src/cpu/x86/vm/x86_32.ad

Thu, 19 Aug 2010 14:51:47 -0700

author
never
date
Thu, 19 Aug 2010 14:51:47 -0700
changeset 2085
f55c4f82ab9d
parent 1934
e9ff18c4ace7
child 2103
3e8fbc61cee8
permissions
-rw-r--r--

6978249: spill between cpu and fpu registers when those moves are fast
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   *(cbuf.code_end()) = c;
   354   cbuf.set_code_end(cbuf.code_end() + 1);
   355 }
   357 // EMIT_CC()
   358 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   359   unsigned char c = (unsigned char)( f1 | f2 );
   360   *(cbuf.code_end()) = c;
   361   cbuf.set_code_end(cbuf.code_end() + 1);
   362 }
   364 // EMIT_OPCODE()
   365 void emit_opcode(CodeBuffer &cbuf, int code) {
   366   *(cbuf.code_end()) = (unsigned char)code;
   367   cbuf.set_code_end(cbuf.code_end() + 1);
   368 }
   370 // EMIT_OPCODE() w/ relocation information
   371 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   372   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
   373   emit_opcode(cbuf, code);
   374 }
   376 // EMIT_D8()
   377 void emit_d8(CodeBuffer &cbuf, int d8) {
   378   *(cbuf.code_end()) = (unsigned char)d8;
   379   cbuf.set_code_end(cbuf.code_end() + 1);
   380 }
   382 // EMIT_D16()
   383 void emit_d16(CodeBuffer &cbuf, int d16) {
   384   *((short *)(cbuf.code_end())) = d16;
   385   cbuf.set_code_end(cbuf.code_end() + 2);
   386 }
   388 // EMIT_D32()
   389 void emit_d32(CodeBuffer &cbuf, int d32) {
   390   *((int *)(cbuf.code_end())) = d32;
   391   cbuf.set_code_end(cbuf.code_end() + 4);
   392 }
   394 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   395 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   396         int format) {
   397   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   399   *((int *)(cbuf.code_end())) = d32;
   400   cbuf.set_code_end(cbuf.code_end() + 4);
   401 }
   403 // emit 32 bit value and construct relocation entry from RelocationHolder
   404 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   405         int format) {
   406 #ifdef ASSERT
   407   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   408     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   409   }
   410 #endif
   411   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   413   *((int *)(cbuf.code_end())) = d32;
   414   cbuf.set_code_end(cbuf.code_end() + 4);
   415 }
   417 // Access stack slot for load or store
   418 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   419   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   420   if( -128 <= disp && disp <= 127 ) {
   421     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   422     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   423     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   424   } else {
   425     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   426     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   427     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   428   }
   429 }
   431    // eRegI ereg, memory mem) %{    // emit_reg_mem
   432 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   433   // There is no index & no scale, use form without SIB byte
   434   if ((index == 0x4) &&
   435       (scale == 0) && (base != ESP_enc)) {
   436     // If no displacement, mode is 0x0; unless base is [EBP]
   437     if ( (displace == 0) && (base != EBP_enc) ) {
   438       emit_rm(cbuf, 0x0, reg_encoding, base);
   439     }
   440     else {                    // If 8-bit displacement, mode 0x1
   441       if ((displace >= -128) && (displace <= 127)
   442           && !(displace_is_oop) ) {
   443         emit_rm(cbuf, 0x1, reg_encoding, base);
   444         emit_d8(cbuf, displace);
   445       }
   446       else {                  // If 32-bit displacement
   447         if (base == -1) { // Special flag for absolute address
   448           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   449           // (manual lies; no SIB needed here)
   450           if ( displace_is_oop ) {
   451             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   452           } else {
   453             emit_d32      (cbuf, displace);
   454           }
   455         }
   456         else {                // Normal base + offset
   457           emit_rm(cbuf, 0x2, reg_encoding, base);
   458           if ( displace_is_oop ) {
   459             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   460           } else {
   461             emit_d32      (cbuf, displace);
   462           }
   463         }
   464       }
   465     }
   466   }
   467   else {                      // Else, encode with the SIB byte
   468     // If no displacement, mode is 0x0; unless base is [EBP]
   469     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   470       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   471       emit_rm(cbuf, scale, index, base);
   472     }
   473     else {                    // If 8-bit displacement, mode 0x1
   474       if ((displace >= -128) && (displace <= 127)
   475           && !(displace_is_oop) ) {
   476         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   477         emit_rm(cbuf, scale, index, base);
   478         emit_d8(cbuf, displace);
   479       }
   480       else {                  // If 32-bit displacement
   481         if (base == 0x04 ) {
   482           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   483           emit_rm(cbuf, scale, index, 0x04);
   484         } else {
   485           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   486           emit_rm(cbuf, scale, index, base);
   487         }
   488         if ( displace_is_oop ) {
   489           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   490         } else {
   491           emit_d32      (cbuf, displace);
   492         }
   493       }
   494     }
   495   }
   496 }
   499 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   500   if( dst_encoding == src_encoding ) {
   501     // reg-reg copy, use an empty encoding
   502   } else {
   503     emit_opcode( cbuf, 0x8B );
   504     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   505   }
   506 }
   508 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   509   if( dst_encoding == src_encoding ) {
   510     // reg-reg copy, use an empty encoding
   511   } else {
   512     MacroAssembler _masm(&cbuf);
   514     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   515   }
   516 }
   519 //=============================================================================
   520 #ifndef PRODUCT
   521 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   522   Compile* C = ra_->C;
   523   if( C->in_24_bit_fp_mode() ) {
   524     st->print("FLDCW  24 bit fpu control word");
   525     st->print_cr(""); st->print("\t");
   526   }
   528   int framesize = C->frame_slots() << LogBytesPerInt;
   529   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   530   // Remove two words for return addr and rbp,
   531   framesize -= 2*wordSize;
   533   // Calls to C2R adapters often do not accept exceptional returns.
   534   // We require that their callers must bang for them.  But be careful, because
   535   // some VM calls (such as call site linkage) can use several kilobytes of
   536   // stack.  But the stack safety zone should account for that.
   537   // See bugs 4446381, 4468289, 4497237.
   538   if (C->need_stack_bang(framesize)) {
   539     st->print_cr("# stack bang"); st->print("\t");
   540   }
   541   st->print_cr("PUSHL  EBP"); st->print("\t");
   543   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   544     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   545     st->print_cr(""); st->print("\t");
   546     framesize -= wordSize;
   547   }
   549   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   550     if (framesize) {
   551       st->print("SUB    ESP,%d\t# Create frame",framesize);
   552     }
   553   } else {
   554     st->print("SUB    ESP,%d\t# Create frame",framesize);
   555   }
   556 }
   557 #endif
   560 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   561   Compile* C = ra_->C;
   563   if (UseSSE >= 2 && VerifyFPU) {
   564     MacroAssembler masm(&cbuf);
   565     masm.verify_FPU(0, "FPU stack must be clean on entry");
   566   }
   568   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   569   // NativeJump::patch_verified_entry will be able to patch out the entry
   570   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   571   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   572   // 6 bytes. So if we don't do the fldcw or the push then we must
   573   // use the 6 byte frame allocation even if we have no frame. :-(
   574   // If method sets FPU control word do it now
   575   if( C->in_24_bit_fp_mode() ) {
   576     MacroAssembler masm(&cbuf);
   577     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   578   }
   580   int framesize = C->frame_slots() << LogBytesPerInt;
   581   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   582   // Remove two words for return addr and rbp,
   583   framesize -= 2*wordSize;
   585   // Calls to C2R adapters often do not accept exceptional returns.
   586   // We require that their callers must bang for them.  But be careful, because
   587   // some VM calls (such as call site linkage) can use several kilobytes of
   588   // stack.  But the stack safety zone should account for that.
   589   // See bugs 4446381, 4468289, 4497237.
   590   if (C->need_stack_bang(framesize)) {
   591     MacroAssembler masm(&cbuf);
   592     masm.generate_stack_overflow_check(framesize);
   593   }
   595   // We always push rbp, so that on return to interpreter rbp, will be
   596   // restored correctly and we can correct the stack.
   597   emit_opcode(cbuf, 0x50 | EBP_enc);
   599   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   600     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   601     emit_d32(cbuf, 0xbadb100d);
   602     framesize -= wordSize;
   603   }
   605   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   606     if (framesize) {
   607       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   608       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   609       emit_d8(cbuf, framesize);
   610     }
   611   } else {
   612     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   613     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   614     emit_d32(cbuf, framesize);
   615   }
   616   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   618 #ifdef ASSERT
   619   if (VerifyStackAtCalls) {
   620     Label L;
   621     MacroAssembler masm(&cbuf);
   622     masm.push(rax);
   623     masm.mov(rax, rsp);
   624     masm.andptr(rax, StackAlignmentInBytes-1);
   625     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   626     masm.pop(rax);
   627     masm.jcc(Assembler::equal, L);
   628     masm.stop("Stack is not properly aligned!");
   629     masm.bind(L);
   630   }
   631 #endif
   633 }
   635 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   636   return MachNode::size(ra_); // too many variables; just compute it the hard way
   637 }
   639 int MachPrologNode::reloc() const {
   640   return 0; // a large enough number
   641 }
   643 //=============================================================================
   644 #ifndef PRODUCT
   645 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   646   Compile *C = ra_->C;
   647   int framesize = C->frame_slots() << LogBytesPerInt;
   648   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   649   // Remove two words for return addr and rbp,
   650   framesize -= 2*wordSize;
   652   if( C->in_24_bit_fp_mode() ) {
   653     st->print("FLDCW  standard control word");
   654     st->cr(); st->print("\t");
   655   }
   656   if( framesize ) {
   657     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   658     st->cr(); st->print("\t");
   659   }
   660   st->print_cr("POPL   EBP"); st->print("\t");
   661   if( do_polling() && C->is_method_compilation() ) {
   662     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   663     st->cr(); st->print("\t");
   664   }
   665 }
   666 #endif
   668 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   669   Compile *C = ra_->C;
   671   // If method set FPU control word, restore to standard control word
   672   if( C->in_24_bit_fp_mode() ) {
   673     MacroAssembler masm(&cbuf);
   674     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   675   }
   677   int framesize = C->frame_slots() << LogBytesPerInt;
   678   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   679   // Remove two words for return addr and rbp,
   680   framesize -= 2*wordSize;
   682   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   684   if( framesize >= 128 ) {
   685     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   686     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   687     emit_d32(cbuf, framesize);
   688   }
   689   else if( framesize ) {
   690     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   691     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   692     emit_d8(cbuf, framesize);
   693   }
   695   emit_opcode(cbuf, 0x58 | EBP_enc);
   697   if( do_polling() && C->is_method_compilation() ) {
   698     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
   699     emit_opcode(cbuf,0x85);
   700     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   701     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   702   }
   703 }
   705 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   706   Compile *C = ra_->C;
   707   // If method set FPU control word, restore to standard control word
   708   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   709   if( do_polling() && C->is_method_compilation() ) size += 6;
   711   int framesize = C->frame_slots() << LogBytesPerInt;
   712   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   713   // Remove two words for return addr and rbp,
   714   framesize -= 2*wordSize;
   716   size++; // popl rbp,
   718   if( framesize >= 128 ) {
   719     size += 6;
   720   } else {
   721     size += framesize ? 3 : 0;
   722   }
   723   return size;
   724 }
   726 int MachEpilogNode::reloc() const {
   727   return 0; // a large enough number
   728 }
   730 const Pipeline * MachEpilogNode::pipeline() const {
   731   return MachNode::pipeline_class();
   732 }
   734 int MachEpilogNode::safepoint_offset() const { return 0; }
   736 //=============================================================================
   738 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   739 static enum RC rc_class( OptoReg::Name reg ) {
   741   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   742   if (OptoReg::is_stack(reg)) return rc_stack;
   744   VMReg r = OptoReg::as_VMReg(reg);
   745   if (r->is_Register()) return rc_int;
   746   if (r->is_FloatRegister()) {
   747     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   748     return rc_float;
   749   }
   750   assert(r->is_XMMRegister(), "must be");
   751   return rc_xmm;
   752 }
   754 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   755                         int opcode, const char *op_str, int size, outputStream* st ) {
   756   if( cbuf ) {
   757     emit_opcode  (*cbuf, opcode );
   758     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   759 #ifndef PRODUCT
   760   } else if( !do_size ) {
   761     if( size != 0 ) st->print("\n\t");
   762     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   763       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   764       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   765     } else { // FLD, FST, PUSH, POP
   766       st->print("%s [ESP + #%d]",op_str,offset);
   767     }
   768 #endif
   769   }
   770   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   771   return size+3+offset_size;
   772 }
   774 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   775 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   776                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   777   if( cbuf ) {
   778     if( reg_lo+1 == reg_hi ) { // double move?
   779       if( is_load && !UseXmmLoadAndClearUpper )
   780         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   781       else
   782         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   783     } else {
   784       emit_opcode(*cbuf, 0xF3 );
   785     }
   786     emit_opcode(*cbuf, 0x0F );
   787     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   788       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   789     else
   790       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   791     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   792 #ifndef PRODUCT
   793   } else if( !do_size ) {
   794     if( size != 0 ) st->print("\n\t");
   795     if( reg_lo+1 == reg_hi ) { // double move?
   796       if( is_load ) st->print("%s %s,[ESP + #%d]",
   797                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   798                                Matcher::regName[reg_lo], offset);
   799       else          st->print("MOVSD  [ESP + #%d],%s",
   800                                offset, Matcher::regName[reg_lo]);
   801     } else {
   802       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   803                                Matcher::regName[reg_lo], offset);
   804       else          st->print("MOVSS  [ESP + #%d],%s",
   805                                offset, Matcher::regName[reg_lo]);
   806     }
   807 #endif
   808   }
   809   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   810   return size+5+offset_size;
   811 }
   814 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   815                             int src_hi, int dst_hi, int size, outputStream* st ) {
   816   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   817     if( cbuf ) {
   818       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   819         emit_opcode(*cbuf, 0x66 );
   820       }
   821       emit_opcode(*cbuf, 0x0F );
   822       emit_opcode(*cbuf, 0x28 );
   823       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   824 #ifndef PRODUCT
   825     } else if( !do_size ) {
   826       if( size != 0 ) st->print("\n\t");
   827       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   828         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   829       } else {
   830         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   831       }
   832 #endif
   833     }
   834     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   835   } else {
   836     if( cbuf ) {
   837       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   838       emit_opcode(*cbuf, 0x0F );
   839       emit_opcode(*cbuf, 0x10 );
   840       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   841 #ifndef PRODUCT
   842     } else if( !do_size ) {
   843       if( size != 0 ) st->print("\n\t");
   844       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   845         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   846       } else {
   847         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   848       }
   849 #endif
   850     }
   851     return size+4;
   852   }
   853 }
   855 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   856                             int src_hi, int dst_hi, int size, outputStream* st ) {
   857   // 32-bit
   858   if (cbuf) {
   859     emit_opcode(*cbuf, 0x66);
   860     emit_opcode(*cbuf, 0x0F);
   861     emit_opcode(*cbuf, 0x6E);
   862     emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
   863 #ifndef PRODUCT
   864   } else if (!do_size) {
   865     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   866 #endif
   867   }
   868   return 4;
   869 }
   872 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   873                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   874   // 32-bit
   875   if (cbuf) {
   876     emit_opcode(*cbuf, 0x66);
   877     emit_opcode(*cbuf, 0x0F);
   878     emit_opcode(*cbuf, 0x7E);
   879     emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
   880 #ifndef PRODUCT
   881   } else if (!do_size) {
   882     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   883 #endif
   884   }
   885   return 4;
   886 }
   888 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   889   if( cbuf ) {
   890     emit_opcode(*cbuf, 0x8B );
   891     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   892 #ifndef PRODUCT
   893   } else if( !do_size ) {
   894     if( size != 0 ) st->print("\n\t");
   895     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   896 #endif
   897   }
   898   return size+2;
   899 }
   901 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   902                                  int offset, int size, outputStream* st ) {
   903   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   904     if( cbuf ) {
   905       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   906       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   907 #ifndef PRODUCT
   908     } else if( !do_size ) {
   909       if( size != 0 ) st->print("\n\t");
   910       st->print("FLD    %s",Matcher::regName[src_lo]);
   911 #endif
   912     }
   913     size += 2;
   914   }
   916   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   917   const char *op_str;
   918   int op;
   919   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   920     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   921     op = 0xDD;
   922   } else {                   // 32-bit store
   923     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   924     op = 0xD9;
   925     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   926   }
   928   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   929 }
   931 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   932   // Get registers to move
   933   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   934   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   935   OptoReg::Name dst_second = ra_->get_reg_second(this );
   936   OptoReg::Name dst_first = ra_->get_reg_first(this );
   938   enum RC src_second_rc = rc_class(src_second);
   939   enum RC src_first_rc = rc_class(src_first);
   940   enum RC dst_second_rc = rc_class(dst_second);
   941   enum RC dst_first_rc = rc_class(dst_first);
   943   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   945   // Generate spill code!
   946   int size = 0;
   948   if( src_first == dst_first && src_second == dst_second )
   949     return size;            // Self copy, no move
   951   // --------------------------------------
   952   // Check for mem-mem move.  push/pop to move.
   953   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   954     if( src_second == dst_first ) { // overlapping stack copy ranges
   955       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   956       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   957       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   958       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   959     }
   960     // move low bits
   961     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   962     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   963     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   964       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   965       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   966     }
   967     return size;
   968   }
   970   // --------------------------------------
   971   // Check for integer reg-reg copy
   972   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   973     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   975   // Check for integer store
   976   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   977     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   979   // Check for integer load
   980   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   981     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   983   // Check for integer reg-xmm reg copy
   984   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   985     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   986             "no 64 bit integer-float reg moves" );
   987     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   988   }
   989   // --------------------------------------
   990   // Check for float reg-reg copy
   991   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   992     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   993             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   994     if( cbuf ) {
   996       // Note the mucking with the register encode to compensate for the 0/1
   997       // indexing issue mentioned in a comment in the reg_def sections
   998       // for FPR registers many lines above here.
  1000       if( src_first != FPR1L_num ) {
  1001         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1002         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1003         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1004         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1005      } else {
  1006         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1007         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1009 #ifndef PRODUCT
  1010     } else if( !do_size ) {
  1011       if( size != 0 ) st->print("\n\t");
  1012       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1013       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1014 #endif
  1016     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1019   // Check for float store
  1020   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1021     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1024   // Check for float load
  1025   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1026     int offset = ra_->reg2offset(src_first);
  1027     const char *op_str;
  1028     int op;
  1029     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1030       op_str = "FLD_D";
  1031       op = 0xDD;
  1032     } else {                   // 32-bit load
  1033       op_str = "FLD_S";
  1034       op = 0xD9;
  1035       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1037     if( cbuf ) {
  1038       emit_opcode  (*cbuf, op );
  1039       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1040       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1041       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1042 #ifndef PRODUCT
  1043     } else if( !do_size ) {
  1044       if( size != 0 ) st->print("\n\t");
  1045       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1046 #endif
  1048     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1049     return size + 3+offset_size+2;
  1052   // Check for xmm reg-reg copy
  1053   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1054     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1055             (src_first+1 == src_second && dst_first+1 == dst_second),
  1056             "no non-adjacent float-moves" );
  1057     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1060   // Check for xmm reg-integer reg copy
  1061   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1063             "no 64 bit float-integer reg moves" );
  1064     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1067   // Check for xmm store
  1068   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1069     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1072   // Check for float xmm load
  1073   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1074     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1077   // Copy from float reg to xmm reg
  1078   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1079     // copy to the top of stack from floating point reg
  1080     // and use LEA to preserve flags
  1081     if( cbuf ) {
  1082       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1083       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1084       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1085       emit_d8(*cbuf,0xF8);
  1086 #ifndef PRODUCT
  1087     } else if( !do_size ) {
  1088       if( size != 0 ) st->print("\n\t");
  1089       st->print("LEA    ESP,[ESP-8]");
  1090 #endif
  1092     size += 4;
  1094     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1096     // Copy from the temp memory to the xmm reg.
  1097     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1099     if( cbuf ) {
  1100       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1101       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1102       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1103       emit_d8(*cbuf,0x08);
  1104 #ifndef PRODUCT
  1105     } else if( !do_size ) {
  1106       if( size != 0 ) st->print("\n\t");
  1107       st->print("LEA    ESP,[ESP+8]");
  1108 #endif
  1110     size += 4;
  1111     return size;
  1114   assert( size > 0, "missed a case" );
  1116   // --------------------------------------------------------------------
  1117   // Check for second bits still needing moving.
  1118   if( src_second == dst_second )
  1119     return size;               // Self copy; no move
  1120   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1122   // Check for second word int-int move
  1123   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1124     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1126   // Check for second word integer store
  1127   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1128     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1130   // Check for second word integer load
  1131   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1132     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1135   Unimplemented();
  1138 #ifndef PRODUCT
  1139 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1140   implementation( NULL, ra_, false, st );
  1142 #endif
  1144 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1145   implementation( &cbuf, ra_, false, NULL );
  1148 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1149   return implementation( NULL, ra_, true, NULL );
  1152 //=============================================================================
  1153 #ifndef PRODUCT
  1154 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1155   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1157 #endif
  1159 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1160   MacroAssembler _masm(&cbuf);
  1161   __ nop(_count);
  1164 uint MachNopNode::size(PhaseRegAlloc *) const {
  1165   return _count;
  1169 //=============================================================================
  1170 #ifndef PRODUCT
  1171 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1172   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1173   int reg = ra_->get_reg_first(this);
  1174   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1176 #endif
  1178 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1179   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1180   int reg = ra_->get_encode(this);
  1181   if( offset >= 128 ) {
  1182     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1183     emit_rm(cbuf, 0x2, reg, 0x04);
  1184     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1185     emit_d32(cbuf, offset);
  1187   else {
  1188     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1189     emit_rm(cbuf, 0x1, reg, 0x04);
  1190     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1191     emit_d8(cbuf, offset);
  1195 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1196   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1197   if( offset >= 128 ) {
  1198     return 7;
  1200   else {
  1201     return 4;
  1205 //=============================================================================
  1207 // emit call stub, compiled java to interpreter
  1208 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1209   // Stub is fixed up when the corresponding call is converted from calling
  1210   // compiled code to calling interpreted code.
  1211   // mov rbx,0
  1212   // jmp -1
  1214   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1216   // Note that the code buffer's inst_mark is always relative to insts.
  1217   // That's why we must use the macroassembler to generate a stub.
  1218   MacroAssembler _masm(&cbuf);
  1220   address base =
  1221   __ start_a_stub(Compile::MAX_stubs_size);
  1222   if (base == NULL)  return;  // CodeBuffer::expand failed
  1223   // static stub relocation stores the instruction address of the call
  1224   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1225   // static stub relocation also tags the methodOop in the code-stream.
  1226   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1227   // This is recognized as unresolved by relocs/nativeInst/ic code
  1228   __ jump(RuntimeAddress(__ pc()));
  1230   __ end_a_stub();
  1231   // Update current stubs pointer and restore code_end.
  1233 // size of call stub, compiled java to interpretor
  1234 uint size_java_to_interp() {
  1235   return 10;  // movl; jmp
  1237 // relocation entries for call stub, compiled java to interpretor
  1238 uint reloc_java_to_interp() {
  1239   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1242 //=============================================================================
  1243 #ifndef PRODUCT
  1244 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1245   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1246   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1247   st->print_cr("\tNOP");
  1248   st->print_cr("\tNOP");
  1249   if( !OptoBreakpoint )
  1250     st->print_cr("\tNOP");
  1252 #endif
  1254 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1255   MacroAssembler masm(&cbuf);
  1256 #ifdef ASSERT
  1257   uint code_size = cbuf.code_size();
  1258 #endif
  1259   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1260   masm.jump_cc(Assembler::notEqual,
  1261                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1262   /* WARNING these NOPs are critical so that verified entry point is properly
  1263      aligned for patching by NativeJump::patch_verified_entry() */
  1264   int nops_cnt = 2;
  1265   if( !OptoBreakpoint ) // Leave space for int3
  1266      nops_cnt += 1;
  1267   masm.nop(nops_cnt);
  1269   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
  1272 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1273   return OptoBreakpoint ? 11 : 12;
  1277 //=============================================================================
  1278 uint size_exception_handler() {
  1279   // NativeCall instruction size is the same as NativeJump.
  1280   // exception handler starts out as jump and can be patched to
  1281   // a call be deoptimization.  (4932387)
  1282   // Note that this value is also credited (in output.cpp) to
  1283   // the size of the code section.
  1284   return NativeJump::instruction_size;
  1287 // Emit exception handler code.  Stuff framesize into a register
  1288 // and call a VM stub routine.
  1289 int emit_exception_handler(CodeBuffer& cbuf) {
  1291   // Note that the code buffer's inst_mark is always relative to insts.
  1292   // That's why we must use the macroassembler to generate a handler.
  1293   MacroAssembler _masm(&cbuf);
  1294   address base =
  1295   __ start_a_stub(size_exception_handler());
  1296   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1297   int offset = __ offset();
  1298   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1299   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1300   __ end_a_stub();
  1301   return offset;
  1304 uint size_deopt_handler() {
  1305   // NativeCall instruction size is the same as NativeJump.
  1306   // exception handler starts out as jump and can be patched to
  1307   // a call be deoptimization.  (4932387)
  1308   // Note that this value is also credited (in output.cpp) to
  1309   // the size of the code section.
  1310   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1313 // Emit deopt handler code.
  1314 int emit_deopt_handler(CodeBuffer& cbuf) {
  1316   // Note that the code buffer's inst_mark is always relative to insts.
  1317   // That's why we must use the macroassembler to generate a handler.
  1318   MacroAssembler _masm(&cbuf);
  1319   address base =
  1320   __ start_a_stub(size_exception_handler());
  1321   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1322   int offset = __ offset();
  1323   InternalAddress here(__ pc());
  1324   __ pushptr(here.addr());
  1326   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1327   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1328   __ end_a_stub();
  1329   return offset;
  1333 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1334   int mark = cbuf.insts()->mark_off();
  1335   MacroAssembler _masm(&cbuf);
  1336   address double_address = __ double_constant(x);
  1337   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1338   emit_d32_reloc(cbuf,
  1339                  (int)double_address,
  1340                  internal_word_Relocation::spec(double_address),
  1341                  RELOC_DISP32);
  1344 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1345   int mark = cbuf.insts()->mark_off();
  1346   MacroAssembler _masm(&cbuf);
  1347   address float_address = __ float_constant(x);
  1348   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1349   emit_d32_reloc(cbuf,
  1350                  (int)float_address,
  1351                  internal_word_Relocation::spec(float_address),
  1352                  RELOC_DISP32);
  1356 const bool Matcher::match_rule_supported(int opcode) {
  1357   if (!has_match_rule(opcode))
  1358     return false;
  1360   return true;  // Per default match rules are supported.
  1363 int Matcher::regnum_to_fpu_offset(int regnum) {
  1364   return regnum - 32; // The FP registers are in the second chunk
  1367 bool is_positive_zero_float(jfloat f) {
  1368   return jint_cast(f) == jint_cast(0.0F);
  1371 bool is_positive_one_float(jfloat f) {
  1372   return jint_cast(f) == jint_cast(1.0F);
  1375 bool is_positive_zero_double(jdouble d) {
  1376   return jlong_cast(d) == jlong_cast(0.0);
  1379 bool is_positive_one_double(jdouble d) {
  1380   return jlong_cast(d) == jlong_cast(1.0);
  1383 // This is UltraSparc specific, true just means we have fast l2f conversion
  1384 const bool Matcher::convL2FSupported(void) {
  1385   return true;
  1388 // Vector width in bytes
  1389 const uint Matcher::vector_width_in_bytes(void) {
  1390   return UseSSE >= 2 ? 8 : 0;
  1393 // Vector ideal reg
  1394 const uint Matcher::vector_ideal_reg(void) {
  1395   return Op_RegD;
  1398 // Is this branch offset short enough that a short branch can be used?
  1399 //
  1400 // NOTE: If the platform does not provide any short branch variants, then
  1401 //       this method should return false for offset 0.
  1402 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1403   // the short version of jmpConUCF2 contains multiple branches,
  1404   // making the reach slightly less
  1405   if (rule == jmpConUCF2_rule)
  1406     return (-126 <= offset && offset <= 125);
  1407   return (-128 <= offset && offset <= 127);
  1410 const bool Matcher::isSimpleConstant64(jlong value) {
  1411   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1412   return false;
  1415 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1416 const bool Matcher::init_array_count_is_in_bytes = false;
  1418 // Threshold size for cleararray.
  1419 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1421 // Should the Matcher clone shifts on addressing modes, expecting them to
  1422 // be subsumed into complex addressing expressions or compute them into
  1423 // registers?  True for Intel but false for most RISCs
  1424 const bool Matcher::clone_shift_expressions = true;
  1426 bool Matcher::narrow_oop_use_complex_address() {
  1427   ShouldNotCallThis();
  1428   return true;
  1432 // Is it better to copy float constants, or load them directly from memory?
  1433 // Intel can load a float constant from a direct address, requiring no
  1434 // extra registers.  Most RISCs will have to materialize an address into a
  1435 // register first, so they would do better to copy the constant from stack.
  1436 const bool Matcher::rematerialize_float_constants = true;
  1438 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1439 // needed.  Else we split the double into 2 integer pieces and move it
  1440 // piece-by-piece.  Only happens when passing doubles into C code as the
  1441 // Java calling convention forces doubles to be aligned.
  1442 const bool Matcher::misaligned_doubles_ok = true;
  1445 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1446   // Get the memory operand from the node
  1447   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1448   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1449   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1450   uint opcnt     = 1;                 // First operand
  1451   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1452   while( idx >= skipped+num_edges ) {
  1453     skipped += num_edges;
  1454     opcnt++;                          // Bump operand count
  1455     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1456     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1459   MachOper *memory = node->_opnds[opcnt];
  1460   MachOper *new_memory = NULL;
  1461   switch (memory->opcode()) {
  1462   case DIRECT:
  1463   case INDOFFSET32X:
  1464     // No transformation necessary.
  1465     return;
  1466   case INDIRECT:
  1467     new_memory = new (C) indirect_win95_safeOper( );
  1468     break;
  1469   case INDOFFSET8:
  1470     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1471     break;
  1472   case INDOFFSET32:
  1473     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1474     break;
  1475   case INDINDEXOFFSET:
  1476     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1477     break;
  1478   case INDINDEXSCALE:
  1479     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1480     break;
  1481   case INDINDEXSCALEOFFSET:
  1482     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1483     break;
  1484   case LOAD_LONG_INDIRECT:
  1485   case LOAD_LONG_INDOFFSET32:
  1486     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1487     return;
  1488   default:
  1489     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1490     return;
  1492   node->_opnds[opcnt] = new_memory;
  1495 // Advertise here if the CPU requires explicit rounding operations
  1496 // to implement the UseStrictFP mode.
  1497 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1499 // Are floats conerted to double when stored to stack during deoptimization?
  1500 // On x32 it is stored with convertion only when FPU is used for floats.
  1501 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1503 // Do ints take an entire long register or just half?
  1504 const bool Matcher::int_in_long = false;
  1506 // Return whether or not this register is ever used as an argument.  This
  1507 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1508 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1509 // arguments in those registers not be available to the callee.
  1510 bool Matcher::can_be_java_arg( int reg ) {
  1511   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1512   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1513   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1514   return false;
  1517 bool Matcher::is_spillable_arg( int reg ) {
  1518   return can_be_java_arg(reg);
  1521 // Register for DIVI projection of divmodI
  1522 RegMask Matcher::divI_proj_mask() {
  1523   return EAX_REG_mask;
  1526 // Register for MODI projection of divmodI
  1527 RegMask Matcher::modI_proj_mask() {
  1528   return EDX_REG_mask;
  1531 // Register for DIVL projection of divmodL
  1532 RegMask Matcher::divL_proj_mask() {
  1533   ShouldNotReachHere();
  1534   return RegMask();
  1537 // Register for MODL projection of divmodL
  1538 RegMask Matcher::modL_proj_mask() {
  1539   ShouldNotReachHere();
  1540   return RegMask();
  1543 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1544   return EBP_REG_mask;
  1547 // Returns true if the high 32 bits of the value is known to be zero.
  1548 bool is_operand_hi32_zero(Node* n) {
  1549   int opc = n->Opcode();
  1550   if (opc == Op_LoadUI2L) {
  1551     return true;
  1553   if (opc == Op_AndL) {
  1554     Node* o2 = n->in(2);
  1555     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1556       return true;
  1559   return false;
  1562 %}
  1564 //----------ENCODING BLOCK-----------------------------------------------------
  1565 // This block specifies the encoding classes used by the compiler to output
  1566 // byte streams.  Encoding classes generate functions which are called by
  1567 // Machine Instruction Nodes in order to generate the bit encoding of the
  1568 // instruction.  Operands specify their base encoding interface with the
  1569 // interface keyword.  There are currently supported four interfaces,
  1570 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1571 // operand to generate a function which returns its register number when
  1572 // queried.   CONST_INTER causes an operand to generate a function which
  1573 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1574 // operand to generate four functions which return the Base Register, the
  1575 // Index Register, the Scale Value, and the Offset Value of the operand when
  1576 // queried.  COND_INTER causes an operand to generate six functions which
  1577 // return the encoding code (ie - encoding bits for the instruction)
  1578 // associated with each basic boolean condition for a conditional instruction.
  1579 // Instructions specify two basic values for encoding.  They use the
  1580 // ins_encode keyword to specify their encoding class (which must be one of
  1581 // the class names specified in the encoding block), and they use the
  1582 // opcode keyword to specify, in order, their primary, secondary, and
  1583 // tertiary opcode.  Only the opcode sections which a particular instruction
  1584 // needs for encoding need to be specified.
  1585 encode %{
  1586   // Build emit functions for each basic byte or larger field in the intel
  1587   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1588   // code in the enc_class source block.  Emit functions will live in the
  1589   // main source block for now.  In future, we can generalize this by
  1590   // adding a syntax that specifies the sizes of fields in an order,
  1591   // so that the adlc can build the emit functions automagically
  1593   // Emit primary opcode
  1594   enc_class OpcP %{
  1595     emit_opcode(cbuf, $primary);
  1596   %}
  1598   // Emit secondary opcode
  1599   enc_class OpcS %{
  1600     emit_opcode(cbuf, $secondary);
  1601   %}
  1603   // Emit opcode directly
  1604   enc_class Opcode(immI d8) %{
  1605     emit_opcode(cbuf, $d8$$constant);
  1606   %}
  1608   enc_class SizePrefix %{
  1609     emit_opcode(cbuf,0x66);
  1610   %}
  1612   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1613     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1614   %}
  1616   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1617     emit_opcode(cbuf,$opcode$$constant);
  1618     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1619   %}
  1621   enc_class mov_r32_imm0( eRegI dst ) %{
  1622     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1623     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1624   %}
  1626   enc_class cdq_enc %{
  1627     // Full implementation of Java idiv and irem; checks for
  1628     // special case as described in JVM spec., p.243 & p.271.
  1629     //
  1630     //         normal case                           special case
  1631     //
  1632     // input : rax,: dividend                         min_int
  1633     //         reg: divisor                          -1
  1634     //
  1635     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1636     //         rdx: remainder (= rax, irem reg)       0
  1637     //
  1638     //  Code sequnce:
  1639     //
  1640     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1641     //  0F 85 0B 00 00 00    jne         normal_case
  1642     //  33 D2                xor         rdx,edx
  1643     //  83 F9 FF             cmp         rcx,0FFh
  1644     //  0F 84 03 00 00 00    je          done
  1645     //                  normal_case:
  1646     //  99                   cdq
  1647     //  F7 F9                idiv        rax,ecx
  1648     //                  done:
  1649     //
  1650     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1651     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1652     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1653     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1654     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1655     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1656     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1657     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1658     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1659     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1660     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1661     // normal_case:
  1662     emit_opcode(cbuf,0x99);                                         // cdq
  1663     // idiv (note: must be emitted by the user of this rule)
  1664     // normal:
  1665   %}
  1667   // Dense encoding for older common ops
  1668   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1669     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1670   %}
  1673   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1674   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1675     // Check for 8-bit immediate, and set sign extend bit in opcode
  1676     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1677       emit_opcode(cbuf, $primary | 0x02);
  1679     else {                          // If 32-bit immediate
  1680       emit_opcode(cbuf, $primary);
  1682   %}
  1684   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1685     // Emit primary opcode and set sign-extend bit
  1686     // Check for 8-bit immediate, and set sign extend bit in opcode
  1687     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1688       emit_opcode(cbuf, $primary | 0x02);    }
  1689     else {                          // If 32-bit immediate
  1690       emit_opcode(cbuf, $primary);
  1692     // Emit r/m byte with secondary opcode, after primary opcode.
  1693     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1694   %}
  1696   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1697     // Check for 8-bit immediate, and set sign extend bit in opcode
  1698     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1699       $$$emit8$imm$$constant;
  1701     else {                          // If 32-bit immediate
  1702       // Output immediate
  1703       $$$emit32$imm$$constant;
  1705   %}
  1707   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1708     // Emit primary opcode and set sign-extend bit
  1709     // Check for 8-bit immediate, and set sign extend bit in opcode
  1710     int con = (int)$imm$$constant; // Throw away top bits
  1711     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1712     // Emit r/m byte with secondary opcode, after primary opcode.
  1713     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1714     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1715     else                               emit_d32(cbuf,con);
  1716   %}
  1718   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1719     // Emit primary opcode and set sign-extend bit
  1720     // Check for 8-bit immediate, and set sign extend bit in opcode
  1721     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1722     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1723     // Emit r/m byte with tertiary opcode, after primary opcode.
  1724     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1725     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1726     else                               emit_d32(cbuf,con);
  1727   %}
  1729   enc_class Lbl (label labl) %{ // JMP, CALL
  1730     Label *l = $labl$$label;
  1731     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1732   %}
  1734   enc_class LblShort (label labl) %{ // JMP, CALL
  1735     Label *l = $labl$$label;
  1736     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1737     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1738     emit_d8(cbuf, disp);
  1739   %}
  1741   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1742     emit_cc(cbuf, $secondary, $dst$$reg );
  1743   %}
  1745   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1746     int destlo = $dst$$reg;
  1747     int desthi = HIGH_FROM_LOW(destlo);
  1748     // bswap lo
  1749     emit_opcode(cbuf, 0x0F);
  1750     emit_cc(cbuf, 0xC8, destlo);
  1751     // bswap hi
  1752     emit_opcode(cbuf, 0x0F);
  1753     emit_cc(cbuf, 0xC8, desthi);
  1754     // xchg lo and hi
  1755     emit_opcode(cbuf, 0x87);
  1756     emit_rm(cbuf, 0x3, destlo, desthi);
  1757   %}
  1759   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1760     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1761   %}
  1763   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1764     Label *l = $labl$$label;
  1765     $$$emit8$primary;
  1766     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1767     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1768   %}
  1770   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1771     Label *l = $labl$$label;
  1772     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1773     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1774     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1775     emit_d8(cbuf, disp);
  1776   %}
  1778   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1779     $$$emit8$primary;
  1780     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1781   %}
  1783   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1784     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1785     emit_d8(cbuf, op >> 8 );
  1786     emit_d8(cbuf, op & 255);
  1787   %}
  1789   // emulate a CMOV with a conditional branch around a MOV
  1790   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1791     // Invert sense of branch from sense of CMOV
  1792     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1793     emit_d8( cbuf, $brOffs$$constant );
  1794   %}
  1796   enc_class enc_PartialSubtypeCheck( ) %{
  1797     Register Redi = as_Register(EDI_enc); // result register
  1798     Register Reax = as_Register(EAX_enc); // super class
  1799     Register Recx = as_Register(ECX_enc); // killed
  1800     Register Resi = as_Register(ESI_enc); // sub class
  1801     Label miss;
  1803     MacroAssembler _masm(&cbuf);
  1804     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1805                                      NULL, &miss,
  1806                                      /*set_cond_codes:*/ true);
  1807     if ($primary) {
  1808       __ xorptr(Redi, Redi);
  1810     __ bind(miss);
  1811   %}
  1813   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1814     MacroAssembler masm(&cbuf);
  1815     int start = masm.offset();
  1816     if (UseSSE >= 2) {
  1817       if (VerifyFPU) {
  1818         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1820     } else {
  1821       // External c_calling_convention expects the FPU stack to be 'clean'.
  1822       // Compiled code leaves it dirty.  Do cleanup now.
  1823       masm.empty_FPU_stack();
  1825     if (sizeof_FFree_Float_Stack_All == -1) {
  1826       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1827     } else {
  1828       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1830   %}
  1832   enc_class Verify_FPU_For_Leaf %{
  1833     if( VerifyFPU ) {
  1834       MacroAssembler masm(&cbuf);
  1835       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1837   %}
  1839   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1840     // This is the instruction starting address for relocation info.
  1841     cbuf.set_inst_mark();
  1842     $$$emit8$primary;
  1843     // CALL directly to the runtime
  1844     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1845                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1847     if (UseSSE >= 2) {
  1848       MacroAssembler _masm(&cbuf);
  1849       BasicType rt = tf()->return_type();
  1851       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1852         // A C runtime call where the return value is unused.  In SSE2+
  1853         // mode the result needs to be removed from the FPU stack.  It's
  1854         // likely that this function call could be removed by the
  1855         // optimizer if the C function is a pure function.
  1856         __ ffree(0);
  1857       } else if (rt == T_FLOAT) {
  1858         __ lea(rsp, Address(rsp, -4));
  1859         __ fstp_s(Address(rsp, 0));
  1860         __ movflt(xmm0, Address(rsp, 0));
  1861         __ lea(rsp, Address(rsp,  4));
  1862       } else if (rt == T_DOUBLE) {
  1863         __ lea(rsp, Address(rsp, -8));
  1864         __ fstp_d(Address(rsp, 0));
  1865         __ movdbl(xmm0, Address(rsp, 0));
  1866         __ lea(rsp, Address(rsp,  8));
  1869   %}
  1872   enc_class pre_call_FPU %{
  1873     // If method sets FPU control word restore it here
  1874     debug_only(int off0 = cbuf.code_size());
  1875     if( Compile::current()->in_24_bit_fp_mode() ) {
  1876       MacroAssembler masm(&cbuf);
  1877       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1879     debug_only(int off1 = cbuf.code_size());
  1880     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1881   %}
  1883   enc_class post_call_FPU %{
  1884     // If method sets FPU control word do it here also
  1885     if( Compile::current()->in_24_bit_fp_mode() ) {
  1886       MacroAssembler masm(&cbuf);
  1887       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1889   %}
  1891   enc_class preserve_SP %{
  1892     debug_only(int off0 = cbuf.code_size());
  1893     MacroAssembler _masm(&cbuf);
  1894     // RBP is preserved across all calls, even compiled calls.
  1895     // Use it to preserve RSP in places where the callee might change the SP.
  1896     __ movptr(rbp_mh_SP_save, rsp);
  1897     debug_only(int off1 = cbuf.code_size());
  1898     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1899   %}
  1901   enc_class restore_SP %{
  1902     MacroAssembler _masm(&cbuf);
  1903     __ movptr(rsp, rbp_mh_SP_save);
  1904   %}
  1906   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1907     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1908     // who we intended to call.
  1909     cbuf.set_inst_mark();
  1910     $$$emit8$primary;
  1911     if ( !_method ) {
  1912       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1913                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1914     } else if(_optimized_virtual) {
  1915       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1916                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1917     } else {
  1918       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1919                      static_call_Relocation::spec(), RELOC_IMM32 );
  1921     if( _method ) {  // Emit stub for static call
  1922       emit_java_to_interp(cbuf);
  1924   %}
  1926   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1927     // !!!!!
  1928     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1929     // emit_call_dynamic_prologue( cbuf );
  1930     cbuf.set_inst_mark();
  1931     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1932     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1933     address  virtual_call_oop_addr = cbuf.inst_mark();
  1934     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1935     // who we intended to call.
  1936     cbuf.set_inst_mark();
  1937     $$$emit8$primary;
  1938     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1939                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1940   %}
  1942   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1943     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1944     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1946     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1947     cbuf.set_inst_mark();
  1948     $$$emit8$primary;
  1949     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1950     emit_d8(cbuf, disp);             // Displacement
  1952   %}
  1954   enc_class Xor_Reg (eRegI dst) %{
  1955     emit_opcode(cbuf, 0x33);
  1956     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1957   %}
  1959 //   Following encoding is no longer used, but may be restored if calling
  1960 //   convention changes significantly.
  1961 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1962 //
  1963 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1964 //     // int ic_reg     = Matcher::inline_cache_reg();
  1965 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1966 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1967 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1968 //
  1969 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1970 //     // // so we load it immediately before the call
  1971 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1972 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1973 //
  1974 //     // xor rbp,ebp
  1975 //     emit_opcode(cbuf, 0x33);
  1976 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1977 //
  1978 //     // CALL to interpreter.
  1979 //     cbuf.set_inst_mark();
  1980 //     $$$emit8$primary;
  1981 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
  1982 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1983 //   %}
  1985   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1986     $$$emit8$primary;
  1987     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1988     $$$emit8$shift$$constant;
  1989   %}
  1991   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1992     // Load immediate does not have a zero or sign extended version
  1993     // for 8-bit immediates
  1994     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1995     $$$emit32$src$$constant;
  1996   %}
  1998   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1999     // Load immediate does not have a zero or sign extended version
  2000     // for 8-bit immediates
  2001     emit_opcode(cbuf, $primary + $dst$$reg);
  2002     $$$emit32$src$$constant;
  2003   %}
  2005   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  2006     // Load immediate does not have a zero or sign extended version
  2007     // for 8-bit immediates
  2008     int dst_enc = $dst$$reg;
  2009     int src_con = $src$$constant & 0x0FFFFFFFFL;
  2010     if (src_con == 0) {
  2011       // xor dst, dst
  2012       emit_opcode(cbuf, 0x33);
  2013       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2014     } else {
  2015       emit_opcode(cbuf, $primary + dst_enc);
  2016       emit_d32(cbuf, src_con);
  2018   %}
  2020   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  2021     // Load immediate does not have a zero or sign extended version
  2022     // for 8-bit immediates
  2023     int dst_enc = $dst$$reg + 2;
  2024     int src_con = ((julong)($src$$constant)) >> 32;
  2025     if (src_con == 0) {
  2026       // xor dst, dst
  2027       emit_opcode(cbuf, 0x33);
  2028       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2029     } else {
  2030       emit_opcode(cbuf, $primary + dst_enc);
  2031       emit_d32(cbuf, src_con);
  2033   %}
  2036   enc_class LdImmD (immD src) %{    // Load Immediate
  2037     if( is_positive_zero_double($src$$constant)) {
  2038       // FLDZ
  2039       emit_opcode(cbuf,0xD9);
  2040       emit_opcode(cbuf,0xEE);
  2041     } else if( is_positive_one_double($src$$constant)) {
  2042       // FLD1
  2043       emit_opcode(cbuf,0xD9);
  2044       emit_opcode(cbuf,0xE8);
  2045     } else {
  2046       emit_opcode(cbuf,0xDD);
  2047       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2048       emit_double_constant(cbuf, $src$$constant);
  2050   %}
  2053   enc_class LdImmF (immF src) %{    // Load Immediate
  2054     if( is_positive_zero_float($src$$constant)) {
  2055       emit_opcode(cbuf,0xD9);
  2056       emit_opcode(cbuf,0xEE);
  2057     } else if( is_positive_one_float($src$$constant)) {
  2058       emit_opcode(cbuf,0xD9);
  2059       emit_opcode(cbuf,0xE8);
  2060     } else {
  2061       $$$emit8$primary;
  2062       // Load immediate does not have a zero or sign extended version
  2063       // for 8-bit immediates
  2064       // First load to TOS, then move to dst
  2065       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2066       emit_float_constant(cbuf, $src$$constant);
  2068   %}
  2070   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  2071     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2072     emit_float_constant(cbuf, $con$$constant);
  2073   %}
  2075   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  2076     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2077     emit_double_constant(cbuf, $con$$constant);
  2078   %}
  2080   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  2081     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2082     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2083     emit_opcode(cbuf, 0x0F);
  2084     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2085     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2086     emit_double_constant(cbuf, $con$$constant);
  2087   %}
  2089   enc_class Opc_MemImm_F(immF src) %{
  2090     cbuf.set_inst_mark();
  2091     $$$emit8$primary;
  2092     emit_rm(cbuf, 0x0, $secondary, 0x5);
  2093     emit_float_constant(cbuf, $src$$constant);
  2094   %}
  2097   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2098     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2099     emit_opcode(cbuf, 0x0F );
  2100     emit_opcode(cbuf, 0x6E );
  2101     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2102   %}
  2104   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2105     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2106     emit_opcode(cbuf, 0x0F );
  2107     emit_opcode(cbuf, 0x7E );
  2108     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2109   %}
  2111   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2112     { // MOVD $dst,$src.lo
  2113       emit_opcode(cbuf,0x66);
  2114       emit_opcode(cbuf,0x0F);
  2115       emit_opcode(cbuf,0x6E);
  2116       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2118     { // MOVD $tmp,$src.hi
  2119       emit_opcode(cbuf,0x66);
  2120       emit_opcode(cbuf,0x0F);
  2121       emit_opcode(cbuf,0x6E);
  2122       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2124     { // PUNPCKLDQ $dst,$tmp
  2125       emit_opcode(cbuf,0x66);
  2126       emit_opcode(cbuf,0x0F);
  2127       emit_opcode(cbuf,0x62);
  2128       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2130   %}
  2132   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2133     { // MOVD $dst.lo,$src
  2134       emit_opcode(cbuf,0x66);
  2135       emit_opcode(cbuf,0x0F);
  2136       emit_opcode(cbuf,0x7E);
  2137       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2139     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2140       emit_opcode(cbuf,0xF2);
  2141       emit_opcode(cbuf,0x0F);
  2142       emit_opcode(cbuf,0x70);
  2143       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2144       emit_d8(cbuf, 0x4E);
  2146     { // MOVD $dst.hi,$tmp
  2147       emit_opcode(cbuf,0x66);
  2148       emit_opcode(cbuf,0x0F);
  2149       emit_opcode(cbuf,0x7E);
  2150       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2152   %}
  2155   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2156   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2157     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2158   %}
  2160   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2161     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2162   %}
  2164   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2165   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2166     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2167   %}
  2169   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2170     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2171   %}
  2173   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2174     $$$emit8$primary;
  2175     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2176   %}
  2178   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2179     $$$emit8$secondary;
  2180     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2181   %}
  2183   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2184     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2185   %}
  2187   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2188     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2189   %}
  2191   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2192     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2193   %}
  2195   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2196     // Output immediate
  2197     $$$emit32$src$$constant;
  2198   %}
  2200   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2201     // Output Float immediate bits
  2202     jfloat jf = $src$$constant;
  2203     int    jf_as_bits = jint_cast( jf );
  2204     emit_d32(cbuf, jf_as_bits);
  2205   %}
  2207   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2208     // Output Float immediate bits
  2209     jfloat jf = $src$$constant;
  2210     int    jf_as_bits = jint_cast( jf );
  2211     emit_d32(cbuf, jf_as_bits);
  2212   %}
  2214   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2215     // Output immediate
  2216     $$$emit16$src$$constant;
  2217   %}
  2219   enc_class Con_d32(immI src) %{
  2220     emit_d32(cbuf,$src$$constant);
  2221   %}
  2223   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2224     // Output immediate memory reference
  2225     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2226     emit_d32(cbuf, 0x00);
  2227   %}
  2229   enc_class lock_prefix( ) %{
  2230     if( os::is_MP() )
  2231       emit_opcode(cbuf,0xF0);         // [Lock]
  2232   %}
  2234   // Cmp-xchg long value.
  2235   // Note: we need to swap rbx, and rcx before and after the
  2236   //       cmpxchg8 instruction because the instruction uses
  2237   //       rcx as the high order word of the new value to store but
  2238   //       our register encoding uses rbx,.
  2239   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2241     // XCHG  rbx,ecx
  2242     emit_opcode(cbuf,0x87);
  2243     emit_opcode(cbuf,0xD9);
  2244     // [Lock]
  2245     if( os::is_MP() )
  2246       emit_opcode(cbuf,0xF0);
  2247     // CMPXCHG8 [Eptr]
  2248     emit_opcode(cbuf,0x0F);
  2249     emit_opcode(cbuf,0xC7);
  2250     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2251     // XCHG  rbx,ecx
  2252     emit_opcode(cbuf,0x87);
  2253     emit_opcode(cbuf,0xD9);
  2254   %}
  2256   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2257     // [Lock]
  2258     if( os::is_MP() )
  2259       emit_opcode(cbuf,0xF0);
  2261     // CMPXCHG [Eptr]
  2262     emit_opcode(cbuf,0x0F);
  2263     emit_opcode(cbuf,0xB1);
  2264     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2265   %}
  2267   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2268     int res_encoding = $res$$reg;
  2270     // MOV  res,0
  2271     emit_opcode( cbuf, 0xB8 + res_encoding);
  2272     emit_d32( cbuf, 0 );
  2273     // JNE,s  fail
  2274     emit_opcode(cbuf,0x75);
  2275     emit_d8(cbuf, 5 );
  2276     // MOV  res,1
  2277     emit_opcode( cbuf, 0xB8 + res_encoding);
  2278     emit_d32( cbuf, 1 );
  2279     // fail:
  2280   %}
  2282   enc_class set_instruction_start( ) %{
  2283     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
  2284   %}
  2286   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2287     int reg_encoding = $ereg$$reg;
  2288     int base  = $mem$$base;
  2289     int index = $mem$$index;
  2290     int scale = $mem$$scale;
  2291     int displace = $mem$$disp;
  2292     bool disp_is_oop = $mem->disp_is_oop();
  2293     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2294   %}
  2296   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2297     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2298     int base  = $mem$$base;
  2299     int index = $mem$$index;
  2300     int scale = $mem$$scale;
  2301     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2302     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2303     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2304   %}
  2306   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2307     int r1, r2;
  2308     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2309     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2310     emit_opcode(cbuf,0x0F);
  2311     emit_opcode(cbuf,$tertiary);
  2312     emit_rm(cbuf, 0x3, r1, r2);
  2313     emit_d8(cbuf,$cnt$$constant);
  2314     emit_d8(cbuf,$primary);
  2315     emit_rm(cbuf, 0x3, $secondary, r1);
  2316     emit_d8(cbuf,$cnt$$constant);
  2317   %}
  2319   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2320     emit_opcode( cbuf, 0x8B ); // Move
  2321     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2322     emit_d8(cbuf,$primary);
  2323     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2324     emit_d8(cbuf,$cnt$$constant-32);
  2325     emit_d8(cbuf,$primary);
  2326     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2327     emit_d8(cbuf,31);
  2328   %}
  2330   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2331     int r1, r2;
  2332     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2333     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2335     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2336     emit_rm(cbuf, 0x3, r1, r2);
  2337     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2338       emit_opcode(cbuf,$primary);
  2339       emit_rm(cbuf, 0x3, $secondary, r1);
  2340       emit_d8(cbuf,$cnt$$constant-32);
  2342     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2343     emit_rm(cbuf, 0x3, r2, r2);
  2344   %}
  2346   // Clone of RegMem but accepts an extra parameter to access each
  2347   // half of a double in memory; it never needs relocation info.
  2348   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2349     emit_opcode(cbuf,$opcode$$constant);
  2350     int reg_encoding = $rm_reg$$reg;
  2351     int base     = $mem$$base;
  2352     int index    = $mem$$index;
  2353     int scale    = $mem$$scale;
  2354     int displace = $mem$$disp + $disp_for_half$$constant;
  2355     bool disp_is_oop = false;
  2356     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2357   %}
  2359   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2360   //
  2361   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2362   // and it never needs relocation information.
  2363   // Frequently used to move data between FPU's Stack Top and memory.
  2364   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2365     int rm_byte_opcode = $rm_opcode$$constant;
  2366     int base     = $mem$$base;
  2367     int index    = $mem$$index;
  2368     int scale    = $mem$$scale;
  2369     int displace = $mem$$disp;
  2370     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2371     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2372   %}
  2374   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2375     int rm_byte_opcode = $rm_opcode$$constant;
  2376     int base     = $mem$$base;
  2377     int index    = $mem$$index;
  2378     int scale    = $mem$$scale;
  2379     int displace = $mem$$disp;
  2380     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2381     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2382   %}
  2384   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2385     int reg_encoding = $dst$$reg;
  2386     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2387     int index        = 0x04;            // 0x04 indicates no index
  2388     int scale        = 0x00;            // 0x00 indicates no scale
  2389     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2390     bool disp_is_oop = false;
  2391     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2392   %}
  2394   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2395     // Compare dst,src
  2396     emit_opcode(cbuf,0x3B);
  2397     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2398     // jmp dst < src around move
  2399     emit_opcode(cbuf,0x7C);
  2400     emit_d8(cbuf,2);
  2401     // move dst,src
  2402     emit_opcode(cbuf,0x8B);
  2403     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2404   %}
  2406   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2407     // Compare dst,src
  2408     emit_opcode(cbuf,0x3B);
  2409     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2410     // jmp dst > src around move
  2411     emit_opcode(cbuf,0x7F);
  2412     emit_d8(cbuf,2);
  2413     // move dst,src
  2414     emit_opcode(cbuf,0x8B);
  2415     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2416   %}
  2418   enc_class enc_FP_store(memory mem, regD src) %{
  2419     // If src is FPR1, we can just FST to store it.
  2420     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2421     int reg_encoding = 0x2; // Just store
  2422     int base  = $mem$$base;
  2423     int index = $mem$$index;
  2424     int scale = $mem$$scale;
  2425     int displace = $mem$$disp;
  2426     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2427     if( $src$$reg != FPR1L_enc ) {
  2428       reg_encoding = 0x3;  // Store & pop
  2429       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2430       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2432     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2433     emit_opcode(cbuf,$primary);
  2434     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2435   %}
  2437   enc_class neg_reg(eRegI dst) %{
  2438     // NEG $dst
  2439     emit_opcode(cbuf,0xF7);
  2440     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2441   %}
  2443   enc_class setLT_reg(eCXRegI dst) %{
  2444     // SETLT $dst
  2445     emit_opcode(cbuf,0x0F);
  2446     emit_opcode(cbuf,0x9C);
  2447     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2448   %}
  2450   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2451     int tmpReg = $tmp$$reg;
  2453     // SUB $p,$q
  2454     emit_opcode(cbuf,0x2B);
  2455     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2456     // SBB $tmp,$tmp
  2457     emit_opcode(cbuf,0x1B);
  2458     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2459     // AND $tmp,$y
  2460     emit_opcode(cbuf,0x23);
  2461     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2462     // ADD $p,$tmp
  2463     emit_opcode(cbuf,0x03);
  2464     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2465   %}
  2467   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2468     int tmpReg = $tmp$$reg;
  2470     // SUB $p,$q
  2471     emit_opcode(cbuf,0x2B);
  2472     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2473     // SBB $tmp,$tmp
  2474     emit_opcode(cbuf,0x1B);
  2475     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2476     // AND $tmp,$y
  2477     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2478     emit_opcode(cbuf,0x23);
  2479     int reg_encoding = tmpReg;
  2480     int base  = $mem$$base;
  2481     int index = $mem$$index;
  2482     int scale = $mem$$scale;
  2483     int displace = $mem$$disp;
  2484     bool disp_is_oop = $mem->disp_is_oop();
  2485     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2486     // ADD $p,$tmp
  2487     emit_opcode(cbuf,0x03);
  2488     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2489   %}
  2491   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2492     // TEST shift,32
  2493     emit_opcode(cbuf,0xF7);
  2494     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2495     emit_d32(cbuf,0x20);
  2496     // JEQ,s small
  2497     emit_opcode(cbuf, 0x74);
  2498     emit_d8(cbuf, 0x04);
  2499     // MOV    $dst.hi,$dst.lo
  2500     emit_opcode( cbuf, 0x8B );
  2501     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2502     // CLR    $dst.lo
  2503     emit_opcode(cbuf, 0x33);
  2504     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2505 // small:
  2506     // SHLD   $dst.hi,$dst.lo,$shift
  2507     emit_opcode(cbuf,0x0F);
  2508     emit_opcode(cbuf,0xA5);
  2509     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2510     // SHL    $dst.lo,$shift"
  2511     emit_opcode(cbuf,0xD3);
  2512     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2513   %}
  2515   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2516     // TEST shift,32
  2517     emit_opcode(cbuf,0xF7);
  2518     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2519     emit_d32(cbuf,0x20);
  2520     // JEQ,s small
  2521     emit_opcode(cbuf, 0x74);
  2522     emit_d8(cbuf, 0x04);
  2523     // MOV    $dst.lo,$dst.hi
  2524     emit_opcode( cbuf, 0x8B );
  2525     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2526     // CLR    $dst.hi
  2527     emit_opcode(cbuf, 0x33);
  2528     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2529 // small:
  2530     // SHRD   $dst.lo,$dst.hi,$shift
  2531     emit_opcode(cbuf,0x0F);
  2532     emit_opcode(cbuf,0xAD);
  2533     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2534     // SHR    $dst.hi,$shift"
  2535     emit_opcode(cbuf,0xD3);
  2536     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2537   %}
  2539   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2540     // TEST shift,32
  2541     emit_opcode(cbuf,0xF7);
  2542     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2543     emit_d32(cbuf,0x20);
  2544     // JEQ,s small
  2545     emit_opcode(cbuf, 0x74);
  2546     emit_d8(cbuf, 0x05);
  2547     // MOV    $dst.lo,$dst.hi
  2548     emit_opcode( cbuf, 0x8B );
  2549     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2550     // SAR    $dst.hi,31
  2551     emit_opcode(cbuf, 0xC1);
  2552     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2553     emit_d8(cbuf, 0x1F );
  2554 // small:
  2555     // SHRD   $dst.lo,$dst.hi,$shift
  2556     emit_opcode(cbuf,0x0F);
  2557     emit_opcode(cbuf,0xAD);
  2558     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2559     // SAR    $dst.hi,$shift"
  2560     emit_opcode(cbuf,0xD3);
  2561     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2562   %}
  2565   // ----------------- Encodings for floating point unit -----------------
  2566   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2567   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2568     $$$emit8$primary;
  2569     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2570   %}
  2572   // Pop argument in FPR0 with FSTP ST(0)
  2573   enc_class PopFPU() %{
  2574     emit_opcode( cbuf, 0xDD );
  2575     emit_d8( cbuf, 0xD8 );
  2576   %}
  2578   // !!!!! equivalent to Pop_Reg_F
  2579   enc_class Pop_Reg_D( regD dst ) %{
  2580     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2581     emit_d8( cbuf, 0xD8+$dst$$reg );
  2582   %}
  2584   enc_class Push_Reg_D( regD dst ) %{
  2585     emit_opcode( cbuf, 0xD9 );
  2586     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2587   %}
  2589   enc_class strictfp_bias1( regD dst ) %{
  2590     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2591     emit_opcode( cbuf, 0x2D );
  2592     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2593     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2594     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2595   %}
  2597   enc_class strictfp_bias2( regD dst ) %{
  2598     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2599     emit_opcode( cbuf, 0x2D );
  2600     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2601     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2602     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2603   %}
  2605   // Special case for moving an integer register to a stack slot.
  2606   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2607     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2608   %}
  2610   // Special case for moving a register to a stack slot.
  2611   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2612     // Opcode already emitted
  2613     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2614     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2615     emit_d32(cbuf, $dst$$disp);   // Displacement
  2616   %}
  2618   // Push the integer in stackSlot 'src' onto FP-stack
  2619   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2620     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2621   %}
  2623   // Push the float in stackSlot 'src' onto FP-stack
  2624   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2625     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2626   %}
  2628   // Push the double in stackSlot 'src' onto FP-stack
  2629   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2630     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2631   %}
  2633   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2634   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2635     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2636   %}
  2638   // Same as Pop_Mem_F except for opcode
  2639   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2640   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2641     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2642   %}
  2644   enc_class Pop_Reg_F( regF dst ) %{
  2645     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2646     emit_d8( cbuf, 0xD8+$dst$$reg );
  2647   %}
  2649   enc_class Push_Reg_F( regF dst ) %{
  2650     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2651     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2652   %}
  2654   // Push FPU's float to a stack-slot, and pop FPU-stack
  2655   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2656     int pop = 0x02;
  2657     if ($src$$reg != FPR1L_enc) {
  2658       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2659       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2660       pop = 0x03;
  2662     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2663   %}
  2665   // Push FPU's double to a stack-slot, and pop FPU-stack
  2666   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2667     int pop = 0x02;
  2668     if ($src$$reg != FPR1L_enc) {
  2669       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2670       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2671       pop = 0x03;
  2673     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2674   %}
  2676   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2677   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2678     int pop = 0xD0 - 1; // -1 since we skip FLD
  2679     if ($src$$reg != FPR1L_enc) {
  2680       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2681       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2682       pop = 0xD8;
  2684     emit_opcode( cbuf, 0xDD );
  2685     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2686   %}
  2689   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2690     MacroAssembler masm(&cbuf);
  2691     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2692     masm.fmul(   $src2$$reg+0);   // value at TOS
  2693     masm.fadd(   $src$$reg+0);    // value at TOS
  2694     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2695   %}
  2698   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2699     // load dst in FPR0
  2700     emit_opcode( cbuf, 0xD9 );
  2701     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2702     if ($src$$reg != FPR1L_enc) {
  2703       // fincstp
  2704       emit_opcode (cbuf, 0xD9);
  2705       emit_opcode (cbuf, 0xF7);
  2706       // swap src with FPR1:
  2707       // FXCH FPR1 with src
  2708       emit_opcode(cbuf, 0xD9);
  2709       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2710       // fdecstp
  2711       emit_opcode (cbuf, 0xD9);
  2712       emit_opcode (cbuf, 0xF6);
  2714   %}
  2716   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2717     // Allocate a word
  2718     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2719     emit_opcode(cbuf,0xEC);
  2720     emit_d8(cbuf,0x08);
  2722     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2723     emit_opcode  (cbuf, 0x0F );
  2724     emit_opcode  (cbuf, 0x11 );
  2725     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2727     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2728     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2730     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2731     emit_opcode  (cbuf, 0x0F );
  2732     emit_opcode  (cbuf, 0x11 );
  2733     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2735     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2736     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2738   %}
  2740   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2741     // Allocate a word
  2742     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2743     emit_opcode(cbuf,0xEC);
  2744     emit_d8(cbuf,0x04);
  2746     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2747     emit_opcode  (cbuf, 0x0F );
  2748     emit_opcode  (cbuf, 0x11 );
  2749     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2751     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2752     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2754     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2755     emit_opcode  (cbuf, 0x0F );
  2756     emit_opcode  (cbuf, 0x11 );
  2757     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2759     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2760     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2762   %}
  2764   enc_class Push_ResultXD(regXD dst) %{
  2765     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2767     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2768     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2769     emit_opcode  (cbuf, 0x0F );
  2770     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2771     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2773     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2774     emit_opcode(cbuf,0xC4);
  2775     emit_d8(cbuf,0x08);
  2776   %}
  2778   enc_class Push_ResultX(regX dst, immI d8) %{
  2779     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2781     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2782     emit_opcode  (cbuf, 0x0F );
  2783     emit_opcode  (cbuf, 0x10 );
  2784     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2786     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2787     emit_opcode(cbuf,0xC4);
  2788     emit_d8(cbuf,$d8$$constant);
  2789   %}
  2791   enc_class Push_SrcXD(regXD src) %{
  2792     // Allocate a word
  2793     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2794     emit_opcode(cbuf,0xEC);
  2795     emit_d8(cbuf,0x08);
  2797     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2798     emit_opcode  (cbuf, 0x0F );
  2799     emit_opcode  (cbuf, 0x11 );
  2800     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2802     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2803     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2804   %}
  2806   enc_class push_stack_temp_qword() %{
  2807     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2808     emit_opcode(cbuf,0xEC);
  2809     emit_d8    (cbuf,0x08);
  2810   %}
  2812   enc_class pop_stack_temp_qword() %{
  2813     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2814     emit_opcode(cbuf,0xC4);
  2815     emit_d8    (cbuf,0x08);
  2816   %}
  2818   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2819     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2820     emit_opcode  (cbuf, 0x0F );
  2821     emit_opcode  (cbuf, 0x11 );
  2822     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2824     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2825     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2826   %}
  2828   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2829   // Otherwise return a NaN.
  2830   enc_class pow_exp_core_encoding %{
  2831     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2832     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2833     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2834     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2835     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2836     emit_opcode(cbuf,0x1C);
  2837     emit_d8(cbuf,0x24);
  2838     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2839     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2840     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2841     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2842     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2843     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2844     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2845     emit_d32(cbuf,0xFFFFF800);
  2846     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2847     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2848     emit_d32(cbuf,1023);
  2849     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2850     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2851     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2852     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2853     emit_d8(cbuf,20);
  2854     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2855     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2856     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2857     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2858     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2859     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2860     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2861     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2862     emit_d32(cbuf,0);
  2863     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2864     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2865   %}
  2867 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2868 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2870   enc_class Push_Result_Mod_D( regD src) %{
  2871     if ($src$$reg != FPR1L_enc) {
  2872       // fincstp
  2873       emit_opcode (cbuf, 0xD9);
  2874       emit_opcode (cbuf, 0xF7);
  2875       // FXCH FPR1 with src
  2876       emit_opcode(cbuf, 0xD9);
  2877       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2878       // fdecstp
  2879       emit_opcode (cbuf, 0xD9);
  2880       emit_opcode (cbuf, 0xF6);
  2882     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2883     // // FSTP   FPR$dst$$reg
  2884     // emit_opcode( cbuf, 0xDD );
  2885     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2886   %}
  2888   enc_class fnstsw_sahf_skip_parity() %{
  2889     // fnstsw ax
  2890     emit_opcode( cbuf, 0xDF );
  2891     emit_opcode( cbuf, 0xE0 );
  2892     // sahf
  2893     emit_opcode( cbuf, 0x9E );
  2894     // jnp  ::skip
  2895     emit_opcode( cbuf, 0x7B );
  2896     emit_opcode( cbuf, 0x05 );
  2897   %}
  2899   enc_class emitModD() %{
  2900     // fprem must be iterative
  2901     // :: loop
  2902     // fprem
  2903     emit_opcode( cbuf, 0xD9 );
  2904     emit_opcode( cbuf, 0xF8 );
  2905     // wait
  2906     emit_opcode( cbuf, 0x9b );
  2907     // fnstsw ax
  2908     emit_opcode( cbuf, 0xDF );
  2909     emit_opcode( cbuf, 0xE0 );
  2910     // sahf
  2911     emit_opcode( cbuf, 0x9E );
  2912     // jp  ::loop
  2913     emit_opcode( cbuf, 0x0F );
  2914     emit_opcode( cbuf, 0x8A );
  2915     emit_opcode( cbuf, 0xF4 );
  2916     emit_opcode( cbuf, 0xFF );
  2917     emit_opcode( cbuf, 0xFF );
  2918     emit_opcode( cbuf, 0xFF );
  2919   %}
  2921   enc_class fpu_flags() %{
  2922     // fnstsw_ax
  2923     emit_opcode( cbuf, 0xDF);
  2924     emit_opcode( cbuf, 0xE0);
  2925     // test ax,0x0400
  2926     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2927     emit_opcode( cbuf, 0xA9 );
  2928     emit_d16   ( cbuf, 0x0400 );
  2929     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2930     // // test rax,0x0400
  2931     // emit_opcode( cbuf, 0xA9 );
  2932     // emit_d32   ( cbuf, 0x00000400 );
  2933     //
  2934     // jz exit (no unordered comparison)
  2935     emit_opcode( cbuf, 0x74 );
  2936     emit_d8    ( cbuf, 0x02 );
  2937     // mov ah,1 - treat as LT case (set carry flag)
  2938     emit_opcode( cbuf, 0xB4 );
  2939     emit_d8    ( cbuf, 0x01 );
  2940     // sahf
  2941     emit_opcode( cbuf, 0x9E);
  2942   %}
  2944   enc_class cmpF_P6_fixup() %{
  2945     // Fixup the integer flags in case comparison involved a NaN
  2946     //
  2947     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2948     emit_opcode( cbuf, 0x7B );
  2949     emit_d8    ( cbuf, 0x03 );
  2950     // MOV AH,1 - treat as LT case (set carry flag)
  2951     emit_opcode( cbuf, 0xB4 );
  2952     emit_d8    ( cbuf, 0x01 );
  2953     // SAHF
  2954     emit_opcode( cbuf, 0x9E);
  2955     // NOP     // target for branch to avoid branch to branch
  2956     emit_opcode( cbuf, 0x90);
  2957   %}
  2959 //     fnstsw_ax();
  2960 //     sahf();
  2961 //     movl(dst, nan_result);
  2962 //     jcc(Assembler::parity, exit);
  2963 //     movl(dst, less_result);
  2964 //     jcc(Assembler::below, exit);
  2965 //     movl(dst, equal_result);
  2966 //     jcc(Assembler::equal, exit);
  2967 //     movl(dst, greater_result);
  2969 // less_result     =  1;
  2970 // greater_result  = -1;
  2971 // equal_result    = 0;
  2972 // nan_result      = -1;
  2974   enc_class CmpF_Result(eRegI dst) %{
  2975     // fnstsw_ax();
  2976     emit_opcode( cbuf, 0xDF);
  2977     emit_opcode( cbuf, 0xE0);
  2978     // sahf
  2979     emit_opcode( cbuf, 0x9E);
  2980     // movl(dst, nan_result);
  2981     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2982     emit_d32( cbuf, -1 );
  2983     // jcc(Assembler::parity, exit);
  2984     emit_opcode( cbuf, 0x7A );
  2985     emit_d8    ( cbuf, 0x13 );
  2986     // movl(dst, less_result);
  2987     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2988     emit_d32( cbuf, -1 );
  2989     // jcc(Assembler::below, exit);
  2990     emit_opcode( cbuf, 0x72 );
  2991     emit_d8    ( cbuf, 0x0C );
  2992     // movl(dst, equal_result);
  2993     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2994     emit_d32( cbuf, 0 );
  2995     // jcc(Assembler::equal, exit);
  2996     emit_opcode( cbuf, 0x74 );
  2997     emit_d8    ( cbuf, 0x05 );
  2998     // movl(dst, greater_result);
  2999     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  3000     emit_d32( cbuf, 1 );
  3001   %}
  3004   // XMM version of CmpF_Result. Because the XMM compare
  3005   // instructions set the EFLAGS directly. It becomes simpler than
  3006   // the float version above.
  3007   enc_class CmpX_Result(eRegI dst) %{
  3008     MacroAssembler _masm(&cbuf);
  3009     Label nan, inc, done;
  3011     __ jccb(Assembler::parity, nan);
  3012     __ jccb(Assembler::equal,  done);
  3013     __ jccb(Assembler::above,  inc);
  3014     __ bind(nan);
  3015     __ decrement(as_Register($dst$$reg)); // NO L qqq
  3016     __ jmpb(done);
  3017     __ bind(inc);
  3018     __ increment(as_Register($dst$$reg)); // NO L qqq
  3019     __ bind(done);
  3020   %}
  3022   // Compare the longs and set flags
  3023   // BROKEN!  Do Not use as-is
  3024   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  3025     // CMP    $src1.hi,$src2.hi
  3026     emit_opcode( cbuf, 0x3B );
  3027     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3028     // JNE,s  done
  3029     emit_opcode(cbuf,0x75);
  3030     emit_d8(cbuf, 2 );
  3031     // CMP    $src1.lo,$src2.lo
  3032     emit_opcode( cbuf, 0x3B );
  3033     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3034 // done:
  3035   %}
  3037   enc_class convert_int_long( regL dst, eRegI src ) %{
  3038     // mov $dst.lo,$src
  3039     int dst_encoding = $dst$$reg;
  3040     int src_encoding = $src$$reg;
  3041     encode_Copy( cbuf, dst_encoding  , src_encoding );
  3042     // mov $dst.hi,$src
  3043     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  3044     // sar $dst.hi,31
  3045     emit_opcode( cbuf, 0xC1 );
  3046     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  3047     emit_d8(cbuf, 0x1F );
  3048   %}
  3050   enc_class convert_long_double( eRegL src ) %{
  3051     // push $src.hi
  3052     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3053     // push $src.lo
  3054     emit_opcode(cbuf, 0x50+$src$$reg  );
  3055     // fild 64-bits at [SP]
  3056     emit_opcode(cbuf,0xdf);
  3057     emit_d8(cbuf, 0x6C);
  3058     emit_d8(cbuf, 0x24);
  3059     emit_d8(cbuf, 0x00);
  3060     // pop stack
  3061     emit_opcode(cbuf, 0x83); // add  SP, #8
  3062     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3063     emit_d8(cbuf, 0x8);
  3064   %}
  3066   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  3067     // IMUL   EDX:EAX,$src1
  3068     emit_opcode( cbuf, 0xF7 );
  3069     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  3070     // SAR    EDX,$cnt-32
  3071     int shift_count = ((int)$cnt$$constant) - 32;
  3072     if (shift_count > 0) {
  3073       emit_opcode(cbuf, 0xC1);
  3074       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  3075       emit_d8(cbuf, shift_count);
  3077   %}
  3079   // this version doesn't have add sp, 8
  3080   enc_class convert_long_double2( eRegL src ) %{
  3081     // push $src.hi
  3082     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3083     // push $src.lo
  3084     emit_opcode(cbuf, 0x50+$src$$reg  );
  3085     // fild 64-bits at [SP]
  3086     emit_opcode(cbuf,0xdf);
  3087     emit_d8(cbuf, 0x6C);
  3088     emit_d8(cbuf, 0x24);
  3089     emit_d8(cbuf, 0x00);
  3090   %}
  3092   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  3093     // Basic idea: long = (long)int * (long)int
  3094     // IMUL EDX:EAX, src
  3095     emit_opcode( cbuf, 0xF7 );
  3096     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3097   %}
  3099   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3100     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3101     // MUL EDX:EAX, src
  3102     emit_opcode( cbuf, 0xF7 );
  3103     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3104   %}
  3106   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3107     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3108     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3109     // MOV    $tmp,$src.lo
  3110     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3111     // IMUL   $tmp,EDX
  3112     emit_opcode( cbuf, 0x0F );
  3113     emit_opcode( cbuf, 0xAF );
  3114     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3115     // MOV    EDX,$src.hi
  3116     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3117     // IMUL   EDX,EAX
  3118     emit_opcode( cbuf, 0x0F );
  3119     emit_opcode( cbuf, 0xAF );
  3120     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3121     // ADD    $tmp,EDX
  3122     emit_opcode( cbuf, 0x03 );
  3123     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3124     // MUL   EDX:EAX,$src.lo
  3125     emit_opcode( cbuf, 0xF7 );
  3126     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3127     // ADD    EDX,ESI
  3128     emit_opcode( cbuf, 0x03 );
  3129     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3130   %}
  3132   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3133     // Basic idea: lo(result) = lo(src * y_lo)
  3134     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3135     // IMUL   $tmp,EDX,$src
  3136     emit_opcode( cbuf, 0x6B );
  3137     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3138     emit_d8( cbuf, (int)$src$$constant );
  3139     // MOV    EDX,$src
  3140     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3141     emit_d32( cbuf, (int)$src$$constant );
  3142     // MUL   EDX:EAX,EDX
  3143     emit_opcode( cbuf, 0xF7 );
  3144     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3145     // ADD    EDX,ESI
  3146     emit_opcode( cbuf, 0x03 );
  3147     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3148   %}
  3150   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3151     // PUSH src1.hi
  3152     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3153     // PUSH src1.lo
  3154     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3155     // PUSH src2.hi
  3156     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3157     // PUSH src2.lo
  3158     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3159     // CALL directly to the runtime
  3160     cbuf.set_inst_mark();
  3161     emit_opcode(cbuf,0xE8);       // Call into runtime
  3162     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3163     // Restore stack
  3164     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3165     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3166     emit_d8(cbuf, 4*4);
  3167   %}
  3169   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3170     // PUSH src1.hi
  3171     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3172     // PUSH src1.lo
  3173     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3174     // PUSH src2.hi
  3175     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3176     // PUSH src2.lo
  3177     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3178     // CALL directly to the runtime
  3179     cbuf.set_inst_mark();
  3180     emit_opcode(cbuf,0xE8);       // Call into runtime
  3181     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3182     // Restore stack
  3183     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3184     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3185     emit_d8(cbuf, 4*4);
  3186   %}
  3188   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3189     // MOV   $tmp,$src.lo
  3190     emit_opcode(cbuf, 0x8B);
  3191     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3192     // OR    $tmp,$src.hi
  3193     emit_opcode(cbuf, 0x0B);
  3194     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3195   %}
  3197   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3198     // CMP    $src1.lo,$src2.lo
  3199     emit_opcode( cbuf, 0x3B );
  3200     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3201     // JNE,s  skip
  3202     emit_cc(cbuf, 0x70, 0x5);
  3203     emit_d8(cbuf,2);
  3204     // CMP    $src1.hi,$src2.hi
  3205     emit_opcode( cbuf, 0x3B );
  3206     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3207   %}
  3209   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3210     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3211     emit_opcode( cbuf, 0x3B );
  3212     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3213     // MOV    $tmp,$src1.hi
  3214     emit_opcode( cbuf, 0x8B );
  3215     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3216     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3217     emit_opcode( cbuf, 0x1B );
  3218     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3219   %}
  3221   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3222     // XOR    $tmp,$tmp
  3223     emit_opcode(cbuf,0x33);  // XOR
  3224     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3225     // CMP    $tmp,$src.lo
  3226     emit_opcode( cbuf, 0x3B );
  3227     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3228     // SBB    $tmp,$src.hi
  3229     emit_opcode( cbuf, 0x1B );
  3230     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3231   %}
  3233  // Sniff, sniff... smells like Gnu Superoptimizer
  3234   enc_class neg_long( eRegL dst ) %{
  3235     emit_opcode(cbuf,0xF7);    // NEG hi
  3236     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3237     emit_opcode(cbuf,0xF7);    // NEG lo
  3238     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3239     emit_opcode(cbuf,0x83);    // SBB hi,0
  3240     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3241     emit_d8    (cbuf,0 );
  3242   %}
  3244   enc_class movq_ld(regXD dst, memory mem) %{
  3245     MacroAssembler _masm(&cbuf);
  3246     __ movq($dst$$XMMRegister, $mem$$Address);
  3247   %}
  3249   enc_class movq_st(memory mem, regXD src) %{
  3250     MacroAssembler _masm(&cbuf);
  3251     __ movq($mem$$Address, $src$$XMMRegister);
  3252   %}
  3254   enc_class pshufd_8x8(regX dst, regX src) %{
  3255     MacroAssembler _masm(&cbuf);
  3257     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3258     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3259     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3260   %}
  3262   enc_class pshufd_4x16(regX dst, regX src) %{
  3263     MacroAssembler _masm(&cbuf);
  3265     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3266   %}
  3268   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3269     MacroAssembler _masm(&cbuf);
  3271     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3272   %}
  3274   enc_class pxor(regXD dst, regXD src) %{
  3275     MacroAssembler _masm(&cbuf);
  3277     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3278   %}
  3280   enc_class mov_i2x(regXD dst, eRegI src) %{
  3281     MacroAssembler _masm(&cbuf);
  3283     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3284   %}
  3287   // Because the transitions from emitted code to the runtime
  3288   // monitorenter/exit helper stubs are so slow it's critical that
  3289   // we inline both the stack-locking fast-path and the inflated fast path.
  3290   //
  3291   // See also: cmpFastLock and cmpFastUnlock.
  3292   //
  3293   // What follows is a specialized inline transliteration of the code
  3294   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3295   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3296   // at startup-time.  These methods would accept arguments as
  3297   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3298   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3299   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3300   // In practice, however, the # of lock sites is bounded and is usually small.
  3301   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3302   // if the processor uses simple bimodal branch predictors keyed by EIP
  3303   // Since the helper routines would be called from multiple synchronization
  3304   // sites.
  3305   //
  3306   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3307   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3308   // to those specialized methods.  That'd give us a mostly platform-independent
  3309   // implementation that the JITs could optimize and inline at their pleasure.
  3310   // Done correctly, the only time we'd need to cross to native could would be
  3311   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3312   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3313   // (b) explicit barriers or fence operations.
  3314   //
  3315   // TODO:
  3316   //
  3317   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3318   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3319   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3320   //    the lock operators would typically be faster than reifying Self.
  3321   //
  3322   // *  Ideally I'd define the primitives as:
  3323   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3324   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3325   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3326   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3327   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3328   //    sub-optimal code near the synchronization site.
  3329   //
  3330   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3331   //    Alternately, use a better sp-proximity test.
  3332   //
  3333   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3334   //    Either one is sufficient to uniquely identify a thread.
  3335   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3336   //
  3337   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3338   //    object is locked by the calling thread but the waitlist is empty.
  3339   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3340   //
  3341   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3342   //    But beware of excessive branch density on AMD Opterons.
  3343   //
  3344   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3345   //    or failure of the fast-path.  If the fast-path fails then we pass
  3346   //    control to the slow-path, typically in C.  In Fast_Lock and
  3347   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3348   //    will emit a conditional branch immediately after the node.
  3349   //    So we have branches to branches and lots of ICC.ZF games.
  3350   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3351   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3352   //    will drop through the node.  ICC.ZF is undefined at exit.
  3353   //    In the case of failure, the node will branch directly to the
  3354   //    FailureLabel
  3357   // obj: object to lock
  3358   // box: on-stack box address (displaced header location) - KILLED
  3359   // rax,: tmp -- KILLED
  3360   // scr: tmp -- KILLED
  3361   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3363     Register objReg = as_Register($obj$$reg);
  3364     Register boxReg = as_Register($box$$reg);
  3365     Register tmpReg = as_Register($tmp$$reg);
  3366     Register scrReg = as_Register($scr$$reg);
  3368     // Ensure the register assignents are disjoint
  3369     guarantee (objReg != boxReg, "") ;
  3370     guarantee (objReg != tmpReg, "") ;
  3371     guarantee (objReg != scrReg, "") ;
  3372     guarantee (boxReg != tmpReg, "") ;
  3373     guarantee (boxReg != scrReg, "") ;
  3374     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3376     MacroAssembler masm(&cbuf);
  3378     if (_counters != NULL) {
  3379       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3381     if (EmitSync & 1) {
  3382         // set box->dhw = unused_mark (3)
  3383         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3384         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3385         masm.cmpptr (rsp, (int32_t)0) ;                        
  3386     } else 
  3387     if (EmitSync & 2) { 
  3388         Label DONE_LABEL ;           
  3389         if (UseBiasedLocking) {
  3390            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3391            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3394         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3395         masm.orptr (tmpReg, 0x1);
  3396         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3397         if (os::is_MP()) { masm.lock();  }
  3398         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3399         masm.jcc(Assembler::equal, DONE_LABEL);
  3400         // Recursive locking
  3401         masm.subptr(tmpReg, rsp);
  3402         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3403         masm.movptr(Address(boxReg, 0), tmpReg);
  3404         masm.bind(DONE_LABEL) ; 
  3405     } else {  
  3406       // Possible cases that we'll encounter in fast_lock 
  3407       // ------------------------------------------------
  3408       // * Inflated
  3409       //    -- unlocked
  3410       //    -- Locked
  3411       //       = by self
  3412       //       = by other
  3413       // * biased
  3414       //    -- by Self
  3415       //    -- by other
  3416       // * neutral
  3417       // * stack-locked
  3418       //    -- by self
  3419       //       = sp-proximity test hits
  3420       //       = sp-proximity test generates false-negative
  3421       //    -- by other
  3422       //
  3424       Label IsInflated, DONE_LABEL, PopDone ;
  3426       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3427       // order to reduce the number of conditional branches in the most common cases.
  3428       // Beware -- there's a subtle invariant that fetch of the markword
  3429       // at [FETCH], below, will never observe a biased encoding (*101b).
  3430       // If this invariant is not held we risk exclusion (safety) failure.
  3431       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3432         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3435       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3436       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3437       masm.jccb  (Assembler::notZero, IsInflated) ;
  3439       // Attempt stack-locking ...
  3440       masm.orptr (tmpReg, 0x1);
  3441       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3442       if (os::is_MP()) { masm.lock();  }
  3443       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3444       if (_counters != NULL) {
  3445         masm.cond_inc32(Assembler::equal,
  3446                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3448       masm.jccb (Assembler::equal, DONE_LABEL);
  3450       // Recursive locking
  3451       masm.subptr(tmpReg, rsp);
  3452       masm.andptr(tmpReg, 0xFFFFF003 );
  3453       masm.movptr(Address(boxReg, 0), tmpReg);
  3454       if (_counters != NULL) {
  3455         masm.cond_inc32(Assembler::equal,
  3456                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3458       masm.jmp  (DONE_LABEL) ;
  3460       masm.bind (IsInflated) ;
  3462       // The object is inflated.
  3463       //
  3464       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3465       //   Use markOopDesc::monitor_value instead of "2".
  3466       //   use markOop::unused_mark() instead of "3".
  3467       // The tmpReg value is an objectMonitor reference ORed with
  3468       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3469       // objectmonitor pointer by masking off the "2" bit or we can just
  3470       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3471       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3472       //
  3473       // I use the latter as it avoids AGI stalls.
  3474       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3475       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3476       //
  3477       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3479       // boxReg refers to the on-stack BasicLock in the current frame.
  3480       // We'd like to write:
  3481       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3482       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3483       // additional latency as we have another ST in the store buffer that must drain.
  3485       if (EmitSync & 8192) { 
  3486          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3487          masm.get_thread (scrReg) ; 
  3488          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3489          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3490          if (os::is_MP()) { masm.lock(); } 
  3491          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3492       } else 
  3493       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3494          masm.movptr(scrReg, boxReg) ; 
  3495          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3497          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3498          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3499             // prefetchw [eax + Offset(_owner)-2]
  3500             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3503          if ((EmitSync & 64) == 0) {
  3504            // Optimistic form: consider XORL tmpReg,tmpReg
  3505            masm.movptr(tmpReg, NULL_WORD) ; 
  3506          } else { 
  3507            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3508            // Test-And-CAS instead of CAS
  3509            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3510            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3511            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3514          // Appears unlocked - try to swing _owner from null to non-null.
  3515          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3516          // to CAS the register containing Self into m->Owner.
  3517          // But we don't have enough registers, so instead we can either try to CAS
  3518          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3519          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3520          // (rsp or the address of the box) into  m->owner is harmless.
  3521          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3522          if (os::is_MP()) { masm.lock();  }
  3523          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3524          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3525          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3526          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3527          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3528          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3530          // If the CAS fails we can either retry or pass control to the slow-path.  
  3531          // We use the latter tactic.  
  3532          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3533          // If the CAS was successful ...
  3534          //   Self has acquired the lock
  3535          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3536          // Intentional fall-through into DONE_LABEL ...
  3537       } else {
  3538          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3539          masm.movptr(boxReg, tmpReg) ; 
  3541          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3542          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3543             // prefetchw [eax + Offset(_owner)-2]
  3544             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3547          if ((EmitSync & 64) == 0) {
  3548            // Optimistic form
  3549            masm.xorptr  (tmpReg, tmpReg) ; 
  3550          } else { 
  3551            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3552            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3553            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3554            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3557          // Appears unlocked - try to swing _owner from null to non-null.
  3558          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3559          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3560          masm.get_thread (scrReg) ;
  3561          if (os::is_MP()) { masm.lock(); }
  3562          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3564          // If the CAS fails we can either retry or pass control to the slow-path.
  3565          // We use the latter tactic.
  3566          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3567          // If the CAS was successful ...
  3568          //   Self has acquired the lock
  3569          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3570          // Intentional fall-through into DONE_LABEL ...
  3573       // DONE_LABEL is a hot target - we'd really like to place it at the
  3574       // start of cache line by padding with NOPs.
  3575       // See the AMD and Intel software optimization manuals for the
  3576       // most efficient "long" NOP encodings.
  3577       // Unfortunately none of our alignment mechanisms suffice.
  3578       masm.bind(DONE_LABEL);
  3580       // Avoid branch-to-branch on AMD processors
  3581       // This appears to be superstition.
  3582       if (EmitSync & 32) masm.nop() ;
  3585       // At DONE_LABEL the icc ZFlag is set as follows ...
  3586       // Fast_Unlock uses the same protocol.
  3587       // ZFlag == 1 -> Success
  3588       // ZFlag == 0 -> Failure - force control through the slow-path
  3590   %}
  3592   // obj: object to unlock
  3593   // box: box address (displaced header location), killed.  Must be EAX.
  3594   // rbx,: killed tmp; cannot be obj nor box.
  3595   //
  3596   // Some commentary on balanced locking:
  3597   //
  3598   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3599   // Methods that don't have provably balanced locking are forced to run in the
  3600   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3601   // The interpreter provides two properties:
  3602   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3603   //      objects acquired the current activation (frame).  Recall that the
  3604   //      interpreter maintains an on-stack list of locks currently held by
  3605   //      a frame.
  3606   // I2:  If a method attempts to unlock an object that is not held by the
  3607   //      the frame the interpreter throws IMSX.
  3608   //
  3609   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3610   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3611   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3612   // is still locked by A().
  3613   //
  3614   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3615   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3616   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3617   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3619   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3621     Register objReg = as_Register($obj$$reg);
  3622     Register boxReg = as_Register($box$$reg);
  3623     Register tmpReg = as_Register($tmp$$reg);
  3625     guarantee (objReg != boxReg, "") ;
  3626     guarantee (objReg != tmpReg, "") ;
  3627     guarantee (boxReg != tmpReg, "") ;
  3628     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3629     MacroAssembler masm(&cbuf);
  3631     if (EmitSync & 4) {
  3632       // Disable - inhibit all inlining.  Force control through the slow-path
  3633       masm.cmpptr (rsp, 0) ; 
  3634     } else 
  3635     if (EmitSync & 8) {
  3636       Label DONE_LABEL ;
  3637       if (UseBiasedLocking) {
  3638          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3640       // classic stack-locking code ...
  3641       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3642       masm.testptr(tmpReg, tmpReg) ;
  3643       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3644       if (os::is_MP()) { masm.lock(); }
  3645       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3646       masm.bind(DONE_LABEL);
  3647     } else {
  3648       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3650       // Critically, the biased locking test must have precedence over
  3651       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3652       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3653          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3656       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3657       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3658       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3660       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3661       masm.jccb  (Assembler::zero, Stacked) ;
  3663       masm.bind  (Inflated) ;
  3664       // It's inflated.
  3665       // Despite our balanced locking property we still check that m->_owner == Self
  3666       // as java routines or native JNI code called by this thread might
  3667       // have released the lock.
  3668       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3669       // state in _succ so we can avoid fetching EntryList|cxq.
  3670       //
  3671       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3672       // such as recursive enter and exit -- but we have to be wary of
  3673       // I$ bloat, T$ effects and BP$ effects.
  3674       //
  3675       // If there's no contention try a 1-0 exit.  That is, exit without
  3676       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3677       // we detect and recover from the race that the 1-0 exit admits.
  3678       //
  3679       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3680       // before it STs null into _owner, releasing the lock.  Updates
  3681       // to data protected by the critical section must be visible before
  3682       // we drop the lock (and thus before any other thread could acquire
  3683       // the lock and observe the fields protected by the lock).
  3684       // IA32's memory-model is SPO, so STs are ordered with respect to
  3685       // each other and there's no need for an explicit barrier (fence).
  3686       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3688       masm.get_thread (boxReg) ;
  3689       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3690         // prefetchw [ebx + Offset(_owner)-2]
  3691         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3694       // Note that we could employ various encoding schemes to reduce
  3695       // the number of loads below (currently 4) to just 2 or 3.
  3696       // Refer to the comments in synchronizer.cpp.
  3697       // In practice the chain of fetches doesn't seem to impact performance, however.
  3698       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3699          // Attempt to reduce branch density - AMD's branch predictor.
  3700          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3701          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3702          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3703          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3704          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3705          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3706          masm.jmpb  (DONE_LABEL) ; 
  3707       } else { 
  3708          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3709          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3710          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3711          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3712          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3713          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3714          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3715          masm.jmpb  (DONE_LABEL) ; 
  3718       // The Following code fragment (EmitSync & 65536) improves the performance of
  3719       // contended applications and contended synchronization microbenchmarks.
  3720       // Unfortunately the emission of the code - even though not executed - causes regressions
  3721       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3722       // with an equal number of never-executed NOPs results in the same regression.
  3723       // We leave it off by default.
  3725       if ((EmitSync & 65536) != 0) {
  3726          Label LSuccess, LGoSlowPath ;
  3728          masm.bind  (CheckSucc) ;
  3730          // Optional pre-test ... it's safe to elide this
  3731          if ((EmitSync & 16) == 0) { 
  3732             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3733             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3736          // We have a classic Dekker-style idiom:
  3737          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3738          // There are a number of ways to implement the barrier:
  3739          // (1) lock:andl &m->_owner, 0
  3740          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3741          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3742          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3743          // (2) If supported, an explicit MFENCE is appealing.
  3744          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3745          //     particularly if the write-buffer is full as might be the case if
  3746          //     if stores closely precede the fence or fence-equivalent instruction.
  3747          //     In more modern implementations MFENCE appears faster, however.
  3748          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3749          //     The $lines underlying the top-of-stack should be in M-state.
  3750          //     The locked add instruction is serializing, of course.
  3751          // (4) Use xchg, which is serializing
  3752          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3753          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3754          //     The integer condition codes will tell us if succ was 0.
  3755          //     Since _succ and _owner should reside in the same $line and
  3756          //     we just stored into _owner, it's likely that the $line
  3757          //     remains in M-state for the lock:orl.
  3758          //
  3759          // We currently use (3), although it's likely that switching to (2)
  3760          // is correct for the future.
  3762          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3763          if (os::is_MP()) { 
  3764             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3765               masm.mfence();
  3766             } else { 
  3767               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3770          // Ratify _succ remains non-null
  3771          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3772          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3774          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3775          if (os::is_MP()) { masm.lock(); }
  3776          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3777          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3778          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3779          // Now install Self over rsp.  This is safe as we're transitioning from
  3780          // non-null to non=null
  3781          masm.get_thread (boxReg) ;
  3782          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3783          // Intentional fall-through into LGoSlowPath ...
  3785          masm.bind  (LGoSlowPath) ; 
  3786          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3787          masm.jmpb  (DONE_LABEL) ; 
  3789          masm.bind  (LSuccess) ; 
  3790          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3791          masm.jmpb  (DONE_LABEL) ; 
  3794       masm.bind (Stacked) ;
  3795       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3796       // It must be stack-locked.
  3797       // Try to reset the header to displaced header.
  3798       // The "box" value on the stack is stable, so we can reload
  3799       // and be assured we observe the same value as above.
  3800       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3801       if (os::is_MP()) {   masm.lock();    }
  3802       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3803       // Intention fall-thru into DONE_LABEL
  3806       // DONE_LABEL is a hot target - we'd really like to place it at the
  3807       // start of cache line by padding with NOPs.
  3808       // See the AMD and Intel software optimization manuals for the
  3809       // most efficient "long" NOP encodings.
  3810       // Unfortunately none of our alignment mechanisms suffice.
  3811       if ((EmitSync & 65536) == 0) {
  3812          masm.bind (CheckSucc) ;
  3814       masm.bind(DONE_LABEL);
  3816       // Avoid branch to branch on AMD processors
  3817       if (EmitSync & 32768) { masm.nop() ; }
  3819   %}
  3822   enc_class enc_pop_rdx() %{
  3823     emit_opcode(cbuf,0x5A);
  3824   %}
  3826   enc_class enc_rethrow() %{
  3827     cbuf.set_inst_mark();
  3828     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3829     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
  3830                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3831   %}
  3834   // Convert a double to an int.  Java semantics require we do complex
  3835   // manglelations in the corner cases.  So we set the rounding mode to
  3836   // 'zero', store the darned double down as an int, and reset the
  3837   // rounding mode to 'nearest'.  The hardware throws an exception which
  3838   // patches up the correct value directly to the stack.
  3839   enc_class D2I_encoding( regD src ) %{
  3840     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3841     // exceptions here, so that a NAN or other corner-case value will
  3842     // thrown an exception (but normal values get converted at full speed).
  3843     // However, I2C adapters and other float-stack manglers leave pending
  3844     // invalid-op exceptions hanging.  We would have to clear them before
  3845     // enabling them and that is more expensive than just testing for the
  3846     // invalid value Intel stores down in the corner cases.
  3847     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3848     emit_opcode(cbuf,0x2D);
  3849     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3850     // Allocate a word
  3851     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3852     emit_opcode(cbuf,0xEC);
  3853     emit_d8(cbuf,0x04);
  3854     // Encoding assumes a double has been pushed into FPR0.
  3855     // Store down the double as an int, popping the FPU stack
  3856     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3857     emit_opcode(cbuf,0x1C);
  3858     emit_d8(cbuf,0x24);
  3859     // Restore the rounding mode; mask the exception
  3860     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3861     emit_opcode(cbuf,0x2D);
  3862     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3863         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3864         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3866     // Load the converted int; adjust CPU stack
  3867     emit_opcode(cbuf,0x58);       // POP EAX
  3868     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3869     emit_d32   (cbuf,0x80000000); //         0x80000000
  3870     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3871     emit_d8    (cbuf,0x07);       // Size of slow_call
  3872     // Push src onto stack slow-path
  3873     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3874     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3875     // CALL directly to the runtime
  3876     cbuf.set_inst_mark();
  3877     emit_opcode(cbuf,0xE8);       // Call into runtime
  3878     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3879     // Carry on here...
  3880   %}
  3882   enc_class D2L_encoding( regD src ) %{
  3883     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3884     emit_opcode(cbuf,0x2D);
  3885     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3886     // Allocate a word
  3887     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3888     emit_opcode(cbuf,0xEC);
  3889     emit_d8(cbuf,0x08);
  3890     // Encoding assumes a double has been pushed into FPR0.
  3891     // Store down the double as a long, popping the FPU stack
  3892     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3893     emit_opcode(cbuf,0x3C);
  3894     emit_d8(cbuf,0x24);
  3895     // Restore the rounding mode; mask the exception
  3896     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3897     emit_opcode(cbuf,0x2D);
  3898     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3899         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3900         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3902     // Load the converted int; adjust CPU stack
  3903     emit_opcode(cbuf,0x58);       // POP EAX
  3904     emit_opcode(cbuf,0x5A);       // POP EDX
  3905     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3906     emit_d8    (cbuf,0xFA);       // rdx
  3907     emit_d32   (cbuf,0x80000000); //         0x80000000
  3908     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3909     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3910     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3911     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3912     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3913     emit_d8    (cbuf,0x07);       // Size of slow_call
  3914     // Push src onto stack slow-path
  3915     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3916     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3917     // CALL directly to the runtime
  3918     cbuf.set_inst_mark();
  3919     emit_opcode(cbuf,0xE8);       // Call into runtime
  3920     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3921     // Carry on here...
  3922   %}
  3924   enc_class X2L_encoding( regX src ) %{
  3925     // Allocate a word
  3926     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3927     emit_opcode(cbuf,0xEC);
  3928     emit_d8(cbuf,0x08);
  3930     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3931     emit_opcode  (cbuf, 0x0F );
  3932     emit_opcode  (cbuf, 0x11 );
  3933     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3935     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3936     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3938     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3939     emit_opcode(cbuf,0x2D);
  3940     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3942     // Encoding assumes a double has been pushed into FPR0.
  3943     // Store down the double as a long, popping the FPU stack
  3944     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3945     emit_opcode(cbuf,0x3C);
  3946     emit_d8(cbuf,0x24);
  3948     // Restore the rounding mode; mask the exception
  3949     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3950     emit_opcode(cbuf,0x2D);
  3951     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3952       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3953       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3955     // Load the converted int; adjust CPU stack
  3956     emit_opcode(cbuf,0x58);      // POP EAX
  3958     emit_opcode(cbuf,0x5A);      // POP EDX
  3960     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3961     emit_d8    (cbuf,0xFA);      // rdx
  3962     emit_d32   (cbuf,0x80000000);//         0x80000000
  3964     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3965     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3967     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3968     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3970     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3971     emit_d8    (cbuf,0x13);      // Size of slow_call
  3973     // Allocate a word
  3974     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3975     emit_opcode(cbuf,0xEC);
  3976     emit_d8(cbuf,0x04);
  3978     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3979     emit_opcode  (cbuf, 0x0F );
  3980     emit_opcode  (cbuf, 0x11 );
  3981     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3983     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3984     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3986     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3987     emit_opcode(cbuf,0xC4);
  3988     emit_d8(cbuf,0x04);
  3990     // CALL directly to the runtime
  3991     cbuf.set_inst_mark();
  3992     emit_opcode(cbuf,0xE8);       // Call into runtime
  3993     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3994     // Carry on here...
  3995   %}
  3997   enc_class XD2L_encoding( regXD src ) %{
  3998     // Allocate a word
  3999     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4000     emit_opcode(cbuf,0xEC);
  4001     emit_d8(cbuf,0x08);
  4003     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4004     emit_opcode  (cbuf, 0x0F );
  4005     emit_opcode  (cbuf, 0x11 );
  4006     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4008     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4009     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4011     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  4012     emit_opcode(cbuf,0x2D);
  4013     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  4015     // Encoding assumes a double has been pushed into FPR0.
  4016     // Store down the double as a long, popping the FPU stack
  4017     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  4018     emit_opcode(cbuf,0x3C);
  4019     emit_d8(cbuf,0x24);
  4021     // Restore the rounding mode; mask the exception
  4022     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  4023     emit_opcode(cbuf,0x2D);
  4024     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  4025       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  4026       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  4028     // Load the converted int; adjust CPU stack
  4029     emit_opcode(cbuf,0x58);      // POP EAX
  4031     emit_opcode(cbuf,0x5A);      // POP EDX
  4033     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  4034     emit_d8    (cbuf,0xFA);      // rdx
  4035     emit_d32   (cbuf,0x80000000); //         0x80000000
  4037     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4038     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  4040     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  4041     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  4043     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4044     emit_d8    (cbuf,0x13);      // Size of slow_call
  4046     // Push src onto stack slow-path
  4047     // Allocate a word
  4048     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4049     emit_opcode(cbuf,0xEC);
  4050     emit_d8(cbuf,0x08);
  4052     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4053     emit_opcode  (cbuf, 0x0F );
  4054     emit_opcode  (cbuf, 0x11 );
  4055     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4057     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4058     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4060     emit_opcode(cbuf,0x83);      // ADD ESP,8
  4061     emit_opcode(cbuf,0xC4);
  4062     emit_d8(cbuf,0x08);
  4064     // CALL directly to the runtime
  4065     cbuf.set_inst_mark();
  4066     emit_opcode(cbuf,0xE8);      // Call into runtime
  4067     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4068     // Carry on here...
  4069   %}
  4071   enc_class D2X_encoding( regX dst, regD src ) %{
  4072     // Allocate a word
  4073     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4074     emit_opcode(cbuf,0xEC);
  4075     emit_d8(cbuf,0x04);
  4076     int pop = 0x02;
  4077     if ($src$$reg != FPR1L_enc) {
  4078       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4079       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4080       pop = 0x03;
  4082     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4084     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4085     emit_opcode  (cbuf, 0x0F );
  4086     emit_opcode  (cbuf, 0x10 );
  4087     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4089     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4090     emit_opcode(cbuf,0xC4);
  4091     emit_d8(cbuf,0x04);
  4092     // Carry on here...
  4093   %}
  4095   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4096     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4098     // Compare the result to see if we need to go to the slow path
  4099     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4100     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4101     emit_d32   (cbuf,0x80000000); //         0x80000000
  4103     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4104     emit_d8    (cbuf,0x13);       // Size of slow_call
  4105     // Store xmm to a temp memory
  4106     // location and push it onto stack.
  4108     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4109     emit_opcode(cbuf,0xEC);
  4110     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4112     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4113     emit_opcode  (cbuf, 0x0F );
  4114     emit_opcode  (cbuf, 0x11 );
  4115     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4117     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4118     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4120     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4121     emit_opcode(cbuf,0xC4);
  4122     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4124     // CALL directly to the runtime
  4125     cbuf.set_inst_mark();
  4126     emit_opcode(cbuf,0xE8);       // Call into runtime
  4127     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4129     // Carry on here...
  4130   %}
  4132   enc_class X2D_encoding( regD dst, regX src ) %{
  4133     // Allocate a word
  4134     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4135     emit_opcode(cbuf,0xEC);
  4136     emit_d8(cbuf,0x04);
  4138     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4139     emit_opcode  (cbuf, 0x0F );
  4140     emit_opcode  (cbuf, 0x11 );
  4141     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4143     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4144     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4146     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4147     emit_opcode(cbuf,0xC4);
  4148     emit_d8(cbuf,0x04);
  4150     // Carry on here...
  4151   %}
  4153   enc_class AbsXF_encoding(regX dst) %{
  4154     address signmask_address=(address)float_signmask_pool;
  4155     // andpd:\tANDPS  $dst,[signconst]
  4156     emit_opcode(cbuf, 0x0F);
  4157     emit_opcode(cbuf, 0x54);
  4158     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4159     emit_d32(cbuf, (int)signmask_address);
  4160   %}
  4162   enc_class AbsXD_encoding(regXD dst) %{
  4163     address signmask_address=(address)double_signmask_pool;
  4164     // andpd:\tANDPD  $dst,[signconst]
  4165     emit_opcode(cbuf, 0x66);
  4166     emit_opcode(cbuf, 0x0F);
  4167     emit_opcode(cbuf, 0x54);
  4168     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4169     emit_d32(cbuf, (int)signmask_address);
  4170   %}
  4172   enc_class NegXF_encoding(regX dst) %{
  4173     address signmask_address=(address)float_signflip_pool;
  4174     // andpd:\tXORPS  $dst,[signconst]
  4175     emit_opcode(cbuf, 0x0F);
  4176     emit_opcode(cbuf, 0x57);
  4177     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4178     emit_d32(cbuf, (int)signmask_address);
  4179   %}
  4181   enc_class NegXD_encoding(regXD dst) %{
  4182     address signmask_address=(address)double_signflip_pool;
  4183     // andpd:\tXORPD  $dst,[signconst]
  4184     emit_opcode(cbuf, 0x66);
  4185     emit_opcode(cbuf, 0x0F);
  4186     emit_opcode(cbuf, 0x57);
  4187     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4188     emit_d32(cbuf, (int)signmask_address);
  4189   %}
  4191   enc_class FMul_ST_reg( eRegF src1 ) %{
  4192     // Operand was loaded from memory into fp ST (stack top)
  4193     // FMUL   ST,$src  /* D8 C8+i */
  4194     emit_opcode(cbuf, 0xD8);
  4195     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4196   %}
  4198   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4199     // FADDP  ST,src2  /* D8 C0+i */
  4200     emit_opcode(cbuf, 0xD8);
  4201     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4202     //could use FADDP  src2,fpST  /* DE C0+i */
  4203   %}
  4205   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4206     // FADDP  src2,ST  /* DE C0+i */
  4207     emit_opcode(cbuf, 0xDE);
  4208     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4209   %}
  4211   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4212     // Operand has been loaded into fp ST (stack top)
  4213       // FSUB   ST,$src1
  4214       emit_opcode(cbuf, 0xD8);
  4215       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4217       // FDIV
  4218       emit_opcode(cbuf, 0xD8);
  4219       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4220   %}
  4222   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4223     // Operand was loaded from memory into fp ST (stack top)
  4224     // FADD   ST,$src  /* D8 C0+i */
  4225     emit_opcode(cbuf, 0xD8);
  4226     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4228     // FMUL  ST,src2  /* D8 C*+i */
  4229     emit_opcode(cbuf, 0xD8);
  4230     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4231   %}
  4234   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4235     // Operand was loaded from memory into fp ST (stack top)
  4236     // FADD   ST,$src  /* D8 C0+i */
  4237     emit_opcode(cbuf, 0xD8);
  4238     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4240     // FMULP  src2,ST  /* DE C8+i */
  4241     emit_opcode(cbuf, 0xDE);
  4242     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4243   %}
  4245   // Atomically load the volatile long
  4246   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4247     emit_opcode(cbuf,0xDF);
  4248     int rm_byte_opcode = 0x05;
  4249     int base     = $mem$$base;
  4250     int index    = $mem$$index;
  4251     int scale    = $mem$$scale;
  4252     int displace = $mem$$disp;
  4253     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4254     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4255     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4256   %}
  4258   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4259     { // Atomic long load
  4260       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4261       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4262       emit_opcode(cbuf,0x0F);
  4263       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4264       int base     = $mem$$base;
  4265       int index    = $mem$$index;
  4266       int scale    = $mem$$scale;
  4267       int displace = $mem$$disp;
  4268       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4269       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4271     { // MOVSD $dst,$tmp ! atomic long store
  4272       emit_opcode(cbuf,0xF2);
  4273       emit_opcode(cbuf,0x0F);
  4274       emit_opcode(cbuf,0x11);
  4275       int base     = $dst$$base;
  4276       int index    = $dst$$index;
  4277       int scale    = $dst$$scale;
  4278       int displace = $dst$$disp;
  4279       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4280       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4282   %}
  4284   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4285     { // Atomic long load
  4286       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4287       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4288       emit_opcode(cbuf,0x0F);
  4289       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4290       int base     = $mem$$base;
  4291       int index    = $mem$$index;
  4292       int scale    = $mem$$scale;
  4293       int displace = $mem$$disp;
  4294       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4295       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4297     { // MOVD $dst.lo,$tmp
  4298       emit_opcode(cbuf,0x66);
  4299       emit_opcode(cbuf,0x0F);
  4300       emit_opcode(cbuf,0x7E);
  4301       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4303     { // PSRLQ $tmp,32
  4304       emit_opcode(cbuf,0x66);
  4305       emit_opcode(cbuf,0x0F);
  4306       emit_opcode(cbuf,0x73);
  4307       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4308       emit_d8(cbuf, 0x20);
  4310     { // MOVD $dst.hi,$tmp
  4311       emit_opcode(cbuf,0x66);
  4312       emit_opcode(cbuf,0x0F);
  4313       emit_opcode(cbuf,0x7E);
  4314       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4316   %}
  4318   // Volatile Store Long.  Must be atomic, so move it into
  4319   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4320   // target address before the store (for null-ptr checks)
  4321   // so the memory operand is used twice in the encoding.
  4322   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4323     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4324     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
  4325     emit_opcode(cbuf,0xDF);
  4326     int rm_byte_opcode = 0x07;
  4327     int base     = $mem$$base;
  4328     int index    = $mem$$index;
  4329     int scale    = $mem$$scale;
  4330     int displace = $mem$$disp;
  4331     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4332     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4333   %}
  4335   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4336     { // Atomic long load
  4337       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4338       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4339       emit_opcode(cbuf,0x0F);
  4340       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4341       int base     = $src$$base;
  4342       int index    = $src$$index;
  4343       int scale    = $src$$scale;
  4344       int displace = $src$$disp;
  4345       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4346       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4348     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4349     { // MOVSD $mem,$tmp ! atomic long store
  4350       emit_opcode(cbuf,0xF2);
  4351       emit_opcode(cbuf,0x0F);
  4352       emit_opcode(cbuf,0x11);
  4353       int base     = $mem$$base;
  4354       int index    = $mem$$index;
  4355       int scale    = $mem$$scale;
  4356       int displace = $mem$$disp;
  4357       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4358       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4360   %}
  4362   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4363     { // MOVD $tmp,$src.lo
  4364       emit_opcode(cbuf,0x66);
  4365       emit_opcode(cbuf,0x0F);
  4366       emit_opcode(cbuf,0x6E);
  4367       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4369     { // MOVD $tmp2,$src.hi
  4370       emit_opcode(cbuf,0x66);
  4371       emit_opcode(cbuf,0x0F);
  4372       emit_opcode(cbuf,0x6E);
  4373       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4375     { // PUNPCKLDQ $tmp,$tmp2
  4376       emit_opcode(cbuf,0x66);
  4377       emit_opcode(cbuf,0x0F);
  4378       emit_opcode(cbuf,0x62);
  4379       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4381     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4382     { // MOVSD $mem,$tmp ! atomic long store
  4383       emit_opcode(cbuf,0xF2);
  4384       emit_opcode(cbuf,0x0F);
  4385       emit_opcode(cbuf,0x11);
  4386       int base     = $mem$$base;
  4387       int index    = $mem$$index;
  4388       int scale    = $mem$$scale;
  4389       int displace = $mem$$disp;
  4390       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4391       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4393   %}
  4395   // Safepoint Poll.  This polls the safepoint page, and causes an
  4396   // exception if it is not readable. Unfortunately, it kills the condition code
  4397   // in the process
  4398   // We current use TESTL [spp],EDI
  4399   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4401   enc_class Safepoint_Poll() %{
  4402     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
  4403     emit_opcode(cbuf,0x85);
  4404     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4405     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4406   %}
  4407 %}
  4410 //----------FRAME--------------------------------------------------------------
  4411 // Definition of frame structure and management information.
  4412 //
  4413 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4414 //                             |   (to get allocators register number
  4415 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4416 //  r   CALLER     |        |
  4417 //  o     |        +--------+      pad to even-align allocators stack-slot
  4418 //  w     V        |  pad0  |        numbers; owned by CALLER
  4419 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4420 //  h     ^        |   in   |  5
  4421 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4422 //  |     |        |        |  3
  4423 //  |     |        +--------+
  4424 //  V     |        | old out|      Empty on Intel, window on Sparc
  4425 //        |    old |preserve|      Must be even aligned.
  4426 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4427 //        |        |   in   |  3   area for Intel ret address
  4428 //     Owned by    |preserve|      Empty on Sparc.
  4429 //       SELF      +--------+
  4430 //        |        |  pad2  |  2   pad to align old SP
  4431 //        |        +--------+  1
  4432 //        |        | locks  |  0
  4433 //        |        +--------+----> OptoReg::stack0(), even aligned
  4434 //        |        |  pad1  | 11   pad to align new SP
  4435 //        |        +--------+
  4436 //        |        |        | 10
  4437 //        |        | spills |  9   spills
  4438 //        V        |        |  8   (pad0 slot for callee)
  4439 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4440 //        ^        |  out   |  7
  4441 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4442 //     Owned by    +--------+
  4443 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4444 //        |    new |preserve|      Must be even-aligned.
  4445 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4446 //        |        |        |
  4447 //
  4448 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4449 //         known from SELF's arguments and the Java calling convention.
  4450 //         Region 6-7 is determined per call site.
  4451 // Note 2: If the calling convention leaves holes in the incoming argument
  4452 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4453 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4454 //         incoming area, as the Java calling convention is completely under
  4455 //         the control of the AD file.  Doubles can be sorted and packed to
  4456 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4457 //         varargs C calling conventions.
  4458 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4459 //         even aligned with pad0 as needed.
  4460 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4461 //         region 6-11 is even aligned; it may be padded out more so that
  4462 //         the region from SP to FP meets the minimum stack alignment.
  4464 frame %{
  4465   // What direction does stack grow in (assumed to be same for C & Java)
  4466   stack_direction(TOWARDS_LOW);
  4468   // These three registers define part of the calling convention
  4469   // between compiled code and the interpreter.
  4470   inline_cache_reg(EAX);                // Inline Cache Register
  4471   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4473   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4474   cisc_spilling_operand_name(indOffset32);
  4476   // Number of stack slots consumed by locking an object
  4477   sync_stack_slots(1);
  4479   // Compiled code's Frame Pointer
  4480   frame_pointer(ESP);
  4481   // Interpreter stores its frame pointer in a register which is
  4482   // stored to the stack by I2CAdaptors.
  4483   // I2CAdaptors convert from interpreted java to compiled java.
  4484   interpreter_frame_pointer(EBP);
  4486   // Stack alignment requirement
  4487   // Alignment size in bytes (128-bit -> 16 bytes)
  4488   stack_alignment(StackAlignmentInBytes);
  4490   // Number of stack slots between incoming argument block and the start of
  4491   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4492   // EPILOG must remove this many slots.  Intel needs one slot for
  4493   // return address and one for rbp, (must save rbp)
  4494   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4496   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4497   // for calls to C.  Supports the var-args backing area for register parms.
  4498   varargs_C_out_slots_killed(0);
  4500   // The after-PROLOG location of the return address.  Location of
  4501   // return address specifies a type (REG or STACK) and a number
  4502   // representing the register number (i.e. - use a register name) or
  4503   // stack slot.
  4504   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4505   // Otherwise, it is above the locks and verification slot and alignment word
  4506   return_addr(STACK - 1 +
  4507               round_to(1+VerifyStackAtCalls+
  4508               Compile::current()->fixed_slots(),
  4509               (StackAlignmentInBytes/wordSize)));
  4511   // Body of function which returns an integer array locating
  4512   // arguments either in registers or in stack slots.  Passed an array
  4513   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4514   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4515   // arguments for a CALLEE.  Incoming stack arguments are
  4516   // automatically biased by the preserve_stack_slots field above.
  4517   calling_convention %{
  4518     // No difference between ingoing/outgoing just pass false
  4519     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4520   %}
  4523   // Body of function which returns an integer array locating
  4524   // arguments either in registers or in stack slots.  Passed an array
  4525   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4526   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4527   // arguments for a CALLEE.  Incoming stack arguments are
  4528   // automatically biased by the preserve_stack_slots field above.
  4529   c_calling_convention %{
  4530     // This is obviously always outgoing
  4531     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4532   %}
  4534   // Location of C & interpreter return values
  4535   c_return_value %{
  4536     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4537     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4538     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4540     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4541     // that C functions return float and double results in XMM0.
  4542     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4543       return OptoRegPair(XMM0b_num,XMM0a_num);
  4544     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4545       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4547     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4548   %}
  4550   // Location of return values
  4551   return_value %{
  4552     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4553     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4554     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4555     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4556       return OptoRegPair(XMM0b_num,XMM0a_num);
  4557     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4558       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4559     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4560   %}
  4562 %}
  4564 //----------ATTRIBUTES---------------------------------------------------------
  4565 //----------Operand Attributes-------------------------------------------------
  4566 op_attrib op_cost(0);        // Required cost attribute
  4568 //----------Instruction Attributes---------------------------------------------
  4569 ins_attrib ins_cost(100);       // Required cost attribute
  4570 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4571 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4572 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4573                                 // non-matching short branch variant of some
  4574                                                             // long branch?
  4575 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4576                                 // specifies the alignment that some part of the instruction (not
  4577                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4578                                 // function must be provided for the instruction
  4580 //----------OPERANDS-----------------------------------------------------------
  4581 // Operand definitions must precede instruction definitions for correct parsing
  4582 // in the ADLC because operands constitute user defined types which are used in
  4583 // instruction definitions.
  4585 //----------Simple Operands----------------------------------------------------
  4586 // Immediate Operands
  4587 // Integer Immediate
  4588 operand immI() %{
  4589   match(ConI);
  4591   op_cost(10);
  4592   format %{ %}
  4593   interface(CONST_INTER);
  4594 %}
  4596 // Constant for test vs zero
  4597 operand immI0() %{
  4598   predicate(n->get_int() == 0);
  4599   match(ConI);
  4601   op_cost(0);
  4602   format %{ %}
  4603   interface(CONST_INTER);
  4604 %}
  4606 // Constant for increment
  4607 operand immI1() %{
  4608   predicate(n->get_int() == 1);
  4609   match(ConI);
  4611   op_cost(0);
  4612   format %{ %}
  4613   interface(CONST_INTER);
  4614 %}
  4616 // Constant for decrement
  4617 operand immI_M1() %{
  4618   predicate(n->get_int() == -1);
  4619   match(ConI);
  4621   op_cost(0);
  4622   format %{ %}
  4623   interface(CONST_INTER);
  4624 %}
  4626 // Valid scale values for addressing modes
  4627 operand immI2() %{
  4628   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4629   match(ConI);
  4631   format %{ %}
  4632   interface(CONST_INTER);
  4633 %}
  4635 operand immI8() %{
  4636   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4637   match(ConI);
  4639   op_cost(5);
  4640   format %{ %}
  4641   interface(CONST_INTER);
  4642 %}
  4644 operand immI16() %{
  4645   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4646   match(ConI);
  4648   op_cost(10);
  4649   format %{ %}
  4650   interface(CONST_INTER);
  4651 %}
  4653 // Constant for long shifts
  4654 operand immI_32() %{
  4655   predicate( n->get_int() == 32 );
  4656   match(ConI);
  4658   op_cost(0);
  4659   format %{ %}
  4660   interface(CONST_INTER);
  4661 %}
  4663 operand immI_1_31() %{
  4664   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4665   match(ConI);
  4667   op_cost(0);
  4668   format %{ %}
  4669   interface(CONST_INTER);
  4670 %}
  4672 operand immI_32_63() %{
  4673   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4674   match(ConI);
  4675   op_cost(0);
  4677   format %{ %}
  4678   interface(CONST_INTER);
  4679 %}
  4681 operand immI_1() %{
  4682   predicate( n->get_int() == 1 );
  4683   match(ConI);
  4685   op_cost(0);
  4686   format %{ %}
  4687   interface(CONST_INTER);
  4688 %}
  4690 operand immI_2() %{
  4691   predicate( n->get_int() == 2 );
  4692   match(ConI);
  4694   op_cost(0);
  4695   format %{ %}
  4696   interface(CONST_INTER);
  4697 %}
  4699 operand immI_3() %{
  4700   predicate( n->get_int() == 3 );
  4701   match(ConI);
  4703   op_cost(0);
  4704   format %{ %}
  4705   interface(CONST_INTER);
  4706 %}
  4708 // Pointer Immediate
  4709 operand immP() %{
  4710   match(ConP);
  4712   op_cost(10);
  4713   format %{ %}
  4714   interface(CONST_INTER);
  4715 %}
  4717 // NULL Pointer Immediate
  4718 operand immP0() %{
  4719   predicate( n->get_ptr() == 0 );
  4720   match(ConP);
  4721   op_cost(0);
  4723   format %{ %}
  4724   interface(CONST_INTER);
  4725 %}
  4727 // Long Immediate
  4728 operand immL() %{
  4729   match(ConL);
  4731   op_cost(20);
  4732   format %{ %}
  4733   interface(CONST_INTER);
  4734 %}
  4736 // Long Immediate zero
  4737 operand immL0() %{
  4738   predicate( n->get_long() == 0L );
  4739   match(ConL);
  4740   op_cost(0);
  4742   format %{ %}
  4743   interface(CONST_INTER);
  4744 %}
  4746 // Long Immediate zero
  4747 operand immL_M1() %{
  4748   predicate( n->get_long() == -1L );
  4749   match(ConL);
  4750   op_cost(0);
  4752   format %{ %}
  4753   interface(CONST_INTER);
  4754 %}
  4756 // Long immediate from 0 to 127.
  4757 // Used for a shorter form of long mul by 10.
  4758 operand immL_127() %{
  4759   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4760   match(ConL);
  4761   op_cost(0);
  4763   format %{ %}
  4764   interface(CONST_INTER);
  4765 %}
  4767 // Long Immediate: low 32-bit mask
  4768 operand immL_32bits() %{
  4769   predicate(n->get_long() == 0xFFFFFFFFL);
  4770   match(ConL);
  4771   op_cost(0);
  4773   format %{ %}
  4774   interface(CONST_INTER);
  4775 %}
  4777 // Long Immediate: low 32-bit mask
  4778 operand immL32() %{
  4779   predicate(n->get_long() == (int)(n->get_long()));
  4780   match(ConL);
  4781   op_cost(20);
  4783   format %{ %}
  4784   interface(CONST_INTER);
  4785 %}
  4787 //Double Immediate zero
  4788 operand immD0() %{
  4789   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4790   // bug that generates code such that NaNs compare equal to 0.0
  4791   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4792   match(ConD);
  4794   op_cost(5);
  4795   format %{ %}
  4796   interface(CONST_INTER);
  4797 %}
  4799 // Double Immediate
  4800 operand immD1() %{
  4801   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4802   match(ConD);
  4804   op_cost(5);
  4805   format %{ %}
  4806   interface(CONST_INTER);
  4807 %}
  4809 // Double Immediate
  4810 operand immD() %{
  4811   predicate(UseSSE<=1);
  4812   match(ConD);
  4814   op_cost(5);
  4815   format %{ %}
  4816   interface(CONST_INTER);
  4817 %}
  4819 operand immXD() %{
  4820   predicate(UseSSE>=2);
  4821   match(ConD);
  4823   op_cost(5);
  4824   format %{ %}
  4825   interface(CONST_INTER);
  4826 %}
  4828 // Double Immediate zero
  4829 operand immXD0() %{
  4830   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4831   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4832   // compare equal to -0.0.
  4833   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4834   match(ConD);
  4836   format %{ %}
  4837   interface(CONST_INTER);
  4838 %}
  4840 // Float Immediate zero
  4841 operand immF0() %{
  4842   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4843   match(ConF);
  4845   op_cost(5);
  4846   format %{ %}
  4847   interface(CONST_INTER);
  4848 %}
  4850 // Float Immediate
  4851 operand immF() %{
  4852   predicate( UseSSE == 0 );
  4853   match(ConF);
  4855   op_cost(5);
  4856   format %{ %}
  4857   interface(CONST_INTER);
  4858 %}
  4860 // Float Immediate
  4861 operand immXF() %{
  4862   predicate(UseSSE >= 1);
  4863   match(ConF);
  4865   op_cost(5);
  4866   format %{ %}
  4867   interface(CONST_INTER);
  4868 %}
  4870 // Float Immediate zero.  Zero and not -0.0
  4871 operand immXF0() %{
  4872   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4873   match(ConF);
  4875   op_cost(5);
  4876   format %{ %}
  4877   interface(CONST_INTER);
  4878 %}
  4880 // Immediates for special shifts (sign extend)
  4882 // Constants for increment
  4883 operand immI_16() %{
  4884   predicate( n->get_int() == 16 );
  4885   match(ConI);
  4887   format %{ %}
  4888   interface(CONST_INTER);
  4889 %}
  4891 operand immI_24() %{
  4892   predicate( n->get_int() == 24 );
  4893   match(ConI);
  4895   format %{ %}
  4896   interface(CONST_INTER);
  4897 %}
  4899 // Constant for byte-wide masking
  4900 operand immI_255() %{
  4901   predicate( n->get_int() == 255 );
  4902   match(ConI);
  4904   format %{ %}
  4905   interface(CONST_INTER);
  4906 %}
  4908 // Constant for short-wide masking
  4909 operand immI_65535() %{
  4910   predicate(n->get_int() == 65535);
  4911   match(ConI);
  4913   format %{ %}
  4914   interface(CONST_INTER);
  4915 %}
  4917 // Register Operands
  4918 // Integer Register
  4919 operand eRegI() %{
  4920   constraint(ALLOC_IN_RC(e_reg));
  4921   match(RegI);
  4922   match(xRegI);
  4923   match(eAXRegI);
  4924   match(eBXRegI);
  4925   match(eCXRegI);
  4926   match(eDXRegI);
  4927   match(eDIRegI);
  4928   match(eSIRegI);
  4930   format %{ %}
  4931   interface(REG_INTER);
  4932 %}
  4934 // Subset of Integer Register
  4935 operand xRegI(eRegI reg) %{
  4936   constraint(ALLOC_IN_RC(x_reg));
  4937   match(reg);
  4938   match(eAXRegI);
  4939   match(eBXRegI);
  4940   match(eCXRegI);
  4941   match(eDXRegI);
  4943   format %{ %}
  4944   interface(REG_INTER);
  4945 %}
  4947 // Special Registers
  4948 operand eAXRegI(xRegI reg) %{
  4949   constraint(ALLOC_IN_RC(eax_reg));
  4950   match(reg);
  4951   match(eRegI);
  4953   format %{ "EAX" %}
  4954   interface(REG_INTER);
  4955 %}
  4957 // Special Registers
  4958 operand eBXRegI(xRegI reg) %{
  4959   constraint(ALLOC_IN_RC(ebx_reg));
  4960   match(reg);
  4961   match(eRegI);
  4963   format %{ "EBX" %}
  4964   interface(REG_INTER);
  4965 %}
  4967 operand eCXRegI(xRegI reg) %{
  4968   constraint(ALLOC_IN_RC(ecx_reg));
  4969   match(reg);
  4970   match(eRegI);
  4972   format %{ "ECX" %}
  4973   interface(REG_INTER);
  4974 %}
  4976 operand eDXRegI(xRegI reg) %{
  4977   constraint(ALLOC_IN_RC(edx_reg));
  4978   match(reg);
  4979   match(eRegI);
  4981   format %{ "EDX" %}
  4982   interface(REG_INTER);
  4983 %}
  4985 operand eDIRegI(xRegI reg) %{
  4986   constraint(ALLOC_IN_RC(edi_reg));
  4987   match(reg);
  4988   match(eRegI);
  4990   format %{ "EDI" %}
  4991   interface(REG_INTER);
  4992 %}
  4994 operand naxRegI() %{
  4995   constraint(ALLOC_IN_RC(nax_reg));
  4996   match(RegI);
  4997   match(eCXRegI);
  4998   match(eDXRegI);
  4999   match(eSIRegI);
  5000   match(eDIRegI);
  5002   format %{ %}
  5003   interface(REG_INTER);
  5004 %}
  5006 operand nadxRegI() %{
  5007   constraint(ALLOC_IN_RC(nadx_reg));
  5008   match(RegI);
  5009   match(eBXRegI);
  5010   match(eCXRegI);
  5011   match(eSIRegI);
  5012   match(eDIRegI);
  5014   format %{ %}
  5015   interface(REG_INTER);
  5016 %}
  5018 operand ncxRegI() %{
  5019   constraint(ALLOC_IN_RC(ncx_reg));
  5020   match(RegI);
  5021   match(eAXRegI);
  5022   match(eDXRegI);
  5023   match(eSIRegI);
  5024   match(eDIRegI);
  5026   format %{ %}
  5027   interface(REG_INTER);
  5028 %}
  5030 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  5031 // //
  5032 operand eSIRegI(xRegI reg) %{
  5033    constraint(ALLOC_IN_RC(esi_reg));
  5034    match(reg);
  5035    match(eRegI);
  5037    format %{ "ESI" %}
  5038    interface(REG_INTER);
  5039 %}
  5041 // Pointer Register
  5042 operand anyRegP() %{
  5043   constraint(ALLOC_IN_RC(any_reg));
  5044   match(RegP);
  5045   match(eAXRegP);
  5046   match(eBXRegP);
  5047   match(eCXRegP);
  5048   match(eDIRegP);
  5049   match(eRegP);
  5051   format %{ %}
  5052   interface(REG_INTER);
  5053 %}
  5055 operand eRegP() %{
  5056   constraint(ALLOC_IN_RC(e_reg));
  5057   match(RegP);
  5058   match(eAXRegP);
  5059   match(eBXRegP);
  5060   match(eCXRegP);
  5061   match(eDIRegP);
  5063   format %{ %}
  5064   interface(REG_INTER);
  5065 %}
  5067 // On windows95, EBP is not safe to use for implicit null tests.
  5068 operand eRegP_no_EBP() %{
  5069   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5070   match(RegP);
  5071   match(eAXRegP);
  5072   match(eBXRegP);
  5073   match(eCXRegP);
  5074   match(eDIRegP);
  5076   op_cost(100);
  5077   format %{ %}
  5078   interface(REG_INTER);
  5079 %}
  5081 operand naxRegP() %{
  5082   constraint(ALLOC_IN_RC(nax_reg));
  5083   match(RegP);
  5084   match(eBXRegP);
  5085   match(eDXRegP);
  5086   match(eCXRegP);
  5087   match(eSIRegP);
  5088   match(eDIRegP);
  5090   format %{ %}
  5091   interface(REG_INTER);
  5092 %}
  5094 operand nabxRegP() %{
  5095   constraint(ALLOC_IN_RC(nabx_reg));
  5096   match(RegP);
  5097   match(eCXRegP);
  5098   match(eDXRegP);
  5099   match(eSIRegP);
  5100   match(eDIRegP);
  5102   format %{ %}
  5103   interface(REG_INTER);
  5104 %}
  5106 operand pRegP() %{
  5107   constraint(ALLOC_IN_RC(p_reg));
  5108   match(RegP);
  5109   match(eBXRegP);
  5110   match(eDXRegP);
  5111   match(eSIRegP);
  5112   match(eDIRegP);
  5114   format %{ %}
  5115   interface(REG_INTER);
  5116 %}
  5118 // Special Registers
  5119 // Return a pointer value
  5120 operand eAXRegP(eRegP reg) %{
  5121   constraint(ALLOC_IN_RC(eax_reg));
  5122   match(reg);
  5123   format %{ "EAX" %}
  5124   interface(REG_INTER);
  5125 %}
  5127 // Used in AtomicAdd
  5128 operand eBXRegP(eRegP reg) %{
  5129   constraint(ALLOC_IN_RC(ebx_reg));
  5130   match(reg);
  5131   format %{ "EBX" %}
  5132   interface(REG_INTER);
  5133 %}
  5135 // Tail-call (interprocedural jump) to interpreter
  5136 operand eCXRegP(eRegP reg) %{
  5137   constraint(ALLOC_IN_RC(ecx_reg));
  5138   match(reg);
  5139   format %{ "ECX" %}
  5140   interface(REG_INTER);
  5141 %}
  5143 operand eSIRegP(eRegP reg) %{
  5144   constraint(ALLOC_IN_RC(esi_reg));
  5145   match(reg);
  5146   format %{ "ESI" %}
  5147   interface(REG_INTER);
  5148 %}
  5150 // Used in rep stosw
  5151 operand eDIRegP(eRegP reg) %{
  5152   constraint(ALLOC_IN_RC(edi_reg));
  5153   match(reg);
  5154   format %{ "EDI" %}
  5155   interface(REG_INTER);
  5156 %}
  5158 operand eBPRegP() %{
  5159   constraint(ALLOC_IN_RC(ebp_reg));
  5160   match(RegP);
  5161   format %{ "EBP" %}
  5162   interface(REG_INTER);
  5163 %}
  5165 operand eRegL() %{
  5166   constraint(ALLOC_IN_RC(long_reg));
  5167   match(RegL);
  5168   match(eADXRegL);
  5170   format %{ %}
  5171   interface(REG_INTER);
  5172 %}
  5174 operand eADXRegL( eRegL reg ) %{
  5175   constraint(ALLOC_IN_RC(eadx_reg));
  5176   match(reg);
  5178   format %{ "EDX:EAX" %}
  5179   interface(REG_INTER);
  5180 %}
  5182 operand eBCXRegL( eRegL reg ) %{
  5183   constraint(ALLOC_IN_RC(ebcx_reg));
  5184   match(reg);
  5186   format %{ "EBX:ECX" %}
  5187   interface(REG_INTER);
  5188 %}
  5190 // Special case for integer high multiply
  5191 operand eADXRegL_low_only() %{
  5192   constraint(ALLOC_IN_RC(eadx_reg));
  5193   match(RegL);
  5195   format %{ "EAX" %}
  5196   interface(REG_INTER);
  5197 %}
  5199 // Flags register, used as output of compare instructions
  5200 operand eFlagsReg() %{
  5201   constraint(ALLOC_IN_RC(int_flags));
  5202   match(RegFlags);
  5204   format %{ "EFLAGS" %}
  5205   interface(REG_INTER);
  5206 %}
  5208 // Flags register, used as output of FLOATING POINT compare instructions
  5209 operand eFlagsRegU() %{
  5210   constraint(ALLOC_IN_RC(int_flags));
  5211   match(RegFlags);
  5213   format %{ "EFLAGS_U" %}
  5214   interface(REG_INTER);
  5215 %}
  5217 operand eFlagsRegUCF() %{
  5218   constraint(ALLOC_IN_RC(int_flags));
  5219   match(RegFlags);
  5220   predicate(false);
  5222   format %{ "EFLAGS_U_CF" %}
  5223   interface(REG_INTER);
  5224 %}
  5226 // Condition Code Register used by long compare
  5227 operand flagsReg_long_LTGE() %{
  5228   constraint(ALLOC_IN_RC(int_flags));
  5229   match(RegFlags);
  5230   format %{ "FLAGS_LTGE" %}
  5231   interface(REG_INTER);
  5232 %}
  5233 operand flagsReg_long_EQNE() %{
  5234   constraint(ALLOC_IN_RC(int_flags));
  5235   match(RegFlags);
  5236   format %{ "FLAGS_EQNE" %}
  5237   interface(REG_INTER);
  5238 %}
  5239 operand flagsReg_long_LEGT() %{
  5240   constraint(ALLOC_IN_RC(int_flags));
  5241   match(RegFlags);
  5242   format %{ "FLAGS_LEGT" %}
  5243   interface(REG_INTER);
  5244 %}
  5246 // Float register operands
  5247 operand regD() %{
  5248   predicate( UseSSE < 2 );
  5249   constraint(ALLOC_IN_RC(dbl_reg));
  5250   match(RegD);
  5251   match(regDPR1);
  5252   match(regDPR2);
  5253   format %{ %}
  5254   interface(REG_INTER);
  5255 %}
  5257 operand regDPR1(regD reg) %{
  5258   predicate( UseSSE < 2 );
  5259   constraint(ALLOC_IN_RC(dbl_reg0));
  5260   match(reg);
  5261   format %{ "FPR1" %}
  5262   interface(REG_INTER);
  5263 %}
  5265 operand regDPR2(regD reg) %{
  5266   predicate( UseSSE < 2 );
  5267   constraint(ALLOC_IN_RC(dbl_reg1));
  5268   match(reg);
  5269   format %{ "FPR2" %}
  5270   interface(REG_INTER);
  5271 %}
  5273 operand regnotDPR1(regD reg) %{
  5274   predicate( UseSSE < 2 );
  5275   constraint(ALLOC_IN_RC(dbl_notreg0));
  5276   match(reg);
  5277   format %{ %}
  5278   interface(REG_INTER);
  5279 %}
  5281 // XMM Double register operands
  5282 operand regXD() %{
  5283   predicate( UseSSE>=2 );
  5284   constraint(ALLOC_IN_RC(xdb_reg));
  5285   match(RegD);
  5286   match(regXD6);
  5287   match(regXD7);
  5288   format %{ %}
  5289   interface(REG_INTER);
  5290 %}
  5292 // XMM6 double register operands
  5293 operand regXD6(regXD reg) %{
  5294   predicate( UseSSE>=2 );
  5295   constraint(ALLOC_IN_RC(xdb_reg6));
  5296   match(reg);
  5297   format %{ "XMM6" %}
  5298   interface(REG_INTER);
  5299 %}
  5301 // XMM7 double register operands
  5302 operand regXD7(regXD reg) %{
  5303   predicate( UseSSE>=2 );
  5304   constraint(ALLOC_IN_RC(xdb_reg7));
  5305   match(reg);
  5306   format %{ "XMM7" %}
  5307   interface(REG_INTER);
  5308 %}
  5310 // Float register operands
  5311 operand regF() %{
  5312   predicate( UseSSE < 2 );
  5313   constraint(ALLOC_IN_RC(flt_reg));
  5314   match(RegF);
  5315   match(regFPR1);
  5316   format %{ %}
  5317   interface(REG_INTER);
  5318 %}
  5320 // Float register operands
  5321 operand regFPR1(regF reg) %{
  5322   predicate( UseSSE < 2 );
  5323   constraint(ALLOC_IN_RC(flt_reg0));
  5324   match(reg);
  5325   format %{ "FPR1" %}
  5326   interface(REG_INTER);
  5327 %}
  5329 // XMM register operands
  5330 operand regX() %{
  5331   predicate( UseSSE>=1 );
  5332   constraint(ALLOC_IN_RC(xmm_reg));
  5333   match(RegF);
  5334   format %{ %}
  5335   interface(REG_INTER);
  5336 %}
  5339 //----------Memory Operands----------------------------------------------------
  5340 // Direct Memory Operand
  5341 operand direct(immP addr) %{
  5342   match(addr);
  5344   format %{ "[$addr]" %}
  5345   interface(MEMORY_INTER) %{
  5346     base(0xFFFFFFFF);
  5347     index(0x4);
  5348     scale(0x0);
  5349     disp($addr);
  5350   %}
  5351 %}
  5353 // Indirect Memory Operand
  5354 operand indirect(eRegP reg) %{
  5355   constraint(ALLOC_IN_RC(e_reg));
  5356   match(reg);
  5358   format %{ "[$reg]" %}
  5359   interface(MEMORY_INTER) %{
  5360     base($reg);
  5361     index(0x4);
  5362     scale(0x0);
  5363     disp(0x0);
  5364   %}
  5365 %}
  5367 // Indirect Memory Plus Short Offset Operand
  5368 operand indOffset8(eRegP reg, immI8 off) %{
  5369   match(AddP reg off);
  5371   format %{ "[$reg + $off]" %}
  5372   interface(MEMORY_INTER) %{
  5373     base($reg);
  5374     index(0x4);
  5375     scale(0x0);
  5376     disp($off);
  5377   %}
  5378 %}
  5380 // Indirect Memory Plus Long Offset Operand
  5381 operand indOffset32(eRegP reg, immI off) %{
  5382   match(AddP reg off);
  5384   format %{ "[$reg + $off]" %}
  5385   interface(MEMORY_INTER) %{
  5386     base($reg);
  5387     index(0x4);
  5388     scale(0x0);
  5389     disp($off);
  5390   %}
  5391 %}
  5393 // Indirect Memory Plus Long Offset Operand
  5394 operand indOffset32X(eRegI reg, immP off) %{
  5395   match(AddP off reg);
  5397   format %{ "[$reg + $off]" %}
  5398   interface(MEMORY_INTER) %{
  5399     base($reg);
  5400     index(0x4);
  5401     scale(0x0);
  5402     disp($off);
  5403   %}
  5404 %}
  5406 // Indirect Memory Plus Index Register Plus Offset Operand
  5407 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5408   match(AddP (AddP reg ireg) off);
  5410   op_cost(10);
  5411   format %{"[$reg + $off + $ireg]" %}
  5412   interface(MEMORY_INTER) %{
  5413     base($reg);
  5414     index($ireg);
  5415     scale(0x0);
  5416     disp($off);
  5417   %}
  5418 %}
  5420 // Indirect Memory Plus Index Register Plus Offset Operand
  5421 operand indIndex(eRegP reg, eRegI ireg) %{
  5422   match(AddP reg ireg);
  5424   op_cost(10);
  5425   format %{"[$reg + $ireg]" %}
  5426   interface(MEMORY_INTER) %{
  5427     base($reg);
  5428     index($ireg);
  5429     scale(0x0);
  5430     disp(0x0);
  5431   %}
  5432 %}
  5434 // // -------------------------------------------------------------------------
  5435 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5436 // // -------------------------------------------------------------------------
  5437 // // Scaled Memory Operands
  5438 // // Indirect Memory Times Scale Plus Offset Operand
  5439 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5440 //   match(AddP off (LShiftI ireg scale));
  5441 //
  5442 //   op_cost(10);
  5443 //   format %{"[$off + $ireg << $scale]" %}
  5444 //   interface(MEMORY_INTER) %{
  5445 //     base(0x4);
  5446 //     index($ireg);
  5447 //     scale($scale);
  5448 //     disp($off);
  5449 //   %}
  5450 // %}
  5452 // Indirect Memory Times Scale Plus Index Register
  5453 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5454   match(AddP reg (LShiftI ireg scale));
  5456   op_cost(10);
  5457   format %{"[$reg + $ireg << $scale]" %}
  5458   interface(MEMORY_INTER) %{
  5459     base($reg);
  5460     index($ireg);
  5461     scale($scale);
  5462     disp(0x0);
  5463   %}
  5464 %}
  5466 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5467 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5468   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5470   op_cost(10);
  5471   format %{"[$reg + $off + $ireg << $scale]" %}
  5472   interface(MEMORY_INTER) %{
  5473     base($reg);
  5474     index($ireg);
  5475     scale($scale);
  5476     disp($off);
  5477   %}
  5478 %}
  5480 //----------Load Long Memory Operands------------------------------------------
  5481 // The load-long idiom will use it's address expression again after loading
  5482 // the first word of the long.  If the load-long destination overlaps with
  5483 // registers used in the addressing expression, the 2nd half will be loaded
  5484 // from a clobbered address.  Fix this by requiring that load-long use
  5485 // address registers that do not overlap with the load-long target.
  5487 // load-long support
  5488 operand load_long_RegP() %{
  5489   constraint(ALLOC_IN_RC(esi_reg));
  5490   match(RegP);
  5491   match(eSIRegP);
  5492   op_cost(100);
  5493   format %{  %}
  5494   interface(REG_INTER);
  5495 %}
  5497 // Indirect Memory Operand Long
  5498 operand load_long_indirect(load_long_RegP reg) %{
  5499   constraint(ALLOC_IN_RC(esi_reg));
  5500   match(reg);
  5502   format %{ "[$reg]" %}
  5503   interface(MEMORY_INTER) %{
  5504     base($reg);
  5505     index(0x4);
  5506     scale(0x0);
  5507     disp(0x0);
  5508   %}
  5509 %}
  5511 // Indirect Memory Plus Long Offset Operand
  5512 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5513   match(AddP reg off);
  5515   format %{ "[$reg + $off]" %}
  5516   interface(MEMORY_INTER) %{
  5517     base($reg);
  5518     index(0x4);
  5519     scale(0x0);
  5520     disp($off);
  5521   %}
  5522 %}
  5524 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5527 //----------Special Memory Operands--------------------------------------------
  5528 // Stack Slot Operand - This operand is used for loading and storing temporary
  5529 //                      values on the stack where a match requires a value to
  5530 //                      flow through memory.
  5531 operand stackSlotP(sRegP reg) %{
  5532   constraint(ALLOC_IN_RC(stack_slots));
  5533   // No match rule because this operand is only generated in matching
  5534   format %{ "[$reg]" %}
  5535   interface(MEMORY_INTER) %{
  5536     base(0x4);   // ESP
  5537     index(0x4);  // No Index
  5538     scale(0x0);  // No Scale
  5539     disp($reg);  // Stack Offset
  5540   %}
  5541 %}
  5543 operand stackSlotI(sRegI reg) %{
  5544   constraint(ALLOC_IN_RC(stack_slots));
  5545   // No match rule because this operand is only generated in matching
  5546   format %{ "[$reg]" %}
  5547   interface(MEMORY_INTER) %{
  5548     base(0x4);   // ESP
  5549     index(0x4);  // No Index
  5550     scale(0x0);  // No Scale
  5551     disp($reg);  // Stack Offset
  5552   %}
  5553 %}
  5555 operand stackSlotF(sRegF reg) %{
  5556   constraint(ALLOC_IN_RC(stack_slots));
  5557   // No match rule because this operand is only generated in matching
  5558   format %{ "[$reg]" %}
  5559   interface(MEMORY_INTER) %{
  5560     base(0x4);   // ESP
  5561     index(0x4);  // No Index
  5562     scale(0x0);  // No Scale
  5563     disp($reg);  // Stack Offset
  5564   %}
  5565 %}
  5567 operand stackSlotD(sRegD reg) %{
  5568   constraint(ALLOC_IN_RC(stack_slots));
  5569   // No match rule because this operand is only generated in matching
  5570   format %{ "[$reg]" %}
  5571   interface(MEMORY_INTER) %{
  5572     base(0x4);   // ESP
  5573     index(0x4);  // No Index
  5574     scale(0x0);  // No Scale
  5575     disp($reg);  // Stack Offset
  5576   %}
  5577 %}
  5579 operand stackSlotL(sRegL reg) %{
  5580   constraint(ALLOC_IN_RC(stack_slots));
  5581   // No match rule because this operand is only generated in matching
  5582   format %{ "[$reg]" %}
  5583   interface(MEMORY_INTER) %{
  5584     base(0x4);   // ESP
  5585     index(0x4);  // No Index
  5586     scale(0x0);  // No Scale
  5587     disp($reg);  // Stack Offset
  5588   %}
  5589 %}
  5591 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5592 // Indirect Memory Operand
  5593 operand indirect_win95_safe(eRegP_no_EBP reg)
  5594 %{
  5595   constraint(ALLOC_IN_RC(e_reg));
  5596   match(reg);
  5598   op_cost(100);
  5599   format %{ "[$reg]" %}
  5600   interface(MEMORY_INTER) %{
  5601     base($reg);
  5602     index(0x4);
  5603     scale(0x0);
  5604     disp(0x0);
  5605   %}
  5606 %}
  5608 // Indirect Memory Plus Short Offset Operand
  5609 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5610 %{
  5611   match(AddP reg off);
  5613   op_cost(100);
  5614   format %{ "[$reg + $off]" %}
  5615   interface(MEMORY_INTER) %{
  5616     base($reg);
  5617     index(0x4);
  5618     scale(0x0);
  5619     disp($off);
  5620   %}
  5621 %}
  5623 // Indirect Memory Plus Long Offset Operand
  5624 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5625 %{
  5626   match(AddP reg off);
  5628   op_cost(100);
  5629   format %{ "[$reg + $off]" %}
  5630   interface(MEMORY_INTER) %{
  5631     base($reg);
  5632     index(0x4);
  5633     scale(0x0);
  5634     disp($off);
  5635   %}
  5636 %}
  5638 // Indirect Memory Plus Index Register Plus Offset Operand
  5639 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5640 %{
  5641   match(AddP (AddP reg ireg) off);
  5643   op_cost(100);
  5644   format %{"[$reg + $off + $ireg]" %}
  5645   interface(MEMORY_INTER) %{
  5646     base($reg);
  5647     index($ireg);
  5648     scale(0x0);
  5649     disp($off);
  5650   %}
  5651 %}
  5653 // Indirect Memory Times Scale Plus Index Register
  5654 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5655 %{
  5656   match(AddP reg (LShiftI ireg scale));
  5658   op_cost(100);
  5659   format %{"[$reg + $ireg << $scale]" %}
  5660   interface(MEMORY_INTER) %{
  5661     base($reg);
  5662     index($ireg);
  5663     scale($scale);
  5664     disp(0x0);
  5665   %}
  5666 %}
  5668 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5669 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5670 %{
  5671   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5673   op_cost(100);
  5674   format %{"[$reg + $off + $ireg << $scale]" %}
  5675   interface(MEMORY_INTER) %{
  5676     base($reg);
  5677     index($ireg);
  5678     scale($scale);
  5679     disp($off);
  5680   %}
  5681 %}
  5683 //----------Conditional Branch Operands----------------------------------------
  5684 // Comparison Op  - This is the operation of the comparison, and is limited to
  5685 //                  the following set of codes:
  5686 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5687 //
  5688 // Other attributes of the comparison, such as unsignedness, are specified
  5689 // by the comparison instruction that sets a condition code flags register.
  5690 // That result is represented by a flags operand whose subtype is appropriate
  5691 // to the unsignedness (etc.) of the comparison.
  5692 //
  5693 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5694 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5695 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5697 // Comparision Code
  5698 operand cmpOp() %{
  5699   match(Bool);
  5701   format %{ "" %}
  5702   interface(COND_INTER) %{
  5703     equal(0x4, "e");
  5704     not_equal(0x5, "ne");
  5705     less(0xC, "l");
  5706     greater_equal(0xD, "ge");
  5707     less_equal(0xE, "le");
  5708     greater(0xF, "g");
  5709   %}
  5710 %}
  5712 // Comparison Code, unsigned compare.  Used by FP also, with
  5713 // C2 (unordered) turned into GT or LT already.  The other bits
  5714 // C0 and C3 are turned into Carry & Zero flags.
  5715 operand cmpOpU() %{
  5716   match(Bool);
  5718   format %{ "" %}
  5719   interface(COND_INTER) %{
  5720     equal(0x4, "e");
  5721     not_equal(0x5, "ne");
  5722     less(0x2, "b");
  5723     greater_equal(0x3, "nb");
  5724     less_equal(0x6, "be");
  5725     greater(0x7, "nbe");
  5726   %}
  5727 %}
  5729 // Floating comparisons that don't require any fixup for the unordered case
  5730 operand cmpOpUCF() %{
  5731   match(Bool);
  5732   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5733             n->as_Bool()->_test._test == BoolTest::ge ||
  5734             n->as_Bool()->_test._test == BoolTest::le ||
  5735             n->as_Bool()->_test._test == BoolTest::gt);
  5736   format %{ "" %}
  5737   interface(COND_INTER) %{
  5738     equal(0x4, "e");
  5739     not_equal(0x5, "ne");
  5740     less(0x2, "b");
  5741     greater_equal(0x3, "nb");
  5742     less_equal(0x6, "be");
  5743     greater(0x7, "nbe");
  5744   %}
  5745 %}
  5748 // Floating comparisons that can be fixed up with extra conditional jumps
  5749 operand cmpOpUCF2() %{
  5750   match(Bool);
  5751   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5752             n->as_Bool()->_test._test == BoolTest::eq);
  5753   format %{ "" %}
  5754   interface(COND_INTER) %{
  5755     equal(0x4, "e");
  5756     not_equal(0x5, "ne");
  5757     less(0x2, "b");
  5758     greater_equal(0x3, "nb");
  5759     less_equal(0x6, "be");
  5760     greater(0x7, "nbe");
  5761   %}
  5762 %}
  5764 // Comparison Code for FP conditional move
  5765 operand cmpOp_fcmov() %{
  5766   match(Bool);
  5768   format %{ "" %}
  5769   interface(COND_INTER) %{
  5770     equal        (0x0C8);
  5771     not_equal    (0x1C8);
  5772     less         (0x0C0);
  5773     greater_equal(0x1C0);
  5774     less_equal   (0x0D0);
  5775     greater      (0x1D0);
  5776   %}
  5777 %}
  5779 // Comparision Code used in long compares
  5780 operand cmpOp_commute() %{
  5781   match(Bool);
  5783   format %{ "" %}
  5784   interface(COND_INTER) %{
  5785     equal(0x4, "e");
  5786     not_equal(0x5, "ne");
  5787     less(0xF, "g");
  5788     greater_equal(0xE, "le");
  5789     less_equal(0xD, "ge");
  5790     greater(0xC, "l");
  5791   %}
  5792 %}
  5794 //----------OPERAND CLASSES----------------------------------------------------
  5795 // Operand Classes are groups of operands that are used as to simplify
  5796 // instruction definitions by not requiring the AD writer to specify separate
  5797 // instructions for every form of operand when the instruction accepts
  5798 // multiple operand types with the same basic encoding and format.  The classic
  5799 // case of this is memory operands.
  5801 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5802                indIndex, indIndexScale, indIndexScaleOffset);
  5804 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5805 // This means some kind of offset is always required and you cannot use
  5806 // an oop as the offset (done when working on static globals).
  5807 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5808                     indIndex, indIndexScale, indIndexScaleOffset);
  5811 //----------PIPELINE-----------------------------------------------------------
  5812 // Rules which define the behavior of the target architectures pipeline.
  5813 pipeline %{
  5815 //----------ATTRIBUTES---------------------------------------------------------
  5816 attributes %{
  5817   variable_size_instructions;        // Fixed size instructions
  5818   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5819   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5820   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5821   instruction_fetch_units = 1;       // of 16 bytes
  5823   // List of nop instructions
  5824   nops( MachNop );
  5825 %}
  5827 //----------RESOURCES----------------------------------------------------------
  5828 // Resources are the functional units available to the machine
  5830 // Generic P2/P3 pipeline
  5831 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5832 // 3 instructions decoded per cycle.
  5833 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5834 // 2 ALU op, only ALU0 handles mul/div instructions.
  5835 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5836            MS0, MS1, MEM = MS0 | MS1,
  5837            BR, FPU,
  5838            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5840 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5841 // Pipeline Description specifies the stages in the machine's pipeline
  5843 // Generic P2/P3 pipeline
  5844 pipe_desc(S0, S1, S2, S3, S4, S5);
  5846 //----------PIPELINE CLASSES---------------------------------------------------
  5847 // Pipeline Classes describe the stages in which input and output are
  5848 // referenced by the hardware pipeline.
  5850 // Naming convention: ialu or fpu
  5851 // Then: _reg
  5852 // Then: _reg if there is a 2nd register
  5853 // Then: _long if it's a pair of instructions implementing a long
  5854 // Then: _fat if it requires the big decoder
  5855 //   Or: _mem if it requires the big decoder and a memory unit.
  5857 // Integer ALU reg operation
  5858 pipe_class ialu_reg(eRegI dst) %{
  5859     single_instruction;
  5860     dst    : S4(write);
  5861     dst    : S3(read);
  5862     DECODE : S0;        // any decoder
  5863     ALU    : S3;        // any alu
  5864 %}
  5866 // Long ALU reg operation
  5867 pipe_class ialu_reg_long(eRegL dst) %{
  5868     instruction_count(2);
  5869     dst    : S4(write);
  5870     dst    : S3(read);
  5871     DECODE : S0(2);     // any 2 decoders
  5872     ALU    : S3(2);     // both alus
  5873 %}
  5875 // Integer ALU reg operation using big decoder
  5876 pipe_class ialu_reg_fat(eRegI dst) %{
  5877     single_instruction;
  5878     dst    : S4(write);
  5879     dst    : S3(read);
  5880     D0     : S0;        // big decoder only
  5881     ALU    : S3;        // any alu
  5882 %}
  5884 // Long ALU reg operation using big decoder
  5885 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5886     instruction_count(2);
  5887     dst    : S4(write);
  5888     dst    : S3(read);
  5889     D0     : S0(2);     // big decoder only; twice
  5890     ALU    : S3(2);     // any 2 alus
  5891 %}
  5893 // Integer ALU reg-reg operation
  5894 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5895     single_instruction;
  5896     dst    : S4(write);
  5897     src    : S3(read);
  5898     DECODE : S0;        // any decoder
  5899     ALU    : S3;        // any alu
  5900 %}
  5902 // Long ALU reg-reg operation
  5903 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5904     instruction_count(2);
  5905     dst    : S4(write);
  5906     src    : S3(read);
  5907     DECODE : S0(2);     // any 2 decoders
  5908     ALU    : S3(2);     // both alus
  5909 %}
  5911 // Integer ALU reg-reg operation
  5912 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5913     single_instruction;
  5914     dst    : S4(write);
  5915     src    : S3(read);
  5916     D0     : S0;        // big decoder only
  5917     ALU    : S3;        // any alu
  5918 %}
  5920 // Long ALU reg-reg operation
  5921 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5922     instruction_count(2);
  5923     dst    : S4(write);
  5924     src    : S3(read);
  5925     D0     : S0(2);     // big decoder only; twice
  5926     ALU    : S3(2);     // both alus
  5927 %}
  5929 // Integer ALU reg-mem operation
  5930 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5931     single_instruction;
  5932     dst    : S5(write);
  5933     mem    : S3(read);
  5934     D0     : S0;        // big decoder only
  5935     ALU    : S4;        // any alu
  5936     MEM    : S3;        // any mem
  5937 %}
  5939 // Long ALU reg-mem operation
  5940 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5941     instruction_count(2);
  5942     dst    : S5(write);
  5943     mem    : S3(read);
  5944     D0     : S0(2);     // big decoder only; twice
  5945     ALU    : S4(2);     // any 2 alus
  5946     MEM    : S3(2);     // both mems
  5947 %}
  5949 // Integer mem operation (prefetch)
  5950 pipe_class ialu_mem(memory mem)
  5951 %{
  5952     single_instruction;
  5953     mem    : S3(read);
  5954     D0     : S0;        // big decoder only
  5955     MEM    : S3;        // any mem
  5956 %}
  5958 // Integer Store to Memory
  5959 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5960     single_instruction;
  5961     mem    : S3(read);
  5962     src    : S5(read);
  5963     D0     : S0;        // big decoder only
  5964     ALU    : S4;        // any alu
  5965     MEM    : S3;
  5966 %}
  5968 // Long Store to Memory
  5969 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5970     instruction_count(2);
  5971     mem    : S3(read);
  5972     src    : S5(read);
  5973     D0     : S0(2);     // big decoder only; twice
  5974     ALU    : S4(2);     // any 2 alus
  5975     MEM    : S3(2);     // Both mems
  5976 %}
  5978 // Integer Store to Memory
  5979 pipe_class ialu_mem_imm(memory mem) %{
  5980     single_instruction;
  5981     mem    : S3(read);
  5982     D0     : S0;        // big decoder only
  5983     ALU    : S4;        // any alu
  5984     MEM    : S3;
  5985 %}
  5987 // Integer ALU0 reg-reg operation
  5988 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5989     single_instruction;
  5990     dst    : S4(write);
  5991     src    : S3(read);
  5992     D0     : S0;        // Big decoder only
  5993     ALU0   : S3;        // only alu0
  5994 %}
  5996 // Integer ALU0 reg-mem operation
  5997 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5998     single_instruction;
  5999     dst    : S5(write);
  6000     mem    : S3(read);
  6001     D0     : S0;        // big decoder only
  6002     ALU0   : S4;        // ALU0 only
  6003     MEM    : S3;        // any mem
  6004 %}
  6006 // Integer ALU reg-reg operation
  6007 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  6008     single_instruction;
  6009     cr     : S4(write);
  6010     src1   : S3(read);
  6011     src2   : S3(read);
  6012     DECODE : S0;        // any decoder
  6013     ALU    : S3;        // any alu
  6014 %}
  6016 // Integer ALU reg-imm operation
  6017 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  6018     single_instruction;
  6019     cr     : S4(write);
  6020     src1   : S3(read);
  6021     DECODE : S0;        // any decoder
  6022     ALU    : S3;        // any alu
  6023 %}
  6025 // Integer ALU reg-mem operation
  6026 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  6027     single_instruction;
  6028     cr     : S4(write);
  6029     src1   : S3(read);
  6030     src2   : S3(read);
  6031     D0     : S0;        // big decoder only
  6032     ALU    : S4;        // any alu
  6033     MEM    : S3;
  6034 %}
  6036 // Conditional move reg-reg
  6037 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  6038     instruction_count(4);
  6039     y      : S4(read);
  6040     q      : S3(read);
  6041     p      : S3(read);
  6042     DECODE : S0(4);     // any decoder
  6043 %}
  6045 // Conditional move reg-reg
  6046 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  6047     single_instruction;
  6048     dst    : S4(write);
  6049     src    : S3(read);
  6050     cr     : S3(read);
  6051     DECODE : S0;        // any decoder
  6052 %}
  6054 // Conditional move reg-mem
  6055 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  6056     single_instruction;
  6057     dst    : S4(write);
  6058     src    : S3(read);
  6059     cr     : S3(read);
  6060     DECODE : S0;        // any decoder
  6061     MEM    : S3;
  6062 %}
  6064 // Conditional move reg-reg long
  6065 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6066     single_instruction;
  6067     dst    : S4(write);
  6068     src    : S3(read);
  6069     cr     : S3(read);
  6070     DECODE : S0(2);     // any 2 decoders
  6071 %}
  6073 // Conditional move double reg-reg
  6074 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6075     single_instruction;
  6076     dst    : S4(write);
  6077     src    : S3(read);
  6078     cr     : S3(read);
  6079     DECODE : S0;        // any decoder
  6080 %}
  6082 // Float reg-reg operation
  6083 pipe_class fpu_reg(regD dst) %{
  6084     instruction_count(2);
  6085     dst    : S3(read);
  6086     DECODE : S0(2);     // any 2 decoders
  6087     FPU    : S3;
  6088 %}
  6090 // Float reg-reg operation
  6091 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6092     instruction_count(2);
  6093     dst    : S4(write);
  6094     src    : S3(read);
  6095     DECODE : S0(2);     // any 2 decoders
  6096     FPU    : S3;
  6097 %}
  6099 // Float reg-reg operation
  6100 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6101     instruction_count(3);
  6102     dst    : S4(write);
  6103     src1   : S3(read);
  6104     src2   : S3(read);
  6105     DECODE : S0(3);     // any 3 decoders
  6106     FPU    : S3(2);
  6107 %}
  6109 // Float reg-reg operation
  6110 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6111     instruction_count(4);
  6112     dst    : S4(write);
  6113     src1   : S3(read);
  6114     src2   : S3(read);
  6115     src3   : S3(read);
  6116     DECODE : S0(4);     // any 3 decoders
  6117     FPU    : S3(2);
  6118 %}
  6120 // Float reg-reg operation
  6121 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6122     instruction_count(4);
  6123     dst    : S4(write);
  6124     src1   : S3(read);
  6125     src2   : S3(read);
  6126     src3   : S3(read);
  6127     DECODE : S1(3);     // any 3 decoders
  6128     D0     : S0;        // Big decoder only
  6129     FPU    : S3(2);
  6130     MEM    : S3;
  6131 %}
  6133 // Float reg-mem operation
  6134 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6135     instruction_count(2);
  6136     dst    : S5(write);
  6137     mem    : S3(read);
  6138     D0     : S0;        // big decoder only
  6139     DECODE : S1;        // any decoder for FPU POP
  6140     FPU    : S4;
  6141     MEM    : S3;        // any mem
  6142 %}
  6144 // Float reg-mem operation
  6145 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6146     instruction_count(3);
  6147     dst    : S5(write);
  6148     src1   : S3(read);
  6149     mem    : S3(read);
  6150     D0     : S0;        // big decoder only
  6151     DECODE : S1(2);     // any decoder for FPU POP
  6152     FPU    : S4;
  6153     MEM    : S3;        // any mem
  6154 %}
  6156 // Float mem-reg operation
  6157 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6158     instruction_count(2);
  6159     src    : S5(read);
  6160     mem    : S3(read);
  6161     DECODE : S0;        // any decoder for FPU PUSH
  6162     D0     : S1;        // big decoder only
  6163     FPU    : S4;
  6164     MEM    : S3;        // any mem
  6165 %}
  6167 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6168     instruction_count(3);
  6169     src1   : S3(read);
  6170     src2   : S3(read);
  6171     mem    : S3(read);
  6172     DECODE : S0(2);     // any decoder for FPU PUSH
  6173     D0     : S1;        // big decoder only
  6174     FPU    : S4;
  6175     MEM    : S3;        // any mem
  6176 %}
  6178 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6179     instruction_count(3);
  6180     src1   : S3(read);
  6181     src2   : S3(read);
  6182     mem    : S4(read);
  6183     DECODE : S0;        // any decoder for FPU PUSH
  6184     D0     : S0(2);     // big decoder only
  6185     FPU    : S4;
  6186     MEM    : S3(2);     // any mem
  6187 %}
  6189 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6190     instruction_count(2);
  6191     src1   : S3(read);
  6192     dst    : S4(read);
  6193     D0     : S0(2);     // big decoder only
  6194     MEM    : S3(2);     // any mem
  6195 %}
  6197 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6198     instruction_count(3);
  6199     src1   : S3(read);
  6200     src2   : S3(read);
  6201     dst    : S4(read);
  6202     D0     : S0(3);     // big decoder only
  6203     FPU    : S4;
  6204     MEM    : S3(3);     // any mem
  6205 %}
  6207 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6208     instruction_count(3);
  6209     src1   : S4(read);
  6210     mem    : S4(read);
  6211     DECODE : S0;        // any decoder for FPU PUSH
  6212     D0     : S0(2);     // big decoder only
  6213     FPU    : S4;
  6214     MEM    : S3(2);     // any mem
  6215 %}
  6217 // Float load constant
  6218 pipe_class fpu_reg_con(regD dst) %{
  6219     instruction_count(2);
  6220     dst    : S5(write);
  6221     D0     : S0;        // big decoder only for the load
  6222     DECODE : S1;        // any decoder for FPU POP
  6223     FPU    : S4;
  6224     MEM    : S3;        // any mem
  6225 %}
  6227 // Float load constant
  6228 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6229     instruction_count(3);
  6230     dst    : S5(write);
  6231     src    : S3(read);
  6232     D0     : S0;        // big decoder only for the load
  6233     DECODE : S1(2);     // any decoder for FPU POP
  6234     FPU    : S4;
  6235     MEM    : S3;        // any mem
  6236 %}
  6238 // UnConditional branch
  6239 pipe_class pipe_jmp( label labl ) %{
  6240     single_instruction;
  6241     BR   : S3;
  6242 %}
  6244 // Conditional branch
  6245 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6246     single_instruction;
  6247     cr    : S1(read);
  6248     BR    : S3;
  6249 %}
  6251 // Allocation idiom
  6252 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6253     instruction_count(1); force_serialization;
  6254     fixed_latency(6);
  6255     heap_ptr : S3(read);
  6256     DECODE   : S0(3);
  6257     D0       : S2;
  6258     MEM      : S3;
  6259     ALU      : S3(2);
  6260     dst      : S5(write);
  6261     BR       : S5;
  6262 %}
  6264 // Generic big/slow expanded idiom
  6265 pipe_class pipe_slow(  ) %{
  6266     instruction_count(10); multiple_bundles; force_serialization;
  6267     fixed_latency(100);
  6268     D0  : S0(2);
  6269     MEM : S3(2);
  6270 %}
  6272 // The real do-nothing guy
  6273 pipe_class empty( ) %{
  6274     instruction_count(0);
  6275 %}
  6277 // Define the class for the Nop node
  6278 define %{
  6279    MachNop = empty;
  6280 %}
  6282 %}
  6284 //----------INSTRUCTIONS-------------------------------------------------------
  6285 //
  6286 // match      -- States which machine-independent subtree may be replaced
  6287 //               by this instruction.
  6288 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6289 //               selection to identify a minimum cost tree of machine
  6290 //               instructions that matches a tree of machine-independent
  6291 //               instructions.
  6292 // format     -- A string providing the disassembly for this instruction.
  6293 //               The value of an instruction's operand may be inserted
  6294 //               by referring to it with a '$' prefix.
  6295 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6296 //               to within an encode class as $primary, $secondary, and $tertiary
  6297 //               respectively.  The primary opcode is commonly used to
  6298 //               indicate the type of machine instruction, while secondary
  6299 //               and tertiary are often used for prefix options or addressing
  6300 //               modes.
  6301 // ins_encode -- A list of encode classes with parameters. The encode class
  6302 //               name must have been defined in an 'enc_class' specification
  6303 //               in the encode section of the architecture description.
  6305 //----------BSWAP-Instruction--------------------------------------------------
  6306 instruct bytes_reverse_int(eRegI dst) %{
  6307   match(Set dst (ReverseBytesI dst));
  6309   format %{ "BSWAP  $dst" %}
  6310   opcode(0x0F, 0xC8);
  6311   ins_encode( OpcP, OpcSReg(dst) );
  6312   ins_pipe( ialu_reg );
  6313 %}
  6315 instruct bytes_reverse_long(eRegL dst) %{
  6316   match(Set dst (ReverseBytesL dst));
  6318   format %{ "BSWAP  $dst.lo\n\t"
  6319             "BSWAP  $dst.hi\n\t"
  6320             "XCHG   $dst.lo $dst.hi" %}
  6322   ins_cost(125);
  6323   ins_encode( bswap_long_bytes(dst) );
  6324   ins_pipe( ialu_reg_reg);
  6325 %}
  6327 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  6328   match(Set dst (ReverseBytesUS dst));
  6330   format %{ "BSWAP  $dst\n\t" 
  6331             "SHR    $dst,16\n\t" %}
  6332   ins_encode %{
  6333     __ bswapl($dst$$Register);
  6334     __ shrl($dst$$Register, 16); 
  6335   %}
  6336   ins_pipe( ialu_reg );
  6337 %}
  6339 instruct bytes_reverse_short(eRegI dst) %{
  6340   match(Set dst (ReverseBytesS dst));
  6342   format %{ "BSWAP  $dst\n\t" 
  6343             "SAR    $dst,16\n\t" %}
  6344   ins_encode %{
  6345     __ bswapl($dst$$Register);
  6346     __ sarl($dst$$Register, 16); 
  6347   %}
  6348   ins_pipe( ialu_reg );
  6349 %}
  6352 //---------- Zeros Count Instructions ------------------------------------------
  6354 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6355   predicate(UseCountLeadingZerosInstruction);
  6356   match(Set dst (CountLeadingZerosI src));
  6357   effect(KILL cr);
  6359   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6360   ins_encode %{
  6361     __ lzcntl($dst$$Register, $src$$Register);
  6362   %}
  6363   ins_pipe(ialu_reg);
  6364 %}
  6366 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6367   predicate(!UseCountLeadingZerosInstruction);
  6368   match(Set dst (CountLeadingZerosI src));
  6369   effect(KILL cr);
  6371   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6372             "JNZ    skip\n\t"
  6373             "MOV    $dst, -1\n"
  6374       "skip:\n\t"
  6375             "NEG    $dst\n\t"
  6376             "ADD    $dst, 31" %}
  6377   ins_encode %{
  6378     Register Rdst = $dst$$Register;
  6379     Register Rsrc = $src$$Register;
  6380     Label skip;
  6381     __ bsrl(Rdst, Rsrc);
  6382     __ jccb(Assembler::notZero, skip);
  6383     __ movl(Rdst, -1);
  6384     __ bind(skip);
  6385     __ negl(Rdst);
  6386     __ addl(Rdst, BitsPerInt - 1);
  6387   %}
  6388   ins_pipe(ialu_reg);
  6389 %}
  6391 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6392   predicate(UseCountLeadingZerosInstruction);
  6393   match(Set dst (CountLeadingZerosL src));
  6394   effect(TEMP dst, KILL cr);
  6396   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6397             "JNC    done\n\t"
  6398             "LZCNT  $dst, $src.lo\n\t"
  6399             "ADD    $dst, 32\n"
  6400       "done:" %}
  6401   ins_encode %{
  6402     Register Rdst = $dst$$Register;
  6403     Register Rsrc = $src$$Register;
  6404     Label done;
  6405     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6406     __ jccb(Assembler::carryClear, done);
  6407     __ lzcntl(Rdst, Rsrc);
  6408     __ addl(Rdst, BitsPerInt);
  6409     __ bind(done);
  6410   %}
  6411   ins_pipe(ialu_reg);
  6412 %}
  6414 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6415   predicate(!UseCountLeadingZerosInstruction);
  6416   match(Set dst (CountLeadingZerosL src));
  6417   effect(TEMP dst, KILL cr);
  6419   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6420             "JZ     msw_is_zero\n\t"
  6421             "ADD    $dst, 32\n\t"
  6422             "JMP    not_zero\n"
  6423       "msw_is_zero:\n\t"
  6424             "BSR    $dst, $src.lo\n\t"
  6425             "JNZ    not_zero\n\t"
  6426             "MOV    $dst, -1\n"
  6427       "not_zero:\n\t"
  6428             "NEG    $dst\n\t"
  6429             "ADD    $dst, 63\n" %}
  6430  ins_encode %{
  6431     Register Rdst = $dst$$Register;
  6432     Register Rsrc = $src$$Register;
  6433     Label msw_is_zero;
  6434     Label not_zero;
  6435     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6436     __ jccb(Assembler::zero, msw_is_zero);
  6437     __ addl(Rdst, BitsPerInt);
  6438     __ jmpb(not_zero);
  6439     __ bind(msw_is_zero);
  6440     __ bsrl(Rdst, Rsrc);
  6441     __ jccb(Assembler::notZero, not_zero);
  6442     __ movl(Rdst, -1);
  6443     __ bind(not_zero);
  6444     __ negl(Rdst);
  6445     __ addl(Rdst, BitsPerLong - 1);
  6446   %}
  6447   ins_pipe(ialu_reg);
  6448 %}
  6450 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6451   match(Set dst (CountTrailingZerosI src));
  6452   effect(KILL cr);
  6454   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6455             "JNZ    done\n\t"
  6456             "MOV    $dst, 32\n"
  6457       "done:" %}
  6458   ins_encode %{
  6459     Register Rdst = $dst$$Register;
  6460     Label done;
  6461     __ bsfl(Rdst, $src$$Register);
  6462     __ jccb(Assembler::notZero, done);
  6463     __ movl(Rdst, BitsPerInt);
  6464     __ bind(done);
  6465   %}
  6466   ins_pipe(ialu_reg);
  6467 %}
  6469 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6470   match(Set dst (CountTrailingZerosL src));
  6471   effect(TEMP dst, KILL cr);
  6473   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6474             "JNZ    done\n\t"
  6475             "BSF    $dst, $src.hi\n\t"
  6476             "JNZ    msw_not_zero\n\t"
  6477             "MOV    $dst, 32\n"
  6478       "msw_not_zero:\n\t"
  6479             "ADD    $dst, 32\n"
  6480       "done:" %}
  6481   ins_encode %{
  6482     Register Rdst = $dst$$Register;
  6483     Register Rsrc = $src$$Register;
  6484     Label msw_not_zero;
  6485     Label done;
  6486     __ bsfl(Rdst, Rsrc);
  6487     __ jccb(Assembler::notZero, done);
  6488     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6489     __ jccb(Assembler::notZero, msw_not_zero);
  6490     __ movl(Rdst, BitsPerInt);
  6491     __ bind(msw_not_zero);
  6492     __ addl(Rdst, BitsPerInt);
  6493     __ bind(done);
  6494   %}
  6495   ins_pipe(ialu_reg);
  6496 %}
  6499 //---------- Population Count Instructions -------------------------------------
  6501 instruct popCountI(eRegI dst, eRegI src) %{
  6502   predicate(UsePopCountInstruction);
  6503   match(Set dst (PopCountI src));
  6505   format %{ "POPCNT $dst, $src" %}
  6506   ins_encode %{
  6507     __ popcntl($dst$$Register, $src$$Register);
  6508   %}
  6509   ins_pipe(ialu_reg);
  6510 %}
  6512 instruct popCountI_mem(eRegI dst, memory mem) %{
  6513   predicate(UsePopCountInstruction);
  6514   match(Set dst (PopCountI (LoadI mem)));
  6516   format %{ "POPCNT $dst, $mem" %}
  6517   ins_encode %{
  6518     __ popcntl($dst$$Register, $mem$$Address);
  6519   %}
  6520   ins_pipe(ialu_reg);
  6521 %}
  6523 // Note: Long.bitCount(long) returns an int.
  6524 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6525   predicate(UsePopCountInstruction);
  6526   match(Set dst (PopCountL src));
  6527   effect(KILL cr, TEMP tmp, TEMP dst);
  6529   format %{ "POPCNT $dst, $src.lo\n\t"
  6530             "POPCNT $tmp, $src.hi\n\t"
  6531             "ADD    $dst, $tmp" %}
  6532   ins_encode %{
  6533     __ popcntl($dst$$Register, $src$$Register);
  6534     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6535     __ addl($dst$$Register, $tmp$$Register);
  6536   %}
  6537   ins_pipe(ialu_reg);
  6538 %}
  6540 // Note: Long.bitCount(long) returns an int.
  6541 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6542   predicate(UsePopCountInstruction);
  6543   match(Set dst (PopCountL (LoadL mem)));
  6544   effect(KILL cr, TEMP tmp, TEMP dst);
  6546   format %{ "POPCNT $dst, $mem\n\t"
  6547             "POPCNT $tmp, $mem+4\n\t"
  6548             "ADD    $dst, $tmp" %}
  6549   ins_encode %{
  6550     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6551     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6552     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6553     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6554     __ addl($dst$$Register, $tmp$$Register);
  6555   %}
  6556   ins_pipe(ialu_reg);
  6557 %}
  6560 //----------Load/Store/Move Instructions---------------------------------------
  6561 //----------Load Instructions--------------------------------------------------
  6562 // Load Byte (8bit signed)
  6563 instruct loadB(xRegI dst, memory mem) %{
  6564   match(Set dst (LoadB mem));
  6566   ins_cost(125);
  6567   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6569   ins_encode %{
  6570     __ movsbl($dst$$Register, $mem$$Address);
  6571   %}
  6573   ins_pipe(ialu_reg_mem);
  6574 %}
  6576 // Load Byte (8bit signed) into Long Register
  6577 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6578   match(Set dst (ConvI2L (LoadB mem)));
  6579   effect(KILL cr);
  6581   ins_cost(375);
  6582   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6583             "MOV    $dst.hi,$dst.lo\n\t"
  6584             "SAR    $dst.hi,7" %}
  6586   ins_encode %{
  6587     __ movsbl($dst$$Register, $mem$$Address);
  6588     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6589     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6590   %}
  6592   ins_pipe(ialu_reg_mem);
  6593 %}
  6595 // Load Unsigned Byte (8bit UNsigned)
  6596 instruct loadUB(xRegI dst, memory mem) %{
  6597   match(Set dst (LoadUB mem));
  6599   ins_cost(125);
  6600   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6602   ins_encode %{
  6603     __ movzbl($dst$$Register, $mem$$Address);
  6604   %}
  6606   ins_pipe(ialu_reg_mem);
  6607 %}
  6609 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6610 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6611   match(Set dst (ConvI2L (LoadUB mem)));
  6612   effect(KILL cr);
  6614   ins_cost(250);
  6615   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6616             "XOR    $dst.hi,$dst.hi" %}
  6618   ins_encode %{
  6619     Register Rdst = $dst$$Register;
  6620     __ movzbl(Rdst, $mem$$Address);
  6621     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6622   %}
  6624   ins_pipe(ialu_reg_mem);
  6625 %}
  6627 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6628 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6629   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6630   effect(KILL cr);
  6632   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6633             "XOR    $dst.hi,$dst.hi\n\t"
  6634             "AND    $dst.lo,$mask" %}
  6635   ins_encode %{
  6636     Register Rdst = $dst$$Register;
  6637     __ movzbl(Rdst, $mem$$Address);
  6638     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6639     __ andl(Rdst, $mask$$constant);
  6640   %}
  6641   ins_pipe(ialu_reg_mem);
  6642 %}
  6644 // Load Short (16bit signed)
  6645 instruct loadS(eRegI dst, memory mem) %{
  6646   match(Set dst (LoadS mem));
  6648   ins_cost(125);
  6649   format %{ "MOVSX  $dst,$mem\t# short" %}
  6651   ins_encode %{
  6652     __ movswl($dst$$Register, $mem$$Address);
  6653   %}
  6655   ins_pipe(ialu_reg_mem);
  6656 %}
  6658 // Load Short (16 bit signed) to Byte (8 bit signed)
  6659 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6660   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6662   ins_cost(125);
  6663   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6664   ins_encode %{
  6665     __ movsbl($dst$$Register, $mem$$Address);
  6666   %}
  6667   ins_pipe(ialu_reg_mem);
  6668 %}
  6670 // Load Short (16bit signed) into Long Register
  6671 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6672   match(Set dst (ConvI2L (LoadS mem)));
  6673   effect(KILL cr);
  6675   ins_cost(375);
  6676   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6677             "MOV    $dst.hi,$dst.lo\n\t"
  6678             "SAR    $dst.hi,15" %}
  6680   ins_encode %{
  6681     __ movswl($dst$$Register, $mem$$Address);
  6682     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6683     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6684   %}
  6686   ins_pipe(ialu_reg_mem);
  6687 %}
  6689 // Load Unsigned Short/Char (16bit unsigned)
  6690 instruct loadUS(eRegI dst, memory mem) %{
  6691   match(Set dst (LoadUS mem));
  6693   ins_cost(125);
  6694   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6696   ins_encode %{
  6697     __ movzwl($dst$$Register, $mem$$Address);
  6698   %}
  6700   ins_pipe(ialu_reg_mem);
  6701 %}
  6703 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6704 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6705   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6707   ins_cost(125);
  6708   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6709   ins_encode %{
  6710     __ movsbl($dst$$Register, $mem$$Address);
  6711   %}
  6712   ins_pipe(ialu_reg_mem);
  6713 %}
  6715 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6716 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6717   match(Set dst (ConvI2L (LoadUS mem)));
  6718   effect(KILL cr);
  6720   ins_cost(250);
  6721   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6722             "XOR    $dst.hi,$dst.hi" %}
  6724   ins_encode %{
  6725     __ movzwl($dst$$Register, $mem$$Address);
  6726     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6727   %}
  6729   ins_pipe(ialu_reg_mem);
  6730 %}
  6732 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6733 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6734   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6735   effect(KILL cr);
  6737   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6738             "XOR    $dst.hi,$dst.hi" %}
  6739   ins_encode %{
  6740     Register Rdst = $dst$$Register;
  6741     __ movzbl(Rdst, $mem$$Address);
  6742     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6743   %}
  6744   ins_pipe(ialu_reg_mem);
  6745 %}
  6747 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6748 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6749   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6750   effect(KILL cr);
  6752   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6753             "XOR    $dst.hi,$dst.hi\n\t"
  6754             "AND    $dst.lo,$mask" %}
  6755   ins_encode %{
  6756     Register Rdst = $dst$$Register;
  6757     __ movzwl(Rdst, $mem$$Address);
  6758     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6759     __ andl(Rdst, $mask$$constant);
  6760   %}
  6761   ins_pipe(ialu_reg_mem);
  6762 %}
  6764 // Load Integer
  6765 instruct loadI(eRegI dst, memory mem) %{
  6766   match(Set dst (LoadI mem));
  6768   ins_cost(125);
  6769   format %{ "MOV    $dst,$mem\t# int" %}
  6771   ins_encode %{
  6772     __ movl($dst$$Register, $mem$$Address);
  6773   %}
  6775   ins_pipe(ialu_reg_mem);
  6776 %}
  6778 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6779 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6780   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6782   ins_cost(125);
  6783   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6784   ins_encode %{
  6785     __ movsbl($dst$$Register, $mem$$Address);
  6786   %}
  6787   ins_pipe(ialu_reg_mem);
  6788 %}
  6790 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6791 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6792   match(Set dst (AndI (LoadI mem) mask));
  6794   ins_cost(125);
  6795   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6796   ins_encode %{
  6797     __ movzbl($dst$$Register, $mem$$Address);
  6798   %}
  6799   ins_pipe(ialu_reg_mem);
  6800 %}
  6802 // Load Integer (32 bit signed) to Short (16 bit signed)
  6803 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6804   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6806   ins_cost(125);
  6807   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6808   ins_encode %{
  6809     __ movswl($dst$$Register, $mem$$Address);
  6810   %}
  6811   ins_pipe(ialu_reg_mem);
  6812 %}
  6814 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6815 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6816   match(Set dst (AndI (LoadI mem) mask));
  6818   ins_cost(125);
  6819   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6820   ins_encode %{
  6821     __ movzwl($dst$$Register, $mem$$Address);
  6822   %}
  6823   ins_pipe(ialu_reg_mem);
  6824 %}
  6826 // Load Integer into Long Register
  6827 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6828   match(Set dst (ConvI2L (LoadI mem)));
  6829   effect(KILL cr);
  6831   ins_cost(375);
  6832   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6833             "MOV    $dst.hi,$dst.lo\n\t"
  6834             "SAR    $dst.hi,31" %}
  6836   ins_encode %{
  6837     __ movl($dst$$Register, $mem$$Address);
  6838     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6839     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6840   %}
  6842   ins_pipe(ialu_reg_mem);
  6843 %}
  6845 // Load Integer with mask 0xFF into Long Register
  6846 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6847   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6848   effect(KILL cr);
  6850   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6851             "XOR    $dst.hi,$dst.hi" %}
  6852   ins_encode %{
  6853     Register Rdst = $dst$$Register;
  6854     __ movzbl(Rdst, $mem$$Address);
  6855     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6856   %}
  6857   ins_pipe(ialu_reg_mem);
  6858 %}
  6860 // Load Integer with mask 0xFFFF into Long Register
  6861 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6862   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6863   effect(KILL cr);
  6865   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6866             "XOR    $dst.hi,$dst.hi" %}
  6867   ins_encode %{
  6868     Register Rdst = $dst$$Register;
  6869     __ movzwl(Rdst, $mem$$Address);
  6870     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6871   %}
  6872   ins_pipe(ialu_reg_mem);
  6873 %}
  6875 // Load Integer with 32-bit mask into Long Register
  6876 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6877   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6878   effect(KILL cr);
  6880   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6881             "XOR    $dst.hi,$dst.hi\n\t"
  6882             "AND    $dst.lo,$mask" %}
  6883   ins_encode %{
  6884     Register Rdst = $dst$$Register;
  6885     __ movl(Rdst, $mem$$Address);
  6886     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6887     __ andl(Rdst, $mask$$constant);
  6888   %}
  6889   ins_pipe(ialu_reg_mem);
  6890 %}
  6892 // Load Unsigned Integer into Long Register
  6893 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6894   match(Set dst (LoadUI2L mem));
  6895   effect(KILL cr);
  6897   ins_cost(250);
  6898   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6899             "XOR    $dst.hi,$dst.hi" %}
  6901   ins_encode %{
  6902     __ movl($dst$$Register, $mem$$Address);
  6903     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6904   %}
  6906   ins_pipe(ialu_reg_mem);
  6907 %}
  6909 // Load Long.  Cannot clobber address while loading, so restrict address
  6910 // register to ESI
  6911 instruct loadL(eRegL dst, load_long_memory mem) %{
  6912   predicate(!((LoadLNode*)n)->require_atomic_access());
  6913   match(Set dst (LoadL mem));
  6915   ins_cost(250);
  6916   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6917             "MOV    $dst.hi,$mem+4" %}
  6919   ins_encode %{
  6920     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6921     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6922     __ movl($dst$$Register, Amemlo);
  6923     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6924   %}
  6926   ins_pipe(ialu_reg_long_mem);
  6927 %}
  6929 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6930 // then store it down to the stack and reload on the int
  6931 // side.
  6932 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6933   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6934   match(Set dst (LoadL mem));
  6936   ins_cost(200);
  6937   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6938             "FISTp  $dst" %}
  6939   ins_encode(enc_loadL_volatile(mem,dst));
  6940   ins_pipe( fpu_reg_mem );
  6941 %}
  6943 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6944   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6945   match(Set dst (LoadL mem));
  6946   effect(TEMP tmp);
  6947   ins_cost(180);
  6948   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6949             "MOVSD  $dst,$tmp" %}
  6950   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6951   ins_pipe( pipe_slow );
  6952 %}
  6954 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6955   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6956   match(Set dst (LoadL mem));
  6957   effect(TEMP tmp);
  6958   ins_cost(160);
  6959   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6960             "MOVD   $dst.lo,$tmp\n\t"
  6961             "PSRLQ  $tmp,32\n\t"
  6962             "MOVD   $dst.hi,$tmp" %}
  6963   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6964   ins_pipe( pipe_slow );
  6965 %}
  6967 // Load Range
  6968 instruct loadRange(eRegI dst, memory mem) %{
  6969   match(Set dst (LoadRange mem));
  6971   ins_cost(125);
  6972   format %{ "MOV    $dst,$mem" %}
  6973   opcode(0x8B);
  6974   ins_encode( OpcP, RegMem(dst,mem));
  6975   ins_pipe( ialu_reg_mem );
  6976 %}
  6979 // Load Pointer
  6980 instruct loadP(eRegP dst, memory mem) %{
  6981   match(Set dst (LoadP mem));
  6983   ins_cost(125);
  6984   format %{ "MOV    $dst,$mem" %}
  6985   opcode(0x8B);
  6986   ins_encode( OpcP, RegMem(dst,mem));
  6987   ins_pipe( ialu_reg_mem );
  6988 %}
  6990 // Load Klass Pointer
  6991 instruct loadKlass(eRegP dst, memory mem) %{
  6992   match(Set dst (LoadKlass mem));
  6994   ins_cost(125);
  6995   format %{ "MOV    $dst,$mem" %}
  6996   opcode(0x8B);
  6997   ins_encode( OpcP, RegMem(dst,mem));
  6998   ins_pipe( ialu_reg_mem );
  6999 %}
  7001 // Load Double
  7002 instruct loadD(regD dst, memory mem) %{
  7003   predicate(UseSSE<=1);
  7004   match(Set dst (LoadD mem));
  7006   ins_cost(150);
  7007   format %{ "FLD_D  ST,$mem\n\t"
  7008             "FSTP   $dst" %}
  7009   opcode(0xDD);               /* DD /0 */
  7010   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  7011               Pop_Reg_D(dst) );
  7012   ins_pipe( fpu_reg_mem );
  7013 %}
  7015 // Load Double to XMM
  7016 instruct loadXD(regXD dst, memory mem) %{
  7017   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  7018   match(Set dst (LoadD mem));
  7019   ins_cost(145);
  7020   format %{ "MOVSD  $dst,$mem" %}
  7021   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  7022   ins_pipe( pipe_slow );
  7023 %}
  7025 instruct loadXD_partial(regXD dst, memory mem) %{
  7026   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  7027   match(Set dst (LoadD mem));
  7028   ins_cost(145);
  7029   format %{ "MOVLPD $dst,$mem" %}
  7030   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  7031   ins_pipe( pipe_slow );
  7032 %}
  7034 // Load to XMM register (single-precision floating point)
  7035 // MOVSS instruction
  7036 instruct loadX(regX dst, memory mem) %{
  7037   predicate(UseSSE>=1);
  7038   match(Set dst (LoadF mem));
  7039   ins_cost(145);
  7040   format %{ "MOVSS  $dst,$mem" %}
  7041   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  7042   ins_pipe( pipe_slow );
  7043 %}
  7045 // Load Float
  7046 instruct loadF(regF dst, memory mem) %{
  7047   predicate(UseSSE==0);
  7048   match(Set dst (LoadF mem));
  7050   ins_cost(150);
  7051   format %{ "FLD_S  ST,$mem\n\t"
  7052             "FSTP   $dst" %}
  7053   opcode(0xD9);               /* D9 /0 */
  7054   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  7055               Pop_Reg_F(dst) );
  7056   ins_pipe( fpu_reg_mem );
  7057 %}
  7059 // Load Aligned Packed Byte to XMM register
  7060 instruct loadA8B(regXD dst, memory mem) %{
  7061   predicate(UseSSE>=1);
  7062   match(Set dst (Load8B mem));
  7063   ins_cost(125);
  7064   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  7065   ins_encode( movq_ld(dst, mem));
  7066   ins_pipe( pipe_slow );
  7067 %}
  7069 // Load Aligned Packed Short to XMM register
  7070 instruct loadA4S(regXD dst, memory mem) %{
  7071   predicate(UseSSE>=1);
  7072   match(Set dst (Load4S mem));
  7073   ins_cost(125);
  7074   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  7075   ins_encode( movq_ld(dst, mem));
  7076   ins_pipe( pipe_slow );
  7077 %}
  7079 // Load Aligned Packed Char to XMM register
  7080 instruct loadA4C(regXD dst, memory mem) %{
  7081   predicate(UseSSE>=1);
  7082   match(Set dst (Load4C mem));
  7083   ins_cost(125);
  7084   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  7085   ins_encode( movq_ld(dst, mem));
  7086   ins_pipe( pipe_slow );
  7087 %}
  7089 // Load Aligned Packed Integer to XMM register
  7090 instruct load2IU(regXD dst, memory mem) %{
  7091   predicate(UseSSE>=1);
  7092   match(Set dst (Load2I mem));
  7093   ins_cost(125);
  7094   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  7095   ins_encode( movq_ld(dst, mem));
  7096   ins_pipe( pipe_slow );
  7097 %}
  7099 // Load Aligned Packed Single to XMM
  7100 instruct loadA2F(regXD dst, memory mem) %{
  7101   predicate(UseSSE>=1);
  7102   match(Set dst (Load2F mem));
  7103   ins_cost(145);
  7104   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7105   ins_encode( movq_ld(dst, mem));
  7106   ins_pipe( pipe_slow );
  7107 %}
  7109 // Load Effective Address
  7110 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7111   match(Set dst mem);
  7113   ins_cost(110);
  7114   format %{ "LEA    $dst,$mem" %}
  7115   opcode(0x8D);
  7116   ins_encode( OpcP, RegMem(dst,mem));
  7117   ins_pipe( ialu_reg_reg_fat );
  7118 %}
  7120 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7121   match(Set dst mem);
  7123   ins_cost(110);
  7124   format %{ "LEA    $dst,$mem" %}
  7125   opcode(0x8D);
  7126   ins_encode( OpcP, RegMem(dst,mem));
  7127   ins_pipe( ialu_reg_reg_fat );
  7128 %}
  7130 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7131   match(Set dst mem);
  7133   ins_cost(110);
  7134   format %{ "LEA    $dst,$mem" %}
  7135   opcode(0x8D);
  7136   ins_encode( OpcP, RegMem(dst,mem));
  7137   ins_pipe( ialu_reg_reg_fat );
  7138 %}
  7140 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7141   match(Set dst mem);
  7143   ins_cost(110);
  7144   format %{ "LEA    $dst,$mem" %}
  7145   opcode(0x8D);
  7146   ins_encode( OpcP, RegMem(dst,mem));
  7147   ins_pipe( ialu_reg_reg_fat );
  7148 %}
  7150 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7151   match(Set dst mem);
  7153   ins_cost(110);
  7154   format %{ "LEA    $dst,$mem" %}
  7155   opcode(0x8D);
  7156   ins_encode( OpcP, RegMem(dst,mem));
  7157   ins_pipe( ialu_reg_reg_fat );
  7158 %}
  7160 // Load Constant
  7161 instruct loadConI(eRegI dst, immI src) %{
  7162   match(Set dst src);
  7164   format %{ "MOV    $dst,$src" %}
  7165   ins_encode( LdImmI(dst, src) );
  7166   ins_pipe( ialu_reg_fat );
  7167 %}
  7169 // Load Constant zero
  7170 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7171   match(Set dst src);
  7172   effect(KILL cr);
  7174   ins_cost(50);
  7175   format %{ "XOR    $dst,$dst" %}
  7176   opcode(0x33);  /* + rd */
  7177   ins_encode( OpcP, RegReg( dst, dst ) );
  7178   ins_pipe( ialu_reg );
  7179 %}
  7181 instruct loadConP(eRegP dst, immP src) %{
  7182   match(Set dst src);
  7184   format %{ "MOV    $dst,$src" %}
  7185   opcode(0xB8);  /* + rd */
  7186   ins_encode( LdImmP(dst, src) );
  7187   ins_pipe( ialu_reg_fat );
  7188 %}
  7190 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7191   match(Set dst src);
  7192   effect(KILL cr);
  7193   ins_cost(200);
  7194   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7195             "MOV    $dst.hi,$src.hi" %}
  7196   opcode(0xB8);
  7197   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7198   ins_pipe( ialu_reg_long_fat );
  7199 %}
  7201 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7202   match(Set dst src);
  7203   effect(KILL cr);
  7204   ins_cost(150);
  7205   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7206             "XOR    $dst.hi,$dst.hi" %}
  7207   opcode(0x33,0x33);
  7208   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7209   ins_pipe( ialu_reg_long );
  7210 %}
  7212 // The instruction usage is guarded by predicate in operand immF().
  7213 instruct loadConF(regF dst, immF src) %{
  7214   match(Set dst src);
  7215   ins_cost(125);
  7217   format %{ "FLD_S  ST,$src\n\t"
  7218             "FSTP   $dst" %}
  7219   opcode(0xD9, 0x00);       /* D9 /0 */
  7220   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  7221   ins_pipe( fpu_reg_con );
  7222 %}
  7224 // The instruction usage is guarded by predicate in operand immXF().
  7225 instruct loadConX(regX dst, immXF con) %{
  7226   match(Set dst con);
  7227   ins_cost(125);
  7228   format %{ "MOVSS  $dst,[$con]" %}
  7229   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  7230   ins_pipe( pipe_slow );
  7231 %}
  7233 // The instruction usage is guarded by predicate in operand immXF0().
  7234 instruct loadConX0(regX dst, immXF0 src) %{
  7235   match(Set dst src);
  7236   ins_cost(100);
  7237   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7238   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7239   ins_pipe( pipe_slow );
  7240 %}
  7242 // The instruction usage is guarded by predicate in operand immD().
  7243 instruct loadConD(regD dst, immD src) %{
  7244   match(Set dst src);
  7245   ins_cost(125);
  7247   format %{ "FLD_D  ST,$src\n\t"
  7248             "FSTP   $dst" %}
  7249   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  7250   ins_pipe( fpu_reg_con );
  7251 %}
  7253 // The instruction usage is guarded by predicate in operand immXD().
  7254 instruct loadConXD(regXD dst, immXD con) %{
  7255   match(Set dst con);
  7256   ins_cost(125);
  7257   format %{ "MOVSD  $dst,[$con]" %}
  7258   ins_encode(load_conXD(dst, con));
  7259   ins_pipe( pipe_slow );
  7260 %}
  7262 // The instruction usage is guarded by predicate in operand immXD0().
  7263 instruct loadConXD0(regXD dst, immXD0 src) %{
  7264   match(Set dst src);
  7265   ins_cost(100);
  7266   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7267   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7268   ins_pipe( pipe_slow );
  7269 %}
  7271 // Load Stack Slot
  7272 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7273   match(Set dst src);
  7274   ins_cost(125);
  7276   format %{ "MOV    $dst,$src" %}
  7277   opcode(0x8B);
  7278   ins_encode( OpcP, RegMem(dst,src));
  7279   ins_pipe( ialu_reg_mem );
  7280 %}
  7282 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7283   match(Set dst src);
  7285   ins_cost(200);
  7286   format %{ "MOV    $dst,$src.lo\n\t"
  7287             "MOV    $dst+4,$src.hi" %}
  7288   opcode(0x8B, 0x8B);
  7289   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7290   ins_pipe( ialu_mem_long_reg );
  7291 %}
  7293 // Load Stack Slot
  7294 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7295   match(Set dst src);
  7296   ins_cost(125);
  7298   format %{ "MOV    $dst,$src" %}
  7299   opcode(0x8B);
  7300   ins_encode( OpcP, RegMem(dst,src));
  7301   ins_pipe( ialu_reg_mem );
  7302 %}
  7304 // Load Stack Slot
  7305 instruct loadSSF(regF dst, stackSlotF src) %{
  7306   match(Set dst src);
  7307   ins_cost(125);
  7309   format %{ "FLD_S  $src\n\t"
  7310             "FSTP   $dst" %}
  7311   opcode(0xD9);               /* D9 /0, FLD m32real */
  7312   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7313               Pop_Reg_F(dst) );
  7314   ins_pipe( fpu_reg_mem );
  7315 %}
  7317 // Load Stack Slot
  7318 instruct loadSSD(regD dst, stackSlotD src) %{
  7319   match(Set dst src);
  7320   ins_cost(125);
  7322   format %{ "FLD_D  $src\n\t"
  7323             "FSTP   $dst" %}
  7324   opcode(0xDD);               /* DD /0, FLD m64real */
  7325   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7326               Pop_Reg_D(dst) );
  7327   ins_pipe( fpu_reg_mem );
  7328 %}
  7330 // Prefetch instructions.
  7331 // Must be safe to execute with invalid address (cannot fault).
  7333 instruct prefetchr0( memory mem ) %{
  7334   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7335   match(PrefetchRead mem);
  7336   ins_cost(0);
  7337   size(0);
  7338   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7339   ins_encode();
  7340   ins_pipe(empty);
  7341 %}
  7343 instruct prefetchr( memory mem ) %{
  7344   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7345   match(PrefetchRead mem);
  7346   ins_cost(100);
  7348   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7349   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7350   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7351   ins_pipe(ialu_mem);
  7352 %}
  7354 instruct prefetchrNTA( memory mem ) %{
  7355   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7356   match(PrefetchRead mem);
  7357   ins_cost(100);
  7359   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7360   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7361   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7362   ins_pipe(ialu_mem);
  7363 %}
  7365 instruct prefetchrT0( memory mem ) %{
  7366   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7367   match(PrefetchRead mem);
  7368   ins_cost(100);
  7370   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7371   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7372   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7373   ins_pipe(ialu_mem);
  7374 %}
  7376 instruct prefetchrT2( memory mem ) %{
  7377   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7378   match(PrefetchRead mem);
  7379   ins_cost(100);
  7381   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7382   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7383   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7384   ins_pipe(ialu_mem);
  7385 %}
  7387 instruct prefetchw0( memory mem ) %{
  7388   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7389   match(PrefetchWrite mem);
  7390   ins_cost(0);
  7391   size(0);
  7392   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7393   ins_encode();
  7394   ins_pipe(empty);
  7395 %}
  7397 instruct prefetchw( memory mem ) %{
  7398   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7399   match( PrefetchWrite mem );
  7400   ins_cost(100);
  7402   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7403   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7404   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7405   ins_pipe(ialu_mem);
  7406 %}
  7408 instruct prefetchwNTA( memory mem ) %{
  7409   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7410   match(PrefetchWrite mem);
  7411   ins_cost(100);
  7413   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7414   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7415   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7416   ins_pipe(ialu_mem);
  7417 %}
  7419 instruct prefetchwT0( memory mem ) %{
  7420   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7421   match(PrefetchWrite mem);
  7422   ins_cost(100);
  7424   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7425   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7426   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7427   ins_pipe(ialu_mem);
  7428 %}
  7430 instruct prefetchwT2( memory mem ) %{
  7431   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7432   match(PrefetchWrite mem);
  7433   ins_cost(100);
  7435   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7436   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7437   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7438   ins_pipe(ialu_mem);
  7439 %}
  7441 //----------Store Instructions-------------------------------------------------
  7443 // Store Byte
  7444 instruct storeB(memory mem, xRegI src) %{
  7445   match(Set mem (StoreB mem src));
  7447   ins_cost(125);
  7448   format %{ "MOV8   $mem,$src" %}
  7449   opcode(0x88);
  7450   ins_encode( OpcP, RegMem( src, mem ) );
  7451   ins_pipe( ialu_mem_reg );
  7452 %}
  7454 // Store Char/Short
  7455 instruct storeC(memory mem, eRegI src) %{
  7456   match(Set mem (StoreC mem src));
  7458   ins_cost(125);
  7459   format %{ "MOV16  $mem,$src" %}
  7460   opcode(0x89, 0x66);
  7461   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7462   ins_pipe( ialu_mem_reg );
  7463 %}
  7465 // Store Integer
  7466 instruct storeI(memory mem, eRegI src) %{
  7467   match(Set mem (StoreI mem src));
  7469   ins_cost(125);
  7470   format %{ "MOV    $mem,$src" %}
  7471   opcode(0x89);
  7472   ins_encode( OpcP, RegMem( src, mem ) );
  7473   ins_pipe( ialu_mem_reg );
  7474 %}
  7476 // Store Long
  7477 instruct storeL(long_memory mem, eRegL src) %{
  7478   predicate(!((StoreLNode*)n)->require_atomic_access());
  7479   match(Set mem (StoreL mem src));
  7481   ins_cost(200);
  7482   format %{ "MOV    $mem,$src.lo\n\t"
  7483             "MOV    $mem+4,$src.hi" %}
  7484   opcode(0x89, 0x89);
  7485   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7486   ins_pipe( ialu_mem_long_reg );
  7487 %}
  7489 // Store Long to Integer
  7490 instruct storeL2I(memory mem, eRegL src) %{
  7491   match(Set mem (StoreI mem (ConvL2I src)));
  7493   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7494   ins_encode %{
  7495     __ movl($mem$$Address, $src$$Register);
  7496   %}
  7497   ins_pipe(ialu_mem_reg);
  7498 %}
  7500 // Volatile Store Long.  Must be atomic, so move it into
  7501 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7502 // target address before the store (for null-ptr checks)
  7503 // so the memory operand is used twice in the encoding.
  7504 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7505   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7506   match(Set mem (StoreL mem src));
  7507   effect( KILL cr );
  7508   ins_cost(400);
  7509   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7510             "FILD   $src\n\t"
  7511             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7512   opcode(0x3B);
  7513   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7514   ins_pipe( fpu_reg_mem );
  7515 %}
  7517 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7518   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7519   match(Set mem (StoreL mem src));
  7520   effect( TEMP tmp, KILL cr );
  7521   ins_cost(380);
  7522   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7523             "MOVSD  $tmp,$src\n\t"
  7524             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7525   opcode(0x3B);
  7526   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7527   ins_pipe( pipe_slow );
  7528 %}
  7530 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7531   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7532   match(Set mem (StoreL mem src));
  7533   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7534   ins_cost(360);
  7535   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7536             "MOVD   $tmp,$src.lo\n\t"
  7537             "MOVD   $tmp2,$src.hi\n\t"
  7538             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7539             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7540   opcode(0x3B);
  7541   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7542   ins_pipe( pipe_slow );
  7543 %}
  7545 // Store Pointer; for storing unknown oops and raw pointers
  7546 instruct storeP(memory mem, anyRegP src) %{
  7547   match(Set mem (StoreP mem src));
  7549   ins_cost(125);
  7550   format %{ "MOV    $mem,$src" %}
  7551   opcode(0x89);
  7552   ins_encode( OpcP, RegMem( src, mem ) );
  7553   ins_pipe( ialu_mem_reg );
  7554 %}
  7556 // Store Integer Immediate
  7557 instruct storeImmI(memory mem, immI src) %{
  7558   match(Set mem (StoreI mem src));
  7560   ins_cost(150);
  7561   format %{ "MOV    $mem,$src" %}
  7562   opcode(0xC7);               /* C7 /0 */
  7563   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7564   ins_pipe( ialu_mem_imm );
  7565 %}
  7567 // Store Short/Char Immediate
  7568 instruct storeImmI16(memory mem, immI16 src) %{
  7569   predicate(UseStoreImmI16);
  7570   match(Set mem (StoreC mem src));
  7572   ins_cost(150);
  7573   format %{ "MOV16  $mem,$src" %}
  7574   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7575   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7576   ins_pipe( ialu_mem_imm );
  7577 %}
  7579 // Store Pointer Immediate; null pointers or constant oops that do not
  7580 // need card-mark barriers.
  7581 instruct storeImmP(memory mem, immP src) %{
  7582   match(Set mem (StoreP mem src));
  7584   ins_cost(150);
  7585   format %{ "MOV    $mem,$src" %}
  7586   opcode(0xC7);               /* C7 /0 */
  7587   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7588   ins_pipe( ialu_mem_imm );
  7589 %}
  7591 // Store Byte Immediate
  7592 instruct storeImmB(memory mem, immI8 src) %{
  7593   match(Set mem (StoreB mem src));
  7595   ins_cost(150);
  7596   format %{ "MOV8   $mem,$src" %}
  7597   opcode(0xC6);               /* C6 /0 */
  7598   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7599   ins_pipe( ialu_mem_imm );
  7600 %}
  7602 // Store Aligned Packed Byte XMM register to memory
  7603 instruct storeA8B(memory mem, regXD src) %{
  7604   predicate(UseSSE>=1);
  7605   match(Set mem (Store8B mem src));
  7606   ins_cost(145);
  7607   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7608   ins_encode( movq_st(mem, src));
  7609   ins_pipe( pipe_slow );
  7610 %}
  7612 // Store Aligned Packed Char/Short XMM register to memory
  7613 instruct storeA4C(memory mem, regXD src) %{
  7614   predicate(UseSSE>=1);
  7615   match(Set mem (Store4C mem src));
  7616   ins_cost(145);
  7617   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7618   ins_encode( movq_st(mem, src));
  7619   ins_pipe( pipe_slow );
  7620 %}
  7622 // Store Aligned Packed Integer XMM register to memory
  7623 instruct storeA2I(memory mem, regXD src) %{
  7624   predicate(UseSSE>=1);
  7625   match(Set mem (Store2I mem src));
  7626   ins_cost(145);
  7627   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7628   ins_encode( movq_st(mem, src));
  7629   ins_pipe( pipe_slow );
  7630 %}
  7632 // Store CMS card-mark Immediate
  7633 instruct storeImmCM(memory mem, immI8 src) %{
  7634   match(Set mem (StoreCM mem src));
  7636   ins_cost(150);
  7637   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7638   opcode(0xC6);               /* C6 /0 */
  7639   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7640   ins_pipe( ialu_mem_imm );
  7641 %}
  7643 // Store Double
  7644 instruct storeD( memory mem, regDPR1 src) %{
  7645   predicate(UseSSE<=1);
  7646   match(Set mem (StoreD mem src));
  7648   ins_cost(100);
  7649   format %{ "FST_D  $mem,$src" %}
  7650   opcode(0xDD);       /* DD /2 */
  7651   ins_encode( enc_FP_store(mem,src) );
  7652   ins_pipe( fpu_mem_reg );
  7653 %}
  7655 // Store double does rounding on x86
  7656 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7657   predicate(UseSSE<=1);
  7658   match(Set mem (StoreD mem (RoundDouble src)));
  7660   ins_cost(100);
  7661   format %{ "FST_D  $mem,$src\t# round" %}
  7662   opcode(0xDD);       /* DD /2 */
  7663   ins_encode( enc_FP_store(mem,src) );
  7664   ins_pipe( fpu_mem_reg );
  7665 %}
  7667 // Store XMM register to memory (double-precision floating points)
  7668 // MOVSD instruction
  7669 instruct storeXD(memory mem, regXD src) %{
  7670   predicate(UseSSE>=2);
  7671   match(Set mem (StoreD mem src));
  7672   ins_cost(95);
  7673   format %{ "MOVSD  $mem,$src" %}
  7674   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7675   ins_pipe( pipe_slow );
  7676 %}
  7678 // Store XMM register to memory (single-precision floating point)
  7679 // MOVSS instruction
  7680 instruct storeX(memory mem, regX src) %{
  7681   predicate(UseSSE>=1);
  7682   match(Set mem (StoreF mem src));
  7683   ins_cost(95);
  7684   format %{ "MOVSS  $mem,$src" %}
  7685   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7686   ins_pipe( pipe_slow );
  7687 %}
  7689 // Store Aligned Packed Single Float XMM register to memory
  7690 instruct storeA2F(memory mem, regXD src) %{
  7691   predicate(UseSSE>=1);
  7692   match(Set mem (Store2F mem src));
  7693   ins_cost(145);
  7694   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7695   ins_encode( movq_st(mem, src));
  7696   ins_pipe( pipe_slow );
  7697 %}
  7699 // Store Float
  7700 instruct storeF( memory mem, regFPR1 src) %{
  7701   predicate(UseSSE==0);
  7702   match(Set mem (StoreF mem src));
  7704   ins_cost(100);
  7705   format %{ "FST_S  $mem,$src" %}
  7706   opcode(0xD9);       /* D9 /2 */
  7707   ins_encode( enc_FP_store(mem,src) );
  7708   ins_pipe( fpu_mem_reg );
  7709 %}
  7711 // Store Float does rounding on x86
  7712 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7713   predicate(UseSSE==0);
  7714   match(Set mem (StoreF mem (RoundFloat src)));
  7716   ins_cost(100);
  7717   format %{ "FST_S  $mem,$src\t# round" %}
  7718   opcode(0xD9);       /* D9 /2 */
  7719   ins_encode( enc_FP_store(mem,src) );
  7720   ins_pipe( fpu_mem_reg );
  7721 %}
  7723 // Store Float does rounding on x86
  7724 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7725   predicate(UseSSE<=1);
  7726   match(Set mem (StoreF mem (ConvD2F src)));
  7728   ins_cost(100);
  7729   format %{ "FST_S  $mem,$src\t# D-round" %}
  7730   opcode(0xD9);       /* D9 /2 */
  7731   ins_encode( enc_FP_store(mem,src) );
  7732   ins_pipe( fpu_mem_reg );
  7733 %}
  7735 // Store immediate Float value (it is faster than store from FPU register)
  7736 // The instruction usage is guarded by predicate in operand immF().
  7737 instruct storeF_imm( memory mem, immF src) %{
  7738   match(Set mem (StoreF mem src));
  7740   ins_cost(50);
  7741   format %{ "MOV    $mem,$src\t# store float" %}
  7742   opcode(0xC7);               /* C7 /0 */
  7743   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7744   ins_pipe( ialu_mem_imm );
  7745 %}
  7747 // Store immediate Float value (it is faster than store from XMM register)
  7748 // The instruction usage is guarded by predicate in operand immXF().
  7749 instruct storeX_imm( memory mem, immXF src) %{
  7750   match(Set mem (StoreF mem src));
  7752   ins_cost(50);
  7753   format %{ "MOV    $mem,$src\t# store float" %}
  7754   opcode(0xC7);               /* C7 /0 */
  7755   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7756   ins_pipe( ialu_mem_imm );
  7757 %}
  7759 // Store Integer to stack slot
  7760 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7761   match(Set dst src);
  7763   ins_cost(100);
  7764   format %{ "MOV    $dst,$src" %}
  7765   opcode(0x89);
  7766   ins_encode( OpcPRegSS( dst, src ) );
  7767   ins_pipe( ialu_mem_reg );
  7768 %}
  7770 // Store Integer to stack slot
  7771 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7772   match(Set dst src);
  7774   ins_cost(100);
  7775   format %{ "MOV    $dst,$src" %}
  7776   opcode(0x89);
  7777   ins_encode( OpcPRegSS( dst, src ) );
  7778   ins_pipe( ialu_mem_reg );
  7779 %}
  7781 // Store Long to stack slot
  7782 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7783   match(Set dst src);
  7785   ins_cost(200);
  7786   format %{ "MOV    $dst,$src.lo\n\t"
  7787             "MOV    $dst+4,$src.hi" %}
  7788   opcode(0x89, 0x89);
  7789   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7790   ins_pipe( ialu_mem_long_reg );
  7791 %}
  7793 //----------MemBar Instructions-----------------------------------------------
  7794 // Memory barrier flavors
  7796 instruct membar_acquire() %{
  7797   match(MemBarAcquire);
  7798   ins_cost(400);
  7800   size(0);
  7801   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7802   ins_encode();
  7803   ins_pipe(empty);
  7804 %}
  7806 instruct membar_acquire_lock() %{
  7807   match(MemBarAcquire);
  7808   predicate(Matcher::prior_fast_lock(n));
  7809   ins_cost(0);
  7811   size(0);
  7812   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7813   ins_encode( );
  7814   ins_pipe(empty);
  7815 %}
  7817 instruct membar_release() %{
  7818   match(MemBarRelease);
  7819   ins_cost(400);
  7821   size(0);
  7822   format %{ "MEMBAR-release ! (empty encoding)" %}
  7823   ins_encode( );
  7824   ins_pipe(empty);
  7825 %}
  7827 instruct membar_release_lock() %{
  7828   match(MemBarRelease);
  7829   predicate(Matcher::post_fast_unlock(n));
  7830   ins_cost(0);
  7832   size(0);
  7833   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7834   ins_encode( );
  7835   ins_pipe(empty);
  7836 %}
  7838 instruct membar_volatile(eFlagsReg cr) %{
  7839   match(MemBarVolatile);
  7840   effect(KILL cr);
  7841   ins_cost(400);
  7843   format %{ 
  7844     $$template
  7845     if (os::is_MP()) {
  7846       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7847     } else {
  7848       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7850   %}
  7851   ins_encode %{
  7852     __ membar(Assembler::StoreLoad);
  7853   %}
  7854   ins_pipe(pipe_slow);
  7855 %}
  7857 instruct unnecessary_membar_volatile() %{
  7858   match(MemBarVolatile);
  7859   predicate(Matcher::post_store_load_barrier(n));
  7860   ins_cost(0);
  7862   size(0);
  7863   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7864   ins_encode( );
  7865   ins_pipe(empty);
  7866 %}
  7868 //----------Move Instructions--------------------------------------------------
  7869 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7870   match(Set dst (CastX2P src));
  7871   format %{ "# X2P  $dst, $src" %}
  7872   ins_encode( /*empty encoding*/ );
  7873   ins_cost(0);
  7874   ins_pipe(empty);
  7875 %}
  7877 instruct castP2X(eRegI dst, eRegP src ) %{
  7878   match(Set dst (CastP2X src));
  7879   ins_cost(50);
  7880   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7881   ins_encode( enc_Copy( dst, src) );
  7882   ins_pipe( ialu_reg_reg );
  7883 %}
  7885 //----------Conditional Move---------------------------------------------------
  7886 // Conditional move
  7887 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7888   predicate(VM_Version::supports_cmov() );
  7889   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7890   ins_cost(200);
  7891   format %{ "CMOV$cop $dst,$src" %}
  7892   opcode(0x0F,0x40);
  7893   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7894   ins_pipe( pipe_cmov_reg );
  7895 %}
  7897 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7898   predicate(VM_Version::supports_cmov() );
  7899   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7900   ins_cost(200);
  7901   format %{ "CMOV$cop $dst,$src" %}
  7902   opcode(0x0F,0x40);
  7903   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7904   ins_pipe( pipe_cmov_reg );
  7905 %}
  7907 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7908   predicate(VM_Version::supports_cmov() );
  7909   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7910   ins_cost(200);
  7911   expand %{
  7912     cmovI_regU(cop, cr, dst, src);
  7913   %}
  7914 %}
  7916 // Conditional move
  7917 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7918   predicate(VM_Version::supports_cmov() );
  7919   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7920   ins_cost(250);
  7921   format %{ "CMOV$cop $dst,$src" %}
  7922   opcode(0x0F,0x40);
  7923   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7924   ins_pipe( pipe_cmov_mem );
  7925 %}
  7927 // Conditional move
  7928 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7929   predicate(VM_Version::supports_cmov() );
  7930   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7931   ins_cost(250);
  7932   format %{ "CMOV$cop $dst,$src" %}
  7933   opcode(0x0F,0x40);
  7934   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7935   ins_pipe( pipe_cmov_mem );
  7936 %}
  7938 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7939   predicate(VM_Version::supports_cmov() );
  7940   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7941   ins_cost(250);
  7942   expand %{
  7943     cmovI_memU(cop, cr, dst, src);
  7944   %}
  7945 %}
  7947 // Conditional move
  7948 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7949   predicate(VM_Version::supports_cmov() );
  7950   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7951   ins_cost(200);
  7952   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7953   opcode(0x0F,0x40);
  7954   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7955   ins_pipe( pipe_cmov_reg );
  7956 %}
  7958 // Conditional move (non-P6 version)
  7959 // Note:  a CMoveP is generated for  stubs and native wrappers
  7960 //        regardless of whether we are on a P6, so we
  7961 //        emulate a cmov here
  7962 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7963   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7964   ins_cost(300);
  7965   format %{ "Jn$cop   skip\n\t"
  7966           "MOV    $dst,$src\t# pointer\n"
  7967       "skip:" %}
  7968   opcode(0x8b);
  7969   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7970   ins_pipe( pipe_cmov_reg );
  7971 %}
  7973 // Conditional move
  7974 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7975   predicate(VM_Version::supports_cmov() );
  7976   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7977   ins_cost(200);
  7978   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7979   opcode(0x0F,0x40);
  7980   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7981   ins_pipe( pipe_cmov_reg );
  7982 %}
  7984 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7985   predicate(VM_Version::supports_cmov() );
  7986   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7987   ins_cost(200);
  7988   expand %{
  7989     cmovP_regU(cop, cr, dst, src);
  7990   %}
  7991 %}
  7993 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7994 // correctly meets the two pointer arguments; one is an incoming
  7995 // register but the other is a memory operand.  ALSO appears to
  7996 // be buggy with implicit null checks.
  7997 //
  7998 //// Conditional move
  7999 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  8000 //  predicate(VM_Version::supports_cmov() );
  8001 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  8002 //  ins_cost(250);
  8003 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  8004 //  opcode(0x0F,0x40);
  8005 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  8006 //  ins_pipe( pipe_cmov_mem );
  8007 //%}
  8008 //
  8009 //// Conditional move
  8010 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  8011 //  predicate(VM_Version::supports_cmov() );
  8012 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  8013 //  ins_cost(250);
  8014 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  8015 //  opcode(0x0F,0x40);
  8016 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  8017 //  ins_pipe( pipe_cmov_mem );
  8018 //%}
  8020 // Conditional move
  8021 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  8022   predicate(UseSSE<=1);
  8023   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8024   ins_cost(200);
  8025   format %{ "FCMOV$cop $dst,$src\t# double" %}
  8026   opcode(0xDA);
  8027   ins_encode( enc_cmov_d(cop,src) );
  8028   ins_pipe( pipe_cmovD_reg );
  8029 %}
  8031 // Conditional move
  8032 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  8033   predicate(UseSSE==0);
  8034   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8035   ins_cost(200);
  8036   format %{ "FCMOV$cop $dst,$src\t# float" %}
  8037   opcode(0xDA);
  8038   ins_encode( enc_cmov_d(cop,src) );
  8039   ins_pipe( pipe_cmovD_reg );
  8040 %}
  8042 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8043 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  8044   predicate(UseSSE<=1);
  8045   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8046   ins_cost(200);
  8047   format %{ "Jn$cop   skip\n\t"
  8048             "MOV    $dst,$src\t# double\n"
  8049       "skip:" %}
  8050   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8051   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  8052   ins_pipe( pipe_cmovD_reg );
  8053 %}
  8055 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8056 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  8057   predicate(UseSSE==0);
  8058   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8059   ins_cost(200);
  8060   format %{ "Jn$cop    skip\n\t"
  8061             "MOV    $dst,$src\t# float\n"
  8062       "skip:" %}
  8063   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8064   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  8065   ins_pipe( pipe_cmovD_reg );
  8066 %}
  8068 // No CMOVE with SSE/SSE2
  8069 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  8070   predicate (UseSSE>=1);
  8071   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8072   ins_cost(200);
  8073   format %{ "Jn$cop   skip\n\t"
  8074             "MOVSS  $dst,$src\t# float\n"
  8075       "skip:" %}
  8076   ins_encode %{
  8077     Label skip;
  8078     // Invert sense of branch from sense of CMOV
  8079     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8080     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8081     __ bind(skip);
  8082   %}
  8083   ins_pipe( pipe_slow );
  8084 %}
  8086 // No CMOVE with SSE/SSE2
  8087 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  8088   predicate (UseSSE>=2);
  8089   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8090   ins_cost(200);
  8091   format %{ "Jn$cop   skip\n\t"
  8092             "MOVSD  $dst,$src\t# float\n"
  8093       "skip:" %}
  8094   ins_encode %{
  8095     Label skip;
  8096     // Invert sense of branch from sense of CMOV
  8097     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8098     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8099     __ bind(skip);
  8100   %}
  8101   ins_pipe( pipe_slow );
  8102 %}
  8104 // unsigned version
  8105 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8106   predicate (UseSSE>=1);
  8107   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8108   ins_cost(200);
  8109   format %{ "Jn$cop   skip\n\t"
  8110             "MOVSS  $dst,$src\t# float\n"
  8111       "skip:" %}
  8112   ins_encode %{
  8113     Label skip;
  8114     // Invert sense of branch from sense of CMOV
  8115     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8116     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8117     __ bind(skip);
  8118   %}
  8119   ins_pipe( pipe_slow );
  8120 %}
  8122 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8123   predicate (UseSSE>=1);
  8124   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8125   ins_cost(200);
  8126   expand %{
  8127     fcmovX_regU(cop, cr, dst, src);
  8128   %}
  8129 %}
  8131 // unsigned version
  8132 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8133   predicate (UseSSE>=2);
  8134   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8135   ins_cost(200);
  8136   format %{ "Jn$cop   skip\n\t"
  8137             "MOVSD  $dst,$src\t# float\n"
  8138       "skip:" %}
  8139   ins_encode %{
  8140     Label skip;
  8141     // Invert sense of branch from sense of CMOV
  8142     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8143     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8144     __ bind(skip);
  8145   %}
  8146   ins_pipe( pipe_slow );
  8147 %}
  8149 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8150   predicate (UseSSE>=2);
  8151   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8152   ins_cost(200);
  8153   expand %{
  8154     fcmovXD_regU(cop, cr, dst, src);
  8155   %}
  8156 %}
  8158 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8159   predicate(VM_Version::supports_cmov() );
  8160   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8161   ins_cost(200);
  8162   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8163             "CMOV$cop $dst.hi,$src.hi" %}
  8164   opcode(0x0F,0x40);
  8165   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8166   ins_pipe( pipe_cmov_reg_long );
  8167 %}
  8169 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8170   predicate(VM_Version::supports_cmov() );
  8171   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8172   ins_cost(200);
  8173   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8174             "CMOV$cop $dst.hi,$src.hi" %}
  8175   opcode(0x0F,0x40);
  8176   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8177   ins_pipe( pipe_cmov_reg_long );
  8178 %}
  8180 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8181   predicate(VM_Version::supports_cmov() );
  8182   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8183   ins_cost(200);
  8184   expand %{
  8185     cmovL_regU(cop, cr, dst, src);
  8186   %}
  8187 %}
  8189 //----------Arithmetic Instructions--------------------------------------------
  8190 //----------Addition Instructions----------------------------------------------
  8191 // Integer Addition Instructions
  8192 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8193   match(Set dst (AddI dst src));
  8194   effect(KILL cr);
  8196   size(2);
  8197   format %{ "ADD    $dst,$src" %}
  8198   opcode(0x03);
  8199   ins_encode( OpcP, RegReg( dst, src) );
  8200   ins_pipe( ialu_reg_reg );
  8201 %}
  8203 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8204   match(Set dst (AddI dst src));
  8205   effect(KILL cr);
  8207   format %{ "ADD    $dst,$src" %}
  8208   opcode(0x81, 0x00); /* /0 id */
  8209   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8210   ins_pipe( ialu_reg );
  8211 %}
  8213 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8214   predicate(UseIncDec);
  8215   match(Set dst (AddI dst src));
  8216   effect(KILL cr);
  8218   size(1);
  8219   format %{ "INC    $dst" %}
  8220   opcode(0x40); /*  */
  8221   ins_encode( Opc_plus( primary, dst ) );
  8222   ins_pipe( ialu_reg );
  8223 %}
  8225 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8226   match(Set dst (AddI src0 src1));
  8227   ins_cost(110);
  8229   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8230   opcode(0x8D); /* 0x8D /r */
  8231   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8232   ins_pipe( ialu_reg_reg );
  8233 %}
  8235 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8236   match(Set dst (AddP src0 src1));
  8237   ins_cost(110);
  8239   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8240   opcode(0x8D); /* 0x8D /r */
  8241   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8242   ins_pipe( ialu_reg_reg );
  8243 %}
  8245 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8246   predicate(UseIncDec);
  8247   match(Set dst (AddI dst src));
  8248   effect(KILL cr);
  8250   size(1);
  8251   format %{ "DEC    $dst" %}
  8252   opcode(0x48); /*  */
  8253   ins_encode( Opc_plus( primary, dst ) );
  8254   ins_pipe( ialu_reg );
  8255 %}
  8257 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8258   match(Set dst (AddP dst src));
  8259   effect(KILL cr);
  8261   size(2);
  8262   format %{ "ADD    $dst,$src" %}
  8263   opcode(0x03);
  8264   ins_encode( OpcP, RegReg( dst, src) );
  8265   ins_pipe( ialu_reg_reg );
  8266 %}
  8268 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8269   match(Set dst (AddP dst src));
  8270   effect(KILL cr);
  8272   format %{ "ADD    $dst,$src" %}
  8273   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8274   // ins_encode( RegImm( dst, src) );
  8275   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8276   ins_pipe( ialu_reg );
  8277 %}
  8279 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8280   match(Set dst (AddI dst (LoadI src)));
  8281   effect(KILL cr);
  8283   ins_cost(125);
  8284   format %{ "ADD    $dst,$src" %}
  8285   opcode(0x03);
  8286   ins_encode( OpcP, RegMem( dst, src) );
  8287   ins_pipe( ialu_reg_mem );
  8288 %}
  8290 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8291   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8292   effect(KILL cr);
  8294   ins_cost(150);
  8295   format %{ "ADD    $dst,$src" %}
  8296   opcode(0x01);  /* Opcode 01 /r */
  8297   ins_encode( OpcP, RegMem( src, dst ) );
  8298   ins_pipe( ialu_mem_reg );
  8299 %}
  8301 // Add Memory with Immediate
  8302 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8303   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8304   effect(KILL cr);
  8306   ins_cost(125);
  8307   format %{ "ADD    $dst,$src" %}
  8308   opcode(0x81);               /* Opcode 81 /0 id */
  8309   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8310   ins_pipe( ialu_mem_imm );
  8311 %}
  8313 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8314   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8315   effect(KILL cr);
  8317   ins_cost(125);
  8318   format %{ "INC    $dst" %}
  8319   opcode(0xFF);               /* Opcode FF /0 */
  8320   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8321   ins_pipe( ialu_mem_imm );
  8322 %}
  8324 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8325   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8326   effect(KILL cr);
  8328   ins_cost(125);
  8329   format %{ "DEC    $dst" %}
  8330   opcode(0xFF);               /* Opcode FF /1 */
  8331   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8332   ins_pipe( ialu_mem_imm );
  8333 %}
  8336 instruct checkCastPP( eRegP dst ) %{
  8337   match(Set dst (CheckCastPP dst));
  8339   size(0);
  8340   format %{ "#checkcastPP of $dst" %}
  8341   ins_encode( /*empty encoding*/ );
  8342   ins_pipe( empty );
  8343 %}
  8345 instruct castPP( eRegP dst ) %{
  8346   match(Set dst (CastPP dst));
  8347   format %{ "#castPP of $dst" %}
  8348   ins_encode( /*empty encoding*/ );
  8349   ins_pipe( empty );
  8350 %}
  8352 instruct castII( eRegI dst ) %{
  8353   match(Set dst (CastII dst));
  8354   format %{ "#castII of $dst" %}
  8355   ins_encode( /*empty encoding*/ );
  8356   ins_cost(0);
  8357   ins_pipe( empty );
  8358 %}
  8361 // Load-locked - same as a regular pointer load when used with compare-swap
  8362 instruct loadPLocked(eRegP dst, memory mem) %{
  8363   match(Set dst (LoadPLocked mem));
  8365   ins_cost(125);
  8366   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8367   opcode(0x8B);
  8368   ins_encode( OpcP, RegMem(dst,mem));
  8369   ins_pipe( ialu_reg_mem );
  8370 %}
  8372 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8373 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8374   predicate(UseSSE<=1);
  8375   match(Set dst (LoadLLocked mem));
  8377   ins_cost(200);
  8378   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8379             "FISTp  $dst" %}
  8380   ins_encode(enc_loadL_volatile(mem,dst));
  8381   ins_pipe( fpu_reg_mem );
  8382 %}
  8384 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8385   predicate(UseSSE>=2);
  8386   match(Set dst (LoadLLocked mem));
  8387   effect(TEMP tmp);
  8388   ins_cost(180);
  8389   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8390             "MOVSD  $dst,$tmp" %}
  8391   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8392   ins_pipe( pipe_slow );
  8393 %}
  8395 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8396   predicate(UseSSE>=2);
  8397   match(Set dst (LoadLLocked mem));
  8398   effect(TEMP tmp);
  8399   ins_cost(160);
  8400   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8401             "MOVD   $dst.lo,$tmp\n\t"
  8402             "PSRLQ  $tmp,32\n\t"
  8403             "MOVD   $dst.hi,$tmp" %}
  8404   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8405   ins_pipe( pipe_slow );
  8406 %}
  8408 // Conditional-store of the updated heap-top.
  8409 // Used during allocation of the shared heap.
  8410 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8411 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8412   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8413   // EAX is killed if there is contention, but then it's also unused.
  8414   // In the common case of no contention, EAX holds the new oop address.
  8415   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8416   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8417   ins_pipe( pipe_cmpxchg );
  8418 %}
  8420 // Conditional-store of an int value.
  8421 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8422 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8423   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8424   effect(KILL oldval);
  8425   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8426   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8427   ins_pipe( pipe_cmpxchg );
  8428 %}
  8430 // Conditional-store of a long value.
  8431 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8432 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8433   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8434   effect(KILL oldval);
  8435   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8436             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8437             "XCHG   EBX,ECX"
  8438   %}
  8439   ins_encode %{
  8440     // Note: we need to swap rbx, and rcx before and after the
  8441     //       cmpxchg8 instruction because the instruction uses
  8442     //       rcx as the high order word of the new value to store but
  8443     //       our register encoding uses rbx.
  8444     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8445     if( os::is_MP() )
  8446       __ lock();
  8447     __ cmpxchg8($mem$$Address);
  8448     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8449   %}
  8450   ins_pipe( pipe_cmpxchg );
  8451 %}
  8453 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8455 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8456   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8457   effect(KILL cr, KILL oldval);
  8458   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8459             "MOV    $res,0\n\t"
  8460             "JNE,s  fail\n\t"
  8461             "MOV    $res,1\n"
  8462           "fail:" %}
  8463   ins_encode( enc_cmpxchg8(mem_ptr),
  8464               enc_flags_ne_to_boolean(res) );
  8465   ins_pipe( pipe_cmpxchg );
  8466 %}
  8468 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8469   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8470   effect(KILL cr, KILL oldval);
  8471   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8472             "MOV    $res,0\n\t"
  8473             "JNE,s  fail\n\t"
  8474             "MOV    $res,1\n"
  8475           "fail:" %}
  8476   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8477   ins_pipe( pipe_cmpxchg );
  8478 %}
  8480 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8481   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8482   effect(KILL cr, KILL oldval);
  8483   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8484             "MOV    $res,0\n\t"
  8485             "JNE,s  fail\n\t"
  8486             "MOV    $res,1\n"
  8487           "fail:" %}
  8488   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8489   ins_pipe( pipe_cmpxchg );
  8490 %}
  8492 //----------Subtraction Instructions-------------------------------------------
  8493 // Integer Subtraction Instructions
  8494 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8495   match(Set dst (SubI dst src));
  8496   effect(KILL cr);
  8498   size(2);
  8499   format %{ "SUB    $dst,$src" %}
  8500   opcode(0x2B);
  8501   ins_encode( OpcP, RegReg( dst, src) );
  8502   ins_pipe( ialu_reg_reg );
  8503 %}
  8505 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8506   match(Set dst (SubI dst src));
  8507   effect(KILL cr);
  8509   format %{ "SUB    $dst,$src" %}
  8510   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8511   // ins_encode( RegImm( dst, src) );
  8512   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8513   ins_pipe( ialu_reg );
  8514 %}
  8516 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8517   match(Set dst (SubI dst (LoadI src)));
  8518   effect(KILL cr);
  8520   ins_cost(125);
  8521   format %{ "SUB    $dst,$src" %}
  8522   opcode(0x2B);
  8523   ins_encode( OpcP, RegMem( dst, src) );
  8524   ins_pipe( ialu_reg_mem );
  8525 %}
  8527 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8528   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8529   effect(KILL cr);
  8531   ins_cost(150);
  8532   format %{ "SUB    $dst,$src" %}
  8533   opcode(0x29);  /* Opcode 29 /r */
  8534   ins_encode( OpcP, RegMem( src, dst ) );
  8535   ins_pipe( ialu_mem_reg );
  8536 %}
  8538 // Subtract from a pointer
  8539 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8540   match(Set dst (AddP dst (SubI zero src)));
  8541   effect(KILL cr);
  8543   size(2);
  8544   format %{ "SUB    $dst,$src" %}
  8545   opcode(0x2B);
  8546   ins_encode( OpcP, RegReg( dst, src) );
  8547   ins_pipe( ialu_reg_reg );
  8548 %}
  8550 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8551   match(Set dst (SubI zero dst));
  8552   effect(KILL cr);
  8554   size(2);
  8555   format %{ "NEG    $dst" %}
  8556   opcode(0xF7,0x03);  // Opcode F7 /3
  8557   ins_encode( OpcP, RegOpc( dst ) );
  8558   ins_pipe( ialu_reg );
  8559 %}
  8562 //----------Multiplication/Division Instructions-------------------------------
  8563 // Integer Multiplication Instructions
  8564 // Multiply Register
  8565 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8566   match(Set dst (MulI dst src));
  8567   effect(KILL cr);
  8569   size(3);
  8570   ins_cost(300);
  8571   format %{ "IMUL   $dst,$src" %}
  8572   opcode(0xAF, 0x0F);
  8573   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8574   ins_pipe( ialu_reg_reg_alu0 );
  8575 %}
  8577 // Multiply 32-bit Immediate
  8578 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8579   match(Set dst (MulI src imm));
  8580   effect(KILL cr);
  8582   ins_cost(300);
  8583   format %{ "IMUL   $dst,$src,$imm" %}
  8584   opcode(0x69);  /* 69 /r id */
  8585   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8586   ins_pipe( ialu_reg_reg_alu0 );
  8587 %}
  8589 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8590   match(Set dst src);
  8591   effect(KILL cr);
  8593   // Note that this is artificially increased to make it more expensive than loadConL
  8594   ins_cost(250);
  8595   format %{ "MOV    EAX,$src\t// low word only" %}
  8596   opcode(0xB8);
  8597   ins_encode( LdImmL_Lo(dst, src) );
  8598   ins_pipe( ialu_reg_fat );
  8599 %}
  8601 // Multiply by 32-bit Immediate, taking the shifted high order results
  8602 //  (special case for shift by 32)
  8603 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8604   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8605   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8606              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8607              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8608   effect(USE src1, KILL cr);
  8610   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8611   ins_cost(0*100 + 1*400 - 150);
  8612   format %{ "IMUL   EDX:EAX,$src1" %}
  8613   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8614   ins_pipe( pipe_slow );
  8615 %}
  8617 // Multiply by 32-bit Immediate, taking the shifted high order results
  8618 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8619   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8620   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8621              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8622              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8623   effect(USE src1, KILL cr);
  8625   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8626   ins_cost(1*100 + 1*400 - 150);
  8627   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8628             "SAR    EDX,$cnt-32" %}
  8629   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8630   ins_pipe( pipe_slow );
  8631 %}
  8633 // Multiply Memory 32-bit Immediate
  8634 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8635   match(Set dst (MulI (LoadI src) imm));
  8636   effect(KILL cr);
  8638   ins_cost(300);
  8639   format %{ "IMUL   $dst,$src,$imm" %}
  8640   opcode(0x69);  /* 69 /r id */
  8641   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8642   ins_pipe( ialu_reg_mem_alu0 );
  8643 %}
  8645 // Multiply Memory
  8646 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8647   match(Set dst (MulI dst (LoadI src)));
  8648   effect(KILL cr);
  8650   ins_cost(350);
  8651   format %{ "IMUL   $dst,$src" %}
  8652   opcode(0xAF, 0x0F);
  8653   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8654   ins_pipe( ialu_reg_mem_alu0 );
  8655 %}
  8657 // Multiply Register Int to Long
  8658 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8659   // Basic Idea: long = (long)int * (long)int
  8660   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8661   effect(DEF dst, USE src, USE src1, KILL flags);
  8663   ins_cost(300);
  8664   format %{ "IMUL   $dst,$src1" %}
  8666   ins_encode( long_int_multiply( dst, src1 ) );
  8667   ins_pipe( ialu_reg_reg_alu0 );
  8668 %}
  8670 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8671   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8672   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8673   effect(KILL flags);
  8675   ins_cost(300);
  8676   format %{ "MUL    $dst,$src1" %}
  8678   ins_encode( long_uint_multiply(dst, src1) );
  8679   ins_pipe( ialu_reg_reg_alu0 );
  8680 %}
  8682 // Multiply Register Long
  8683 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8684   match(Set dst (MulL dst src));
  8685   effect(KILL cr, TEMP tmp);
  8686   ins_cost(4*100+3*400);
  8687 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8688 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8689   format %{ "MOV    $tmp,$src.lo\n\t"
  8690             "IMUL   $tmp,EDX\n\t"
  8691             "MOV    EDX,$src.hi\n\t"
  8692             "IMUL   EDX,EAX\n\t"
  8693             "ADD    $tmp,EDX\n\t"
  8694             "MUL    EDX:EAX,$src.lo\n\t"
  8695             "ADD    EDX,$tmp" %}
  8696   ins_encode( long_multiply( dst, src, tmp ) );
  8697   ins_pipe( pipe_slow );
  8698 %}
  8700 // Multiply Register Long where the left operand's high 32 bits are zero
  8701 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8702   predicate(is_operand_hi32_zero(n->in(1)));
  8703   match(Set dst (MulL dst src));
  8704   effect(KILL cr, TEMP tmp);
  8705   ins_cost(2*100+2*400);
  8706 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8707 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8708   format %{ "MOV    $tmp,$src.hi\n\t"
  8709             "IMUL   $tmp,EAX\n\t"
  8710             "MUL    EDX:EAX,$src.lo\n\t"
  8711             "ADD    EDX,$tmp" %}
  8712   ins_encode %{
  8713     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8714     __ imull($tmp$$Register, rax);
  8715     __ mull($src$$Register);
  8716     __ addl(rdx, $tmp$$Register);
  8717   %}
  8718   ins_pipe( pipe_slow );
  8719 %}
  8721 // Multiply Register Long where the right operand's high 32 bits are zero
  8722 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8723   predicate(is_operand_hi32_zero(n->in(2)));
  8724   match(Set dst (MulL dst src));
  8725   effect(KILL cr, TEMP tmp);
  8726   ins_cost(2*100+2*400);
  8727 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8728 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8729   format %{ "MOV    $tmp,$src.lo\n\t"
  8730             "IMUL   $tmp,EDX\n\t"
  8731             "MUL    EDX:EAX,$src.lo\n\t"
  8732             "ADD    EDX,$tmp" %}
  8733   ins_encode %{
  8734     __ movl($tmp$$Register, $src$$Register);
  8735     __ imull($tmp$$Register, rdx);
  8736     __ mull($src$$Register);
  8737     __ addl(rdx, $tmp$$Register);
  8738   %}
  8739   ins_pipe( pipe_slow );
  8740 %}
  8742 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8743 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8744   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8745   match(Set dst (MulL dst src));
  8746   effect(KILL cr);
  8747   ins_cost(1*400);
  8748 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8749 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8750   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8751   ins_encode %{
  8752     __ mull($src$$Register);
  8753   %}
  8754   ins_pipe( pipe_slow );
  8755 %}
  8757 // Multiply Register Long by small constant
  8758 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8759   match(Set dst (MulL dst src));
  8760   effect(KILL cr, TEMP tmp);
  8761   ins_cost(2*100+2*400);
  8762   size(12);
  8763 // Basic idea: lo(result) = lo(src * EAX)
  8764 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8765   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8766             "MOV    EDX,$src\n\t"
  8767             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8768             "ADD    EDX,$tmp" %}
  8769   ins_encode( long_multiply_con( dst, src, tmp ) );
  8770   ins_pipe( pipe_slow );
  8771 %}
  8773 // Integer DIV with Register
  8774 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8775   match(Set rax (DivI rax div));
  8776   effect(KILL rdx, KILL cr);
  8777   size(26);
  8778   ins_cost(30*100+10*100);
  8779   format %{ "CMP    EAX,0x80000000\n\t"
  8780             "JNE,s  normal\n\t"
  8781             "XOR    EDX,EDX\n\t"
  8782             "CMP    ECX,-1\n\t"
  8783             "JE,s   done\n"
  8784     "normal: CDQ\n\t"
  8785             "IDIV   $div\n\t"
  8786     "done:"        %}
  8787   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8788   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8789   ins_pipe( ialu_reg_reg_alu0 );
  8790 %}
  8792 // Divide Register Long
  8793 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8794   match(Set dst (DivL src1 src2));
  8795   effect( KILL cr, KILL cx, KILL bx );
  8796   ins_cost(10000);
  8797   format %{ "PUSH   $src1.hi\n\t"
  8798             "PUSH   $src1.lo\n\t"
  8799             "PUSH   $src2.hi\n\t"
  8800             "PUSH   $src2.lo\n\t"
  8801             "CALL   SharedRuntime::ldiv\n\t"
  8802             "ADD    ESP,16" %}
  8803   ins_encode( long_div(src1,src2) );
  8804   ins_pipe( pipe_slow );
  8805 %}
  8807 // Integer DIVMOD with Register, both quotient and mod results
  8808 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8809   match(DivModI rax div);
  8810   effect(KILL cr);
  8811   size(26);
  8812   ins_cost(30*100+10*100);
  8813   format %{ "CMP    EAX,0x80000000\n\t"
  8814             "JNE,s  normal\n\t"
  8815             "XOR    EDX,EDX\n\t"
  8816             "CMP    ECX,-1\n\t"
  8817             "JE,s   done\n"
  8818     "normal: CDQ\n\t"
  8819             "IDIV   $div\n\t"
  8820     "done:"        %}
  8821   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8822   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8823   ins_pipe( pipe_slow );
  8824 %}
  8826 // Integer MOD with Register
  8827 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8828   match(Set rdx (ModI rax div));
  8829   effect(KILL rax, KILL cr);
  8831   size(26);
  8832   ins_cost(300);
  8833   format %{ "CDQ\n\t"
  8834             "IDIV   $div" %}
  8835   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8836   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8837   ins_pipe( ialu_reg_reg_alu0 );
  8838 %}
  8840 // Remainder Register Long
  8841 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8842   match(Set dst (ModL src1 src2));
  8843   effect( KILL cr, KILL cx, KILL bx );
  8844   ins_cost(10000);
  8845   format %{ "PUSH   $src1.hi\n\t"
  8846             "PUSH   $src1.lo\n\t"
  8847             "PUSH   $src2.hi\n\t"
  8848             "PUSH   $src2.lo\n\t"
  8849             "CALL   SharedRuntime::lrem\n\t"
  8850             "ADD    ESP,16" %}
  8851   ins_encode( long_mod(src1,src2) );
  8852   ins_pipe( pipe_slow );
  8853 %}
  8855 // Integer Shift Instructions
  8856 // Shift Left by one
  8857 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8858   match(Set dst (LShiftI dst shift));
  8859   effect(KILL cr);
  8861   size(2);
  8862   format %{ "SHL    $dst,$shift" %}
  8863   opcode(0xD1, 0x4);  /* D1 /4 */
  8864   ins_encode( OpcP, RegOpc( dst ) );
  8865   ins_pipe( ialu_reg );
  8866 %}
  8868 // Shift Left by 8-bit immediate
  8869 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8870   match(Set dst (LShiftI dst shift));
  8871   effect(KILL cr);
  8873   size(3);
  8874   format %{ "SHL    $dst,$shift" %}
  8875   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8876   ins_encode( RegOpcImm( dst, shift) );
  8877   ins_pipe( ialu_reg );
  8878 %}
  8880 // Shift Left by variable
  8881 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8882   match(Set dst (LShiftI dst shift));
  8883   effect(KILL cr);
  8885   size(2);
  8886   format %{ "SHL    $dst,$shift" %}
  8887   opcode(0xD3, 0x4);  /* D3 /4 */
  8888   ins_encode( OpcP, RegOpc( dst ) );
  8889   ins_pipe( ialu_reg_reg );
  8890 %}
  8892 // Arithmetic shift right by one
  8893 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8894   match(Set dst (RShiftI dst shift));
  8895   effect(KILL cr);
  8897   size(2);
  8898   format %{ "SAR    $dst,$shift" %}
  8899   opcode(0xD1, 0x7);  /* D1 /7 */
  8900   ins_encode( OpcP, RegOpc( dst ) );
  8901   ins_pipe( ialu_reg );
  8902 %}
  8904 // Arithmetic shift right by one
  8905 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8906   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8907   effect(KILL cr);
  8908   format %{ "SAR    $dst,$shift" %}
  8909   opcode(0xD1, 0x7);  /* D1 /7 */
  8910   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8911   ins_pipe( ialu_mem_imm );
  8912 %}
  8914 // Arithmetic Shift Right by 8-bit immediate
  8915 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8916   match(Set dst (RShiftI dst shift));
  8917   effect(KILL cr);
  8919   size(3);
  8920   format %{ "SAR    $dst,$shift" %}
  8921   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8922   ins_encode( RegOpcImm( dst, shift ) );
  8923   ins_pipe( ialu_mem_imm );
  8924 %}
  8926 // Arithmetic Shift Right by 8-bit immediate
  8927 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8928   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8929   effect(KILL cr);
  8931   format %{ "SAR    $dst,$shift" %}
  8932   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8933   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8934   ins_pipe( ialu_mem_imm );
  8935 %}
  8937 // Arithmetic Shift Right by variable
  8938 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8939   match(Set dst (RShiftI dst shift));
  8940   effect(KILL cr);
  8942   size(2);
  8943   format %{ "SAR    $dst,$shift" %}
  8944   opcode(0xD3, 0x7);  /* D3 /7 */
  8945   ins_encode( OpcP, RegOpc( dst ) );
  8946   ins_pipe( ialu_reg_reg );
  8947 %}
  8949 // Logical shift right by one
  8950 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8951   match(Set dst (URShiftI dst shift));
  8952   effect(KILL cr);
  8954   size(2);
  8955   format %{ "SHR    $dst,$shift" %}
  8956   opcode(0xD1, 0x5);  /* D1 /5 */
  8957   ins_encode( OpcP, RegOpc( dst ) );
  8958   ins_pipe( ialu_reg );
  8959 %}
  8961 // Logical Shift Right by 8-bit immediate
  8962 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8963   match(Set dst (URShiftI dst shift));
  8964   effect(KILL cr);
  8966   size(3);
  8967   format %{ "SHR    $dst,$shift" %}
  8968   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8969   ins_encode( RegOpcImm( dst, shift) );
  8970   ins_pipe( ialu_reg );
  8971 %}
  8974 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8975 // This idiom is used by the compiler for the i2b bytecode.
  8976 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8977   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8979   size(3);
  8980   format %{ "MOVSX  $dst,$src :8" %}
  8981   ins_encode %{
  8982     __ movsbl($dst$$Register, $src$$Register);
  8983   %}
  8984   ins_pipe(ialu_reg_reg);
  8985 %}
  8987 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8988 // This idiom is used by the compiler the i2s bytecode.
  8989 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8990   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8992   size(3);
  8993   format %{ "MOVSX  $dst,$src :16" %}
  8994   ins_encode %{
  8995     __ movswl($dst$$Register, $src$$Register);
  8996   %}
  8997   ins_pipe(ialu_reg_reg);
  8998 %}
  9001 // Logical Shift Right by variable
  9002 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9003   match(Set dst (URShiftI dst shift));
  9004   effect(KILL cr);
  9006   size(2);
  9007   format %{ "SHR    $dst,$shift" %}
  9008   opcode(0xD3, 0x5);  /* D3 /5 */
  9009   ins_encode( OpcP, RegOpc( dst ) );
  9010   ins_pipe( ialu_reg_reg );
  9011 %}
  9014 //----------Logical Instructions-----------------------------------------------
  9015 //----------Integer Logical Instructions---------------------------------------
  9016 // And Instructions
  9017 // And Register with Register
  9018 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9019   match(Set dst (AndI dst src));
  9020   effect(KILL cr);
  9022   size(2);
  9023   format %{ "AND    $dst,$src" %}
  9024   opcode(0x23);
  9025   ins_encode( OpcP, RegReg( dst, src) );
  9026   ins_pipe( ialu_reg_reg );
  9027 %}
  9029 // And Register with Immediate
  9030 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9031   match(Set dst (AndI dst src));
  9032   effect(KILL cr);
  9034   format %{ "AND    $dst,$src" %}
  9035   opcode(0x81,0x04);  /* Opcode 81 /4 */
  9036   // ins_encode( RegImm( dst, src) );
  9037   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9038   ins_pipe( ialu_reg );
  9039 %}
  9041 // And Register with Memory
  9042 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9043   match(Set dst (AndI dst (LoadI src)));
  9044   effect(KILL cr);
  9046   ins_cost(125);
  9047   format %{ "AND    $dst,$src" %}
  9048   opcode(0x23);
  9049   ins_encode( OpcP, RegMem( dst, src) );
  9050   ins_pipe( ialu_reg_mem );
  9051 %}
  9053 // And Memory with Register
  9054 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9055   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9056   effect(KILL cr);
  9058   ins_cost(150);
  9059   format %{ "AND    $dst,$src" %}
  9060   opcode(0x21);  /* Opcode 21 /r */
  9061   ins_encode( OpcP, RegMem( src, dst ) );
  9062   ins_pipe( ialu_mem_reg );
  9063 %}
  9065 // And Memory with Immediate
  9066 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9067   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9068   effect(KILL cr);
  9070   ins_cost(125);
  9071   format %{ "AND    $dst,$src" %}
  9072   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  9073   // ins_encode( MemImm( dst, src) );
  9074   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9075   ins_pipe( ialu_mem_imm );
  9076 %}
  9078 // Or Instructions
  9079 // Or Register with Register
  9080 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9081   match(Set dst (OrI dst src));
  9082   effect(KILL cr);
  9084   size(2);
  9085   format %{ "OR     $dst,$src" %}
  9086   opcode(0x0B);
  9087   ins_encode( OpcP, RegReg( dst, src) );
  9088   ins_pipe( ialu_reg_reg );
  9089 %}
  9091 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  9092   match(Set dst (OrI dst (CastP2X src)));
  9093   effect(KILL cr);
  9095   size(2);
  9096   format %{ "OR     $dst,$src" %}
  9097   opcode(0x0B);
  9098   ins_encode( OpcP, RegReg( dst, src) );
  9099   ins_pipe( ialu_reg_reg );
  9100 %}
  9103 // Or Register with Immediate
  9104 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9105   match(Set dst (OrI dst src));
  9106   effect(KILL cr);
  9108   format %{ "OR     $dst,$src" %}
  9109   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  9110   // ins_encode( RegImm( dst, src) );
  9111   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9112   ins_pipe( ialu_reg );
  9113 %}
  9115 // Or Register with Memory
  9116 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9117   match(Set dst (OrI dst (LoadI src)));
  9118   effect(KILL cr);
  9120   ins_cost(125);
  9121   format %{ "OR     $dst,$src" %}
  9122   opcode(0x0B);
  9123   ins_encode( OpcP, RegMem( dst, src) );
  9124   ins_pipe( ialu_reg_mem );
  9125 %}
  9127 // Or Memory with Register
  9128 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9129   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9130   effect(KILL cr);
  9132   ins_cost(150);
  9133   format %{ "OR     $dst,$src" %}
  9134   opcode(0x09);  /* Opcode 09 /r */
  9135   ins_encode( OpcP, RegMem( src, dst ) );
  9136   ins_pipe( ialu_mem_reg );
  9137 %}
  9139 // Or Memory with Immediate
  9140 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9141   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9142   effect(KILL cr);
  9144   ins_cost(125);
  9145   format %{ "OR     $dst,$src" %}
  9146   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  9147   // ins_encode( MemImm( dst, src) );
  9148   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9149   ins_pipe( ialu_mem_imm );
  9150 %}
  9152 // ROL/ROR
  9153 // ROL expand
  9154 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9155   effect(USE_DEF dst, USE shift, KILL cr);
  9157   format %{ "ROL    $dst, $shift" %}
  9158   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9159   ins_encode( OpcP, RegOpc( dst ));
  9160   ins_pipe( ialu_reg );
  9161 %}
  9163 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9164   effect(USE_DEF dst, USE shift, KILL cr);
  9166   format %{ "ROL    $dst, $shift" %}
  9167   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9168   ins_encode( RegOpcImm(dst, shift) );
  9169   ins_pipe(ialu_reg);
  9170 %}
  9172 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9173   effect(USE_DEF dst, USE shift, KILL cr);
  9175   format %{ "ROL    $dst, $shift" %}
  9176   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9177   ins_encode(OpcP, RegOpc(dst));
  9178   ins_pipe( ialu_reg_reg );
  9179 %}
  9180 // end of ROL expand
  9182 // ROL 32bit by one once
  9183 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9184   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9186   expand %{
  9187     rolI_eReg_imm1(dst, lshift, cr);
  9188   %}
  9189 %}
  9191 // ROL 32bit var by imm8 once
  9192 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9193   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9194   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9196   expand %{
  9197     rolI_eReg_imm8(dst, lshift, cr);
  9198   %}
  9199 %}
  9201 // ROL 32bit var by var once
  9202 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9203   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9205   expand %{
  9206     rolI_eReg_CL(dst, shift, cr);
  9207   %}
  9208 %}
  9210 // ROL 32bit var by var once
  9211 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9212   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9214   expand %{
  9215     rolI_eReg_CL(dst, shift, cr);
  9216   %}
  9217 %}
  9219 // ROR expand
  9220 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9221   effect(USE_DEF dst, USE shift, KILL cr);
  9223   format %{ "ROR    $dst, $shift" %}
  9224   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9225   ins_encode( OpcP, RegOpc( dst ) );
  9226   ins_pipe( ialu_reg );
  9227 %}
  9229 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9230   effect (USE_DEF dst, USE shift, KILL cr);
  9232   format %{ "ROR    $dst, $shift" %}
  9233   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9234   ins_encode( RegOpcImm(dst, shift) );
  9235   ins_pipe( ialu_reg );
  9236 %}
  9238 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9239   effect(USE_DEF dst, USE shift, KILL cr);
  9241   format %{ "ROR    $dst, $shift" %}
  9242   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9243   ins_encode(OpcP, RegOpc(dst));
  9244   ins_pipe( ialu_reg_reg );
  9245 %}
  9246 // end of ROR expand
  9248 // ROR right once
  9249 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9250   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9252   expand %{
  9253     rorI_eReg_imm1(dst, rshift, cr);
  9254   %}
  9255 %}
  9257 // ROR 32bit by immI8 once
  9258 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9259   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9260   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9262   expand %{
  9263     rorI_eReg_imm8(dst, rshift, cr);
  9264   %}
  9265 %}
  9267 // ROR 32bit var by var once
  9268 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9269   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9271   expand %{
  9272     rorI_eReg_CL(dst, shift, cr);
  9273   %}
  9274 %}
  9276 // ROR 32bit var by var once
  9277 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9278   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9280   expand %{
  9281     rorI_eReg_CL(dst, shift, cr);
  9282   %}
  9283 %}
  9285 // Xor Instructions
  9286 // Xor Register with Register
  9287 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9288   match(Set dst (XorI dst src));
  9289   effect(KILL cr);
  9291   size(2);
  9292   format %{ "XOR    $dst,$src" %}
  9293   opcode(0x33);
  9294   ins_encode( OpcP, RegReg( dst, src) );
  9295   ins_pipe( ialu_reg_reg );
  9296 %}
  9298 // Xor Register with Immediate -1
  9299 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9300   match(Set dst (XorI dst imm));  
  9302   size(2);
  9303   format %{ "NOT    $dst" %}  
  9304   ins_encode %{
  9305      __ notl($dst$$Register);
  9306   %}
  9307   ins_pipe( ialu_reg );
  9308 %}
  9310 // Xor Register with Immediate
  9311 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9312   match(Set dst (XorI dst src));
  9313   effect(KILL cr);
  9315   format %{ "XOR    $dst,$src" %}
  9316   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9317   // ins_encode( RegImm( dst, src) );
  9318   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9319   ins_pipe( ialu_reg );
  9320 %}
  9322 // Xor Register with Memory
  9323 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9324   match(Set dst (XorI dst (LoadI src)));
  9325   effect(KILL cr);
  9327   ins_cost(125);
  9328   format %{ "XOR    $dst,$src" %}
  9329   opcode(0x33);
  9330   ins_encode( OpcP, RegMem(dst, src) );
  9331   ins_pipe( ialu_reg_mem );
  9332 %}
  9334 // Xor Memory with Register
  9335 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9336   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9337   effect(KILL cr);
  9339   ins_cost(150);
  9340   format %{ "XOR    $dst,$src" %}
  9341   opcode(0x31);  /* Opcode 31 /r */
  9342   ins_encode( OpcP, RegMem( src, dst ) );
  9343   ins_pipe( ialu_mem_reg );
  9344 %}
  9346 // Xor Memory with Immediate
  9347 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9348   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9349   effect(KILL cr);
  9351   ins_cost(125);
  9352   format %{ "XOR    $dst,$src" %}
  9353   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9354   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9355   ins_pipe( ialu_mem_imm );
  9356 %}
  9358 //----------Convert Int to Boolean---------------------------------------------
  9360 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9361   effect( DEF dst, USE src );
  9362   format %{ "MOV    $dst,$src" %}
  9363   ins_encode( enc_Copy( dst, src) );
  9364   ins_pipe( ialu_reg_reg );
  9365 %}
  9367 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9368   effect( USE_DEF dst, USE src, KILL cr );
  9370   size(4);
  9371   format %{ "NEG    $dst\n\t"
  9372             "ADC    $dst,$src" %}
  9373   ins_encode( neg_reg(dst),
  9374               OpcRegReg(0x13,dst,src) );
  9375   ins_pipe( ialu_reg_reg_long );
  9376 %}
  9378 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9379   match(Set dst (Conv2B src));
  9381   expand %{
  9382     movI_nocopy(dst,src);
  9383     ci2b(dst,src,cr);
  9384   %}
  9385 %}
  9387 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9388   effect( DEF dst, USE src );
  9389   format %{ "MOV    $dst,$src" %}
  9390   ins_encode( enc_Copy( dst, src) );
  9391   ins_pipe( ialu_reg_reg );
  9392 %}
  9394 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9395   effect( USE_DEF dst, USE src, KILL cr );
  9396   format %{ "NEG    $dst\n\t"
  9397             "ADC    $dst,$src" %}
  9398   ins_encode( neg_reg(dst),
  9399               OpcRegReg(0x13,dst,src) );
  9400   ins_pipe( ialu_reg_reg_long );
  9401 %}
  9403 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9404   match(Set dst (Conv2B src));
  9406   expand %{
  9407     movP_nocopy(dst,src);
  9408     cp2b(dst,src,cr);
  9409   %}
  9410 %}
  9412 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9413   match(Set dst (CmpLTMask p q));
  9414   effect( KILL cr );
  9415   ins_cost(400);
  9417   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9418   format %{ "XOR    $dst,$dst\n\t"
  9419             "CMP    $p,$q\n\t"
  9420             "SETlt  $dst\n\t"
  9421             "NEG    $dst" %}
  9422   ins_encode( OpcRegReg(0x33,dst,dst),
  9423               OpcRegReg(0x3B,p,q),
  9424               setLT_reg(dst), neg_reg(dst) );
  9425   ins_pipe( pipe_slow );
  9426 %}
  9428 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9429   match(Set dst (CmpLTMask dst zero));
  9430   effect( DEF dst, KILL cr );
  9431   ins_cost(100);
  9433   format %{ "SAR    $dst,31" %}
  9434   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9435   ins_encode( RegOpcImm( dst, 0x1F ) );
  9436   ins_pipe( ialu_reg );
  9437 %}
  9440 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9441   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9442   effect( KILL tmp, KILL cr );
  9443   ins_cost(400);
  9444   // annoyingly, $tmp has no edges so you cant ask for it in
  9445   // any format or encoding
  9446   format %{ "SUB    $p,$q\n\t"
  9447             "SBB    ECX,ECX\n\t"
  9448             "AND    ECX,$y\n\t"
  9449             "ADD    $p,ECX" %}
  9450   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9451   ins_pipe( pipe_cmplt );
  9452 %}
  9454 /* If I enable this, I encourage spilling in the inner loop of compress.
  9455 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9456   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9457   effect( USE_KILL tmp, KILL cr );
  9458   ins_cost(400);
  9460   format %{ "SUB    $p,$q\n\t"
  9461             "SBB    ECX,ECX\n\t"
  9462             "AND    ECX,$y\n\t"
  9463             "ADD    $p,ECX" %}
  9464   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9465 %}
  9466 */
  9468 //----------Long Instructions------------------------------------------------
  9469 // Add Long Register with Register
  9470 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9471   match(Set dst (AddL dst src));
  9472   effect(KILL cr);
  9473   ins_cost(200);
  9474   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9475             "ADC    $dst.hi,$src.hi" %}
  9476   opcode(0x03, 0x13);
  9477   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9478   ins_pipe( ialu_reg_reg_long );
  9479 %}
  9481 // Add Long Register with Immediate
  9482 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9483   match(Set dst (AddL dst src));
  9484   effect(KILL cr);
  9485   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9486             "ADC    $dst.hi,$src.hi" %}
  9487   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9488   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9489   ins_pipe( ialu_reg_long );
  9490 %}
  9492 // Add Long Register with Memory
  9493 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9494   match(Set dst (AddL dst (LoadL mem)));
  9495   effect(KILL cr);
  9496   ins_cost(125);
  9497   format %{ "ADD    $dst.lo,$mem\n\t"
  9498             "ADC    $dst.hi,$mem+4" %}
  9499   opcode(0x03, 0x13);
  9500   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9501   ins_pipe( ialu_reg_long_mem );
  9502 %}
  9504 // Subtract Long Register with Register.
  9505 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9506   match(Set dst (SubL dst src));
  9507   effect(KILL cr);
  9508   ins_cost(200);
  9509   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9510             "SBB    $dst.hi,$src.hi" %}
  9511   opcode(0x2B, 0x1B);
  9512   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9513   ins_pipe( ialu_reg_reg_long );
  9514 %}
  9516 // Subtract Long Register with Immediate
  9517 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9518   match(Set dst (SubL dst src));
  9519   effect(KILL cr);
  9520   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9521             "SBB    $dst.hi,$src.hi" %}
  9522   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9523   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9524   ins_pipe( ialu_reg_long );
  9525 %}
  9527 // Subtract Long Register with Memory
  9528 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9529   match(Set dst (SubL dst (LoadL mem)));
  9530   effect(KILL cr);
  9531   ins_cost(125);
  9532   format %{ "SUB    $dst.lo,$mem\n\t"
  9533             "SBB    $dst.hi,$mem+4" %}
  9534   opcode(0x2B, 0x1B);
  9535   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9536   ins_pipe( ialu_reg_long_mem );
  9537 %}
  9539 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9540   match(Set dst (SubL zero dst));
  9541   effect(KILL cr);
  9542   ins_cost(300);
  9543   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9544   ins_encode( neg_long(dst) );
  9545   ins_pipe( ialu_reg_reg_long );
  9546 %}
  9548 // And Long Register with Register
  9549 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9550   match(Set dst (AndL dst src));
  9551   effect(KILL cr);
  9552   format %{ "AND    $dst.lo,$src.lo\n\t"
  9553             "AND    $dst.hi,$src.hi" %}
  9554   opcode(0x23,0x23);
  9555   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9556   ins_pipe( ialu_reg_reg_long );
  9557 %}
  9559 // And Long Register with Immediate
  9560 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9561   match(Set dst (AndL dst src));
  9562   effect(KILL cr);
  9563   format %{ "AND    $dst.lo,$src.lo\n\t"
  9564             "AND    $dst.hi,$src.hi" %}
  9565   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9566   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9567   ins_pipe( ialu_reg_long );
  9568 %}
  9570 // And Long Register with Memory
  9571 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9572   match(Set dst (AndL dst (LoadL mem)));
  9573   effect(KILL cr);
  9574   ins_cost(125);
  9575   format %{ "AND    $dst.lo,$mem\n\t"
  9576             "AND    $dst.hi,$mem+4" %}
  9577   opcode(0x23, 0x23);
  9578   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9579   ins_pipe( ialu_reg_long_mem );
  9580 %}
  9582 // Or Long Register with Register
  9583 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9584   match(Set dst (OrL dst src));
  9585   effect(KILL cr);
  9586   format %{ "OR     $dst.lo,$src.lo\n\t"
  9587             "OR     $dst.hi,$src.hi" %}
  9588   opcode(0x0B,0x0B);
  9589   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9590   ins_pipe( ialu_reg_reg_long );
  9591 %}
  9593 // Or Long Register with Immediate
  9594 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9595   match(Set dst (OrL dst src));
  9596   effect(KILL cr);
  9597   format %{ "OR     $dst.lo,$src.lo\n\t"
  9598             "OR     $dst.hi,$src.hi" %}
  9599   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9600   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9601   ins_pipe( ialu_reg_long );
  9602 %}
  9604 // Or Long Register with Memory
  9605 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9606   match(Set dst (OrL dst (LoadL mem)));
  9607   effect(KILL cr);
  9608   ins_cost(125);
  9609   format %{ "OR     $dst.lo,$mem\n\t"
  9610             "OR     $dst.hi,$mem+4" %}
  9611   opcode(0x0B,0x0B);
  9612   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9613   ins_pipe( ialu_reg_long_mem );
  9614 %}
  9616 // Xor Long Register with Register
  9617 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9618   match(Set dst (XorL dst src));
  9619   effect(KILL cr);
  9620   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9621             "XOR    $dst.hi,$src.hi" %}
  9622   opcode(0x33,0x33);
  9623   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9624   ins_pipe( ialu_reg_reg_long );
  9625 %}
  9627 // Xor Long Register with Immediate -1
  9628 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9629   match(Set dst (XorL dst imm));  
  9630   format %{ "NOT    $dst.lo\n\t"
  9631             "NOT    $dst.hi" %}
  9632   ins_encode %{
  9633      __ notl($dst$$Register);
  9634      __ notl(HIGH_FROM_LOW($dst$$Register));
  9635   %}
  9636   ins_pipe( ialu_reg_long );
  9637 %}
  9639 // Xor Long Register with Immediate
  9640 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9641   match(Set dst (XorL dst src));
  9642   effect(KILL cr);
  9643   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9644             "XOR    $dst.hi,$src.hi" %}
  9645   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9646   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9647   ins_pipe( ialu_reg_long );
  9648 %}
  9650 // Xor Long Register with Memory
  9651 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9652   match(Set dst (XorL dst (LoadL mem)));
  9653   effect(KILL cr);
  9654   ins_cost(125);
  9655   format %{ "XOR    $dst.lo,$mem\n\t"
  9656             "XOR    $dst.hi,$mem+4" %}
  9657   opcode(0x33,0x33);
  9658   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9659   ins_pipe( ialu_reg_long_mem );
  9660 %}
  9662 // Shift Left Long by 1
  9663 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9664   predicate(UseNewLongLShift);
  9665   match(Set dst (LShiftL dst cnt));
  9666   effect(KILL cr);
  9667   ins_cost(100);
  9668   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9669             "ADC    $dst.hi,$dst.hi" %}
  9670   ins_encode %{
  9671     __ addl($dst$$Register,$dst$$Register);
  9672     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9673   %}
  9674   ins_pipe( ialu_reg_long );
  9675 %}
  9677 // Shift Left Long by 2
  9678 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9679   predicate(UseNewLongLShift);
  9680   match(Set dst (LShiftL dst cnt));
  9681   effect(KILL cr);
  9682   ins_cost(100);
  9683   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9684             "ADC    $dst.hi,$dst.hi\n\t" 
  9685             "ADD    $dst.lo,$dst.lo\n\t"
  9686             "ADC    $dst.hi,$dst.hi" %}
  9687   ins_encode %{
  9688     __ addl($dst$$Register,$dst$$Register);
  9689     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9690     __ addl($dst$$Register,$dst$$Register);
  9691     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9692   %}
  9693   ins_pipe( ialu_reg_long );
  9694 %}
  9696 // Shift Left Long by 3
  9697 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9698   predicate(UseNewLongLShift);
  9699   match(Set dst (LShiftL dst cnt));
  9700   effect(KILL cr);
  9701   ins_cost(100);
  9702   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9703             "ADC    $dst.hi,$dst.hi\n\t" 
  9704             "ADD    $dst.lo,$dst.lo\n\t"
  9705             "ADC    $dst.hi,$dst.hi\n\t" 
  9706             "ADD    $dst.lo,$dst.lo\n\t"
  9707             "ADC    $dst.hi,$dst.hi" %}
  9708   ins_encode %{
  9709     __ addl($dst$$Register,$dst$$Register);
  9710     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9711     __ addl($dst$$Register,$dst$$Register);
  9712     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9713     __ addl($dst$$Register,$dst$$Register);
  9714     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9715   %}
  9716   ins_pipe( ialu_reg_long );
  9717 %}
  9719 // Shift Left Long by 1-31
  9720 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9721   match(Set dst (LShiftL dst cnt));
  9722   effect(KILL cr);
  9723   ins_cost(200);
  9724   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9725             "SHL    $dst.lo,$cnt" %}
  9726   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9727   ins_encode( move_long_small_shift(dst,cnt) );
  9728   ins_pipe( ialu_reg_long );
  9729 %}
  9731 // Shift Left Long by 32-63
  9732 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9733   match(Set dst (LShiftL dst cnt));
  9734   effect(KILL cr);
  9735   ins_cost(300);
  9736   format %{ "MOV    $dst.hi,$dst.lo\n"
  9737           "\tSHL    $dst.hi,$cnt-32\n"
  9738           "\tXOR    $dst.lo,$dst.lo" %}
  9739   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9740   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9741   ins_pipe( ialu_reg_long );
  9742 %}
  9744 // Shift Left Long by variable
  9745 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9746   match(Set dst (LShiftL dst shift));
  9747   effect(KILL cr);
  9748   ins_cost(500+200);
  9749   size(17);
  9750   format %{ "TEST   $shift,32\n\t"
  9751             "JEQ,s  small\n\t"
  9752             "MOV    $dst.hi,$dst.lo\n\t"
  9753             "XOR    $dst.lo,$dst.lo\n"
  9754     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9755             "SHL    $dst.lo,$shift" %}
  9756   ins_encode( shift_left_long( dst, shift ) );
  9757   ins_pipe( pipe_slow );
  9758 %}
  9760 // Shift Right Long by 1-31
  9761 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9762   match(Set dst (URShiftL dst cnt));
  9763   effect(KILL cr);
  9764   ins_cost(200);
  9765   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9766             "SHR    $dst.hi,$cnt" %}
  9767   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9768   ins_encode( move_long_small_shift(dst,cnt) );
  9769   ins_pipe( ialu_reg_long );
  9770 %}
  9772 // Shift Right Long by 32-63
  9773 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9774   match(Set dst (URShiftL dst cnt));
  9775   effect(KILL cr);
  9776   ins_cost(300);
  9777   format %{ "MOV    $dst.lo,$dst.hi\n"
  9778           "\tSHR    $dst.lo,$cnt-32\n"
  9779           "\tXOR    $dst.hi,$dst.hi" %}
  9780   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9781   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9782   ins_pipe( ialu_reg_long );
  9783 %}
  9785 // Shift Right Long by variable
  9786 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9787   match(Set dst (URShiftL dst shift));
  9788   effect(KILL cr);
  9789   ins_cost(600);
  9790   size(17);
  9791   format %{ "TEST   $shift,32\n\t"
  9792             "JEQ,s  small\n\t"
  9793             "MOV    $dst.lo,$dst.hi\n\t"
  9794             "XOR    $dst.hi,$dst.hi\n"
  9795     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9796             "SHR    $dst.hi,$shift" %}
  9797   ins_encode( shift_right_long( dst, shift ) );
  9798   ins_pipe( pipe_slow );
  9799 %}
  9801 // Shift Right Long by 1-31
  9802 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9803   match(Set dst (RShiftL dst cnt));
  9804   effect(KILL cr);
  9805   ins_cost(200);
  9806   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9807             "SAR    $dst.hi,$cnt" %}
  9808   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9809   ins_encode( move_long_small_shift(dst,cnt) );
  9810   ins_pipe( ialu_reg_long );
  9811 %}
  9813 // Shift Right Long by 32-63
  9814 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9815   match(Set dst (RShiftL dst cnt));
  9816   effect(KILL cr);
  9817   ins_cost(300);
  9818   format %{ "MOV    $dst.lo,$dst.hi\n"
  9819           "\tSAR    $dst.lo,$cnt-32\n"
  9820           "\tSAR    $dst.hi,31" %}
  9821   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9822   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9823   ins_pipe( ialu_reg_long );
  9824 %}
  9826 // Shift Right arithmetic Long by variable
  9827 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9828   match(Set dst (RShiftL dst shift));
  9829   effect(KILL cr);
  9830   ins_cost(600);
  9831   size(18);
  9832   format %{ "TEST   $shift,32\n\t"
  9833             "JEQ,s  small\n\t"
  9834             "MOV    $dst.lo,$dst.hi\n\t"
  9835             "SAR    $dst.hi,31\n"
  9836     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9837             "SAR    $dst.hi,$shift" %}
  9838   ins_encode( shift_right_arith_long( dst, shift ) );
  9839   ins_pipe( pipe_slow );
  9840 %}
  9843 //----------Double Instructions------------------------------------------------
  9844 // Double Math
  9846 // Compare & branch
  9848 // P6 version of float compare, sets condition codes in EFLAGS
  9849 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9850   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9851   match(Set cr (CmpD src1 src2));
  9852   effect(KILL rax);
  9853   ins_cost(150);
  9854   format %{ "FLD    $src1\n\t"
  9855             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9856             "JNP    exit\n\t"
  9857             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9858             "SAHF\n"
  9859      "exit:\tNOP               // avoid branch to branch" %}
  9860   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9861   ins_encode( Push_Reg_D(src1),
  9862               OpcP, RegOpc(src2),
  9863               cmpF_P6_fixup );
  9864   ins_pipe( pipe_slow );
  9865 %}
  9867 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9868   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9869   match(Set cr (CmpD src1 src2));
  9870   ins_cost(150);
  9871   format %{ "FLD    $src1\n\t"
  9872             "FUCOMIP ST,$src2  // P6 instruction" %}
  9873   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9874   ins_encode( Push_Reg_D(src1),
  9875               OpcP, RegOpc(src2));
  9876   ins_pipe( pipe_slow );
  9877 %}
  9879 // Compare & branch
  9880 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9881   predicate(UseSSE<=1);
  9882   match(Set cr (CmpD src1 src2));
  9883   effect(KILL rax);
  9884   ins_cost(200);
  9885   format %{ "FLD    $src1\n\t"
  9886             "FCOMp  $src2\n\t"
  9887             "FNSTSW AX\n\t"
  9888             "TEST   AX,0x400\n\t"
  9889             "JZ,s   flags\n\t"
  9890             "MOV    AH,1\t# unordered treat as LT\n"
  9891     "flags:\tSAHF" %}
  9892   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9893   ins_encode( Push_Reg_D(src1),
  9894               OpcP, RegOpc(src2),
  9895               fpu_flags);
  9896   ins_pipe( pipe_slow );
  9897 %}
  9899 // Compare vs zero into -1,0,1
  9900 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  9901   predicate(UseSSE<=1);
  9902   match(Set dst (CmpD3 src1 zero));
  9903   effect(KILL cr, KILL rax);
  9904   ins_cost(280);
  9905   format %{ "FTSTD  $dst,$src1" %}
  9906   opcode(0xE4, 0xD9);
  9907   ins_encode( Push_Reg_D(src1),
  9908               OpcS, OpcP, PopFPU,
  9909               CmpF_Result(dst));
  9910   ins_pipe( pipe_slow );
  9911 %}
  9913 // Compare into -1,0,1
  9914 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  9915   predicate(UseSSE<=1);
  9916   match(Set dst (CmpD3 src1 src2));
  9917   effect(KILL cr, KILL rax);
  9918   ins_cost(300);
  9919   format %{ "FCMPD  $dst,$src1,$src2" %}
  9920   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9921   ins_encode( Push_Reg_D(src1),
  9922               OpcP, RegOpc(src2),
  9923               CmpF_Result(dst));
  9924   ins_pipe( pipe_slow );
  9925 %}
  9927 // float compare and set condition codes in EFLAGS by XMM regs
  9928 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  9929   predicate(UseSSE>=2);
  9930   match(Set cr (CmpD dst src));
  9931   effect(KILL rax);
  9932   ins_cost(125);
  9933   format %{ "COMISD $dst,$src\n"
  9934           "\tJNP    exit\n"
  9935           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9936           "\tSAHF\n"
  9937      "exit:\tNOP               // avoid branch to branch" %}
  9938   opcode(0x66, 0x0F, 0x2F);
  9939   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  9940   ins_pipe( pipe_slow );
  9941 %}
  9943 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  9944   predicate(UseSSE>=2);
  9945   match(Set cr (CmpD dst src));
  9946   ins_cost(100);
  9947   format %{ "COMISD $dst,$src" %}
  9948   opcode(0x66, 0x0F, 0x2F);
  9949   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  9950   ins_pipe( pipe_slow );
  9951 %}
  9953 // float compare and set condition codes in EFLAGS by XMM regs
  9954 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  9955   predicate(UseSSE>=2);
  9956   match(Set cr (CmpD dst (LoadD src)));
  9957   effect(KILL rax);
  9958   ins_cost(145);
  9959   format %{ "COMISD $dst,$src\n"
  9960           "\tJNP    exit\n"
  9961           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9962           "\tSAHF\n"
  9963      "exit:\tNOP               // avoid branch to branch" %}
  9964   opcode(0x66, 0x0F, 0x2F);
  9965   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  9966   ins_pipe( pipe_slow );
  9967 %}
  9969 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  9970   predicate(UseSSE>=2);
  9971   match(Set cr (CmpD dst (LoadD src)));
  9972   ins_cost(100);
  9973   format %{ "COMISD $dst,$src" %}
  9974   opcode(0x66, 0x0F, 0x2F);
  9975   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  9976   ins_pipe( pipe_slow );
  9977 %}
  9979 // Compare into -1,0,1 in XMM
  9980 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  9981   predicate(UseSSE>=2);
  9982   match(Set dst (CmpD3 src1 src2));
  9983   effect(KILL cr);
  9984   ins_cost(255);
  9985   format %{ "XOR    $dst,$dst\n"
  9986           "\tCOMISD $src1,$src2\n"
  9987           "\tJP,s   nan\n"
  9988           "\tJEQ,s  exit\n"
  9989           "\tJA,s   inc\n"
  9990       "nan:\tDEC    $dst\n"
  9991           "\tJMP,s  exit\n"
  9992       "inc:\tINC    $dst\n"
  9993       "exit:"
  9994                 %}
  9995   opcode(0x66, 0x0F, 0x2F);
  9996   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
  9997              CmpX_Result(dst));
  9998   ins_pipe( pipe_slow );
  9999 %}
 10001 // Compare into -1,0,1 in XMM and memory
 10002 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
 10003   predicate(UseSSE>=2);
 10004   match(Set dst (CmpD3 src1 (LoadD mem)));
 10005   effect(KILL cr);
 10006   ins_cost(275);
 10007   format %{ "COMISD $src1,$mem\n"
 10008           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10009           "\tJP,s   nan\n"
 10010           "\tJEQ,s  exit\n"
 10011           "\tJA,s   inc\n"
 10012       "nan:\tDEC    $dst\n"
 10013           "\tJMP,s  exit\n"
 10014       "inc:\tINC    $dst\n"
 10015       "exit:"
 10016                 %}
 10017   opcode(0x66, 0x0F, 0x2F);
 10018   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
 10019              LdImmI(dst,0x0), CmpX_Result(dst));
 10020   ins_pipe( pipe_slow );
 10021 %}
 10024 instruct subD_reg(regD dst, regD src) %{
 10025   predicate (UseSSE <=1);
 10026   match(Set dst (SubD dst src));
 10028   format %{ "FLD    $src\n\t"
 10029             "DSUBp  $dst,ST" %}
 10030   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10031   ins_cost(150);
 10032   ins_encode( Push_Reg_D(src),
 10033               OpcP, RegOpc(dst) );
 10034   ins_pipe( fpu_reg_reg );
 10035 %}
 10037 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10038   predicate (UseSSE <=1);
 10039   match(Set dst (RoundDouble (SubD src1 src2)));
 10040   ins_cost(250);
 10042   format %{ "FLD    $src2\n\t"
 10043             "DSUB   ST,$src1\n\t"
 10044             "FSTP_D $dst\t# D-round" %}
 10045   opcode(0xD8, 0x5);
 10046   ins_encode( Push_Reg_D(src2),
 10047               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10048   ins_pipe( fpu_mem_reg_reg );
 10049 %}
 10052 instruct subD_reg_mem(regD dst, memory src) %{
 10053   predicate (UseSSE <=1);
 10054   match(Set dst (SubD dst (LoadD src)));
 10055   ins_cost(150);
 10057   format %{ "FLD    $src\n\t"
 10058             "DSUBp  $dst,ST" %}
 10059   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10060   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10061               OpcP, RegOpc(dst) );
 10062   ins_pipe( fpu_reg_mem );
 10063 %}
 10065 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
 10066   predicate (UseSSE<=1);
 10067   match(Set dst (AbsD src));
 10068   ins_cost(100);
 10069   format %{ "FABS" %}
 10070   opcode(0xE1, 0xD9);
 10071   ins_encode( OpcS, OpcP );
 10072   ins_pipe( fpu_reg_reg );
 10073 %}
 10075 instruct absXD_reg( regXD dst ) %{
 10076   predicate(UseSSE>=2);
 10077   match(Set dst (AbsD dst));
 10078   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
 10079   ins_encode( AbsXD_encoding(dst));
 10080   ins_pipe( pipe_slow );
 10081 %}
 10083 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
 10084   predicate(UseSSE<=1);
 10085   match(Set dst (NegD src));
 10086   ins_cost(100);
 10087   format %{ "FCHS" %}
 10088   opcode(0xE0, 0xD9);
 10089   ins_encode( OpcS, OpcP );
 10090   ins_pipe( fpu_reg_reg );
 10091 %}
 10093 instruct negXD_reg( regXD dst ) %{
 10094   predicate(UseSSE>=2);
 10095   match(Set dst (NegD dst));
 10096   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
 10097   ins_encode %{
 10098      __ xorpd($dst$$XMMRegister,
 10099               ExternalAddress((address)double_signflip_pool));
 10100   %}
 10101   ins_pipe( pipe_slow );
 10102 %}
 10104 instruct addD_reg(regD dst, regD src) %{
 10105   predicate(UseSSE<=1);
 10106   match(Set dst (AddD dst src));
 10107   format %{ "FLD    $src\n\t"
 10108             "DADD   $dst,ST" %}
 10109   size(4);
 10110   ins_cost(150);
 10111   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10112   ins_encode( Push_Reg_D(src),
 10113               OpcP, RegOpc(dst) );
 10114   ins_pipe( fpu_reg_reg );
 10115 %}
 10118 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10119   predicate(UseSSE<=1);
 10120   match(Set dst (RoundDouble (AddD src1 src2)));
 10121   ins_cost(250);
 10123   format %{ "FLD    $src2\n\t"
 10124             "DADD   ST,$src1\n\t"
 10125             "FSTP_D $dst\t# D-round" %}
 10126   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
 10127   ins_encode( Push_Reg_D(src2),
 10128               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10129   ins_pipe( fpu_mem_reg_reg );
 10130 %}
 10133 instruct addD_reg_mem(regD dst, memory src) %{
 10134   predicate(UseSSE<=1);
 10135   match(Set dst (AddD dst (LoadD src)));
 10136   ins_cost(150);
 10138   format %{ "FLD    $src\n\t"
 10139             "DADDp  $dst,ST" %}
 10140   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10141   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10142               OpcP, RegOpc(dst) );
 10143   ins_pipe( fpu_reg_mem );
 10144 %}
 10146 // add-to-memory
 10147 instruct addD_mem_reg(memory dst, regD src) %{
 10148   predicate(UseSSE<=1);
 10149   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
 10150   ins_cost(150);
 10152   format %{ "FLD_D  $dst\n\t"
 10153             "DADD   ST,$src\n\t"
 10154             "FST_D  $dst" %}
 10155   opcode(0xDD, 0x0);
 10156   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10157               Opcode(0xD8), RegOpc(src),
 10158               set_instruction_start,
 10159               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10160   ins_pipe( fpu_reg_mem );
 10161 %}
 10163 instruct addD_reg_imm1(regD dst, immD1 src) %{
 10164   predicate(UseSSE<=1);
 10165   match(Set dst (AddD dst src));
 10166   ins_cost(125);
 10167   format %{ "FLD1\n\t"
 10168             "DADDp  $dst,ST" %}
 10169   opcode(0xDE, 0x00);
 10170   ins_encode( LdImmD(src),
 10171               OpcP, RegOpc(dst) );
 10172   ins_pipe( fpu_reg );
 10173 %}
 10175 instruct addD_reg_imm(regD dst, immD src) %{
 10176   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10177   match(Set dst (AddD dst src));
 10178   ins_cost(200);
 10179   format %{ "FLD_D  [$src]\n\t"
 10180             "DADDp  $dst,ST" %}
 10181   opcode(0xDE, 0x00);       /* DE /0 */
 10182   ins_encode( LdImmD(src),
 10183               OpcP, RegOpc(dst));
 10184   ins_pipe( fpu_reg_mem );
 10185 %}
 10187 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10188   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10189   match(Set dst (RoundDouble (AddD src con)));
 10190   ins_cost(200);
 10191   format %{ "FLD_D  [$con]\n\t"
 10192             "DADD   ST,$src\n\t"
 10193             "FSTP_D $dst\t# D-round" %}
 10194   opcode(0xD8, 0x00);       /* D8 /0 */
 10195   ins_encode( LdImmD(con),
 10196               OpcP, RegOpc(src), Pop_Mem_D(dst));
 10197   ins_pipe( fpu_mem_reg_con );
 10198 %}
 10200 // Add two double precision floating point values in xmm
 10201 instruct addXD_reg(regXD dst, regXD src) %{
 10202   predicate(UseSSE>=2);
 10203   match(Set dst (AddD dst src));
 10204   format %{ "ADDSD  $dst,$src" %}
 10205   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10206   ins_pipe( pipe_slow );
 10207 %}
 10209 instruct addXD_imm(regXD dst, immXD con) %{
 10210   predicate(UseSSE>=2);
 10211   match(Set dst (AddD dst con));
 10212   format %{ "ADDSD  $dst,[$con]" %}
 10213   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
 10214   ins_pipe( pipe_slow );
 10215 %}
 10217 instruct addXD_mem(regXD dst, memory mem) %{
 10218   predicate(UseSSE>=2);
 10219   match(Set dst (AddD dst (LoadD mem)));
 10220   format %{ "ADDSD  $dst,$mem" %}
 10221   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10222   ins_pipe( pipe_slow );
 10223 %}
 10225 // Sub two double precision floating point values in xmm
 10226 instruct subXD_reg(regXD dst, regXD src) %{
 10227   predicate(UseSSE>=2);
 10228   match(Set dst (SubD dst src));
 10229   format %{ "SUBSD  $dst,$src" %}
 10230   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10231   ins_pipe( pipe_slow );
 10232 %}
 10234 instruct subXD_imm(regXD dst, immXD con) %{
 10235   predicate(UseSSE>=2);
 10236   match(Set dst (SubD dst con));
 10237   format %{ "SUBSD  $dst,[$con]" %}
 10238   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
 10239   ins_pipe( pipe_slow );
 10240 %}
 10242 instruct subXD_mem(regXD dst, memory mem) %{
 10243   predicate(UseSSE>=2);
 10244   match(Set dst (SubD dst (LoadD mem)));
 10245   format %{ "SUBSD  $dst,$mem" %}
 10246   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10247   ins_pipe( pipe_slow );
 10248 %}
 10250 // Mul two double precision floating point values in xmm
 10251 instruct mulXD_reg(regXD dst, regXD src) %{
 10252   predicate(UseSSE>=2);
 10253   match(Set dst (MulD dst src));
 10254   format %{ "MULSD  $dst,$src" %}
 10255   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10256   ins_pipe( pipe_slow );
 10257 %}
 10259 instruct mulXD_imm(regXD dst, immXD con) %{
 10260   predicate(UseSSE>=2);
 10261   match(Set dst (MulD dst con));
 10262   format %{ "MULSD  $dst,[$con]" %}
 10263   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
 10264   ins_pipe( pipe_slow );
 10265 %}
 10267 instruct mulXD_mem(regXD dst, memory mem) %{
 10268   predicate(UseSSE>=2);
 10269   match(Set dst (MulD dst (LoadD mem)));
 10270   format %{ "MULSD  $dst,$mem" %}
 10271   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10272   ins_pipe( pipe_slow );
 10273 %}
 10275 // Div two double precision floating point values in xmm
 10276 instruct divXD_reg(regXD dst, regXD src) %{
 10277   predicate(UseSSE>=2);
 10278   match(Set dst (DivD dst src));
 10279   format %{ "DIVSD  $dst,$src" %}
 10280   opcode(0xF2, 0x0F, 0x5E);
 10281   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10282   ins_pipe( pipe_slow );
 10283 %}
 10285 instruct divXD_imm(regXD dst, immXD con) %{
 10286   predicate(UseSSE>=2);
 10287   match(Set dst (DivD dst con));
 10288   format %{ "DIVSD  $dst,[$con]" %}
 10289   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
 10290   ins_pipe( pipe_slow );
 10291 %}
 10293 instruct divXD_mem(regXD dst, memory mem) %{
 10294   predicate(UseSSE>=2);
 10295   match(Set dst (DivD dst (LoadD mem)));
 10296   format %{ "DIVSD  $dst,$mem" %}
 10297   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10298   ins_pipe( pipe_slow );
 10299 %}
 10302 instruct mulD_reg(regD dst, regD src) %{
 10303   predicate(UseSSE<=1);
 10304   match(Set dst (MulD dst src));
 10305   format %{ "FLD    $src\n\t"
 10306             "DMULp  $dst,ST" %}
 10307   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10308   ins_cost(150);
 10309   ins_encode( Push_Reg_D(src),
 10310               OpcP, RegOpc(dst) );
 10311   ins_pipe( fpu_reg_reg );
 10312 %}
 10314 // Strict FP instruction biases argument before multiply then
 10315 // biases result to avoid double rounding of subnormals.
 10316 //
 10317 // scale arg1 by multiplying arg1 by 2^(-15360)
 10318 // load arg2
 10319 // multiply scaled arg1 by arg2
 10320 // rescale product by 2^(15360)
 10321 //
 10322 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10323   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10324   match(Set dst (MulD dst src));
 10325   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10327   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10328             "DMULp  $dst,ST\n\t"
 10329             "FLD    $src\n\t"
 10330             "DMULp  $dst,ST\n\t"
 10331             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10332             "DMULp  $dst,ST\n\t" %}
 10333   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10334   ins_encode( strictfp_bias1(dst),
 10335               Push_Reg_D(src),
 10336               OpcP, RegOpc(dst),
 10337               strictfp_bias2(dst) );
 10338   ins_pipe( fpu_reg_reg );
 10339 %}
 10341 instruct mulD_reg_imm(regD dst, immD src) %{
 10342   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10343   match(Set dst (MulD dst src));
 10344   ins_cost(200);
 10345   format %{ "FLD_D  [$src]\n\t"
 10346             "DMULp  $dst,ST" %}
 10347   opcode(0xDE, 0x1); /* DE /1 */
 10348   ins_encode( LdImmD(src),
 10349               OpcP, RegOpc(dst) );
 10350   ins_pipe( fpu_reg_mem );
 10351 %}
 10354 instruct mulD_reg_mem(regD dst, memory src) %{
 10355   predicate( UseSSE<=1 );
 10356   match(Set dst (MulD dst (LoadD src)));
 10357   ins_cost(200);
 10358   format %{ "FLD_D  $src\n\t"
 10359             "DMULp  $dst,ST" %}
 10360   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10361   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10362               OpcP, RegOpc(dst) );
 10363   ins_pipe( fpu_reg_mem );
 10364 %}
 10366 //
 10367 // Cisc-alternate to reg-reg multiply
 10368 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10369   predicate( UseSSE<=1 );
 10370   match(Set dst (MulD src (LoadD mem)));
 10371   ins_cost(250);
 10372   format %{ "FLD_D  $mem\n\t"
 10373             "DMUL   ST,$src\n\t"
 10374             "FSTP_D $dst" %}
 10375   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10376   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10377               OpcReg_F(src),
 10378               Pop_Reg_D(dst) );
 10379   ins_pipe( fpu_reg_reg_mem );
 10380 %}
 10383 // MACRO3 -- addD a mulD
 10384 // This instruction is a '2-address' instruction in that the result goes
 10385 // back to src2.  This eliminates a move from the macro; possibly the
 10386 // register allocator will have to add it back (and maybe not).
 10387 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10388   predicate( UseSSE<=1 );
 10389   match(Set src2 (AddD (MulD src0 src1) src2));
 10390   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10391             "DMUL   ST,$src1\n\t"
 10392             "DADDp  $src2,ST" %}
 10393   ins_cost(250);
 10394   opcode(0xDD); /* LoadD DD /0 */
 10395   ins_encode( Push_Reg_F(src0),
 10396               FMul_ST_reg(src1),
 10397               FAddP_reg_ST(src2) );
 10398   ins_pipe( fpu_reg_reg_reg );
 10399 %}
 10402 // MACRO3 -- subD a mulD
 10403 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10404   predicate( UseSSE<=1 );
 10405   match(Set src2 (SubD (MulD src0 src1) src2));
 10406   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10407             "DMUL   ST,$src1\n\t"
 10408             "DSUBRp $src2,ST" %}
 10409   ins_cost(250);
 10410   ins_encode( Push_Reg_F(src0),
 10411               FMul_ST_reg(src1),
 10412               Opcode(0xDE), Opc_plus(0xE0,src2));
 10413   ins_pipe( fpu_reg_reg_reg );
 10414 %}
 10417 instruct divD_reg(regD dst, regD src) %{
 10418   predicate( UseSSE<=1 );
 10419   match(Set dst (DivD dst src));
 10421   format %{ "FLD    $src\n\t"
 10422             "FDIVp  $dst,ST" %}
 10423   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10424   ins_cost(150);
 10425   ins_encode( Push_Reg_D(src),
 10426               OpcP, RegOpc(dst) );
 10427   ins_pipe( fpu_reg_reg );
 10428 %}
 10430 // Strict FP instruction biases argument before division then
 10431 // biases result, to avoid double rounding of subnormals.
 10432 //
 10433 // scale dividend by multiplying dividend by 2^(-15360)
 10434 // load divisor
 10435 // divide scaled dividend by divisor
 10436 // rescale quotient by 2^(15360)
 10437 //
 10438 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10439   predicate (UseSSE<=1);
 10440   match(Set dst (DivD dst src));
 10441   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10442   ins_cost(01);
 10444   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10445             "DMULp  $dst,ST\n\t"
 10446             "FLD    $src\n\t"
 10447             "FDIVp  $dst,ST\n\t"
 10448             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10449             "DMULp  $dst,ST\n\t" %}
 10450   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10451   ins_encode( strictfp_bias1(dst),
 10452               Push_Reg_D(src),
 10453               OpcP, RegOpc(dst),
 10454               strictfp_bias2(dst) );
 10455   ins_pipe( fpu_reg_reg );
 10456 %}
 10458 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10459   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10460   match(Set dst (RoundDouble (DivD src1 src2)));
 10462   format %{ "FLD    $src1\n\t"
 10463             "FDIV   ST,$src2\n\t"
 10464             "FSTP_D $dst\t# D-round" %}
 10465   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10466   ins_encode( Push_Reg_D(src1),
 10467               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10468   ins_pipe( fpu_mem_reg_reg );
 10469 %}
 10472 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10473   predicate(UseSSE<=1);
 10474   match(Set dst (ModD dst src));
 10475   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10477   format %{ "DMOD   $dst,$src" %}
 10478   ins_cost(250);
 10479   ins_encode(Push_Reg_Mod_D(dst, src),
 10480               emitModD(),
 10481               Push_Result_Mod_D(src),
 10482               Pop_Reg_D(dst));
 10483   ins_pipe( pipe_slow );
 10484 %}
 10486 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10487   predicate(UseSSE>=2);
 10488   match(Set dst (ModD src0 src1));
 10489   effect(KILL rax, KILL cr);
 10491   format %{ "SUB    ESP,8\t # DMOD\n"
 10492           "\tMOVSD  [ESP+0],$src1\n"
 10493           "\tFLD_D  [ESP+0]\n"
 10494           "\tMOVSD  [ESP+0],$src0\n"
 10495           "\tFLD_D  [ESP+0]\n"
 10496      "loop:\tFPREM\n"
 10497           "\tFWAIT\n"
 10498           "\tFNSTSW AX\n"
 10499           "\tSAHF\n"
 10500           "\tJP     loop\n"
 10501           "\tFSTP_D [ESP+0]\n"
 10502           "\tMOVSD  $dst,[ESP+0]\n"
 10503           "\tADD    ESP,8\n"
 10504           "\tFSTP   ST0\t # Restore FPU Stack"
 10505     %}
 10506   ins_cost(250);
 10507   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10508   ins_pipe( pipe_slow );
 10509 %}
 10511 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10512   predicate (UseSSE<=1);
 10513   match(Set dst (SinD src));
 10514   ins_cost(1800);
 10515   format %{ "DSIN   $dst" %}
 10516   opcode(0xD9, 0xFE);
 10517   ins_encode( OpcP, OpcS );
 10518   ins_pipe( pipe_slow );
 10519 %}
 10521 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10522   predicate (UseSSE>=2);
 10523   match(Set dst (SinD dst));
 10524   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10525   ins_cost(1800);
 10526   format %{ "DSIN   $dst" %}
 10527   opcode(0xD9, 0xFE);
 10528   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10529   ins_pipe( pipe_slow );
 10530 %}
 10532 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10533   predicate (UseSSE<=1);
 10534   match(Set dst (CosD src));
 10535   ins_cost(1800);
 10536   format %{ "DCOS   $dst" %}
 10537   opcode(0xD9, 0xFF);
 10538   ins_encode( OpcP, OpcS );
 10539   ins_pipe( pipe_slow );
 10540 %}
 10542 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10543   predicate (UseSSE>=2);
 10544   match(Set dst (CosD dst));
 10545   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10546   ins_cost(1800);
 10547   format %{ "DCOS   $dst" %}
 10548   opcode(0xD9, 0xFF);
 10549   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10550   ins_pipe( pipe_slow );
 10551 %}
 10553 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10554   predicate (UseSSE<=1);
 10555   match(Set dst(TanD src));
 10556   format %{ "DTAN   $dst" %}
 10557   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10558               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10559   ins_pipe( pipe_slow );
 10560 %}
 10562 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10563   predicate (UseSSE>=2);
 10564   match(Set dst(TanD dst));
 10565   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10566   format %{ "DTAN   $dst" %}
 10567   ins_encode( Push_SrcXD(dst),
 10568               Opcode(0xD9), Opcode(0xF2),    // fptan
 10569               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10570               Push_ResultXD(dst) );
 10571   ins_pipe( pipe_slow );
 10572 %}
 10574 instruct atanD_reg(regD dst, regD src) %{
 10575   predicate (UseSSE<=1);
 10576   match(Set dst(AtanD dst src));
 10577   format %{ "DATA   $dst,$src" %}
 10578   opcode(0xD9, 0xF3);
 10579   ins_encode( Push_Reg_D(src),
 10580               OpcP, OpcS, RegOpc(dst) );
 10581   ins_pipe( pipe_slow );
 10582 %}
 10584 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10585   predicate (UseSSE>=2);
 10586   match(Set dst(AtanD dst src));
 10587   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10588   format %{ "DATA   $dst,$src" %}
 10589   opcode(0xD9, 0xF3);
 10590   ins_encode( Push_SrcXD(src),
 10591               OpcP, OpcS, Push_ResultXD(dst) );
 10592   ins_pipe( pipe_slow );
 10593 %}
 10595 instruct sqrtD_reg(regD dst, regD src) %{
 10596   predicate (UseSSE<=1);
 10597   match(Set dst (SqrtD src));
 10598   format %{ "DSQRT  $dst,$src" %}
 10599   opcode(0xFA, 0xD9);
 10600   ins_encode( Push_Reg_D(src),
 10601               OpcS, OpcP, Pop_Reg_D(dst) );
 10602   ins_pipe( pipe_slow );
 10603 %}
 10605 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10606   predicate (UseSSE<=1);
 10607   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10608   effect(KILL rax, KILL rbx, KILL rcx);
 10609   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10610             "FLD_D  $X\n\t"
 10611             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10613             "FDUP   \t\t\t# Q Q\n\t"
 10614             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10615             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10616             "FISTP  dword [ESP]\n\t"
 10617             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10618             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10619             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10620             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10621             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10622             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10623             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10624             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10625             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10626             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10627             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10628             "MOV    [ESP+0],0\n\t"
 10629             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10631             "ADD    ESP,8"
 10632              %}
 10633   ins_encode( push_stack_temp_qword,
 10634               Push_Reg_D(X),
 10635               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10636               pow_exp_core_encoding,
 10637               pop_stack_temp_qword);
 10638   ins_pipe( pipe_slow );
 10639 %}
 10641 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10642   predicate (UseSSE>=2);
 10643   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10644   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10645   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10646             "MOVSD  [ESP],$src1\n\t"
 10647             "FLD    FPR1,$src1\n\t"
 10648             "MOVSD  [ESP],$src0\n\t"
 10649             "FLD    FPR1,$src0\n\t"
 10650             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10652             "FDUP   \t\t\t# Q Q\n\t"
 10653             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10654             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10655             "FISTP  dword [ESP]\n\t"
 10656             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10657             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10658             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10659             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10660             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10661             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10662             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10663             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10664             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10665             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10666             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10667             "MOV    [ESP+0],0\n\t"
 10668             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10670             "FST_D  [ESP]\n\t"
 10671             "MOVSD  $dst,[ESP]\n\t"
 10672             "ADD    ESP,8"
 10673              %}
 10674   ins_encode( push_stack_temp_qword,
 10675               push_xmm_to_fpr1(src1),
 10676               push_xmm_to_fpr1(src0),
 10677               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10678               pow_exp_core_encoding,
 10679               Push_ResultXD(dst) );
 10680   ins_pipe( pipe_slow );
 10681 %}
 10684 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10685   predicate (UseSSE<=1);
 10686   match(Set dpr1 (ExpD dpr1));
 10687   effect(KILL rax, KILL rbx, KILL rcx);
 10688   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10689             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10690             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10692             "FDUP   \t\t\t# Q Q\n\t"
 10693             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10694             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10695             "FISTP  dword [ESP]\n\t"
 10696             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10697             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10698             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10699             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10700             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10701             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10702             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10703             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10704             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10705             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10706             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10707             "MOV    [ESP+0],0\n\t"
 10708             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10710             "ADD    ESP,8"
 10711              %}
 10712   ins_encode( push_stack_temp_qword,
 10713               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10714               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10715               pow_exp_core_encoding,
 10716               pop_stack_temp_qword);
 10717   ins_pipe( pipe_slow );
 10718 %}
 10720 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10721   predicate (UseSSE>=2);
 10722   match(Set dst (ExpD src));
 10723   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10724   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10725             "MOVSD  [ESP],$src\n\t"
 10726             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10727             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10729             "FDUP   \t\t\t# Q Q\n\t"
 10730             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10731             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10732             "FISTP  dword [ESP]\n\t"
 10733             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10734             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10735             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10736             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10737             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10738             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10739             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10740             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10741             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10742             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10743             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10744             "MOV    [ESP+0],0\n\t"
 10745             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10747             "FST_D  [ESP]\n\t"
 10748             "MOVSD  $dst,[ESP]\n\t"
 10749             "ADD    ESP,8"
 10750              %}
 10751   ins_encode( Push_SrcXD(src),
 10752               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10753               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10754               pow_exp_core_encoding,
 10755               Push_ResultXD(dst) );
 10756   ins_pipe( pipe_slow );
 10757 %}
 10761 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10762   predicate (UseSSE<=1);
 10763   // The source Double operand on FPU stack
 10764   match(Set dst (Log10D src));
 10765   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10766   // fxch         ; swap ST(0) with ST(1)
 10767   // fyl2x        ; compute log_10(2) * log_2(x)
 10768   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10769             "FXCH   \n\t"
 10770             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10771          %}
 10772   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10773               Opcode(0xD9), Opcode(0xC9),   // fxch
 10774               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10776   ins_pipe( pipe_slow );
 10777 %}
 10779 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10780   predicate (UseSSE>=2);
 10781   effect(KILL cr);
 10782   match(Set dst (Log10D src));
 10783   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10784   // fyl2x        ; compute log_10(2) * log_2(x)
 10785   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10786             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10787          %}
 10788   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10789               Push_SrcXD(src),
 10790               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10791               Push_ResultXD(dst));
 10793   ins_pipe( pipe_slow );
 10794 %}
 10796 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10797   predicate (UseSSE<=1);
 10798   // The source Double operand on FPU stack
 10799   match(Set dst (LogD src));
 10800   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10801   // fxch         ; swap ST(0) with ST(1)
 10802   // fyl2x        ; compute log_e(2) * log_2(x)
 10803   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10804             "FXCH   \n\t"
 10805             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10806          %}
 10807   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10808               Opcode(0xD9), Opcode(0xC9),   // fxch
 10809               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10811   ins_pipe( pipe_slow );
 10812 %}
 10814 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10815   predicate (UseSSE>=2);
 10816   effect(KILL cr);
 10817   // The source and result Double operands in XMM registers
 10818   match(Set dst (LogD src));
 10819   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10820   // fyl2x        ; compute log_e(2) * log_2(x)
 10821   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10822             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10823          %}
 10824   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10825               Push_SrcXD(src),
 10826               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10827               Push_ResultXD(dst));
 10828   ins_pipe( pipe_slow );
 10829 %}
 10831 //-------------Float Instructions-------------------------------
 10832 // Float Math
 10834 // Code for float compare:
 10835 //     fcompp();
 10836 //     fwait(); fnstsw_ax();
 10837 //     sahf();
 10838 //     movl(dst, unordered_result);
 10839 //     jcc(Assembler::parity, exit);
 10840 //     movl(dst, less_result);
 10841 //     jcc(Assembler::below, exit);
 10842 //     movl(dst, equal_result);
 10843 //     jcc(Assembler::equal, exit);
 10844 //     movl(dst, greater_result);
 10845 //   exit:
 10847 // P6 version of float compare, sets condition codes in EFLAGS
 10848 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10849   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10850   match(Set cr (CmpF src1 src2));
 10851   effect(KILL rax);
 10852   ins_cost(150);
 10853   format %{ "FLD    $src1\n\t"
 10854             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10855             "JNP    exit\n\t"
 10856             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10857             "SAHF\n"
 10858      "exit:\tNOP               // avoid branch to branch" %}
 10859   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10860   ins_encode( Push_Reg_D(src1),
 10861               OpcP, RegOpc(src2),
 10862               cmpF_P6_fixup );
 10863   ins_pipe( pipe_slow );
 10864 %}
 10866 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10867   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10868   match(Set cr (CmpF src1 src2));
 10869   ins_cost(100);
 10870   format %{ "FLD    $src1\n\t"
 10871             "FUCOMIP ST,$src2  // P6 instruction" %}
 10872   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10873   ins_encode( Push_Reg_D(src1),
 10874               OpcP, RegOpc(src2));
 10875   ins_pipe( pipe_slow );
 10876 %}
 10879 // Compare & branch
 10880 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10881   predicate(UseSSE == 0);
 10882   match(Set cr (CmpF src1 src2));
 10883   effect(KILL rax);
 10884   ins_cost(200);
 10885   format %{ "FLD    $src1\n\t"
 10886             "FCOMp  $src2\n\t"
 10887             "FNSTSW AX\n\t"
 10888             "TEST   AX,0x400\n\t"
 10889             "JZ,s   flags\n\t"
 10890             "MOV    AH,1\t# unordered treat as LT\n"
 10891     "flags:\tSAHF" %}
 10892   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10893   ins_encode( Push_Reg_D(src1),
 10894               OpcP, RegOpc(src2),
 10895               fpu_flags);
 10896   ins_pipe( pipe_slow );
 10897 %}
 10899 // Compare vs zero into -1,0,1
 10900 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 10901   predicate(UseSSE == 0);
 10902   match(Set dst (CmpF3 src1 zero));
 10903   effect(KILL cr, KILL rax);
 10904   ins_cost(280);
 10905   format %{ "FTSTF  $dst,$src1" %}
 10906   opcode(0xE4, 0xD9);
 10907   ins_encode( Push_Reg_D(src1),
 10908               OpcS, OpcP, PopFPU,
 10909               CmpF_Result(dst));
 10910   ins_pipe( pipe_slow );
 10911 %}
 10913 // Compare into -1,0,1
 10914 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 10915   predicate(UseSSE == 0);
 10916   match(Set dst (CmpF3 src1 src2));
 10917   effect(KILL cr, KILL rax);
 10918   ins_cost(300);
 10919   format %{ "FCMPF  $dst,$src1,$src2" %}
 10920   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10921   ins_encode( Push_Reg_D(src1),
 10922               OpcP, RegOpc(src2),
 10923               CmpF_Result(dst));
 10924   ins_pipe( pipe_slow );
 10925 %}
 10927 // float compare and set condition codes in EFLAGS by XMM regs
 10928 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 10929   predicate(UseSSE>=1);
 10930   match(Set cr (CmpF dst src));
 10931   effect(KILL rax);
 10932   ins_cost(145);
 10933   format %{ "COMISS $dst,$src\n"
 10934           "\tJNP    exit\n"
 10935           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10936           "\tSAHF\n"
 10937      "exit:\tNOP               // avoid branch to branch" %}
 10938   opcode(0x0F, 0x2F);
 10939   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 10940   ins_pipe( pipe_slow );
 10941 %}
 10943 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 10944   predicate(UseSSE>=1);
 10945   match(Set cr (CmpF dst src));
 10946   ins_cost(100);
 10947   format %{ "COMISS $dst,$src" %}
 10948   opcode(0x0F, 0x2F);
 10949   ins_encode(OpcP, OpcS, RegReg(dst, src));
 10950   ins_pipe( pipe_slow );
 10951 %}
 10953 // float compare and set condition codes in EFLAGS by XMM regs
 10954 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 10955   predicate(UseSSE>=1);
 10956   match(Set cr (CmpF dst (LoadF src)));
 10957   effect(KILL rax);
 10958   ins_cost(165);
 10959   format %{ "COMISS $dst,$src\n"
 10960           "\tJNP    exit\n"
 10961           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10962           "\tSAHF\n"
 10963      "exit:\tNOP               // avoid branch to branch" %}
 10964   opcode(0x0F, 0x2F);
 10965   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 10966   ins_pipe( pipe_slow );
 10967 %}
 10969 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 10970   predicate(UseSSE>=1);
 10971   match(Set cr (CmpF dst (LoadF src)));
 10972   ins_cost(100);
 10973   format %{ "COMISS $dst,$src" %}
 10974   opcode(0x0F, 0x2F);
 10975   ins_encode(OpcP, OpcS, RegMem(dst, src));
 10976   ins_pipe( pipe_slow );
 10977 %}
 10979 // Compare into -1,0,1 in XMM
 10980 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 10981   predicate(UseSSE>=1);
 10982   match(Set dst (CmpF3 src1 src2));
 10983   effect(KILL cr);
 10984   ins_cost(255);
 10985   format %{ "XOR    $dst,$dst\n"
 10986           "\tCOMISS $src1,$src2\n"
 10987           "\tJP,s   nan\n"
 10988           "\tJEQ,s  exit\n"
 10989           "\tJA,s   inc\n"
 10990       "nan:\tDEC    $dst\n"
 10991           "\tJMP,s  exit\n"
 10992       "inc:\tINC    $dst\n"
 10993       "exit:"
 10994                 %}
 10995   opcode(0x0F, 0x2F);
 10996   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 10997   ins_pipe( pipe_slow );
 10998 %}
 11000 // Compare into -1,0,1 in XMM and memory
 11001 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 11002   predicate(UseSSE>=1);
 11003   match(Set dst (CmpF3 src1 (LoadF mem)));
 11004   effect(KILL cr);
 11005   ins_cost(275);
 11006   format %{ "COMISS $src1,$mem\n"
 11007           "\tMOV    $dst,0\t\t# do not blow flags\n"
 11008           "\tJP,s   nan\n"
 11009           "\tJEQ,s  exit\n"
 11010           "\tJA,s   inc\n"
 11011       "nan:\tDEC    $dst\n"
 11012           "\tJMP,s  exit\n"
 11013       "inc:\tINC    $dst\n"
 11014       "exit:"
 11015                 %}
 11016   opcode(0x0F, 0x2F);
 11017   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 11018   ins_pipe( pipe_slow );
 11019 %}
 11021 // Spill to obtain 24-bit precision
 11022 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11023   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11024   match(Set dst (SubF src1 src2));
 11026   format %{ "FSUB   $dst,$src1 - $src2" %}
 11027   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 11028   ins_encode( Push_Reg_F(src1),
 11029               OpcReg_F(src2),
 11030               Pop_Mem_F(dst) );
 11031   ins_pipe( fpu_mem_reg_reg );
 11032 %}
 11033 //
 11034 // This instruction does not round to 24-bits
 11035 instruct subF_reg(regF dst, regF src) %{
 11036   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11037   match(Set dst (SubF dst src));
 11039   format %{ "FSUB   $dst,$src" %}
 11040   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 11041   ins_encode( Push_Reg_F(src),
 11042               OpcP, RegOpc(dst) );
 11043   ins_pipe( fpu_reg_reg );
 11044 %}
 11046 // Spill to obtain 24-bit precision
 11047 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11048   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11049   match(Set dst (AddF src1 src2));
 11051   format %{ "FADD   $dst,$src1,$src2" %}
 11052   opcode(0xD8, 0x0); /* D8 C0+i */
 11053   ins_encode( Push_Reg_F(src2),
 11054               OpcReg_F(src1),
 11055               Pop_Mem_F(dst) );
 11056   ins_pipe( fpu_mem_reg_reg );
 11057 %}
 11058 //
 11059 // This instruction does not round to 24-bits
 11060 instruct addF_reg(regF dst, regF src) %{
 11061   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11062   match(Set dst (AddF dst src));
 11064   format %{ "FLD    $src\n\t"
 11065             "FADDp  $dst,ST" %}
 11066   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 11067   ins_encode( Push_Reg_F(src),
 11068               OpcP, RegOpc(dst) );
 11069   ins_pipe( fpu_reg_reg );
 11070 %}
 11072 // Add two single precision floating point values in xmm
 11073 instruct addX_reg(regX dst, regX src) %{
 11074   predicate(UseSSE>=1);
 11075   match(Set dst (AddF dst src));
 11076   format %{ "ADDSS  $dst,$src" %}
 11077   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 11078   ins_pipe( pipe_slow );
 11079 %}
 11081 instruct addX_imm(regX dst, immXF con) %{
 11082   predicate(UseSSE>=1);
 11083   match(Set dst (AddF dst con));
 11084   format %{ "ADDSS  $dst,[$con]" %}
 11085   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 11086   ins_pipe( pipe_slow );
 11087 %}
 11089 instruct addX_mem(regX dst, memory mem) %{
 11090   predicate(UseSSE>=1);
 11091   match(Set dst (AddF dst (LoadF mem)));
 11092   format %{ "ADDSS  $dst,$mem" %}
 11093   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 11094   ins_pipe( pipe_slow );
 11095 %}
 11097 // Subtract two single precision floating point values in xmm
 11098 instruct subX_reg(regX dst, regX src) %{
 11099   predicate(UseSSE>=1);
 11100   match(Set dst (SubF dst src));
 11101   format %{ "SUBSS  $dst,$src" %}
 11102   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 11103   ins_pipe( pipe_slow );
 11104 %}
 11106 instruct subX_imm(regX dst, immXF con) %{
 11107   predicate(UseSSE>=1);
 11108   match(Set dst (SubF dst con));
 11109   format %{ "SUBSS  $dst,[$con]" %}
 11110   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 11111   ins_pipe( pipe_slow );
 11112 %}
 11114 instruct subX_mem(regX dst, memory mem) %{
 11115   predicate(UseSSE>=1);
 11116   match(Set dst (SubF dst (LoadF mem)));
 11117   format %{ "SUBSS  $dst,$mem" %}
 11118   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 11119   ins_pipe( pipe_slow );
 11120 %}
 11122 // Multiply two single precision floating point values in xmm
 11123 instruct mulX_reg(regX dst, regX src) %{
 11124   predicate(UseSSE>=1);
 11125   match(Set dst (MulF dst src));
 11126   format %{ "MULSS  $dst,$src" %}
 11127   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 11128   ins_pipe( pipe_slow );
 11129 %}
 11131 instruct mulX_imm(regX dst, immXF con) %{
 11132   predicate(UseSSE>=1);
 11133   match(Set dst (MulF dst con));
 11134   format %{ "MULSS  $dst,[$con]" %}
 11135   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 11136   ins_pipe( pipe_slow );
 11137 %}
 11139 instruct mulX_mem(regX dst, memory mem) %{
 11140   predicate(UseSSE>=1);
 11141   match(Set dst (MulF dst (LoadF mem)));
 11142   format %{ "MULSS  $dst,$mem" %}
 11143   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 11144   ins_pipe( pipe_slow );
 11145 %}
 11147 // Divide two single precision floating point values in xmm
 11148 instruct divX_reg(regX dst, regX src) %{
 11149   predicate(UseSSE>=1);
 11150   match(Set dst (DivF dst src));
 11151   format %{ "DIVSS  $dst,$src" %}
 11152   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 11153   ins_pipe( pipe_slow );
 11154 %}
 11156 instruct divX_imm(regX dst, immXF con) %{
 11157   predicate(UseSSE>=1);
 11158   match(Set dst (DivF dst con));
 11159   format %{ "DIVSS  $dst,[$con]" %}
 11160   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 11161   ins_pipe( pipe_slow );
 11162 %}
 11164 instruct divX_mem(regX dst, memory mem) %{
 11165   predicate(UseSSE>=1);
 11166   match(Set dst (DivF dst (LoadF mem)));
 11167   format %{ "DIVSS  $dst,$mem" %}
 11168   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11169   ins_pipe( pipe_slow );
 11170 %}
 11172 // Get the square root of a single precision floating point values in xmm
 11173 instruct sqrtX_reg(regX dst, regX src) %{
 11174   predicate(UseSSE>=1);
 11175   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11176   format %{ "SQRTSS $dst,$src" %}
 11177   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11178   ins_pipe( pipe_slow );
 11179 %}
 11181 instruct sqrtX_mem(regX dst, memory mem) %{
 11182   predicate(UseSSE>=1);
 11183   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11184   format %{ "SQRTSS $dst,$mem" %}
 11185   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11186   ins_pipe( pipe_slow );
 11187 %}
 11189 // Get the square root of a double precision floating point values in xmm
 11190 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11191   predicate(UseSSE>=2);
 11192   match(Set dst (SqrtD src));
 11193   format %{ "SQRTSD $dst,$src" %}
 11194   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11195   ins_pipe( pipe_slow );
 11196 %}
 11198 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11199   predicate(UseSSE>=2);
 11200   match(Set dst (SqrtD (LoadD mem)));
 11201   format %{ "SQRTSD $dst,$mem" %}
 11202   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11203   ins_pipe( pipe_slow );
 11204 %}
 11206 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11207   predicate(UseSSE==0);
 11208   match(Set dst (AbsF src));
 11209   ins_cost(100);
 11210   format %{ "FABS" %}
 11211   opcode(0xE1, 0xD9);
 11212   ins_encode( OpcS, OpcP );
 11213   ins_pipe( fpu_reg_reg );
 11214 %}
 11216 instruct absX_reg(regX dst ) %{
 11217   predicate(UseSSE>=1);
 11218   match(Set dst (AbsF dst));
 11219   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11220   ins_encode( AbsXF_encoding(dst));
 11221   ins_pipe( pipe_slow );
 11222 %}
 11224 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11225   predicate(UseSSE==0);
 11226   match(Set dst (NegF src));
 11227   ins_cost(100);
 11228   format %{ "FCHS" %}
 11229   opcode(0xE0, 0xD9);
 11230   ins_encode( OpcS, OpcP );
 11231   ins_pipe( fpu_reg_reg );
 11232 %}
 11234 instruct negX_reg( regX dst ) %{
 11235   predicate(UseSSE>=1);
 11236   match(Set dst (NegF dst));
 11237   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11238   ins_encode( NegXF_encoding(dst));
 11239   ins_pipe( pipe_slow );
 11240 %}
 11242 // Cisc-alternate to addF_reg
 11243 // Spill to obtain 24-bit precision
 11244 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11245   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11246   match(Set dst (AddF src1 (LoadF src2)));
 11248   format %{ "FLD    $src2\n\t"
 11249             "FADD   ST,$src1\n\t"
 11250             "FSTP_S $dst" %}
 11251   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11252   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11253               OpcReg_F(src1),
 11254               Pop_Mem_F(dst) );
 11255   ins_pipe( fpu_mem_reg_mem );
 11256 %}
 11257 //
 11258 // Cisc-alternate to addF_reg
 11259 // This instruction does not round to 24-bits
 11260 instruct addF_reg_mem(regF dst, memory src) %{
 11261   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11262   match(Set dst (AddF dst (LoadF src)));
 11264   format %{ "FADD   $dst,$src" %}
 11265   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11266   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11267               OpcP, RegOpc(dst) );
 11268   ins_pipe( fpu_reg_mem );
 11269 %}
 11271 // // Following two instructions for _222_mpegaudio
 11272 // Spill to obtain 24-bit precision
 11273 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11274   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11275   match(Set dst (AddF src1 src2));
 11277   format %{ "FADD   $dst,$src1,$src2" %}
 11278   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11279   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11280               OpcReg_F(src2),
 11281               Pop_Mem_F(dst) );
 11282   ins_pipe( fpu_mem_reg_mem );
 11283 %}
 11285 // Cisc-spill variant
 11286 // Spill to obtain 24-bit precision
 11287 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11288   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11289   match(Set dst (AddF src1 (LoadF src2)));
 11291   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11292   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11293   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11294               set_instruction_start,
 11295               OpcP, RMopc_Mem(secondary,src1),
 11296               Pop_Mem_F(dst) );
 11297   ins_pipe( fpu_mem_mem_mem );
 11298 %}
 11300 // Spill to obtain 24-bit precision
 11301 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11302   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11303   match(Set dst (AddF src1 src2));
 11305   format %{ "FADD   $dst,$src1,$src2" %}
 11306   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11307   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11308               set_instruction_start,
 11309               OpcP, RMopc_Mem(secondary,src1),
 11310               Pop_Mem_F(dst) );
 11311   ins_pipe( fpu_mem_mem_mem );
 11312 %}
 11315 // Spill to obtain 24-bit precision
 11316 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11317   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11318   match(Set dst (AddF src1 src2));
 11319   format %{ "FLD    $src1\n\t"
 11320             "FADD   $src2\n\t"
 11321             "FSTP_S $dst"  %}
 11322   opcode(0xD8, 0x00);       /* D8 /0 */
 11323   ins_encode( Push_Reg_F(src1),
 11324               Opc_MemImm_F(src2),
 11325               Pop_Mem_F(dst));
 11326   ins_pipe( fpu_mem_reg_con );
 11327 %}
 11328 //
 11329 // This instruction does not round to 24-bits
 11330 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 11331   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11332   match(Set dst (AddF src1 src2));
 11333   format %{ "FLD    $src1\n\t"
 11334             "FADD   $src2\n\t"
 11335             "FSTP_S $dst"  %}
 11336   opcode(0xD8, 0x00);       /* D8 /0 */
 11337   ins_encode( Push_Reg_F(src1),
 11338               Opc_MemImm_F(src2),
 11339               Pop_Reg_F(dst));
 11340   ins_pipe( fpu_reg_reg_con );
 11341 %}
 11343 // Spill to obtain 24-bit precision
 11344 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11345   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11346   match(Set dst (MulF src1 src2));
 11348   format %{ "FLD    $src1\n\t"
 11349             "FMUL   $src2\n\t"
 11350             "FSTP_S $dst"  %}
 11351   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11352   ins_encode( Push_Reg_F(src1),
 11353               OpcReg_F(src2),
 11354               Pop_Mem_F(dst) );
 11355   ins_pipe( fpu_mem_reg_reg );
 11356 %}
 11357 //
 11358 // This instruction does not round to 24-bits
 11359 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11360   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11361   match(Set dst (MulF src1 src2));
 11363   format %{ "FLD    $src1\n\t"
 11364             "FMUL   $src2\n\t"
 11365             "FSTP_S $dst"  %}
 11366   opcode(0xD8, 0x1); /* D8 C8+i */
 11367   ins_encode( Push_Reg_F(src2),
 11368               OpcReg_F(src1),
 11369               Pop_Reg_F(dst) );
 11370   ins_pipe( fpu_reg_reg_reg );
 11371 %}
 11374 // Spill to obtain 24-bit precision
 11375 // Cisc-alternate to reg-reg multiply
 11376 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11377   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11378   match(Set dst (MulF src1 (LoadF src2)));
 11380   format %{ "FLD_S  $src2\n\t"
 11381             "FMUL   $src1\n\t"
 11382             "FSTP_S $dst"  %}
 11383   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11384   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11385               OpcReg_F(src1),
 11386               Pop_Mem_F(dst) );
 11387   ins_pipe( fpu_mem_reg_mem );
 11388 %}
 11389 //
 11390 // This instruction does not round to 24-bits
 11391 // Cisc-alternate to reg-reg multiply
 11392 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11393   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11394   match(Set dst (MulF src1 (LoadF src2)));
 11396   format %{ "FMUL   $dst,$src1,$src2" %}
 11397   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11398   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11399               OpcReg_F(src1),
 11400               Pop_Reg_F(dst) );
 11401   ins_pipe( fpu_reg_reg_mem );
 11402 %}
 11404 // Spill to obtain 24-bit precision
 11405 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11406   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11407   match(Set dst (MulF src1 src2));
 11409   format %{ "FMUL   $dst,$src1,$src2" %}
 11410   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11411   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11412               set_instruction_start,
 11413               OpcP, RMopc_Mem(secondary,src1),
 11414               Pop_Mem_F(dst) );
 11415   ins_pipe( fpu_mem_mem_mem );
 11416 %}
 11418 // Spill to obtain 24-bit precision
 11419 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11420   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11421   match(Set dst (MulF src1 src2));
 11423   format %{ "FMULc $dst,$src1,$src2" %}
 11424   opcode(0xD8, 0x1);  /* D8 /1*/
 11425   ins_encode( Push_Reg_F(src1),
 11426               Opc_MemImm_F(src2),
 11427               Pop_Mem_F(dst));
 11428   ins_pipe( fpu_mem_reg_con );
 11429 %}
 11430 //
 11431 // This instruction does not round to 24-bits
 11432 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11433   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11434   match(Set dst (MulF src1 src2));
 11436   format %{ "FMULc $dst. $src1, $src2" %}
 11437   opcode(0xD8, 0x1);  /* D8 /1*/
 11438   ins_encode( Push_Reg_F(src1),
 11439               Opc_MemImm_F(src2),
 11440               Pop_Reg_F(dst));
 11441   ins_pipe( fpu_reg_reg_con );
 11442 %}
 11445 //
 11446 // MACRO1 -- subsume unshared load into mulF
 11447 // This instruction does not round to 24-bits
 11448 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11449   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11450   match(Set dst (MulF (LoadF mem1) src));
 11452   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11453             "FMUL   ST,$src\n\t"
 11454             "FSTP   $dst" %}
 11455   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11456   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11457               OpcReg_F(src),
 11458               Pop_Reg_F(dst) );
 11459   ins_pipe( fpu_reg_reg_mem );
 11460 %}
 11461 //
 11462 // MACRO2 -- addF a mulF which subsumed an unshared load
 11463 // This instruction does not round to 24-bits
 11464 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11465   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11466   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11467   ins_cost(95);
 11469   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11470             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11471             "FADD   ST,$src2\n\t"
 11472             "FSTP   $dst" %}
 11473   opcode(0xD9); /* LoadF D9 /0 */
 11474   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11475               FMul_ST_reg(src1),
 11476               FAdd_ST_reg(src2),
 11477               Pop_Reg_F(dst) );
 11478   ins_pipe( fpu_reg_mem_reg_reg );
 11479 %}
 11481 // MACRO3 -- addF a mulF
 11482 // This instruction does not round to 24-bits.  It is a '2-address'
 11483 // instruction in that the result goes back to src2.  This eliminates
 11484 // a move from the macro; possibly the register allocator will have
 11485 // to add it back (and maybe not).
 11486 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11487   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11488   match(Set src2 (AddF (MulF src0 src1) src2));
 11490   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11491             "FMUL   ST,$src1\n\t"
 11492             "FADDP  $src2,ST" %}
 11493   opcode(0xD9); /* LoadF D9 /0 */
 11494   ins_encode( Push_Reg_F(src0),
 11495               FMul_ST_reg(src1),
 11496               FAddP_reg_ST(src2) );
 11497   ins_pipe( fpu_reg_reg_reg );
 11498 %}
 11500 // MACRO4 -- divF subF
 11501 // This instruction does not round to 24-bits
 11502 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11503   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11504   match(Set dst (DivF (SubF src2 src1) src3));
 11506   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11507             "FSUB   ST,$src1\n\t"
 11508             "FDIV   ST,$src3\n\t"
 11509             "FSTP  $dst" %}
 11510   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11511   ins_encode( Push_Reg_F(src2),
 11512               subF_divF_encode(src1,src3),
 11513               Pop_Reg_F(dst) );
 11514   ins_pipe( fpu_reg_reg_reg_reg );
 11515 %}
 11517 // Spill to obtain 24-bit precision
 11518 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11519   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11520   match(Set dst (DivF src1 src2));
 11522   format %{ "FDIV   $dst,$src1,$src2" %}
 11523   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11524   ins_encode( Push_Reg_F(src1),
 11525               OpcReg_F(src2),
 11526               Pop_Mem_F(dst) );
 11527   ins_pipe( fpu_mem_reg_reg );
 11528 %}
 11529 //
 11530 // This instruction does not round to 24-bits
 11531 instruct divF_reg(regF dst, regF src) %{
 11532   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11533   match(Set dst (DivF dst src));
 11535   format %{ "FDIV   $dst,$src" %}
 11536   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11537   ins_encode( Push_Reg_F(src),
 11538               OpcP, RegOpc(dst) );
 11539   ins_pipe( fpu_reg_reg );
 11540 %}
 11543 // Spill to obtain 24-bit precision
 11544 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11545   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11546   match(Set dst (ModF src1 src2));
 11547   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11549   format %{ "FMOD   $dst,$src1,$src2" %}
 11550   ins_encode( Push_Reg_Mod_D(src1, src2),
 11551               emitModD(),
 11552               Push_Result_Mod_D(src2),
 11553               Pop_Mem_F(dst));
 11554   ins_pipe( pipe_slow );
 11555 %}
 11556 //
 11557 // This instruction does not round to 24-bits
 11558 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11559   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11560   match(Set dst (ModF dst src));
 11561   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11563   format %{ "FMOD   $dst,$src" %}
 11564   ins_encode(Push_Reg_Mod_D(dst, src),
 11565               emitModD(),
 11566               Push_Result_Mod_D(src),
 11567               Pop_Reg_F(dst));
 11568   ins_pipe( pipe_slow );
 11569 %}
 11571 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11572   predicate(UseSSE>=1);
 11573   match(Set dst (ModF src0 src1));
 11574   effect(KILL rax, KILL cr);
 11575   format %{ "SUB    ESP,4\t # FMOD\n"
 11576           "\tMOVSS  [ESP+0],$src1\n"
 11577           "\tFLD_S  [ESP+0]\n"
 11578           "\tMOVSS  [ESP+0],$src0\n"
 11579           "\tFLD_S  [ESP+0]\n"
 11580      "loop:\tFPREM\n"
 11581           "\tFWAIT\n"
 11582           "\tFNSTSW AX\n"
 11583           "\tSAHF\n"
 11584           "\tJP     loop\n"
 11585           "\tFSTP_S [ESP+0]\n"
 11586           "\tMOVSS  $dst,[ESP+0]\n"
 11587           "\tADD    ESP,4\n"
 11588           "\tFSTP   ST0\t # Restore FPU Stack"
 11589     %}
 11590   ins_cost(250);
 11591   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11592   ins_pipe( pipe_slow );
 11593 %}
 11596 //----------Arithmetic Conversion Instructions---------------------------------
 11597 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11599 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11600   predicate(UseSSE==0);
 11601   match(Set dst (RoundFloat src));
 11602   ins_cost(125);
 11603   format %{ "FST_S  $dst,$src\t# F-round" %}
 11604   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11605   ins_pipe( fpu_mem_reg );
 11606 %}
 11608 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11609   predicate(UseSSE<=1);
 11610   match(Set dst (RoundDouble src));
 11611   ins_cost(125);
 11612   format %{ "FST_D  $dst,$src\t# D-round" %}
 11613   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11614   ins_pipe( fpu_mem_reg );
 11615 %}
 11617 // Force rounding to 24-bit precision and 6-bit exponent
 11618 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11619   predicate(UseSSE==0);
 11620   match(Set dst (ConvD2F src));
 11621   format %{ "FST_S  $dst,$src\t# F-round" %}
 11622   expand %{
 11623     roundFloat_mem_reg(dst,src);
 11624   %}
 11625 %}
 11627 // Force rounding to 24-bit precision and 6-bit exponent
 11628 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11629   predicate(UseSSE==1);
 11630   match(Set dst (ConvD2F src));
 11631   effect( KILL cr );
 11632   format %{ "SUB    ESP,4\n\t"
 11633             "FST_S  [ESP],$src\t# F-round\n\t"
 11634             "MOVSS  $dst,[ESP]\n\t"
 11635             "ADD ESP,4" %}
 11636   ins_encode( D2X_encoding(dst, src) );
 11637   ins_pipe( pipe_slow );
 11638 %}
 11640 // Force rounding double precision to single precision
 11641 instruct convXD2X_reg(regX dst, regXD src) %{
 11642   predicate(UseSSE>=2);
 11643   match(Set dst (ConvD2F src));
 11644   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11645   opcode(0xF2, 0x0F, 0x5A);
 11646   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11647   ins_pipe( pipe_slow );
 11648 %}
 11650 instruct convF2D_reg_reg(regD dst, regF src) %{
 11651   predicate(UseSSE==0);
 11652   match(Set dst (ConvF2D src));
 11653   format %{ "FST_S  $dst,$src\t# D-round" %}
 11654   ins_encode( Pop_Reg_Reg_D(dst, src));
 11655   ins_pipe( fpu_reg_reg );
 11656 %}
 11658 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11659   predicate(UseSSE==1);
 11660   match(Set dst (ConvF2D src));
 11661   format %{ "FST_D  $dst,$src\t# D-round" %}
 11662   expand %{
 11663     roundDouble_mem_reg(dst,src);
 11664   %}
 11665 %}
 11667 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11668   predicate(UseSSE==1);
 11669   match(Set dst (ConvF2D src));
 11670   effect( KILL cr );
 11671   format %{ "SUB    ESP,4\n\t"
 11672             "MOVSS  [ESP] $src\n\t"
 11673             "FLD_S  [ESP]\n\t"
 11674             "ADD    ESP,4\n\t"
 11675             "FSTP   $dst\t# D-round" %}
 11676   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11677   ins_pipe( pipe_slow );
 11678 %}
 11680 instruct convX2XD_reg(regXD dst, regX src) %{
 11681   predicate(UseSSE>=2);
 11682   match(Set dst (ConvF2D src));
 11683   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11684   opcode(0xF3, 0x0F, 0x5A);
 11685   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11686   ins_pipe( pipe_slow );
 11687 %}
 11689 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11690 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11691   predicate(UseSSE<=1);
 11692   match(Set dst (ConvD2I src));
 11693   effect( KILL tmp, KILL cr );
 11694   format %{ "FLD    $src\t# Convert double to int \n\t"
 11695             "FLDCW  trunc mode\n\t"
 11696             "SUB    ESP,4\n\t"
 11697             "FISTp  [ESP + #0]\n\t"
 11698             "FLDCW  std/24-bit mode\n\t"
 11699             "POP    EAX\n\t"
 11700             "CMP    EAX,0x80000000\n\t"
 11701             "JNE,s  fast\n\t"
 11702             "FLD_D  $src\n\t"
 11703             "CALL   d2i_wrapper\n"
 11704       "fast:" %}
 11705   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11706   ins_pipe( pipe_slow );
 11707 %}
 11709 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11710 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11711   predicate(UseSSE>=2);
 11712   match(Set dst (ConvD2I src));
 11713   effect( KILL tmp, KILL cr );
 11714   format %{ "CVTTSD2SI $dst, $src\n\t"
 11715             "CMP    $dst,0x80000000\n\t"
 11716             "JNE,s  fast\n\t"
 11717             "SUB    ESP, 8\n\t"
 11718             "MOVSD  [ESP], $src\n\t"
 11719             "FLD_D  [ESP]\n\t"
 11720             "ADD    ESP, 8\n\t"
 11721             "CALL   d2i_wrapper\n"
 11722       "fast:" %}
 11723   opcode(0x1); // double-precision conversion
 11724   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11725   ins_pipe( pipe_slow );
 11726 %}
 11728 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11729   predicate(UseSSE<=1);
 11730   match(Set dst (ConvD2L src));
 11731   effect( KILL cr );
 11732   format %{ "FLD    $src\t# Convert double to long\n\t"
 11733             "FLDCW  trunc mode\n\t"
 11734             "SUB    ESP,8\n\t"
 11735             "FISTp  [ESP + #0]\n\t"
 11736             "FLDCW  std/24-bit mode\n\t"
 11737             "POP    EAX\n\t"
 11738             "POP    EDX\n\t"
 11739             "CMP    EDX,0x80000000\n\t"
 11740             "JNE,s  fast\n\t"
 11741             "TEST   EAX,EAX\n\t"
 11742             "JNE,s  fast\n\t"
 11743             "FLD    $src\n\t"
 11744             "CALL   d2l_wrapper\n"
 11745       "fast:" %}
 11746   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11747   ins_pipe( pipe_slow );
 11748 %}
 11750 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11751 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11752   predicate (UseSSE>=2);
 11753   match(Set dst (ConvD2L src));
 11754   effect( KILL cr );
 11755   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11756             "MOVSD  [ESP],$src\n\t"
 11757             "FLD_D  [ESP]\n\t"
 11758             "FLDCW  trunc mode\n\t"
 11759             "FISTp  [ESP + #0]\n\t"
 11760             "FLDCW  std/24-bit mode\n\t"
 11761             "POP    EAX\n\t"
 11762             "POP    EDX\n\t"
 11763             "CMP    EDX,0x80000000\n\t"
 11764             "JNE,s  fast\n\t"
 11765             "TEST   EAX,EAX\n\t"
 11766             "JNE,s  fast\n\t"
 11767             "SUB    ESP,8\n\t"
 11768             "MOVSD  [ESP],$src\n\t"
 11769             "FLD_D  [ESP]\n\t"
 11770             "CALL   d2l_wrapper\n"
 11771       "fast:" %}
 11772   ins_encode( XD2L_encoding(src) );
 11773   ins_pipe( pipe_slow );
 11774 %}
 11776 // Convert a double to an int.  Java semantics require we do complex
 11777 // manglations in the corner cases.  So we set the rounding mode to
 11778 // 'zero', store the darned double down as an int, and reset the
 11779 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11780 // if we would overflow or converted a NAN; we check for this and
 11781 // and go the slow path if needed.
 11782 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11783   predicate(UseSSE==0);
 11784   match(Set dst (ConvF2I src));
 11785   effect( KILL tmp, KILL cr );
 11786   format %{ "FLD    $src\t# Convert float to int \n\t"
 11787             "FLDCW  trunc mode\n\t"
 11788             "SUB    ESP,4\n\t"
 11789             "FISTp  [ESP + #0]\n\t"
 11790             "FLDCW  std/24-bit mode\n\t"
 11791             "POP    EAX\n\t"
 11792             "CMP    EAX,0x80000000\n\t"
 11793             "JNE,s  fast\n\t"
 11794             "FLD    $src\n\t"
 11795             "CALL   d2i_wrapper\n"
 11796       "fast:" %}
 11797   // D2I_encoding works for F2I
 11798   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11799   ins_pipe( pipe_slow );
 11800 %}
 11802 // Convert a float in xmm to an int reg.
 11803 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11804   predicate(UseSSE>=1);
 11805   match(Set dst (ConvF2I src));
 11806   effect( KILL tmp, KILL cr );
 11807   format %{ "CVTTSS2SI $dst, $src\n\t"
 11808             "CMP    $dst,0x80000000\n\t"
 11809             "JNE,s  fast\n\t"
 11810             "SUB    ESP, 4\n\t"
 11811             "MOVSS  [ESP], $src\n\t"
 11812             "FLD    [ESP]\n\t"
 11813             "ADD    ESP, 4\n\t"
 11814             "CALL   d2i_wrapper\n"
 11815       "fast:" %}
 11816   opcode(0x0); // single-precision conversion
 11817   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11818   ins_pipe( pipe_slow );
 11819 %}
 11821 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11822   predicate(UseSSE==0);
 11823   match(Set dst (ConvF2L src));
 11824   effect( KILL cr );
 11825   format %{ "FLD    $src\t# Convert float to long\n\t"
 11826             "FLDCW  trunc mode\n\t"
 11827             "SUB    ESP,8\n\t"
 11828             "FISTp  [ESP + #0]\n\t"
 11829             "FLDCW  std/24-bit mode\n\t"
 11830             "POP    EAX\n\t"
 11831             "POP    EDX\n\t"
 11832             "CMP    EDX,0x80000000\n\t"
 11833             "JNE,s  fast\n\t"
 11834             "TEST   EAX,EAX\n\t"
 11835             "JNE,s  fast\n\t"
 11836             "FLD    $src\n\t"
 11837             "CALL   d2l_wrapper\n"
 11838       "fast:" %}
 11839   // D2L_encoding works for F2L
 11840   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11841   ins_pipe( pipe_slow );
 11842 %}
 11844 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11845 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11846   predicate (UseSSE>=1);
 11847   match(Set dst (ConvF2L src));
 11848   effect( KILL cr );
 11849   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11850             "MOVSS  [ESP],$src\n\t"
 11851             "FLD_S  [ESP]\n\t"
 11852             "FLDCW  trunc mode\n\t"
 11853             "FISTp  [ESP + #0]\n\t"
 11854             "FLDCW  std/24-bit mode\n\t"
 11855             "POP    EAX\n\t"
 11856             "POP    EDX\n\t"
 11857             "CMP    EDX,0x80000000\n\t"
 11858             "JNE,s  fast\n\t"
 11859             "TEST   EAX,EAX\n\t"
 11860             "JNE,s  fast\n\t"
 11861             "SUB    ESP,4\t# Convert float to long\n\t"
 11862             "MOVSS  [ESP],$src\n\t"
 11863             "FLD_S  [ESP]\n\t"
 11864             "ADD    ESP,4\n\t"
 11865             "CALL   d2l_wrapper\n"
 11866       "fast:" %}
 11867   ins_encode( X2L_encoding(src) );
 11868   ins_pipe( pipe_slow );
 11869 %}
 11871 instruct convI2D_reg(regD dst, stackSlotI src) %{
 11872   predicate( UseSSE<=1 );
 11873   match(Set dst (ConvI2D src));
 11874   format %{ "FILD   $src\n\t"
 11875             "FSTP   $dst" %}
 11876   opcode(0xDB, 0x0);  /* DB /0 */
 11877   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 11878   ins_pipe( fpu_reg_mem );
 11879 %}
 11881 instruct convI2XD_reg(regXD dst, eRegI src) %{
 11882   predicate( UseSSE>=2 && !UseXmmI2D );
 11883   match(Set dst (ConvI2D src));
 11884   format %{ "CVTSI2SD $dst,$src" %}
 11885   opcode(0xF2, 0x0F, 0x2A);
 11886   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11887   ins_pipe( pipe_slow );
 11888 %}
 11890 instruct convI2XD_mem(regXD dst, memory mem) %{
 11891   predicate( UseSSE>=2 );
 11892   match(Set dst (ConvI2D (LoadI mem)));
 11893   format %{ "CVTSI2SD $dst,$mem" %}
 11894   opcode(0xF2, 0x0F, 0x2A);
 11895   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 11896   ins_pipe( pipe_slow );
 11897 %}
 11899 instruct convXI2XD_reg(regXD dst, eRegI src)
 11900 %{
 11901   predicate( UseSSE>=2 && UseXmmI2D );
 11902   match(Set dst (ConvI2D src));
 11904   format %{ "MOVD  $dst,$src\n\t"
 11905             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11906   ins_encode %{
 11907     __ movdl($dst$$XMMRegister, $src$$Register);
 11908     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11909   %}
 11910   ins_pipe(pipe_slow); // XXX
 11911 %}
 11913 instruct convI2D_mem(regD dst, memory mem) %{
 11914   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11915   match(Set dst (ConvI2D (LoadI mem)));
 11916   format %{ "FILD   $mem\n\t"
 11917             "FSTP   $dst" %}
 11918   opcode(0xDB);      /* DB /0 */
 11919   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11920               Pop_Reg_D(dst));
 11921   ins_pipe( fpu_reg_mem );
 11922 %}
 11924 // Convert a byte to a float; no rounding step needed.
 11925 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 11926   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11927   match(Set dst (ConvI2F src));
 11928   format %{ "FILD   $src\n\t"
 11929             "FSTP   $dst" %}
 11931   opcode(0xDB, 0x0);  /* DB /0 */
 11932   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 11933   ins_pipe( fpu_reg_mem );
 11934 %}
 11936 // In 24-bit mode, force exponent rounding by storing back out
 11937 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 11938   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11939   match(Set dst (ConvI2F src));
 11940   ins_cost(200);
 11941   format %{ "FILD   $src\n\t"
 11942             "FSTP_S $dst" %}
 11943   opcode(0xDB, 0x0);  /* DB /0 */
 11944   ins_encode( Push_Mem_I(src),
 11945               Pop_Mem_F(dst));
 11946   ins_pipe( fpu_mem_mem );
 11947 %}
 11949 // In 24-bit mode, force exponent rounding by storing back out
 11950 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 11951   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11952   match(Set dst (ConvI2F (LoadI mem)));
 11953   ins_cost(200);
 11954   format %{ "FILD   $mem\n\t"
 11955             "FSTP_S $dst" %}
 11956   opcode(0xDB);  /* DB /0 */
 11957   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11958               Pop_Mem_F(dst));
 11959   ins_pipe( fpu_mem_mem );
 11960 %}
 11962 // This instruction does not round to 24-bits
 11963 instruct convI2F_reg(regF dst, stackSlotI src) %{
 11964   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11965   match(Set dst (ConvI2F src));
 11966   format %{ "FILD   $src\n\t"
 11967             "FSTP   $dst" %}
 11968   opcode(0xDB, 0x0);  /* DB /0 */
 11969   ins_encode( Push_Mem_I(src),
 11970               Pop_Reg_F(dst));
 11971   ins_pipe( fpu_reg_mem );
 11972 %}
 11974 // This instruction does not round to 24-bits
 11975 instruct convI2F_mem(regF dst, memory mem) %{
 11976   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11977   match(Set dst (ConvI2F (LoadI mem)));
 11978   format %{ "FILD   $mem\n\t"
 11979             "FSTP   $dst" %}
 11980   opcode(0xDB);      /* DB /0 */
 11981   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11982               Pop_Reg_F(dst));
 11983   ins_pipe( fpu_reg_mem );
 11984 %}
 11986 // Convert an int to a float in xmm; no rounding step needed.
 11987 instruct convI2X_reg(regX dst, eRegI src) %{
 11988   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11989   match(Set dst (ConvI2F src));
 11990   format %{ "CVTSI2SS $dst, $src" %}
 11992   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 11993   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11994   ins_pipe( pipe_slow );
 11995 %}
 11997  instruct convXI2X_reg(regX dst, eRegI src)
 11998 %{
 11999   predicate( UseSSE>=2 && UseXmmI2F );
 12000   match(Set dst (ConvI2F src));
 12002   format %{ "MOVD  $dst,$src\n\t"
 12003             "CVTDQ2PS $dst,$dst\t# i2f" %}
 12004   ins_encode %{
 12005     __ movdl($dst$$XMMRegister, $src$$Register);
 12006     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 12007   %}
 12008   ins_pipe(pipe_slow); // XXX
 12009 %}
 12011 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 12012   match(Set dst (ConvI2L src));
 12013   effect(KILL cr);
 12014   ins_cost(375);
 12015   format %{ "MOV    $dst.lo,$src\n\t"
 12016             "MOV    $dst.hi,$src\n\t"
 12017             "SAR    $dst.hi,31" %}
 12018   ins_encode(convert_int_long(dst,src));
 12019   ins_pipe( ialu_reg_reg_long );
 12020 %}
 12022 // Zero-extend convert int to long
 12023 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 12024   match(Set dst (AndL (ConvI2L src) mask) );
 12025   effect( KILL flags );
 12026   ins_cost(250);
 12027   format %{ "MOV    $dst.lo,$src\n\t"
 12028             "XOR    $dst.hi,$dst.hi" %}
 12029   opcode(0x33); // XOR
 12030   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12031   ins_pipe( ialu_reg_reg_long );
 12032 %}
 12034 // Zero-extend long
 12035 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 12036   match(Set dst (AndL src mask) );
 12037   effect( KILL flags );
 12038   ins_cost(250);
 12039   format %{ "MOV    $dst.lo,$src.lo\n\t"
 12040             "XOR    $dst.hi,$dst.hi\n\t" %}
 12041   opcode(0x33); // XOR
 12042   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12043   ins_pipe( ialu_reg_reg_long );
 12044 %}
 12046 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 12047   predicate (UseSSE<=1);
 12048   match(Set dst (ConvL2D src));
 12049   effect( KILL cr );
 12050   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12051             "PUSH   $src.lo\n\t"
 12052             "FILD   ST,[ESP + #0]\n\t"
 12053             "ADD    ESP,8\n\t"
 12054             "FSTP_D $dst\t# D-round" %}
 12055   opcode(0xDF, 0x5);  /* DF /5 */
 12056   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 12057   ins_pipe( pipe_slow );
 12058 %}
 12060 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 12061   predicate (UseSSE>=2);
 12062   match(Set dst (ConvL2D src));
 12063   effect( KILL cr );
 12064   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12065             "PUSH   $src.lo\n\t"
 12066             "FILD_D [ESP]\n\t"
 12067             "FSTP_D [ESP]\n\t"
 12068             "MOVSD  $dst,[ESP]\n\t"
 12069             "ADD    ESP,8" %}
 12070   opcode(0xDF, 0x5);  /* DF /5 */
 12071   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 12072   ins_pipe( pipe_slow );
 12073 %}
 12075 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 12076   predicate (UseSSE>=1);
 12077   match(Set dst (ConvL2F src));
 12078   effect( KILL cr );
 12079   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12080             "PUSH   $src.lo\n\t"
 12081             "FILD_D [ESP]\n\t"
 12082             "FSTP_S [ESP]\n\t"
 12083             "MOVSS  $dst,[ESP]\n\t"
 12084             "ADD    ESP,8" %}
 12085   opcode(0xDF, 0x5);  /* DF /5 */
 12086   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 12087   ins_pipe( pipe_slow );
 12088 %}
 12090 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 12091   match(Set dst (ConvL2F src));
 12092   effect( KILL cr );
 12093   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12094             "PUSH   $src.lo\n\t"
 12095             "FILD   ST,[ESP + #0]\n\t"
 12096             "ADD    ESP,8\n\t"
 12097             "FSTP_S $dst\t# F-round" %}
 12098   opcode(0xDF, 0x5);  /* DF /5 */
 12099   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 12100   ins_pipe( pipe_slow );
 12101 %}
 12103 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 12104   match(Set dst (ConvL2I src));
 12105   effect( DEF dst, USE src );
 12106   format %{ "MOV    $dst,$src.lo" %}
 12107   ins_encode(enc_CopyL_Lo(dst,src));
 12108   ins_pipe( ialu_reg_reg );
 12109 %}
 12112 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 12113   match(Set dst (MoveF2I src));
 12114   effect( DEF dst, USE src );
 12115   ins_cost(100);
 12116   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 12117   opcode(0x8B);
 12118   ins_encode( OpcP, RegMem(dst,src));
 12119   ins_pipe( ialu_reg_mem );
 12120 %}
 12122 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 12123   predicate(UseSSE==0);
 12124   match(Set dst (MoveF2I src));
 12125   effect( DEF dst, USE src );
 12127   ins_cost(125);
 12128   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 12129   ins_encode( Pop_Mem_Reg_F(dst, src) );
 12130   ins_pipe( fpu_mem_reg );
 12131 %}
 12133 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 12134   predicate(UseSSE>=1);
 12135   match(Set dst (MoveF2I src));
 12136   effect( DEF dst, USE src );
 12138   ins_cost(95);
 12139   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 12140   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 12141   ins_pipe( pipe_slow );
 12142 %}
 12144 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 12145   predicate(UseSSE>=2);
 12146   match(Set dst (MoveF2I src));
 12147   effect( DEF dst, USE src );
 12148   ins_cost(85);
 12149   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 12150   ins_encode( MovX2I_reg(dst, src));
 12151   ins_pipe( pipe_slow );
 12152 %}
 12154 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12155   match(Set dst (MoveI2F src));
 12156   effect( DEF dst, USE src );
 12158   ins_cost(100);
 12159   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12160   opcode(0x89);
 12161   ins_encode( OpcPRegSS( dst, src ) );
 12162   ins_pipe( ialu_mem_reg );
 12163 %}
 12166 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12167   predicate(UseSSE==0);
 12168   match(Set dst (MoveI2F src));
 12169   effect(DEF dst, USE src);
 12171   ins_cost(125);
 12172   format %{ "FLD_S  $src\n\t"
 12173             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12174   opcode(0xD9);               /* D9 /0, FLD m32real */
 12175   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12176               Pop_Reg_F(dst) );
 12177   ins_pipe( fpu_reg_mem );
 12178 %}
 12180 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12181   predicate(UseSSE>=1);
 12182   match(Set dst (MoveI2F src));
 12183   effect( DEF dst, USE src );
 12185   ins_cost(95);
 12186   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12187   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12188   ins_pipe( pipe_slow );
 12189 %}
 12191 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12192   predicate(UseSSE>=2);
 12193   match(Set dst (MoveI2F src));
 12194   effect( DEF dst, USE src );
 12196   ins_cost(85);
 12197   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12198   ins_encode( MovI2X_reg(dst, src) );
 12199   ins_pipe( pipe_slow );
 12200 %}
 12202 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12203   match(Set dst (MoveD2L src));
 12204   effect(DEF dst, USE src);
 12206   ins_cost(250);
 12207   format %{ "MOV    $dst.lo,$src\n\t"
 12208             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12209   opcode(0x8B, 0x8B);
 12210   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12211   ins_pipe( ialu_mem_long_reg );
 12212 %}
 12214 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12215   predicate(UseSSE<=1);
 12216   match(Set dst (MoveD2L src));
 12217   effect(DEF dst, USE src);
 12219   ins_cost(125);
 12220   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12221   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12222   ins_pipe( fpu_mem_reg );
 12223 %}
 12225 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12226   predicate(UseSSE>=2);
 12227   match(Set dst (MoveD2L src));
 12228   effect(DEF dst, USE src);
 12229   ins_cost(95);
 12231   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12232   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12233   ins_pipe( pipe_slow );
 12234 %}
 12236 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12237   predicate(UseSSE>=2);
 12238   match(Set dst (MoveD2L src));
 12239   effect(DEF dst, USE src, TEMP tmp);
 12240   ins_cost(85);
 12241   format %{ "MOVD   $dst.lo,$src\n\t"
 12242             "PSHUFLW $tmp,$src,0x4E\n\t"
 12243             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12244   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12245   ins_pipe( pipe_slow );
 12246 %}
 12248 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12249   match(Set dst (MoveL2D src));
 12250   effect(DEF dst, USE src);
 12252   ins_cost(200);
 12253   format %{ "MOV    $dst,$src.lo\n\t"
 12254             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12255   opcode(0x89, 0x89);
 12256   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12257   ins_pipe( ialu_mem_long_reg );
 12258 %}
 12261 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12262   predicate(UseSSE<=1);
 12263   match(Set dst (MoveL2D src));
 12264   effect(DEF dst, USE src);
 12265   ins_cost(125);
 12267   format %{ "FLD_D  $src\n\t"
 12268             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12269   opcode(0xDD);               /* DD /0, FLD m64real */
 12270   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12271               Pop_Reg_D(dst) );
 12272   ins_pipe( fpu_reg_mem );
 12273 %}
 12276 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12277   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12278   match(Set dst (MoveL2D src));
 12279   effect(DEF dst, USE src);
 12281   ins_cost(95);
 12282   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12283   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12284   ins_pipe( pipe_slow );
 12285 %}
 12287 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12288   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12289   match(Set dst (MoveL2D src));
 12290   effect(DEF dst, USE src);
 12292   ins_cost(95);
 12293   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12294   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12295   ins_pipe( pipe_slow );
 12296 %}
 12298 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12299   predicate(UseSSE>=2);
 12300   match(Set dst (MoveL2D src));
 12301   effect(TEMP dst, USE src, TEMP tmp);
 12302   ins_cost(85);
 12303   format %{ "MOVD   $dst,$src.lo\n\t"
 12304             "MOVD   $tmp,$src.hi\n\t"
 12305             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12306   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12307   ins_pipe( pipe_slow );
 12308 %}
 12310 // Replicate scalar to packed byte (1 byte) values in xmm
 12311 instruct Repl8B_reg(regXD dst, regXD src) %{
 12312   predicate(UseSSE>=2);
 12313   match(Set dst (Replicate8B src));
 12314   format %{ "MOVDQA  $dst,$src\n\t"
 12315             "PUNPCKLBW $dst,$dst\n\t"
 12316             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12317   ins_encode( pshufd_8x8(dst, src));
 12318   ins_pipe( pipe_slow );
 12319 %}
 12321 // Replicate scalar to packed byte (1 byte) values in xmm
 12322 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12323   predicate(UseSSE>=2);
 12324   match(Set dst (Replicate8B src));
 12325   format %{ "MOVD    $dst,$src\n\t"
 12326             "PUNPCKLBW $dst,$dst\n\t"
 12327             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12328   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12329   ins_pipe( pipe_slow );
 12330 %}
 12332 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12333 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12334   predicate(UseSSE>=2);
 12335   match(Set dst (Replicate8B zero));
 12336   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12337   ins_encode( pxor(dst, dst));
 12338   ins_pipe( fpu_reg_reg );
 12339 %}
 12341 // Replicate scalar to packed shore (2 byte) values in xmm
 12342 instruct Repl4S_reg(regXD dst, regXD src) %{
 12343   predicate(UseSSE>=2);
 12344   match(Set dst (Replicate4S src));
 12345   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12346   ins_encode( pshufd_4x16(dst, src));
 12347   ins_pipe( fpu_reg_reg );
 12348 %}
 12350 // Replicate scalar to packed shore (2 byte) values in xmm
 12351 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12352   predicate(UseSSE>=2);
 12353   match(Set dst (Replicate4S src));
 12354   format %{ "MOVD    $dst,$src\n\t"
 12355             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12356   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12357   ins_pipe( fpu_reg_reg );
 12358 %}
 12360 // Replicate scalar zero to packed short (2 byte) values in xmm
 12361 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12362   predicate(UseSSE>=2);
 12363   match(Set dst (Replicate4S zero));
 12364   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12365   ins_encode( pxor(dst, dst));
 12366   ins_pipe( fpu_reg_reg );
 12367 %}
 12369 // Replicate scalar to packed char (2 byte) values in xmm
 12370 instruct Repl4C_reg(regXD dst, regXD src) %{
 12371   predicate(UseSSE>=2);
 12372   match(Set dst (Replicate4C src));
 12373   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12374   ins_encode( pshufd_4x16(dst, src));
 12375   ins_pipe( fpu_reg_reg );
 12376 %}
 12378 // Replicate scalar to packed char (2 byte) values in xmm
 12379 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12380   predicate(UseSSE>=2);
 12381   match(Set dst (Replicate4C src));
 12382   format %{ "MOVD    $dst,$src\n\t"
 12383             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12384   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12385   ins_pipe( fpu_reg_reg );
 12386 %}
 12388 // Replicate scalar zero to packed char (2 byte) values in xmm
 12389 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12390   predicate(UseSSE>=2);
 12391   match(Set dst (Replicate4C zero));
 12392   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12393   ins_encode( pxor(dst, dst));
 12394   ins_pipe( fpu_reg_reg );
 12395 %}
 12397 // Replicate scalar to packed integer (4 byte) values in xmm
 12398 instruct Repl2I_reg(regXD dst, regXD src) %{
 12399   predicate(UseSSE>=2);
 12400   match(Set dst (Replicate2I src));
 12401   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12402   ins_encode( pshufd(dst, src, 0x00));
 12403   ins_pipe( fpu_reg_reg );
 12404 %}
 12406 // Replicate scalar to packed integer (4 byte) values in xmm
 12407 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12408   predicate(UseSSE>=2);
 12409   match(Set dst (Replicate2I src));
 12410   format %{ "MOVD   $dst,$src\n\t"
 12411             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12412   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12413   ins_pipe( fpu_reg_reg );
 12414 %}
 12416 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12417 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12418   predicate(UseSSE>=2);
 12419   match(Set dst (Replicate2I zero));
 12420   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12421   ins_encode( pxor(dst, dst));
 12422   ins_pipe( fpu_reg_reg );
 12423 %}
 12425 // Replicate scalar to packed single precision floating point values in xmm
 12426 instruct Repl2F_reg(regXD dst, regXD src) %{
 12427   predicate(UseSSE>=2);
 12428   match(Set dst (Replicate2F src));
 12429   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12430   ins_encode( pshufd(dst, src, 0xe0));
 12431   ins_pipe( fpu_reg_reg );
 12432 %}
 12434 // Replicate scalar to packed single precision floating point values in xmm
 12435 instruct Repl2F_regX(regXD dst, regX src) %{
 12436   predicate(UseSSE>=2);
 12437   match(Set dst (Replicate2F src));
 12438   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12439   ins_encode( pshufd(dst, src, 0xe0));
 12440   ins_pipe( fpu_reg_reg );
 12441 %}
 12443 // Replicate scalar to packed single precision floating point values in xmm
 12444 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12445   predicate(UseSSE>=2);
 12446   match(Set dst (Replicate2F zero));
 12447   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12448   ins_encode( pxor(dst, dst));
 12449   ins_pipe( fpu_reg_reg );
 12450 %}
 12452 // =======================================================================
 12453 // fast clearing of an array
 12454 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12455   match(Set dummy (ClearArray cnt base));
 12456   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12457   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12458             "XOR    EAX,EAX\n\t"
 12459             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12460   opcode(0,0x4);
 12461   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12462               OpcRegReg(0x33,EAX,EAX),
 12463               Opcode(0xF3), Opcode(0xAB) );
 12464   ins_pipe( pipe_slow );
 12465 %}
 12467 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
 12468                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
 12469   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12470   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12472   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 12473   ins_encode %{
 12474     __ string_compare($str1$$Register, $str2$$Register,
 12475                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12476                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12477   %}
 12478   ins_pipe( pipe_slow );
 12479 %}
 12481 // fast string equals
 12482 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12483                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12484   match(Set result (StrEquals (Binary str1 str2) cnt));
 12485   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12487   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12488   ins_encode %{
 12489     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12490                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12491                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12492   %}
 12493   ins_pipe( pipe_slow );
 12494 %}
 12496 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12497                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
 12498   predicate(UseSSE42Intrinsics);
 12499   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12500   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 12502   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
 12503   ins_encode %{
 12504     __ string_indexof($str1$$Register, $str2$$Register,
 12505                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12506                       $tmp1$$XMMRegister, $tmp2$$Register);
 12507   %}
 12508   ins_pipe( pipe_slow );
 12509 %}
 12511 // fast array equals
 12512 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12513                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12514 %{
 12515   match(Set result (AryEq ary1 ary2));
 12516   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12517   //ins_cost(300);
 12519   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12520   ins_encode %{
 12521     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12522                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12523                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12524   %}
 12525   ins_pipe( pipe_slow );
 12526 %}
 12528 //----------Control Flow Instructions------------------------------------------
 12529 // Signed compare Instructions
 12530 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12531   match(Set cr (CmpI op1 op2));
 12532   effect( DEF cr, USE op1, USE op2 );
 12533   format %{ "CMP    $op1,$op2" %}
 12534   opcode(0x3B);  /* Opcode 3B /r */
 12535   ins_encode( OpcP, RegReg( op1, op2) );
 12536   ins_pipe( ialu_cr_reg_reg );
 12537 %}
 12539 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12540   match(Set cr (CmpI op1 op2));
 12541   effect( DEF cr, USE op1 );
 12542   format %{ "CMP    $op1,$op2" %}
 12543   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12544   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12545   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12546   ins_pipe( ialu_cr_reg_imm );
 12547 %}
 12549 // Cisc-spilled version of cmpI_eReg
 12550 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12551   match(Set cr (CmpI op1 (LoadI op2)));
 12553   format %{ "CMP    $op1,$op2" %}
 12554   ins_cost(500);
 12555   opcode(0x3B);  /* Opcode 3B /r */
 12556   ins_encode( OpcP, RegMem( op1, op2) );
 12557   ins_pipe( ialu_cr_reg_mem );
 12558 %}
 12560 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12561   match(Set cr (CmpI src zero));
 12562   effect( DEF cr, USE src );
 12564   format %{ "TEST   $src,$src" %}
 12565   opcode(0x85);
 12566   ins_encode( OpcP, RegReg( src, src ) );
 12567   ins_pipe( ialu_cr_reg_imm );
 12568 %}
 12570 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12571   match(Set cr (CmpI (AndI src con) zero));
 12573   format %{ "TEST   $src,$con" %}
 12574   opcode(0xF7,0x00);
 12575   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12576   ins_pipe( ialu_cr_reg_imm );
 12577 %}
 12579 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12580   match(Set cr (CmpI (AndI src mem) zero));
 12582   format %{ "TEST   $src,$mem" %}
 12583   opcode(0x85);
 12584   ins_encode( OpcP, RegMem( src, mem ) );
 12585   ins_pipe( ialu_cr_reg_mem );
 12586 %}
 12588 // Unsigned compare Instructions; really, same as signed except they
 12589 // produce an eFlagsRegU instead of eFlagsReg.
 12590 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12591   match(Set cr (CmpU op1 op2));
 12593   format %{ "CMPu   $op1,$op2" %}
 12594   opcode(0x3B);  /* Opcode 3B /r */
 12595   ins_encode( OpcP, RegReg( op1, op2) );
 12596   ins_pipe( ialu_cr_reg_reg );
 12597 %}
 12599 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12600   match(Set cr (CmpU op1 op2));
 12602   format %{ "CMPu   $op1,$op2" %}
 12603   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12604   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12605   ins_pipe( ialu_cr_reg_imm );
 12606 %}
 12608 // // Cisc-spilled version of cmpU_eReg
 12609 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12610   match(Set cr (CmpU op1 (LoadI op2)));
 12612   format %{ "CMPu   $op1,$op2" %}
 12613   ins_cost(500);
 12614   opcode(0x3B);  /* Opcode 3B /r */
 12615   ins_encode( OpcP, RegMem( op1, op2) );
 12616   ins_pipe( ialu_cr_reg_mem );
 12617 %}
 12619 // // Cisc-spilled version of cmpU_eReg
 12620 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12621 //  match(Set cr (CmpU (LoadI op1) op2));
 12622 //
 12623 //  format %{ "CMPu   $op1,$op2" %}
 12624 //  ins_cost(500);
 12625 //  opcode(0x39);  /* Opcode 39 /r */
 12626 //  ins_encode( OpcP, RegMem( op1, op2) );
 12627 //%}
 12629 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12630   match(Set cr (CmpU src zero));
 12632   format %{ "TESTu  $src,$src" %}
 12633   opcode(0x85);
 12634   ins_encode( OpcP, RegReg( src, src ) );
 12635   ins_pipe( ialu_cr_reg_imm );
 12636 %}
 12638 // Unsigned pointer compare Instructions
 12639 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12640   match(Set cr (CmpP op1 op2));
 12642   format %{ "CMPu   $op1,$op2" %}
 12643   opcode(0x3B);  /* Opcode 3B /r */
 12644   ins_encode( OpcP, RegReg( op1, op2) );
 12645   ins_pipe( ialu_cr_reg_reg );
 12646 %}
 12648 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12649   match(Set cr (CmpP op1 op2));
 12651   format %{ "CMPu   $op1,$op2" %}
 12652   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12653   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12654   ins_pipe( ialu_cr_reg_imm );
 12655 %}
 12657 // // Cisc-spilled version of cmpP_eReg
 12658 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12659   match(Set cr (CmpP op1 (LoadP op2)));
 12661   format %{ "CMPu   $op1,$op2" %}
 12662   ins_cost(500);
 12663   opcode(0x3B);  /* Opcode 3B /r */
 12664   ins_encode( OpcP, RegMem( op1, op2) );
 12665   ins_pipe( ialu_cr_reg_mem );
 12666 %}
 12668 // // Cisc-spilled version of cmpP_eReg
 12669 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12670 //  match(Set cr (CmpP (LoadP op1) op2));
 12671 //
 12672 //  format %{ "CMPu   $op1,$op2" %}
 12673 //  ins_cost(500);
 12674 //  opcode(0x39);  /* Opcode 39 /r */
 12675 //  ins_encode( OpcP, RegMem( op1, op2) );
 12676 //%}
 12678 // Compare raw pointer (used in out-of-heap check).
 12679 // Only works because non-oop pointers must be raw pointers
 12680 // and raw pointers have no anti-dependencies.
 12681 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12682   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12683   match(Set cr (CmpP op1 (LoadP op2)));
 12685   format %{ "CMPu   $op1,$op2" %}
 12686   opcode(0x3B);  /* Opcode 3B /r */
 12687   ins_encode( OpcP, RegMem( op1, op2) );
 12688   ins_pipe( ialu_cr_reg_mem );
 12689 %}
 12691 //
 12692 // This will generate a signed flags result. This should be ok
 12693 // since any compare to a zero should be eq/neq.
 12694 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12695   match(Set cr (CmpP src zero));
 12697   format %{ "TEST   $src,$src" %}
 12698   opcode(0x85);
 12699   ins_encode( OpcP, RegReg( src, src ) );
 12700   ins_pipe( ialu_cr_reg_imm );
 12701 %}
 12703 // Cisc-spilled version of testP_reg
 12704 // This will generate a signed flags result. This should be ok
 12705 // since any compare to a zero should be eq/neq.
 12706 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12707   match(Set cr (CmpP (LoadP op) zero));
 12709   format %{ "TEST   $op,0xFFFFFFFF" %}
 12710   ins_cost(500);
 12711   opcode(0xF7);               /* Opcode F7 /0 */
 12712   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12713   ins_pipe( ialu_cr_reg_imm );
 12714 %}
 12716 // Yanked all unsigned pointer compare operations.
 12717 // Pointer compares are done with CmpP which is already unsigned.
 12719 //----------Max and Min--------------------------------------------------------
 12720 // Min Instructions
 12721 ////
 12722 //   *** Min and Max using the conditional move are slower than the
 12723 //   *** branch version on a Pentium III.
 12724 // // Conditional move for min
 12725 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12726 //  effect( USE_DEF op2, USE op1, USE cr );
 12727 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12728 //  opcode(0x4C,0x0F);
 12729 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12730 //  ins_pipe( pipe_cmov_reg );
 12731 //%}
 12732 //
 12733 //// Min Register with Register (P6 version)
 12734 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12735 //  predicate(VM_Version::supports_cmov() );
 12736 //  match(Set op2 (MinI op1 op2));
 12737 //  ins_cost(200);
 12738 //  expand %{
 12739 //    eFlagsReg cr;
 12740 //    compI_eReg(cr,op1,op2);
 12741 //    cmovI_reg_lt(op2,op1,cr);
 12742 //  %}
 12743 //%}
 12745 // Min Register with Register (generic version)
 12746 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12747   match(Set dst (MinI dst src));
 12748   effect(KILL flags);
 12749   ins_cost(300);
 12751   format %{ "MIN    $dst,$src" %}
 12752   opcode(0xCC);
 12753   ins_encode( min_enc(dst,src) );
 12754   ins_pipe( pipe_slow );
 12755 %}
 12757 // Max Register with Register
 12758 //   *** Min and Max using the conditional move are slower than the
 12759 //   *** branch version on a Pentium III.
 12760 // // Conditional move for max
 12761 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12762 //  effect( USE_DEF op2, USE op1, USE cr );
 12763 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12764 //  opcode(0x4F,0x0F);
 12765 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12766 //  ins_pipe( pipe_cmov_reg );
 12767 //%}
 12768 //
 12769 // // Max Register with Register (P6 version)
 12770 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12771 //  predicate(VM_Version::supports_cmov() );
 12772 //  match(Set op2 (MaxI op1 op2));
 12773 //  ins_cost(200);
 12774 //  expand %{
 12775 //    eFlagsReg cr;
 12776 //    compI_eReg(cr,op1,op2);
 12777 //    cmovI_reg_gt(op2,op1,cr);
 12778 //  %}
 12779 //%}
 12781 // Max Register with Register (generic version)
 12782 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12783   match(Set dst (MaxI dst src));
 12784   effect(KILL flags);
 12785   ins_cost(300);
 12787   format %{ "MAX    $dst,$src" %}
 12788   opcode(0xCC);
 12789   ins_encode( max_enc(dst,src) );
 12790   ins_pipe( pipe_slow );
 12791 %}
 12793 // ============================================================================
 12794 // Branch Instructions
 12795 // Jump Table
 12796 instruct jumpXtnd(eRegI switch_val) %{
 12797   match(Jump switch_val);
 12798   ins_cost(350);
 12800   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12802   ins_encode %{
 12803     address table_base  = __ address_table_constant(_index2label);
 12805     // Jump to Address(table_base + switch_reg)
 12806     InternalAddress table(table_base);
 12807     Address index(noreg, $switch_val$$Register, Address::times_1);
 12808     __ jump(ArrayAddress(table, index));
 12809   %}
 12810   ins_pc_relative(1);
 12811   ins_pipe(pipe_jmp);
 12812 %}
 12814 // Jump Direct - Label defines a relative address from JMP+1
 12815 instruct jmpDir(label labl) %{
 12816   match(Goto);
 12817   effect(USE labl);
 12819   ins_cost(300);
 12820   format %{ "JMP    $labl" %}
 12821   size(5);
 12822   opcode(0xE9);
 12823   ins_encode( OpcP, Lbl( labl ) );
 12824   ins_pipe( pipe_jmp );
 12825   ins_pc_relative(1);
 12826 %}
 12828 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12829 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12830   match(If cop cr);
 12831   effect(USE labl);
 12833   ins_cost(300);
 12834   format %{ "J$cop    $labl" %}
 12835   size(6);
 12836   opcode(0x0F, 0x80);
 12837   ins_encode( Jcc( cop, labl) );
 12838   ins_pipe( pipe_jcc );
 12839   ins_pc_relative(1);
 12840 %}
 12842 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12843 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12844   match(CountedLoopEnd cop cr);
 12845   effect(USE labl);
 12847   ins_cost(300);
 12848   format %{ "J$cop    $labl\t# Loop end" %}
 12849   size(6);
 12850   opcode(0x0F, 0x80);
 12851   ins_encode( Jcc( cop, labl) );
 12852   ins_pipe( pipe_jcc );
 12853   ins_pc_relative(1);
 12854 %}
 12856 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12857 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12858   match(CountedLoopEnd cop cmp);
 12859   effect(USE labl);
 12861   ins_cost(300);
 12862   format %{ "J$cop,u  $labl\t# Loop end" %}
 12863   size(6);
 12864   opcode(0x0F, 0x80);
 12865   ins_encode( Jcc( cop, labl) );
 12866   ins_pipe( pipe_jcc );
 12867   ins_pc_relative(1);
 12868 %}
 12870 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12871   match(CountedLoopEnd cop cmp);
 12872   effect(USE labl);
 12874   ins_cost(200);
 12875   format %{ "J$cop,u  $labl\t# Loop end" %}
 12876   size(6);
 12877   opcode(0x0F, 0x80);
 12878   ins_encode( Jcc( cop, labl) );
 12879   ins_pipe( pipe_jcc );
 12880   ins_pc_relative(1);
 12881 %}
 12883 // Jump Direct Conditional - using unsigned comparison
 12884 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12885   match(If cop cmp);
 12886   effect(USE labl);
 12888   ins_cost(300);
 12889   format %{ "J$cop,u  $labl" %}
 12890   size(6);
 12891   opcode(0x0F, 0x80);
 12892   ins_encode(Jcc(cop, labl));
 12893   ins_pipe(pipe_jcc);
 12894   ins_pc_relative(1);
 12895 %}
 12897 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12898   match(If cop cmp);
 12899   effect(USE labl);
 12901   ins_cost(200);
 12902   format %{ "J$cop,u  $labl" %}
 12903   size(6);
 12904   opcode(0x0F, 0x80);
 12905   ins_encode(Jcc(cop, labl));
 12906   ins_pipe(pipe_jcc);
 12907   ins_pc_relative(1);
 12908 %}
 12910 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12911   match(If cop cmp);
 12912   effect(USE labl);
 12914   ins_cost(200);
 12915   format %{ $$template
 12916     if ($cop$$cmpcode == Assembler::notEqual) {
 12917       $$emit$$"JP,u   $labl\n\t"
 12918       $$emit$$"J$cop,u   $labl"
 12919     } else {
 12920       $$emit$$"JP,u   done\n\t"
 12921       $$emit$$"J$cop,u   $labl\n\t"
 12922       $$emit$$"done:"
 12924   %}
 12925   size(12);
 12926   opcode(0x0F, 0x80);
 12927   ins_encode %{
 12928     Label* l = $labl$$label;
 12929     $$$emit8$primary;
 12930     emit_cc(cbuf, $secondary, Assembler::parity);
 12931     int parity_disp = -1;
 12932     bool ok = false;
 12933     if ($cop$$cmpcode == Assembler::notEqual) {
 12934        // the two jumps 6 bytes apart so the jump distances are too
 12935        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12936     } else if ($cop$$cmpcode == Assembler::equal) {
 12937        parity_disp = 6;
 12938        ok = true;
 12939     } else {
 12940        ShouldNotReachHere();
 12942     emit_d32(cbuf, parity_disp);
 12943     $$$emit8$primary;
 12944     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12945     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12946     emit_d32(cbuf, disp);
 12947   %}
 12948   ins_pipe(pipe_jcc);
 12949   ins_pc_relative(1);
 12950 %}
 12952 // ============================================================================
 12953 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12954 // array for an instance of the superklass.  Set a hidden internal cache on a
 12955 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12956 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12957 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12958   match(Set result (PartialSubtypeCheck sub super));
 12959   effect( KILL rcx, KILL cr );
 12961   ins_cost(1100);  // slightly larger than the next version
 12962   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12963             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12964             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12965             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12966             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12967             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12968             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12969      "miss:\t" %}
 12971   opcode(0x1); // Force a XOR of EDI
 12972   ins_encode( enc_PartialSubtypeCheck() );
 12973   ins_pipe( pipe_slow );
 12974 %}
 12976 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12977   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12978   effect( KILL rcx, KILL result );
 12980   ins_cost(1000);
 12981   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12982             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12983             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12984             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12985             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12986             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12987      "miss:\t" %}
 12989   opcode(0x0);  // No need to XOR EDI
 12990   ins_encode( enc_PartialSubtypeCheck() );
 12991   ins_pipe( pipe_slow );
 12992 %}
 12994 // ============================================================================
 12995 // Branch Instructions -- short offset versions
 12996 //
 12997 // These instructions are used to replace jumps of a long offset (the default
 12998 // match) with jumps of a shorter offset.  These instructions are all tagged
 12999 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 13000 // match rules in general matching.  Instead, the ADLC generates a conversion
 13001 // method in the MachNode which can be used to do in-place replacement of the
 13002 // long variant with the shorter variant.  The compiler will determine if a
 13003 // branch can be taken by the is_short_branch_offset() predicate in the machine
 13004 // specific code section of the file.
 13006 // Jump Direct - Label defines a relative address from JMP+1
 13007 instruct jmpDir_short(label labl) %{
 13008   match(Goto);
 13009   effect(USE labl);
 13011   ins_cost(300);
 13012   format %{ "JMP,s  $labl" %}
 13013   size(2);
 13014   opcode(0xEB);
 13015   ins_encode( OpcP, LblShort( labl ) );
 13016   ins_pipe( pipe_jmp );
 13017   ins_pc_relative(1);
 13018   ins_short_branch(1);
 13019 %}
 13021 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13022 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13023   match(If cop cr);
 13024   effect(USE labl);
 13026   ins_cost(300);
 13027   format %{ "J$cop,s  $labl" %}
 13028   size(2);
 13029   opcode(0x70);
 13030   ins_encode( JccShort( cop, labl) );
 13031   ins_pipe( pipe_jcc );
 13032   ins_pc_relative(1);
 13033   ins_short_branch(1);
 13034 %}
 13036 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13037 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13038   match(CountedLoopEnd cop cr);
 13039   effect(USE labl);
 13041   ins_cost(300);
 13042   format %{ "J$cop,s  $labl\t# Loop end" %}
 13043   size(2);
 13044   opcode(0x70);
 13045   ins_encode( JccShort( cop, labl) );
 13046   ins_pipe( pipe_jcc );
 13047   ins_pc_relative(1);
 13048   ins_short_branch(1);
 13049 %}
 13051 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13052 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13053   match(CountedLoopEnd cop cmp);
 13054   effect(USE labl);
 13056   ins_cost(300);
 13057   format %{ "J$cop,us $labl\t# Loop end" %}
 13058   size(2);
 13059   opcode(0x70);
 13060   ins_encode( JccShort( cop, labl) );
 13061   ins_pipe( pipe_jcc );
 13062   ins_pc_relative(1);
 13063   ins_short_branch(1);
 13064 %}
 13066 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13067   match(CountedLoopEnd cop cmp);
 13068   effect(USE labl);
 13070   ins_cost(300);
 13071   format %{ "J$cop,us $labl\t# Loop end" %}
 13072   size(2);
 13073   opcode(0x70);
 13074   ins_encode( JccShort( cop, labl) );
 13075   ins_pipe( pipe_jcc );
 13076   ins_pc_relative(1);
 13077   ins_short_branch(1);
 13078 %}
 13080 // Jump Direct Conditional - using unsigned comparison
 13081 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13082   match(If cop cmp);
 13083   effect(USE labl);
 13085   ins_cost(300);
 13086   format %{ "J$cop,us $labl" %}
 13087   size(2);
 13088   opcode(0x70);
 13089   ins_encode( JccShort( cop, labl) );
 13090   ins_pipe( pipe_jcc );
 13091   ins_pc_relative(1);
 13092   ins_short_branch(1);
 13093 %}
 13095 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13096   match(If cop cmp);
 13097   effect(USE labl);
 13099   ins_cost(300);
 13100   format %{ "J$cop,us $labl" %}
 13101   size(2);
 13102   opcode(0x70);
 13103   ins_encode( JccShort( cop, labl) );
 13104   ins_pipe( pipe_jcc );
 13105   ins_pc_relative(1);
 13106   ins_short_branch(1);
 13107 %}
 13109 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13110   match(If cop cmp);
 13111   effect(USE labl);
 13113   ins_cost(300);
 13114   format %{ $$template
 13115     if ($cop$$cmpcode == Assembler::notEqual) {
 13116       $$emit$$"JP,u,s   $labl\n\t"
 13117       $$emit$$"J$cop,u,s   $labl"
 13118     } else {
 13119       $$emit$$"JP,u,s   done\n\t"
 13120       $$emit$$"J$cop,u,s  $labl\n\t"
 13121       $$emit$$"done:"
 13123   %}
 13124   size(4);
 13125   opcode(0x70);
 13126   ins_encode %{
 13127     Label* l = $labl$$label;
 13128     emit_cc(cbuf, $primary, Assembler::parity);
 13129     int parity_disp = -1;
 13130     if ($cop$$cmpcode == Assembler::notEqual) {
 13131       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 13132     } else if ($cop$$cmpcode == Assembler::equal) {
 13133       parity_disp = 2;
 13134     } else {
 13135       ShouldNotReachHere();
 13137     emit_d8(cbuf, parity_disp);
 13138     emit_cc(cbuf, $primary, $cop$$cmpcode);
 13139     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 13140     emit_d8(cbuf, disp);
 13141     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 13142     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 13143   %}
 13144   ins_pipe(pipe_jcc);
 13145   ins_pc_relative(1);
 13146   ins_short_branch(1);
 13147 %}
 13149 // ============================================================================
 13150 // Long Compare
 13151 //
 13152 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 13153 // is tricky.  The flavor of compare used depends on whether we are testing
 13154 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13155 // The GE test is the negated LT test.  The LE test can be had by commuting
 13156 // the operands (yielding a GE test) and then negating; negate again for the
 13157 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13158 // NE test is negated from that.
 13160 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13161 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13162 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13163 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13164 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13165 // foo match ends up with the wrong leaf.  One fix is to not match both
 13166 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13167 // both forms beat the trinary form of long-compare and both are very useful
 13168 // on Intel which has so few registers.
 13170 // Manifest a CmpL result in an integer register.  Very painful.
 13171 // This is the test to avoid.
 13172 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13173   match(Set dst (CmpL3 src1 src2));
 13174   effect( KILL flags );
 13175   ins_cost(1000);
 13176   format %{ "XOR    $dst,$dst\n\t"
 13177             "CMP    $src1.hi,$src2.hi\n\t"
 13178             "JLT,s  m_one\n\t"
 13179             "JGT,s  p_one\n\t"
 13180             "CMP    $src1.lo,$src2.lo\n\t"
 13181             "JB,s   m_one\n\t"
 13182             "JEQ,s  done\n"
 13183     "p_one:\tINC    $dst\n\t"
 13184             "JMP,s  done\n"
 13185     "m_one:\tDEC    $dst\n"
 13186      "done:" %}
 13187   ins_encode %{
 13188     Label p_one, m_one, done;
 13189     __ xorptr($dst$$Register, $dst$$Register);
 13190     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13191     __ jccb(Assembler::less,    m_one);
 13192     __ jccb(Assembler::greater, p_one);
 13193     __ cmpl($src1$$Register, $src2$$Register);
 13194     __ jccb(Assembler::below,   m_one);
 13195     __ jccb(Assembler::equal,   done);
 13196     __ bind(p_one);
 13197     __ incrementl($dst$$Register);
 13198     __ jmpb(done);
 13199     __ bind(m_one);
 13200     __ decrementl($dst$$Register);
 13201     __ bind(done);
 13202   %}
 13203   ins_pipe( pipe_slow );
 13204 %}
 13206 //======
 13207 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13208 // compares.  Can be used for LE or GT compares by reversing arguments.
 13209 // NOT GOOD FOR EQ/NE tests.
 13210 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13211   match( Set flags (CmpL src zero ));
 13212   ins_cost(100);
 13213   format %{ "TEST   $src.hi,$src.hi" %}
 13214   opcode(0x85);
 13215   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13216   ins_pipe( ialu_cr_reg_reg );
 13217 %}
 13219 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13220 // compares.  Can be used for LE or GT compares by reversing arguments.
 13221 // NOT GOOD FOR EQ/NE tests.
 13222 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13223   match( Set flags (CmpL src1 src2 ));
 13224   effect( TEMP tmp );
 13225   ins_cost(300);
 13226   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13227             "MOV    $tmp,$src1.hi\n\t"
 13228             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13229   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13230   ins_pipe( ialu_cr_reg_reg );
 13231 %}
 13233 // Long compares reg < zero/req OR reg >= zero/req.
 13234 // Just a wrapper for a normal branch, plus the predicate test.
 13235 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13236   match(If cmp flags);
 13237   effect(USE labl);
 13238   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13239   expand %{
 13240     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13241   %}
 13242 %}
 13244 // Compare 2 longs and CMOVE longs.
 13245 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13246   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13247   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13248   ins_cost(400);
 13249   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13250             "CMOV$cmp $dst.hi,$src.hi" %}
 13251   opcode(0x0F,0x40);
 13252   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13253   ins_pipe( pipe_cmov_reg_long );
 13254 %}
 13256 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13257   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13258   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13259   ins_cost(500);
 13260   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13261             "CMOV$cmp $dst.hi,$src.hi" %}
 13262   opcode(0x0F,0x40);
 13263   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13264   ins_pipe( pipe_cmov_reg_long );
 13265 %}
 13267 // Compare 2 longs and CMOVE ints.
 13268 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13269   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13270   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13271   ins_cost(200);
 13272   format %{ "CMOV$cmp $dst,$src" %}
 13273   opcode(0x0F,0x40);
 13274   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13275   ins_pipe( pipe_cmov_reg );
 13276 %}
 13278 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13279   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13280   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13281   ins_cost(250);
 13282   format %{ "CMOV$cmp $dst,$src" %}
 13283   opcode(0x0F,0x40);
 13284   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13285   ins_pipe( pipe_cmov_mem );
 13286 %}
 13288 // Compare 2 longs and CMOVE ints.
 13289 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13290   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13291   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13292   ins_cost(200);
 13293   format %{ "CMOV$cmp $dst,$src" %}
 13294   opcode(0x0F,0x40);
 13295   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13296   ins_pipe( pipe_cmov_reg );
 13297 %}
 13299 // Compare 2 longs and CMOVE doubles
 13300 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13301   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13302   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13303   ins_cost(200);
 13304   expand %{
 13305     fcmovD_regS(cmp,flags,dst,src);
 13306   %}
 13307 %}
 13309 // Compare 2 longs and CMOVE doubles
 13310 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13311   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13312   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13313   ins_cost(200);
 13314   expand %{
 13315     fcmovXD_regS(cmp,flags,dst,src);
 13316   %}
 13317 %}
 13319 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13320   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13321   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13322   ins_cost(200);
 13323   expand %{
 13324     fcmovF_regS(cmp,flags,dst,src);
 13325   %}
 13326 %}
 13328 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13329   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13330   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13331   ins_cost(200);
 13332   expand %{
 13333     fcmovX_regS(cmp,flags,dst,src);
 13334   %}
 13335 %}
 13337 //======
 13338 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13339 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13340   match( Set flags (CmpL src zero ));
 13341   effect(TEMP tmp);
 13342   ins_cost(200);
 13343   format %{ "MOV    $tmp,$src.lo\n\t"
 13344             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13345   ins_encode( long_cmp_flags0( src, tmp ) );
 13346   ins_pipe( ialu_reg_reg_long );
 13347 %}
 13349 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13350 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13351   match( Set flags (CmpL src1 src2 ));
 13352   ins_cost(200+300);
 13353   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13354             "JNE,s  skip\n\t"
 13355             "CMP    $src1.hi,$src2.hi\n\t"
 13356      "skip:\t" %}
 13357   ins_encode( long_cmp_flags1( src1, src2 ) );
 13358   ins_pipe( ialu_cr_reg_reg );
 13359 %}
 13361 // Long compare reg == zero/reg OR reg != zero/reg
 13362 // Just a wrapper for a normal branch, plus the predicate test.
 13363 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13364   match(If cmp flags);
 13365   effect(USE labl);
 13366   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13367   expand %{
 13368     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13369   %}
 13370 %}
 13372 // Compare 2 longs and CMOVE longs.
 13373 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13374   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13375   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13376   ins_cost(400);
 13377   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13378             "CMOV$cmp $dst.hi,$src.hi" %}
 13379   opcode(0x0F,0x40);
 13380   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13381   ins_pipe( pipe_cmov_reg_long );
 13382 %}
 13384 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13385   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13386   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13387   ins_cost(500);
 13388   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13389             "CMOV$cmp $dst.hi,$src.hi" %}
 13390   opcode(0x0F,0x40);
 13391   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13392   ins_pipe( pipe_cmov_reg_long );
 13393 %}
 13395 // Compare 2 longs and CMOVE ints.
 13396 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13397   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13398   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13399   ins_cost(200);
 13400   format %{ "CMOV$cmp $dst,$src" %}
 13401   opcode(0x0F,0x40);
 13402   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13403   ins_pipe( pipe_cmov_reg );
 13404 %}
 13406 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13407   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13408   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13409   ins_cost(250);
 13410   format %{ "CMOV$cmp $dst,$src" %}
 13411   opcode(0x0F,0x40);
 13412   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13413   ins_pipe( pipe_cmov_mem );
 13414 %}
 13416 // Compare 2 longs and CMOVE ints.
 13417 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13418   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13419   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13420   ins_cost(200);
 13421   format %{ "CMOV$cmp $dst,$src" %}
 13422   opcode(0x0F,0x40);
 13423   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13424   ins_pipe( pipe_cmov_reg );
 13425 %}
 13427 // Compare 2 longs and CMOVE doubles
 13428 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13429   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13430   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13431   ins_cost(200);
 13432   expand %{
 13433     fcmovD_regS(cmp,flags,dst,src);
 13434   %}
 13435 %}
 13437 // Compare 2 longs and CMOVE doubles
 13438 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13439   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13440   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13441   ins_cost(200);
 13442   expand %{
 13443     fcmovXD_regS(cmp,flags,dst,src);
 13444   %}
 13445 %}
 13447 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13448   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13449   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13450   ins_cost(200);
 13451   expand %{
 13452     fcmovF_regS(cmp,flags,dst,src);
 13453   %}
 13454 %}
 13456 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13457   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13458   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13459   ins_cost(200);
 13460   expand %{
 13461     fcmovX_regS(cmp,flags,dst,src);
 13462   %}
 13463 %}
 13465 //======
 13466 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13467 // Same as cmpL_reg_flags_LEGT except must negate src
 13468 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13469   match( Set flags (CmpL src zero ));
 13470   effect( TEMP tmp );
 13471   ins_cost(300);
 13472   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13473             "CMP    $tmp,$src.lo\n\t"
 13474             "SBB    $tmp,$src.hi\n\t" %}
 13475   ins_encode( long_cmp_flags3(src, tmp) );
 13476   ins_pipe( ialu_reg_reg_long );
 13477 %}
 13479 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13480 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13481 // requires a commuted test to get the same result.
 13482 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13483   match( Set flags (CmpL src1 src2 ));
 13484   effect( TEMP tmp );
 13485   ins_cost(300);
 13486   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13487             "MOV    $tmp,$src2.hi\n\t"
 13488             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13489   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13490   ins_pipe( ialu_cr_reg_reg );
 13491 %}
 13493 // Long compares reg < zero/req OR reg >= zero/req.
 13494 // Just a wrapper for a normal branch, plus the predicate test
 13495 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13496   match(If cmp flags);
 13497   effect(USE labl);
 13498   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13499   ins_cost(300);
 13500   expand %{
 13501     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13502   %}
 13503 %}
 13505 // Compare 2 longs and CMOVE longs.
 13506 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13507   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13508   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13509   ins_cost(400);
 13510   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13511             "CMOV$cmp $dst.hi,$src.hi" %}
 13512   opcode(0x0F,0x40);
 13513   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13514   ins_pipe( pipe_cmov_reg_long );
 13515 %}
 13517 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13518   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13519   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13520   ins_cost(500);
 13521   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13522             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13523   opcode(0x0F,0x40);
 13524   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13525   ins_pipe( pipe_cmov_reg_long );
 13526 %}
 13528 // Compare 2 longs and CMOVE ints.
 13529 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13530   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13531   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13532   ins_cost(200);
 13533   format %{ "CMOV$cmp $dst,$src" %}
 13534   opcode(0x0F,0x40);
 13535   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13536   ins_pipe( pipe_cmov_reg );
 13537 %}
 13539 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13540   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13541   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13542   ins_cost(250);
 13543   format %{ "CMOV$cmp $dst,$src" %}
 13544   opcode(0x0F,0x40);
 13545   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13546   ins_pipe( pipe_cmov_mem );
 13547 %}
 13549 // Compare 2 longs and CMOVE ptrs.
 13550 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13551   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13552   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13553   ins_cost(200);
 13554   format %{ "CMOV$cmp $dst,$src" %}
 13555   opcode(0x0F,0x40);
 13556   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13557   ins_pipe( pipe_cmov_reg );
 13558 %}
 13560 // Compare 2 longs and CMOVE doubles
 13561 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13562   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13563   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13564   ins_cost(200);
 13565   expand %{
 13566     fcmovD_regS(cmp,flags,dst,src);
 13567   %}
 13568 %}
 13570 // Compare 2 longs and CMOVE doubles
 13571 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13572   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13573   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13574   ins_cost(200);
 13575   expand %{
 13576     fcmovXD_regS(cmp,flags,dst,src);
 13577   %}
 13578 %}
 13580 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13581   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13582   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13583   ins_cost(200);
 13584   expand %{
 13585     fcmovF_regS(cmp,flags,dst,src);
 13586   %}
 13587 %}
 13590 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13591   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13592   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13593   ins_cost(200);
 13594   expand %{
 13595     fcmovX_regS(cmp,flags,dst,src);
 13596   %}
 13597 %}
 13600 // ============================================================================
 13601 // Procedure Call/Return Instructions
 13602 // Call Java Static Instruction
 13603 // Note: If this code changes, the corresponding ret_addr_offset() and
 13604 //       compute_padding() functions will have to be adjusted.
 13605 instruct CallStaticJavaDirect(method meth) %{
 13606   match(CallStaticJava);
 13607   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13608   effect(USE meth);
 13610   ins_cost(300);
 13611   format %{ "CALL,static " %}
 13612   opcode(0xE8); /* E8 cd */
 13613   ins_encode( pre_call_FPU,
 13614               Java_Static_Call( meth ),
 13615               call_epilog,
 13616               post_call_FPU );
 13617   ins_pipe( pipe_slow );
 13618   ins_pc_relative(1);
 13619   ins_alignment(4);
 13620 %}
 13622 // Call Java Static Instruction (method handle version)
 13623 // Note: If this code changes, the corresponding ret_addr_offset() and
 13624 //       compute_padding() functions will have to be adjusted.
 13625 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13626   match(CallStaticJava);
 13627   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13628   effect(USE meth);
 13629   // EBP is saved by all callees (for interpreter stack correction).
 13630   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13632   ins_cost(300);
 13633   format %{ "CALL,static/MethodHandle " %}
 13634   opcode(0xE8); /* E8 cd */
 13635   ins_encode( pre_call_FPU,
 13636               preserve_SP,
 13637               Java_Static_Call( meth ),
 13638               restore_SP,
 13639               call_epilog,
 13640               post_call_FPU );
 13641   ins_pipe( pipe_slow );
 13642   ins_pc_relative(1);
 13643   ins_alignment(4);
 13644 %}
 13646 // Call Java Dynamic Instruction
 13647 // Note: If this code changes, the corresponding ret_addr_offset() and
 13648 //       compute_padding() functions will have to be adjusted.
 13649 instruct CallDynamicJavaDirect(method meth) %{
 13650   match(CallDynamicJava);
 13651   effect(USE meth);
 13653   ins_cost(300);
 13654   format %{ "MOV    EAX,(oop)-1\n\t"
 13655             "CALL,dynamic" %}
 13656   opcode(0xE8); /* E8 cd */
 13657   ins_encode( pre_call_FPU,
 13658               Java_Dynamic_Call( meth ),
 13659               call_epilog,
 13660               post_call_FPU );
 13661   ins_pipe( pipe_slow );
 13662   ins_pc_relative(1);
 13663   ins_alignment(4);
 13664 %}
 13666 // Call Runtime Instruction
 13667 instruct CallRuntimeDirect(method meth) %{
 13668   match(CallRuntime );
 13669   effect(USE meth);
 13671   ins_cost(300);
 13672   format %{ "CALL,runtime " %}
 13673   opcode(0xE8); /* E8 cd */
 13674   // Use FFREEs to clear entries in float stack
 13675   ins_encode( pre_call_FPU,
 13676               FFree_Float_Stack_All,
 13677               Java_To_Runtime( meth ),
 13678               post_call_FPU );
 13679   ins_pipe( pipe_slow );
 13680   ins_pc_relative(1);
 13681 %}
 13683 // Call runtime without safepoint
 13684 instruct CallLeafDirect(method meth) %{
 13685   match(CallLeaf);
 13686   effect(USE meth);
 13688   ins_cost(300);
 13689   format %{ "CALL_LEAF,runtime " %}
 13690   opcode(0xE8); /* E8 cd */
 13691   ins_encode( pre_call_FPU,
 13692               FFree_Float_Stack_All,
 13693               Java_To_Runtime( meth ),
 13694               Verify_FPU_For_Leaf, post_call_FPU );
 13695   ins_pipe( pipe_slow );
 13696   ins_pc_relative(1);
 13697 %}
 13699 instruct CallLeafNoFPDirect(method meth) %{
 13700   match(CallLeafNoFP);
 13701   effect(USE meth);
 13703   ins_cost(300);
 13704   format %{ "CALL_LEAF_NOFP,runtime " %}
 13705   opcode(0xE8); /* E8 cd */
 13706   ins_encode(Java_To_Runtime(meth));
 13707   ins_pipe( pipe_slow );
 13708   ins_pc_relative(1);
 13709 %}
 13712 // Return Instruction
 13713 // Remove the return address & jump to it.
 13714 instruct Ret() %{
 13715   match(Return);
 13716   format %{ "RET" %}
 13717   opcode(0xC3);
 13718   ins_encode(OpcP);
 13719   ins_pipe( pipe_jmp );
 13720 %}
 13722 // Tail Call; Jump from runtime stub to Java code.
 13723 // Also known as an 'interprocedural jump'.
 13724 // Target of jump will eventually return to caller.
 13725 // TailJump below removes the return address.
 13726 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13727   match(TailCall jump_target method_oop );
 13728   ins_cost(300);
 13729   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13730   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13731   ins_encode( OpcP, RegOpc(jump_target) );
 13732   ins_pipe( pipe_jmp );
 13733 %}
 13736 // Tail Jump; remove the return address; jump to target.
 13737 // TailCall above leaves the return address around.
 13738 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13739   match( TailJump jump_target ex_oop );
 13740   ins_cost(300);
 13741   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13742             "JMP    $jump_target " %}
 13743   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13744   ins_encode( enc_pop_rdx,
 13745               OpcP, RegOpc(jump_target) );
 13746   ins_pipe( pipe_jmp );
 13747 %}
 13749 // Create exception oop: created by stack-crawling runtime code.
 13750 // Created exception is now available to this handler, and is setup
 13751 // just prior to jumping to this handler.  No code emitted.
 13752 instruct CreateException( eAXRegP ex_oop )
 13753 %{
 13754   match(Set ex_oop (CreateEx));
 13756   size(0);
 13757   // use the following format syntax
 13758   format %{ "# exception oop is in EAX; no code emitted" %}
 13759   ins_encode();
 13760   ins_pipe( empty );
 13761 %}
 13764 // Rethrow exception:
 13765 // The exception oop will come in the first argument position.
 13766 // Then JUMP (not call) to the rethrow stub code.
 13767 instruct RethrowException()
 13768 %{
 13769   match(Rethrow);
 13771   // use the following format syntax
 13772   format %{ "JMP    rethrow_stub" %}
 13773   ins_encode(enc_rethrow);
 13774   ins_pipe( pipe_jmp );
 13775 %}
 13777 // inlined locking and unlocking
 13780 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13781   match( Set cr (FastLock object box) );
 13782   effect( TEMP tmp, TEMP scr );
 13783   ins_cost(300);
 13784   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13785   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13786   ins_pipe( pipe_slow );
 13787   ins_pc_relative(1);
 13788 %}
 13790 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13791   match( Set cr (FastUnlock object box) );
 13792   effect( TEMP tmp );
 13793   ins_cost(300);
 13794   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13795   ins_encode( Fast_Unlock(object,box,tmp) );
 13796   ins_pipe( pipe_slow );
 13797   ins_pc_relative(1);
 13798 %}
 13802 // ============================================================================
 13803 // Safepoint Instruction
 13804 instruct safePoint_poll(eFlagsReg cr) %{
 13805   match(SafePoint);
 13806   effect(KILL cr);
 13808   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13809   // On SPARC that might be acceptable as we can generate the address with
 13810   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13811   // putting additional pressure on the index-0 in the D$.  Because of
 13812   // alignment (just like the situation at hand) the lower indices tend
 13813   // to see more traffic.  It'd be better to change the polling address
 13814   // to offset 0 of the last $line in the polling page.
 13816   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13817   ins_cost(125);
 13818   size(6) ;
 13819   ins_encode( Safepoint_Poll() );
 13820   ins_pipe( ialu_reg_mem );
 13821 %}
 13823 //----------PEEPHOLE RULES-----------------------------------------------------
 13824 // These must follow all instruction definitions as they use the names
 13825 // defined in the instructions definitions.
 13826 //
 13827 // peepmatch ( root_instr_name [preceding_instruction]* );
 13828 //
 13829 // peepconstraint %{
 13830 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13831 //  [, ...] );
 13832 // // instruction numbers are zero-based using left to right order in peepmatch
 13833 //
 13834 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13835 // // provide an instruction_number.operand_name for each operand that appears
 13836 // // in the replacement instruction's match rule
 13837 //
 13838 // ---------VM FLAGS---------------------------------------------------------
 13839 //
 13840 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13841 //
 13842 // Each peephole rule is given an identifying number starting with zero and
 13843 // increasing by one in the order seen by the parser.  An individual peephole
 13844 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13845 // on the command-line.
 13846 //
 13847 // ---------CURRENT LIMITATIONS----------------------------------------------
 13848 //
 13849 // Only match adjacent instructions in same basic block
 13850 // Only equality constraints
 13851 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13852 // Only one replacement instruction
 13853 //
 13854 // ---------EXAMPLE----------------------------------------------------------
 13855 //
 13856 // // pertinent parts of existing instructions in architecture description
 13857 // instruct movI(eRegI dst, eRegI src) %{
 13858 //   match(Set dst (CopyI src));
 13859 // %}
 13860 //
 13861 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13862 //   match(Set dst (AddI dst src));
 13863 //   effect(KILL cr);
 13864 // %}
 13865 //
 13866 // // Change (inc mov) to lea
 13867 // peephole %{
 13868 //   // increment preceeded by register-register move
 13869 //   peepmatch ( incI_eReg movI );
 13870 //   // require that the destination register of the increment
 13871 //   // match the destination register of the move
 13872 //   peepconstraint ( 0.dst == 1.dst );
 13873 //   // construct a replacement instruction that sets
 13874 //   // the destination to ( move's source register + one )
 13875 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13876 // %}
 13877 //
 13878 // Implementation no longer uses movX instructions since
 13879 // machine-independent system no longer uses CopyX nodes.
 13880 //
 13881 // peephole %{
 13882 //   peepmatch ( incI_eReg movI );
 13883 //   peepconstraint ( 0.dst == 1.dst );
 13884 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13885 // %}
 13886 //
 13887 // peephole %{
 13888 //   peepmatch ( decI_eReg movI );
 13889 //   peepconstraint ( 0.dst == 1.dst );
 13890 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13891 // %}
 13892 //
 13893 // peephole %{
 13894 //   peepmatch ( addI_eReg_imm movI );
 13895 //   peepconstraint ( 0.dst == 1.dst );
 13896 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13897 // %}
 13898 //
 13899 // peephole %{
 13900 //   peepmatch ( addP_eReg_imm movP );
 13901 //   peepconstraint ( 0.dst == 1.dst );
 13902 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13903 // %}
 13905 // // Change load of spilled value to only a spill
 13906 // instruct storeI(memory mem, eRegI src) %{
 13907 //   match(Set mem (StoreI mem src));
 13908 // %}
 13909 //
 13910 // instruct loadI(eRegI dst, memory mem) %{
 13911 //   match(Set dst (LoadI mem));
 13912 // %}
 13913 //
 13914 peephole %{
 13915   peepmatch ( loadI storeI );
 13916   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13917   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13918 %}
 13920 //----------SMARTSPILL RULES---------------------------------------------------
 13921 // These must follow all instruction definitions as they use the names
 13922 // defined in the instructions definitions.

mercurial