg_FPR(src2),
 10657               subFPR_divFPR_encode(src1,src3),
 10658               Pop_Reg_FPR(dst) );
 10659   ins_pipe( fpu_reg_reg_reg_reg );
 10660 %}
 10662 // Spill to obtain 24-bit precision
 10663 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10664   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10665   match(Set dst (DivF src1 src2));
 10667   format %{ "FDIV   $dst,$src1,$src2" %}
 10668   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10669   ins_encode( Push_Reg_FPR(src1),
 10670               OpcReg_FPR(src2),
 10671               Pop_Mem_FPR(dst) );
 10672   ins_pipe( fpu_mem_reg_reg );
 10673 %}
 10674 //
 10675 // This instruction does not round to 24-bits
 10676 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10677   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10678   match(Set dst (DivF dst src));
 10680   format %{ "FDIV   $dst,$src" %}
 10681   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10682   ins_encode( Push_Reg_FPR(src),
 10683               OpcP, RegOpc(dst) );
 10684   ins_pipe( fpu_reg_reg );
 10685 %}
 10688 // Spill to obtain 24-bit precision
 10689 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10690   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10691   match(Set dst (ModF src1 src2));
 10692   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10694   format %{ "FMOD   $dst,$src1,$src2" %}
 10695   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10696               emitModDPR(),
 10697               Push_Result_Mod_DPR(src2),
 10698               Pop_Mem_FPR(dst));
 10699   ins_pipe( pipe_slow );
 10700 %}
 10701 //
 10702 // This instruction does not round to 24-bits
 10703 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10704   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10705   match(Set dst (ModF dst src));
 10706   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10708   format %{ "FMOD   $dst,$src" %}
 10709   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10710               emitModDPR(),
 10711               Push_Result_Mod_DPR(src),
 10712               Pop_Reg_FPR(dst));
 10713   ins_pipe( pipe_slow );
 10714 %}
 10716 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10717   predicate(UseSSE>=1);
 10718   match(Set dst (ModF src0 src1));
 10719   effect(KILL rax, KILL cr);
 10720   format %{ "SUB    ESP,4\t # FMOD\n"
 10721           "\tMOVSS  [ESP+0],$src1\n"
 10722           "\tFLD_S  [ESP+0]\n"
 10723           "\tMOVSS  [ESP+0],$src0\n"
 10724           "\tFLD_S  [ESP+0]\n"
 10725      "loop:\tFPREM\n"
 10726           "\tFWAIT\n"
 10727           "\tFNSTSW AX\n"
 10728           "\tSAHF\n"
 10729           "\tJP     loop\n"
 10730           "\tFSTP_S [ESP+0]\n"
 10731           "\tMOVSS  $dst,[ESP+0]\n"
 10732           "\tADD    ESP,4\n"
 10733           "\tFSTP   ST0\t # Restore FPU Stack"
 10734     %}
 10735   ins_cost(250);
 10736   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10737   ins_pipe( pipe_slow );
 10738 %}
 10741 //----------Arithmetic Conversion Instructions---------------------------------
 10742 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10744 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10745   predicate(UseSSE==0);
 10746   match(Set dst (RoundFloat src));
 10747   ins_cost(125);
 10748   format %{ "FST_S  $dst,$src\t# F-round" %}
 10749   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10750   ins_pipe( fpu_mem_reg );
 10751 %}
 10753 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10754   predicate(UseSSE<=1);
 10755   match(Set dst (RoundDouble src));
 10756   ins_cost(125);
 10757   format %{ "FST_D  $dst,$src\t# D-round" %}
 10758   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10759   ins_pipe( fpu_mem_reg );
 10760 %}
 10762 // Force rounding to 24-bit precision and 6-bit exponent
 10763 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10764   predicate(UseSSE==0);
 10765   match(Set dst (ConvD2F src));
 10766   format %{ "FST_S  $dst,$src\t# F-round" %}
 10767   expand %{
 10768     roundFloat_mem_reg(dst,src);
 10769   %}
 10770 %}
 10772 // Force rounding to 24-bit precision and 6-bit exponent
 10773 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10774   predicate(UseSSE==1);
 10775   match(Set dst (ConvD2F src));
 10776   effect( KILL cr );
 10777   format %{ "SUB    ESP,4\n\t"
 10778             "FST_S  [ESP],$src\t# F-round\n\t"
 10779             "MOVSS  $dst,[ESP]\n\t"
 10780             "ADD ESP,4" %}
 10781   ins_encode %{
 10782     __ subptr(rsp, 4);
 10783     if ($src$$reg != FPR1L_enc) {
 10784       __ fld_s($src$$reg-1);
 10785       __ fstp_s(Address(rsp, 0));
 10786     } else {
 10787       __ fst_s(Address(rsp, 0));
 10789     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10790     __ addptr(rsp, 4);
 10791   %}
 10792   ins_pipe( pipe_slow );
 10793 %}
 10795 // Force rounding double precision to single precision
 10796 instruct convD2F_reg(regF dst, regD src) %{
 10797   predicate(UseSSE>=2);
 10798   match(Set dst (ConvD2F src));
 10799   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10800   ins_encode %{
 10801     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10802   %}
 10803   ins_pipe( pipe_slow );
 10804 %}
 10806 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10807   predicate(UseSSE==0);
 10808   match(Set dst (ConvF2D src));
 10809   format %{ "FST_S  $dst,$src\t# D-round" %}
 10810   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10811   ins_pipe( fpu_reg_reg );
 10812 %}
 10814 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10815   predicate(UseSSE==1);
 10816   match(Set dst (ConvF2D src));
 10817   format %{ "FST_D  $dst,$src\t# D-round" %}
 10818   expand %{
 10819     roundDouble_mem_reg(dst,src);
 10820   %}
 10821 %}
 10823 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10824   predicate(UseSSE==1);
 10825   match(Set dst (ConvF2D src));
 10826   effect( KILL cr );
 10827   format %{ "SUB    ESP,4\n\t"
 10828             "MOVSS  [ESP] $src\n\t"
 10829             "FLD_S  [ESP]\n\t"
 10830             "ADD    ESP,4\n\t"
 10831             "FSTP   $dst\t# D-round" %}
 10832   ins_encode %{
 10833     __ subptr(rsp, 4);
 10834     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10835     __ fld_s(Address(rsp, 0));
 10836     __ addptr(rsp, 4);
 10837     __ fstp_d($dst$$reg);
 10838   %}
 10839   ins_pipe( pipe_slow );
 10840 %}
 10842 instruct convF2D_reg(regD dst, regF src) %{
 10843   predicate(UseSSE>=2);
 10844   match(Set dst (ConvF2D src));
 10845   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10846   ins_encode %{
 10847     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10848   %}
 10849   ins_pipe( pipe_slow );
 10850 %}
 10852 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10853 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10854   predicate(UseSSE<=1);
 10855   match(Set dst (ConvD2I src));
 10856   effect( KILL tmp, KILL cr );
 10857   format %{ "FLD    $src\t# Convert double to int \n\t"
 10858             "FLDCW  trunc mode\n\t"
 10859             "SUB    ESP,4\n\t"
 10860             "FISTp  [ESP + #0]\n\t"
 10861             "FLDCW  std/24-bit mode\n\t"
 10862             "POP    EAX\n\t"
 10863             "CMP    EAX,0x80000000\n\t"
 10864             "JNE,s  fast\n\t"
 10865             "FLD_D  $src\n\t"
 10866             "CALL   d2i_wrapper\n"
 10867       "fast:" %}
 10868   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10869   ins_pipe( pipe_slow );
 10870 %}
 10872 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10873 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10874   predicate(UseSSE>=2);
 10875   match(Set dst (ConvD2I src));
 10876   effect( KILL tmp, KILL cr );
 10877   format %{ "CVTTSD2SI $dst, $src\n\t"
 10878             "CMP    $dst,0x80000000\n\t"
 10879             "JNE,s  fast\n\t"
 10880             "SUB    ESP, 8\n\t"
 10881             "MOVSD  [ESP], $src\n\t"
 10882             "FLD_D  [ESP]\n\t"
 10883             "ADD    ESP, 8\n\t"
 10884             "CALL   d2i_wrapper\n"
 10885       "fast:" %}
 10886   ins_encode %{
 10887     Label fast;
 10888     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10889     __ cmpl($dst$$Register, 0x80000000);
 10890     __ jccb(Assembler::notEqual, fast);
 10891     __ subptr(rsp, 8);
 10892     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10893     __ fld_d(Address(rsp, 0));
 10894     __ addptr(rsp, 8);
 10895     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10896     __ bind(fast);
 10897   %}
 10898   ins_pipe( pipe_slow );
 10899 %}
 10901 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10902   predicate(UseSSE<=1);
 10903   match(Set dst (ConvD2L src));
 10904   effect( KILL cr );
 10905   format %{ "FLD    $src\t# Convert double to long\n\t"
 10906             "FLDCW  trunc mode\n\t"
 10907             "SUB    ESP,8\n\t"
 10908             "FISTp  [ESP + #0]\n\t"
 10909             "FLDCW  std/24-bit mode\n\t"
 10910             "POP    EAX\n\t"
 10911             "POP    EDX\n\t"
 10912             "CMP    EDX,0x80000000\n\t"
 10913             "JNE,s  fast\n\t"
 10914             "TEST   EAX,EAX\n\t"
 10915             "JNE,s  fast\n\t"
 10916             "FLD    $src\n\t"
 10917             "CALL   d2l_wrapper\n"
 10918       "fast:" %}
 10919   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 10920   ins_pipe( pipe_slow );
 10921 %}
 10923 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10924 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 10925   predicate (UseSSE>=2);
 10926   match(Set dst (ConvD2L src));
 10927   effect( KILL cr );
 10928   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 10929             "MOVSD  [ESP],$src\n\t"
 10930             "FLD_D  [ESP]\n\t"
 10931             "FLDCW  trunc mode\n\t"
 10932             "FISTp  [ESP + #0]\n\t"
 10933             "FLDCW  std/24-bit mode\n\t"
 10934             "POP    EAX\n\t"
 10935             "POP    EDX\n\t"
 10936             "CMP    EDX,0x80000000\n\t"
 10937             "JNE,s  fast\n\t"
 10938             "TEST   EAX,EAX\n\t"
 10939             "JNE,s  fast\n\t"
 10940             "SUB    ESP,8\n\t"
 10941             "MOVSD  [ESP],$src\n\t"
 10942             "FLD_D  [ESP]\n\t"
 10943             "ADD    ESP,8\n\t"
 10944             "CALL   d2l_wrapper\n"
 10945       "fast:" %}
 10946   ins_encode %{
 10947     Label fast;
 10948     __ subptr(rsp, 8);
 10949     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10950     __ fld_d(Address(rsp, 0));
 10951     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10952     __ fistp_d(Address(rsp, 0));
 10953     // Restore the rounding mode, mask the exception
 10954     if (Compile::current()->in_24_bit_fp_mode()) {
 10955       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10956     } else {
 10957       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10959     // Load the converted long, adjust CPU stack
 10960     __ pop(rax);
 10961     __ pop(rdx);
 10962     __ cmpl(rdx, 0x80000000);
 10963     __ jccb(Assembler::notEqual, fast);
 10964     __ testl(rax, rax);
 10965     __ jccb(Assembler::notEqual, fast);
 10966     __ subptr(rsp, 8);
 10967     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10968     __ fld_d(Address(rsp, 0));
 10969     __ addptr(rsp, 8);
 10970     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10971     __ bind(fast);
 10972   %}
 10973   ins_pipe( pipe_slow );
 10974 %}
 10976 // Convert a double to an int.  Java semantics require we do complex
 10977 // manglations in the corner cases.  So we set the rounding mode to
 10978 // 'zero', store the darned double down as an int, and reset the
 10979 // rounding mode to 'nearest'.  The hardware stores a flag value down
 10980 // if we would overflow or converted a NAN; we check for this and
 10981 // and go the slow path if needed.
 10982 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 10983   predicate(UseSSE==0);
 10984   match(Set dst (ConvF2I src));
 10985   effect( KILL tmp, KILL cr );
 10986   format %{ "FLD    $src\t# Convert float to int \n\t"
 10987             "FLDCW  trunc mode\n\t"
 10988             "SUB    ESP,4\n\t"
 10989             "FISTp  [ESP + #0]\n\t"
 10990             "FLDCW  std/24-bit mode\n\t"
 10991             "POP    EAX\n\t"
 10992             "CMP    EAX,0x80000000\n\t"
 10993             "JNE,s  fast\n\t"
 10994             "FLD    $src\n\t"
 10995             "CALL   d2i_wrapper\n"
 10996       "fast:" %}
 10997   // DPR2I_encoding works for FPR2I
 10998   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 10999   ins_pipe( pipe_slow );
 11000 %}
 11002 // Convert a float in xmm to an int reg.
 11003 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11004   predicate(UseSSE>=1);
 11005   match(Set dst (ConvF2I src));
 11006   effect( KILL tmp, KILL cr );
 11007   format %{ "CVTTSS2SI $dst, $src\n\t"
 11008             "CMP    $dst,0x80000000\n\t"
 11009             "JNE,s  fast\n\t"
 11010             "SUB    ESP, 4\n\t"
 11011             "MOVSS  [ESP], $src\n\t"
 11012             "FLD    [ESP]\n\t"
 11013             "ADD    ESP, 4\n\t"
 11014             "CALL   d2i_wrapper\n"
 11015       "fast:" %}
 11016   ins_encode %{
 11017     Label fast;
 11018     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11019     __ cmpl($dst$$Register, 0x80000000);
 11020     __ jccb(Assembler::notEqual, fast);
 11021     __ subptr(rsp, 4);
 11022     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11023     __ fld_s(Address(rsp, 0));
 11024     __ addptr(rsp, 4);
 11025     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11026     __ bind(fast);
 11027   %}
 11028   ins_pipe( pipe_slow );
 11029 %}
 11031 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11032   predicate(UseSSE==0);
 11033   match(Set dst (ConvF2L src));
 11034   effect( KILL cr );
 11035   format %{ "FLD    $src\t# Convert float to long\n\t"
 11036             "FLDCW  trunc mode\n\t"
 11037             "SUB    ESP,8\n\t"
 11038             "FISTp  [ESP + #0]\n\t"
 11039             "FLDCW  std/24-bit mode\n\t"
 11040             "POP    EAX\n\t"
 11041             "POP    EDX\n\t"
 11042             "CMP    EDX,0x80000000\n\t"
 11043             "JNE,s  fast\n\t"
 11044             "TEST   EAX,EAX\n\t"
 11045             "JNE,s  fast\n\t"
 11046             "FLD    $src\n\t"
 11047             "CALL   d2l_wrapper\n"
 11048       "fast:" %}
 11049   // DPR2L_encoding works for FPR2L
 11050   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11051   ins_pipe( pipe_slow );
 11052 %}
 11054 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11055 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11056   predicate (UseSSE>=1);
 11057   match(Set dst (ConvF2L src));
 11058   effect( KILL cr );
 11059   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11060             "MOVSS  [ESP],$src\n\t"
 11061             "FLD_S  [ESP]\n\t"
 11062             "FLDCW  trunc mode\n\t"
 11063             "FISTp  [ESP + #0]\n\t"
 11064             "FLDCW  std/24-bit mode\n\t"
 11065             "POP    EAX\n\t"
 11066             "POP    EDX\n\t"
 11067             "CMP    EDX,0x80000000\n\t"
 11068             "JNE,s  fast\n\t"
 11069             "TEST   EAX,EAX\n\t"
 11070             "JNE,s  fast\n\t"
 11071             "SUB    ESP,4\t# Convert float to long\n\t"
 11072             "MOVSS  [ESP],$src\n\t"
 11073             "FLD_S  [ESP]\n\t"
 11074             "ADD    ESP,4\n\t"
 11075             "CALL   d2l_wrapper\n"
 11076       "fast:" %}
 11077   ins_encode %{
 11078     Label fast;
 11079     __ subptr(rsp, 8);
 11080     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11081     __ fld_s(Address(rsp, 0));
 11082     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11083     __ fistp_d(Address(rsp, 0));
 11084     // Restore the rounding mode, mask the exception
 11085     if (Compile::current()->in_24_bit_fp_mode()) {
 11086       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11087     } else {
 11088       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11090     // Load the converted long, adjust CPU stack
 11091     __ pop(rax);
 11092     __ pop(rdx);
 11093     __ cmpl(rdx, 0x80000000);
 11094     __ jccb(Assembler::notEqual, fast);
 11095     __ testl(rax, rax);
 11096     __ jccb(Assembler::notEqual, fast);
 11097     __ subptr(rsp, 4);
 11098     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11099     __ fld_s(Address(rsp, 0));
 11100     __ addptr(rsp, 4);
 11101     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11102     __ bind(fast);
 11103   %}
 11104   ins_pipe( pipe_slow );
 11105 %}
 11107 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11108   predicate( UseSSE<=1 );
 11109   match(Set dst (ConvI2D src));
 11110   format %{ "FILD   $src\n\t"
 11111             "FSTP   $dst" %}
 11112   opcode(0xDB, 0x0);  /* DB /0 */
 11113   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11114   ins_pipe( fpu_reg_mem );
 11115 %}
 11117 instruct convI2D_reg(regD dst, rRegI src) %{
 11118   predicate( UseSSE>=2 && !UseXmmI2D );
 11119   match(Set dst (ConvI2D src));
 11120   format %{ "CVTSI2SD $dst,$src" %}
 11121   ins_encode %{
 11122     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11123   %}
 11124   ins_pipe( pipe_slow );
 11125 %}
 11127 instruct convI2D_mem(regD dst, memory mem) %{
 11128   predicate( UseSSE>=2 );
 11129   match(Set dst (ConvI2D (LoadI mem)));
 11130   format %{ "CVTSI2SD $dst,$mem" %}
 11131   ins_encode %{
 11132     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11133   %}
 11134   ins_pipe( pipe_slow );
 11135 %}
 11137 instruct convXI2D_reg(regD dst, rRegI src)
 11138 %{
 11139   predicate( UseSSE>=2 && UseXmmI2D );
 11140   match(Set dst (ConvI2D src));
 11142   format %{ "MOVD  $dst,$src\n\t"
 11143             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11144   ins_encode %{
 11145     __ movdl($dst$$XMMRegister, $src$$Register);
 11146     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11147   %}
 11148   ins_pipe(pipe_slow); // XXX
 11149 %}
 11151 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11152   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11153   match(Set dst (ConvI2D (LoadI mem)));
 11154   format %{ "FILD   $mem\n\t"
 11155             "FSTP   $dst" %}
 11156   opcode(0xDB);      /* DB /0 */
 11157   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11158               Pop_Reg_DPR(dst));
 11159   ins_pipe( fpu_reg_mem );
 11160 %}
 11162 // Convert a byte to a float; no rounding step needed.
 11163 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11164   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11165   match(Set dst (ConvI2F src));
 11166   format %{ "FILD   $src\n\t"
 11167             "FSTP   $dst" %}
 11169   opcode(0xDB, 0x0);  /* DB /0 */
 11170   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11171   ins_pipe( fpu_reg_mem );
 11172 %}
 11174 // In 24-bit mode, force exponent rounding by storing back out
 11175 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11176   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11177   match(Set dst (ConvI2F src));
 11178   ins_cost(200);
 11179   format %{ "FILD   $src\n\t"
 11180             "FSTP_S $dst" %}
 11181   opcode(0xDB, 0x0);  /* DB /0 */
 11182   ins_encode( Push_Mem_I(src),
 11183               Pop_Mem_FPR(dst));
 11184   ins_pipe( fpu_mem_mem );
 11185 %}
 11187 // In 24-bit mode, force exponent rounding by storing back out
 11188 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11189   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11190   match(Set dst (ConvI2F (LoadI mem)));
 11191   ins_cost(200);
 11192   format %{ "FILD   $mem\n\t"
 11193             "FSTP_S $dst" %}
 11194   opcode(0xDB);  /* DB /0 */
 11195   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11196               Pop_Mem_FPR(dst));
 11197   ins_pipe( fpu_mem_mem );
 11198 %}
 11200 // This instruction does not round to 24-bits
 11201 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11202   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11203   match(Set dst (ConvI2F src));
 11204   format %{ "FILD   $src\n\t"
 11205             "FSTP   $dst" %}
 11206   opcode(0xDB, 0x0);  /* DB /0 */
 11207   ins_encode( Push_Mem_I(src),
 11208               Pop_Reg_FPR(dst));
 11209   ins_pipe( fpu_reg_mem );
 11210 %}
 11212 // This instruction does not round to 24-bits
 11213 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11214   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11215   match(Set dst (ConvI2F (LoadI mem)));
 11216   format %{ "FILD   $mem\n\t"
 11217             "FSTP   $dst" %}
 11218   opcode(0xDB);      /* DB /0 */
 11219   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11220               Pop_Reg_FPR(dst));
 11221   ins_pipe( fpu_reg_mem );
 11222 %}
 11224 // Convert an int to a float in xmm; no rounding step needed.
 11225 instruct convI2F_reg(regF dst, rRegI src) %{
 11226   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11227   match(Set dst (ConvI2F src));
 11228   format %{ "CVTSI2SS $dst, $src" %}
 11229   ins_encode %{
 11230     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11231   %}
 11232   ins_pipe( pipe_slow );
 11233 %}
 11235  instruct convXI2F_reg(regF dst, rRegI src)
 11236 %{
 11237   predicate( UseSSE>=2 && UseXmmI2F );
 11238   match(Set dst (ConvI2F src));
 11240   format %{ "MOVD  $dst,$src\n\t"
 11241             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11242   ins_encode %{
 11243     __ movdl($dst$$XMMRegister, $src$$Register);
 11244     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11245   %}
 11246   ins_pipe(pipe_slow); // XXX
 11247 %}
 11249 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11250   match(Set dst (ConvI2L src));
 11251   effect(KILL cr);
 11252   ins_cost(375);
 11253   format %{ "MOV    $dst.lo,$src\n\t"
 11254             "MOV    $dst.hi,$src\n\t"
 11255             "SAR    $dst.hi,31" %}
 11256   ins_encode(convert_int_long(dst,src));
 11257   ins_pipe( ialu_reg_reg_long );
 11258 %}
 11260 // Zero-extend convert int to long
 11261 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11262   match(Set dst (AndL (ConvI2L src) mask) );
 11263   effect( KILL flags );
 11264   ins_cost(250);
 11265   format %{ "MOV    $dst.lo,$src\n\t"
 11266             "XOR    $dst.hi,$dst.hi" %}
 11267   opcode(0x33); // XOR
 11268   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11269   ins_pipe( ialu_reg_reg_long );
 11270 %}
 11272 // Zero-extend long
 11273 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11274   match(Set dst (AndL src mask) );
 11275   effect( KILL flags );
 11276   ins_cost(250);
 11277   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11278             "XOR    $dst.hi,$dst.hi\n\t" %}
 11279   opcode(0x33); // XOR
 11280   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11281   ins_pipe( ialu_reg_reg_long );
 11282 %}
 11284 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11285   predicate (UseSSE<=1);
 11286   match(Set dst (ConvL2D src));
 11287   effect( KILL cr );
 11288   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11289             "PUSH   $src.lo\n\t"
 11290             "FILD   ST,[ESP + #0]\n\t"
 11291             "ADD    ESP,8\n\t"
 11292             "FSTP_D $dst\t# D-round" %}
 11293   opcode(0xDF, 0x5);  /* DF /5 */
 11294   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11295   ins_pipe( pipe_slow );
 11296 %}
 11298 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11299   predicate (UseSSE>=2);
 11300   match(Set dst (ConvL2D src));
 11301   effect( KILL cr );
 11302   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11303             "PUSH   $src.lo\n\t"
 11304             "FILD_D [ESP]\n\t"
 11305             "FSTP_D [ESP]\n\t"
 11306             "MOVSD  $dst,[ESP]\n\t"
 11307             "ADD    ESP,8" %}
 11308   opcode(0xDF, 0x5);  /* DF /5 */
 11309   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11310   ins_pipe( pipe_slow );
 11311 %}
 11313 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11314   predicate (UseSSE>=1);
 11315   match(Set dst (ConvL2F src));
 11316   effect( KILL cr );
 11317   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11318             "PUSH   $src.lo\n\t"
 11319             "FILD_D [ESP]\n\t"
 11320             "FSTP_S [ESP]\n\t"
 11321             "MOVSS  $dst,[ESP]\n\t"
 11322             "ADD    ESP,8" %}
 11323   opcode(0xDF, 0x5);  /* DF /5 */
 11324   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11325   ins_pipe( pipe_slow );
 11326 %}
 11328 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11329   match(Set dst (ConvL2F src));
 11330   effect( KILL cr );
 11331   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11332             "PUSH   $src.lo\n\t"
 11333             "FILD   ST,[ESP + #0]\n\t"
 11334             "ADD    ESP,8\n\t"
 11335             "FSTP_S $dst\t# F-round" %}
 11336   opcode(0xDF, 0x5);  /* DF /5 */
 11337   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11338   ins_pipe( pipe_slow );
 11339 %}
 11341 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11342   match(Set dst (ConvL2I src));
 11343   effect( DEF dst, USE src );
 11344   format %{ "MOV    $dst,$src.lo" %}
 11345   ins_encode(enc_CopyL_Lo(dst,src));
 11346   ins_pipe( ialu_reg_reg );
 11347 %}
 11350 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11351   match(Set dst (MoveF2I src));
 11352   effect( DEF dst, USE src );
 11353   ins_cost(100);
 11354   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11355   ins_encode %{
 11356     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11357   %}
 11358   ins_pipe( ialu_reg_mem );
 11359 %}
 11361 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11362   predicate(UseSSE==0);
 11363   match(Set dst (MoveF2I src));
 11364   effect( DEF dst, USE src );
 11366   ins_cost(125);
 11367   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11368   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11369   ins_pipe( fpu_mem_reg );
 11370 %}
 11372 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11373   predicate(UseSSE>=1);
 11374   match(Set dst (MoveF2I src));
 11375   effect( DEF dst, USE src );
 11377   ins_cost(95);
 11378   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11379   ins_encode %{
 11380     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11381   %}
 11382   ins_pipe( pipe_slow );
 11383 %}
 11385 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11386   predicate(UseSSE>=2);
 11387   match(Set dst (MoveF2I src));
 11388   effect( DEF dst, USE src );
 11389   ins_cost(85);
 11390   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11391   ins_encode %{
 11392     __ movdl($dst$$Register, $src$$XMMRegister);
 11393   %}
 11394   ins_pipe( pipe_slow );
 11395 %}
 11397 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11398   match(Set dst (MoveI2F src));
 11399   effect( DEF dst, USE src );
 11401   ins_cost(100);
 11402   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11403   ins_encode %{
 11404     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11405   %}
 11406   ins_pipe( ialu_mem_reg );
 11407 %}
 11410 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11411   predicate(UseSSE==0);
 11412   match(Set dst (MoveI2F src));
 11413   effect(DEF dst, USE src);
 11415   ins_cost(125);
 11416   format %{ "FLD_S  $src\n\t"
 11417             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11418   opcode(0xD9);               /* D9 /0, FLD m32real */
 11419   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11420               Pop_Reg_FPR(dst) );
 11421   ins_pipe( fpu_reg_mem );
 11422 %}
 11424 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11425   predicate(UseSSE>=1);
 11426   match(Set dst (MoveI2F src));
 11427   effect( DEF dst, USE src );
 11429   ins_cost(95);
 11430   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11431   ins_encode %{
 11432     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11433   %}
 11434   ins_pipe( pipe_slow );
 11435 %}
 11437 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11438   predicate(UseSSE>=2);
 11439   match(Set dst (MoveI2F src));
 11440   effect( DEF dst, USE src );
 11442   ins_cost(85);
 11443   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11444   ins_encode %{
 11445     __ movdl($dst$$XMMRegister, $src$$Register);
 11446   %}
 11447   ins_pipe( pipe_slow );
 11448 %}
 11450 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11451   match(Set dst (MoveD2L src));
 11452   effect(DEF dst, USE src);
 11454   ins_cost(250);
 11455   format %{ "MOV    $dst.lo,$src\n\t"
 11456             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11457   opcode(0x8B, 0x8B);
 11458   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11459   ins_pipe( ialu_mem_long_reg );
 11460 %}
 11462 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11463   predicate(UseSSE<=1);
 11464   match(Set dst (MoveD2L src));
 11465   effect(DEF dst, USE src);
 11467   ins_cost(125);
 11468   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11469   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11470   ins_pipe( fpu_mem_reg );
 11471 %}
 11473 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11474   predicate(UseSSE>=2);
 11475   match(Set dst (MoveD2L src));
 11476   effect(DEF dst, USE src);
 11477   ins_cost(95);
 11478   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11479   ins_encode %{
 11480     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11481   %}
 11482   ins_pipe( pipe_slow );
 11483 %}
 11485 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11486   predicate(UseSSE>=2);
 11487   match(Set dst (MoveD2L src));
 11488   effect(DEF dst, USE src, TEMP tmp);
 11489   ins_cost(85);
 11490   format %{ "MOVD   $dst.lo,$src\n\t"
 11491             "PSHUFLW $tmp,$src,0x4E\n\t"
 11492             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11493   ins_encode %{
 11494     __ movdl($dst$$Register, $src$$XMMRegister);
 11495     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11496     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11497   %}
 11498   ins_pipe( pipe_slow );
 11499 %}
 11501 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11502   match(Set dst (MoveL2D src));
 11503   effect(DEF dst, USE src);
 11505   ins_cost(200);
 11506   format %{ "MOV    $dst,$src.lo\n\t"
 11507             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11508   opcode(0x89, 0x89);
 11509   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11510   ins_pipe( ialu_mem_long_reg );
 11511 %}
 11514 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11515   predicate(UseSSE<=1);
 11516   match(Set dst (MoveL2D src));
 11517   effect(DEF dst, USE src);
 11518   ins_cost(125);
 11520   format %{ "FLD_D  $src\n\t"
 11521             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11522   opcode(0xDD);               /* DD /0, FLD m64real */
 11523   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11524               Pop_Reg_DPR(dst) );
 11525   ins_pipe( fpu_reg_mem );
 11526 %}
 11529 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11530   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11531   match(Set dst (MoveL2D src));
 11532   effect(DEF dst, USE src);
 11534   ins_cost(95);
 11535   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11536   ins_encode %{
 11537     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11538   %}
 11539   ins_pipe( pipe_slow );
 11540 %}
 11542 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11543   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11544   match(Set dst (MoveL2D src));
 11545   effect(DEF dst, USE src);
 11547   ins_cost(95);
 11548   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11549   ins_encode %{
 11550     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11551   %}
 11552   ins_pipe( pipe_slow );
 11553 %}
 11555 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11556   predicate(UseSSE>=2);
 11557   match(Set dst (MoveL2D src));
 11558   effect(TEMP dst, USE src, TEMP tmp);
 11559   ins_cost(85);
 11560   format %{ "MOVD   $dst,$src.lo\n\t"
 11561             "MOVD   $tmp,$src.hi\n\t"
 11562             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11563   ins_encode %{
 11564     __ movdl($dst$$XMMRegister, $src$$Register);
 11565     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11566     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11567   %}
 11568   ins_pipe( pipe_slow );
 11569 %}
 11572 // =======================================================================
 11573 // fast clearing of an array
 11574 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11575   match(Set dummy (ClearArray cnt base));
 11576   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11577   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11578             "XOR    EAX,EAX\n\t"
 11579             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11580   opcode(0,0x4);
 11581   ins_encode( Opcode(0xD1), RegOpc(ECX),
 11582               OpcRegReg(0x33,EAX,EAX),
 11583               Opcode(0xF3), Opcode(0xAB) );
 11584   ins_pipe( pipe_slow );
 11585 %}
 11587 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11588                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11589   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11590   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11592   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11593   ins_encode %{
 11594     __ string_compare($str1$$Register, $str2$$Register,
 11595                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11596                       $tmp1$$XMMRegister);
 11597   %}
 11598   ins_pipe( pipe_slow );
 11599 %}
 11601 // fast string equals
 11602 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11603                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11604   match(Set result (StrEquals (Binary str1 str2) cnt));
 11605   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11607   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11608   ins_encode %{
 11609     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11610                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11611                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11612   %}
 11613   ins_pipe( pipe_slow );
 11614 %}
 11616 // fast search of substring with known size.
 11617 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11618                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11619   predicate(UseSSE42Intrinsics);
 11620   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11621   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11623   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11624   ins_encode %{
 11625     int icnt2 = (int)$int_cnt2$$constant;
 11626     if (icnt2 >= 8) {
 11627       // IndexOf for constant substrings with size >= 8 elements
 11628       // which don't need to be loaded through stack.
 11629       __ string_indexofC8($str1$$Register, $str2$$Register,
 11630                           $cnt1$$Register, $cnt2$$Register,
 11631                           icnt2, $result$$Register,
 11632                           $vec$$XMMRegister, $tmp$$Register);
 11633     } else {
 11634       // Small strings are loaded through stack if they cross page boundary.
 11635       __ string_indexof($str1$$Register, $str2$$Register,
 11636                         $cnt1$$Register, $cnt2$$Register,
 11637                         icnt2, $result$$Register,
 11638                         $vec$$XMMRegister, $tmp$$Register);
 11640   %}
 11641   ins_pipe( pipe_slow );
 11642 %}
 11644 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11645                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11646   predicate(UseSSE42Intrinsics);
 11647   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11648   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11650   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11651   ins_encode %{
 11652     __ string_indexof($str1$$Register, $str2$$Register,
 11653                       $cnt1$$Register, $cnt2$$Register,
 11654                       (-1), $result$$Register,
 11655                       $vec$$XMMRegister, $tmp$$Register);
 11656   %}
 11657   ins_pipe( pipe_slow );
 11658 %}
 11660 // fast array equals
 11661 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11662                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11663 %{
 11664   match(Set result (AryEq ary1 ary2));
 11665   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11666   //ins_cost(300);
 11668   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11669   ins_encode %{
 11670     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11671                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11672                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11673   %}
 11674   ins_pipe( pipe_slow );
 11675 %}
 11677 //----------Control Flow Instructions------------------------------------------
 11678 // Signed compare Instructions
 11679 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11680   match(Set cr (CmpI op1 op2));
 11681   effect( DEF cr, USE op1, USE op2 );
 11682   format %{ "CMP    $op1,$op2" %}
 11683   opcode(0x3B);  /* Opcode 3B /r */
 11684   ins_encode( OpcP, RegReg( op1, op2) );
 11685   ins_pipe( ialu_cr_reg_reg );
 11686 %}
 11688 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11689   match(Set cr (CmpI op1 op2));
 11690   effect( DEF cr, USE op1 );
 11691   format %{ "CMP    $op1,$op2" %}
 11692   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11693   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11694   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11695   ins_pipe( ialu_cr_reg_imm );
 11696 %}
 11698 // Cisc-spilled version of cmpI_eReg
 11699 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11700   match(Set cr (CmpI op1 (LoadI op2)));
 11702   format %{ "CMP    $op1,$op2" %}
 11703   ins_cost(500);
 11704   opcode(0x3B);  /* Opcode 3B /r */
 11705   ins_encode( OpcP, RegMem( op1, op2) );
 11706   ins_pipe( ialu_cr_reg_mem );
 11707 %}
 11709 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11710   match(Set cr (CmpI src zero));
 11711   effect( DEF cr, USE src );
 11713   format %{ "TEST   $src,$src" %}
 11714   opcode(0x85);
 11715   ins_encode( OpcP, RegReg( src, src ) );
 11716   ins_pipe( ialu_cr_reg_imm );
 11717 %}
 11719 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11720   match(Set cr (CmpI (AndI src con) zero));
 11722   format %{ "TEST   $src,$con" %}
 11723   opcode(0xF7,0x00);
 11724   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11725   ins_pipe( ialu_cr_reg_imm );
 11726 %}
 11728 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11729   match(Set cr (CmpI (AndI src mem) zero));
 11731   format %{ "TEST   $src,$mem" %}
 11732   opcode(0x85);
 11733   ins_encode( OpcP, RegMem( src, mem ) );
 11734   ins_pipe( ialu_cr_reg_mem );
 11735 %}
 11737 // Unsigned compare Instructions; really, same as signed except they
 11738 // produce an eFlagsRegU instead of eFlagsReg.
 11739 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11740   match(Set cr (CmpU op1 op2));
 11742   format %{ "CMPu   $op1,$op2" %}
 11743   opcode(0x3B);  /* Opcode 3B /r */
 11744   ins_encode( OpcP, RegReg( op1, op2) );
 11745   ins_pipe( ialu_cr_reg_reg );
 11746 %}
 11748 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11749   match(Set cr (CmpU op1 op2));
 11751   format %{ "CMPu   $op1,$op2" %}
 11752   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11753   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11754   ins_pipe( ialu_cr_reg_imm );
 11755 %}
 11757 // // Cisc-spilled version of cmpU_eReg
 11758 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11759   match(Set cr (CmpU op1 (LoadI op2)));
 11761   format %{ "CMPu   $op1,$op2" %}
 11762   ins_cost(500);
 11763   opcode(0x3B);  /* Opcode 3B /r */
 11764   ins_encode( OpcP, RegMem( op1, op2) );
 11765   ins_pipe( ialu_cr_reg_mem );
 11766 %}
 11768 // // Cisc-spilled version of cmpU_eReg
 11769 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11770 //  match(Set cr (CmpU (LoadI op1) op2));
 11771 //
 11772 //  format %{ "CMPu   $op1,$op2" %}
 11773 //  ins_cost(500);
 11774 //  opcode(0x39);  /* Opcode 39 /r */
 11775 //  ins_encode( OpcP, RegMem( op1, op2) );
 11776 //%}
 11778 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11779   match(Set cr (CmpU src zero));
 11781   format %{ "TESTu  $src,$src" %}
 11782   opcode(0x85);
 11783   ins_encode( OpcP, RegReg( src, src ) );
 11784   ins_pipe( ialu_cr_reg_imm );
 11785 %}
 11787 // Unsigned pointer compare Instructions
 11788 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11789   match(Set cr (CmpP op1 op2));
 11791   format %{ "CMPu   $op1,$op2" %}
 11792   opcode(0x3B);  /* Opcode 3B /r */
 11793   ins_encode( OpcP, RegReg( op1, op2) );
 11794   ins_pipe( ialu_cr_reg_reg );
 11795 %}
 11797 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11798   match(Set cr (CmpP op1 op2));
 11800   format %{ "CMPu   $op1,$op2" %}
 11801   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11802   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11803   ins_pipe( ialu_cr_reg_imm );
 11804 %}
 11806 // // Cisc-spilled version of cmpP_eReg
 11807 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11808   match(Set cr (CmpP op1 (LoadP op2)));
 11810   format %{ "CMPu   $op1,$op2" %}
 11811   ins_cost(500);
 11812   opcode(0x3B);  /* Opcode 3B /r */
 11813   ins_encode( OpcP, RegMem( op1, op2) );
 11814   ins_pipe( ialu_cr_reg_mem );
 11815 %}
 11817 // // Cisc-spilled version of cmpP_eReg
 11818 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 11819 //  match(Set cr (CmpP (LoadP op1) op2));
 11820 //
 11821 //  format %{ "CMPu   $op1,$op2" %}
 11822 //  ins_cost(500);
 11823 //  opcode(0x39);  /* Opcode 39 /r */
 11824 //  ins_encode( OpcP, RegMem( op1, op2) );
 11825 //%}
 11827 // Compare raw pointer (used in out-of-heap check).
 11828 // Only works because non-oop pointers must be raw pointers
 11829 // and raw pointers have no anti-dependencies.
 11830 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 11831   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
 11832   match(Set cr (CmpP op1 (LoadP op2)));
 11834   format %{ "CMPu   $op1,$op2" %}
 11835   opcode(0x3B);  /* Opcode 3B /r */
 11836   ins_encode( OpcP, RegMem( op1, op2) );
 11837   ins_pipe( ialu_cr_reg_mem );
 11838 %}
 11840 //
 11841 // This will generate a signed flags result. This should be ok
 11842 // since any compare to a zero should be eq/neq.
 11843 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 11844   match(Set cr (CmpP src zero));
 11846   format %{ "TEST   $src,$src" %}
 11847   opcode(0x85);
 11848   ins_encode( OpcP, RegReg( src, src ) );
 11849   ins_pipe( ialu_cr_reg_imm );
 11850 %}
 11852 // Cisc-spilled version of testP_reg
 11853 // This will generate a signed flags result. This should be ok
 11854 // since any compare to a zero should be eq/neq.
 11855 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 11856   match(Set cr (CmpP (LoadP op) zero));
 11858   format %{ "TEST   $op,0xFFFFFFFF" %}
 11859   ins_cost(500);
 11860   opcode(0xF7);               /* Opcode F7 /0 */
 11861   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 11862   ins_pipe( ialu_cr_reg_imm );
 11863 %}
 11865 // Yanked all unsigned pointer compare operations.
 11866 // Pointer compares are done with CmpP which is already unsigned.
 11868 //----------Max and Min--------------------------------------------------------
 11869 // Min Instructions
 11870 ////
 11871 //   *** Min and Max using the conditional move are slower than the
 11872 //   *** branch version on a Pentium III.
 11873 // // Conditional move for min
 11874 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11875 //  effect( USE_DEF op2, USE op1, USE cr );
 11876 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 11877 //  opcode(0x4C,0x0F);
 11878 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11879 //  ins_pipe( pipe_cmov_reg );
 11880 //%}
 11881 //
 11882 //// Min Register with Register (P6 version)
 11883 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11884 //  predicate(VM_Version::supports_cmov() );
 11885 //  match(Set op2 (MinI op1 op2));
 11886 //  ins_cost(200);
 11887 //  expand %{
 11888 //    eFlagsReg cr;
 11889 //    compI_eReg(cr,op1,op2);
 11890 //    cmovI_reg_lt(op2,op1,cr);
 11891 //  %}
 11892 //%}
 11894 // Min Register with Register (generic version)
 11895 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11896   match(Set dst (MinI dst src));
 11897   effect(KILL flags);
 11898   ins_cost(300);
 11900   format %{ "MIN    $dst,$src" %}
 11901   opcode(0xCC);
 11902   ins_encode( min_enc(dst,src) );
 11903   ins_pipe( pipe_slow );
 11904 %}
 11906 // Max Register with Register
 11907 //   *** Min and Max using the conditional move are slower than the
 11908 //   *** branch version on a Pentium III.
 11909 // // Conditional move for max
 11910 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11911 //  effect( USE_DEF op2, USE op1, USE cr );
 11912 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 11913 //  opcode(0x4F,0x0F);
 11914 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11915 //  ins_pipe( pipe_cmov_reg );
 11916 //%}
 11917 //
 11918 // // Max Register with Register (P6 version)
 11919 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11920 //  predicate(VM_Version::supports_cmov() );
 11921 //  match(Set op2 (MaxI op1 op2));
 11922 //  ins_cost(200);
 11923 //  expand %{
 11924 //    eFlagsReg cr;
 11925 //    compI_eReg(cr,op1,op2);
 11926 //    cmovI_reg_gt(op2,op1,cr);
 11927 //  %}
 11928 //%}
 11930 // Max Register with Register (generic version)
 11931 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11932   match(Set dst (MaxI dst src));
 11933   effect(KILL flags);
 11934   ins_cost(300);
 11936   format %{ "MAX    $dst,$src" %}
 11937   opcode(0xCC);
 11938   ins_encode( max_enc(dst,src) );
 11939   ins_pipe( pipe_slow );
 11940 %}
 11942 // ============================================================================
 11943 // Counted Loop limit node which represents exact final iterator value.
 11944 // Note: the resulting value should fit into integer range since
 11945 // counted loops have limit check on overflow.
 11946 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 11947   match(Set limit (LoopLimit (Binary init limit) stride));
 11948   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 11949   ins_cost(300);
 11951   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 11952   ins_encode %{
 11953     int strd = (int)$stride$$constant;
 11954     assert(strd != 1 && strd != -1, "sanity");
 11955     int m1 = (strd > 0) ? 1 : -1;
 11956     // Convert limit to long (EAX:EDX)
 11957     __ cdql();
 11958     // Convert init to long (init:tmp)
 11959     __ movl($tmp$$Register, $init$$Register);
 11960     __ sarl($tmp$$Register, 31);
 11961     // $limit - $init
 11962     __ subl($limit$$Register, $init$$Register);
 11963     __ sbbl($limit_hi$$Register, $tmp$$Register);
 11964     // + ($stride - 1)
 11965     if (strd > 0) {
 11966       __ addl($limit$$Register, (strd - 1));
 11967       __ adcl($limit_hi$$Register, 0);
 11968       __ movl($tmp$$Register, strd);
 11969     } else {
 11970       __ addl($limit$$Register, (strd + 1));
 11971       __ adcl($limit_hi$$Register, -1);
 11972       __ lneg($limit_hi$$Register, $limit$$Register);
 11973       __ movl($tmp$$Register, -strd);
 11975     // signed devision: (EAX:EDX) / pos_stride
 11976     __ idivl($tmp$$Register);
 11977     if (strd < 0) {
 11978       // restore sign
 11979       __ negl($tmp$$Register);
 11981     // (EAX) * stride
 11982     __ mull($tmp$$Register);
 11983     // + init (ignore upper bits)
 11984     __ addl($limit$$Register, $init$$Register);
 11985   %}
 11986   ins_pipe( pipe_slow );
 11987 %}
 11989 // ============================================================================
 11990 // Branch Instructions
 11991 // Jump Table
 11992 instruct jumpXtnd(rRegI switch_val) %{
 11993   match(Jump switch_val);
 11994   ins_cost(350);
 11995   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 11996   ins_encode %{
 11997     // Jump to Address(table_base + switch_reg)
 11998     Address index(noreg, $switch_val$$Register, Address::times_1);
 11999     __ jump(ArrayAddress($constantaddress, index));
 12000   %}
 12001   ins_pipe(pipe_jmp);
 12002 %}
 12004 // Jump Direct - Label defines a relative address from JMP+1
 12005 instruct jmpDir(label labl) %{
 12006   match(Goto);
 12007   effect(USE labl);
 12009   ins_cost(300);
 12010   format %{ "JMP    $labl" %}
 12011   size(5);
 12012   ins_encode %{
 12013     Label* L = $labl$$label;
 12014     __ jmp(*L, false); // Always long jump
 12015   %}
 12016   ins_pipe( pipe_jmp );
 12017 %}
 12019 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12020 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12021   match(If cop cr);
 12022   effect(USE labl);
 12024   ins_cost(300);
 12025   format %{ "J$cop    $labl" %}
 12026   size(6);
 12027   ins_encode %{
 12028     Label* L = $labl$$label;
 12029     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12030   %}
 12031   ins_pipe( pipe_jcc );
 12032 %}
 12034 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12035 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12036   match(CountedLoopEnd cop cr);
 12037   effect(USE labl);
 12039   ins_cost(300);
 12040   format %{ "J$cop    $labl\t# Loop end" %}
 12041   size(6);
 12042   ins_encode %{
 12043     Label* L = $labl$$label;
 12044     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12045   %}
 12046   ins_pipe( pipe_jcc );
 12047 %}
 12049 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12050 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12051   match(CountedLoopEnd cop cmp);
 12052   effect(USE labl);
 12054   ins_cost(300);
 12055   format %{ "J$cop,u  $labl\t# Loop end" %}
 12056   size(6);
 12057   ins_encode %{
 12058     Label* L = $labl$$label;
 12059     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12060   %}
 12061   ins_pipe( pipe_jcc );
 12062 %}
 12064 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12065   match(CountedLoopEnd cop cmp);
 12066   effect(USE labl);
 12068   ins_cost(200);
 12069   format %{ "J$cop,u  $labl\t# Loop end" %}
 12070   size(6);
 12071   ins_encode %{
 12072     Label* L = $labl$$label;
 12073     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12074   %}
 12075   ins_pipe( pipe_jcc );
 12076 %}
 12078 // Jump Direct Conditional - using unsigned comparison
 12079 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12080   match(If cop cmp);
 12081   effect(USE labl);
 12083   ins_cost(300);
 12084   format %{ "J$cop,u  $labl" %}
 12085   size(6);
 12086   ins_encode %{
 12087     Label* L = $labl$$label;
 12088     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12089   %}
 12090   ins_pipe(pipe_jcc);
 12091 %}
 12093 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12094   match(If cop cmp);
 12095   effect(USE labl);
 12097   ins_cost(200);
 12098   format %{ "J$cop,u  $labl" %}
 12099   size(6);
 12100   ins_encode %{
 12101     Label* L = $labl$$label;
 12102     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12103   %}
 12104   ins_pipe(pipe_jcc);
 12105 %}
 12107 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12108   match(If cop cmp);
 12109   effect(USE labl);
 12111   ins_cost(200);
 12112   format %{ $$template
 12113     if ($cop$$cmpcode == Assembler::notEqual) {
 12114       $$emit$$"JP,u   $labl\n\t"
 12115       $$emit$$"J$cop,u   $labl"
 12116     } else {
 12117       $$emit$$"JP,u   done\n\t"
 12118       $$emit$$"J$cop,u   $labl\n\t"
 12119       $$emit$$"done:"
 12121   %}
 12122   ins_encode %{
 12123     Label* l = $labl$$label;
 12124     if ($cop$$cmpcode == Assembler::notEqual) {
 12125       __ jcc(Assembler::parity, *l, false);
 12126       __ jcc(Assembler::notEqual, *l, false);
 12127     } else if ($cop$$cmpcode == Assembler::equal) {
 12128       Label done;
 12129       __ jccb(Assembler::parity, done);
 12130       __ jcc(Assembler::equal, *l, false);
 12131       __ bind(done);
 12132     } else {
 12133        ShouldNotReachHere();
 12135   %}
 12136   ins_pipe(pipe_jcc);
 12137 %}
 12139 // ============================================================================
 12140 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12141 // array for an instance of the superklass.  Set a hidden internal cache on a
 12142 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12143 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12144 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12145   match(Set result (PartialSubtypeCheck sub super));
 12146   effect( KILL rcx, KILL cr );
 12148   ins_cost(1100);  // slightly larger than the next version
 12149   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12150             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12151             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12152             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12153             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12154             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12155             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12156      "miss:\t" %}
 12158   opcode(0x1); // Force a XOR of EDI
 12159   ins_encode( enc_PartialSubtypeCheck() );
 12160   ins_pipe( pipe_slow );
 12161 %}
 12163 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12164   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12165   effect( KILL rcx, KILL result );
 12167   ins_cost(1000);
 12168   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12169             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12170             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12171             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12172             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12173             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12174      "miss:\t" %}
 12176   opcode(0x0);  // No need to XOR EDI
 12177   ins_encode( enc_PartialSubtypeCheck() );
 12178   ins_pipe( pipe_slow );
 12179 %}
 12181 // ============================================================================
 12182 // Branch Instructions -- short offset versions
 12183 //
 12184 // These instructions are used to replace jumps of a long offset (the default
 12185 // match) with jumps of a shorter offset.  These instructions are all tagged
 12186 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12187 // match rules in general matching.  Instead, the ADLC generates a conversion
 12188 // method in the MachNode which can be used to do in-place replacement of the
 12189 // long variant with the shorter variant.  The compiler will determine if a
 12190 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12191 // specific code section of the file.
 12193 // Jump Direct - Label defines a relative address from JMP+1
 12194 instruct jmpDir_short(label labl) %{
 12195   match(Goto);
 12196   effect(USE labl);
 12198   ins_cost(300);
 12199   format %{ "JMP,s  $labl" %}
 12200   size(2);
 12201   ins_encode %{
 12202     Label* L = $labl$$label;
 12203     __ jmpb(*L);
 12204   %}
 12205   ins_pipe( pipe_jmp );
 12206   ins_short_branch(1);
 12207 %}
 12209 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12210 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12211   match(If cop cr);
 12212   effect(USE labl);
 12214   ins_cost(300);
 12215   format %{ "J$cop,s  $labl" %}
 12216   size(2);
 12217   ins_encode %{
 12218     Label* L = $labl$$label;
 12219     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12220   %}
 12221   ins_pipe( pipe_jcc );
 12222   ins_short_branch(1);
 12223 %}
 12225 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12226 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12227   match(CountedLoopEnd cop cr);
 12228   effect(USE labl);
 12230   ins_cost(300);
 12231   format %{ "J$cop,s  $labl\t# Loop end" %}
 12232   size(2);
 12233   ins_encode %{
 12234     Label* L = $labl$$label;
 12235     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12236   %}
 12237   ins_pipe( pipe_jcc );
 12238   ins_short_branch(1);
 12239 %}
 12241 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12242 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12243   match(CountedLoopEnd cop cmp);
 12244   effect(USE labl);
 12246   ins_cost(300);
 12247   format %{ "J$cop,us $labl\t# Loop end" %}
 12248   size(2);
 12249   ins_encode %{
 12250     Label* L = $labl$$label;
 12251     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12252   %}
 12253   ins_pipe( pipe_jcc );
 12254   ins_short_branch(1);
 12255 %}
 12257 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12258   match(CountedLoopEnd cop cmp);
 12259   effect(USE labl);
 12261   ins_cost(300);
 12262   format %{ "J$cop,us $labl\t# Loop end" %}
 12263   size(2);
 12264   ins_encode %{
 12265     Label* L = $labl$$label;
 12266     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12267   %}
 12268   ins_pipe( pipe_jcc );
 12269   ins_short_branch(1);
 12270 %}
 12272 // Jump Direct Conditional - using unsigned comparison
 12273 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12274   match(If cop cmp);
 12275   effect(USE labl);
 12277   ins_cost(300);
 12278   format %{ "J$cop,us $labl" %}
 12279   size(2);
 12280   ins_encode %{
 12281     Label* L = $labl$$label;
 12282     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12283   %}
 12284   ins_pipe( pipe_jcc );
 12285   ins_short_branch(1);
 12286 %}
 12288 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12289   match(If cop cmp);
 12290   effect(USE labl);
 12292   ins_cost(300);
 12293   format %{ "J$cop,us $labl" %}
 12294   size(2);
 12295   ins_encode %{
 12296     Label* L = $labl$$label;
 12297     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12298   %}
 12299   ins_pipe( pipe_jcc );
 12300   ins_short_branch(1);
 12301 %}
 12303 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12304   match(If cop cmp);
 12305   effect(USE labl);
 12307   ins_cost(300);
 12308   format %{ $$template
 12309     if ($cop$$cmpcode == Assembler::notEqual) {
 12310       $$emit$$"JP,u,s   $labl\n\t"
 12311       $$emit$$"J$cop,u,s   $labl"
 12312     } else {
 12313       $$emit$$"JP,u,s   done\n\t"
 12314       $$emit$$"J$cop,u,s  $labl\n\t"
 12315       $$emit$$"done:"
 12317   %}
 12318   size(4);
 12319   ins_encode %{
 12320     Label* l = $labl$$label;
 12321     if ($cop$$cmpcode == Assembler::notEqual) {
 12322       __ jccb(Assembler::parity, *l);
 12323       __ jccb(Assembler::notEqual, *l);
 12324     } else if ($cop$$cmpcode == Assembler::equal) {
 12325       Label done;
 12326       __ jccb(Assembler::parity, done);
 12327       __ jccb(Assembler::equal, *l);
 12328       __ bind(done);
 12329     } else {
 12330        ShouldNotReachHere();
 12332   %}
 12333   ins_pipe(pipe_jcc);
 12334   ins_short_branch(1);
 12335 %}
 12337 // ============================================================================
 12338 // Long Compare
 12339 //
 12340 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12341 // is tricky.  The flavor of compare used depends on whether we are testing
 12342 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12343 // The GE test is the negated LT test.  The LE test can be had by commuting
 12344 // the operands (yielding a GE test) and then negating; negate again for the
 12345 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12346 // NE test is negated from that.
 12348 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12349 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12350 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12351 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12352 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12353 // foo match ends up with the wrong leaf.  One fix is to not match both
 12354 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12355 // both forms beat the trinary form of long-compare and both are very useful
 12356 // on Intel which has so few registers.
 12358 // Manifest a CmpL result in an integer register.  Very painful.
 12359 // This is the test to avoid.
 12360 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12361   match(Set dst (CmpL3 src1 src2));
 12362   effect( KILL flags );
 12363   ins_cost(1000);
 12364   format %{ "XOR    $dst,$dst\n\t"
 12365             "CMP    $src1.hi,$src2.hi\n\t"
 12366             "JLT,s  m_one\n\t"
 12367             "JGT,s  p_one\n\t"
 12368             "CMP    $src1.lo,$src2.lo\n\t"
 12369             "JB,s   m_one\n\t"
 12370             "JEQ,s  done\n"
 12371     "p_one:\tINC    $dst\n\t"
 12372             "JMP,s  done\n"
 12373     "m_one:\tDEC    $dst\n"
 12374      "done:" %}
 12375   ins_encode %{
 12376     Label p_one, m_one, done;
 12377     __ xorptr($dst$$Register, $dst$$Register);
 12378     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12379     __ jccb(Assembler::less,    m_one);
 12380     __ jccb(Assembler::greater, p_one);
 12381     __ cmpl($src1$$Register, $src2$$Register);
 12382     __ jccb(Assembler::below,   m_one);
 12383     __ jccb(Assembler::equal,   done);
 12384     __ bind(p_one);
 12385     __ incrementl($dst$$Register);
 12386     __ jmpb(done);
 12387     __ bind(m_one);
 12388     __ decrementl($dst$$Register);
 12389     __ bind(done);
 12390   %}
 12391   ins_pipe( pipe_slow );
 12392 %}
 12394 //======
 12395 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12396 // compares.  Can be used for LE or GT compares by reversing arguments.
 12397 // NOT GOOD FOR EQ/NE tests.
 12398 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12399   match( Set flags (CmpL src zero ));
 12400   ins_cost(100);
 12401   format %{ "TEST   $src.hi,$src.hi" %}
 12402   opcode(0x85);
 12403   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12404   ins_pipe( ialu_cr_reg_reg );
 12405 %}
 12407 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12408 // compares.  Can be used for LE or GT compares by reversing arguments.
 12409 // NOT GOOD FOR EQ/NE tests.
 12410 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12411   match( Set flags (CmpL src1 src2 ));
 12412   effect( TEMP tmp );
 12413   ins_cost(300);
 12414   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12415             "MOV    $tmp,$src1.hi\n\t"
 12416             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12417   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12418   ins_pipe( ialu_cr_reg_reg );
 12419 %}
 12421 // Long compares reg < zero/req OR reg >= zero/req.
 12422 // Just a wrapper for a normal branch, plus the predicate test.
 12423 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12424   match(If cmp flags);
 12425   effect(USE labl);
 12426   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12427   expand %{
 12428     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12429   %}
 12430 %}
 12432 // Compare 2 longs and CMOVE longs.
 12433 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12434   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12435   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12436   ins_cost(400);
 12437   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12438             "CMOV$cmp $dst.hi,$src.hi" %}
 12439   opcode(0x0F,0x40);
 12440   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12441   ins_pipe( pipe_cmov_reg_long );
 12442 %}
 12444 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12445   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12446   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12447   ins_cost(500);
 12448   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12449             "CMOV$cmp $dst.hi,$src.hi" %}
 12450   opcode(0x0F,0x40);
 12451   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12452   ins_pipe( pipe_cmov_reg_long );
 12453 %}
 12455 // Compare 2 longs and CMOVE ints.
 12456 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12457   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12458   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12459   ins_cost(200);
 12460   format %{ "CMOV$cmp $dst,$src" %}
 12461   opcode(0x0F,0x40);
 12462   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12463   ins_pipe( pipe_cmov_reg );
 12464 %}
 12466 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12467   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12468   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12469   ins_cost(250);
 12470   format %{ "CMOV$cmp $dst,$src" %}
 12471   opcode(0x0F,0x40);
 12472   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12473   ins_pipe( pipe_cmov_mem );
 12474 %}
 12476 // Compare 2 longs and CMOVE ints.
 12477 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12478   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12479   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12480   ins_cost(200);
 12481   format %{ "CMOV$cmp $dst,$src" %}
 12482   opcode(0x0F,0x40);
 12483   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12484   ins_pipe( pipe_cmov_reg );
 12485 %}
 12487 // Compare 2 longs and CMOVE doubles
 12488 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12489   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12490   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12491   ins_cost(200);
 12492   expand %{
 12493     fcmovDPR_regS(cmp,flags,dst,src);
 12494   %}
 12495 %}
 12497 // Compare 2 longs and CMOVE doubles
 12498 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12499   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12500   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12501   ins_cost(200);
 12502   expand %{
 12503     fcmovD_regS(cmp,flags,dst,src);
 12504   %}
 12505 %}
 12507 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12508   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12509   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12510   ins_cost(200);
 12511   expand %{
 12512     fcmovFPR_regS(cmp,flags,dst,src);
 12513   %}
 12514 %}
 12516 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12517   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12518   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12519   ins_cost(200);
 12520   expand %{
 12521     fcmovF_regS(cmp,flags,dst,src);
 12522   %}
 12523 %}
 12525 //======
 12526 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12527 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12528   match( Set flags (CmpL src zero ));
 12529   effect(TEMP tmp);
 12530   ins_cost(200);
 12531   format %{ "MOV    $tmp,$src.lo\n\t"
 12532             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12533   ins_encode( long_cmp_flags0( src, tmp ) );
 12534   ins_pipe( ialu_reg_reg_long );
 12535 %}
 12537 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12538 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12539   match( Set flags (CmpL src1 src2 ));
 12540   ins_cost(200+300);
 12541   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12542             "JNE,s  skip\n\t"
 12543             "CMP    $src1.hi,$src2.hi\n\t"
 12544      "skip:\t" %}
 12545   ins_encode( long_cmp_flags1( src1, src2 ) );
 12546   ins_pipe( ialu_cr_reg_reg );
 12547 %}
 12549 // Long compare reg == zero/reg OR reg != zero/reg
 12550 // Just a wrapper for a normal branch, plus the predicate test.
 12551 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12552   match(If cmp flags);
 12553   effect(USE labl);
 12554   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12555   expand %{
 12556     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12557   %}
 12558 %}
 12560 // Compare 2 longs and CMOVE longs.
 12561 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12562   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12563   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12564   ins_cost(400);
 12565   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12566             "CMOV$cmp $dst.hi,$src.hi" %}
 12567   opcode(0x0F,0x40);
 12568   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12569   ins_pipe( pipe_cmov_reg_long );
 12570 %}
 12572 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12573   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12574   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12575   ins_cost(500);
 12576   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12577             "CMOV$cmp $dst.hi,$src.hi" %}
 12578   opcode(0x0F,0x40);
 12579   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12580   ins_pipe( pipe_cmov_reg_long );
 12581 %}
 12583 // Compare 2 longs and CMOVE ints.
 12584 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12585   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12586   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12587   ins_cost(200);
 12588   format %{ "CMOV$cmp $dst,$src" %}
 12589   opcode(0x0F,0x40);
 12590   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12591   ins_pipe( pipe_cmov_reg );
 12592 %}
 12594 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12595   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12596   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12597   ins_cost(250);
 12598   format %{ "CMOV$cmp $dst,$src" %}
 12599   opcode(0x0F,0x40);
 12600   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12601   ins_pipe( pipe_cmov_mem );
 12602 %}
 12604 // Compare 2 longs and CMOVE ints.
 12605 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12606   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12607   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12608   ins_cost(200);
 12609   format %{ "CMOV$cmp $dst,$src" %}
 12610   opcode(0x0F,0x40);
 12611   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12612   ins_pipe( pipe_cmov_reg );
 12613 %}
 12615 // Compare 2 longs and CMOVE doubles
 12616 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12617   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12618   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12619   ins_cost(200);
 12620   expand %{
 12621     fcmovDPR_regS(cmp,flags,dst,src);
 12622   %}
 12623 %}
 12625 // Compare 2 longs and CMOVE doubles
 12626 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12627   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12628   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12629   ins_cost(200);
 12630   expand %{
 12631     fcmovD_regS(cmp,flags,dst,src);
 12632   %}
 12633 %}
 12635 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12636   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12637   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12638   ins_cost(200);
 12639   expand %{
 12640     fcmovFPR_regS(cmp,flags,dst,src);
 12641   %}
 12642 %}
 12644 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12645   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12646   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12647   ins_cost(200);
 12648   expand %{
 12649     fcmovF_regS(cmp,flags,dst,src);
 12650   %}
 12651 %}
 12653 //======
 12654 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12655 // Same as cmpL_reg_flags_LEGT except must negate src
 12656 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12657   match( Set flags (CmpL src zero ));
 12658   effect( TEMP tmp );
 12659   ins_cost(300);
 12660   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12661             "CMP    $tmp,$src.lo\n\t"
 12662             "SBB    $tmp,$src.hi\n\t" %}
 12663   ins_encode( long_cmp_flags3(src, tmp) );
 12664   ins_pipe( ialu_reg_reg_long );
 12665 %}
 12667 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12668 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12669 // requires a commuted test to get the same result.
 12670 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12671   match( Set flags (CmpL src1 src2 ));
 12672   effect( TEMP tmp );
 12673   ins_cost(300);
 12674   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12675             "MOV    $tmp,$src2.hi\n\t"
 12676             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12677   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12678   ins_pipe( ialu_cr_reg_reg );
 12679 %}
 12681 // Long compares reg < zero/req OR reg >= zero/req.
 12682 // Just a wrapper for a normal branch, plus the predicate test
 12683 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12684   match(If cmp flags);
 12685   effect(USE labl);
 12686   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12687   ins_cost(300);
 12688   expand %{
 12689     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12690   %}
 12691 %}
 12693 // Compare 2 longs and CMOVE longs.
 12694 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12695   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12696   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12697   ins_cost(400);
 12698   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12699             "CMOV$cmp $dst.hi,$src.hi" %}
 12700   opcode(0x0F,0x40);
 12701   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12702   ins_pipe( pipe_cmov_reg_long );
 12703 %}
 12705 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12706   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12707   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12708   ins_cost(500);
 12709   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12710             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12711   opcode(0x0F,0x40);
 12712   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12713   ins_pipe( pipe_cmov_reg_long );
 12714 %}
 12716 // Compare 2 longs and CMOVE ints.
 12717 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12718   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12719   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12720   ins_cost(200);
 12721   format %{ "CMOV$cmp $dst,$src" %}
 12722   opcode(0x0F,0x40);
 12723   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12724   ins_pipe( pipe_cmov_reg );
 12725 %}
 12727 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12728   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12729   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12730   ins_cost(250);
 12731   format %{ "CMOV$cmp $dst,$src" %}
 12732   opcode(0x0F,0x40);
 12733   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12734   ins_pipe( pipe_cmov_mem );
 12735 %}
 12737 // Compare 2 longs and CMOVE ptrs.
 12738 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12739   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12740   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12741   ins_cost(200);
 12742   format %{ "CMOV$cmp $dst,$src" %}
 12743   opcode(0x0F,0x40);
 12744   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12745   ins_pipe( pipe_cmov_reg );
 12746 %}
 12748 // Compare 2 longs and CMOVE doubles
 12749 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12750   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12751   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12752   ins_cost(200);
 12753   expand %{
 12754     fcmovDPR_regS(cmp,flags,dst,src);
 12755   %}
 12756 %}
 12758 // Compare 2 longs and CMOVE doubles
 12759 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12760   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12761   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12762   ins_cost(200);
 12763   expand %{
 12764     fcmovD_regS(cmp,flags,dst,src);
 12765   %}
 12766 %}
 12768 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12769   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12770   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12771   ins_cost(200);
 12772   expand %{
 12773     fcmovFPR_regS(cmp,flags,dst,src);
 12774   %}
 12775 %}
 12778 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12779   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12780   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12781   ins_cost(200);
 12782   expand %{
 12783     fcmovF_regS(cmp,flags,dst,src);
 12784   %}
 12785 %}
 12788 // ============================================================================
 12789 // Procedure Call/Return Instructions
 12790 // Call Java Static Instruction
 12791 // Note: If this code changes, the corresponding ret_addr_offset() and
 12792 //       compute_padding() functions will have to be adjusted.
 12793 instruct CallStaticJavaDirect(method meth) %{
 12794   match(CallStaticJava);
 12795   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12796   effect(USE meth);
 12798   ins_cost(300);
 12799   format %{ "CALL,static " %}
 12800   opcode(0xE8); /* E8 cd */
 12801   ins_encode( pre_call_FPU,
 12802               Java_Static_Call( meth ),
 12803               call_epilog,
 12804               post_call_FPU );
 12805   ins_pipe( pipe_slow );
 12806   ins_alignment(4);
 12807 %}
 12809 // Call Java Static Instruction (method handle version)
 12810 // Note: If this code changes, the corresponding ret_addr_offset() and
 12811 //       compute_padding() functions will have to be adjusted.
 12812 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 12813   match(CallStaticJava);
 12814   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12815   effect(USE meth);
 12816   // EBP is saved by all callees (for interpreter stack correction).
 12817   // We use it here for a similar purpose, in {preserve,restore}_SP.
 12819   ins_cost(300);
 12820   format %{ "CALL,static/MethodHandle " %}
 12821   opcode(0xE8); /* E8 cd */
 12822   ins_encode( pre_call_FPU,
 12823               preserve_SP,
 12824               Java_Static_Call( meth ),
 12825               restore_SP,
 12826               call_epilog,
 12827               post_call_FPU );
 12828   ins_pipe( pipe_slow );
 12829   ins_alignment(4);
 12830 %}
 12832 // Call Java Dynamic Instruction
 12833 // Note: If this code changes, the corresponding ret_addr_offset() and
 12834 //       compute_padding() functions will have to be adjusted.
 12835 instruct CallDynamicJavaDirect(method meth) %{
 12836   match(CallDynamicJava);
 12837   effect(USE meth);
 12839   ins_cost(300);
 12840   format %{ "MOV    EAX,(oop)-1\n\t"
 12841             "CALL,dynamic" %}
 12842   opcode(0xE8); /* E8 cd */
 12843   ins_encode( pre_call_FPU,
 12844               Java_Dynamic_Call( meth ),
 12845               call_epilog,
 12846               post_call_FPU );
 12847   ins_pipe( pipe_slow );
 12848   ins_alignment(4);
 12849 %}
 12851 // Call Runtime Instruction
 12852 instruct CallRuntimeDirect(method meth) %{
 12853   match(CallRuntime );
 12854   effect(USE meth);
 12856   ins_cost(300);
 12857   format %{ "CALL,runtime " %}
 12858   opcode(0xE8); /* E8 cd */
 12859   // Use FFREEs to clear entries in float stack
 12860   ins_encode( pre_call_FPU,
 12861               FFree_Float_Stack_All,
 12862               Java_To_Runtime( meth ),
 12863               post_call_FPU );
 12864   ins_pipe( pipe_slow );
 12865 %}
 12867 // Call runtime without safepoint
 12868 instruct CallLeafDirect(method meth) %{
 12869   match(CallLeaf);
 12870   effect(USE meth);
 12872   ins_cost(300);
 12873   format %{ "CALL_LEAF,runtime " %}
 12874   opcode(0xE8); /* E8 cd */
 12875   ins_encode( pre_call_FPU,
 12876               FFree_Float_Stack_All,
 12877               Java_To_Runtime( meth ),
 12878               Verify_FPU_For_Leaf, post_call_FPU );
 12879   ins_pipe( pipe_slow );
 12880 %}
 12882 instruct CallLeafNoFPDirect(method meth) %{
 12883   match(CallLeafNoFP);
 12884   effect(USE meth);
 12886   ins_cost(300);
 12887   format %{ "CALL_LEAF_NOFP,runtime " %}
 12888   opcode(0xE8); /* E8 cd */
 12889   ins_encode(Java_To_Runtime(meth));
 12890   ins_pipe( pipe_slow );
 12891 %}
 12894 // Return Instruction
 12895 // Remove the return address & jump to it.
 12896 instruct Ret() %{
 12897   match(Return);
 12898   format %{ "RET" %}
 12899   opcode(0xC3);
 12900   ins_encode(OpcP);
 12901   ins_pipe( pipe_jmp );
 12902 %}
 12904 // Tail Call; Jump from runtime stub to Java code.
 12905 // Also known as an 'interprocedural jump'.
 12906 // Target of jump will eventually return to caller.
 12907 // TailJump below removes the return address.
 12908 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 12909   match(TailCall jump_target method_oop );
 12910   ins_cost(300);
 12911   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 12912   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12913   ins_encode( OpcP, RegOpc(jump_target) );
 12914   ins_pipe( pipe_jmp );
 12915 %}
 12918 // Tail Jump; remove the return address; jump to target.
 12919 // TailCall above leaves the return address around.
 12920 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 12921   match( TailJump jump_target ex_oop );
 12922   ins_cost(300);
 12923   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 12924             "JMP    $jump_target " %}
 12925   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12926   ins_encode( enc_pop_rdx,
 12927               OpcP, RegOpc(jump_target) );
 12928   ins_pipe( pipe_jmp );
 12929 %}
 12931 // Create exception oop: created by stack-crawling runtime code.
 12932 // Created exception is now available to this handler, and is setup
 12933 // just prior to jumping to this handler.  No code emitted.
 12934 instruct CreateException( eAXRegP ex_oop )
 12935 %{
 12936   match(Set ex_oop (CreateEx));
 12938   size(0);
 12939   // use the following format syntax
 12940   format %{ "# exception oop is in EAX; no code emitted" %}
 12941   ins_encode();
 12942   ins_pipe( empty );
 12943 %}
 12946 // Rethrow exception:
 12947 // The exception oop will come in the first argument position.
 12948 // Then JUMP (not call) to the rethrow stub code.
 12949 instruct RethrowException()
 12950 %{
 12951   match(Rethrow);
 12953   // use the following format syntax
 12954   format %{ "JMP    rethrow_stub" %}
 12955   ins_encode(enc_rethrow);
 12956   ins_pipe( pipe_jmp );
 12957 %}
 12959 // inlined locking and unlocking
 12962 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 12963   match( Set cr (FastLock object box) );
 12964   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12965   ins_cost(300);
 12966   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 12967   ins_encode( Fast_Lock(object,box,tmp,scr) );
 12968   ins_pipe( pipe_slow );
 12969 %}
 12971 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 12972   match( Set cr (FastUnlock object box) );
 12973   effect( TEMP tmp, USE_KILL box );
 12974   ins_cost(300);
 12975   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 12976   ins_encode( Fast_Unlock(object,box,tmp) );
 12977   ins_pipe( pipe_slow );
 12978 %}
 12982 // ============================================================================
 12983 // Safepoint Instruction
 12984 instruct safePoint_poll(eFlagsReg cr) %{
 12985   match(SafePoint);
 12986   effect(KILL cr);
 12988   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 12989   // On SPARC that might be acceptable as we can generate the address with
 12990   // just a sethi, saving an or.  By polling at offset 0 we can end up
 12991   // putting additional pressure on the index-0 in the D$.  Because of
 12992   // alignment (just like the situation at hand) the lower indices tend
 12993   // to see more traffic.  It'd be better to change the polling address
 12994   // to offset 0 of the last $line in the polling page.
 12996   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 12997   ins_cost(125);
 12998   size(6) ;
 12999   ins_encode( Safepoint_Poll() );
 13000   ins_pipe( ialu_reg_mem );
 13001 %}
 13004 // ============================================================================
 13005 // This name is KNOWN by the ADLC and cannot be changed.
 13006 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 13007 // for this guy.
 13008 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 13009   match(Set dst (ThreadLocal));
 13010   effect(DEF dst, KILL cr);
 13012   format %{ "MOV    $dst, Thread::current()" %}
 13013   ins_encode %{
 13014     Register dstReg = as_Register($dst$$reg);
 13015     __ get_thread(dstReg);
 13016   %}
 13017   ins_pipe( ialu_reg_fat );
 13018 %}
 13022 //----------PEEPHOLE RULES-----------------------------------------------------
 13023 // These must follow all instruction definitions as they use the names
 13024 // defined in the instructions definitions.
 13025 //
 13026 // peepmatch ( root_instr_name [preceding_instruction]* );
 13027 //
 13028 // peepconstraint %{
 13029 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13030 //  [, ...] );
 13031 // // instruction numbers are zero-based using left to right order in peepmatch
 13032 //
 13033 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13034 // // provide an instruction_number.operand_name for each operand that appears
 13035 // // in the replacement instruction's match rule
 13036 //
 13037 // ---------VM FLAGS---------------------------------------------------------
 13038 //
 13039 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13040 //
 13041 // Each peephole rule is given an identifying number starting with zero and
 13042 // increasing by one in the order seen by the parser.  An individual peephole
 13043 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13044 // on the command-line.
 13045 //
 13046 // ---------CURRENT LIMITATIONS----------------------------------------------
 13047 //
 13048 // Only match adjacent instructions in same basic block
 13049 // Only equality constraints
 13050 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13051 // Only one replacement instruction
 13052 //
 13053 // ---------EXAMPLE----------------------------------------------------------
 13054 //
 13055 // // pertinent parts of existing instructions in architecture description
 13056 // instruct movI(rRegI dst, rRegI src) %{
 13057 //   match(Set dst (CopyI src));
 13058 // %}
 13059 //
 13060 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 13061 //   match(Set dst (AddI dst src));
 13062 //   effect(KILL cr);
 13063 // %}
 13064 //
 13065 // // Change (inc mov) to lea
 13066 // peephole %{
 13067 //   // increment preceeded by register-register move
 13068 //   peepmatch ( incI_eReg movI );
 13069 //   // require that the destination register of the increment
 13070 //   // match the destination register of the move
 13071 //   peepconstraint ( 0.dst == 1.dst );
 13072 //   // construct a replacement instruction that sets
 13073 //   // the destination to ( move's source register + one )
 13074 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13075 // %}
 13076 //
 13077 // Implementation no longer uses movX instructions since
 13078 // machine-independent system no longer uses CopyX nodes.
 13079 //
 13080 // peephole %{
 13081 //   peepmatch ( incI_eReg movI );
 13082 //   peepconstraint ( 0.dst == 1.dst );
 13083 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13084 // %}
 13085 //
 13086 // peephole %{
 13087 //   peepmatch ( decI_eReg movI );
 13088 //   peepconstraint ( 0.dst == 1.dst );
 13089 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13090 // %}
 13091 //
 13092 // peephole %{
 13093 //   peepmatch ( addI_eReg_imm movI );
 13094 //   peepconstraint ( 0.dst == 1.dst );
 13095 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13096 // %}
 13097 //
 13098 // peephole %{
 13099 //   peepmatch ( addP_eReg_imm movP );
 13100 //   peepconstraint ( 0.dst == 1.dst );
 13101 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13102 // %}
 13104 // // Change load of spilled value to only a spill
 13105 // instruct storeI(memory mem, rRegI src) %{
 13106 //   match(Set mem (StoreI mem src));
 13107 // %}
 13108 //
 13109 // instruct loadI(rRegI dst, memory mem) %{
 13110 //   match(Set dst (LoadI mem));
 13111 // %}
 13112 //
 13113 peephole %{
 13114   peepmatch ( loadI storeI );
 13115   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13116   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13117 %}
 13119 //----------SMARTSPILL RULES---------------------------------------------------
 13120 // These must follow all instruction definitions as they use the names
 13121 // defined in the instructions definitions.

mercurial