src/cpu/x86/vm/x86_32.ad

Wed, 25 Aug 2010 05:27:54 -0700

author
twisti
date
Wed, 25 Aug 2010 05:27:54 -0700
changeset 2103
3e8fbc61cee8
parent 2085
f55c4f82ab9d
child 2269
ae065c367d93
permissions
-rw-r--r--

6978355: renaming for 6961697
Summary: This is the renaming part of 6961697 to keep the actual changes small for review.
Reviewed-by: kvn, never

     1 //
     2 // Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_CC()
   357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   358   unsigned char c = (unsigned char)( f1 | f2 );
   359   cbuf.insts()->emit_int8(c);
   360 }
   362 // EMIT_OPCODE()
   363 void emit_opcode(CodeBuffer &cbuf, int code) {
   364   cbuf.insts()->emit_int8((unsigned char) code);
   365 }
   367 // EMIT_OPCODE() w/ relocation information
   368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   370   emit_opcode(cbuf, code);
   371 }
   373 // EMIT_D8()
   374 void emit_d8(CodeBuffer &cbuf, int d8) {
   375   cbuf.insts()->emit_int8((unsigned char) d8);
   376 }
   378 // EMIT_D16()
   379 void emit_d16(CodeBuffer &cbuf, int d16) {
   380   cbuf.insts()->emit_int16(d16);
   381 }
   383 // EMIT_D32()
   384 void emit_d32(CodeBuffer &cbuf, int d32) {
   385   cbuf.insts()->emit_int32(d32);
   386 }
   388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   390         int format) {
   391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   392   cbuf.insts()->emit_int32(d32);
   393 }
   395 // emit 32 bit value and construct relocation entry from RelocationHolder
   396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   397         int format) {
   398 #ifdef ASSERT
   399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   401   }
   402 #endif
   403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   404   cbuf.insts()->emit_int32(d32);
   405 }
   407 // Access stack slot for load or store
   408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   410   if( -128 <= disp && disp <= 127 ) {
   411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   414   } else {
   415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   418   }
   419 }
   421    // eRegI ereg, memory mem) %{    // emit_reg_mem
   422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   423   // There is no index & no scale, use form without SIB byte
   424   if ((index == 0x4) &&
   425       (scale == 0) && (base != ESP_enc)) {
   426     // If no displacement, mode is 0x0; unless base is [EBP]
   427     if ( (displace == 0) && (base != EBP_enc) ) {
   428       emit_rm(cbuf, 0x0, reg_encoding, base);
   429     }
   430     else {                    // If 8-bit displacement, mode 0x1
   431       if ((displace >= -128) && (displace <= 127)
   432           && !(displace_is_oop) ) {
   433         emit_rm(cbuf, 0x1, reg_encoding, base);
   434         emit_d8(cbuf, displace);
   435       }
   436       else {                  // If 32-bit displacement
   437         if (base == -1) { // Special flag for absolute address
   438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   439           // (manual lies; no SIB needed here)
   440           if ( displace_is_oop ) {
   441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   442           } else {
   443             emit_d32      (cbuf, displace);
   444           }
   445         }
   446         else {                // Normal base + offset
   447           emit_rm(cbuf, 0x2, reg_encoding, base);
   448           if ( displace_is_oop ) {
   449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   450           } else {
   451             emit_d32      (cbuf, displace);
   452           }
   453         }
   454       }
   455     }
   456   }
   457   else {                      // Else, encode with the SIB byte
   458     // If no displacement, mode is 0x0; unless base is [EBP]
   459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   461       emit_rm(cbuf, scale, index, base);
   462     }
   463     else {                    // If 8-bit displacement, mode 0x1
   464       if ((displace >= -128) && (displace <= 127)
   465           && !(displace_is_oop) ) {
   466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   467         emit_rm(cbuf, scale, index, base);
   468         emit_d8(cbuf, displace);
   469       }
   470       else {                  // If 32-bit displacement
   471         if (base == 0x04 ) {
   472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   473           emit_rm(cbuf, scale, index, 0x04);
   474         } else {
   475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   476           emit_rm(cbuf, scale, index, base);
   477         }
   478         if ( displace_is_oop ) {
   479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   480         } else {
   481           emit_d32      (cbuf, displace);
   482         }
   483       }
   484     }
   485   }
   486 }
   489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   490   if( dst_encoding == src_encoding ) {
   491     // reg-reg copy, use an empty encoding
   492   } else {
   493     emit_opcode( cbuf, 0x8B );
   494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   495   }
   496 }
   498 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   499   if( dst_encoding == src_encoding ) {
   500     // reg-reg copy, use an empty encoding
   501   } else {
   502     MacroAssembler _masm(&cbuf);
   504     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   505   }
   506 }
   509 //=============================================================================
   510 #ifndef PRODUCT
   511 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   512   Compile* C = ra_->C;
   513   if( C->in_24_bit_fp_mode() ) {
   514     st->print("FLDCW  24 bit fpu control word");
   515     st->print_cr(""); st->print("\t");
   516   }
   518   int framesize = C->frame_slots() << LogBytesPerInt;
   519   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   520   // Remove two words for return addr and rbp,
   521   framesize -= 2*wordSize;
   523   // Calls to C2R adapters often do not accept exceptional returns.
   524   // We require that their callers must bang for them.  But be careful, because
   525   // some VM calls (such as call site linkage) can use several kilobytes of
   526   // stack.  But the stack safety zone should account for that.
   527   // See bugs 4446381, 4468289, 4497237.
   528   if (C->need_stack_bang(framesize)) {
   529     st->print_cr("# stack bang"); st->print("\t");
   530   }
   531   st->print_cr("PUSHL  EBP"); st->print("\t");
   533   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   534     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   535     st->print_cr(""); st->print("\t");
   536     framesize -= wordSize;
   537   }
   539   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   540     if (framesize) {
   541       st->print("SUB    ESP,%d\t# Create frame",framesize);
   542     }
   543   } else {
   544     st->print("SUB    ESP,%d\t# Create frame",framesize);
   545   }
   546 }
   547 #endif
   550 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   551   Compile* C = ra_->C;
   553   if (UseSSE >= 2 && VerifyFPU) {
   554     MacroAssembler masm(&cbuf);
   555     masm.verify_FPU(0, "FPU stack must be clean on entry");
   556   }
   558   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   559   // NativeJump::patch_verified_entry will be able to patch out the entry
   560   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   561   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   562   // 6 bytes. So if we don't do the fldcw or the push then we must
   563   // use the 6 byte frame allocation even if we have no frame. :-(
   564   // If method sets FPU control word do it now
   565   if( C->in_24_bit_fp_mode() ) {
   566     MacroAssembler masm(&cbuf);
   567     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   568   }
   570   int framesize = C->frame_slots() << LogBytesPerInt;
   571   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   572   // Remove two words for return addr and rbp,
   573   framesize -= 2*wordSize;
   575   // Calls to C2R adapters often do not accept exceptional returns.
   576   // We require that their callers must bang for them.  But be careful, because
   577   // some VM calls (such as call site linkage) can use several kilobytes of
   578   // stack.  But the stack safety zone should account for that.
   579   // See bugs 4446381, 4468289, 4497237.
   580   if (C->need_stack_bang(framesize)) {
   581     MacroAssembler masm(&cbuf);
   582     masm.generate_stack_overflow_check(framesize);
   583   }
   585   // We always push rbp, so that on return to interpreter rbp, will be
   586   // restored correctly and we can correct the stack.
   587   emit_opcode(cbuf, 0x50 | EBP_enc);
   589   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   590     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   591     emit_d32(cbuf, 0xbadb100d);
   592     framesize -= wordSize;
   593   }
   595   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   596     if (framesize) {
   597       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   598       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   599       emit_d8(cbuf, framesize);
   600     }
   601   } else {
   602     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   603     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   604     emit_d32(cbuf, framesize);
   605   }
   606   C->set_frame_complete(cbuf.insts_size());
   608 #ifdef ASSERT
   609   if (VerifyStackAtCalls) {
   610     Label L;
   611     MacroAssembler masm(&cbuf);
   612     masm.push(rax);
   613     masm.mov(rax, rsp);
   614     masm.andptr(rax, StackAlignmentInBytes-1);
   615     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   616     masm.pop(rax);
   617     masm.jcc(Assembler::equal, L);
   618     masm.stop("Stack is not properly aligned!");
   619     masm.bind(L);
   620   }
   621 #endif
   623 }
   625 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   626   return MachNode::size(ra_); // too many variables; just compute it the hard way
   627 }
   629 int MachPrologNode::reloc() const {
   630   return 0; // a large enough number
   631 }
   633 //=============================================================================
   634 #ifndef PRODUCT
   635 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   636   Compile *C = ra_->C;
   637   int framesize = C->frame_slots() << LogBytesPerInt;
   638   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   639   // Remove two words for return addr and rbp,
   640   framesize -= 2*wordSize;
   642   if( C->in_24_bit_fp_mode() ) {
   643     st->print("FLDCW  standard control word");
   644     st->cr(); st->print("\t");
   645   }
   646   if( framesize ) {
   647     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   648     st->cr(); st->print("\t");
   649   }
   650   st->print_cr("POPL   EBP"); st->print("\t");
   651   if( do_polling() && C->is_method_compilation() ) {
   652     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   653     st->cr(); st->print("\t");
   654   }
   655 }
   656 #endif
   658 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   659   Compile *C = ra_->C;
   661   // If method set FPU control word, restore to standard control word
   662   if( C->in_24_bit_fp_mode() ) {
   663     MacroAssembler masm(&cbuf);
   664     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   665   }
   667   int framesize = C->frame_slots() << LogBytesPerInt;
   668   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   669   // Remove two words for return addr and rbp,
   670   framesize -= 2*wordSize;
   672   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   674   if( framesize >= 128 ) {
   675     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   676     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   677     emit_d32(cbuf, framesize);
   678   }
   679   else if( framesize ) {
   680     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   681     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   682     emit_d8(cbuf, framesize);
   683   }
   685   emit_opcode(cbuf, 0x58 | EBP_enc);
   687   if( do_polling() && C->is_method_compilation() ) {
   688     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   689     emit_opcode(cbuf,0x85);
   690     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   691     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   692   }
   693 }
   695 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   696   Compile *C = ra_->C;
   697   // If method set FPU control word, restore to standard control word
   698   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   699   if( do_polling() && C->is_method_compilation() ) size += 6;
   701   int framesize = C->frame_slots() << LogBytesPerInt;
   702   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   703   // Remove two words for return addr and rbp,
   704   framesize -= 2*wordSize;
   706   size++; // popl rbp,
   708   if( framesize >= 128 ) {
   709     size += 6;
   710   } else {
   711     size += framesize ? 3 : 0;
   712   }
   713   return size;
   714 }
   716 int MachEpilogNode::reloc() const {
   717   return 0; // a large enough number
   718 }
   720 const Pipeline * MachEpilogNode::pipeline() const {
   721   return MachNode::pipeline_class();
   722 }
   724 int MachEpilogNode::safepoint_offset() const { return 0; }
   726 //=============================================================================
   728 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   729 static enum RC rc_class( OptoReg::Name reg ) {
   731   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   732   if (OptoReg::is_stack(reg)) return rc_stack;
   734   VMReg r = OptoReg::as_VMReg(reg);
   735   if (r->is_Register()) return rc_int;
   736   if (r->is_FloatRegister()) {
   737     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   738     return rc_float;
   739   }
   740   assert(r->is_XMMRegister(), "must be");
   741   return rc_xmm;
   742 }
   744 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   745                         int opcode, const char *op_str, int size, outputStream* st ) {
   746   if( cbuf ) {
   747     emit_opcode  (*cbuf, opcode );
   748     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   749 #ifndef PRODUCT
   750   } else if( !do_size ) {
   751     if( size != 0 ) st->print("\n\t");
   752     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   753       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   754       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   755     } else { // FLD, FST, PUSH, POP
   756       st->print("%s [ESP + #%d]",op_str,offset);
   757     }
   758 #endif
   759   }
   760   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   761   return size+3+offset_size;
   762 }
   764 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   765 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   766                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   767   if( cbuf ) {
   768     if( reg_lo+1 == reg_hi ) { // double move?
   769       if( is_load && !UseXmmLoadAndClearUpper )
   770         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   771       else
   772         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   773     } else {
   774       emit_opcode(*cbuf, 0xF3 );
   775     }
   776     emit_opcode(*cbuf, 0x0F );
   777     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   778       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   779     else
   780       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   781     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   782 #ifndef PRODUCT
   783   } else if( !do_size ) {
   784     if( size != 0 ) st->print("\n\t");
   785     if( reg_lo+1 == reg_hi ) { // double move?
   786       if( is_load ) st->print("%s %s,[ESP + #%d]",
   787                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   788                                Matcher::regName[reg_lo], offset);
   789       else          st->print("MOVSD  [ESP + #%d],%s",
   790                                offset, Matcher::regName[reg_lo]);
   791     } else {
   792       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   793                                Matcher::regName[reg_lo], offset);
   794       else          st->print("MOVSS  [ESP + #%d],%s",
   795                                offset, Matcher::regName[reg_lo]);
   796     }
   797 #endif
   798   }
   799   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   800   return size+5+offset_size;
   801 }
   804 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   805                             int src_hi, int dst_hi, int size, outputStream* st ) {
   806   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   807     if( cbuf ) {
   808       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   809         emit_opcode(*cbuf, 0x66 );
   810       }
   811       emit_opcode(*cbuf, 0x0F );
   812       emit_opcode(*cbuf, 0x28 );
   813       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   814 #ifndef PRODUCT
   815     } else if( !do_size ) {
   816       if( size != 0 ) st->print("\n\t");
   817       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   818         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   819       } else {
   820         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   821       }
   822 #endif
   823     }
   824     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   825   } else {
   826     if( cbuf ) {
   827       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   828       emit_opcode(*cbuf, 0x0F );
   829       emit_opcode(*cbuf, 0x10 );
   830       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   831 #ifndef PRODUCT
   832     } else if( !do_size ) {
   833       if( size != 0 ) st->print("\n\t");
   834       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   835         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   836       } else {
   837         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   838       }
   839 #endif
   840     }
   841     return size+4;
   842   }
   843 }
   845 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   846                             int src_hi, int dst_hi, int size, outputStream* st ) {
   847   // 32-bit
   848   if (cbuf) {
   849     emit_opcode(*cbuf, 0x66);
   850     emit_opcode(*cbuf, 0x0F);
   851     emit_opcode(*cbuf, 0x6E);
   852     emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
   853 #ifndef PRODUCT
   854   } else if (!do_size) {
   855     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   856 #endif
   857   }
   858   return 4;
   859 }
   862 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   863                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   864   // 32-bit
   865   if (cbuf) {
   866     emit_opcode(*cbuf, 0x66);
   867     emit_opcode(*cbuf, 0x0F);
   868     emit_opcode(*cbuf, 0x7E);
   869     emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
   870 #ifndef PRODUCT
   871   } else if (!do_size) {
   872     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   873 #endif
   874   }
   875   return 4;
   876 }
   878 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   879   if( cbuf ) {
   880     emit_opcode(*cbuf, 0x8B );
   881     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   882 #ifndef PRODUCT
   883   } else if( !do_size ) {
   884     if( size != 0 ) st->print("\n\t");
   885     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   886 #endif
   887   }
   888   return size+2;
   889 }
   891 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   892                                  int offset, int size, outputStream* st ) {
   893   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   894     if( cbuf ) {
   895       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   896       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   897 #ifndef PRODUCT
   898     } else if( !do_size ) {
   899       if( size != 0 ) st->print("\n\t");
   900       st->print("FLD    %s",Matcher::regName[src_lo]);
   901 #endif
   902     }
   903     size += 2;
   904   }
   906   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   907   const char *op_str;
   908   int op;
   909   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   910     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   911     op = 0xDD;
   912   } else {                   // 32-bit store
   913     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   914     op = 0xD9;
   915     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   916   }
   918   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   919 }
   921 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   922   // Get registers to move
   923   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   924   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   925   OptoReg::Name dst_second = ra_->get_reg_second(this );
   926   OptoReg::Name dst_first = ra_->get_reg_first(this );
   928   enum RC src_second_rc = rc_class(src_second);
   929   enum RC src_first_rc = rc_class(src_first);
   930   enum RC dst_second_rc = rc_class(dst_second);
   931   enum RC dst_first_rc = rc_class(dst_first);
   933   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   935   // Generate spill code!
   936   int size = 0;
   938   if( src_first == dst_first && src_second == dst_second )
   939     return size;            // Self copy, no move
   941   // --------------------------------------
   942   // Check for mem-mem move.  push/pop to move.
   943   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   944     if( src_second == dst_first ) { // overlapping stack copy ranges
   945       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   946       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   947       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   948       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   949     }
   950     // move low bits
   951     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   952     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   953     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   954       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   955       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   956     }
   957     return size;
   958   }
   960   // --------------------------------------
   961   // Check for integer reg-reg copy
   962   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   963     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   965   // Check for integer store
   966   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   967     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   969   // Check for integer load
   970   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   971     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   973   // Check for integer reg-xmm reg copy
   974   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   975     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   976             "no 64 bit integer-float reg moves" );
   977     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   978   }
   979   // --------------------------------------
   980   // Check for float reg-reg copy
   981   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   982     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   983             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   984     if( cbuf ) {
   986       // Note the mucking with the register encode to compensate for the 0/1
   987       // indexing issue mentioned in a comment in the reg_def sections
   988       // for FPR registers many lines above here.
   990       if( src_first != FPR1L_num ) {
   991         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   992         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   993         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   994         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   995      } else {
   996         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   997         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   998      }
   999 #ifndef PRODUCT
  1000     } else if( !do_size ) {
  1001       if( size != 0 ) st->print("\n\t");
  1002       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1003       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1004 #endif
  1006     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1009   // Check for float store
  1010   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1011     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1014   // Check for float load
  1015   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1016     int offset = ra_->reg2offset(src_first);
  1017     const char *op_str;
  1018     int op;
  1019     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1020       op_str = "FLD_D";
  1021       op = 0xDD;
  1022     } else {                   // 32-bit load
  1023       op_str = "FLD_S";
  1024       op = 0xD9;
  1025       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1027     if( cbuf ) {
  1028       emit_opcode  (*cbuf, op );
  1029       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1030       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1031       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1032 #ifndef PRODUCT
  1033     } else if( !do_size ) {
  1034       if( size != 0 ) st->print("\n\t");
  1035       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1036 #endif
  1038     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1039     return size + 3+offset_size+2;
  1042   // Check for xmm reg-reg copy
  1043   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1044     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1045             (src_first+1 == src_second && dst_first+1 == dst_second),
  1046             "no non-adjacent float-moves" );
  1047     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1050   // Check for xmm reg-integer reg copy
  1051   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1052     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1053             "no 64 bit float-integer reg moves" );
  1054     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1057   // Check for xmm store
  1058   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1059     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1062   // Check for float xmm load
  1063   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1064     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1067   // Copy from float reg to xmm reg
  1068   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1069     // copy to the top of stack from floating point reg
  1070     // and use LEA to preserve flags
  1071     if( cbuf ) {
  1072       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1073       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1074       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1075       emit_d8(*cbuf,0xF8);
  1076 #ifndef PRODUCT
  1077     } else if( !do_size ) {
  1078       if( size != 0 ) st->print("\n\t");
  1079       st->print("LEA    ESP,[ESP-8]");
  1080 #endif
  1082     size += 4;
  1084     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1086     // Copy from the temp memory to the xmm reg.
  1087     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1089     if( cbuf ) {
  1090       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1091       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1092       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1093       emit_d8(*cbuf,0x08);
  1094 #ifndef PRODUCT
  1095     } else if( !do_size ) {
  1096       if( size != 0 ) st->print("\n\t");
  1097       st->print("LEA    ESP,[ESP+8]");
  1098 #endif
  1100     size += 4;
  1101     return size;
  1104   assert( size > 0, "missed a case" );
  1106   // --------------------------------------------------------------------
  1107   // Check for second bits still needing moving.
  1108   if( src_second == dst_second )
  1109     return size;               // Self copy; no move
  1110   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1112   // Check for second word int-int move
  1113   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1114     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1116   // Check for second word integer store
  1117   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1118     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1120   // Check for second word integer load
  1121   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1122     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1125   Unimplemented();
  1128 #ifndef PRODUCT
  1129 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1130   implementation( NULL, ra_, false, st );
  1132 #endif
  1134 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1135   implementation( &cbuf, ra_, false, NULL );
  1138 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1139   return implementation( NULL, ra_, true, NULL );
  1142 //=============================================================================
  1143 #ifndef PRODUCT
  1144 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1145   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1147 #endif
  1149 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1150   MacroAssembler _masm(&cbuf);
  1151   __ nop(_count);
  1154 uint MachNopNode::size(PhaseRegAlloc *) const {
  1155   return _count;
  1159 //=============================================================================
  1160 #ifndef PRODUCT
  1161 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1162   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1163   int reg = ra_->get_reg_first(this);
  1164   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1166 #endif
  1168 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1169   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1170   int reg = ra_->get_encode(this);
  1171   if( offset >= 128 ) {
  1172     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1173     emit_rm(cbuf, 0x2, reg, 0x04);
  1174     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1175     emit_d32(cbuf, offset);
  1177   else {
  1178     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1179     emit_rm(cbuf, 0x1, reg, 0x04);
  1180     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1181     emit_d8(cbuf, offset);
  1185 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1186   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1187   if( offset >= 128 ) {
  1188     return 7;
  1190   else {
  1191     return 4;
  1195 //=============================================================================
  1197 // emit call stub, compiled java to interpreter
  1198 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1199   // Stub is fixed up when the corresponding call is converted from calling
  1200   // compiled code to calling interpreted code.
  1201   // mov rbx,0
  1202   // jmp -1
  1204   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1206   // Note that the code buffer's insts_mark is always relative to insts.
  1207   // That's why we must use the macroassembler to generate a stub.
  1208   MacroAssembler _masm(&cbuf);
  1210   address base =
  1211   __ start_a_stub(Compile::MAX_stubs_size);
  1212   if (base == NULL)  return;  // CodeBuffer::expand failed
  1213   // static stub relocation stores the instruction address of the call
  1214   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1215   // static stub relocation also tags the methodOop in the code-stream.
  1216   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1217   // This is recognized as unresolved by relocs/nativeInst/ic code
  1218   __ jump(RuntimeAddress(__ pc()));
  1220   __ end_a_stub();
  1221   // Update current stubs pointer and restore insts_end.
  1223 // size of call stub, compiled java to interpretor
  1224 uint size_java_to_interp() {
  1225   return 10;  // movl; jmp
  1227 // relocation entries for call stub, compiled java to interpretor
  1228 uint reloc_java_to_interp() {
  1229   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1232 //=============================================================================
  1233 #ifndef PRODUCT
  1234 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1235   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1236   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1237   st->print_cr("\tNOP");
  1238   st->print_cr("\tNOP");
  1239   if( !OptoBreakpoint )
  1240     st->print_cr("\tNOP");
  1242 #endif
  1244 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1245   MacroAssembler masm(&cbuf);
  1246 #ifdef ASSERT
  1247   uint insts_size = cbuf.insts_size();
  1248 #endif
  1249   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1250   masm.jump_cc(Assembler::notEqual,
  1251                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1252   /* WARNING these NOPs are critical so that verified entry point is properly
  1253      aligned for patching by NativeJump::patch_verified_entry() */
  1254   int nops_cnt = 2;
  1255   if( !OptoBreakpoint ) // Leave space for int3
  1256      nops_cnt += 1;
  1257   masm.nop(nops_cnt);
  1259   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1262 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1263   return OptoBreakpoint ? 11 : 12;
  1267 //=============================================================================
  1268 uint size_exception_handler() {
  1269   // NativeCall instruction size is the same as NativeJump.
  1270   // exception handler starts out as jump and can be patched to
  1271   // a call be deoptimization.  (4932387)
  1272   // Note that this value is also credited (in output.cpp) to
  1273   // the size of the code section.
  1274   return NativeJump::instruction_size;
  1277 // Emit exception handler code.  Stuff framesize into a register
  1278 // and call a VM stub routine.
  1279 int emit_exception_handler(CodeBuffer& cbuf) {
  1281   // Note that the code buffer's insts_mark is always relative to insts.
  1282   // That's why we must use the macroassembler to generate a handler.
  1283   MacroAssembler _masm(&cbuf);
  1284   address base =
  1285   __ start_a_stub(size_exception_handler());
  1286   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1287   int offset = __ offset();
  1288   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1289   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1290   __ end_a_stub();
  1291   return offset;
  1294 uint size_deopt_handler() {
  1295   // NativeCall instruction size is the same as NativeJump.
  1296   // exception handler starts out as jump and can be patched to
  1297   // a call be deoptimization.  (4932387)
  1298   // Note that this value is also credited (in output.cpp) to
  1299   // the size of the code section.
  1300   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1303 // Emit deopt handler code.
  1304 int emit_deopt_handler(CodeBuffer& cbuf) {
  1306   // Note that the code buffer's insts_mark is always relative to insts.
  1307   // That's why we must use the macroassembler to generate a handler.
  1308   MacroAssembler _masm(&cbuf);
  1309   address base =
  1310   __ start_a_stub(size_exception_handler());
  1311   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1312   int offset = __ offset();
  1313   InternalAddress here(__ pc());
  1314   __ pushptr(here.addr());
  1316   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1317   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1318   __ end_a_stub();
  1319   return offset;
  1323 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1324   int mark = cbuf.insts()->mark_off();
  1325   MacroAssembler _masm(&cbuf);
  1326   address double_address = __ double_constant(x);
  1327   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1328   emit_d32_reloc(cbuf,
  1329                  (int)double_address,
  1330                  internal_word_Relocation::spec(double_address),
  1331                  RELOC_DISP32);
  1334 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1335   int mark = cbuf.insts()->mark_off();
  1336   MacroAssembler _masm(&cbuf);
  1337   address float_address = __ float_constant(x);
  1338   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1339   emit_d32_reloc(cbuf,
  1340                  (int)float_address,
  1341                  internal_word_Relocation::spec(float_address),
  1342                  RELOC_DISP32);
  1346 const bool Matcher::match_rule_supported(int opcode) {
  1347   if (!has_match_rule(opcode))
  1348     return false;
  1350   return true;  // Per default match rules are supported.
  1353 int Matcher::regnum_to_fpu_offset(int regnum) {
  1354   return regnum - 32; // The FP registers are in the second chunk
  1357 bool is_positive_zero_float(jfloat f) {
  1358   return jint_cast(f) == jint_cast(0.0F);
  1361 bool is_positive_one_float(jfloat f) {
  1362   return jint_cast(f) == jint_cast(1.0F);
  1365 bool is_positive_zero_double(jdouble d) {
  1366   return jlong_cast(d) == jlong_cast(0.0);
  1369 bool is_positive_one_double(jdouble d) {
  1370   return jlong_cast(d) == jlong_cast(1.0);
  1373 // This is UltraSparc specific, true just means we have fast l2f conversion
  1374 const bool Matcher::convL2FSupported(void) {
  1375   return true;
  1378 // Vector width in bytes
  1379 const uint Matcher::vector_width_in_bytes(void) {
  1380   return UseSSE >= 2 ? 8 : 0;
  1383 // Vector ideal reg
  1384 const uint Matcher::vector_ideal_reg(void) {
  1385   return Op_RegD;
  1388 // Is this branch offset short enough that a short branch can be used?
  1389 //
  1390 // NOTE: If the platform does not provide any short branch variants, then
  1391 //       this method should return false for offset 0.
  1392 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1393   // the short version of jmpConUCF2 contains multiple branches,
  1394   // making the reach slightly less
  1395   if (rule == jmpConUCF2_rule)
  1396     return (-126 <= offset && offset <= 125);
  1397   return (-128 <= offset && offset <= 127);
  1400 const bool Matcher::isSimpleConstant64(jlong value) {
  1401   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1402   return false;
  1405 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1406 const bool Matcher::init_array_count_is_in_bytes = false;
  1408 // Threshold size for cleararray.
  1409 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1411 // Should the Matcher clone shifts on addressing modes, expecting them to
  1412 // be subsumed into complex addressing expressions or compute them into
  1413 // registers?  True for Intel but false for most RISCs
  1414 const bool Matcher::clone_shift_expressions = true;
  1416 bool Matcher::narrow_oop_use_complex_address() {
  1417   ShouldNotCallThis();
  1418   return true;
  1422 // Is it better to copy float constants, or load them directly from memory?
  1423 // Intel can load a float constant from a direct address, requiring no
  1424 // extra registers.  Most RISCs will have to materialize an address into a
  1425 // register first, so they would do better to copy the constant from stack.
  1426 const bool Matcher::rematerialize_float_constants = true;
  1428 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1429 // needed.  Else we split the double into 2 integer pieces and move it
  1430 // piece-by-piece.  Only happens when passing doubles into C code as the
  1431 // Java calling convention forces doubles to be aligned.
  1432 const bool Matcher::misaligned_doubles_ok = true;
  1435 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1436   // Get the memory operand from the node
  1437   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1438   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1439   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1440   uint opcnt     = 1;                 // First operand
  1441   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1442   while( idx >= skipped+num_edges ) {
  1443     skipped += num_edges;
  1444     opcnt++;                          // Bump operand count
  1445     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1446     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1449   MachOper *memory = node->_opnds[opcnt];
  1450   MachOper *new_memory = NULL;
  1451   switch (memory->opcode()) {
  1452   case DIRECT:
  1453   case INDOFFSET32X:
  1454     // No transformation necessary.
  1455     return;
  1456   case INDIRECT:
  1457     new_memory = new (C) indirect_win95_safeOper( );
  1458     break;
  1459   case INDOFFSET8:
  1460     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1461     break;
  1462   case INDOFFSET32:
  1463     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1464     break;
  1465   case INDINDEXOFFSET:
  1466     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1467     break;
  1468   case INDINDEXSCALE:
  1469     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1470     break;
  1471   case INDINDEXSCALEOFFSET:
  1472     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1473     break;
  1474   case LOAD_LONG_INDIRECT:
  1475   case LOAD_LONG_INDOFFSET32:
  1476     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1477     return;
  1478   default:
  1479     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1480     return;
  1482   node->_opnds[opcnt] = new_memory;
  1485 // Advertise here if the CPU requires explicit rounding operations
  1486 // to implement the UseStrictFP mode.
  1487 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1489 // Are floats conerted to double when stored to stack during deoptimization?
  1490 // On x32 it is stored with convertion only when FPU is used for floats.
  1491 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1493 // Do ints take an entire long register or just half?
  1494 const bool Matcher::int_in_long = false;
  1496 // Return whether or not this register is ever used as an argument.  This
  1497 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1498 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1499 // arguments in those registers not be available to the callee.
  1500 bool Matcher::can_be_java_arg( int reg ) {
  1501   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1502   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1503   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1504   return false;
  1507 bool Matcher::is_spillable_arg( int reg ) {
  1508   return can_be_java_arg(reg);
  1511 // Register for DIVI projection of divmodI
  1512 RegMask Matcher::divI_proj_mask() {
  1513   return EAX_REG_mask;
  1516 // Register for MODI projection of divmodI
  1517 RegMask Matcher::modI_proj_mask() {
  1518   return EDX_REG_mask;
  1521 // Register for DIVL projection of divmodL
  1522 RegMask Matcher::divL_proj_mask() {
  1523   ShouldNotReachHere();
  1524   return RegMask();
  1527 // Register for MODL projection of divmodL
  1528 RegMask Matcher::modL_proj_mask() {
  1529   ShouldNotReachHere();
  1530   return RegMask();
  1533 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1534   return EBP_REG_mask;
  1537 // Returns true if the high 32 bits of the value is known to be zero.
  1538 bool is_operand_hi32_zero(Node* n) {
  1539   int opc = n->Opcode();
  1540   if (opc == Op_LoadUI2L) {
  1541     return true;
  1543   if (opc == Op_AndL) {
  1544     Node* o2 = n->in(2);
  1545     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1546       return true;
  1549   return false;
  1552 %}
  1554 //----------ENCODING BLOCK-----------------------------------------------------
  1555 // This block specifies the encoding classes used by the compiler to output
  1556 // byte streams.  Encoding classes generate functions which are called by
  1557 // Machine Instruction Nodes in order to generate the bit encoding of the
  1558 // instruction.  Operands specify their base encoding interface with the
  1559 // interface keyword.  There are currently supported four interfaces,
  1560 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1561 // operand to generate a function which returns its register number when
  1562 // queried.   CONST_INTER causes an operand to generate a function which
  1563 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1564 // operand to generate four functions which return the Base Register, the
  1565 // Index Register, the Scale Value, and the Offset Value of the operand when
  1566 // queried.  COND_INTER causes an operand to generate six functions which
  1567 // return the encoding code (ie - encoding bits for the instruction)
  1568 // associated with each basic boolean condition for a conditional instruction.
  1569 // Instructions specify two basic values for encoding.  They use the
  1570 // ins_encode keyword to specify their encoding class (which must be one of
  1571 // the class names specified in the encoding block), and they use the
  1572 // opcode keyword to specify, in order, their primary, secondary, and
  1573 // tertiary opcode.  Only the opcode sections which a particular instruction
  1574 // needs for encoding need to be specified.
  1575 encode %{
  1576   // Build emit functions for each basic byte or larger field in the intel
  1577   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1578   // code in the enc_class source block.  Emit functions will live in the
  1579   // main source block for now.  In future, we can generalize this by
  1580   // adding a syntax that specifies the sizes of fields in an order,
  1581   // so that the adlc can build the emit functions automagically
  1583   // Emit primary opcode
  1584   enc_class OpcP %{
  1585     emit_opcode(cbuf, $primary);
  1586   %}
  1588   // Emit secondary opcode
  1589   enc_class OpcS %{
  1590     emit_opcode(cbuf, $secondary);
  1591   %}
  1593   // Emit opcode directly
  1594   enc_class Opcode(immI d8) %{
  1595     emit_opcode(cbuf, $d8$$constant);
  1596   %}
  1598   enc_class SizePrefix %{
  1599     emit_opcode(cbuf,0x66);
  1600   %}
  1602   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1603     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1604   %}
  1606   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1607     emit_opcode(cbuf,$opcode$$constant);
  1608     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1609   %}
  1611   enc_class mov_r32_imm0( eRegI dst ) %{
  1612     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1613     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1614   %}
  1616   enc_class cdq_enc %{
  1617     // Full implementation of Java idiv and irem; checks for
  1618     // special case as described in JVM spec., p.243 & p.271.
  1619     //
  1620     //         normal case                           special case
  1621     //
  1622     // input : rax,: dividend                         min_int
  1623     //         reg: divisor                          -1
  1624     //
  1625     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1626     //         rdx: remainder (= rax, irem reg)       0
  1627     //
  1628     //  Code sequnce:
  1629     //
  1630     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1631     //  0F 85 0B 00 00 00    jne         normal_case
  1632     //  33 D2                xor         rdx,edx
  1633     //  83 F9 FF             cmp         rcx,0FFh
  1634     //  0F 84 03 00 00 00    je          done
  1635     //                  normal_case:
  1636     //  99                   cdq
  1637     //  F7 F9                idiv        rax,ecx
  1638     //                  done:
  1639     //
  1640     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1641     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1643     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1644     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1645     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1646     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1647     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1648     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1649     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1650     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1651     // normal_case:
  1652     emit_opcode(cbuf,0x99);                                         // cdq
  1653     // idiv (note: must be emitted by the user of this rule)
  1654     // normal:
  1655   %}
  1657   // Dense encoding for older common ops
  1658   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1659     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1660   %}
  1663   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1664   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1665     // Check for 8-bit immediate, and set sign extend bit in opcode
  1666     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1667       emit_opcode(cbuf, $primary | 0x02);
  1669     else {                          // If 32-bit immediate
  1670       emit_opcode(cbuf, $primary);
  1672   %}
  1674   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1675     // Emit primary opcode and set sign-extend bit
  1676     // Check for 8-bit immediate, and set sign extend bit in opcode
  1677     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1678       emit_opcode(cbuf, $primary | 0x02);    }
  1679     else {                          // If 32-bit immediate
  1680       emit_opcode(cbuf, $primary);
  1682     // Emit r/m byte with secondary opcode, after primary opcode.
  1683     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1684   %}
  1686   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1687     // Check for 8-bit immediate, and set sign extend bit in opcode
  1688     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1689       $$$emit8$imm$$constant;
  1691     else {                          // If 32-bit immediate
  1692       // Output immediate
  1693       $$$emit32$imm$$constant;
  1695   %}
  1697   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1698     // Emit primary opcode and set sign-extend bit
  1699     // Check for 8-bit immediate, and set sign extend bit in opcode
  1700     int con = (int)$imm$$constant; // Throw away top bits
  1701     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1702     // Emit r/m byte with secondary opcode, after primary opcode.
  1703     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1704     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1705     else                               emit_d32(cbuf,con);
  1706   %}
  1708   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1709     // Emit primary opcode and set sign-extend bit
  1710     // Check for 8-bit immediate, and set sign extend bit in opcode
  1711     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1712     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1713     // Emit r/m byte with tertiary opcode, after primary opcode.
  1714     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1715     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1716     else                               emit_d32(cbuf,con);
  1717   %}
  1719   enc_class Lbl (label labl) %{ // JMP, CALL
  1720     Label *l = $labl$$label;
  1721     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
  1722   %}
  1724   enc_class LblShort (label labl) %{ // JMP, CALL
  1725     Label *l = $labl$$label;
  1726     int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
  1727     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1728     emit_d8(cbuf, disp);
  1729   %}
  1731   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1732     emit_cc(cbuf, $secondary, $dst$$reg );
  1733   %}
  1735   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1736     int destlo = $dst$$reg;
  1737     int desthi = HIGH_FROM_LOW(destlo);
  1738     // bswap lo
  1739     emit_opcode(cbuf, 0x0F);
  1740     emit_cc(cbuf, 0xC8, destlo);
  1741     // bswap hi
  1742     emit_opcode(cbuf, 0x0F);
  1743     emit_cc(cbuf, 0xC8, desthi);
  1744     // xchg lo and hi
  1745     emit_opcode(cbuf, 0x87);
  1746     emit_rm(cbuf, 0x3, destlo, desthi);
  1747   %}
  1749   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1750     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1751   %}
  1753   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1754     Label *l = $labl$$label;
  1755     $$$emit8$primary;
  1756     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1757     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
  1758   %}
  1760   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1761     Label *l = $labl$$label;
  1762     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1763     int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
  1764     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1765     emit_d8(cbuf, disp);
  1766   %}
  1768   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1769     $$$emit8$primary;
  1770     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1771   %}
  1773   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1774     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1775     emit_d8(cbuf, op >> 8 );
  1776     emit_d8(cbuf, op & 255);
  1777   %}
  1779   // emulate a CMOV with a conditional branch around a MOV
  1780   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1781     // Invert sense of branch from sense of CMOV
  1782     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1783     emit_d8( cbuf, $brOffs$$constant );
  1784   %}
  1786   enc_class enc_PartialSubtypeCheck( ) %{
  1787     Register Redi = as_Register(EDI_enc); // result register
  1788     Register Reax = as_Register(EAX_enc); // super class
  1789     Register Recx = as_Register(ECX_enc); // killed
  1790     Register Resi = as_Register(ESI_enc); // sub class
  1791     Label miss;
  1793     MacroAssembler _masm(&cbuf);
  1794     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1795                                      NULL, &miss,
  1796                                      /*set_cond_codes:*/ true);
  1797     if ($primary) {
  1798       __ xorptr(Redi, Redi);
  1800     __ bind(miss);
  1801   %}
  1803   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1804     MacroAssembler masm(&cbuf);
  1805     int start = masm.offset();
  1806     if (UseSSE >= 2) {
  1807       if (VerifyFPU) {
  1808         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1810     } else {
  1811       // External c_calling_convention expects the FPU stack to be 'clean'.
  1812       // Compiled code leaves it dirty.  Do cleanup now.
  1813       masm.empty_FPU_stack();
  1815     if (sizeof_FFree_Float_Stack_All == -1) {
  1816       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1817     } else {
  1818       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1820   %}
  1822   enc_class Verify_FPU_For_Leaf %{
  1823     if( VerifyFPU ) {
  1824       MacroAssembler masm(&cbuf);
  1825       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1827   %}
  1829   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1830     // This is the instruction starting address for relocation info.
  1831     cbuf.set_insts_mark();
  1832     $$$emit8$primary;
  1833     // CALL directly to the runtime
  1834     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1835                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1837     if (UseSSE >= 2) {
  1838       MacroAssembler _masm(&cbuf);
  1839       BasicType rt = tf()->return_type();
  1841       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1842         // A C runtime call where the return value is unused.  In SSE2+
  1843         // mode the result needs to be removed from the FPU stack.  It's
  1844         // likely that this function call could be removed by the
  1845         // optimizer if the C function is a pure function.
  1846         __ ffree(0);
  1847       } else if (rt == T_FLOAT) {
  1848         __ lea(rsp, Address(rsp, -4));
  1849         __ fstp_s(Address(rsp, 0));
  1850         __ movflt(xmm0, Address(rsp, 0));
  1851         __ lea(rsp, Address(rsp,  4));
  1852       } else if (rt == T_DOUBLE) {
  1853         __ lea(rsp, Address(rsp, -8));
  1854         __ fstp_d(Address(rsp, 0));
  1855         __ movdbl(xmm0, Address(rsp, 0));
  1856         __ lea(rsp, Address(rsp,  8));
  1859   %}
  1862   enc_class pre_call_FPU %{
  1863     // If method sets FPU control word restore it here
  1864     debug_only(int off0 = cbuf.insts_size());
  1865     if( Compile::current()->in_24_bit_fp_mode() ) {
  1866       MacroAssembler masm(&cbuf);
  1867       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1869     debug_only(int off1 = cbuf.insts_size());
  1870     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1871   %}
  1873   enc_class post_call_FPU %{
  1874     // If method sets FPU control word do it here also
  1875     if( Compile::current()->in_24_bit_fp_mode() ) {
  1876       MacroAssembler masm(&cbuf);
  1877       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1879   %}
  1881   enc_class preserve_SP %{
  1882     debug_only(int off0 = cbuf.insts_size());
  1883     MacroAssembler _masm(&cbuf);
  1884     // RBP is preserved across all calls, even compiled calls.
  1885     // Use it to preserve RSP in places where the callee might change the SP.
  1886     __ movptr(rbp_mh_SP_save, rsp);
  1887     debug_only(int off1 = cbuf.insts_size());
  1888     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1889   %}
  1891   enc_class restore_SP %{
  1892     MacroAssembler _masm(&cbuf);
  1893     __ movptr(rsp, rbp_mh_SP_save);
  1894   %}
  1896   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1897     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1898     // who we intended to call.
  1899     cbuf.set_insts_mark();
  1900     $$$emit8$primary;
  1901     if ( !_method ) {
  1902       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1903                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1904     } else if(_optimized_virtual) {
  1905       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1906                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1907     } else {
  1908       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1909                      static_call_Relocation::spec(), RELOC_IMM32 );
  1911     if( _method ) {  // Emit stub for static call
  1912       emit_java_to_interp(cbuf);
  1914   %}
  1916   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1917     // !!!!!
  1918     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1919     // emit_call_dynamic_prologue( cbuf );
  1920     cbuf.set_insts_mark();
  1921     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1922     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1923     address  virtual_call_oop_addr = cbuf.insts_mark();
  1924     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1925     // who we intended to call.
  1926     cbuf.set_insts_mark();
  1927     $$$emit8$primary;
  1928     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1929                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1930   %}
  1932   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1933     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1934     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1936     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1937     cbuf.set_insts_mark();
  1938     $$$emit8$primary;
  1939     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1940     emit_d8(cbuf, disp);             // Displacement
  1942   %}
  1944   enc_class Xor_Reg (eRegI dst) %{
  1945     emit_opcode(cbuf, 0x33);
  1946     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1947   %}
  1949 //   Following encoding is no longer used, but may be restored if calling
  1950 //   convention changes significantly.
  1951 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1952 //
  1953 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1954 //     // int ic_reg     = Matcher::inline_cache_reg();
  1955 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1956 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1957 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1958 //
  1959 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1960 //     // // so we load it immediately before the call
  1961 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1962 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1963 //
  1964 //     // xor rbp,ebp
  1965 //     emit_opcode(cbuf, 0x33);
  1966 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1967 //
  1968 //     // CALL to interpreter.
  1969 //     cbuf.set_insts_mark();
  1970 //     $$$emit8$primary;
  1971 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1972 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1973 //   %}
  1975   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1976     $$$emit8$primary;
  1977     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1978     $$$emit8$shift$$constant;
  1979   %}
  1981   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1982     // Load immediate does not have a zero or sign extended version
  1983     // for 8-bit immediates
  1984     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1985     $$$emit32$src$$constant;
  1986   %}
  1988   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1989     // Load immediate does not have a zero or sign extended version
  1990     // for 8-bit immediates
  1991     emit_opcode(cbuf, $primary + $dst$$reg);
  1992     $$$emit32$src$$constant;
  1993   %}
  1995   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1996     // Load immediate does not have a zero or sign extended version
  1997     // for 8-bit immediates
  1998     int dst_enc = $dst$$reg;
  1999     int src_con = $src$$constant & 0x0FFFFFFFFL;
  2000     if (src_con == 0) {
  2001       // xor dst, dst
  2002       emit_opcode(cbuf, 0x33);
  2003       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2004     } else {
  2005       emit_opcode(cbuf, $primary + dst_enc);
  2006       emit_d32(cbuf, src_con);
  2008   %}
  2010   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  2011     // Load immediate does not have a zero or sign extended version
  2012     // for 8-bit immediates
  2013     int dst_enc = $dst$$reg + 2;
  2014     int src_con = ((julong)($src$$constant)) >> 32;
  2015     if (src_con == 0) {
  2016       // xor dst, dst
  2017       emit_opcode(cbuf, 0x33);
  2018       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2019     } else {
  2020       emit_opcode(cbuf, $primary + dst_enc);
  2021       emit_d32(cbuf, src_con);
  2023   %}
  2026   enc_class LdImmD (immD src) %{    // Load Immediate
  2027     if( is_positive_zero_double($src$$constant)) {
  2028       // FLDZ
  2029       emit_opcode(cbuf,0xD9);
  2030       emit_opcode(cbuf,0xEE);
  2031     } else if( is_positive_one_double($src$$constant)) {
  2032       // FLD1
  2033       emit_opcode(cbuf,0xD9);
  2034       emit_opcode(cbuf,0xE8);
  2035     } else {
  2036       emit_opcode(cbuf,0xDD);
  2037       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2038       emit_double_constant(cbuf, $src$$constant);
  2040   %}
  2043   enc_class LdImmF (immF src) %{    // Load Immediate
  2044     if( is_positive_zero_float($src$$constant)) {
  2045       emit_opcode(cbuf,0xD9);
  2046       emit_opcode(cbuf,0xEE);
  2047     } else if( is_positive_one_float($src$$constant)) {
  2048       emit_opcode(cbuf,0xD9);
  2049       emit_opcode(cbuf,0xE8);
  2050     } else {
  2051       $$$emit8$primary;
  2052       // Load immediate does not have a zero or sign extended version
  2053       // for 8-bit immediates
  2054       // First load to TOS, then move to dst
  2055       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2056       emit_float_constant(cbuf, $src$$constant);
  2058   %}
  2060   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  2061     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2062     emit_float_constant(cbuf, $con$$constant);
  2063   %}
  2065   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  2066     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2067     emit_double_constant(cbuf, $con$$constant);
  2068   %}
  2070   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  2071     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2072     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2073     emit_opcode(cbuf, 0x0F);
  2074     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2075     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2076     emit_double_constant(cbuf, $con$$constant);
  2077   %}
  2079   enc_class Opc_MemImm_F(immF src) %{
  2080     cbuf.set_insts_mark();
  2081     $$$emit8$primary;
  2082     emit_rm(cbuf, 0x0, $secondary, 0x5);
  2083     emit_float_constant(cbuf, $src$$constant);
  2084   %}
  2087   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2088     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2089     emit_opcode(cbuf, 0x0F );
  2090     emit_opcode(cbuf, 0x6E );
  2091     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2092   %}
  2094   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2095     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2096     emit_opcode(cbuf, 0x0F );
  2097     emit_opcode(cbuf, 0x7E );
  2098     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2099   %}
  2101   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2102     { // MOVD $dst,$src.lo
  2103       emit_opcode(cbuf,0x66);
  2104       emit_opcode(cbuf,0x0F);
  2105       emit_opcode(cbuf,0x6E);
  2106       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2108     { // MOVD $tmp,$src.hi
  2109       emit_opcode(cbuf,0x66);
  2110       emit_opcode(cbuf,0x0F);
  2111       emit_opcode(cbuf,0x6E);
  2112       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2114     { // PUNPCKLDQ $dst,$tmp
  2115       emit_opcode(cbuf,0x66);
  2116       emit_opcode(cbuf,0x0F);
  2117       emit_opcode(cbuf,0x62);
  2118       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2120   %}
  2122   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2123     { // MOVD $dst.lo,$src
  2124       emit_opcode(cbuf,0x66);
  2125       emit_opcode(cbuf,0x0F);
  2126       emit_opcode(cbuf,0x7E);
  2127       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2129     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2130       emit_opcode(cbuf,0xF2);
  2131       emit_opcode(cbuf,0x0F);
  2132       emit_opcode(cbuf,0x70);
  2133       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2134       emit_d8(cbuf, 0x4E);
  2136     { // MOVD $dst.hi,$tmp
  2137       emit_opcode(cbuf,0x66);
  2138       emit_opcode(cbuf,0x0F);
  2139       emit_opcode(cbuf,0x7E);
  2140       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2142   %}
  2145   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2146   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2147     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2148   %}
  2150   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2151     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2152   %}
  2154   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2155   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2156     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2157   %}
  2159   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2160     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2161   %}
  2163   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2164     $$$emit8$primary;
  2165     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2166   %}
  2168   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2169     $$$emit8$secondary;
  2170     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2171   %}
  2173   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2174     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2175   %}
  2177   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2178     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2179   %}
  2181   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2182     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2183   %}
  2185   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2186     // Output immediate
  2187     $$$emit32$src$$constant;
  2188   %}
  2190   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2191     // Output Float immediate bits
  2192     jfloat jf = $src$$constant;
  2193     int    jf_as_bits = jint_cast( jf );
  2194     emit_d32(cbuf, jf_as_bits);
  2195   %}
  2197   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2198     // Output Float immediate bits
  2199     jfloat jf = $src$$constant;
  2200     int    jf_as_bits = jint_cast( jf );
  2201     emit_d32(cbuf, jf_as_bits);
  2202   %}
  2204   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2205     // Output immediate
  2206     $$$emit16$src$$constant;
  2207   %}
  2209   enc_class Con_d32(immI src) %{
  2210     emit_d32(cbuf,$src$$constant);
  2211   %}
  2213   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2214     // Output immediate memory reference
  2215     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2216     emit_d32(cbuf, 0x00);
  2217   %}
  2219   enc_class lock_prefix( ) %{
  2220     if( os::is_MP() )
  2221       emit_opcode(cbuf,0xF0);         // [Lock]
  2222   %}
  2224   // Cmp-xchg long value.
  2225   // Note: we need to swap rbx, and rcx before and after the
  2226   //       cmpxchg8 instruction because the instruction uses
  2227   //       rcx as the high order word of the new value to store but
  2228   //       our register encoding uses rbx,.
  2229   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2231     // XCHG  rbx,ecx
  2232     emit_opcode(cbuf,0x87);
  2233     emit_opcode(cbuf,0xD9);
  2234     // [Lock]
  2235     if( os::is_MP() )
  2236       emit_opcode(cbuf,0xF0);
  2237     // CMPXCHG8 [Eptr]
  2238     emit_opcode(cbuf,0x0F);
  2239     emit_opcode(cbuf,0xC7);
  2240     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2241     // XCHG  rbx,ecx
  2242     emit_opcode(cbuf,0x87);
  2243     emit_opcode(cbuf,0xD9);
  2244   %}
  2246   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2247     // [Lock]
  2248     if( os::is_MP() )
  2249       emit_opcode(cbuf,0xF0);
  2251     // CMPXCHG [Eptr]
  2252     emit_opcode(cbuf,0x0F);
  2253     emit_opcode(cbuf,0xB1);
  2254     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2255   %}
  2257   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2258     int res_encoding = $res$$reg;
  2260     // MOV  res,0
  2261     emit_opcode( cbuf, 0xB8 + res_encoding);
  2262     emit_d32( cbuf, 0 );
  2263     // JNE,s  fail
  2264     emit_opcode(cbuf,0x75);
  2265     emit_d8(cbuf, 5 );
  2266     // MOV  res,1
  2267     emit_opcode( cbuf, 0xB8 + res_encoding);
  2268     emit_d32( cbuf, 1 );
  2269     // fail:
  2270   %}
  2272   enc_class set_instruction_start( ) %{
  2273     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2274   %}
  2276   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2277     int reg_encoding = $ereg$$reg;
  2278     int base  = $mem$$base;
  2279     int index = $mem$$index;
  2280     int scale = $mem$$scale;
  2281     int displace = $mem$$disp;
  2282     bool disp_is_oop = $mem->disp_is_oop();
  2283     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2284   %}
  2286   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2287     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2288     int base  = $mem$$base;
  2289     int index = $mem$$index;
  2290     int scale = $mem$$scale;
  2291     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2292     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2293     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2294   %}
  2296   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2297     int r1, r2;
  2298     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2299     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2300     emit_opcode(cbuf,0x0F);
  2301     emit_opcode(cbuf,$tertiary);
  2302     emit_rm(cbuf, 0x3, r1, r2);
  2303     emit_d8(cbuf,$cnt$$constant);
  2304     emit_d8(cbuf,$primary);
  2305     emit_rm(cbuf, 0x3, $secondary, r1);
  2306     emit_d8(cbuf,$cnt$$constant);
  2307   %}
  2309   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2310     emit_opcode( cbuf, 0x8B ); // Move
  2311     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2312     emit_d8(cbuf,$primary);
  2313     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2314     emit_d8(cbuf,$cnt$$constant-32);
  2315     emit_d8(cbuf,$primary);
  2316     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2317     emit_d8(cbuf,31);
  2318   %}
  2320   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2321     int r1, r2;
  2322     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2323     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2325     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2326     emit_rm(cbuf, 0x3, r1, r2);
  2327     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2328       emit_opcode(cbuf,$primary);
  2329       emit_rm(cbuf, 0x3, $secondary, r1);
  2330       emit_d8(cbuf,$cnt$$constant-32);
  2332     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2333     emit_rm(cbuf, 0x3, r2, r2);
  2334   %}
  2336   // Clone of RegMem but accepts an extra parameter to access each
  2337   // half of a double in memory; it never needs relocation info.
  2338   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2339     emit_opcode(cbuf,$opcode$$constant);
  2340     int reg_encoding = $rm_reg$$reg;
  2341     int base     = $mem$$base;
  2342     int index    = $mem$$index;
  2343     int scale    = $mem$$scale;
  2344     int displace = $mem$$disp + $disp_for_half$$constant;
  2345     bool disp_is_oop = false;
  2346     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2347   %}
  2349   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2350   //
  2351   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2352   // and it never needs relocation information.
  2353   // Frequently used to move data between FPU's Stack Top and memory.
  2354   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2355     int rm_byte_opcode = $rm_opcode$$constant;
  2356     int base     = $mem$$base;
  2357     int index    = $mem$$index;
  2358     int scale    = $mem$$scale;
  2359     int displace = $mem$$disp;
  2360     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2361     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2362   %}
  2364   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2365     int rm_byte_opcode = $rm_opcode$$constant;
  2366     int base     = $mem$$base;
  2367     int index    = $mem$$index;
  2368     int scale    = $mem$$scale;
  2369     int displace = $mem$$disp;
  2370     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2371     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2372   %}
  2374   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2375     int reg_encoding = $dst$$reg;
  2376     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2377     int index        = 0x04;            // 0x04 indicates no index
  2378     int scale        = 0x00;            // 0x00 indicates no scale
  2379     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2380     bool disp_is_oop = false;
  2381     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2382   %}
  2384   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2385     // Compare dst,src
  2386     emit_opcode(cbuf,0x3B);
  2387     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2388     // jmp dst < src around move
  2389     emit_opcode(cbuf,0x7C);
  2390     emit_d8(cbuf,2);
  2391     // move dst,src
  2392     emit_opcode(cbuf,0x8B);
  2393     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2394   %}
  2396   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2397     // Compare dst,src
  2398     emit_opcode(cbuf,0x3B);
  2399     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2400     // jmp dst > src around move
  2401     emit_opcode(cbuf,0x7F);
  2402     emit_d8(cbuf,2);
  2403     // move dst,src
  2404     emit_opcode(cbuf,0x8B);
  2405     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2406   %}
  2408   enc_class enc_FP_store(memory mem, regD src) %{
  2409     // If src is FPR1, we can just FST to store it.
  2410     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2411     int reg_encoding = 0x2; // Just store
  2412     int base  = $mem$$base;
  2413     int index = $mem$$index;
  2414     int scale = $mem$$scale;
  2415     int displace = $mem$$disp;
  2416     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2417     if( $src$$reg != FPR1L_enc ) {
  2418       reg_encoding = 0x3;  // Store & pop
  2419       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2420       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2422     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2423     emit_opcode(cbuf,$primary);
  2424     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2425   %}
  2427   enc_class neg_reg(eRegI dst) %{
  2428     // NEG $dst
  2429     emit_opcode(cbuf,0xF7);
  2430     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2431   %}
  2433   enc_class setLT_reg(eCXRegI dst) %{
  2434     // SETLT $dst
  2435     emit_opcode(cbuf,0x0F);
  2436     emit_opcode(cbuf,0x9C);
  2437     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2438   %}
  2440   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2441     int tmpReg = $tmp$$reg;
  2443     // SUB $p,$q
  2444     emit_opcode(cbuf,0x2B);
  2445     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2446     // SBB $tmp,$tmp
  2447     emit_opcode(cbuf,0x1B);
  2448     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2449     // AND $tmp,$y
  2450     emit_opcode(cbuf,0x23);
  2451     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2452     // ADD $p,$tmp
  2453     emit_opcode(cbuf,0x03);
  2454     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2455   %}
  2457   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2458     int tmpReg = $tmp$$reg;
  2460     // SUB $p,$q
  2461     emit_opcode(cbuf,0x2B);
  2462     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2463     // SBB $tmp,$tmp
  2464     emit_opcode(cbuf,0x1B);
  2465     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2466     // AND $tmp,$y
  2467     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2468     emit_opcode(cbuf,0x23);
  2469     int reg_encoding = tmpReg;
  2470     int base  = $mem$$base;
  2471     int index = $mem$$index;
  2472     int scale = $mem$$scale;
  2473     int displace = $mem$$disp;
  2474     bool disp_is_oop = $mem->disp_is_oop();
  2475     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2476     // ADD $p,$tmp
  2477     emit_opcode(cbuf,0x03);
  2478     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2479   %}
  2481   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2482     // TEST shift,32
  2483     emit_opcode(cbuf,0xF7);
  2484     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2485     emit_d32(cbuf,0x20);
  2486     // JEQ,s small
  2487     emit_opcode(cbuf, 0x74);
  2488     emit_d8(cbuf, 0x04);
  2489     // MOV    $dst.hi,$dst.lo
  2490     emit_opcode( cbuf, 0x8B );
  2491     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2492     // CLR    $dst.lo
  2493     emit_opcode(cbuf, 0x33);
  2494     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2495 // small:
  2496     // SHLD   $dst.hi,$dst.lo,$shift
  2497     emit_opcode(cbuf,0x0F);
  2498     emit_opcode(cbuf,0xA5);
  2499     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2500     // SHL    $dst.lo,$shift"
  2501     emit_opcode(cbuf,0xD3);
  2502     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2503   %}
  2505   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2506     // TEST shift,32
  2507     emit_opcode(cbuf,0xF7);
  2508     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2509     emit_d32(cbuf,0x20);
  2510     // JEQ,s small
  2511     emit_opcode(cbuf, 0x74);
  2512     emit_d8(cbuf, 0x04);
  2513     // MOV    $dst.lo,$dst.hi
  2514     emit_opcode( cbuf, 0x8B );
  2515     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2516     // CLR    $dst.hi
  2517     emit_opcode(cbuf, 0x33);
  2518     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2519 // small:
  2520     // SHRD   $dst.lo,$dst.hi,$shift
  2521     emit_opcode(cbuf,0x0F);
  2522     emit_opcode(cbuf,0xAD);
  2523     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2524     // SHR    $dst.hi,$shift"
  2525     emit_opcode(cbuf,0xD3);
  2526     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2527   %}
  2529   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2530     // TEST shift,32
  2531     emit_opcode(cbuf,0xF7);
  2532     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2533     emit_d32(cbuf,0x20);
  2534     // JEQ,s small
  2535     emit_opcode(cbuf, 0x74);
  2536     emit_d8(cbuf, 0x05);
  2537     // MOV    $dst.lo,$dst.hi
  2538     emit_opcode( cbuf, 0x8B );
  2539     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2540     // SAR    $dst.hi,31
  2541     emit_opcode(cbuf, 0xC1);
  2542     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2543     emit_d8(cbuf, 0x1F );
  2544 // small:
  2545     // SHRD   $dst.lo,$dst.hi,$shift
  2546     emit_opcode(cbuf,0x0F);
  2547     emit_opcode(cbuf,0xAD);
  2548     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2549     // SAR    $dst.hi,$shift"
  2550     emit_opcode(cbuf,0xD3);
  2551     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2552   %}
  2555   // ----------------- Encodings for floating point unit -----------------
  2556   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2557   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2558     $$$emit8$primary;
  2559     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2560   %}
  2562   // Pop argument in FPR0 with FSTP ST(0)
  2563   enc_class PopFPU() %{
  2564     emit_opcode( cbuf, 0xDD );
  2565     emit_d8( cbuf, 0xD8 );
  2566   %}
  2568   // !!!!! equivalent to Pop_Reg_F
  2569   enc_class Pop_Reg_D( regD dst ) %{
  2570     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2571     emit_d8( cbuf, 0xD8+$dst$$reg );
  2572   %}
  2574   enc_class Push_Reg_D( regD dst ) %{
  2575     emit_opcode( cbuf, 0xD9 );
  2576     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2577   %}
  2579   enc_class strictfp_bias1( regD dst ) %{
  2580     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2581     emit_opcode( cbuf, 0x2D );
  2582     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2583     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2584     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2585   %}
  2587   enc_class strictfp_bias2( regD dst ) %{
  2588     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2589     emit_opcode( cbuf, 0x2D );
  2590     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2591     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2592     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2593   %}
  2595   // Special case for moving an integer register to a stack slot.
  2596   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2597     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2598   %}
  2600   // Special case for moving a register to a stack slot.
  2601   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2602     // Opcode already emitted
  2603     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2604     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2605     emit_d32(cbuf, $dst$$disp);   // Displacement
  2606   %}
  2608   // Push the integer in stackSlot 'src' onto FP-stack
  2609   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2610     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2611   %}
  2613   // Push the float in stackSlot 'src' onto FP-stack
  2614   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2615     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2616   %}
  2618   // Push the double in stackSlot 'src' onto FP-stack
  2619   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2620     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2621   %}
  2623   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2624   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2625     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2626   %}
  2628   // Same as Pop_Mem_F except for opcode
  2629   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2630   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2631     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2632   %}
  2634   enc_class Pop_Reg_F( regF dst ) %{
  2635     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2636     emit_d8( cbuf, 0xD8+$dst$$reg );
  2637   %}
  2639   enc_class Push_Reg_F( regF dst ) %{
  2640     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2641     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2642   %}
  2644   // Push FPU's float to a stack-slot, and pop FPU-stack
  2645   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2646     int pop = 0x02;
  2647     if ($src$$reg != FPR1L_enc) {
  2648       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2649       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2650       pop = 0x03;
  2652     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2653   %}
  2655   // Push FPU's double to a stack-slot, and pop FPU-stack
  2656   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2657     int pop = 0x02;
  2658     if ($src$$reg != FPR1L_enc) {
  2659       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2660       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2661       pop = 0x03;
  2663     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2664   %}
  2666   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2667   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2668     int pop = 0xD0 - 1; // -1 since we skip FLD
  2669     if ($src$$reg != FPR1L_enc) {
  2670       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2671       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2672       pop = 0xD8;
  2674     emit_opcode( cbuf, 0xDD );
  2675     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2676   %}
  2679   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2680     MacroAssembler masm(&cbuf);
  2681     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2682     masm.fmul(   $src2$$reg+0);   // value at TOS
  2683     masm.fadd(   $src$$reg+0);    // value at TOS
  2684     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2685   %}
  2688   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2689     // load dst in FPR0
  2690     emit_opcode( cbuf, 0xD9 );
  2691     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2692     if ($src$$reg != FPR1L_enc) {
  2693       // fincstp
  2694       emit_opcode (cbuf, 0xD9);
  2695       emit_opcode (cbuf, 0xF7);
  2696       // swap src with FPR1:
  2697       // FXCH FPR1 with src
  2698       emit_opcode(cbuf, 0xD9);
  2699       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2700       // fdecstp
  2701       emit_opcode (cbuf, 0xD9);
  2702       emit_opcode (cbuf, 0xF6);
  2704   %}
  2706   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2707     // Allocate a word
  2708     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2709     emit_opcode(cbuf,0xEC);
  2710     emit_d8(cbuf,0x08);
  2712     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2713     emit_opcode  (cbuf, 0x0F );
  2714     emit_opcode  (cbuf, 0x11 );
  2715     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2717     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2718     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2720     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2721     emit_opcode  (cbuf, 0x0F );
  2722     emit_opcode  (cbuf, 0x11 );
  2723     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2725     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2726     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2728   %}
  2730   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2731     // Allocate a word
  2732     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2733     emit_opcode(cbuf,0xEC);
  2734     emit_d8(cbuf,0x04);
  2736     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2737     emit_opcode  (cbuf, 0x0F );
  2738     emit_opcode  (cbuf, 0x11 );
  2739     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2741     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2742     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2744     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2745     emit_opcode  (cbuf, 0x0F );
  2746     emit_opcode  (cbuf, 0x11 );
  2747     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2749     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2750     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2752   %}
  2754   enc_class Push_ResultXD(regXD dst) %{
  2755     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2757     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2758     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2759     emit_opcode  (cbuf, 0x0F );
  2760     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2761     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2763     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2764     emit_opcode(cbuf,0xC4);
  2765     emit_d8(cbuf,0x08);
  2766   %}
  2768   enc_class Push_ResultX(regX dst, immI d8) %{
  2769     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2771     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2772     emit_opcode  (cbuf, 0x0F );
  2773     emit_opcode  (cbuf, 0x10 );
  2774     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2776     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2777     emit_opcode(cbuf,0xC4);
  2778     emit_d8(cbuf,$d8$$constant);
  2779   %}
  2781   enc_class Push_SrcXD(regXD src) %{
  2782     // Allocate a word
  2783     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2784     emit_opcode(cbuf,0xEC);
  2785     emit_d8(cbuf,0x08);
  2787     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2788     emit_opcode  (cbuf, 0x0F );
  2789     emit_opcode  (cbuf, 0x11 );
  2790     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2792     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2793     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2794   %}
  2796   enc_class push_stack_temp_qword() %{
  2797     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2798     emit_opcode(cbuf,0xEC);
  2799     emit_d8    (cbuf,0x08);
  2800   %}
  2802   enc_class pop_stack_temp_qword() %{
  2803     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2804     emit_opcode(cbuf,0xC4);
  2805     emit_d8    (cbuf,0x08);
  2806   %}
  2808   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2809     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2810     emit_opcode  (cbuf, 0x0F );
  2811     emit_opcode  (cbuf, 0x11 );
  2812     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2814     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2815     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2816   %}
  2818   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2819   // Otherwise return a NaN.
  2820   enc_class pow_exp_core_encoding %{
  2821     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2822     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2823     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2824     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2825     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2826     emit_opcode(cbuf,0x1C);
  2827     emit_d8(cbuf,0x24);
  2828     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2829     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2830     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2831     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2832     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2833     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2834     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2835     emit_d32(cbuf,0xFFFFF800);
  2836     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2837     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2838     emit_d32(cbuf,1023);
  2839     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2840     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2841     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2842     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2843     emit_d8(cbuf,20);
  2844     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2845     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2846     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2847     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2848     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2849     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2850     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2851     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2852     emit_d32(cbuf,0);
  2853     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2854     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2855   %}
  2857 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2858 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2860   enc_class Push_Result_Mod_D( regD src) %{
  2861     if ($src$$reg != FPR1L_enc) {
  2862       // fincstp
  2863       emit_opcode (cbuf, 0xD9);
  2864       emit_opcode (cbuf, 0xF7);
  2865       // FXCH FPR1 with src
  2866       emit_opcode(cbuf, 0xD9);
  2867       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2868       // fdecstp
  2869       emit_opcode (cbuf, 0xD9);
  2870       emit_opcode (cbuf, 0xF6);
  2872     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2873     // // FSTP   FPR$dst$$reg
  2874     // emit_opcode( cbuf, 0xDD );
  2875     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2876   %}
  2878   enc_class fnstsw_sahf_skip_parity() %{
  2879     // fnstsw ax
  2880     emit_opcode( cbuf, 0xDF );
  2881     emit_opcode( cbuf, 0xE0 );
  2882     // sahf
  2883     emit_opcode( cbuf, 0x9E );
  2884     // jnp  ::skip
  2885     emit_opcode( cbuf, 0x7B );
  2886     emit_opcode( cbuf, 0x05 );
  2887   %}
  2889   enc_class emitModD() %{
  2890     // fprem must be iterative
  2891     // :: loop
  2892     // fprem
  2893     emit_opcode( cbuf, 0xD9 );
  2894     emit_opcode( cbuf, 0xF8 );
  2895     // wait
  2896     emit_opcode( cbuf, 0x9b );
  2897     // fnstsw ax
  2898     emit_opcode( cbuf, 0xDF );
  2899     emit_opcode( cbuf, 0xE0 );
  2900     // sahf
  2901     emit_opcode( cbuf, 0x9E );
  2902     // jp  ::loop
  2903     emit_opcode( cbuf, 0x0F );
  2904     emit_opcode( cbuf, 0x8A );
  2905     emit_opcode( cbuf, 0xF4 );
  2906     emit_opcode( cbuf, 0xFF );
  2907     emit_opcode( cbuf, 0xFF );
  2908     emit_opcode( cbuf, 0xFF );
  2909   %}
  2911   enc_class fpu_flags() %{
  2912     // fnstsw_ax
  2913     emit_opcode( cbuf, 0xDF);
  2914     emit_opcode( cbuf, 0xE0);
  2915     // test ax,0x0400
  2916     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2917     emit_opcode( cbuf, 0xA9 );
  2918     emit_d16   ( cbuf, 0x0400 );
  2919     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2920     // // test rax,0x0400
  2921     // emit_opcode( cbuf, 0xA9 );
  2922     // emit_d32   ( cbuf, 0x00000400 );
  2923     //
  2924     // jz exit (no unordered comparison)
  2925     emit_opcode( cbuf, 0x74 );
  2926     emit_d8    ( cbuf, 0x02 );
  2927     // mov ah,1 - treat as LT case (set carry flag)
  2928     emit_opcode( cbuf, 0xB4 );
  2929     emit_d8    ( cbuf, 0x01 );
  2930     // sahf
  2931     emit_opcode( cbuf, 0x9E);
  2932   %}
  2934   enc_class cmpF_P6_fixup() %{
  2935     // Fixup the integer flags in case comparison involved a NaN
  2936     //
  2937     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2938     emit_opcode( cbuf, 0x7B );
  2939     emit_d8    ( cbuf, 0x03 );
  2940     // MOV AH,1 - treat as LT case (set carry flag)
  2941     emit_opcode( cbuf, 0xB4 );
  2942     emit_d8    ( cbuf, 0x01 );
  2943     // SAHF
  2944     emit_opcode( cbuf, 0x9E);
  2945     // NOP     // target for branch to avoid branch to branch
  2946     emit_opcode( cbuf, 0x90);
  2947   %}
  2949 //     fnstsw_ax();
  2950 //     sahf();
  2951 //     movl(dst, nan_result);
  2952 //     jcc(Assembler::parity, exit);
  2953 //     movl(dst, less_result);
  2954 //     jcc(Assembler::below, exit);
  2955 //     movl(dst, equal_result);
  2956 //     jcc(Assembler::equal, exit);
  2957 //     movl(dst, greater_result);
  2959 // less_result     =  1;
  2960 // greater_result  = -1;
  2961 // equal_result    = 0;
  2962 // nan_result      = -1;
  2964   enc_class CmpF_Result(eRegI dst) %{
  2965     // fnstsw_ax();
  2966     emit_opcode( cbuf, 0xDF);
  2967     emit_opcode( cbuf, 0xE0);
  2968     // sahf
  2969     emit_opcode( cbuf, 0x9E);
  2970     // movl(dst, nan_result);
  2971     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2972     emit_d32( cbuf, -1 );
  2973     // jcc(Assembler::parity, exit);
  2974     emit_opcode( cbuf, 0x7A );
  2975     emit_d8    ( cbuf, 0x13 );
  2976     // movl(dst, less_result);
  2977     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2978     emit_d32( cbuf, -1 );
  2979     // jcc(Assembler::below, exit);
  2980     emit_opcode( cbuf, 0x72 );
  2981     emit_d8    ( cbuf, 0x0C );
  2982     // movl(dst, equal_result);
  2983     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2984     emit_d32( cbuf, 0 );
  2985     // jcc(Assembler::equal, exit);
  2986     emit_opcode( cbuf, 0x74 );
  2987     emit_d8    ( cbuf, 0x05 );
  2988     // movl(dst, greater_result);
  2989     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2990     emit_d32( cbuf, 1 );
  2991   %}
  2994   // XMM version of CmpF_Result. Because the XMM compare
  2995   // instructions set the EFLAGS directly. It becomes simpler than
  2996   // the float version above.
  2997   enc_class CmpX_Result(eRegI dst) %{
  2998     MacroAssembler _masm(&cbuf);
  2999     Label nan, inc, done;
  3001     __ jccb(Assembler::parity, nan);
  3002     __ jccb(Assembler::equal,  done);
  3003     __ jccb(Assembler::above,  inc);
  3004     __ bind(nan);
  3005     __ decrement(as_Register($dst$$reg)); // NO L qqq
  3006     __ jmpb(done);
  3007     __ bind(inc);
  3008     __ increment(as_Register($dst$$reg)); // NO L qqq
  3009     __ bind(done);
  3010   %}
  3012   // Compare the longs and set flags
  3013   // BROKEN!  Do Not use as-is
  3014   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  3015     // CMP    $src1.hi,$src2.hi
  3016     emit_opcode( cbuf, 0x3B );
  3017     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3018     // JNE,s  done
  3019     emit_opcode(cbuf,0x75);
  3020     emit_d8(cbuf, 2 );
  3021     // CMP    $src1.lo,$src2.lo
  3022     emit_opcode( cbuf, 0x3B );
  3023     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3024 // done:
  3025   %}
  3027   enc_class convert_int_long( regL dst, eRegI src ) %{
  3028     // mov $dst.lo,$src
  3029     int dst_encoding = $dst$$reg;
  3030     int src_encoding = $src$$reg;
  3031     encode_Copy( cbuf, dst_encoding  , src_encoding );
  3032     // mov $dst.hi,$src
  3033     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  3034     // sar $dst.hi,31
  3035     emit_opcode( cbuf, 0xC1 );
  3036     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  3037     emit_d8(cbuf, 0x1F );
  3038   %}
  3040   enc_class convert_long_double( eRegL src ) %{
  3041     // push $src.hi
  3042     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3043     // push $src.lo
  3044     emit_opcode(cbuf, 0x50+$src$$reg  );
  3045     // fild 64-bits at [SP]
  3046     emit_opcode(cbuf,0xdf);
  3047     emit_d8(cbuf, 0x6C);
  3048     emit_d8(cbuf, 0x24);
  3049     emit_d8(cbuf, 0x00);
  3050     // pop stack
  3051     emit_opcode(cbuf, 0x83); // add  SP, #8
  3052     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3053     emit_d8(cbuf, 0x8);
  3054   %}
  3056   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  3057     // IMUL   EDX:EAX,$src1
  3058     emit_opcode( cbuf, 0xF7 );
  3059     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  3060     // SAR    EDX,$cnt-32
  3061     int shift_count = ((int)$cnt$$constant) - 32;
  3062     if (shift_count > 0) {
  3063       emit_opcode(cbuf, 0xC1);
  3064       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  3065       emit_d8(cbuf, shift_count);
  3067   %}
  3069   // this version doesn't have add sp, 8
  3070   enc_class convert_long_double2( eRegL src ) %{
  3071     // push $src.hi
  3072     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3073     // push $src.lo
  3074     emit_opcode(cbuf, 0x50+$src$$reg  );
  3075     // fild 64-bits at [SP]
  3076     emit_opcode(cbuf,0xdf);
  3077     emit_d8(cbuf, 0x6C);
  3078     emit_d8(cbuf, 0x24);
  3079     emit_d8(cbuf, 0x00);
  3080   %}
  3082   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  3083     // Basic idea: long = (long)int * (long)int
  3084     // IMUL EDX:EAX, src
  3085     emit_opcode( cbuf, 0xF7 );
  3086     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3087   %}
  3089   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3090     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3091     // MUL EDX:EAX, src
  3092     emit_opcode( cbuf, 0xF7 );
  3093     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3094   %}
  3096   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3097     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3098     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3099     // MOV    $tmp,$src.lo
  3100     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3101     // IMUL   $tmp,EDX
  3102     emit_opcode( cbuf, 0x0F );
  3103     emit_opcode( cbuf, 0xAF );
  3104     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3105     // MOV    EDX,$src.hi
  3106     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3107     // IMUL   EDX,EAX
  3108     emit_opcode( cbuf, 0x0F );
  3109     emit_opcode( cbuf, 0xAF );
  3110     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3111     // ADD    $tmp,EDX
  3112     emit_opcode( cbuf, 0x03 );
  3113     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3114     // MUL   EDX:EAX,$src.lo
  3115     emit_opcode( cbuf, 0xF7 );
  3116     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3117     // ADD    EDX,ESI
  3118     emit_opcode( cbuf, 0x03 );
  3119     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3120   %}
  3122   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3123     // Basic idea: lo(result) = lo(src * y_lo)
  3124     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3125     // IMUL   $tmp,EDX,$src
  3126     emit_opcode( cbuf, 0x6B );
  3127     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3128     emit_d8( cbuf, (int)$src$$constant );
  3129     // MOV    EDX,$src
  3130     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3131     emit_d32( cbuf, (int)$src$$constant );
  3132     // MUL   EDX:EAX,EDX
  3133     emit_opcode( cbuf, 0xF7 );
  3134     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3135     // ADD    EDX,ESI
  3136     emit_opcode( cbuf, 0x03 );
  3137     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3138   %}
  3140   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3141     // PUSH src1.hi
  3142     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3143     // PUSH src1.lo
  3144     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3145     // PUSH src2.hi
  3146     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3147     // PUSH src2.lo
  3148     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3149     // CALL directly to the runtime
  3150     cbuf.set_insts_mark();
  3151     emit_opcode(cbuf,0xE8);       // Call into runtime
  3152     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3153     // Restore stack
  3154     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3155     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3156     emit_d8(cbuf, 4*4);
  3157   %}
  3159   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3160     // PUSH src1.hi
  3161     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3162     // PUSH src1.lo
  3163     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3164     // PUSH src2.hi
  3165     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3166     // PUSH src2.lo
  3167     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3168     // CALL directly to the runtime
  3169     cbuf.set_insts_mark();
  3170     emit_opcode(cbuf,0xE8);       // Call into runtime
  3171     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3172     // Restore stack
  3173     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3174     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3175     emit_d8(cbuf, 4*4);
  3176   %}
  3178   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3179     // MOV   $tmp,$src.lo
  3180     emit_opcode(cbuf, 0x8B);
  3181     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3182     // OR    $tmp,$src.hi
  3183     emit_opcode(cbuf, 0x0B);
  3184     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3185   %}
  3187   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3188     // CMP    $src1.lo,$src2.lo
  3189     emit_opcode( cbuf, 0x3B );
  3190     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3191     // JNE,s  skip
  3192     emit_cc(cbuf, 0x70, 0x5);
  3193     emit_d8(cbuf,2);
  3194     // CMP    $src1.hi,$src2.hi
  3195     emit_opcode( cbuf, 0x3B );
  3196     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3197   %}
  3199   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3200     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3201     emit_opcode( cbuf, 0x3B );
  3202     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3203     // MOV    $tmp,$src1.hi
  3204     emit_opcode( cbuf, 0x8B );
  3205     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3206     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3207     emit_opcode( cbuf, 0x1B );
  3208     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3209   %}
  3211   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3212     // XOR    $tmp,$tmp
  3213     emit_opcode(cbuf,0x33);  // XOR
  3214     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3215     // CMP    $tmp,$src.lo
  3216     emit_opcode( cbuf, 0x3B );
  3217     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3218     // SBB    $tmp,$src.hi
  3219     emit_opcode( cbuf, 0x1B );
  3220     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3221   %}
  3223  // Sniff, sniff... smells like Gnu Superoptimizer
  3224   enc_class neg_long( eRegL dst ) %{
  3225     emit_opcode(cbuf,0xF7);    // NEG hi
  3226     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3227     emit_opcode(cbuf,0xF7);    // NEG lo
  3228     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3229     emit_opcode(cbuf,0x83);    // SBB hi,0
  3230     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3231     emit_d8    (cbuf,0 );
  3232   %}
  3234   enc_class movq_ld(regXD dst, memory mem) %{
  3235     MacroAssembler _masm(&cbuf);
  3236     __ movq($dst$$XMMRegister, $mem$$Address);
  3237   %}
  3239   enc_class movq_st(memory mem, regXD src) %{
  3240     MacroAssembler _masm(&cbuf);
  3241     __ movq($mem$$Address, $src$$XMMRegister);
  3242   %}
  3244   enc_class pshufd_8x8(regX dst, regX src) %{
  3245     MacroAssembler _masm(&cbuf);
  3247     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3248     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3249     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3250   %}
  3252   enc_class pshufd_4x16(regX dst, regX src) %{
  3253     MacroAssembler _masm(&cbuf);
  3255     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3256   %}
  3258   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3259     MacroAssembler _masm(&cbuf);
  3261     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3262   %}
  3264   enc_class pxor(regXD dst, regXD src) %{
  3265     MacroAssembler _masm(&cbuf);
  3267     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3268   %}
  3270   enc_class mov_i2x(regXD dst, eRegI src) %{
  3271     MacroAssembler _masm(&cbuf);
  3273     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3274   %}
  3277   // Because the transitions from emitted code to the runtime
  3278   // monitorenter/exit helper stubs are so slow it's critical that
  3279   // we inline both the stack-locking fast-path and the inflated fast path.
  3280   //
  3281   // See also: cmpFastLock and cmpFastUnlock.
  3282   //
  3283   // What follows is a specialized inline transliteration of the code
  3284   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3285   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3286   // at startup-time.  These methods would accept arguments as
  3287   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3288   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3289   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3290   // In practice, however, the # of lock sites is bounded and is usually small.
  3291   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3292   // if the processor uses simple bimodal branch predictors keyed by EIP
  3293   // Since the helper routines would be called from multiple synchronization
  3294   // sites.
  3295   //
  3296   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3297   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3298   // to those specialized methods.  That'd give us a mostly platform-independent
  3299   // implementation that the JITs could optimize and inline at their pleasure.
  3300   // Done correctly, the only time we'd need to cross to native could would be
  3301   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3302   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3303   // (b) explicit barriers or fence operations.
  3304   //
  3305   // TODO:
  3306   //
  3307   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3308   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3309   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3310   //    the lock operators would typically be faster than reifying Self.
  3311   //
  3312   // *  Ideally I'd define the primitives as:
  3313   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3314   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3315   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3316   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3317   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3318   //    sub-optimal code near the synchronization site.
  3319   //
  3320   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3321   //    Alternately, use a better sp-proximity test.
  3322   //
  3323   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3324   //    Either one is sufficient to uniquely identify a thread.
  3325   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3326   //
  3327   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3328   //    object is locked by the calling thread but the waitlist is empty.
  3329   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3330   //
  3331   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3332   //    But beware of excessive branch density on AMD Opterons.
  3333   //
  3334   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3335   //    or failure of the fast-path.  If the fast-path fails then we pass
  3336   //    control to the slow-path, typically in C.  In Fast_Lock and
  3337   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3338   //    will emit a conditional branch immediately after the node.
  3339   //    So we have branches to branches and lots of ICC.ZF games.
  3340   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3341   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3342   //    will drop through the node.  ICC.ZF is undefined at exit.
  3343   //    In the case of failure, the node will branch directly to the
  3344   //    FailureLabel
  3347   // obj: object to lock
  3348   // box: on-stack box address (displaced header location) - KILLED
  3349   // rax,: tmp -- KILLED
  3350   // scr: tmp -- KILLED
  3351   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3353     Register objReg = as_Register($obj$$reg);
  3354     Register boxReg = as_Register($box$$reg);
  3355     Register tmpReg = as_Register($tmp$$reg);
  3356     Register scrReg = as_Register($scr$$reg);
  3358     // Ensure the register assignents are disjoint
  3359     guarantee (objReg != boxReg, "") ;
  3360     guarantee (objReg != tmpReg, "") ;
  3361     guarantee (objReg != scrReg, "") ;
  3362     guarantee (boxReg != tmpReg, "") ;
  3363     guarantee (boxReg != scrReg, "") ;
  3364     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3366     MacroAssembler masm(&cbuf);
  3368     if (_counters != NULL) {
  3369       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3371     if (EmitSync & 1) {
  3372         // set box->dhw = unused_mark (3)
  3373         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3374         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3375         masm.cmpptr (rsp, (int32_t)0) ;                        
  3376     } else 
  3377     if (EmitSync & 2) { 
  3378         Label DONE_LABEL ;           
  3379         if (UseBiasedLocking) {
  3380            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3381            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3384         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3385         masm.orptr (tmpReg, 0x1);
  3386         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3387         if (os::is_MP()) { masm.lock();  }
  3388         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3389         masm.jcc(Assembler::equal, DONE_LABEL);
  3390         // Recursive locking
  3391         masm.subptr(tmpReg, rsp);
  3392         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3393         masm.movptr(Address(boxReg, 0), tmpReg);
  3394         masm.bind(DONE_LABEL) ; 
  3395     } else {  
  3396       // Possible cases that we'll encounter in fast_lock 
  3397       // ------------------------------------------------
  3398       // * Inflated
  3399       //    -- unlocked
  3400       //    -- Locked
  3401       //       = by self
  3402       //       = by other
  3403       // * biased
  3404       //    -- by Self
  3405       //    -- by other
  3406       // * neutral
  3407       // * stack-locked
  3408       //    -- by self
  3409       //       = sp-proximity test hits
  3410       //       = sp-proximity test generates false-negative
  3411       //    -- by other
  3412       //
  3414       Label IsInflated, DONE_LABEL, PopDone ;
  3416       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3417       // order to reduce the number of conditional branches in the most common cases.
  3418       // Beware -- there's a subtle invariant that fetch of the markword
  3419       // at [FETCH], below, will never observe a biased encoding (*101b).
  3420       // If this invariant is not held we risk exclusion (safety) failure.
  3421       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3422         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3425       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3426       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3427       masm.jccb  (Assembler::notZero, IsInflated) ;
  3429       // Attempt stack-locking ...
  3430       masm.orptr (tmpReg, 0x1);
  3431       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3432       if (os::is_MP()) { masm.lock();  }
  3433       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3434       if (_counters != NULL) {
  3435         masm.cond_inc32(Assembler::equal,
  3436                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3438       masm.jccb (Assembler::equal, DONE_LABEL);
  3440       // Recursive locking
  3441       masm.subptr(tmpReg, rsp);
  3442       masm.andptr(tmpReg, 0xFFFFF003 );
  3443       masm.movptr(Address(boxReg, 0), tmpReg);
  3444       if (_counters != NULL) {
  3445         masm.cond_inc32(Assembler::equal,
  3446                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3448       masm.jmp  (DONE_LABEL) ;
  3450       masm.bind (IsInflated) ;
  3452       // The object is inflated.
  3453       //
  3454       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3455       //   Use markOopDesc::monitor_value instead of "2".
  3456       //   use markOop::unused_mark() instead of "3".
  3457       // The tmpReg value is an objectMonitor reference ORed with
  3458       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3459       // objectmonitor pointer by masking off the "2" bit or we can just
  3460       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3461       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3462       //
  3463       // I use the latter as it avoids AGI stalls.
  3464       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3465       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3466       //
  3467       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3469       // boxReg refers to the on-stack BasicLock in the current frame.
  3470       // We'd like to write:
  3471       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3472       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3473       // additional latency as we have another ST in the store buffer that must drain.
  3475       if (EmitSync & 8192) { 
  3476          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3477          masm.get_thread (scrReg) ; 
  3478          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3479          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3480          if (os::is_MP()) { masm.lock(); } 
  3481          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3482       } else 
  3483       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3484          masm.movptr(scrReg, boxReg) ; 
  3485          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3487          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3488          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3489             // prefetchw [eax + Offset(_owner)-2]
  3490             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3493          if ((EmitSync & 64) == 0) {
  3494            // Optimistic form: consider XORL tmpReg,tmpReg
  3495            masm.movptr(tmpReg, NULL_WORD) ; 
  3496          } else { 
  3497            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3498            // Test-And-CAS instead of CAS
  3499            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3500            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3501            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3504          // Appears unlocked - try to swing _owner from null to non-null.
  3505          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3506          // to CAS the register containing Self into m->Owner.
  3507          // But we don't have enough registers, so instead we can either try to CAS
  3508          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3509          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3510          // (rsp or the address of the box) into  m->owner is harmless.
  3511          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3512          if (os::is_MP()) { masm.lock();  }
  3513          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3514          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3515          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3516          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3517          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3518          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3520          // If the CAS fails we can either retry or pass control to the slow-path.  
  3521          // We use the latter tactic.  
  3522          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3523          // If the CAS was successful ...
  3524          //   Self has acquired the lock
  3525          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3526          // Intentional fall-through into DONE_LABEL ...
  3527       } else {
  3528          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3529          masm.movptr(boxReg, tmpReg) ; 
  3531          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3532          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3533             // prefetchw [eax + Offset(_owner)-2]
  3534             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3537          if ((EmitSync & 64) == 0) {
  3538            // Optimistic form
  3539            masm.xorptr  (tmpReg, tmpReg) ; 
  3540          } else { 
  3541            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3542            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3543            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3544            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3547          // Appears unlocked - try to swing _owner from null to non-null.
  3548          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3549          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3550          masm.get_thread (scrReg) ;
  3551          if (os::is_MP()) { masm.lock(); }
  3552          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3554          // If the CAS fails we can either retry or pass control to the slow-path.
  3555          // We use the latter tactic.
  3556          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3557          // If the CAS was successful ...
  3558          //   Self has acquired the lock
  3559          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3560          // Intentional fall-through into DONE_LABEL ...
  3563       // DONE_LABEL is a hot target - we'd really like to place it at the
  3564       // start of cache line by padding with NOPs.
  3565       // See the AMD and Intel software optimization manuals for the
  3566       // most efficient "long" NOP encodings.
  3567       // Unfortunately none of our alignment mechanisms suffice.
  3568       masm.bind(DONE_LABEL);
  3570       // Avoid branch-to-branch on AMD processors
  3571       // This appears to be superstition.
  3572       if (EmitSync & 32) masm.nop() ;
  3575       // At DONE_LABEL the icc ZFlag is set as follows ...
  3576       // Fast_Unlock uses the same protocol.
  3577       // ZFlag == 1 -> Success
  3578       // ZFlag == 0 -> Failure - force control through the slow-path
  3580   %}
  3582   // obj: object to unlock
  3583   // box: box address (displaced header location), killed.  Must be EAX.
  3584   // rbx,: killed tmp; cannot be obj nor box.
  3585   //
  3586   // Some commentary on balanced locking:
  3587   //
  3588   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3589   // Methods that don't have provably balanced locking are forced to run in the
  3590   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3591   // The interpreter provides two properties:
  3592   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3593   //      objects acquired the current activation (frame).  Recall that the
  3594   //      interpreter maintains an on-stack list of locks currently held by
  3595   //      a frame.
  3596   // I2:  If a method attempts to unlock an object that is not held by the
  3597   //      the frame the interpreter throws IMSX.
  3598   //
  3599   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3600   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3601   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3602   // is still locked by A().
  3603   //
  3604   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3605   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3606   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3607   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3609   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3611     Register objReg = as_Register($obj$$reg);
  3612     Register boxReg = as_Register($box$$reg);
  3613     Register tmpReg = as_Register($tmp$$reg);
  3615     guarantee (objReg != boxReg, "") ;
  3616     guarantee (objReg != tmpReg, "") ;
  3617     guarantee (boxReg != tmpReg, "") ;
  3618     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3619     MacroAssembler masm(&cbuf);
  3621     if (EmitSync & 4) {
  3622       // Disable - inhibit all inlining.  Force control through the slow-path
  3623       masm.cmpptr (rsp, 0) ; 
  3624     } else 
  3625     if (EmitSync & 8) {
  3626       Label DONE_LABEL ;
  3627       if (UseBiasedLocking) {
  3628          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3630       // classic stack-locking code ...
  3631       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3632       masm.testptr(tmpReg, tmpReg) ;
  3633       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3634       if (os::is_MP()) { masm.lock(); }
  3635       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3636       masm.bind(DONE_LABEL);
  3637     } else {
  3638       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3640       // Critically, the biased locking test must have precedence over
  3641       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3642       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3643          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3646       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3647       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3648       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3650       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3651       masm.jccb  (Assembler::zero, Stacked) ;
  3653       masm.bind  (Inflated) ;
  3654       // It's inflated.
  3655       // Despite our balanced locking property we still check that m->_owner == Self
  3656       // as java routines or native JNI code called by this thread might
  3657       // have released the lock.
  3658       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3659       // state in _succ so we can avoid fetching EntryList|cxq.
  3660       //
  3661       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3662       // such as recursive enter and exit -- but we have to be wary of
  3663       // I$ bloat, T$ effects and BP$ effects.
  3664       //
  3665       // If there's no contention try a 1-0 exit.  That is, exit without
  3666       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3667       // we detect and recover from the race that the 1-0 exit admits.
  3668       //
  3669       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3670       // before it STs null into _owner, releasing the lock.  Updates
  3671       // to data protected by the critical section must be visible before
  3672       // we drop the lock (and thus before any other thread could acquire
  3673       // the lock and observe the fields protected by the lock).
  3674       // IA32's memory-model is SPO, so STs are ordered with respect to
  3675       // each other and there's no need for an explicit barrier (fence).
  3676       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3678       masm.get_thread (boxReg) ;
  3679       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3680         // prefetchw [ebx + Offset(_owner)-2]
  3681         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3684       // Note that we could employ various encoding schemes to reduce
  3685       // the number of loads below (currently 4) to just 2 or 3.
  3686       // Refer to the comments in synchronizer.cpp.
  3687       // In practice the chain of fetches doesn't seem to impact performance, however.
  3688       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3689          // Attempt to reduce branch density - AMD's branch predictor.
  3690          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3691          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3692          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3693          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3694          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3695          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3696          masm.jmpb  (DONE_LABEL) ; 
  3697       } else { 
  3698          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3699          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3700          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3701          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3702          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3703          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3704          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3705          masm.jmpb  (DONE_LABEL) ; 
  3708       // The Following code fragment (EmitSync & 65536) improves the performance of
  3709       // contended applications and contended synchronization microbenchmarks.
  3710       // Unfortunately the emission of the code - even though not executed - causes regressions
  3711       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3712       // with an equal number of never-executed NOPs results in the same regression.
  3713       // We leave it off by default.
  3715       if ((EmitSync & 65536) != 0) {
  3716          Label LSuccess, LGoSlowPath ;
  3718          masm.bind  (CheckSucc) ;
  3720          // Optional pre-test ... it's safe to elide this
  3721          if ((EmitSync & 16) == 0) { 
  3722             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3723             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3726          // We have a classic Dekker-style idiom:
  3727          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3728          // There are a number of ways to implement the barrier:
  3729          // (1) lock:andl &m->_owner, 0
  3730          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3731          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3732          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3733          // (2) If supported, an explicit MFENCE is appealing.
  3734          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3735          //     particularly if the write-buffer is full as might be the case if
  3736          //     if stores closely precede the fence or fence-equivalent instruction.
  3737          //     In more modern implementations MFENCE appears faster, however.
  3738          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3739          //     The $lines underlying the top-of-stack should be in M-state.
  3740          //     The locked add instruction is serializing, of course.
  3741          // (4) Use xchg, which is serializing
  3742          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3743          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3744          //     The integer condition codes will tell us if succ was 0.
  3745          //     Since _succ and _owner should reside in the same $line and
  3746          //     we just stored into _owner, it's likely that the $line
  3747          //     remains in M-state for the lock:orl.
  3748          //
  3749          // We currently use (3), although it's likely that switching to (2)
  3750          // is correct for the future.
  3752          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3753          if (os::is_MP()) { 
  3754             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3755               masm.mfence();
  3756             } else { 
  3757               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3760          // Ratify _succ remains non-null
  3761          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3762          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3764          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3765          if (os::is_MP()) { masm.lock(); }
  3766          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3767          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3768          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3769          // Now install Self over rsp.  This is safe as we're transitioning from
  3770          // non-null to non=null
  3771          masm.get_thread (boxReg) ;
  3772          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3773          // Intentional fall-through into LGoSlowPath ...
  3775          masm.bind  (LGoSlowPath) ; 
  3776          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3777          masm.jmpb  (DONE_LABEL) ; 
  3779          masm.bind  (LSuccess) ; 
  3780          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3781          masm.jmpb  (DONE_LABEL) ; 
  3784       masm.bind (Stacked) ;
  3785       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3786       // It must be stack-locked.
  3787       // Try to reset the header to displaced header.
  3788       // The "box" value on the stack is stable, so we can reload
  3789       // and be assured we observe the same value as above.
  3790       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3791       if (os::is_MP()) {   masm.lock();    }
  3792       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3793       // Intention fall-thru into DONE_LABEL
  3796       // DONE_LABEL is a hot target - we'd really like to place it at the
  3797       // start of cache line by padding with NOPs.
  3798       // See the AMD and Intel software optimization manuals for the
  3799       // most efficient "long" NOP encodings.
  3800       // Unfortunately none of our alignment mechanisms suffice.
  3801       if ((EmitSync & 65536) == 0) {
  3802          masm.bind (CheckSucc) ;
  3804       masm.bind(DONE_LABEL);
  3806       // Avoid branch to branch on AMD processors
  3807       if (EmitSync & 32768) { masm.nop() ; }
  3809   %}
  3812   enc_class enc_pop_rdx() %{
  3813     emit_opcode(cbuf,0x5A);
  3814   %}
  3816   enc_class enc_rethrow() %{
  3817     cbuf.set_insts_mark();
  3818     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3819     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3820                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3821   %}
  3824   // Convert a double to an int.  Java semantics require we do complex
  3825   // manglelations in the corner cases.  So we set the rounding mode to
  3826   // 'zero', store the darned double down as an int, and reset the
  3827   // rounding mode to 'nearest'.  The hardware throws an exception which
  3828   // patches up the correct value directly to the stack.
  3829   enc_class D2I_encoding( regD src ) %{
  3830     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3831     // exceptions here, so that a NAN or other corner-case value will
  3832     // thrown an exception (but normal values get converted at full speed).
  3833     // However, I2C adapters and other float-stack manglers leave pending
  3834     // invalid-op exceptions hanging.  We would have to clear them before
  3835     // enabling them and that is more expensive than just testing for the
  3836     // invalid value Intel stores down in the corner cases.
  3837     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3838     emit_opcode(cbuf,0x2D);
  3839     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3840     // Allocate a word
  3841     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3842     emit_opcode(cbuf,0xEC);
  3843     emit_d8(cbuf,0x04);
  3844     // Encoding assumes a double has been pushed into FPR0.
  3845     // Store down the double as an int, popping the FPU stack
  3846     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3847     emit_opcode(cbuf,0x1C);
  3848     emit_d8(cbuf,0x24);
  3849     // Restore the rounding mode; mask the exception
  3850     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3851     emit_opcode(cbuf,0x2D);
  3852     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3853         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3854         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3856     // Load the converted int; adjust CPU stack
  3857     emit_opcode(cbuf,0x58);       // POP EAX
  3858     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3859     emit_d32   (cbuf,0x80000000); //         0x80000000
  3860     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3861     emit_d8    (cbuf,0x07);       // Size of slow_call
  3862     // Push src onto stack slow-path
  3863     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3864     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3865     // CALL directly to the runtime
  3866     cbuf.set_insts_mark();
  3867     emit_opcode(cbuf,0xE8);       // Call into runtime
  3868     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3869     // Carry on here...
  3870   %}
  3872   enc_class D2L_encoding( regD src ) %{
  3873     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3874     emit_opcode(cbuf,0x2D);
  3875     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3876     // Allocate a word
  3877     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3878     emit_opcode(cbuf,0xEC);
  3879     emit_d8(cbuf,0x08);
  3880     // Encoding assumes a double has been pushed into FPR0.
  3881     // Store down the double as a long, popping the FPU stack
  3882     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3883     emit_opcode(cbuf,0x3C);
  3884     emit_d8(cbuf,0x24);
  3885     // Restore the rounding mode; mask the exception
  3886     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3887     emit_opcode(cbuf,0x2D);
  3888     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3889         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3890         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3892     // Load the converted int; adjust CPU stack
  3893     emit_opcode(cbuf,0x58);       // POP EAX
  3894     emit_opcode(cbuf,0x5A);       // POP EDX
  3895     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3896     emit_d8    (cbuf,0xFA);       // rdx
  3897     emit_d32   (cbuf,0x80000000); //         0x80000000
  3898     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3899     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3900     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3901     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3902     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3903     emit_d8    (cbuf,0x07);       // Size of slow_call
  3904     // Push src onto stack slow-path
  3905     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3906     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3907     // CALL directly to the runtime
  3908     cbuf.set_insts_mark();
  3909     emit_opcode(cbuf,0xE8);       // Call into runtime
  3910     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3911     // Carry on here...
  3912   %}
  3914   enc_class X2L_encoding( regX src ) %{
  3915     // Allocate a word
  3916     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3917     emit_opcode(cbuf,0xEC);
  3918     emit_d8(cbuf,0x08);
  3920     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3921     emit_opcode  (cbuf, 0x0F );
  3922     emit_opcode  (cbuf, 0x11 );
  3923     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3925     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3926     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3928     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3929     emit_opcode(cbuf,0x2D);
  3930     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3932     // Encoding assumes a double has been pushed into FPR0.
  3933     // Store down the double as a long, popping the FPU stack
  3934     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3935     emit_opcode(cbuf,0x3C);
  3936     emit_d8(cbuf,0x24);
  3938     // Restore the rounding mode; mask the exception
  3939     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3940     emit_opcode(cbuf,0x2D);
  3941     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3942       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3943       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3945     // Load the converted int; adjust CPU stack
  3946     emit_opcode(cbuf,0x58);      // POP EAX
  3948     emit_opcode(cbuf,0x5A);      // POP EDX
  3950     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3951     emit_d8    (cbuf,0xFA);      // rdx
  3952     emit_d32   (cbuf,0x80000000);//         0x80000000
  3954     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3955     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3957     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3958     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3960     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3961     emit_d8    (cbuf,0x13);      // Size of slow_call
  3963     // Allocate a word
  3964     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3965     emit_opcode(cbuf,0xEC);
  3966     emit_d8(cbuf,0x04);
  3968     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3969     emit_opcode  (cbuf, 0x0F );
  3970     emit_opcode  (cbuf, 0x11 );
  3971     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3973     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3974     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3976     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3977     emit_opcode(cbuf,0xC4);
  3978     emit_d8(cbuf,0x04);
  3980     // CALL directly to the runtime
  3981     cbuf.set_insts_mark();
  3982     emit_opcode(cbuf,0xE8);       // Call into runtime
  3983     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3984     // Carry on here...
  3985   %}
  3987   enc_class XD2L_encoding( regXD src ) %{
  3988     // Allocate a word
  3989     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3990     emit_opcode(cbuf,0xEC);
  3991     emit_d8(cbuf,0x08);
  3993     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3994     emit_opcode  (cbuf, 0x0F );
  3995     emit_opcode  (cbuf, 0x11 );
  3996     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3998     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3999     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4001     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  4002     emit_opcode(cbuf,0x2D);
  4003     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  4005     // Encoding assumes a double has been pushed into FPR0.
  4006     // Store down the double as a long, popping the FPU stack
  4007     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  4008     emit_opcode(cbuf,0x3C);
  4009     emit_d8(cbuf,0x24);
  4011     // Restore the rounding mode; mask the exception
  4012     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  4013     emit_opcode(cbuf,0x2D);
  4014     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  4015       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  4016       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  4018     // Load the converted int; adjust CPU stack
  4019     emit_opcode(cbuf,0x58);      // POP EAX
  4021     emit_opcode(cbuf,0x5A);      // POP EDX
  4023     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  4024     emit_d8    (cbuf,0xFA);      // rdx
  4025     emit_d32   (cbuf,0x80000000); //         0x80000000
  4027     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4028     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  4030     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  4031     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  4033     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4034     emit_d8    (cbuf,0x13);      // Size of slow_call
  4036     // Push src onto stack slow-path
  4037     // Allocate a word
  4038     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4039     emit_opcode(cbuf,0xEC);
  4040     emit_d8(cbuf,0x08);
  4042     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4043     emit_opcode  (cbuf, 0x0F );
  4044     emit_opcode  (cbuf, 0x11 );
  4045     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4047     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4048     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4050     emit_opcode(cbuf,0x83);      // ADD ESP,8
  4051     emit_opcode(cbuf,0xC4);
  4052     emit_d8(cbuf,0x08);
  4054     // CALL directly to the runtime
  4055     cbuf.set_insts_mark();
  4056     emit_opcode(cbuf,0xE8);      // Call into runtime
  4057     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4058     // Carry on here...
  4059   %}
  4061   enc_class D2X_encoding( regX dst, regD src ) %{
  4062     // Allocate a word
  4063     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4064     emit_opcode(cbuf,0xEC);
  4065     emit_d8(cbuf,0x04);
  4066     int pop = 0x02;
  4067     if ($src$$reg != FPR1L_enc) {
  4068       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4069       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4070       pop = 0x03;
  4072     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4074     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4075     emit_opcode  (cbuf, 0x0F );
  4076     emit_opcode  (cbuf, 0x10 );
  4077     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4079     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4080     emit_opcode(cbuf,0xC4);
  4081     emit_d8(cbuf,0x04);
  4082     // Carry on here...
  4083   %}
  4085   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4086     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4088     // Compare the result to see if we need to go to the slow path
  4089     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4090     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4091     emit_d32   (cbuf,0x80000000); //         0x80000000
  4093     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4094     emit_d8    (cbuf,0x13);       // Size of slow_call
  4095     // Store xmm to a temp memory
  4096     // location and push it onto stack.
  4098     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4099     emit_opcode(cbuf,0xEC);
  4100     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4102     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4103     emit_opcode  (cbuf, 0x0F );
  4104     emit_opcode  (cbuf, 0x11 );
  4105     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4107     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4108     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4110     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4111     emit_opcode(cbuf,0xC4);
  4112     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4114     // CALL directly to the runtime
  4115     cbuf.set_insts_mark();
  4116     emit_opcode(cbuf,0xE8);       // Call into runtime
  4117     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4119     // Carry on here...
  4120   %}
  4122   enc_class X2D_encoding( regD dst, regX src ) %{
  4123     // Allocate a word
  4124     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4125     emit_opcode(cbuf,0xEC);
  4126     emit_d8(cbuf,0x04);
  4128     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4129     emit_opcode  (cbuf, 0x0F );
  4130     emit_opcode  (cbuf, 0x11 );
  4131     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4133     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4134     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4136     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4137     emit_opcode(cbuf,0xC4);
  4138     emit_d8(cbuf,0x04);
  4140     // Carry on here...
  4141   %}
  4143   enc_class AbsXF_encoding(regX dst) %{
  4144     address signmask_address=(address)float_signmask_pool;
  4145     // andpd:\tANDPS  $dst,[signconst]
  4146     emit_opcode(cbuf, 0x0F);
  4147     emit_opcode(cbuf, 0x54);
  4148     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4149     emit_d32(cbuf, (int)signmask_address);
  4150   %}
  4152   enc_class AbsXD_encoding(regXD dst) %{
  4153     address signmask_address=(address)double_signmask_pool;
  4154     // andpd:\tANDPD  $dst,[signconst]
  4155     emit_opcode(cbuf, 0x66);
  4156     emit_opcode(cbuf, 0x0F);
  4157     emit_opcode(cbuf, 0x54);
  4158     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4159     emit_d32(cbuf, (int)signmask_address);
  4160   %}
  4162   enc_class NegXF_encoding(regX dst) %{
  4163     address signmask_address=(address)float_signflip_pool;
  4164     // andpd:\tXORPS  $dst,[signconst]
  4165     emit_opcode(cbuf, 0x0F);
  4166     emit_opcode(cbuf, 0x57);
  4167     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4168     emit_d32(cbuf, (int)signmask_address);
  4169   %}
  4171   enc_class NegXD_encoding(regXD dst) %{
  4172     address signmask_address=(address)double_signflip_pool;
  4173     // andpd:\tXORPD  $dst,[signconst]
  4174     emit_opcode(cbuf, 0x66);
  4175     emit_opcode(cbuf, 0x0F);
  4176     emit_opcode(cbuf, 0x57);
  4177     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4178     emit_d32(cbuf, (int)signmask_address);
  4179   %}
  4181   enc_class FMul_ST_reg( eRegF src1 ) %{
  4182     // Operand was loaded from memory into fp ST (stack top)
  4183     // FMUL   ST,$src  /* D8 C8+i */
  4184     emit_opcode(cbuf, 0xD8);
  4185     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4186   %}
  4188   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4189     // FADDP  ST,src2  /* D8 C0+i */
  4190     emit_opcode(cbuf, 0xD8);
  4191     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4192     //could use FADDP  src2,fpST  /* DE C0+i */
  4193   %}
  4195   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4196     // FADDP  src2,ST  /* DE C0+i */
  4197     emit_opcode(cbuf, 0xDE);
  4198     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4199   %}
  4201   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4202     // Operand has been loaded into fp ST (stack top)
  4203       // FSUB   ST,$src1
  4204       emit_opcode(cbuf, 0xD8);
  4205       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4207       // FDIV
  4208       emit_opcode(cbuf, 0xD8);
  4209       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4210   %}
  4212   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4213     // Operand was loaded from memory into fp ST (stack top)
  4214     // FADD   ST,$src  /* D8 C0+i */
  4215     emit_opcode(cbuf, 0xD8);
  4216     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4218     // FMUL  ST,src2  /* D8 C*+i */
  4219     emit_opcode(cbuf, 0xD8);
  4220     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4221   %}
  4224   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4225     // Operand was loaded from memory into fp ST (stack top)
  4226     // FADD   ST,$src  /* D8 C0+i */
  4227     emit_opcode(cbuf, 0xD8);
  4228     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4230     // FMULP  src2,ST  /* DE C8+i */
  4231     emit_opcode(cbuf, 0xDE);
  4232     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4233   %}
  4235   // Atomically load the volatile long
  4236   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4237     emit_opcode(cbuf,0xDF);
  4238     int rm_byte_opcode = 0x05;
  4239     int base     = $mem$$base;
  4240     int index    = $mem$$index;
  4241     int scale    = $mem$$scale;
  4242     int displace = $mem$$disp;
  4243     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4244     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4245     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4246   %}
  4248   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4249     { // Atomic long load
  4250       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4251       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4252       emit_opcode(cbuf,0x0F);
  4253       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4254       int base     = $mem$$base;
  4255       int index    = $mem$$index;
  4256       int scale    = $mem$$scale;
  4257       int displace = $mem$$disp;
  4258       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4259       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4261     { // MOVSD $dst,$tmp ! atomic long store
  4262       emit_opcode(cbuf,0xF2);
  4263       emit_opcode(cbuf,0x0F);
  4264       emit_opcode(cbuf,0x11);
  4265       int base     = $dst$$base;
  4266       int index    = $dst$$index;
  4267       int scale    = $dst$$scale;
  4268       int displace = $dst$$disp;
  4269       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4270       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4272   %}
  4274   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4275     { // Atomic long load
  4276       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4277       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4278       emit_opcode(cbuf,0x0F);
  4279       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4280       int base     = $mem$$base;
  4281       int index    = $mem$$index;
  4282       int scale    = $mem$$scale;
  4283       int displace = $mem$$disp;
  4284       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4285       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4287     { // MOVD $dst.lo,$tmp
  4288       emit_opcode(cbuf,0x66);
  4289       emit_opcode(cbuf,0x0F);
  4290       emit_opcode(cbuf,0x7E);
  4291       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4293     { // PSRLQ $tmp,32
  4294       emit_opcode(cbuf,0x66);
  4295       emit_opcode(cbuf,0x0F);
  4296       emit_opcode(cbuf,0x73);
  4297       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4298       emit_d8(cbuf, 0x20);
  4300     { // MOVD $dst.hi,$tmp
  4301       emit_opcode(cbuf,0x66);
  4302       emit_opcode(cbuf,0x0F);
  4303       emit_opcode(cbuf,0x7E);
  4304       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4306   %}
  4308   // Volatile Store Long.  Must be atomic, so move it into
  4309   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4310   // target address before the store (for null-ptr checks)
  4311   // so the memory operand is used twice in the encoding.
  4312   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4313     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4314     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  4315     emit_opcode(cbuf,0xDF);
  4316     int rm_byte_opcode = 0x07;
  4317     int base     = $mem$$base;
  4318     int index    = $mem$$index;
  4319     int scale    = $mem$$scale;
  4320     int displace = $mem$$disp;
  4321     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4322     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4323   %}
  4325   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4326     { // Atomic long load
  4327       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4328       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4329       emit_opcode(cbuf,0x0F);
  4330       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4331       int base     = $src$$base;
  4332       int index    = $src$$index;
  4333       int scale    = $src$$scale;
  4334       int displace = $src$$disp;
  4335       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4336       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4338     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4339     { // MOVSD $mem,$tmp ! atomic long store
  4340       emit_opcode(cbuf,0xF2);
  4341       emit_opcode(cbuf,0x0F);
  4342       emit_opcode(cbuf,0x11);
  4343       int base     = $mem$$base;
  4344       int index    = $mem$$index;
  4345       int scale    = $mem$$scale;
  4346       int displace = $mem$$disp;
  4347       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4348       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4350   %}
  4352   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4353     { // MOVD $tmp,$src.lo
  4354       emit_opcode(cbuf,0x66);
  4355       emit_opcode(cbuf,0x0F);
  4356       emit_opcode(cbuf,0x6E);
  4357       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4359     { // MOVD $tmp2,$src.hi
  4360       emit_opcode(cbuf,0x66);
  4361       emit_opcode(cbuf,0x0F);
  4362       emit_opcode(cbuf,0x6E);
  4363       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4365     { // PUNPCKLDQ $tmp,$tmp2
  4366       emit_opcode(cbuf,0x66);
  4367       emit_opcode(cbuf,0x0F);
  4368       emit_opcode(cbuf,0x62);
  4369       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4371     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4372     { // MOVSD $mem,$tmp ! atomic long store
  4373       emit_opcode(cbuf,0xF2);
  4374       emit_opcode(cbuf,0x0F);
  4375       emit_opcode(cbuf,0x11);
  4376       int base     = $mem$$base;
  4377       int index    = $mem$$index;
  4378       int scale    = $mem$$scale;
  4379       int displace = $mem$$disp;
  4380       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4381       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4383   %}
  4385   // Safepoint Poll.  This polls the safepoint page, and causes an
  4386   // exception if it is not readable. Unfortunately, it kills the condition code
  4387   // in the process
  4388   // We current use TESTL [spp],EDI
  4389   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4391   enc_class Safepoint_Poll() %{
  4392     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  4393     emit_opcode(cbuf,0x85);
  4394     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4395     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4396   %}
  4397 %}
  4400 //----------FRAME--------------------------------------------------------------
  4401 // Definition of frame structure and management information.
  4402 //
  4403 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4404 //                             |   (to get allocators register number
  4405 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4406 //  r   CALLER     |        |
  4407 //  o     |        +--------+      pad to even-align allocators stack-slot
  4408 //  w     V        |  pad0  |        numbers; owned by CALLER
  4409 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4410 //  h     ^        |   in   |  5
  4411 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4412 //  |     |        |        |  3
  4413 //  |     |        +--------+
  4414 //  V     |        | old out|      Empty on Intel, window on Sparc
  4415 //        |    old |preserve|      Must be even aligned.
  4416 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4417 //        |        |   in   |  3   area for Intel ret address
  4418 //     Owned by    |preserve|      Empty on Sparc.
  4419 //       SELF      +--------+
  4420 //        |        |  pad2  |  2   pad to align old SP
  4421 //        |        +--------+  1
  4422 //        |        | locks  |  0
  4423 //        |        +--------+----> OptoReg::stack0(), even aligned
  4424 //        |        |  pad1  | 11   pad to align new SP
  4425 //        |        +--------+
  4426 //        |        |        | 10
  4427 //        |        | spills |  9   spills
  4428 //        V        |        |  8   (pad0 slot for callee)
  4429 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4430 //        ^        |  out   |  7
  4431 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4432 //     Owned by    +--------+
  4433 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4434 //        |    new |preserve|      Must be even-aligned.
  4435 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4436 //        |        |        |
  4437 //
  4438 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4439 //         known from SELF's arguments and the Java calling convention.
  4440 //         Region 6-7 is determined per call site.
  4441 // Note 2: If the calling convention leaves holes in the incoming argument
  4442 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4443 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4444 //         incoming area, as the Java calling convention is completely under
  4445 //         the control of the AD file.  Doubles can be sorted and packed to
  4446 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4447 //         varargs C calling conventions.
  4448 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4449 //         even aligned with pad0 as needed.
  4450 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4451 //         region 6-11 is even aligned; it may be padded out more so that
  4452 //         the region from SP to FP meets the minimum stack alignment.
  4454 frame %{
  4455   // What direction does stack grow in (assumed to be same for C & Java)
  4456   stack_direction(TOWARDS_LOW);
  4458   // These three registers define part of the calling convention
  4459   // between compiled code and the interpreter.
  4460   inline_cache_reg(EAX);                // Inline Cache Register
  4461   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4463   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4464   cisc_spilling_operand_name(indOffset32);
  4466   // Number of stack slots consumed by locking an object
  4467   sync_stack_slots(1);
  4469   // Compiled code's Frame Pointer
  4470   frame_pointer(ESP);
  4471   // Interpreter stores its frame pointer in a register which is
  4472   // stored to the stack by I2CAdaptors.
  4473   // I2CAdaptors convert from interpreted java to compiled java.
  4474   interpreter_frame_pointer(EBP);
  4476   // Stack alignment requirement
  4477   // Alignment size in bytes (128-bit -> 16 bytes)
  4478   stack_alignment(StackAlignmentInBytes);
  4480   // Number of stack slots between incoming argument block and the start of
  4481   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4482   // EPILOG must remove this many slots.  Intel needs one slot for
  4483   // return address and one for rbp, (must save rbp)
  4484   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4486   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4487   // for calls to C.  Supports the var-args backing area for register parms.
  4488   varargs_C_out_slots_killed(0);
  4490   // The after-PROLOG location of the return address.  Location of
  4491   // return address specifies a type (REG or STACK) and a number
  4492   // representing the register number (i.e. - use a register name) or
  4493   // stack slot.
  4494   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4495   // Otherwise, it is above the locks and verification slot and alignment word
  4496   return_addr(STACK - 1 +
  4497               round_to(1+VerifyStackAtCalls+
  4498               Compile::current()->fixed_slots(),
  4499               (StackAlignmentInBytes/wordSize)));
  4501   // Body of function which returns an integer array locating
  4502   // arguments either in registers or in stack slots.  Passed an array
  4503   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4504   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4505   // arguments for a CALLEE.  Incoming stack arguments are
  4506   // automatically biased by the preserve_stack_slots field above.
  4507   calling_convention %{
  4508     // No difference between ingoing/outgoing just pass false
  4509     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4510   %}
  4513   // Body of function which returns an integer array locating
  4514   // arguments either in registers or in stack slots.  Passed an array
  4515   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4516   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4517   // arguments for a CALLEE.  Incoming stack arguments are
  4518   // automatically biased by the preserve_stack_slots field above.
  4519   c_calling_convention %{
  4520     // This is obviously always outgoing
  4521     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4522   %}
  4524   // Location of C & interpreter return values
  4525   c_return_value %{
  4526     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4527     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4528     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4530     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4531     // that C functions return float and double results in XMM0.
  4532     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4533       return OptoRegPair(XMM0b_num,XMM0a_num);
  4534     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4535       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4537     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4538   %}
  4540   // Location of return values
  4541   return_value %{
  4542     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4543     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4544     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4545     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4546       return OptoRegPair(XMM0b_num,XMM0a_num);
  4547     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4548       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4549     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4550   %}
  4552 %}
  4554 //----------ATTRIBUTES---------------------------------------------------------
  4555 //----------Operand Attributes-------------------------------------------------
  4556 op_attrib op_cost(0);        // Required cost attribute
  4558 //----------Instruction Attributes---------------------------------------------
  4559 ins_attrib ins_cost(100);       // Required cost attribute
  4560 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4561 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4562 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4563                                 // non-matching short branch variant of some
  4564                                                             // long branch?
  4565 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4566                                 // specifies the alignment that some part of the instruction (not
  4567                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4568                                 // function must be provided for the instruction
  4570 //----------OPERANDS-----------------------------------------------------------
  4571 // Operand definitions must precede instruction definitions for correct parsing
  4572 // in the ADLC because operands constitute user defined types which are used in
  4573 // instruction definitions.
  4575 //----------Simple Operands----------------------------------------------------
  4576 // Immediate Operands
  4577 // Integer Immediate
  4578 operand immI() %{
  4579   match(ConI);
  4581   op_cost(10);
  4582   format %{ %}
  4583   interface(CONST_INTER);
  4584 %}
  4586 // Constant for test vs zero
  4587 operand immI0() %{
  4588   predicate(n->get_int() == 0);
  4589   match(ConI);
  4591   op_cost(0);
  4592   format %{ %}
  4593   interface(CONST_INTER);
  4594 %}
  4596 // Constant for increment
  4597 operand immI1() %{
  4598   predicate(n->get_int() == 1);
  4599   match(ConI);
  4601   op_cost(0);
  4602   format %{ %}
  4603   interface(CONST_INTER);
  4604 %}
  4606 // Constant for decrement
  4607 operand immI_M1() %{
  4608   predicate(n->get_int() == -1);
  4609   match(ConI);
  4611   op_cost(0);
  4612   format %{ %}
  4613   interface(CONST_INTER);
  4614 %}
  4616 // Valid scale values for addressing modes
  4617 operand immI2() %{
  4618   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4619   match(ConI);
  4621   format %{ %}
  4622   interface(CONST_INTER);
  4623 %}
  4625 operand immI8() %{
  4626   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4627   match(ConI);
  4629   op_cost(5);
  4630   format %{ %}
  4631   interface(CONST_INTER);
  4632 %}
  4634 operand immI16() %{
  4635   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4636   match(ConI);
  4638   op_cost(10);
  4639   format %{ %}
  4640   interface(CONST_INTER);
  4641 %}
  4643 // Constant for long shifts
  4644 operand immI_32() %{
  4645   predicate( n->get_int() == 32 );
  4646   match(ConI);
  4648   op_cost(0);
  4649   format %{ %}
  4650   interface(CONST_INTER);
  4651 %}
  4653 operand immI_1_31() %{
  4654   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4655   match(ConI);
  4657   op_cost(0);
  4658   format %{ %}
  4659   interface(CONST_INTER);
  4660 %}
  4662 operand immI_32_63() %{
  4663   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4664   match(ConI);
  4665   op_cost(0);
  4667   format %{ %}
  4668   interface(CONST_INTER);
  4669 %}
  4671 operand immI_1() %{
  4672   predicate( n->get_int() == 1 );
  4673   match(ConI);
  4675   op_cost(0);
  4676   format %{ %}
  4677   interface(CONST_INTER);
  4678 %}
  4680 operand immI_2() %{
  4681   predicate( n->get_int() == 2 );
  4682   match(ConI);
  4684   op_cost(0);
  4685   format %{ %}
  4686   interface(CONST_INTER);
  4687 %}
  4689 operand immI_3() %{
  4690   predicate( n->get_int() == 3 );
  4691   match(ConI);
  4693   op_cost(0);
  4694   format %{ %}
  4695   interface(CONST_INTER);
  4696 %}
  4698 // Pointer Immediate
  4699 operand immP() %{
  4700   match(ConP);
  4702   op_cost(10);
  4703   format %{ %}
  4704   interface(CONST_INTER);
  4705 %}
  4707 // NULL Pointer Immediate
  4708 operand immP0() %{
  4709   predicate( n->get_ptr() == 0 );
  4710   match(ConP);
  4711   op_cost(0);
  4713   format %{ %}
  4714   interface(CONST_INTER);
  4715 %}
  4717 // Long Immediate
  4718 operand immL() %{
  4719   match(ConL);
  4721   op_cost(20);
  4722   format %{ %}
  4723   interface(CONST_INTER);
  4724 %}
  4726 // Long Immediate zero
  4727 operand immL0() %{
  4728   predicate( n->get_long() == 0L );
  4729   match(ConL);
  4730   op_cost(0);
  4732   format %{ %}
  4733   interface(CONST_INTER);
  4734 %}
  4736 // Long Immediate zero
  4737 operand immL_M1() %{
  4738   predicate( n->get_long() == -1L );
  4739   match(ConL);
  4740   op_cost(0);
  4742   format %{ %}
  4743   interface(CONST_INTER);
  4744 %}
  4746 // Long immediate from 0 to 127.
  4747 // Used for a shorter form of long mul by 10.
  4748 operand immL_127() %{
  4749   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4750   match(ConL);
  4751   op_cost(0);
  4753   format %{ %}
  4754   interface(CONST_INTER);
  4755 %}
  4757 // Long Immediate: low 32-bit mask
  4758 operand immL_32bits() %{
  4759   predicate(n->get_long() == 0xFFFFFFFFL);
  4760   match(ConL);
  4761   op_cost(0);
  4763   format %{ %}
  4764   interface(CONST_INTER);
  4765 %}
  4767 // Long Immediate: low 32-bit mask
  4768 operand immL32() %{
  4769   predicate(n->get_long() == (int)(n->get_long()));
  4770   match(ConL);
  4771   op_cost(20);
  4773   format %{ %}
  4774   interface(CONST_INTER);
  4775 %}
  4777 //Double Immediate zero
  4778 operand immD0() %{
  4779   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4780   // bug that generates code such that NaNs compare equal to 0.0
  4781   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4782   match(ConD);
  4784   op_cost(5);
  4785   format %{ %}
  4786   interface(CONST_INTER);
  4787 %}
  4789 // Double Immediate
  4790 operand immD1() %{
  4791   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4792   match(ConD);
  4794   op_cost(5);
  4795   format %{ %}
  4796   interface(CONST_INTER);
  4797 %}
  4799 // Double Immediate
  4800 operand immD() %{
  4801   predicate(UseSSE<=1);
  4802   match(ConD);
  4804   op_cost(5);
  4805   format %{ %}
  4806   interface(CONST_INTER);
  4807 %}
  4809 operand immXD() %{
  4810   predicate(UseSSE>=2);
  4811   match(ConD);
  4813   op_cost(5);
  4814   format %{ %}
  4815   interface(CONST_INTER);
  4816 %}
  4818 // Double Immediate zero
  4819 operand immXD0() %{
  4820   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4821   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4822   // compare equal to -0.0.
  4823   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4824   match(ConD);
  4826   format %{ %}
  4827   interface(CONST_INTER);
  4828 %}
  4830 // Float Immediate zero
  4831 operand immF0() %{
  4832   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4833   match(ConF);
  4835   op_cost(5);
  4836   format %{ %}
  4837   interface(CONST_INTER);
  4838 %}
  4840 // Float Immediate
  4841 operand immF() %{
  4842   predicate( UseSSE == 0 );
  4843   match(ConF);
  4845   op_cost(5);
  4846   format %{ %}
  4847   interface(CONST_INTER);
  4848 %}
  4850 // Float Immediate
  4851 operand immXF() %{
  4852   predicate(UseSSE >= 1);
  4853   match(ConF);
  4855   op_cost(5);
  4856   format %{ %}
  4857   interface(CONST_INTER);
  4858 %}
  4860 // Float Immediate zero.  Zero and not -0.0
  4861 operand immXF0() %{
  4862   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4863   match(ConF);
  4865   op_cost(5);
  4866   format %{ %}
  4867   interface(CONST_INTER);
  4868 %}
  4870 // Immediates for special shifts (sign extend)
  4872 // Constants for increment
  4873 operand immI_16() %{
  4874   predicate( n->get_int() == 16 );
  4875   match(ConI);
  4877   format %{ %}
  4878   interface(CONST_INTER);
  4879 %}
  4881 operand immI_24() %{
  4882   predicate( n->get_int() == 24 );
  4883   match(ConI);
  4885   format %{ %}
  4886   interface(CONST_INTER);
  4887 %}
  4889 // Constant for byte-wide masking
  4890 operand immI_255() %{
  4891   predicate( n->get_int() == 255 );
  4892   match(ConI);
  4894   format %{ %}
  4895   interface(CONST_INTER);
  4896 %}
  4898 // Constant for short-wide masking
  4899 operand immI_65535() %{
  4900   predicate(n->get_int() == 65535);
  4901   match(ConI);
  4903   format %{ %}
  4904   interface(CONST_INTER);
  4905 %}
  4907 // Register Operands
  4908 // Integer Register
  4909 operand eRegI() %{
  4910   constraint(ALLOC_IN_RC(e_reg));
  4911   match(RegI);
  4912   match(xRegI);
  4913   match(eAXRegI);
  4914   match(eBXRegI);
  4915   match(eCXRegI);
  4916   match(eDXRegI);
  4917   match(eDIRegI);
  4918   match(eSIRegI);
  4920   format %{ %}
  4921   interface(REG_INTER);
  4922 %}
  4924 // Subset of Integer Register
  4925 operand xRegI(eRegI reg) %{
  4926   constraint(ALLOC_IN_RC(x_reg));
  4927   match(reg);
  4928   match(eAXRegI);
  4929   match(eBXRegI);
  4930   match(eCXRegI);
  4931   match(eDXRegI);
  4933   format %{ %}
  4934   interface(REG_INTER);
  4935 %}
  4937 // Special Registers
  4938 operand eAXRegI(xRegI reg) %{
  4939   constraint(ALLOC_IN_RC(eax_reg));
  4940   match(reg);
  4941   match(eRegI);
  4943   format %{ "EAX" %}
  4944   interface(REG_INTER);
  4945 %}
  4947 // Special Registers
  4948 operand eBXRegI(xRegI reg) %{
  4949   constraint(ALLOC_IN_RC(ebx_reg));
  4950   match(reg);
  4951   match(eRegI);
  4953   format %{ "EBX" %}
  4954   interface(REG_INTER);
  4955 %}
  4957 operand eCXRegI(xRegI reg) %{
  4958   constraint(ALLOC_IN_RC(ecx_reg));
  4959   match(reg);
  4960   match(eRegI);
  4962   format %{ "ECX" %}
  4963   interface(REG_INTER);
  4964 %}
  4966 operand eDXRegI(xRegI reg) %{
  4967   constraint(ALLOC_IN_RC(edx_reg));
  4968   match(reg);
  4969   match(eRegI);
  4971   format %{ "EDX" %}
  4972   interface(REG_INTER);
  4973 %}
  4975 operand eDIRegI(xRegI reg) %{
  4976   constraint(ALLOC_IN_RC(edi_reg));
  4977   match(reg);
  4978   match(eRegI);
  4980   format %{ "EDI" %}
  4981   interface(REG_INTER);
  4982 %}
  4984 operand naxRegI() %{
  4985   constraint(ALLOC_IN_RC(nax_reg));
  4986   match(RegI);
  4987   match(eCXRegI);
  4988   match(eDXRegI);
  4989   match(eSIRegI);
  4990   match(eDIRegI);
  4992   format %{ %}
  4993   interface(REG_INTER);
  4994 %}
  4996 operand nadxRegI() %{
  4997   constraint(ALLOC_IN_RC(nadx_reg));
  4998   match(RegI);
  4999   match(eBXRegI);
  5000   match(eCXRegI);
  5001   match(eSIRegI);
  5002   match(eDIRegI);
  5004   format %{ %}
  5005   interface(REG_INTER);
  5006 %}
  5008 operand ncxRegI() %{
  5009   constraint(ALLOC_IN_RC(ncx_reg));
  5010   match(RegI);
  5011   match(eAXRegI);
  5012   match(eDXRegI);
  5013   match(eSIRegI);
  5014   match(eDIRegI);
  5016   format %{ %}
  5017   interface(REG_INTER);
  5018 %}
  5020 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  5021 // //
  5022 operand eSIRegI(xRegI reg) %{
  5023    constraint(ALLOC_IN_RC(esi_reg));
  5024    match(reg);
  5025    match(eRegI);
  5027    format %{ "ESI" %}
  5028    interface(REG_INTER);
  5029 %}
  5031 // Pointer Register
  5032 operand anyRegP() %{
  5033   constraint(ALLOC_IN_RC(any_reg));
  5034   match(RegP);
  5035   match(eAXRegP);
  5036   match(eBXRegP);
  5037   match(eCXRegP);
  5038   match(eDIRegP);
  5039   match(eRegP);
  5041   format %{ %}
  5042   interface(REG_INTER);
  5043 %}
  5045 operand eRegP() %{
  5046   constraint(ALLOC_IN_RC(e_reg));
  5047   match(RegP);
  5048   match(eAXRegP);
  5049   match(eBXRegP);
  5050   match(eCXRegP);
  5051   match(eDIRegP);
  5053   format %{ %}
  5054   interface(REG_INTER);
  5055 %}
  5057 // On windows95, EBP is not safe to use for implicit null tests.
  5058 operand eRegP_no_EBP() %{
  5059   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5060   match(RegP);
  5061   match(eAXRegP);
  5062   match(eBXRegP);
  5063   match(eCXRegP);
  5064   match(eDIRegP);
  5066   op_cost(100);
  5067   format %{ %}
  5068   interface(REG_INTER);
  5069 %}
  5071 operand naxRegP() %{
  5072   constraint(ALLOC_IN_RC(nax_reg));
  5073   match(RegP);
  5074   match(eBXRegP);
  5075   match(eDXRegP);
  5076   match(eCXRegP);
  5077   match(eSIRegP);
  5078   match(eDIRegP);
  5080   format %{ %}
  5081   interface(REG_INTER);
  5082 %}
  5084 operand nabxRegP() %{
  5085   constraint(ALLOC_IN_RC(nabx_reg));
  5086   match(RegP);
  5087   match(eCXRegP);
  5088   match(eDXRegP);
  5089   match(eSIRegP);
  5090   match(eDIRegP);
  5092   format %{ %}
  5093   interface(REG_INTER);
  5094 %}
  5096 operand pRegP() %{
  5097   constraint(ALLOC_IN_RC(p_reg));
  5098   match(RegP);
  5099   match(eBXRegP);
  5100   match(eDXRegP);
  5101   match(eSIRegP);
  5102   match(eDIRegP);
  5104   format %{ %}
  5105   interface(REG_INTER);
  5106 %}
  5108 // Special Registers
  5109 // Return a pointer value
  5110 operand eAXRegP(eRegP reg) %{
  5111   constraint(ALLOC_IN_RC(eax_reg));
  5112   match(reg);
  5113   format %{ "EAX" %}
  5114   interface(REG_INTER);
  5115 %}
  5117 // Used in AtomicAdd
  5118 operand eBXRegP(eRegP reg) %{
  5119   constraint(ALLOC_IN_RC(ebx_reg));
  5120   match(reg);
  5121   format %{ "EBX" %}
  5122   interface(REG_INTER);
  5123 %}
  5125 // Tail-call (interprocedural jump) to interpreter
  5126 operand eCXRegP(eRegP reg) %{
  5127   constraint(ALLOC_IN_RC(ecx_reg));
  5128   match(reg);
  5129   format %{ "ECX" %}
  5130   interface(REG_INTER);
  5131 %}
  5133 operand eSIRegP(eRegP reg) %{
  5134   constraint(ALLOC_IN_RC(esi_reg));
  5135   match(reg);
  5136   format %{ "ESI" %}
  5137   interface(REG_INTER);
  5138 %}
  5140 // Used in rep stosw
  5141 operand eDIRegP(eRegP reg) %{
  5142   constraint(ALLOC_IN_RC(edi_reg));
  5143   match(reg);
  5144   format %{ "EDI" %}
  5145   interface(REG_INTER);
  5146 %}
  5148 operand eBPRegP() %{
  5149   constraint(ALLOC_IN_RC(ebp_reg));
  5150   match(RegP);
  5151   format %{ "EBP" %}
  5152   interface(REG_INTER);
  5153 %}
  5155 operand eRegL() %{
  5156   constraint(ALLOC_IN_RC(long_reg));
  5157   match(RegL);
  5158   match(eADXRegL);
  5160   format %{ %}
  5161   interface(REG_INTER);
  5162 %}
  5164 operand eADXRegL( eRegL reg ) %{
  5165   constraint(ALLOC_IN_RC(eadx_reg));
  5166   match(reg);
  5168   format %{ "EDX:EAX" %}
  5169   interface(REG_INTER);
  5170 %}
  5172 operand eBCXRegL( eRegL reg ) %{
  5173   constraint(ALLOC_IN_RC(ebcx_reg));
  5174   match(reg);
  5176   format %{ "EBX:ECX" %}
  5177   interface(REG_INTER);
  5178 %}
  5180 // Special case for integer high multiply
  5181 operand eADXRegL_low_only() %{
  5182   constraint(ALLOC_IN_RC(eadx_reg));
  5183   match(RegL);
  5185   format %{ "EAX" %}
  5186   interface(REG_INTER);
  5187 %}
  5189 // Flags register, used as output of compare instructions
  5190 operand eFlagsReg() %{
  5191   constraint(ALLOC_IN_RC(int_flags));
  5192   match(RegFlags);
  5194   format %{ "EFLAGS" %}
  5195   interface(REG_INTER);
  5196 %}
  5198 // Flags register, used as output of FLOATING POINT compare instructions
  5199 operand eFlagsRegU() %{
  5200   constraint(ALLOC_IN_RC(int_flags));
  5201   match(RegFlags);
  5203   format %{ "EFLAGS_U" %}
  5204   interface(REG_INTER);
  5205 %}
  5207 operand eFlagsRegUCF() %{
  5208   constraint(ALLOC_IN_RC(int_flags));
  5209   match(RegFlags);
  5210   predicate(false);
  5212   format %{ "EFLAGS_U_CF" %}
  5213   interface(REG_INTER);
  5214 %}
  5216 // Condition Code Register used by long compare
  5217 operand flagsReg_long_LTGE() %{
  5218   constraint(ALLOC_IN_RC(int_flags));
  5219   match(RegFlags);
  5220   format %{ "FLAGS_LTGE" %}
  5221   interface(REG_INTER);
  5222 %}
  5223 operand flagsReg_long_EQNE() %{
  5224   constraint(ALLOC_IN_RC(int_flags));
  5225   match(RegFlags);
  5226   format %{ "FLAGS_EQNE" %}
  5227   interface(REG_INTER);
  5228 %}
  5229 operand flagsReg_long_LEGT() %{
  5230   constraint(ALLOC_IN_RC(int_flags));
  5231   match(RegFlags);
  5232   format %{ "FLAGS_LEGT" %}
  5233   interface(REG_INTER);
  5234 %}
  5236 // Float register operands
  5237 operand regD() %{
  5238   predicate( UseSSE < 2 );
  5239   constraint(ALLOC_IN_RC(dbl_reg));
  5240   match(RegD);
  5241   match(regDPR1);
  5242   match(regDPR2);
  5243   format %{ %}
  5244   interface(REG_INTER);
  5245 %}
  5247 operand regDPR1(regD reg) %{
  5248   predicate( UseSSE < 2 );
  5249   constraint(ALLOC_IN_RC(dbl_reg0));
  5250   match(reg);
  5251   format %{ "FPR1" %}
  5252   interface(REG_INTER);
  5253 %}
  5255 operand regDPR2(regD reg) %{
  5256   predicate( UseSSE < 2 );
  5257   constraint(ALLOC_IN_RC(dbl_reg1));
  5258   match(reg);
  5259   format %{ "FPR2" %}
  5260   interface(REG_INTER);
  5261 %}
  5263 operand regnotDPR1(regD reg) %{
  5264   predicate( UseSSE < 2 );
  5265   constraint(ALLOC_IN_RC(dbl_notreg0));
  5266   match(reg);
  5267   format %{ %}
  5268   interface(REG_INTER);
  5269 %}
  5271 // XMM Double register operands
  5272 operand regXD() %{
  5273   predicate( UseSSE>=2 );
  5274   constraint(ALLOC_IN_RC(xdb_reg));
  5275   match(RegD);
  5276   match(regXD6);
  5277   match(regXD7);
  5278   format %{ %}
  5279   interface(REG_INTER);
  5280 %}
  5282 // XMM6 double register operands
  5283 operand regXD6(regXD reg) %{
  5284   predicate( UseSSE>=2 );
  5285   constraint(ALLOC_IN_RC(xdb_reg6));
  5286   match(reg);
  5287   format %{ "XMM6" %}
  5288   interface(REG_INTER);
  5289 %}
  5291 // XMM7 double register operands
  5292 operand regXD7(regXD reg) %{
  5293   predicate( UseSSE>=2 );
  5294   constraint(ALLOC_IN_RC(xdb_reg7));
  5295   match(reg);
  5296   format %{ "XMM7" %}
  5297   interface(REG_INTER);
  5298 %}
  5300 // Float register operands
  5301 operand regF() %{
  5302   predicate( UseSSE < 2 );
  5303   constraint(ALLOC_IN_RC(flt_reg));
  5304   match(RegF);
  5305   match(regFPR1);
  5306   format %{ %}
  5307   interface(REG_INTER);
  5308 %}
  5310 // Float register operands
  5311 operand regFPR1(regF reg) %{
  5312   predicate( UseSSE < 2 );
  5313   constraint(ALLOC_IN_RC(flt_reg0));
  5314   match(reg);
  5315   format %{ "FPR1" %}
  5316   interface(REG_INTER);
  5317 %}
  5319 // XMM register operands
  5320 operand regX() %{
  5321   predicate( UseSSE>=1 );
  5322   constraint(ALLOC_IN_RC(xmm_reg));
  5323   match(RegF);
  5324   format %{ %}
  5325   interface(REG_INTER);
  5326 %}
  5329 //----------Memory Operands----------------------------------------------------
  5330 // Direct Memory Operand
  5331 operand direct(immP addr) %{
  5332   match(addr);
  5334   format %{ "[$addr]" %}
  5335   interface(MEMORY_INTER) %{
  5336     base(0xFFFFFFFF);
  5337     index(0x4);
  5338     scale(0x0);
  5339     disp($addr);
  5340   %}
  5341 %}
  5343 // Indirect Memory Operand
  5344 operand indirect(eRegP reg) %{
  5345   constraint(ALLOC_IN_RC(e_reg));
  5346   match(reg);
  5348   format %{ "[$reg]" %}
  5349   interface(MEMORY_INTER) %{
  5350     base($reg);
  5351     index(0x4);
  5352     scale(0x0);
  5353     disp(0x0);
  5354   %}
  5355 %}
  5357 // Indirect Memory Plus Short Offset Operand
  5358 operand indOffset8(eRegP reg, immI8 off) %{
  5359   match(AddP reg off);
  5361   format %{ "[$reg + $off]" %}
  5362   interface(MEMORY_INTER) %{
  5363     base($reg);
  5364     index(0x4);
  5365     scale(0x0);
  5366     disp($off);
  5367   %}
  5368 %}
  5370 // Indirect Memory Plus Long Offset Operand
  5371 operand indOffset32(eRegP reg, immI off) %{
  5372   match(AddP reg off);
  5374   format %{ "[$reg + $off]" %}
  5375   interface(MEMORY_INTER) %{
  5376     base($reg);
  5377     index(0x4);
  5378     scale(0x0);
  5379     disp($off);
  5380   %}
  5381 %}
  5383 // Indirect Memory Plus Long Offset Operand
  5384 operand indOffset32X(eRegI reg, immP off) %{
  5385   match(AddP off reg);
  5387   format %{ "[$reg + $off]" %}
  5388   interface(MEMORY_INTER) %{
  5389     base($reg);
  5390     index(0x4);
  5391     scale(0x0);
  5392     disp($off);
  5393   %}
  5394 %}
  5396 // Indirect Memory Plus Index Register Plus Offset Operand
  5397 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5398   match(AddP (AddP reg ireg) off);
  5400   op_cost(10);
  5401   format %{"[$reg + $off + $ireg]" %}
  5402   interface(MEMORY_INTER) %{
  5403     base($reg);
  5404     index($ireg);
  5405     scale(0x0);
  5406     disp($off);
  5407   %}
  5408 %}
  5410 // Indirect Memory Plus Index Register Plus Offset Operand
  5411 operand indIndex(eRegP reg, eRegI ireg) %{
  5412   match(AddP reg ireg);
  5414   op_cost(10);
  5415   format %{"[$reg + $ireg]" %}
  5416   interface(MEMORY_INTER) %{
  5417     base($reg);
  5418     index($ireg);
  5419     scale(0x0);
  5420     disp(0x0);
  5421   %}
  5422 %}
  5424 // // -------------------------------------------------------------------------
  5425 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5426 // // -------------------------------------------------------------------------
  5427 // // Scaled Memory Operands
  5428 // // Indirect Memory Times Scale Plus Offset Operand
  5429 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5430 //   match(AddP off (LShiftI ireg scale));
  5431 //
  5432 //   op_cost(10);
  5433 //   format %{"[$off + $ireg << $scale]" %}
  5434 //   interface(MEMORY_INTER) %{
  5435 //     base(0x4);
  5436 //     index($ireg);
  5437 //     scale($scale);
  5438 //     disp($off);
  5439 //   %}
  5440 // %}
  5442 // Indirect Memory Times Scale Plus Index Register
  5443 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5444   match(AddP reg (LShiftI ireg scale));
  5446   op_cost(10);
  5447   format %{"[$reg + $ireg << $scale]" %}
  5448   interface(MEMORY_INTER) %{
  5449     base($reg);
  5450     index($ireg);
  5451     scale($scale);
  5452     disp(0x0);
  5453   %}
  5454 %}
  5456 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5457 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5458   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5460   op_cost(10);
  5461   format %{"[$reg + $off + $ireg << $scale]" %}
  5462   interface(MEMORY_INTER) %{
  5463     base($reg);
  5464     index($ireg);
  5465     scale($scale);
  5466     disp($off);
  5467   %}
  5468 %}
  5470 //----------Load Long Memory Operands------------------------------------------
  5471 // The load-long idiom will use it's address expression again after loading
  5472 // the first word of the long.  If the load-long destination overlaps with
  5473 // registers used in the addressing expression, the 2nd half will be loaded
  5474 // from a clobbered address.  Fix this by requiring that load-long use
  5475 // address registers that do not overlap with the load-long target.
  5477 // load-long support
  5478 operand load_long_RegP() %{
  5479   constraint(ALLOC_IN_RC(esi_reg));
  5480   match(RegP);
  5481   match(eSIRegP);
  5482   op_cost(100);
  5483   format %{  %}
  5484   interface(REG_INTER);
  5485 %}
  5487 // Indirect Memory Operand Long
  5488 operand load_long_indirect(load_long_RegP reg) %{
  5489   constraint(ALLOC_IN_RC(esi_reg));
  5490   match(reg);
  5492   format %{ "[$reg]" %}
  5493   interface(MEMORY_INTER) %{
  5494     base($reg);
  5495     index(0x4);
  5496     scale(0x0);
  5497     disp(0x0);
  5498   %}
  5499 %}
  5501 // Indirect Memory Plus Long Offset Operand
  5502 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5503   match(AddP reg off);
  5505   format %{ "[$reg + $off]" %}
  5506   interface(MEMORY_INTER) %{
  5507     base($reg);
  5508     index(0x4);
  5509     scale(0x0);
  5510     disp($off);
  5511   %}
  5512 %}
  5514 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5517 //----------Special Memory Operands--------------------------------------------
  5518 // Stack Slot Operand - This operand is used for loading and storing temporary
  5519 //                      values on the stack where a match requires a value to
  5520 //                      flow through memory.
  5521 operand stackSlotP(sRegP reg) %{
  5522   constraint(ALLOC_IN_RC(stack_slots));
  5523   // No match rule because this operand is only generated in matching
  5524   format %{ "[$reg]" %}
  5525   interface(MEMORY_INTER) %{
  5526     base(0x4);   // ESP
  5527     index(0x4);  // No Index
  5528     scale(0x0);  // No Scale
  5529     disp($reg);  // Stack Offset
  5530   %}
  5531 %}
  5533 operand stackSlotI(sRegI reg) %{
  5534   constraint(ALLOC_IN_RC(stack_slots));
  5535   // No match rule because this operand is only generated in matching
  5536   format %{ "[$reg]" %}
  5537   interface(MEMORY_INTER) %{
  5538     base(0x4);   // ESP
  5539     index(0x4);  // No Index
  5540     scale(0x0);  // No Scale
  5541     disp($reg);  // Stack Offset
  5542   %}
  5543 %}
  5545 operand stackSlotF(sRegF reg) %{
  5546   constraint(ALLOC_IN_RC(stack_slots));
  5547   // No match rule because this operand is only generated in matching
  5548   format %{ "[$reg]" %}
  5549   interface(MEMORY_INTER) %{
  5550     base(0x4);   // ESP
  5551     index(0x4);  // No Index
  5552     scale(0x0);  // No Scale
  5553     disp($reg);  // Stack Offset
  5554   %}
  5555 %}
  5557 operand stackSlotD(sRegD reg) %{
  5558   constraint(ALLOC_IN_RC(stack_slots));
  5559   // No match rule because this operand is only generated in matching
  5560   format %{ "[$reg]" %}
  5561   interface(MEMORY_INTER) %{
  5562     base(0x4);   // ESP
  5563     index(0x4);  // No Index
  5564     scale(0x0);  // No Scale
  5565     disp($reg);  // Stack Offset
  5566   %}
  5567 %}
  5569 operand stackSlotL(sRegL reg) %{
  5570   constraint(ALLOC_IN_RC(stack_slots));
  5571   // No match rule because this operand is only generated in matching
  5572   format %{ "[$reg]" %}
  5573   interface(MEMORY_INTER) %{
  5574     base(0x4);   // ESP
  5575     index(0x4);  // No Index
  5576     scale(0x0);  // No Scale
  5577     disp($reg);  // Stack Offset
  5578   %}
  5579 %}
  5581 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5582 // Indirect Memory Operand
  5583 operand indirect_win95_safe(eRegP_no_EBP reg)
  5584 %{
  5585   constraint(ALLOC_IN_RC(e_reg));
  5586   match(reg);
  5588   op_cost(100);
  5589   format %{ "[$reg]" %}
  5590   interface(MEMORY_INTER) %{
  5591     base($reg);
  5592     index(0x4);
  5593     scale(0x0);
  5594     disp(0x0);
  5595   %}
  5596 %}
  5598 // Indirect Memory Plus Short Offset Operand
  5599 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5600 %{
  5601   match(AddP reg off);
  5603   op_cost(100);
  5604   format %{ "[$reg + $off]" %}
  5605   interface(MEMORY_INTER) %{
  5606     base($reg);
  5607     index(0x4);
  5608     scale(0x0);
  5609     disp($off);
  5610   %}
  5611 %}
  5613 // Indirect Memory Plus Long Offset Operand
  5614 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5615 %{
  5616   match(AddP reg off);
  5618   op_cost(100);
  5619   format %{ "[$reg + $off]" %}
  5620   interface(MEMORY_INTER) %{
  5621     base($reg);
  5622     index(0x4);
  5623     scale(0x0);
  5624     disp($off);
  5625   %}
  5626 %}
  5628 // Indirect Memory Plus Index Register Plus Offset Operand
  5629 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5630 %{
  5631   match(AddP (AddP reg ireg) off);
  5633   op_cost(100);
  5634   format %{"[$reg + $off + $ireg]" %}
  5635   interface(MEMORY_INTER) %{
  5636     base($reg);
  5637     index($ireg);
  5638     scale(0x0);
  5639     disp($off);
  5640   %}
  5641 %}
  5643 // Indirect Memory Times Scale Plus Index Register
  5644 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5645 %{
  5646   match(AddP reg (LShiftI ireg scale));
  5648   op_cost(100);
  5649   format %{"[$reg + $ireg << $scale]" %}
  5650   interface(MEMORY_INTER) %{
  5651     base($reg);
  5652     index($ireg);
  5653     scale($scale);
  5654     disp(0x0);
  5655   %}
  5656 %}
  5658 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5659 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5660 %{
  5661   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5663   op_cost(100);
  5664   format %{"[$reg + $off + $ireg << $scale]" %}
  5665   interface(MEMORY_INTER) %{
  5666     base($reg);
  5667     index($ireg);
  5668     scale($scale);
  5669     disp($off);
  5670   %}
  5671 %}
  5673 //----------Conditional Branch Operands----------------------------------------
  5674 // Comparison Op  - This is the operation of the comparison, and is limited to
  5675 //                  the following set of codes:
  5676 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5677 //
  5678 // Other attributes of the comparison, such as unsignedness, are specified
  5679 // by the comparison instruction that sets a condition code flags register.
  5680 // That result is represented by a flags operand whose subtype is appropriate
  5681 // to the unsignedness (etc.) of the comparison.
  5682 //
  5683 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5684 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5685 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5687 // Comparision Code
  5688 operand cmpOp() %{
  5689   match(Bool);
  5691   format %{ "" %}
  5692   interface(COND_INTER) %{
  5693     equal(0x4, "e");
  5694     not_equal(0x5, "ne");
  5695     less(0xC, "l");
  5696     greater_equal(0xD, "ge");
  5697     less_equal(0xE, "le");
  5698     greater(0xF, "g");
  5699   %}
  5700 %}
  5702 // Comparison Code, unsigned compare.  Used by FP also, with
  5703 // C2 (unordered) turned into GT or LT already.  The other bits
  5704 // C0 and C3 are turned into Carry & Zero flags.
  5705 operand cmpOpU() %{
  5706   match(Bool);
  5708   format %{ "" %}
  5709   interface(COND_INTER) %{
  5710     equal(0x4, "e");
  5711     not_equal(0x5, "ne");
  5712     less(0x2, "b");
  5713     greater_equal(0x3, "nb");
  5714     less_equal(0x6, "be");
  5715     greater(0x7, "nbe");
  5716   %}
  5717 %}
  5719 // Floating comparisons that don't require any fixup for the unordered case
  5720 operand cmpOpUCF() %{
  5721   match(Bool);
  5722   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5723             n->as_Bool()->_test._test == BoolTest::ge ||
  5724             n->as_Bool()->_test._test == BoolTest::le ||
  5725             n->as_Bool()->_test._test == BoolTest::gt);
  5726   format %{ "" %}
  5727   interface(COND_INTER) %{
  5728     equal(0x4, "e");
  5729     not_equal(0x5, "ne");
  5730     less(0x2, "b");
  5731     greater_equal(0x3, "nb");
  5732     less_equal(0x6, "be");
  5733     greater(0x7, "nbe");
  5734   %}
  5735 %}
  5738 // Floating comparisons that can be fixed up with extra conditional jumps
  5739 operand cmpOpUCF2() %{
  5740   match(Bool);
  5741   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5742             n->as_Bool()->_test._test == BoolTest::eq);
  5743   format %{ "" %}
  5744   interface(COND_INTER) %{
  5745     equal(0x4, "e");
  5746     not_equal(0x5, "ne");
  5747     less(0x2, "b");
  5748     greater_equal(0x3, "nb");
  5749     less_equal(0x6, "be");
  5750     greater(0x7, "nbe");
  5751   %}
  5752 %}
  5754 // Comparison Code for FP conditional move
  5755 operand cmpOp_fcmov() %{
  5756   match(Bool);
  5758   format %{ "" %}
  5759   interface(COND_INTER) %{
  5760     equal        (0x0C8);
  5761     not_equal    (0x1C8);
  5762     less         (0x0C0);
  5763     greater_equal(0x1C0);
  5764     less_equal   (0x0D0);
  5765     greater      (0x1D0);
  5766   %}
  5767 %}
  5769 // Comparision Code used in long compares
  5770 operand cmpOp_commute() %{
  5771   match(Bool);
  5773   format %{ "" %}
  5774   interface(COND_INTER) %{
  5775     equal(0x4, "e");
  5776     not_equal(0x5, "ne");
  5777     less(0xF, "g");
  5778     greater_equal(0xE, "le");
  5779     less_equal(0xD, "ge");
  5780     greater(0xC, "l");
  5781   %}
  5782 %}
  5784 //----------OPERAND CLASSES----------------------------------------------------
  5785 // Operand Classes are groups of operands that are used as to simplify
  5786 // instruction definitions by not requiring the AD writer to specify separate
  5787 // instructions for every form of operand when the instruction accepts
  5788 // multiple operand types with the same basic encoding and format.  The classic
  5789 // case of this is memory operands.
  5791 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5792                indIndex, indIndexScale, indIndexScaleOffset);
  5794 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5795 // This means some kind of offset is always required and you cannot use
  5796 // an oop as the offset (done when working on static globals).
  5797 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5798                     indIndex, indIndexScale, indIndexScaleOffset);
  5801 //----------PIPELINE-----------------------------------------------------------
  5802 // Rules which define the behavior of the target architectures pipeline.
  5803 pipeline %{
  5805 //----------ATTRIBUTES---------------------------------------------------------
  5806 attributes %{
  5807   variable_size_instructions;        // Fixed size instructions
  5808   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5809   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5810   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5811   instruction_fetch_units = 1;       // of 16 bytes
  5813   // List of nop instructions
  5814   nops( MachNop );
  5815 %}
  5817 //----------RESOURCES----------------------------------------------------------
  5818 // Resources are the functional units available to the machine
  5820 // Generic P2/P3 pipeline
  5821 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5822 // 3 instructions decoded per cycle.
  5823 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5824 // 2 ALU op, only ALU0 handles mul/div instructions.
  5825 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5826            MS0, MS1, MEM = MS0 | MS1,
  5827            BR, FPU,
  5828            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5830 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5831 // Pipeline Description specifies the stages in the machine's pipeline
  5833 // Generic P2/P3 pipeline
  5834 pipe_desc(S0, S1, S2, S3, S4, S5);
  5836 //----------PIPELINE CLASSES---------------------------------------------------
  5837 // Pipeline Classes describe the stages in which input and output are
  5838 // referenced by the hardware pipeline.
  5840 // Naming convention: ialu or fpu
  5841 // Then: _reg
  5842 // Then: _reg if there is a 2nd register
  5843 // Then: _long if it's a pair of instructions implementing a long
  5844 // Then: _fat if it requires the big decoder
  5845 //   Or: _mem if it requires the big decoder and a memory unit.
  5847 // Integer ALU reg operation
  5848 pipe_class ialu_reg(eRegI dst) %{
  5849     single_instruction;
  5850     dst    : S4(write);
  5851     dst    : S3(read);
  5852     DECODE : S0;        // any decoder
  5853     ALU    : S3;        // any alu
  5854 %}
  5856 // Long ALU reg operation
  5857 pipe_class ialu_reg_long(eRegL dst) %{
  5858     instruction_count(2);
  5859     dst    : S4(write);
  5860     dst    : S3(read);
  5861     DECODE : S0(2);     // any 2 decoders
  5862     ALU    : S3(2);     // both alus
  5863 %}
  5865 // Integer ALU reg operation using big decoder
  5866 pipe_class ialu_reg_fat(eRegI dst) %{
  5867     single_instruction;
  5868     dst    : S4(write);
  5869     dst    : S3(read);
  5870     D0     : S0;        // big decoder only
  5871     ALU    : S3;        // any alu
  5872 %}
  5874 // Long ALU reg operation using big decoder
  5875 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5876     instruction_count(2);
  5877     dst    : S4(write);
  5878     dst    : S3(read);
  5879     D0     : S0(2);     // big decoder only; twice
  5880     ALU    : S3(2);     // any 2 alus
  5881 %}
  5883 // Integer ALU reg-reg operation
  5884 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5885     single_instruction;
  5886     dst    : S4(write);
  5887     src    : S3(read);
  5888     DECODE : S0;        // any decoder
  5889     ALU    : S3;        // any alu
  5890 %}
  5892 // Long ALU reg-reg operation
  5893 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5894     instruction_count(2);
  5895     dst    : S4(write);
  5896     src    : S3(read);
  5897     DECODE : S0(2);     // any 2 decoders
  5898     ALU    : S3(2);     // both alus
  5899 %}
  5901 // Integer ALU reg-reg operation
  5902 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5903     single_instruction;
  5904     dst    : S4(write);
  5905     src    : S3(read);
  5906     D0     : S0;        // big decoder only
  5907     ALU    : S3;        // any alu
  5908 %}
  5910 // Long ALU reg-reg operation
  5911 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5912     instruction_count(2);
  5913     dst    : S4(write);
  5914     src    : S3(read);
  5915     D0     : S0(2);     // big decoder only; twice
  5916     ALU    : S3(2);     // both alus
  5917 %}
  5919 // Integer ALU reg-mem operation
  5920 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5921     single_instruction;
  5922     dst    : S5(write);
  5923     mem    : S3(read);
  5924     D0     : S0;        // big decoder only
  5925     ALU    : S4;        // any alu
  5926     MEM    : S3;        // any mem
  5927 %}
  5929 // Long ALU reg-mem operation
  5930 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5931     instruction_count(2);
  5932     dst    : S5(write);
  5933     mem    : S3(read);
  5934     D0     : S0(2);     // big decoder only; twice
  5935     ALU    : S4(2);     // any 2 alus
  5936     MEM    : S3(2);     // both mems
  5937 %}
  5939 // Integer mem operation (prefetch)
  5940 pipe_class ialu_mem(memory mem)
  5941 %{
  5942     single_instruction;
  5943     mem    : S3(read);
  5944     D0     : S0;        // big decoder only
  5945     MEM    : S3;        // any mem
  5946 %}
  5948 // Integer Store to Memory
  5949 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5950     single_instruction;
  5951     mem    : S3(read);
  5952     src    : S5(read);
  5953     D0     : S0;        // big decoder only
  5954     ALU    : S4;        // any alu
  5955     MEM    : S3;
  5956 %}
  5958 // Long Store to Memory
  5959 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5960     instruction_count(2);
  5961     mem    : S3(read);
  5962     src    : S5(read);
  5963     D0     : S0(2);     // big decoder only; twice
  5964     ALU    : S4(2);     // any 2 alus
  5965     MEM    : S3(2);     // Both mems
  5966 %}
  5968 // Integer Store to Memory
  5969 pipe_class ialu_mem_imm(memory mem) %{
  5970     single_instruction;
  5971     mem    : S3(read);
  5972     D0     : S0;        // big decoder only
  5973     ALU    : S4;        // any alu
  5974     MEM    : S3;
  5975 %}
  5977 // Integer ALU0 reg-reg operation
  5978 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5979     single_instruction;
  5980     dst    : S4(write);
  5981     src    : S3(read);
  5982     D0     : S0;        // Big decoder only
  5983     ALU0   : S3;        // only alu0
  5984 %}
  5986 // Integer ALU0 reg-mem operation
  5987 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5988     single_instruction;
  5989     dst    : S5(write);
  5990     mem    : S3(read);
  5991     D0     : S0;        // big decoder only
  5992     ALU0   : S4;        // ALU0 only
  5993     MEM    : S3;        // any mem
  5994 %}
  5996 // Integer ALU reg-reg operation
  5997 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5998     single_instruction;
  5999     cr     : S4(write);
  6000     src1   : S3(read);
  6001     src2   : S3(read);
  6002     DECODE : S0;        // any decoder
  6003     ALU    : S3;        // any alu
  6004 %}
  6006 // Integer ALU reg-imm operation
  6007 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  6008     single_instruction;
  6009     cr     : S4(write);
  6010     src1   : S3(read);
  6011     DECODE : S0;        // any decoder
  6012     ALU    : S3;        // any alu
  6013 %}
  6015 // Integer ALU reg-mem operation
  6016 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  6017     single_instruction;
  6018     cr     : S4(write);
  6019     src1   : S3(read);
  6020     src2   : S3(read);
  6021     D0     : S0;        // big decoder only
  6022     ALU    : S4;        // any alu
  6023     MEM    : S3;
  6024 %}
  6026 // Conditional move reg-reg
  6027 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  6028     instruction_count(4);
  6029     y      : S4(read);
  6030     q      : S3(read);
  6031     p      : S3(read);
  6032     DECODE : S0(4);     // any decoder
  6033 %}
  6035 // Conditional move reg-reg
  6036 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  6037     single_instruction;
  6038     dst    : S4(write);
  6039     src    : S3(read);
  6040     cr     : S3(read);
  6041     DECODE : S0;        // any decoder
  6042 %}
  6044 // Conditional move reg-mem
  6045 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  6046     single_instruction;
  6047     dst    : S4(write);
  6048     src    : S3(read);
  6049     cr     : S3(read);
  6050     DECODE : S0;        // any decoder
  6051     MEM    : S3;
  6052 %}
  6054 // Conditional move reg-reg long
  6055 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6056     single_instruction;
  6057     dst    : S4(write);
  6058     src    : S3(read);
  6059     cr     : S3(read);
  6060     DECODE : S0(2);     // any 2 decoders
  6061 %}
  6063 // Conditional move double reg-reg
  6064 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6065     single_instruction;
  6066     dst    : S4(write);
  6067     src    : S3(read);
  6068     cr     : S3(read);
  6069     DECODE : S0;        // any decoder
  6070 %}
  6072 // Float reg-reg operation
  6073 pipe_class fpu_reg(regD dst) %{
  6074     instruction_count(2);
  6075     dst    : S3(read);
  6076     DECODE : S0(2);     // any 2 decoders
  6077     FPU    : S3;
  6078 %}
  6080 // Float reg-reg operation
  6081 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6082     instruction_count(2);
  6083     dst    : S4(write);
  6084     src    : S3(read);
  6085     DECODE : S0(2);     // any 2 decoders
  6086     FPU    : S3;
  6087 %}
  6089 // Float reg-reg operation
  6090 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6091     instruction_count(3);
  6092     dst    : S4(write);
  6093     src1   : S3(read);
  6094     src2   : S3(read);
  6095     DECODE : S0(3);     // any 3 decoders
  6096     FPU    : S3(2);
  6097 %}
  6099 // Float reg-reg operation
  6100 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6101     instruction_count(4);
  6102     dst    : S4(write);
  6103     src1   : S3(read);
  6104     src2   : S3(read);
  6105     src3   : S3(read);
  6106     DECODE : S0(4);     // any 3 decoders
  6107     FPU    : S3(2);
  6108 %}
  6110 // Float reg-reg operation
  6111 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6112     instruction_count(4);
  6113     dst    : S4(write);
  6114     src1   : S3(read);
  6115     src2   : S3(read);
  6116     src3   : S3(read);
  6117     DECODE : S1(3);     // any 3 decoders
  6118     D0     : S0;        // Big decoder only
  6119     FPU    : S3(2);
  6120     MEM    : S3;
  6121 %}
  6123 // Float reg-mem operation
  6124 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6125     instruction_count(2);
  6126     dst    : S5(write);
  6127     mem    : S3(read);
  6128     D0     : S0;        // big decoder only
  6129     DECODE : S1;        // any decoder for FPU POP
  6130     FPU    : S4;
  6131     MEM    : S3;        // any mem
  6132 %}
  6134 // Float reg-mem operation
  6135 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6136     instruction_count(3);
  6137     dst    : S5(write);
  6138     src1   : S3(read);
  6139     mem    : S3(read);
  6140     D0     : S0;        // big decoder only
  6141     DECODE : S1(2);     // any decoder for FPU POP
  6142     FPU    : S4;
  6143     MEM    : S3;        // any mem
  6144 %}
  6146 // Float mem-reg operation
  6147 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6148     instruction_count(2);
  6149     src    : S5(read);
  6150     mem    : S3(read);
  6151     DECODE : S0;        // any decoder for FPU PUSH
  6152     D0     : S1;        // big decoder only
  6153     FPU    : S4;
  6154     MEM    : S3;        // any mem
  6155 %}
  6157 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6158     instruction_count(3);
  6159     src1   : S3(read);
  6160     src2   : S3(read);
  6161     mem    : S3(read);
  6162     DECODE : S0(2);     // any decoder for FPU PUSH
  6163     D0     : S1;        // big decoder only
  6164     FPU    : S4;
  6165     MEM    : S3;        // any mem
  6166 %}
  6168 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6169     instruction_count(3);
  6170     src1   : S3(read);
  6171     src2   : S3(read);
  6172     mem    : S4(read);
  6173     DECODE : S0;        // any decoder for FPU PUSH
  6174     D0     : S0(2);     // big decoder only
  6175     FPU    : S4;
  6176     MEM    : S3(2);     // any mem
  6177 %}
  6179 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6180     instruction_count(2);
  6181     src1   : S3(read);
  6182     dst    : S4(read);
  6183     D0     : S0(2);     // big decoder only
  6184     MEM    : S3(2);     // any mem
  6185 %}
  6187 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6188     instruction_count(3);
  6189     src1   : S3(read);
  6190     src2   : S3(read);
  6191     dst    : S4(read);
  6192     D0     : S0(3);     // big decoder only
  6193     FPU    : S4;
  6194     MEM    : S3(3);     // any mem
  6195 %}
  6197 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6198     instruction_count(3);
  6199     src1   : S4(read);
  6200     mem    : S4(read);
  6201     DECODE : S0;        // any decoder for FPU PUSH
  6202     D0     : S0(2);     // big decoder only
  6203     FPU    : S4;
  6204     MEM    : S3(2);     // any mem
  6205 %}
  6207 // Float load constant
  6208 pipe_class fpu_reg_con(regD dst) %{
  6209     instruction_count(2);
  6210     dst    : S5(write);
  6211     D0     : S0;        // big decoder only for the load
  6212     DECODE : S1;        // any decoder for FPU POP
  6213     FPU    : S4;
  6214     MEM    : S3;        // any mem
  6215 %}
  6217 // Float load constant
  6218 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6219     instruction_count(3);
  6220     dst    : S5(write);
  6221     src    : S3(read);
  6222     D0     : S0;        // big decoder only for the load
  6223     DECODE : S1(2);     // any decoder for FPU POP
  6224     FPU    : S4;
  6225     MEM    : S3;        // any mem
  6226 %}
  6228 // UnConditional branch
  6229 pipe_class pipe_jmp( label labl ) %{
  6230     single_instruction;
  6231     BR   : S3;
  6232 %}
  6234 // Conditional branch
  6235 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6236     single_instruction;
  6237     cr    : S1(read);
  6238     BR    : S3;
  6239 %}
  6241 // Allocation idiom
  6242 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6243     instruction_count(1); force_serialization;
  6244     fixed_latency(6);
  6245     heap_ptr : S3(read);
  6246     DECODE   : S0(3);
  6247     D0       : S2;
  6248     MEM      : S3;
  6249     ALU      : S3(2);
  6250     dst      : S5(write);
  6251     BR       : S5;
  6252 %}
  6254 // Generic big/slow expanded idiom
  6255 pipe_class pipe_slow(  ) %{
  6256     instruction_count(10); multiple_bundles; force_serialization;
  6257     fixed_latency(100);
  6258     D0  : S0(2);
  6259     MEM : S3(2);
  6260 %}
  6262 // The real do-nothing guy
  6263 pipe_class empty( ) %{
  6264     instruction_count(0);
  6265 %}
  6267 // Define the class for the Nop node
  6268 define %{
  6269    MachNop = empty;
  6270 %}
  6272 %}
  6274 //----------INSTRUCTIONS-------------------------------------------------------
  6275 //
  6276 // match      -- States which machine-independent subtree may be replaced
  6277 //               by this instruction.
  6278 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6279 //               selection to identify a minimum cost tree of machine
  6280 //               instructions that matches a tree of machine-independent
  6281 //               instructions.
  6282 // format     -- A string providing the disassembly for this instruction.
  6283 //               The value of an instruction's operand may be inserted
  6284 //               by referring to it with a '$' prefix.
  6285 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6286 //               to within an encode class as $primary, $secondary, and $tertiary
  6287 //               respectively.  The primary opcode is commonly used to
  6288 //               indicate the type of machine instruction, while secondary
  6289 //               and tertiary are often used for prefix options or addressing
  6290 //               modes.
  6291 // ins_encode -- A list of encode classes with parameters. The encode class
  6292 //               name must have been defined in an 'enc_class' specification
  6293 //               in the encode section of the architecture description.
  6295 //----------BSWAP-Instruction--------------------------------------------------
  6296 instruct bytes_reverse_int(eRegI dst) %{
  6297   match(Set dst (ReverseBytesI dst));
  6299   format %{ "BSWAP  $dst" %}
  6300   opcode(0x0F, 0xC8);
  6301   ins_encode( OpcP, OpcSReg(dst) );
  6302   ins_pipe( ialu_reg );
  6303 %}
  6305 instruct bytes_reverse_long(eRegL dst) %{
  6306   match(Set dst (ReverseBytesL dst));
  6308   format %{ "BSWAP  $dst.lo\n\t"
  6309             "BSWAP  $dst.hi\n\t"
  6310             "XCHG   $dst.lo $dst.hi" %}
  6312   ins_cost(125);
  6313   ins_encode( bswap_long_bytes(dst) );
  6314   ins_pipe( ialu_reg_reg);
  6315 %}
  6317 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  6318   match(Set dst (ReverseBytesUS dst));
  6320   format %{ "BSWAP  $dst\n\t" 
  6321             "SHR    $dst,16\n\t" %}
  6322   ins_encode %{
  6323     __ bswapl($dst$$Register);
  6324     __ shrl($dst$$Register, 16); 
  6325   %}
  6326   ins_pipe( ialu_reg );
  6327 %}
  6329 instruct bytes_reverse_short(eRegI dst) %{
  6330   match(Set dst (ReverseBytesS dst));
  6332   format %{ "BSWAP  $dst\n\t" 
  6333             "SAR    $dst,16\n\t" %}
  6334   ins_encode %{
  6335     __ bswapl($dst$$Register);
  6336     __ sarl($dst$$Register, 16); 
  6337   %}
  6338   ins_pipe( ialu_reg );
  6339 %}
  6342 //---------- Zeros Count Instructions ------------------------------------------
  6344 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6345   predicate(UseCountLeadingZerosInstruction);
  6346   match(Set dst (CountLeadingZerosI src));
  6347   effect(KILL cr);
  6349   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6350   ins_encode %{
  6351     __ lzcntl($dst$$Register, $src$$Register);
  6352   %}
  6353   ins_pipe(ialu_reg);
  6354 %}
  6356 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6357   predicate(!UseCountLeadingZerosInstruction);
  6358   match(Set dst (CountLeadingZerosI src));
  6359   effect(KILL cr);
  6361   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6362             "JNZ    skip\n\t"
  6363             "MOV    $dst, -1\n"
  6364       "skip:\n\t"
  6365             "NEG    $dst\n\t"
  6366             "ADD    $dst, 31" %}
  6367   ins_encode %{
  6368     Register Rdst = $dst$$Register;
  6369     Register Rsrc = $src$$Register;
  6370     Label skip;
  6371     __ bsrl(Rdst, Rsrc);
  6372     __ jccb(Assembler::notZero, skip);
  6373     __ movl(Rdst, -1);
  6374     __ bind(skip);
  6375     __ negl(Rdst);
  6376     __ addl(Rdst, BitsPerInt - 1);
  6377   %}
  6378   ins_pipe(ialu_reg);
  6379 %}
  6381 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6382   predicate(UseCountLeadingZerosInstruction);
  6383   match(Set dst (CountLeadingZerosL src));
  6384   effect(TEMP dst, KILL cr);
  6386   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6387             "JNC    done\n\t"
  6388             "LZCNT  $dst, $src.lo\n\t"
  6389             "ADD    $dst, 32\n"
  6390       "done:" %}
  6391   ins_encode %{
  6392     Register Rdst = $dst$$Register;
  6393     Register Rsrc = $src$$Register;
  6394     Label done;
  6395     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6396     __ jccb(Assembler::carryClear, done);
  6397     __ lzcntl(Rdst, Rsrc);
  6398     __ addl(Rdst, BitsPerInt);
  6399     __ bind(done);
  6400   %}
  6401   ins_pipe(ialu_reg);
  6402 %}
  6404 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6405   predicate(!UseCountLeadingZerosInstruction);
  6406   match(Set dst (CountLeadingZerosL src));
  6407   effect(TEMP dst, KILL cr);
  6409   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6410             "JZ     msw_is_zero\n\t"
  6411             "ADD    $dst, 32\n\t"
  6412             "JMP    not_zero\n"
  6413       "msw_is_zero:\n\t"
  6414             "BSR    $dst, $src.lo\n\t"
  6415             "JNZ    not_zero\n\t"
  6416             "MOV    $dst, -1\n"
  6417       "not_zero:\n\t"
  6418             "NEG    $dst\n\t"
  6419             "ADD    $dst, 63\n" %}
  6420  ins_encode %{
  6421     Register Rdst = $dst$$Register;
  6422     Register Rsrc = $src$$Register;
  6423     Label msw_is_zero;
  6424     Label not_zero;
  6425     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6426     __ jccb(Assembler::zero, msw_is_zero);
  6427     __ addl(Rdst, BitsPerInt);
  6428     __ jmpb(not_zero);
  6429     __ bind(msw_is_zero);
  6430     __ bsrl(Rdst, Rsrc);
  6431     __ jccb(Assembler::notZero, not_zero);
  6432     __ movl(Rdst, -1);
  6433     __ bind(not_zero);
  6434     __ negl(Rdst);
  6435     __ addl(Rdst, BitsPerLong - 1);
  6436   %}
  6437   ins_pipe(ialu_reg);
  6438 %}
  6440 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6441   match(Set dst (CountTrailingZerosI src));
  6442   effect(KILL cr);
  6444   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6445             "JNZ    done\n\t"
  6446             "MOV    $dst, 32\n"
  6447       "done:" %}
  6448   ins_encode %{
  6449     Register Rdst = $dst$$Register;
  6450     Label done;
  6451     __ bsfl(Rdst, $src$$Register);
  6452     __ jccb(Assembler::notZero, done);
  6453     __ movl(Rdst, BitsPerInt);
  6454     __ bind(done);
  6455   %}
  6456   ins_pipe(ialu_reg);
  6457 %}
  6459 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6460   match(Set dst (CountTrailingZerosL src));
  6461   effect(TEMP dst, KILL cr);
  6463   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6464             "JNZ    done\n\t"
  6465             "BSF    $dst, $src.hi\n\t"
  6466             "JNZ    msw_not_zero\n\t"
  6467             "MOV    $dst, 32\n"
  6468       "msw_not_zero:\n\t"
  6469             "ADD    $dst, 32\n"
  6470       "done:" %}
  6471   ins_encode %{
  6472     Register Rdst = $dst$$Register;
  6473     Register Rsrc = $src$$Register;
  6474     Label msw_not_zero;
  6475     Label done;
  6476     __ bsfl(Rdst, Rsrc);
  6477     __ jccb(Assembler::notZero, done);
  6478     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6479     __ jccb(Assembler::notZero, msw_not_zero);
  6480     __ movl(Rdst, BitsPerInt);
  6481     __ bind(msw_not_zero);
  6482     __ addl(Rdst, BitsPerInt);
  6483     __ bind(done);
  6484   %}
  6485   ins_pipe(ialu_reg);
  6486 %}
  6489 //---------- Population Count Instructions -------------------------------------
  6491 instruct popCountI(eRegI dst, eRegI src) %{
  6492   predicate(UsePopCountInstruction);
  6493   match(Set dst (PopCountI src));
  6495   format %{ "POPCNT $dst, $src" %}
  6496   ins_encode %{
  6497     __ popcntl($dst$$Register, $src$$Register);
  6498   %}
  6499   ins_pipe(ialu_reg);
  6500 %}
  6502 instruct popCountI_mem(eRegI dst, memory mem) %{
  6503   predicate(UsePopCountInstruction);
  6504   match(Set dst (PopCountI (LoadI mem)));
  6506   format %{ "POPCNT $dst, $mem" %}
  6507   ins_encode %{
  6508     __ popcntl($dst$$Register, $mem$$Address);
  6509   %}
  6510   ins_pipe(ialu_reg);
  6511 %}
  6513 // Note: Long.bitCount(long) returns an int.
  6514 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6515   predicate(UsePopCountInstruction);
  6516   match(Set dst (PopCountL src));
  6517   effect(KILL cr, TEMP tmp, TEMP dst);
  6519   format %{ "POPCNT $dst, $src.lo\n\t"
  6520             "POPCNT $tmp, $src.hi\n\t"
  6521             "ADD    $dst, $tmp" %}
  6522   ins_encode %{
  6523     __ popcntl($dst$$Register, $src$$Register);
  6524     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6525     __ addl($dst$$Register, $tmp$$Register);
  6526   %}
  6527   ins_pipe(ialu_reg);
  6528 %}
  6530 // Note: Long.bitCount(long) returns an int.
  6531 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6532   predicate(UsePopCountInstruction);
  6533   match(Set dst (PopCountL (LoadL mem)));
  6534   effect(KILL cr, TEMP tmp, TEMP dst);
  6536   format %{ "POPCNT $dst, $mem\n\t"
  6537             "POPCNT $tmp, $mem+4\n\t"
  6538             "ADD    $dst, $tmp" %}
  6539   ins_encode %{
  6540     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6541     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6542     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6543     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6544     __ addl($dst$$Register, $tmp$$Register);
  6545   %}
  6546   ins_pipe(ialu_reg);
  6547 %}
  6550 //----------Load/Store/Move Instructions---------------------------------------
  6551 //----------Load Instructions--------------------------------------------------
  6552 // Load Byte (8bit signed)
  6553 instruct loadB(xRegI dst, memory mem) %{
  6554   match(Set dst (LoadB mem));
  6556   ins_cost(125);
  6557   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6559   ins_encode %{
  6560     __ movsbl($dst$$Register, $mem$$Address);
  6561   %}
  6563   ins_pipe(ialu_reg_mem);
  6564 %}
  6566 // Load Byte (8bit signed) into Long Register
  6567 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6568   match(Set dst (ConvI2L (LoadB mem)));
  6569   effect(KILL cr);
  6571   ins_cost(375);
  6572   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6573             "MOV    $dst.hi,$dst.lo\n\t"
  6574             "SAR    $dst.hi,7" %}
  6576   ins_encode %{
  6577     __ movsbl($dst$$Register, $mem$$Address);
  6578     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6579     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6580   %}
  6582   ins_pipe(ialu_reg_mem);
  6583 %}
  6585 // Load Unsigned Byte (8bit UNsigned)
  6586 instruct loadUB(xRegI dst, memory mem) %{
  6587   match(Set dst (LoadUB mem));
  6589   ins_cost(125);
  6590   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6592   ins_encode %{
  6593     __ movzbl($dst$$Register, $mem$$Address);
  6594   %}
  6596   ins_pipe(ialu_reg_mem);
  6597 %}
  6599 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6600 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6601   match(Set dst (ConvI2L (LoadUB mem)));
  6602   effect(KILL cr);
  6604   ins_cost(250);
  6605   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6606             "XOR    $dst.hi,$dst.hi" %}
  6608   ins_encode %{
  6609     Register Rdst = $dst$$Register;
  6610     __ movzbl(Rdst, $mem$$Address);
  6611     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6612   %}
  6614   ins_pipe(ialu_reg_mem);
  6615 %}
  6617 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6618 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6619   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6620   effect(KILL cr);
  6622   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6623             "XOR    $dst.hi,$dst.hi\n\t"
  6624             "AND    $dst.lo,$mask" %}
  6625   ins_encode %{
  6626     Register Rdst = $dst$$Register;
  6627     __ movzbl(Rdst, $mem$$Address);
  6628     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6629     __ andl(Rdst, $mask$$constant);
  6630   %}
  6631   ins_pipe(ialu_reg_mem);
  6632 %}
  6634 // Load Short (16bit signed)
  6635 instruct loadS(eRegI dst, memory mem) %{
  6636   match(Set dst (LoadS mem));
  6638   ins_cost(125);
  6639   format %{ "MOVSX  $dst,$mem\t# short" %}
  6641   ins_encode %{
  6642     __ movswl($dst$$Register, $mem$$Address);
  6643   %}
  6645   ins_pipe(ialu_reg_mem);
  6646 %}
  6648 // Load Short (16 bit signed) to Byte (8 bit signed)
  6649 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6650   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6652   ins_cost(125);
  6653   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6654   ins_encode %{
  6655     __ movsbl($dst$$Register, $mem$$Address);
  6656   %}
  6657   ins_pipe(ialu_reg_mem);
  6658 %}
  6660 // Load Short (16bit signed) into Long Register
  6661 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6662   match(Set dst (ConvI2L (LoadS mem)));
  6663   effect(KILL cr);
  6665   ins_cost(375);
  6666   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6667             "MOV    $dst.hi,$dst.lo\n\t"
  6668             "SAR    $dst.hi,15" %}
  6670   ins_encode %{
  6671     __ movswl($dst$$Register, $mem$$Address);
  6672     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6673     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6674   %}
  6676   ins_pipe(ialu_reg_mem);
  6677 %}
  6679 // Load Unsigned Short/Char (16bit unsigned)
  6680 instruct loadUS(eRegI dst, memory mem) %{
  6681   match(Set dst (LoadUS mem));
  6683   ins_cost(125);
  6684   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6686   ins_encode %{
  6687     __ movzwl($dst$$Register, $mem$$Address);
  6688   %}
  6690   ins_pipe(ialu_reg_mem);
  6691 %}
  6693 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6694 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6695   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6697   ins_cost(125);
  6698   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6699   ins_encode %{
  6700     __ movsbl($dst$$Register, $mem$$Address);
  6701   %}
  6702   ins_pipe(ialu_reg_mem);
  6703 %}
  6705 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6706 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6707   match(Set dst (ConvI2L (LoadUS mem)));
  6708   effect(KILL cr);
  6710   ins_cost(250);
  6711   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6712             "XOR    $dst.hi,$dst.hi" %}
  6714   ins_encode %{
  6715     __ movzwl($dst$$Register, $mem$$Address);
  6716     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6717   %}
  6719   ins_pipe(ialu_reg_mem);
  6720 %}
  6722 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6723 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6724   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6725   effect(KILL cr);
  6727   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6728             "XOR    $dst.hi,$dst.hi" %}
  6729   ins_encode %{
  6730     Register Rdst = $dst$$Register;
  6731     __ movzbl(Rdst, $mem$$Address);
  6732     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6733   %}
  6734   ins_pipe(ialu_reg_mem);
  6735 %}
  6737 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6738 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6739   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6740   effect(KILL cr);
  6742   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6743             "XOR    $dst.hi,$dst.hi\n\t"
  6744             "AND    $dst.lo,$mask" %}
  6745   ins_encode %{
  6746     Register Rdst = $dst$$Register;
  6747     __ movzwl(Rdst, $mem$$Address);
  6748     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6749     __ andl(Rdst, $mask$$constant);
  6750   %}
  6751   ins_pipe(ialu_reg_mem);
  6752 %}
  6754 // Load Integer
  6755 instruct loadI(eRegI dst, memory mem) %{
  6756   match(Set dst (LoadI mem));
  6758   ins_cost(125);
  6759   format %{ "MOV    $dst,$mem\t# int" %}
  6761   ins_encode %{
  6762     __ movl($dst$$Register, $mem$$Address);
  6763   %}
  6765   ins_pipe(ialu_reg_mem);
  6766 %}
  6768 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6769 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6770   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6772   ins_cost(125);
  6773   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6774   ins_encode %{
  6775     __ movsbl($dst$$Register, $mem$$Address);
  6776   %}
  6777   ins_pipe(ialu_reg_mem);
  6778 %}
  6780 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6781 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6782   match(Set dst (AndI (LoadI mem) mask));
  6784   ins_cost(125);
  6785   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6786   ins_encode %{
  6787     __ movzbl($dst$$Register, $mem$$Address);
  6788   %}
  6789   ins_pipe(ialu_reg_mem);
  6790 %}
  6792 // Load Integer (32 bit signed) to Short (16 bit signed)
  6793 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6794   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6796   ins_cost(125);
  6797   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6798   ins_encode %{
  6799     __ movswl($dst$$Register, $mem$$Address);
  6800   %}
  6801   ins_pipe(ialu_reg_mem);
  6802 %}
  6804 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6805 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6806   match(Set dst (AndI (LoadI mem) mask));
  6808   ins_cost(125);
  6809   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6810   ins_encode %{
  6811     __ movzwl($dst$$Register, $mem$$Address);
  6812   %}
  6813   ins_pipe(ialu_reg_mem);
  6814 %}
  6816 // Load Integer into Long Register
  6817 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6818   match(Set dst (ConvI2L (LoadI mem)));
  6819   effect(KILL cr);
  6821   ins_cost(375);
  6822   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6823             "MOV    $dst.hi,$dst.lo\n\t"
  6824             "SAR    $dst.hi,31" %}
  6826   ins_encode %{
  6827     __ movl($dst$$Register, $mem$$Address);
  6828     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6829     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6830   %}
  6832   ins_pipe(ialu_reg_mem);
  6833 %}
  6835 // Load Integer with mask 0xFF into Long Register
  6836 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6837   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6838   effect(KILL cr);
  6840   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6841             "XOR    $dst.hi,$dst.hi" %}
  6842   ins_encode %{
  6843     Register Rdst = $dst$$Register;
  6844     __ movzbl(Rdst, $mem$$Address);
  6845     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6846   %}
  6847   ins_pipe(ialu_reg_mem);
  6848 %}
  6850 // Load Integer with mask 0xFFFF into Long Register
  6851 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6852   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6853   effect(KILL cr);
  6855   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6856             "XOR    $dst.hi,$dst.hi" %}
  6857   ins_encode %{
  6858     Register Rdst = $dst$$Register;
  6859     __ movzwl(Rdst, $mem$$Address);
  6860     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6861   %}
  6862   ins_pipe(ialu_reg_mem);
  6863 %}
  6865 // Load Integer with 32-bit mask into Long Register
  6866 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6867   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6868   effect(KILL cr);
  6870   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6871             "XOR    $dst.hi,$dst.hi\n\t"
  6872             "AND    $dst.lo,$mask" %}
  6873   ins_encode %{
  6874     Register Rdst = $dst$$Register;
  6875     __ movl(Rdst, $mem$$Address);
  6876     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6877     __ andl(Rdst, $mask$$constant);
  6878   %}
  6879   ins_pipe(ialu_reg_mem);
  6880 %}
  6882 // Load Unsigned Integer into Long Register
  6883 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6884   match(Set dst (LoadUI2L mem));
  6885   effect(KILL cr);
  6887   ins_cost(250);
  6888   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6889             "XOR    $dst.hi,$dst.hi" %}
  6891   ins_encode %{
  6892     __ movl($dst$$Register, $mem$$Address);
  6893     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6894   %}
  6896   ins_pipe(ialu_reg_mem);
  6897 %}
  6899 // Load Long.  Cannot clobber address while loading, so restrict address
  6900 // register to ESI
  6901 instruct loadL(eRegL dst, load_long_memory mem) %{
  6902   predicate(!((LoadLNode*)n)->require_atomic_access());
  6903   match(Set dst (LoadL mem));
  6905   ins_cost(250);
  6906   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6907             "MOV    $dst.hi,$mem+4" %}
  6909   ins_encode %{
  6910     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6911     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6912     __ movl($dst$$Register, Amemlo);
  6913     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6914   %}
  6916   ins_pipe(ialu_reg_long_mem);
  6917 %}
  6919 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6920 // then store it down to the stack and reload on the int
  6921 // side.
  6922 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6923   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6924   match(Set dst (LoadL mem));
  6926   ins_cost(200);
  6927   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6928             "FISTp  $dst" %}
  6929   ins_encode(enc_loadL_volatile(mem,dst));
  6930   ins_pipe( fpu_reg_mem );
  6931 %}
  6933 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6934   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6935   match(Set dst (LoadL mem));
  6936   effect(TEMP tmp);
  6937   ins_cost(180);
  6938   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6939             "MOVSD  $dst,$tmp" %}
  6940   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6941   ins_pipe( pipe_slow );
  6942 %}
  6944 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6945   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6946   match(Set dst (LoadL mem));
  6947   effect(TEMP tmp);
  6948   ins_cost(160);
  6949   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6950             "MOVD   $dst.lo,$tmp\n\t"
  6951             "PSRLQ  $tmp,32\n\t"
  6952             "MOVD   $dst.hi,$tmp" %}
  6953   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6954   ins_pipe( pipe_slow );
  6955 %}
  6957 // Load Range
  6958 instruct loadRange(eRegI dst, memory mem) %{
  6959   match(Set dst (LoadRange mem));
  6961   ins_cost(125);
  6962   format %{ "MOV    $dst,$mem" %}
  6963   opcode(0x8B);
  6964   ins_encode( OpcP, RegMem(dst,mem));
  6965   ins_pipe( ialu_reg_mem );
  6966 %}
  6969 // Load Pointer
  6970 instruct loadP(eRegP dst, memory mem) %{
  6971   match(Set dst (LoadP mem));
  6973   ins_cost(125);
  6974   format %{ "MOV    $dst,$mem" %}
  6975   opcode(0x8B);
  6976   ins_encode( OpcP, RegMem(dst,mem));
  6977   ins_pipe( ialu_reg_mem );
  6978 %}
  6980 // Load Klass Pointer
  6981 instruct loadKlass(eRegP dst, memory mem) %{
  6982   match(Set dst (LoadKlass mem));
  6984   ins_cost(125);
  6985   format %{ "MOV    $dst,$mem" %}
  6986   opcode(0x8B);
  6987   ins_encode( OpcP, RegMem(dst,mem));
  6988   ins_pipe( ialu_reg_mem );
  6989 %}
  6991 // Load Double
  6992 instruct loadD(regD dst, memory mem) %{
  6993   predicate(UseSSE<=1);
  6994   match(Set dst (LoadD mem));
  6996   ins_cost(150);
  6997   format %{ "FLD_D  ST,$mem\n\t"
  6998             "FSTP   $dst" %}
  6999   opcode(0xDD);               /* DD /0 */
  7000   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  7001               Pop_Reg_D(dst) );
  7002   ins_pipe( fpu_reg_mem );
  7003 %}
  7005 // Load Double to XMM
  7006 instruct loadXD(regXD dst, memory mem) %{
  7007   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  7008   match(Set dst (LoadD mem));
  7009   ins_cost(145);
  7010   format %{ "MOVSD  $dst,$mem" %}
  7011   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  7012   ins_pipe( pipe_slow );
  7013 %}
  7015 instruct loadXD_partial(regXD dst, memory mem) %{
  7016   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  7017   match(Set dst (LoadD mem));
  7018   ins_cost(145);
  7019   format %{ "MOVLPD $dst,$mem" %}
  7020   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  7021   ins_pipe( pipe_slow );
  7022 %}
  7024 // Load to XMM register (single-precision floating point)
  7025 // MOVSS instruction
  7026 instruct loadX(regX dst, memory mem) %{
  7027   predicate(UseSSE>=1);
  7028   match(Set dst (LoadF mem));
  7029   ins_cost(145);
  7030   format %{ "MOVSS  $dst,$mem" %}
  7031   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  7032   ins_pipe( pipe_slow );
  7033 %}
  7035 // Load Float
  7036 instruct loadF(regF dst, memory mem) %{
  7037   predicate(UseSSE==0);
  7038   match(Set dst (LoadF mem));
  7040   ins_cost(150);
  7041   format %{ "FLD_S  ST,$mem\n\t"
  7042             "FSTP   $dst" %}
  7043   opcode(0xD9);               /* D9 /0 */
  7044   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  7045               Pop_Reg_F(dst) );
  7046   ins_pipe( fpu_reg_mem );
  7047 %}
  7049 // Load Aligned Packed Byte to XMM register
  7050 instruct loadA8B(regXD dst, memory mem) %{
  7051   predicate(UseSSE>=1);
  7052   match(Set dst (Load8B mem));
  7053   ins_cost(125);
  7054   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  7055   ins_encode( movq_ld(dst, mem));
  7056   ins_pipe( pipe_slow );
  7057 %}
  7059 // Load Aligned Packed Short to XMM register
  7060 instruct loadA4S(regXD dst, memory mem) %{
  7061   predicate(UseSSE>=1);
  7062   match(Set dst (Load4S mem));
  7063   ins_cost(125);
  7064   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  7065   ins_encode( movq_ld(dst, mem));
  7066   ins_pipe( pipe_slow );
  7067 %}
  7069 // Load Aligned Packed Char to XMM register
  7070 instruct loadA4C(regXD dst, memory mem) %{
  7071   predicate(UseSSE>=1);
  7072   match(Set dst (Load4C mem));
  7073   ins_cost(125);
  7074   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  7075   ins_encode( movq_ld(dst, mem));
  7076   ins_pipe( pipe_slow );
  7077 %}
  7079 // Load Aligned Packed Integer to XMM register
  7080 instruct load2IU(regXD dst, memory mem) %{
  7081   predicate(UseSSE>=1);
  7082   match(Set dst (Load2I mem));
  7083   ins_cost(125);
  7084   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  7085   ins_encode( movq_ld(dst, mem));
  7086   ins_pipe( pipe_slow );
  7087 %}
  7089 // Load Aligned Packed Single to XMM
  7090 instruct loadA2F(regXD dst, memory mem) %{
  7091   predicate(UseSSE>=1);
  7092   match(Set dst (Load2F mem));
  7093   ins_cost(145);
  7094   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7095   ins_encode( movq_ld(dst, mem));
  7096   ins_pipe( pipe_slow );
  7097 %}
  7099 // Load Effective Address
  7100 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7101   match(Set dst mem);
  7103   ins_cost(110);
  7104   format %{ "LEA    $dst,$mem" %}
  7105   opcode(0x8D);
  7106   ins_encode( OpcP, RegMem(dst,mem));
  7107   ins_pipe( ialu_reg_reg_fat );
  7108 %}
  7110 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7111   match(Set dst mem);
  7113   ins_cost(110);
  7114   format %{ "LEA    $dst,$mem" %}
  7115   opcode(0x8D);
  7116   ins_encode( OpcP, RegMem(dst,mem));
  7117   ins_pipe( ialu_reg_reg_fat );
  7118 %}
  7120 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7121   match(Set dst mem);
  7123   ins_cost(110);
  7124   format %{ "LEA    $dst,$mem" %}
  7125   opcode(0x8D);
  7126   ins_encode( OpcP, RegMem(dst,mem));
  7127   ins_pipe( ialu_reg_reg_fat );
  7128 %}
  7130 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7131   match(Set dst mem);
  7133   ins_cost(110);
  7134   format %{ "LEA    $dst,$mem" %}
  7135   opcode(0x8D);
  7136   ins_encode( OpcP, RegMem(dst,mem));
  7137   ins_pipe( ialu_reg_reg_fat );
  7138 %}
  7140 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7141   match(Set dst mem);
  7143   ins_cost(110);
  7144   format %{ "LEA    $dst,$mem" %}
  7145   opcode(0x8D);
  7146   ins_encode( OpcP, RegMem(dst,mem));
  7147   ins_pipe( ialu_reg_reg_fat );
  7148 %}
  7150 // Load Constant
  7151 instruct loadConI(eRegI dst, immI src) %{
  7152   match(Set dst src);
  7154   format %{ "MOV    $dst,$src" %}
  7155   ins_encode( LdImmI(dst, src) );
  7156   ins_pipe( ialu_reg_fat );
  7157 %}
  7159 // Load Constant zero
  7160 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7161   match(Set dst src);
  7162   effect(KILL cr);
  7164   ins_cost(50);
  7165   format %{ "XOR    $dst,$dst" %}
  7166   opcode(0x33);  /* + rd */
  7167   ins_encode( OpcP, RegReg( dst, dst ) );
  7168   ins_pipe( ialu_reg );
  7169 %}
  7171 instruct loadConP(eRegP dst, immP src) %{
  7172   match(Set dst src);
  7174   format %{ "MOV    $dst,$src" %}
  7175   opcode(0xB8);  /* + rd */
  7176   ins_encode( LdImmP(dst, src) );
  7177   ins_pipe( ialu_reg_fat );
  7178 %}
  7180 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7181   match(Set dst src);
  7182   effect(KILL cr);
  7183   ins_cost(200);
  7184   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7185             "MOV    $dst.hi,$src.hi" %}
  7186   opcode(0xB8);
  7187   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7188   ins_pipe( ialu_reg_long_fat );
  7189 %}
  7191 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7192   match(Set dst src);
  7193   effect(KILL cr);
  7194   ins_cost(150);
  7195   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7196             "XOR    $dst.hi,$dst.hi" %}
  7197   opcode(0x33,0x33);
  7198   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7199   ins_pipe( ialu_reg_long );
  7200 %}
  7202 // The instruction usage is guarded by predicate in operand immF().
  7203 instruct loadConF(regF dst, immF src) %{
  7204   match(Set dst src);
  7205   ins_cost(125);
  7207   format %{ "FLD_S  ST,$src\n\t"
  7208             "FSTP   $dst" %}
  7209   opcode(0xD9, 0x00);       /* D9 /0 */
  7210   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  7211   ins_pipe( fpu_reg_con );
  7212 %}
  7214 // The instruction usage is guarded by predicate in operand immXF().
  7215 instruct loadConX(regX dst, immXF con) %{
  7216   match(Set dst con);
  7217   ins_cost(125);
  7218   format %{ "MOVSS  $dst,[$con]" %}
  7219   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  7220   ins_pipe( pipe_slow );
  7221 %}
  7223 // The instruction usage is guarded by predicate in operand immXF0().
  7224 instruct loadConX0(regX dst, immXF0 src) %{
  7225   match(Set dst src);
  7226   ins_cost(100);
  7227   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7228   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7229   ins_pipe( pipe_slow );
  7230 %}
  7232 // The instruction usage is guarded by predicate in operand immD().
  7233 instruct loadConD(regD dst, immD src) %{
  7234   match(Set dst src);
  7235   ins_cost(125);
  7237   format %{ "FLD_D  ST,$src\n\t"
  7238             "FSTP   $dst" %}
  7239   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  7240   ins_pipe( fpu_reg_con );
  7241 %}
  7243 // The instruction usage is guarded by predicate in operand immXD().
  7244 instruct loadConXD(regXD dst, immXD con) %{
  7245   match(Set dst con);
  7246   ins_cost(125);
  7247   format %{ "MOVSD  $dst,[$con]" %}
  7248   ins_encode(load_conXD(dst, con));
  7249   ins_pipe( pipe_slow );
  7250 %}
  7252 // The instruction usage is guarded by predicate in operand immXD0().
  7253 instruct loadConXD0(regXD dst, immXD0 src) %{
  7254   match(Set dst src);
  7255   ins_cost(100);
  7256   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7257   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7258   ins_pipe( pipe_slow );
  7259 %}
  7261 // Load Stack Slot
  7262 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7263   match(Set dst src);
  7264   ins_cost(125);
  7266   format %{ "MOV    $dst,$src" %}
  7267   opcode(0x8B);
  7268   ins_encode( OpcP, RegMem(dst,src));
  7269   ins_pipe( ialu_reg_mem );
  7270 %}
  7272 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7273   match(Set dst src);
  7275   ins_cost(200);
  7276   format %{ "MOV    $dst,$src.lo\n\t"
  7277             "MOV    $dst+4,$src.hi" %}
  7278   opcode(0x8B, 0x8B);
  7279   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7280   ins_pipe( ialu_mem_long_reg );
  7281 %}
  7283 // Load Stack Slot
  7284 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7285   match(Set dst src);
  7286   ins_cost(125);
  7288   format %{ "MOV    $dst,$src" %}
  7289   opcode(0x8B);
  7290   ins_encode( OpcP, RegMem(dst,src));
  7291   ins_pipe( ialu_reg_mem );
  7292 %}
  7294 // Load Stack Slot
  7295 instruct loadSSF(regF dst, stackSlotF src) %{
  7296   match(Set dst src);
  7297   ins_cost(125);
  7299   format %{ "FLD_S  $src\n\t"
  7300             "FSTP   $dst" %}
  7301   opcode(0xD9);               /* D9 /0, FLD m32real */
  7302   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7303               Pop_Reg_F(dst) );
  7304   ins_pipe( fpu_reg_mem );
  7305 %}
  7307 // Load Stack Slot
  7308 instruct loadSSD(regD dst, stackSlotD src) %{
  7309   match(Set dst src);
  7310   ins_cost(125);
  7312   format %{ "FLD_D  $src\n\t"
  7313             "FSTP   $dst" %}
  7314   opcode(0xDD);               /* DD /0, FLD m64real */
  7315   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7316               Pop_Reg_D(dst) );
  7317   ins_pipe( fpu_reg_mem );
  7318 %}
  7320 // Prefetch instructions.
  7321 // Must be safe to execute with invalid address (cannot fault).
  7323 instruct prefetchr0( memory mem ) %{
  7324   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7325   match(PrefetchRead mem);
  7326   ins_cost(0);
  7327   size(0);
  7328   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7329   ins_encode();
  7330   ins_pipe(empty);
  7331 %}
  7333 instruct prefetchr( memory mem ) %{
  7334   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7335   match(PrefetchRead mem);
  7336   ins_cost(100);
  7338   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7339   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7340   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7341   ins_pipe(ialu_mem);
  7342 %}
  7344 instruct prefetchrNTA( memory mem ) %{
  7345   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7346   match(PrefetchRead mem);
  7347   ins_cost(100);
  7349   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7350   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7351   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7352   ins_pipe(ialu_mem);
  7353 %}
  7355 instruct prefetchrT0( memory mem ) %{
  7356   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7357   match(PrefetchRead mem);
  7358   ins_cost(100);
  7360   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7361   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7362   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7363   ins_pipe(ialu_mem);
  7364 %}
  7366 instruct prefetchrT2( memory mem ) %{
  7367   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7368   match(PrefetchRead mem);
  7369   ins_cost(100);
  7371   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7372   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7373   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7374   ins_pipe(ialu_mem);
  7375 %}
  7377 instruct prefetchw0( memory mem ) %{
  7378   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7379   match(PrefetchWrite mem);
  7380   ins_cost(0);
  7381   size(0);
  7382   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7383   ins_encode();
  7384   ins_pipe(empty);
  7385 %}
  7387 instruct prefetchw( memory mem ) %{
  7388   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7389   match( PrefetchWrite mem );
  7390   ins_cost(100);
  7392   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7393   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7394   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7395   ins_pipe(ialu_mem);
  7396 %}
  7398 instruct prefetchwNTA( memory mem ) %{
  7399   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7400   match(PrefetchWrite mem);
  7401   ins_cost(100);
  7403   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7404   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7405   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7406   ins_pipe(ialu_mem);
  7407 %}
  7409 instruct prefetchwT0( memory mem ) %{
  7410   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7411   match(PrefetchWrite mem);
  7412   ins_cost(100);
  7414   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7415   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7416   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7417   ins_pipe(ialu_mem);
  7418 %}
  7420 instruct prefetchwT2( memory mem ) %{
  7421   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7422   match(PrefetchWrite mem);
  7423   ins_cost(100);
  7425   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7426   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7427   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7428   ins_pipe(ialu_mem);
  7429 %}
  7431 //----------Store Instructions-------------------------------------------------
  7433 // Store Byte
  7434 instruct storeB(memory mem, xRegI src) %{
  7435   match(Set mem (StoreB mem src));
  7437   ins_cost(125);
  7438   format %{ "MOV8   $mem,$src" %}
  7439   opcode(0x88);
  7440   ins_encode( OpcP, RegMem( src, mem ) );
  7441   ins_pipe( ialu_mem_reg );
  7442 %}
  7444 // Store Char/Short
  7445 instruct storeC(memory mem, eRegI src) %{
  7446   match(Set mem (StoreC mem src));
  7448   ins_cost(125);
  7449   format %{ "MOV16  $mem,$src" %}
  7450   opcode(0x89, 0x66);
  7451   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7452   ins_pipe( ialu_mem_reg );
  7453 %}
  7455 // Store Integer
  7456 instruct storeI(memory mem, eRegI src) %{
  7457   match(Set mem (StoreI mem src));
  7459   ins_cost(125);
  7460   format %{ "MOV    $mem,$src" %}
  7461   opcode(0x89);
  7462   ins_encode( OpcP, RegMem( src, mem ) );
  7463   ins_pipe( ialu_mem_reg );
  7464 %}
  7466 // Store Long
  7467 instruct storeL(long_memory mem, eRegL src) %{
  7468   predicate(!((StoreLNode*)n)->require_atomic_access());
  7469   match(Set mem (StoreL mem src));
  7471   ins_cost(200);
  7472   format %{ "MOV    $mem,$src.lo\n\t"
  7473             "MOV    $mem+4,$src.hi" %}
  7474   opcode(0x89, 0x89);
  7475   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7476   ins_pipe( ialu_mem_long_reg );
  7477 %}
  7479 // Store Long to Integer
  7480 instruct storeL2I(memory mem, eRegL src) %{
  7481   match(Set mem (StoreI mem (ConvL2I src)));
  7483   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7484   ins_encode %{
  7485     __ movl($mem$$Address, $src$$Register);
  7486   %}
  7487   ins_pipe(ialu_mem_reg);
  7488 %}
  7490 // Volatile Store Long.  Must be atomic, so move it into
  7491 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7492 // target address before the store (for null-ptr checks)
  7493 // so the memory operand is used twice in the encoding.
  7494 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7495   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7496   match(Set mem (StoreL mem src));
  7497   effect( KILL cr );
  7498   ins_cost(400);
  7499   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7500             "FILD   $src\n\t"
  7501             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7502   opcode(0x3B);
  7503   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7504   ins_pipe( fpu_reg_mem );
  7505 %}
  7507 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7508   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7509   match(Set mem (StoreL mem src));
  7510   effect( TEMP tmp, KILL cr );
  7511   ins_cost(380);
  7512   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7513             "MOVSD  $tmp,$src\n\t"
  7514             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7515   opcode(0x3B);
  7516   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7517   ins_pipe( pipe_slow );
  7518 %}
  7520 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7521   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7522   match(Set mem (StoreL mem src));
  7523   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7524   ins_cost(360);
  7525   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7526             "MOVD   $tmp,$src.lo\n\t"
  7527             "MOVD   $tmp2,$src.hi\n\t"
  7528             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7529             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7530   opcode(0x3B);
  7531   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7532   ins_pipe( pipe_slow );
  7533 %}
  7535 // Store Pointer; for storing unknown oops and raw pointers
  7536 instruct storeP(memory mem, anyRegP src) %{
  7537   match(Set mem (StoreP mem src));
  7539   ins_cost(125);
  7540   format %{ "MOV    $mem,$src" %}
  7541   opcode(0x89);
  7542   ins_encode( OpcP, RegMem( src, mem ) );
  7543   ins_pipe( ialu_mem_reg );
  7544 %}
  7546 // Store Integer Immediate
  7547 instruct storeImmI(memory mem, immI src) %{
  7548   match(Set mem (StoreI mem src));
  7550   ins_cost(150);
  7551   format %{ "MOV    $mem,$src" %}
  7552   opcode(0xC7);               /* C7 /0 */
  7553   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7554   ins_pipe( ialu_mem_imm );
  7555 %}
  7557 // Store Short/Char Immediate
  7558 instruct storeImmI16(memory mem, immI16 src) %{
  7559   predicate(UseStoreImmI16);
  7560   match(Set mem (StoreC mem src));
  7562   ins_cost(150);
  7563   format %{ "MOV16  $mem,$src" %}
  7564   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7565   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7566   ins_pipe( ialu_mem_imm );
  7567 %}
  7569 // Store Pointer Immediate; null pointers or constant oops that do not
  7570 // need card-mark barriers.
  7571 instruct storeImmP(memory mem, immP src) %{
  7572   match(Set mem (StoreP mem src));
  7574   ins_cost(150);
  7575   format %{ "MOV    $mem,$src" %}
  7576   opcode(0xC7);               /* C7 /0 */
  7577   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7578   ins_pipe( ialu_mem_imm );
  7579 %}
  7581 // Store Byte Immediate
  7582 instruct storeImmB(memory mem, immI8 src) %{
  7583   match(Set mem (StoreB mem src));
  7585   ins_cost(150);
  7586   format %{ "MOV8   $mem,$src" %}
  7587   opcode(0xC6);               /* C6 /0 */
  7588   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7589   ins_pipe( ialu_mem_imm );
  7590 %}
  7592 // Store Aligned Packed Byte XMM register to memory
  7593 instruct storeA8B(memory mem, regXD src) %{
  7594   predicate(UseSSE>=1);
  7595   match(Set mem (Store8B mem src));
  7596   ins_cost(145);
  7597   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7598   ins_encode( movq_st(mem, src));
  7599   ins_pipe( pipe_slow );
  7600 %}
  7602 // Store Aligned Packed Char/Short XMM register to memory
  7603 instruct storeA4C(memory mem, regXD src) %{
  7604   predicate(UseSSE>=1);
  7605   match(Set mem (Store4C mem src));
  7606   ins_cost(145);
  7607   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7608   ins_encode( movq_st(mem, src));
  7609   ins_pipe( pipe_slow );
  7610 %}
  7612 // Store Aligned Packed Integer XMM register to memory
  7613 instruct storeA2I(memory mem, regXD src) %{
  7614   predicate(UseSSE>=1);
  7615   match(Set mem (Store2I mem src));
  7616   ins_cost(145);
  7617   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7618   ins_encode( movq_st(mem, src));
  7619   ins_pipe( pipe_slow );
  7620 %}
  7622 // Store CMS card-mark Immediate
  7623 instruct storeImmCM(memory mem, immI8 src) %{
  7624   match(Set mem (StoreCM mem src));
  7626   ins_cost(150);
  7627   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7628   opcode(0xC6);               /* C6 /0 */
  7629   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7630   ins_pipe( ialu_mem_imm );
  7631 %}
  7633 // Store Double
  7634 instruct storeD( memory mem, regDPR1 src) %{
  7635   predicate(UseSSE<=1);
  7636   match(Set mem (StoreD mem src));
  7638   ins_cost(100);
  7639   format %{ "FST_D  $mem,$src" %}
  7640   opcode(0xDD);       /* DD /2 */
  7641   ins_encode( enc_FP_store(mem,src) );
  7642   ins_pipe( fpu_mem_reg );
  7643 %}
  7645 // Store double does rounding on x86
  7646 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7647   predicate(UseSSE<=1);
  7648   match(Set mem (StoreD mem (RoundDouble src)));
  7650   ins_cost(100);
  7651   format %{ "FST_D  $mem,$src\t# round" %}
  7652   opcode(0xDD);       /* DD /2 */
  7653   ins_encode( enc_FP_store(mem,src) );
  7654   ins_pipe( fpu_mem_reg );
  7655 %}
  7657 // Store XMM register to memory (double-precision floating points)
  7658 // MOVSD instruction
  7659 instruct storeXD(memory mem, regXD src) %{
  7660   predicate(UseSSE>=2);
  7661   match(Set mem (StoreD mem src));
  7662   ins_cost(95);
  7663   format %{ "MOVSD  $mem,$src" %}
  7664   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7665   ins_pipe( pipe_slow );
  7666 %}
  7668 // Store XMM register to memory (single-precision floating point)
  7669 // MOVSS instruction
  7670 instruct storeX(memory mem, regX src) %{
  7671   predicate(UseSSE>=1);
  7672   match(Set mem (StoreF mem src));
  7673   ins_cost(95);
  7674   format %{ "MOVSS  $mem,$src" %}
  7675   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7676   ins_pipe( pipe_slow );
  7677 %}
  7679 // Store Aligned Packed Single Float XMM register to memory
  7680 instruct storeA2F(memory mem, regXD src) %{
  7681   predicate(UseSSE>=1);
  7682   match(Set mem (Store2F mem src));
  7683   ins_cost(145);
  7684   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7685   ins_encode( movq_st(mem, src));
  7686   ins_pipe( pipe_slow );
  7687 %}
  7689 // Store Float
  7690 instruct storeF( memory mem, regFPR1 src) %{
  7691   predicate(UseSSE==0);
  7692   match(Set mem (StoreF mem src));
  7694   ins_cost(100);
  7695   format %{ "FST_S  $mem,$src" %}
  7696   opcode(0xD9);       /* D9 /2 */
  7697   ins_encode( enc_FP_store(mem,src) );
  7698   ins_pipe( fpu_mem_reg );
  7699 %}
  7701 // Store Float does rounding on x86
  7702 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7703   predicate(UseSSE==0);
  7704   match(Set mem (StoreF mem (RoundFloat src)));
  7706   ins_cost(100);
  7707   format %{ "FST_S  $mem,$src\t# round" %}
  7708   opcode(0xD9);       /* D9 /2 */
  7709   ins_encode( enc_FP_store(mem,src) );
  7710   ins_pipe( fpu_mem_reg );
  7711 %}
  7713 // Store Float does rounding on x86
  7714 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7715   predicate(UseSSE<=1);
  7716   match(Set mem (StoreF mem (ConvD2F src)));
  7718   ins_cost(100);
  7719   format %{ "FST_S  $mem,$src\t# D-round" %}
  7720   opcode(0xD9);       /* D9 /2 */
  7721   ins_encode( enc_FP_store(mem,src) );
  7722   ins_pipe( fpu_mem_reg );
  7723 %}
  7725 // Store immediate Float value (it is faster than store from FPU register)
  7726 // The instruction usage is guarded by predicate in operand immF().
  7727 instruct storeF_imm( memory mem, immF src) %{
  7728   match(Set mem (StoreF mem src));
  7730   ins_cost(50);
  7731   format %{ "MOV    $mem,$src\t# store float" %}
  7732   opcode(0xC7);               /* C7 /0 */
  7733   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7734   ins_pipe( ialu_mem_imm );
  7735 %}
  7737 // Store immediate Float value (it is faster than store from XMM register)
  7738 // The instruction usage is guarded by predicate in operand immXF().
  7739 instruct storeX_imm( memory mem, immXF src) %{
  7740   match(Set mem (StoreF mem src));
  7742   ins_cost(50);
  7743   format %{ "MOV    $mem,$src\t# store float" %}
  7744   opcode(0xC7);               /* C7 /0 */
  7745   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7746   ins_pipe( ialu_mem_imm );
  7747 %}
  7749 // Store Integer to stack slot
  7750 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7751   match(Set dst src);
  7753   ins_cost(100);
  7754   format %{ "MOV    $dst,$src" %}
  7755   opcode(0x89);
  7756   ins_encode( OpcPRegSS( dst, src ) );
  7757   ins_pipe( ialu_mem_reg );
  7758 %}
  7760 // Store Integer to stack slot
  7761 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7762   match(Set dst src);
  7764   ins_cost(100);
  7765   format %{ "MOV    $dst,$src" %}
  7766   opcode(0x89);
  7767   ins_encode( OpcPRegSS( dst, src ) );
  7768   ins_pipe( ialu_mem_reg );
  7769 %}
  7771 // Store Long to stack slot
  7772 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7773   match(Set dst src);
  7775   ins_cost(200);
  7776   format %{ "MOV    $dst,$src.lo\n\t"
  7777             "MOV    $dst+4,$src.hi" %}
  7778   opcode(0x89, 0x89);
  7779   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7780   ins_pipe( ialu_mem_long_reg );
  7781 %}
  7783 //----------MemBar Instructions-----------------------------------------------
  7784 // Memory barrier flavors
  7786 instruct membar_acquire() %{
  7787   match(MemBarAcquire);
  7788   ins_cost(400);
  7790   size(0);
  7791   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7792   ins_encode();
  7793   ins_pipe(empty);
  7794 %}
  7796 instruct membar_acquire_lock() %{
  7797   match(MemBarAcquire);
  7798   predicate(Matcher::prior_fast_lock(n));
  7799   ins_cost(0);
  7801   size(0);
  7802   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7803   ins_encode( );
  7804   ins_pipe(empty);
  7805 %}
  7807 instruct membar_release() %{
  7808   match(MemBarRelease);
  7809   ins_cost(400);
  7811   size(0);
  7812   format %{ "MEMBAR-release ! (empty encoding)" %}
  7813   ins_encode( );
  7814   ins_pipe(empty);
  7815 %}
  7817 instruct membar_release_lock() %{
  7818   match(MemBarRelease);
  7819   predicate(Matcher::post_fast_unlock(n));
  7820   ins_cost(0);
  7822   size(0);
  7823   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7824   ins_encode( );
  7825   ins_pipe(empty);
  7826 %}
  7828 instruct membar_volatile(eFlagsReg cr) %{
  7829   match(MemBarVolatile);
  7830   effect(KILL cr);
  7831   ins_cost(400);
  7833   format %{ 
  7834     $$template
  7835     if (os::is_MP()) {
  7836       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7837     } else {
  7838       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7840   %}
  7841   ins_encode %{
  7842     __ membar(Assembler::StoreLoad);
  7843   %}
  7844   ins_pipe(pipe_slow);
  7845 %}
  7847 instruct unnecessary_membar_volatile() %{
  7848   match(MemBarVolatile);
  7849   predicate(Matcher::post_store_load_barrier(n));
  7850   ins_cost(0);
  7852   size(0);
  7853   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7854   ins_encode( );
  7855   ins_pipe(empty);
  7856 %}
  7858 //----------Move Instructions--------------------------------------------------
  7859 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7860   match(Set dst (CastX2P src));
  7861   format %{ "# X2P  $dst, $src" %}
  7862   ins_encode( /*empty encoding*/ );
  7863   ins_cost(0);
  7864   ins_pipe(empty);
  7865 %}
  7867 instruct castP2X(eRegI dst, eRegP src ) %{
  7868   match(Set dst (CastP2X src));
  7869   ins_cost(50);
  7870   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7871   ins_encode( enc_Copy( dst, src) );
  7872   ins_pipe( ialu_reg_reg );
  7873 %}
  7875 //----------Conditional Move---------------------------------------------------
  7876 // Conditional move
  7877 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7878   predicate(VM_Version::supports_cmov() );
  7879   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7880   ins_cost(200);
  7881   format %{ "CMOV$cop $dst,$src" %}
  7882   opcode(0x0F,0x40);
  7883   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7884   ins_pipe( pipe_cmov_reg );
  7885 %}
  7887 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7888   predicate(VM_Version::supports_cmov() );
  7889   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7890   ins_cost(200);
  7891   format %{ "CMOV$cop $dst,$src" %}
  7892   opcode(0x0F,0x40);
  7893   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7894   ins_pipe( pipe_cmov_reg );
  7895 %}
  7897 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7898   predicate(VM_Version::supports_cmov() );
  7899   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7900   ins_cost(200);
  7901   expand %{
  7902     cmovI_regU(cop, cr, dst, src);
  7903   %}
  7904 %}
  7906 // Conditional move
  7907 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7908   predicate(VM_Version::supports_cmov() );
  7909   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7910   ins_cost(250);
  7911   format %{ "CMOV$cop $dst,$src" %}
  7912   opcode(0x0F,0x40);
  7913   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7914   ins_pipe( pipe_cmov_mem );
  7915 %}
  7917 // Conditional move
  7918 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7919   predicate(VM_Version::supports_cmov() );
  7920   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7921   ins_cost(250);
  7922   format %{ "CMOV$cop $dst,$src" %}
  7923   opcode(0x0F,0x40);
  7924   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7925   ins_pipe( pipe_cmov_mem );
  7926 %}
  7928 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7929   predicate(VM_Version::supports_cmov() );
  7930   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7931   ins_cost(250);
  7932   expand %{
  7933     cmovI_memU(cop, cr, dst, src);
  7934   %}
  7935 %}
  7937 // Conditional move
  7938 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7939   predicate(VM_Version::supports_cmov() );
  7940   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7941   ins_cost(200);
  7942   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7943   opcode(0x0F,0x40);
  7944   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7945   ins_pipe( pipe_cmov_reg );
  7946 %}
  7948 // Conditional move (non-P6 version)
  7949 // Note:  a CMoveP is generated for  stubs and native wrappers
  7950 //        regardless of whether we are on a P6, so we
  7951 //        emulate a cmov here
  7952 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7953   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7954   ins_cost(300);
  7955   format %{ "Jn$cop   skip\n\t"
  7956           "MOV    $dst,$src\t# pointer\n"
  7957       "skip:" %}
  7958   opcode(0x8b);
  7959   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7960   ins_pipe( pipe_cmov_reg );
  7961 %}
  7963 // Conditional move
  7964 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7965   predicate(VM_Version::supports_cmov() );
  7966   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7967   ins_cost(200);
  7968   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7969   opcode(0x0F,0x40);
  7970   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7971   ins_pipe( pipe_cmov_reg );
  7972 %}
  7974 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7975   predicate(VM_Version::supports_cmov() );
  7976   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7977   ins_cost(200);
  7978   expand %{
  7979     cmovP_regU(cop, cr, dst, src);
  7980   %}
  7981 %}
  7983 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7984 // correctly meets the two pointer arguments; one is an incoming
  7985 // register but the other is a memory operand.  ALSO appears to
  7986 // be buggy with implicit null checks.
  7987 //
  7988 //// Conditional move
  7989 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7990 //  predicate(VM_Version::supports_cmov() );
  7991 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7992 //  ins_cost(250);
  7993 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7994 //  opcode(0x0F,0x40);
  7995 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7996 //  ins_pipe( pipe_cmov_mem );
  7997 //%}
  7998 //
  7999 //// Conditional move
  8000 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  8001 //  predicate(VM_Version::supports_cmov() );
  8002 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  8003 //  ins_cost(250);
  8004 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  8005 //  opcode(0x0F,0x40);
  8006 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  8007 //  ins_pipe( pipe_cmov_mem );
  8008 //%}
  8010 // Conditional move
  8011 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  8012   predicate(UseSSE<=1);
  8013   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8014   ins_cost(200);
  8015   format %{ "FCMOV$cop $dst,$src\t# double" %}
  8016   opcode(0xDA);
  8017   ins_encode( enc_cmov_d(cop,src) );
  8018   ins_pipe( pipe_cmovD_reg );
  8019 %}
  8021 // Conditional move
  8022 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  8023   predicate(UseSSE==0);
  8024   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8025   ins_cost(200);
  8026   format %{ "FCMOV$cop $dst,$src\t# float" %}
  8027   opcode(0xDA);
  8028   ins_encode( enc_cmov_d(cop,src) );
  8029   ins_pipe( pipe_cmovD_reg );
  8030 %}
  8032 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8033 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  8034   predicate(UseSSE<=1);
  8035   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8036   ins_cost(200);
  8037   format %{ "Jn$cop   skip\n\t"
  8038             "MOV    $dst,$src\t# double\n"
  8039       "skip:" %}
  8040   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8041   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  8042   ins_pipe( pipe_cmovD_reg );
  8043 %}
  8045 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8046 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  8047   predicate(UseSSE==0);
  8048   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8049   ins_cost(200);
  8050   format %{ "Jn$cop    skip\n\t"
  8051             "MOV    $dst,$src\t# float\n"
  8052       "skip:" %}
  8053   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8054   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  8055   ins_pipe( pipe_cmovD_reg );
  8056 %}
  8058 // No CMOVE with SSE/SSE2
  8059 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  8060   predicate (UseSSE>=1);
  8061   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8062   ins_cost(200);
  8063   format %{ "Jn$cop   skip\n\t"
  8064             "MOVSS  $dst,$src\t# float\n"
  8065       "skip:" %}
  8066   ins_encode %{
  8067     Label skip;
  8068     // Invert sense of branch from sense of CMOV
  8069     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8070     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8071     __ bind(skip);
  8072   %}
  8073   ins_pipe( pipe_slow );
  8074 %}
  8076 // No CMOVE with SSE/SSE2
  8077 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  8078   predicate (UseSSE>=2);
  8079   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8080   ins_cost(200);
  8081   format %{ "Jn$cop   skip\n\t"
  8082             "MOVSD  $dst,$src\t# float\n"
  8083       "skip:" %}
  8084   ins_encode %{
  8085     Label skip;
  8086     // Invert sense of branch from sense of CMOV
  8087     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8088     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8089     __ bind(skip);
  8090   %}
  8091   ins_pipe( pipe_slow );
  8092 %}
  8094 // unsigned version
  8095 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8096   predicate (UseSSE>=1);
  8097   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8098   ins_cost(200);
  8099   format %{ "Jn$cop   skip\n\t"
  8100             "MOVSS  $dst,$src\t# float\n"
  8101       "skip:" %}
  8102   ins_encode %{
  8103     Label skip;
  8104     // Invert sense of branch from sense of CMOV
  8105     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8106     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8107     __ bind(skip);
  8108   %}
  8109   ins_pipe( pipe_slow );
  8110 %}
  8112 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8113   predicate (UseSSE>=1);
  8114   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8115   ins_cost(200);
  8116   expand %{
  8117     fcmovX_regU(cop, cr, dst, src);
  8118   %}
  8119 %}
  8121 // unsigned version
  8122 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8123   predicate (UseSSE>=2);
  8124   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8125   ins_cost(200);
  8126   format %{ "Jn$cop   skip\n\t"
  8127             "MOVSD  $dst,$src\t# float\n"
  8128       "skip:" %}
  8129   ins_encode %{
  8130     Label skip;
  8131     // Invert sense of branch from sense of CMOV
  8132     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8133     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8134     __ bind(skip);
  8135   %}
  8136   ins_pipe( pipe_slow );
  8137 %}
  8139 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8140   predicate (UseSSE>=2);
  8141   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8142   ins_cost(200);
  8143   expand %{
  8144     fcmovXD_regU(cop, cr, dst, src);
  8145   %}
  8146 %}
  8148 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8149   predicate(VM_Version::supports_cmov() );
  8150   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8151   ins_cost(200);
  8152   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8153             "CMOV$cop $dst.hi,$src.hi" %}
  8154   opcode(0x0F,0x40);
  8155   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8156   ins_pipe( pipe_cmov_reg_long );
  8157 %}
  8159 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8160   predicate(VM_Version::supports_cmov() );
  8161   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8162   ins_cost(200);
  8163   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8164             "CMOV$cop $dst.hi,$src.hi" %}
  8165   opcode(0x0F,0x40);
  8166   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8167   ins_pipe( pipe_cmov_reg_long );
  8168 %}
  8170 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8171   predicate(VM_Version::supports_cmov() );
  8172   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8173   ins_cost(200);
  8174   expand %{
  8175     cmovL_regU(cop, cr, dst, src);
  8176   %}
  8177 %}
  8179 //----------Arithmetic Instructions--------------------------------------------
  8180 //----------Addition Instructions----------------------------------------------
  8181 // Integer Addition Instructions
  8182 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8183   match(Set dst (AddI dst src));
  8184   effect(KILL cr);
  8186   size(2);
  8187   format %{ "ADD    $dst,$src" %}
  8188   opcode(0x03);
  8189   ins_encode( OpcP, RegReg( dst, src) );
  8190   ins_pipe( ialu_reg_reg );
  8191 %}
  8193 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8194   match(Set dst (AddI dst src));
  8195   effect(KILL cr);
  8197   format %{ "ADD    $dst,$src" %}
  8198   opcode(0x81, 0x00); /* /0 id */
  8199   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8200   ins_pipe( ialu_reg );
  8201 %}
  8203 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8204   predicate(UseIncDec);
  8205   match(Set dst (AddI dst src));
  8206   effect(KILL cr);
  8208   size(1);
  8209   format %{ "INC    $dst" %}
  8210   opcode(0x40); /*  */
  8211   ins_encode( Opc_plus( primary, dst ) );
  8212   ins_pipe( ialu_reg );
  8213 %}
  8215 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8216   match(Set dst (AddI src0 src1));
  8217   ins_cost(110);
  8219   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8220   opcode(0x8D); /* 0x8D /r */
  8221   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8222   ins_pipe( ialu_reg_reg );
  8223 %}
  8225 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8226   match(Set dst (AddP src0 src1));
  8227   ins_cost(110);
  8229   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8230   opcode(0x8D); /* 0x8D /r */
  8231   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8232   ins_pipe( ialu_reg_reg );
  8233 %}
  8235 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8236   predicate(UseIncDec);
  8237   match(Set dst (AddI dst src));
  8238   effect(KILL cr);
  8240   size(1);
  8241   format %{ "DEC    $dst" %}
  8242   opcode(0x48); /*  */
  8243   ins_encode( Opc_plus( primary, dst ) );
  8244   ins_pipe( ialu_reg );
  8245 %}
  8247 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8248   match(Set dst (AddP dst src));
  8249   effect(KILL cr);
  8251   size(2);
  8252   format %{ "ADD    $dst,$src" %}
  8253   opcode(0x03);
  8254   ins_encode( OpcP, RegReg( dst, src) );
  8255   ins_pipe( ialu_reg_reg );
  8256 %}
  8258 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8259   match(Set dst (AddP dst src));
  8260   effect(KILL cr);
  8262   format %{ "ADD    $dst,$src" %}
  8263   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8264   // ins_encode( RegImm( dst, src) );
  8265   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8266   ins_pipe( ialu_reg );
  8267 %}
  8269 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8270   match(Set dst (AddI dst (LoadI src)));
  8271   effect(KILL cr);
  8273   ins_cost(125);
  8274   format %{ "ADD    $dst,$src" %}
  8275   opcode(0x03);
  8276   ins_encode( OpcP, RegMem( dst, src) );
  8277   ins_pipe( ialu_reg_mem );
  8278 %}
  8280 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8281   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8282   effect(KILL cr);
  8284   ins_cost(150);
  8285   format %{ "ADD    $dst,$src" %}
  8286   opcode(0x01);  /* Opcode 01 /r */
  8287   ins_encode( OpcP, RegMem( src, dst ) );
  8288   ins_pipe( ialu_mem_reg );
  8289 %}
  8291 // Add Memory with Immediate
  8292 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8293   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8294   effect(KILL cr);
  8296   ins_cost(125);
  8297   format %{ "ADD    $dst,$src" %}
  8298   opcode(0x81);               /* Opcode 81 /0 id */
  8299   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8300   ins_pipe( ialu_mem_imm );
  8301 %}
  8303 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8304   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8305   effect(KILL cr);
  8307   ins_cost(125);
  8308   format %{ "INC    $dst" %}
  8309   opcode(0xFF);               /* Opcode FF /0 */
  8310   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8311   ins_pipe( ialu_mem_imm );
  8312 %}
  8314 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8315   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8316   effect(KILL cr);
  8318   ins_cost(125);
  8319   format %{ "DEC    $dst" %}
  8320   opcode(0xFF);               /* Opcode FF /1 */
  8321   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8322   ins_pipe( ialu_mem_imm );
  8323 %}
  8326 instruct checkCastPP( eRegP dst ) %{
  8327   match(Set dst (CheckCastPP dst));
  8329   size(0);
  8330   format %{ "#checkcastPP of $dst" %}
  8331   ins_encode( /*empty encoding*/ );
  8332   ins_pipe( empty );
  8333 %}
  8335 instruct castPP( eRegP dst ) %{
  8336   match(Set dst (CastPP dst));
  8337   format %{ "#castPP of $dst" %}
  8338   ins_encode( /*empty encoding*/ );
  8339   ins_pipe( empty );
  8340 %}
  8342 instruct castII( eRegI dst ) %{
  8343   match(Set dst (CastII dst));
  8344   format %{ "#castII of $dst" %}
  8345   ins_encode( /*empty encoding*/ );
  8346   ins_cost(0);
  8347   ins_pipe( empty );
  8348 %}
  8351 // Load-locked - same as a regular pointer load when used with compare-swap
  8352 instruct loadPLocked(eRegP dst, memory mem) %{
  8353   match(Set dst (LoadPLocked mem));
  8355   ins_cost(125);
  8356   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8357   opcode(0x8B);
  8358   ins_encode( OpcP, RegMem(dst,mem));
  8359   ins_pipe( ialu_reg_mem );
  8360 %}
  8362 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8363 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8364   predicate(UseSSE<=1);
  8365   match(Set dst (LoadLLocked mem));
  8367   ins_cost(200);
  8368   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8369             "FISTp  $dst" %}
  8370   ins_encode(enc_loadL_volatile(mem,dst));
  8371   ins_pipe( fpu_reg_mem );
  8372 %}
  8374 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8375   predicate(UseSSE>=2);
  8376   match(Set dst (LoadLLocked mem));
  8377   effect(TEMP tmp);
  8378   ins_cost(180);
  8379   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8380             "MOVSD  $dst,$tmp" %}
  8381   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8382   ins_pipe( pipe_slow );
  8383 %}
  8385 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8386   predicate(UseSSE>=2);
  8387   match(Set dst (LoadLLocked mem));
  8388   effect(TEMP tmp);
  8389   ins_cost(160);
  8390   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8391             "MOVD   $dst.lo,$tmp\n\t"
  8392             "PSRLQ  $tmp,32\n\t"
  8393             "MOVD   $dst.hi,$tmp" %}
  8394   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8395   ins_pipe( pipe_slow );
  8396 %}
  8398 // Conditional-store of the updated heap-top.
  8399 // Used during allocation of the shared heap.
  8400 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8401 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8402   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8403   // EAX is killed if there is contention, but then it's also unused.
  8404   // In the common case of no contention, EAX holds the new oop address.
  8405   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8406   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8407   ins_pipe( pipe_cmpxchg );
  8408 %}
  8410 // Conditional-store of an int value.
  8411 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8412 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8413   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8414   effect(KILL oldval);
  8415   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8416   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8417   ins_pipe( pipe_cmpxchg );
  8418 %}
  8420 // Conditional-store of a long value.
  8421 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8422 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8423   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8424   effect(KILL oldval);
  8425   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8426             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8427             "XCHG   EBX,ECX"
  8428   %}
  8429   ins_encode %{
  8430     // Note: we need to swap rbx, and rcx before and after the
  8431     //       cmpxchg8 instruction because the instruction uses
  8432     //       rcx as the high order word of the new value to store but
  8433     //       our register encoding uses rbx.
  8434     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8435     if( os::is_MP() )
  8436       __ lock();
  8437     __ cmpxchg8($mem$$Address);
  8438     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8439   %}
  8440   ins_pipe( pipe_cmpxchg );
  8441 %}
  8443 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8445 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8446   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8447   effect(KILL cr, KILL oldval);
  8448   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8449             "MOV    $res,0\n\t"
  8450             "JNE,s  fail\n\t"
  8451             "MOV    $res,1\n"
  8452           "fail:" %}
  8453   ins_encode( enc_cmpxchg8(mem_ptr),
  8454               enc_flags_ne_to_boolean(res) );
  8455   ins_pipe( pipe_cmpxchg );
  8456 %}
  8458 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8459   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8460   effect(KILL cr, KILL oldval);
  8461   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8462             "MOV    $res,0\n\t"
  8463             "JNE,s  fail\n\t"
  8464             "MOV    $res,1\n"
  8465           "fail:" %}
  8466   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8467   ins_pipe( pipe_cmpxchg );
  8468 %}
  8470 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8471   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8472   effect(KILL cr, KILL oldval);
  8473   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8474             "MOV    $res,0\n\t"
  8475             "JNE,s  fail\n\t"
  8476             "MOV    $res,1\n"
  8477           "fail:" %}
  8478   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8479   ins_pipe( pipe_cmpxchg );
  8480 %}
  8482 //----------Subtraction Instructions-------------------------------------------
  8483 // Integer Subtraction Instructions
  8484 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8485   match(Set dst (SubI dst src));
  8486   effect(KILL cr);
  8488   size(2);
  8489   format %{ "SUB    $dst,$src" %}
  8490   opcode(0x2B);
  8491   ins_encode( OpcP, RegReg( dst, src) );
  8492   ins_pipe( ialu_reg_reg );
  8493 %}
  8495 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8496   match(Set dst (SubI dst src));
  8497   effect(KILL cr);
  8499   format %{ "SUB    $dst,$src" %}
  8500   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8501   // ins_encode( RegImm( dst, src) );
  8502   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8503   ins_pipe( ialu_reg );
  8504 %}
  8506 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8507   match(Set dst (SubI dst (LoadI src)));
  8508   effect(KILL cr);
  8510   ins_cost(125);
  8511   format %{ "SUB    $dst,$src" %}
  8512   opcode(0x2B);
  8513   ins_encode( OpcP, RegMem( dst, src) );
  8514   ins_pipe( ialu_reg_mem );
  8515 %}
  8517 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8518   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8519   effect(KILL cr);
  8521   ins_cost(150);
  8522   format %{ "SUB    $dst,$src" %}
  8523   opcode(0x29);  /* Opcode 29 /r */
  8524   ins_encode( OpcP, RegMem( src, dst ) );
  8525   ins_pipe( ialu_mem_reg );
  8526 %}
  8528 // Subtract from a pointer
  8529 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8530   match(Set dst (AddP dst (SubI zero src)));
  8531   effect(KILL cr);
  8533   size(2);
  8534   format %{ "SUB    $dst,$src" %}
  8535   opcode(0x2B);
  8536   ins_encode( OpcP, RegReg( dst, src) );
  8537   ins_pipe( ialu_reg_reg );
  8538 %}
  8540 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8541   match(Set dst (SubI zero dst));
  8542   effect(KILL cr);
  8544   size(2);
  8545   format %{ "NEG    $dst" %}
  8546   opcode(0xF7,0x03);  // Opcode F7 /3
  8547   ins_encode( OpcP, RegOpc( dst ) );
  8548   ins_pipe( ialu_reg );
  8549 %}
  8552 //----------Multiplication/Division Instructions-------------------------------
  8553 // Integer Multiplication Instructions
  8554 // Multiply Register
  8555 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8556   match(Set dst (MulI dst src));
  8557   effect(KILL cr);
  8559   size(3);
  8560   ins_cost(300);
  8561   format %{ "IMUL   $dst,$src" %}
  8562   opcode(0xAF, 0x0F);
  8563   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8564   ins_pipe( ialu_reg_reg_alu0 );
  8565 %}
  8567 // Multiply 32-bit Immediate
  8568 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8569   match(Set dst (MulI src imm));
  8570   effect(KILL cr);
  8572   ins_cost(300);
  8573   format %{ "IMUL   $dst,$src,$imm" %}
  8574   opcode(0x69);  /* 69 /r id */
  8575   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8576   ins_pipe( ialu_reg_reg_alu0 );
  8577 %}
  8579 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8580   match(Set dst src);
  8581   effect(KILL cr);
  8583   // Note that this is artificially increased to make it more expensive than loadConL
  8584   ins_cost(250);
  8585   format %{ "MOV    EAX,$src\t// low word only" %}
  8586   opcode(0xB8);
  8587   ins_encode( LdImmL_Lo(dst, src) );
  8588   ins_pipe( ialu_reg_fat );
  8589 %}
  8591 // Multiply by 32-bit Immediate, taking the shifted high order results
  8592 //  (special case for shift by 32)
  8593 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8594   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8595   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8596              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8597              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8598   effect(USE src1, KILL cr);
  8600   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8601   ins_cost(0*100 + 1*400 - 150);
  8602   format %{ "IMUL   EDX:EAX,$src1" %}
  8603   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8604   ins_pipe( pipe_slow );
  8605 %}
  8607 // Multiply by 32-bit Immediate, taking the shifted high order results
  8608 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8609   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8610   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8611              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8612              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8613   effect(USE src1, KILL cr);
  8615   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8616   ins_cost(1*100 + 1*400 - 150);
  8617   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8618             "SAR    EDX,$cnt-32" %}
  8619   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8620   ins_pipe( pipe_slow );
  8621 %}
  8623 // Multiply Memory 32-bit Immediate
  8624 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8625   match(Set dst (MulI (LoadI src) imm));
  8626   effect(KILL cr);
  8628   ins_cost(300);
  8629   format %{ "IMUL   $dst,$src,$imm" %}
  8630   opcode(0x69);  /* 69 /r id */
  8631   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8632   ins_pipe( ialu_reg_mem_alu0 );
  8633 %}
  8635 // Multiply Memory
  8636 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8637   match(Set dst (MulI dst (LoadI src)));
  8638   effect(KILL cr);
  8640   ins_cost(350);
  8641   format %{ "IMUL   $dst,$src" %}
  8642   opcode(0xAF, 0x0F);
  8643   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8644   ins_pipe( ialu_reg_mem_alu0 );
  8645 %}
  8647 // Multiply Register Int to Long
  8648 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8649   // Basic Idea: long = (long)int * (long)int
  8650   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8651   effect(DEF dst, USE src, USE src1, KILL flags);
  8653   ins_cost(300);
  8654   format %{ "IMUL   $dst,$src1" %}
  8656   ins_encode( long_int_multiply( dst, src1 ) );
  8657   ins_pipe( ialu_reg_reg_alu0 );
  8658 %}
  8660 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8661   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8662   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8663   effect(KILL flags);
  8665   ins_cost(300);
  8666   format %{ "MUL    $dst,$src1" %}
  8668   ins_encode( long_uint_multiply(dst, src1) );
  8669   ins_pipe( ialu_reg_reg_alu0 );
  8670 %}
  8672 // Multiply Register Long
  8673 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8674   match(Set dst (MulL dst src));
  8675   effect(KILL cr, TEMP tmp);
  8676   ins_cost(4*100+3*400);
  8677 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8678 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8679   format %{ "MOV    $tmp,$src.lo\n\t"
  8680             "IMUL   $tmp,EDX\n\t"
  8681             "MOV    EDX,$src.hi\n\t"
  8682             "IMUL   EDX,EAX\n\t"
  8683             "ADD    $tmp,EDX\n\t"
  8684             "MUL    EDX:EAX,$src.lo\n\t"
  8685             "ADD    EDX,$tmp" %}
  8686   ins_encode( long_multiply( dst, src, tmp ) );
  8687   ins_pipe( pipe_slow );
  8688 %}
  8690 // Multiply Register Long where the left operand's high 32 bits are zero
  8691 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8692   predicate(is_operand_hi32_zero(n->in(1)));
  8693   match(Set dst (MulL dst src));
  8694   effect(KILL cr, TEMP tmp);
  8695   ins_cost(2*100+2*400);
  8696 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8697 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8698   format %{ "MOV    $tmp,$src.hi\n\t"
  8699             "IMUL   $tmp,EAX\n\t"
  8700             "MUL    EDX:EAX,$src.lo\n\t"
  8701             "ADD    EDX,$tmp" %}
  8702   ins_encode %{
  8703     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8704     __ imull($tmp$$Register, rax);
  8705     __ mull($src$$Register);
  8706     __ addl(rdx, $tmp$$Register);
  8707   %}
  8708   ins_pipe( pipe_slow );
  8709 %}
  8711 // Multiply Register Long where the right operand's high 32 bits are zero
  8712 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8713   predicate(is_operand_hi32_zero(n->in(2)));
  8714   match(Set dst (MulL dst src));
  8715   effect(KILL cr, TEMP tmp);
  8716   ins_cost(2*100+2*400);
  8717 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8718 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8719   format %{ "MOV    $tmp,$src.lo\n\t"
  8720             "IMUL   $tmp,EDX\n\t"
  8721             "MUL    EDX:EAX,$src.lo\n\t"
  8722             "ADD    EDX,$tmp" %}
  8723   ins_encode %{
  8724     __ movl($tmp$$Register, $src$$Register);
  8725     __ imull($tmp$$Register, rdx);
  8726     __ mull($src$$Register);
  8727     __ addl(rdx, $tmp$$Register);
  8728   %}
  8729   ins_pipe( pipe_slow );
  8730 %}
  8732 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8733 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8734   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8735   match(Set dst (MulL dst src));
  8736   effect(KILL cr);
  8737   ins_cost(1*400);
  8738 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8739 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8740   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8741   ins_encode %{
  8742     __ mull($src$$Register);
  8743   %}
  8744   ins_pipe( pipe_slow );
  8745 %}
  8747 // Multiply Register Long by small constant
  8748 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8749   match(Set dst (MulL dst src));
  8750   effect(KILL cr, TEMP tmp);
  8751   ins_cost(2*100+2*400);
  8752   size(12);
  8753 // Basic idea: lo(result) = lo(src * EAX)
  8754 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8755   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8756             "MOV    EDX,$src\n\t"
  8757             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8758             "ADD    EDX,$tmp" %}
  8759   ins_encode( long_multiply_con( dst, src, tmp ) );
  8760   ins_pipe( pipe_slow );
  8761 %}
  8763 // Integer DIV with Register
  8764 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8765   match(Set rax (DivI rax div));
  8766   effect(KILL rdx, KILL cr);
  8767   size(26);
  8768   ins_cost(30*100+10*100);
  8769   format %{ "CMP    EAX,0x80000000\n\t"
  8770             "JNE,s  normal\n\t"
  8771             "XOR    EDX,EDX\n\t"
  8772             "CMP    ECX,-1\n\t"
  8773             "JE,s   done\n"
  8774     "normal: CDQ\n\t"
  8775             "IDIV   $div\n\t"
  8776     "done:"        %}
  8777   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8778   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8779   ins_pipe( ialu_reg_reg_alu0 );
  8780 %}
  8782 // Divide Register Long
  8783 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8784   match(Set dst (DivL src1 src2));
  8785   effect( KILL cr, KILL cx, KILL bx );
  8786   ins_cost(10000);
  8787   format %{ "PUSH   $src1.hi\n\t"
  8788             "PUSH   $src1.lo\n\t"
  8789             "PUSH   $src2.hi\n\t"
  8790             "PUSH   $src2.lo\n\t"
  8791             "CALL   SharedRuntime::ldiv\n\t"
  8792             "ADD    ESP,16" %}
  8793   ins_encode( long_div(src1,src2) );
  8794   ins_pipe( pipe_slow );
  8795 %}
  8797 // Integer DIVMOD with Register, both quotient and mod results
  8798 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8799   match(DivModI rax div);
  8800   effect(KILL cr);
  8801   size(26);
  8802   ins_cost(30*100+10*100);
  8803   format %{ "CMP    EAX,0x80000000\n\t"
  8804             "JNE,s  normal\n\t"
  8805             "XOR    EDX,EDX\n\t"
  8806             "CMP    ECX,-1\n\t"
  8807             "JE,s   done\n"
  8808     "normal: CDQ\n\t"
  8809             "IDIV   $div\n\t"
  8810     "done:"        %}
  8811   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8812   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8813   ins_pipe( pipe_slow );
  8814 %}
  8816 // Integer MOD with Register
  8817 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8818   match(Set rdx (ModI rax div));
  8819   effect(KILL rax, KILL cr);
  8821   size(26);
  8822   ins_cost(300);
  8823   format %{ "CDQ\n\t"
  8824             "IDIV   $div" %}
  8825   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8826   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8827   ins_pipe( ialu_reg_reg_alu0 );
  8828 %}
  8830 // Remainder Register Long
  8831 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8832   match(Set dst (ModL src1 src2));
  8833   effect( KILL cr, KILL cx, KILL bx );
  8834   ins_cost(10000);
  8835   format %{ "PUSH   $src1.hi\n\t"
  8836             "PUSH   $src1.lo\n\t"
  8837             "PUSH   $src2.hi\n\t"
  8838             "PUSH   $src2.lo\n\t"
  8839             "CALL   SharedRuntime::lrem\n\t"
  8840             "ADD    ESP,16" %}
  8841   ins_encode( long_mod(src1,src2) );
  8842   ins_pipe( pipe_slow );
  8843 %}
  8845 // Integer Shift Instructions
  8846 // Shift Left by one
  8847 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8848   match(Set dst (LShiftI dst shift));
  8849   effect(KILL cr);
  8851   size(2);
  8852   format %{ "SHL    $dst,$shift" %}
  8853   opcode(0xD1, 0x4);  /* D1 /4 */
  8854   ins_encode( OpcP, RegOpc( dst ) );
  8855   ins_pipe( ialu_reg );
  8856 %}
  8858 // Shift Left by 8-bit immediate
  8859 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8860   match(Set dst (LShiftI dst shift));
  8861   effect(KILL cr);
  8863   size(3);
  8864   format %{ "SHL    $dst,$shift" %}
  8865   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8866   ins_encode( RegOpcImm( dst, shift) );
  8867   ins_pipe( ialu_reg );
  8868 %}
  8870 // Shift Left by variable
  8871 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8872   match(Set dst (LShiftI dst shift));
  8873   effect(KILL cr);
  8875   size(2);
  8876   format %{ "SHL    $dst,$shift" %}
  8877   opcode(0xD3, 0x4);  /* D3 /4 */
  8878   ins_encode( OpcP, RegOpc( dst ) );
  8879   ins_pipe( ialu_reg_reg );
  8880 %}
  8882 // Arithmetic shift right by one
  8883 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8884   match(Set dst (RShiftI dst shift));
  8885   effect(KILL cr);
  8887   size(2);
  8888   format %{ "SAR    $dst,$shift" %}
  8889   opcode(0xD1, 0x7);  /* D1 /7 */
  8890   ins_encode( OpcP, RegOpc( dst ) );
  8891   ins_pipe( ialu_reg );
  8892 %}
  8894 // Arithmetic shift right by one
  8895 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8896   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8897   effect(KILL cr);
  8898   format %{ "SAR    $dst,$shift" %}
  8899   opcode(0xD1, 0x7);  /* D1 /7 */
  8900   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8901   ins_pipe( ialu_mem_imm );
  8902 %}
  8904 // Arithmetic Shift Right by 8-bit immediate
  8905 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8906   match(Set dst (RShiftI dst shift));
  8907   effect(KILL cr);
  8909   size(3);
  8910   format %{ "SAR    $dst,$shift" %}
  8911   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8912   ins_encode( RegOpcImm( dst, shift ) );
  8913   ins_pipe( ialu_mem_imm );
  8914 %}
  8916 // Arithmetic Shift Right by 8-bit immediate
  8917 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8918   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8919   effect(KILL cr);
  8921   format %{ "SAR    $dst,$shift" %}
  8922   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8923   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8924   ins_pipe( ialu_mem_imm );
  8925 %}
  8927 // Arithmetic Shift Right by variable
  8928 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8929   match(Set dst (RShiftI dst shift));
  8930   effect(KILL cr);
  8932   size(2);
  8933   format %{ "SAR    $dst,$shift" %}
  8934   opcode(0xD3, 0x7);  /* D3 /7 */
  8935   ins_encode( OpcP, RegOpc( dst ) );
  8936   ins_pipe( ialu_reg_reg );
  8937 %}
  8939 // Logical shift right by one
  8940 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8941   match(Set dst (URShiftI dst shift));
  8942   effect(KILL cr);
  8944   size(2);
  8945   format %{ "SHR    $dst,$shift" %}
  8946   opcode(0xD1, 0x5);  /* D1 /5 */
  8947   ins_encode( OpcP, RegOpc( dst ) );
  8948   ins_pipe( ialu_reg );
  8949 %}
  8951 // Logical Shift Right by 8-bit immediate
  8952 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8953   match(Set dst (URShiftI dst shift));
  8954   effect(KILL cr);
  8956   size(3);
  8957   format %{ "SHR    $dst,$shift" %}
  8958   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8959   ins_encode( RegOpcImm( dst, shift) );
  8960   ins_pipe( ialu_reg );
  8961 %}
  8964 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8965 // This idiom is used by the compiler for the i2b bytecode.
  8966 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8967   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8969   size(3);
  8970   format %{ "MOVSX  $dst,$src :8" %}
  8971   ins_encode %{
  8972     __ movsbl($dst$$Register, $src$$Register);
  8973   %}
  8974   ins_pipe(ialu_reg_reg);
  8975 %}
  8977 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8978 // This idiom is used by the compiler the i2s bytecode.
  8979 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8980   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8982   size(3);
  8983   format %{ "MOVSX  $dst,$src :16" %}
  8984   ins_encode %{
  8985     __ movswl($dst$$Register, $src$$Register);
  8986   %}
  8987   ins_pipe(ialu_reg_reg);
  8988 %}
  8991 // Logical Shift Right by variable
  8992 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8993   match(Set dst (URShiftI dst shift));
  8994   effect(KILL cr);
  8996   size(2);
  8997   format %{ "SHR    $dst,$shift" %}
  8998   opcode(0xD3, 0x5);  /* D3 /5 */
  8999   ins_encode( OpcP, RegOpc( dst ) );
  9000   ins_pipe( ialu_reg_reg );
  9001 %}
  9004 //----------Logical Instructions-----------------------------------------------
  9005 //----------Integer Logical Instructions---------------------------------------
  9006 // And Instructions
  9007 // And Register with Register
  9008 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9009   match(Set dst (AndI dst src));
  9010   effect(KILL cr);
  9012   size(2);
  9013   format %{ "AND    $dst,$src" %}
  9014   opcode(0x23);
  9015   ins_encode( OpcP, RegReg( dst, src) );
  9016   ins_pipe( ialu_reg_reg );
  9017 %}
  9019 // And Register with Immediate
  9020 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9021   match(Set dst (AndI dst src));
  9022   effect(KILL cr);
  9024   format %{ "AND    $dst,$src" %}
  9025   opcode(0x81,0x04);  /* Opcode 81 /4 */
  9026   // ins_encode( RegImm( dst, src) );
  9027   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9028   ins_pipe( ialu_reg );
  9029 %}
  9031 // And Register with Memory
  9032 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9033   match(Set dst (AndI dst (LoadI src)));
  9034   effect(KILL cr);
  9036   ins_cost(125);
  9037   format %{ "AND    $dst,$src" %}
  9038   opcode(0x23);
  9039   ins_encode( OpcP, RegMem( dst, src) );
  9040   ins_pipe( ialu_reg_mem );
  9041 %}
  9043 // And Memory with Register
  9044 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9045   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9046   effect(KILL cr);
  9048   ins_cost(150);
  9049   format %{ "AND    $dst,$src" %}
  9050   opcode(0x21);  /* Opcode 21 /r */
  9051   ins_encode( OpcP, RegMem( src, dst ) );
  9052   ins_pipe( ialu_mem_reg );
  9053 %}
  9055 // And Memory with Immediate
  9056 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9057   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9058   effect(KILL cr);
  9060   ins_cost(125);
  9061   format %{ "AND    $dst,$src" %}
  9062   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  9063   // ins_encode( MemImm( dst, src) );
  9064   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9065   ins_pipe( ialu_mem_imm );
  9066 %}
  9068 // Or Instructions
  9069 // Or Register with Register
  9070 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9071   match(Set dst (OrI dst src));
  9072   effect(KILL cr);
  9074   size(2);
  9075   format %{ "OR     $dst,$src" %}
  9076   opcode(0x0B);
  9077   ins_encode( OpcP, RegReg( dst, src) );
  9078   ins_pipe( ialu_reg_reg );
  9079 %}
  9081 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  9082   match(Set dst (OrI dst (CastP2X src)));
  9083   effect(KILL cr);
  9085   size(2);
  9086   format %{ "OR     $dst,$src" %}
  9087   opcode(0x0B);
  9088   ins_encode( OpcP, RegReg( dst, src) );
  9089   ins_pipe( ialu_reg_reg );
  9090 %}
  9093 // Or Register with Immediate
  9094 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9095   match(Set dst (OrI dst src));
  9096   effect(KILL cr);
  9098   format %{ "OR     $dst,$src" %}
  9099   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  9100   // ins_encode( RegImm( dst, src) );
  9101   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9102   ins_pipe( ialu_reg );
  9103 %}
  9105 // Or Register with Memory
  9106 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9107   match(Set dst (OrI dst (LoadI src)));
  9108   effect(KILL cr);
  9110   ins_cost(125);
  9111   format %{ "OR     $dst,$src" %}
  9112   opcode(0x0B);
  9113   ins_encode( OpcP, RegMem( dst, src) );
  9114   ins_pipe( ialu_reg_mem );
  9115 %}
  9117 // Or Memory with Register
  9118 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9119   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9120   effect(KILL cr);
  9122   ins_cost(150);
  9123   format %{ "OR     $dst,$src" %}
  9124   opcode(0x09);  /* Opcode 09 /r */
  9125   ins_encode( OpcP, RegMem( src, dst ) );
  9126   ins_pipe( ialu_mem_reg );
  9127 %}
  9129 // Or Memory with Immediate
  9130 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9131   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9132   effect(KILL cr);
  9134   ins_cost(125);
  9135   format %{ "OR     $dst,$src" %}
  9136   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  9137   // ins_encode( MemImm( dst, src) );
  9138   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9139   ins_pipe( ialu_mem_imm );
  9140 %}
  9142 // ROL/ROR
  9143 // ROL expand
  9144 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9145   effect(USE_DEF dst, USE shift, KILL cr);
  9147   format %{ "ROL    $dst, $shift" %}
  9148   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9149   ins_encode( OpcP, RegOpc( dst ));
  9150   ins_pipe( ialu_reg );
  9151 %}
  9153 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9154   effect(USE_DEF dst, USE shift, KILL cr);
  9156   format %{ "ROL    $dst, $shift" %}
  9157   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9158   ins_encode( RegOpcImm(dst, shift) );
  9159   ins_pipe(ialu_reg);
  9160 %}
  9162 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9163   effect(USE_DEF dst, USE shift, KILL cr);
  9165   format %{ "ROL    $dst, $shift" %}
  9166   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9167   ins_encode(OpcP, RegOpc(dst));
  9168   ins_pipe( ialu_reg_reg );
  9169 %}
  9170 // end of ROL expand
  9172 // ROL 32bit by one once
  9173 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9174   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9176   expand %{
  9177     rolI_eReg_imm1(dst, lshift, cr);
  9178   %}
  9179 %}
  9181 // ROL 32bit var by imm8 once
  9182 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9183   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9184   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9186   expand %{
  9187     rolI_eReg_imm8(dst, lshift, cr);
  9188   %}
  9189 %}
  9191 // ROL 32bit var by var once
  9192 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9193   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9195   expand %{
  9196     rolI_eReg_CL(dst, shift, cr);
  9197   %}
  9198 %}
  9200 // ROL 32bit var by var once
  9201 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9202   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9204   expand %{
  9205     rolI_eReg_CL(dst, shift, cr);
  9206   %}
  9207 %}
  9209 // ROR expand
  9210 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9211   effect(USE_DEF dst, USE shift, KILL cr);
  9213   format %{ "ROR    $dst, $shift" %}
  9214   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9215   ins_encode( OpcP, RegOpc( dst ) );
  9216   ins_pipe( ialu_reg );
  9217 %}
  9219 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9220   effect (USE_DEF dst, USE shift, KILL cr);
  9222   format %{ "ROR    $dst, $shift" %}
  9223   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9224   ins_encode( RegOpcImm(dst, shift) );
  9225   ins_pipe( ialu_reg );
  9226 %}
  9228 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9229   effect(USE_DEF dst, USE shift, KILL cr);
  9231   format %{ "ROR    $dst, $shift" %}
  9232   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9233   ins_encode(OpcP, RegOpc(dst));
  9234   ins_pipe( ialu_reg_reg );
  9235 %}
  9236 // end of ROR expand
  9238 // ROR right once
  9239 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9240   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9242   expand %{
  9243     rorI_eReg_imm1(dst, rshift, cr);
  9244   %}
  9245 %}
  9247 // ROR 32bit by immI8 once
  9248 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9249   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9250   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9252   expand %{
  9253     rorI_eReg_imm8(dst, rshift, cr);
  9254   %}
  9255 %}
  9257 // ROR 32bit var by var once
  9258 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9259   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9261   expand %{
  9262     rorI_eReg_CL(dst, shift, cr);
  9263   %}
  9264 %}
  9266 // ROR 32bit var by var once
  9267 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9268   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9270   expand %{
  9271     rorI_eReg_CL(dst, shift, cr);
  9272   %}
  9273 %}
  9275 // Xor Instructions
  9276 // Xor Register with Register
  9277 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9278   match(Set dst (XorI dst src));
  9279   effect(KILL cr);
  9281   size(2);
  9282   format %{ "XOR    $dst,$src" %}
  9283   opcode(0x33);
  9284   ins_encode( OpcP, RegReg( dst, src) );
  9285   ins_pipe( ialu_reg_reg );
  9286 %}
  9288 // Xor Register with Immediate -1
  9289 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9290   match(Set dst (XorI dst imm));  
  9292   size(2);
  9293   format %{ "NOT    $dst" %}  
  9294   ins_encode %{
  9295      __ notl($dst$$Register);
  9296   %}
  9297   ins_pipe( ialu_reg );
  9298 %}
  9300 // Xor Register with Immediate
  9301 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9302   match(Set dst (XorI dst src));
  9303   effect(KILL cr);
  9305   format %{ "XOR    $dst,$src" %}
  9306   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9307   // ins_encode( RegImm( dst, src) );
  9308   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9309   ins_pipe( ialu_reg );
  9310 %}
  9312 // Xor Register with Memory
  9313 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9314   match(Set dst (XorI dst (LoadI src)));
  9315   effect(KILL cr);
  9317   ins_cost(125);
  9318   format %{ "XOR    $dst,$src" %}
  9319   opcode(0x33);
  9320   ins_encode( OpcP, RegMem(dst, src) );
  9321   ins_pipe( ialu_reg_mem );
  9322 %}
  9324 // Xor Memory with Register
  9325 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9326   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9327   effect(KILL cr);
  9329   ins_cost(150);
  9330   format %{ "XOR    $dst,$src" %}
  9331   opcode(0x31);  /* Opcode 31 /r */
  9332   ins_encode( OpcP, RegMem( src, dst ) );
  9333   ins_pipe( ialu_mem_reg );
  9334 %}
  9336 // Xor Memory with Immediate
  9337 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9338   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9339   effect(KILL cr);
  9341   ins_cost(125);
  9342   format %{ "XOR    $dst,$src" %}
  9343   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9344   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9345   ins_pipe( ialu_mem_imm );
  9346 %}
  9348 //----------Convert Int to Boolean---------------------------------------------
  9350 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9351   effect( DEF dst, USE src );
  9352   format %{ "MOV    $dst,$src" %}
  9353   ins_encode( enc_Copy( dst, src) );
  9354   ins_pipe( ialu_reg_reg );
  9355 %}
  9357 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9358   effect( USE_DEF dst, USE src, KILL cr );
  9360   size(4);
  9361   format %{ "NEG    $dst\n\t"
  9362             "ADC    $dst,$src" %}
  9363   ins_encode( neg_reg(dst),
  9364               OpcRegReg(0x13,dst,src) );
  9365   ins_pipe( ialu_reg_reg_long );
  9366 %}
  9368 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9369   match(Set dst (Conv2B src));
  9371   expand %{
  9372     movI_nocopy(dst,src);
  9373     ci2b(dst,src,cr);
  9374   %}
  9375 %}
  9377 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9378   effect( DEF dst, USE src );
  9379   format %{ "MOV    $dst,$src" %}
  9380   ins_encode( enc_Copy( dst, src) );
  9381   ins_pipe( ialu_reg_reg );
  9382 %}
  9384 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9385   effect( USE_DEF dst, USE src, KILL cr );
  9386   format %{ "NEG    $dst\n\t"
  9387             "ADC    $dst,$src" %}
  9388   ins_encode( neg_reg(dst),
  9389               OpcRegReg(0x13,dst,src) );
  9390   ins_pipe( ialu_reg_reg_long );
  9391 %}
  9393 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9394   match(Set dst (Conv2B src));
  9396   expand %{
  9397     movP_nocopy(dst,src);
  9398     cp2b(dst,src,cr);
  9399   %}
  9400 %}
  9402 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9403   match(Set dst (CmpLTMask p q));
  9404   effect( KILL cr );
  9405   ins_cost(400);
  9407   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9408   format %{ "XOR    $dst,$dst\n\t"
  9409             "CMP    $p,$q\n\t"
  9410             "SETlt  $dst\n\t"
  9411             "NEG    $dst" %}
  9412   ins_encode( OpcRegReg(0x33,dst,dst),
  9413               OpcRegReg(0x3B,p,q),
  9414               setLT_reg(dst), neg_reg(dst) );
  9415   ins_pipe( pipe_slow );
  9416 %}
  9418 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9419   match(Set dst (CmpLTMask dst zero));
  9420   effect( DEF dst, KILL cr );
  9421   ins_cost(100);
  9423   format %{ "SAR    $dst,31" %}
  9424   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9425   ins_encode( RegOpcImm( dst, 0x1F ) );
  9426   ins_pipe( ialu_reg );
  9427 %}
  9430 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9431   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9432   effect( KILL tmp, KILL cr );
  9433   ins_cost(400);
  9434   // annoyingly, $tmp has no edges so you cant ask for it in
  9435   // any format or encoding
  9436   format %{ "SUB    $p,$q\n\t"
  9437             "SBB    ECX,ECX\n\t"
  9438             "AND    ECX,$y\n\t"
  9439             "ADD    $p,ECX" %}
  9440   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9441   ins_pipe( pipe_cmplt );
  9442 %}
  9444 /* If I enable this, I encourage spilling in the inner loop of compress.
  9445 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9446   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9447   effect( USE_KILL tmp, KILL cr );
  9448   ins_cost(400);
  9450   format %{ "SUB    $p,$q\n\t"
  9451             "SBB    ECX,ECX\n\t"
  9452             "AND    ECX,$y\n\t"
  9453             "ADD    $p,ECX" %}
  9454   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9455 %}
  9456 */
  9458 //----------Long Instructions------------------------------------------------
  9459 // Add Long Register with Register
  9460 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9461   match(Set dst (AddL dst src));
  9462   effect(KILL cr);
  9463   ins_cost(200);
  9464   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9465             "ADC    $dst.hi,$src.hi" %}
  9466   opcode(0x03, 0x13);
  9467   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9468   ins_pipe( ialu_reg_reg_long );
  9469 %}
  9471 // Add Long Register with Immediate
  9472 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9473   match(Set dst (AddL dst src));
  9474   effect(KILL cr);
  9475   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9476             "ADC    $dst.hi,$src.hi" %}
  9477   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9478   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9479   ins_pipe( ialu_reg_long );
  9480 %}
  9482 // Add Long Register with Memory
  9483 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9484   match(Set dst (AddL dst (LoadL mem)));
  9485   effect(KILL cr);
  9486   ins_cost(125);
  9487   format %{ "ADD    $dst.lo,$mem\n\t"
  9488             "ADC    $dst.hi,$mem+4" %}
  9489   opcode(0x03, 0x13);
  9490   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9491   ins_pipe( ialu_reg_long_mem );
  9492 %}
  9494 // Subtract Long Register with Register.
  9495 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9496   match(Set dst (SubL dst src));
  9497   effect(KILL cr);
  9498   ins_cost(200);
  9499   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9500             "SBB    $dst.hi,$src.hi" %}
  9501   opcode(0x2B, 0x1B);
  9502   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9503   ins_pipe( ialu_reg_reg_long );
  9504 %}
  9506 // Subtract Long Register with Immediate
  9507 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9508   match(Set dst (SubL dst src));
  9509   effect(KILL cr);
  9510   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9511             "SBB    $dst.hi,$src.hi" %}
  9512   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9513   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9514   ins_pipe( ialu_reg_long );
  9515 %}
  9517 // Subtract Long Register with Memory
  9518 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9519   match(Set dst (SubL dst (LoadL mem)));
  9520   effect(KILL cr);
  9521   ins_cost(125);
  9522   format %{ "SUB    $dst.lo,$mem\n\t"
  9523             "SBB    $dst.hi,$mem+4" %}
  9524   opcode(0x2B, 0x1B);
  9525   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9526   ins_pipe( ialu_reg_long_mem );
  9527 %}
  9529 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9530   match(Set dst (SubL zero dst));
  9531   effect(KILL cr);
  9532   ins_cost(300);
  9533   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9534   ins_encode( neg_long(dst) );
  9535   ins_pipe( ialu_reg_reg_long );
  9536 %}
  9538 // And Long Register with Register
  9539 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9540   match(Set dst (AndL dst src));
  9541   effect(KILL cr);
  9542   format %{ "AND    $dst.lo,$src.lo\n\t"
  9543             "AND    $dst.hi,$src.hi" %}
  9544   opcode(0x23,0x23);
  9545   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9546   ins_pipe( ialu_reg_reg_long );
  9547 %}
  9549 // And Long Register with Immediate
  9550 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9551   match(Set dst (AndL dst src));
  9552   effect(KILL cr);
  9553   format %{ "AND    $dst.lo,$src.lo\n\t"
  9554             "AND    $dst.hi,$src.hi" %}
  9555   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9556   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9557   ins_pipe( ialu_reg_long );
  9558 %}
  9560 // And Long Register with Memory
  9561 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9562   match(Set dst (AndL dst (LoadL mem)));
  9563   effect(KILL cr);
  9564   ins_cost(125);
  9565   format %{ "AND    $dst.lo,$mem\n\t"
  9566             "AND    $dst.hi,$mem+4" %}
  9567   opcode(0x23, 0x23);
  9568   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9569   ins_pipe( ialu_reg_long_mem );
  9570 %}
  9572 // Or Long Register with Register
  9573 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9574   match(Set dst (OrL dst src));
  9575   effect(KILL cr);
  9576   format %{ "OR     $dst.lo,$src.lo\n\t"
  9577             "OR     $dst.hi,$src.hi" %}
  9578   opcode(0x0B,0x0B);
  9579   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9580   ins_pipe( ialu_reg_reg_long );
  9581 %}
  9583 // Or Long Register with Immediate
  9584 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9585   match(Set dst (OrL dst src));
  9586   effect(KILL cr);
  9587   format %{ "OR     $dst.lo,$src.lo\n\t"
  9588             "OR     $dst.hi,$src.hi" %}
  9589   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9590   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9591   ins_pipe( ialu_reg_long );
  9592 %}
  9594 // Or Long Register with Memory
  9595 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9596   match(Set dst (OrL dst (LoadL mem)));
  9597   effect(KILL cr);
  9598   ins_cost(125);
  9599   format %{ "OR     $dst.lo,$mem\n\t"
  9600             "OR     $dst.hi,$mem+4" %}
  9601   opcode(0x0B,0x0B);
  9602   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9603   ins_pipe( ialu_reg_long_mem );
  9604 %}
  9606 // Xor Long Register with Register
  9607 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9608   match(Set dst (XorL dst src));
  9609   effect(KILL cr);
  9610   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9611             "XOR    $dst.hi,$src.hi" %}
  9612   opcode(0x33,0x33);
  9613   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9614   ins_pipe( ialu_reg_reg_long );
  9615 %}
  9617 // Xor Long Register with Immediate -1
  9618 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9619   match(Set dst (XorL dst imm));  
  9620   format %{ "NOT    $dst.lo\n\t"
  9621             "NOT    $dst.hi" %}
  9622   ins_encode %{
  9623      __ notl($dst$$Register);
  9624      __ notl(HIGH_FROM_LOW($dst$$Register));
  9625   %}
  9626   ins_pipe( ialu_reg_long );
  9627 %}
  9629 // Xor Long Register with Immediate
  9630 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9631   match(Set dst (XorL dst src));
  9632   effect(KILL cr);
  9633   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9634             "XOR    $dst.hi,$src.hi" %}
  9635   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9636   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9637   ins_pipe( ialu_reg_long );
  9638 %}
  9640 // Xor Long Register with Memory
  9641 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9642   match(Set dst (XorL dst (LoadL mem)));
  9643   effect(KILL cr);
  9644   ins_cost(125);
  9645   format %{ "XOR    $dst.lo,$mem\n\t"
  9646             "XOR    $dst.hi,$mem+4" %}
  9647   opcode(0x33,0x33);
  9648   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9649   ins_pipe( ialu_reg_long_mem );
  9650 %}
  9652 // Shift Left Long by 1
  9653 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9654   predicate(UseNewLongLShift);
  9655   match(Set dst (LShiftL dst cnt));
  9656   effect(KILL cr);
  9657   ins_cost(100);
  9658   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9659             "ADC    $dst.hi,$dst.hi" %}
  9660   ins_encode %{
  9661     __ addl($dst$$Register,$dst$$Register);
  9662     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9663   %}
  9664   ins_pipe( ialu_reg_long );
  9665 %}
  9667 // Shift Left Long by 2
  9668 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9669   predicate(UseNewLongLShift);
  9670   match(Set dst (LShiftL dst cnt));
  9671   effect(KILL cr);
  9672   ins_cost(100);
  9673   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9674             "ADC    $dst.hi,$dst.hi\n\t" 
  9675             "ADD    $dst.lo,$dst.lo\n\t"
  9676             "ADC    $dst.hi,$dst.hi" %}
  9677   ins_encode %{
  9678     __ addl($dst$$Register,$dst$$Register);
  9679     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9680     __ addl($dst$$Register,$dst$$Register);
  9681     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9682   %}
  9683   ins_pipe( ialu_reg_long );
  9684 %}
  9686 // Shift Left Long by 3
  9687 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9688   predicate(UseNewLongLShift);
  9689   match(Set dst (LShiftL dst cnt));
  9690   effect(KILL cr);
  9691   ins_cost(100);
  9692   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9693             "ADC    $dst.hi,$dst.hi\n\t" 
  9694             "ADD    $dst.lo,$dst.lo\n\t"
  9695             "ADC    $dst.hi,$dst.hi\n\t" 
  9696             "ADD    $dst.lo,$dst.lo\n\t"
  9697             "ADC    $dst.hi,$dst.hi" %}
  9698   ins_encode %{
  9699     __ addl($dst$$Register,$dst$$Register);
  9700     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9701     __ addl($dst$$Register,$dst$$Register);
  9702     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9703     __ addl($dst$$Register,$dst$$Register);
  9704     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9705   %}
  9706   ins_pipe( ialu_reg_long );
  9707 %}
  9709 // Shift Left Long by 1-31
  9710 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9711   match(Set dst (LShiftL dst cnt));
  9712   effect(KILL cr);
  9713   ins_cost(200);
  9714   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9715             "SHL    $dst.lo,$cnt" %}
  9716   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9717   ins_encode( move_long_small_shift(dst,cnt) );
  9718   ins_pipe( ialu_reg_long );
  9719 %}
  9721 // Shift Left Long by 32-63
  9722 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9723   match(Set dst (LShiftL dst cnt));
  9724   effect(KILL cr);
  9725   ins_cost(300);
  9726   format %{ "MOV    $dst.hi,$dst.lo\n"
  9727           "\tSHL    $dst.hi,$cnt-32\n"
  9728           "\tXOR    $dst.lo,$dst.lo" %}
  9729   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9730   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9731   ins_pipe( ialu_reg_long );
  9732 %}
  9734 // Shift Left Long by variable
  9735 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9736   match(Set dst (LShiftL dst shift));
  9737   effect(KILL cr);
  9738   ins_cost(500+200);
  9739   size(17);
  9740   format %{ "TEST   $shift,32\n\t"
  9741             "JEQ,s  small\n\t"
  9742             "MOV    $dst.hi,$dst.lo\n\t"
  9743             "XOR    $dst.lo,$dst.lo\n"
  9744     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9745             "SHL    $dst.lo,$shift" %}
  9746   ins_encode( shift_left_long( dst, shift ) );
  9747   ins_pipe( pipe_slow );
  9748 %}
  9750 // Shift Right Long by 1-31
  9751 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9752   match(Set dst (URShiftL dst cnt));
  9753   effect(KILL cr);
  9754   ins_cost(200);
  9755   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9756             "SHR    $dst.hi,$cnt" %}
  9757   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9758   ins_encode( move_long_small_shift(dst,cnt) );
  9759   ins_pipe( ialu_reg_long );
  9760 %}
  9762 // Shift Right Long by 32-63
  9763 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9764   match(Set dst (URShiftL dst cnt));
  9765   effect(KILL cr);
  9766   ins_cost(300);
  9767   format %{ "MOV    $dst.lo,$dst.hi\n"
  9768           "\tSHR    $dst.lo,$cnt-32\n"
  9769           "\tXOR    $dst.hi,$dst.hi" %}
  9770   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9771   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9772   ins_pipe( ialu_reg_long );
  9773 %}
  9775 // Shift Right Long by variable
  9776 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9777   match(Set dst (URShiftL dst shift));
  9778   effect(KILL cr);
  9779   ins_cost(600);
  9780   size(17);
  9781   format %{ "TEST   $shift,32\n\t"
  9782             "JEQ,s  small\n\t"
  9783             "MOV    $dst.lo,$dst.hi\n\t"
  9784             "XOR    $dst.hi,$dst.hi\n"
  9785     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9786             "SHR    $dst.hi,$shift" %}
  9787   ins_encode( shift_right_long( dst, shift ) );
  9788   ins_pipe( pipe_slow );
  9789 %}
  9791 // Shift Right Long by 1-31
  9792 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9793   match(Set dst (RShiftL dst cnt));
  9794   effect(KILL cr);
  9795   ins_cost(200);
  9796   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9797             "SAR    $dst.hi,$cnt" %}
  9798   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9799   ins_encode( move_long_small_shift(dst,cnt) );
  9800   ins_pipe( ialu_reg_long );
  9801 %}
  9803 // Shift Right Long by 32-63
  9804 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9805   match(Set dst (RShiftL dst cnt));
  9806   effect(KILL cr);
  9807   ins_cost(300);
  9808   format %{ "MOV    $dst.lo,$dst.hi\n"
  9809           "\tSAR    $dst.lo,$cnt-32\n"
  9810           "\tSAR    $dst.hi,31" %}
  9811   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9812   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9813   ins_pipe( ialu_reg_long );
  9814 %}
  9816 // Shift Right arithmetic Long by variable
  9817 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9818   match(Set dst (RShiftL dst shift));
  9819   effect(KILL cr);
  9820   ins_cost(600);
  9821   size(18);
  9822   format %{ "TEST   $shift,32\n\t"
  9823             "JEQ,s  small\n\t"
  9824             "MOV    $dst.lo,$dst.hi\n\t"
  9825             "SAR    $dst.hi,31\n"
  9826     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9827             "SAR    $dst.hi,$shift" %}
  9828   ins_encode( shift_right_arith_long( dst, shift ) );
  9829   ins_pipe( pipe_slow );
  9830 %}
  9833 //----------Double Instructions------------------------------------------------
  9834 // Double Math
  9836 // Compare & branch
  9838 // P6 version of float compare, sets condition codes in EFLAGS
  9839 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9840   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9841   match(Set cr (CmpD src1 src2));
  9842   effect(KILL rax);
  9843   ins_cost(150);
  9844   format %{ "FLD    $src1\n\t"
  9845             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9846             "JNP    exit\n\t"
  9847             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9848             "SAHF\n"
  9849      "exit:\tNOP               // avoid branch to branch" %}
  9850   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9851   ins_encode( Push_Reg_D(src1),
  9852               OpcP, RegOpc(src2),
  9853               cmpF_P6_fixup );
  9854   ins_pipe( pipe_slow );
  9855 %}
  9857 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9858   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9859   match(Set cr (CmpD src1 src2));
  9860   ins_cost(150);
  9861   format %{ "FLD    $src1\n\t"
  9862             "FUCOMIP ST,$src2  // P6 instruction" %}
  9863   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9864   ins_encode( Push_Reg_D(src1),
  9865               OpcP, RegOpc(src2));
  9866   ins_pipe( pipe_slow );
  9867 %}
  9869 // Compare & branch
  9870 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9871   predicate(UseSSE<=1);
  9872   match(Set cr (CmpD src1 src2));
  9873   effect(KILL rax);
  9874   ins_cost(200);
  9875   format %{ "FLD    $src1\n\t"
  9876             "FCOMp  $src2\n\t"
  9877             "FNSTSW AX\n\t"
  9878             "TEST   AX,0x400\n\t"
  9879             "JZ,s   flags\n\t"
  9880             "MOV    AH,1\t# unordered treat as LT\n"
  9881     "flags:\tSAHF" %}
  9882   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9883   ins_encode( Push_Reg_D(src1),
  9884               OpcP, RegOpc(src2),
  9885               fpu_flags);
  9886   ins_pipe( pipe_slow );
  9887 %}
  9889 // Compare vs zero into -1,0,1
  9890 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  9891   predicate(UseSSE<=1);
  9892   match(Set dst (CmpD3 src1 zero));
  9893   effect(KILL cr, KILL rax);
  9894   ins_cost(280);
  9895   format %{ "FTSTD  $dst,$src1" %}
  9896   opcode(0xE4, 0xD9);
  9897   ins_encode( Push_Reg_D(src1),
  9898               OpcS, OpcP, PopFPU,
  9899               CmpF_Result(dst));
  9900   ins_pipe( pipe_slow );
  9901 %}
  9903 // Compare into -1,0,1
  9904 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  9905   predicate(UseSSE<=1);
  9906   match(Set dst (CmpD3 src1 src2));
  9907   effect(KILL cr, KILL rax);
  9908   ins_cost(300);
  9909   format %{ "FCMPD  $dst,$src1,$src2" %}
  9910   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9911   ins_encode( Push_Reg_D(src1),
  9912               OpcP, RegOpc(src2),
  9913               CmpF_Result(dst));
  9914   ins_pipe( pipe_slow );
  9915 %}
  9917 // float compare and set condition codes in EFLAGS by XMM regs
  9918 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  9919   predicate(UseSSE>=2);
  9920   match(Set cr (CmpD dst src));
  9921   effect(KILL rax);
  9922   ins_cost(125);
  9923   format %{ "COMISD $dst,$src\n"
  9924           "\tJNP    exit\n"
  9925           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9926           "\tSAHF\n"
  9927      "exit:\tNOP               // avoid branch to branch" %}
  9928   opcode(0x66, 0x0F, 0x2F);
  9929   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  9930   ins_pipe( pipe_slow );
  9931 %}
  9933 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  9934   predicate(UseSSE>=2);
  9935   match(Set cr (CmpD dst src));
  9936   ins_cost(100);
  9937   format %{ "COMISD $dst,$src" %}
  9938   opcode(0x66, 0x0F, 0x2F);
  9939   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  9940   ins_pipe( pipe_slow );
  9941 %}
  9943 // float compare and set condition codes in EFLAGS by XMM regs
  9944 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  9945   predicate(UseSSE>=2);
  9946   match(Set cr (CmpD dst (LoadD src)));
  9947   effect(KILL rax);
  9948   ins_cost(145);
  9949   format %{ "COMISD $dst,$src\n"
  9950           "\tJNP    exit\n"
  9951           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9952           "\tSAHF\n"
  9953      "exit:\tNOP               // avoid branch to branch" %}
  9954   opcode(0x66, 0x0F, 0x2F);
  9955   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  9956   ins_pipe( pipe_slow );
  9957 %}
  9959 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  9960   predicate(UseSSE>=2);
  9961   match(Set cr (CmpD dst (LoadD src)));
  9962   ins_cost(100);
  9963   format %{ "COMISD $dst,$src" %}
  9964   opcode(0x66, 0x0F, 0x2F);
  9965   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  9966   ins_pipe( pipe_slow );
  9967 %}
  9969 // Compare into -1,0,1 in XMM
  9970 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  9971   predicate(UseSSE>=2);
  9972   match(Set dst (CmpD3 src1 src2));
  9973   effect(KILL cr);
  9974   ins_cost(255);
  9975   format %{ "XOR    $dst,$dst\n"
  9976           "\tCOMISD $src1,$src2\n"
  9977           "\tJP,s   nan\n"
  9978           "\tJEQ,s  exit\n"
  9979           "\tJA,s   inc\n"
  9980       "nan:\tDEC    $dst\n"
  9981           "\tJMP,s  exit\n"
  9982       "inc:\tINC    $dst\n"
  9983       "exit:"
  9984                 %}
  9985   opcode(0x66, 0x0F, 0x2F);
  9986   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
  9987              CmpX_Result(dst));
  9988   ins_pipe( pipe_slow );
  9989 %}
  9991 // Compare into -1,0,1 in XMM and memory
  9992 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
  9993   predicate(UseSSE>=2);
  9994   match(Set dst (CmpD3 src1 (LoadD mem)));
  9995   effect(KILL cr);
  9996   ins_cost(275);
  9997   format %{ "COMISD $src1,$mem\n"
  9998           "\tMOV    $dst,0\t\t# do not blow flags\n"
  9999           "\tJP,s   nan\n"
 10000           "\tJEQ,s  exit\n"
 10001           "\tJA,s   inc\n"
 10002       "nan:\tDEC    $dst\n"
 10003           "\tJMP,s  exit\n"
 10004       "inc:\tINC    $dst\n"
 10005       "exit:"
 10006                 %}
 10007   opcode(0x66, 0x0F, 0x2F);
 10008   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
 10009              LdImmI(dst,0x0), CmpX_Result(dst));
 10010   ins_pipe( pipe_slow );
 10011 %}
 10014 instruct subD_reg(regD dst, regD src) %{
 10015   predicate (UseSSE <=1);
 10016   match(Set dst (SubD dst src));
 10018   format %{ "FLD    $src\n\t"
 10019             "DSUBp  $dst,ST" %}
 10020   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10021   ins_cost(150);
 10022   ins_encode( Push_Reg_D(src),
 10023               OpcP, RegOpc(dst) );
 10024   ins_pipe( fpu_reg_reg );
 10025 %}
 10027 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10028   predicate (UseSSE <=1);
 10029   match(Set dst (RoundDouble (SubD src1 src2)));
 10030   ins_cost(250);
 10032   format %{ "FLD    $src2\n\t"
 10033             "DSUB   ST,$src1\n\t"
 10034             "FSTP_D $dst\t# D-round" %}
 10035   opcode(0xD8, 0x5);
 10036   ins_encode( Push_Reg_D(src2),
 10037               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10038   ins_pipe( fpu_mem_reg_reg );
 10039 %}
 10042 instruct subD_reg_mem(regD dst, memory src) %{
 10043   predicate (UseSSE <=1);
 10044   match(Set dst (SubD dst (LoadD src)));
 10045   ins_cost(150);
 10047   format %{ "FLD    $src\n\t"
 10048             "DSUBp  $dst,ST" %}
 10049   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10050   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10051               OpcP, RegOpc(dst) );
 10052   ins_pipe( fpu_reg_mem );
 10053 %}
 10055 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
 10056   predicate (UseSSE<=1);
 10057   match(Set dst (AbsD src));
 10058   ins_cost(100);
 10059   format %{ "FABS" %}
 10060   opcode(0xE1, 0xD9);
 10061   ins_encode( OpcS, OpcP );
 10062   ins_pipe( fpu_reg_reg );
 10063 %}
 10065 instruct absXD_reg( regXD dst ) %{
 10066   predicate(UseSSE>=2);
 10067   match(Set dst (AbsD dst));
 10068   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
 10069   ins_encode( AbsXD_encoding(dst));
 10070   ins_pipe( pipe_slow );
 10071 %}
 10073 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
 10074   predicate(UseSSE<=1);
 10075   match(Set dst (NegD src));
 10076   ins_cost(100);
 10077   format %{ "FCHS" %}
 10078   opcode(0xE0, 0xD9);
 10079   ins_encode( OpcS, OpcP );
 10080   ins_pipe( fpu_reg_reg );
 10081 %}
 10083 instruct negXD_reg( regXD dst ) %{
 10084   predicate(UseSSE>=2);
 10085   match(Set dst (NegD dst));
 10086   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
 10087   ins_encode %{
 10088      __ xorpd($dst$$XMMRegister,
 10089               ExternalAddress((address)double_signflip_pool));
 10090   %}
 10091   ins_pipe( pipe_slow );
 10092 %}
 10094 instruct addD_reg(regD dst, regD src) %{
 10095   predicate(UseSSE<=1);
 10096   match(Set dst (AddD dst src));
 10097   format %{ "FLD    $src\n\t"
 10098             "DADD   $dst,ST" %}
 10099   size(4);
 10100   ins_cost(150);
 10101   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10102   ins_encode( Push_Reg_D(src),
 10103               OpcP, RegOpc(dst) );
 10104   ins_pipe( fpu_reg_reg );
 10105 %}
 10108 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10109   predicate(UseSSE<=1);
 10110   match(Set dst (RoundDouble (AddD src1 src2)));
 10111   ins_cost(250);
 10113   format %{ "FLD    $src2\n\t"
 10114             "DADD   ST,$src1\n\t"
 10115             "FSTP_D $dst\t# D-round" %}
 10116   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
 10117   ins_encode( Push_Reg_D(src2),
 10118               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10119   ins_pipe( fpu_mem_reg_reg );
 10120 %}
 10123 instruct addD_reg_mem(regD dst, memory src) %{
 10124   predicate(UseSSE<=1);
 10125   match(Set dst (AddD dst (LoadD src)));
 10126   ins_cost(150);
 10128   format %{ "FLD    $src\n\t"
 10129             "DADDp  $dst,ST" %}
 10130   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10131   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10132               OpcP, RegOpc(dst) );
 10133   ins_pipe( fpu_reg_mem );
 10134 %}
 10136 // add-to-memory
 10137 instruct addD_mem_reg(memory dst, regD src) %{
 10138   predicate(UseSSE<=1);
 10139   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
 10140   ins_cost(150);
 10142   format %{ "FLD_D  $dst\n\t"
 10143             "DADD   ST,$src\n\t"
 10144             "FST_D  $dst" %}
 10145   opcode(0xDD, 0x0);
 10146   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10147               Opcode(0xD8), RegOpc(src),
 10148               set_instruction_start,
 10149               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10150   ins_pipe( fpu_reg_mem );
 10151 %}
 10153 instruct addD_reg_imm1(regD dst, immD1 src) %{
 10154   predicate(UseSSE<=1);
 10155   match(Set dst (AddD dst src));
 10156   ins_cost(125);
 10157   format %{ "FLD1\n\t"
 10158             "DADDp  $dst,ST" %}
 10159   opcode(0xDE, 0x00);
 10160   ins_encode( LdImmD(src),
 10161               OpcP, RegOpc(dst) );
 10162   ins_pipe( fpu_reg );
 10163 %}
 10165 instruct addD_reg_imm(regD dst, immD src) %{
 10166   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10167   match(Set dst (AddD dst src));
 10168   ins_cost(200);
 10169   format %{ "FLD_D  [$src]\n\t"
 10170             "DADDp  $dst,ST" %}
 10171   opcode(0xDE, 0x00);       /* DE /0 */
 10172   ins_encode( LdImmD(src),
 10173               OpcP, RegOpc(dst));
 10174   ins_pipe( fpu_reg_mem );
 10175 %}
 10177 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10178   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10179   match(Set dst (RoundDouble (AddD src con)));
 10180   ins_cost(200);
 10181   format %{ "FLD_D  [$con]\n\t"
 10182             "DADD   ST,$src\n\t"
 10183             "FSTP_D $dst\t# D-round" %}
 10184   opcode(0xD8, 0x00);       /* D8 /0 */
 10185   ins_encode( LdImmD(con),
 10186               OpcP, RegOpc(src), Pop_Mem_D(dst));
 10187   ins_pipe( fpu_mem_reg_con );
 10188 %}
 10190 // Add two double precision floating point values in xmm
 10191 instruct addXD_reg(regXD dst, regXD src) %{
 10192   predicate(UseSSE>=2);
 10193   match(Set dst (AddD dst src));
 10194   format %{ "ADDSD  $dst,$src" %}
 10195   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10196   ins_pipe( pipe_slow );
 10197 %}
 10199 instruct addXD_imm(regXD dst, immXD con) %{
 10200   predicate(UseSSE>=2);
 10201   match(Set dst (AddD dst con));
 10202   format %{ "ADDSD  $dst,[$con]" %}
 10203   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
 10204   ins_pipe( pipe_slow );
 10205 %}
 10207 instruct addXD_mem(regXD dst, memory mem) %{
 10208   predicate(UseSSE>=2);
 10209   match(Set dst (AddD dst (LoadD mem)));
 10210   format %{ "ADDSD  $dst,$mem" %}
 10211   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10212   ins_pipe( pipe_slow );
 10213 %}
 10215 // Sub two double precision floating point values in xmm
 10216 instruct subXD_reg(regXD dst, regXD src) %{
 10217   predicate(UseSSE>=2);
 10218   match(Set dst (SubD dst src));
 10219   format %{ "SUBSD  $dst,$src" %}
 10220   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10221   ins_pipe( pipe_slow );
 10222 %}
 10224 instruct subXD_imm(regXD dst, immXD con) %{
 10225   predicate(UseSSE>=2);
 10226   match(Set dst (SubD dst con));
 10227   format %{ "SUBSD  $dst,[$con]" %}
 10228   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
 10229   ins_pipe( pipe_slow );
 10230 %}
 10232 instruct subXD_mem(regXD dst, memory mem) %{
 10233   predicate(UseSSE>=2);
 10234   match(Set dst (SubD dst (LoadD mem)));
 10235   format %{ "SUBSD  $dst,$mem" %}
 10236   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10237   ins_pipe( pipe_slow );
 10238 %}
 10240 // Mul two double precision floating point values in xmm
 10241 instruct mulXD_reg(regXD dst, regXD src) %{
 10242   predicate(UseSSE>=2);
 10243   match(Set dst (MulD dst src));
 10244   format %{ "MULSD  $dst,$src" %}
 10245   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10246   ins_pipe( pipe_slow );
 10247 %}
 10249 instruct mulXD_imm(regXD dst, immXD con) %{
 10250   predicate(UseSSE>=2);
 10251   match(Set dst (MulD dst con));
 10252   format %{ "MULSD  $dst,[$con]" %}
 10253   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
 10254   ins_pipe( pipe_slow );
 10255 %}
 10257 instruct mulXD_mem(regXD dst, memory mem) %{
 10258   predicate(UseSSE>=2);
 10259   match(Set dst (MulD dst (LoadD mem)));
 10260   format %{ "MULSD  $dst,$mem" %}
 10261   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10262   ins_pipe( pipe_slow );
 10263 %}
 10265 // Div two double precision floating point values in xmm
 10266 instruct divXD_reg(regXD dst, regXD src) %{
 10267   predicate(UseSSE>=2);
 10268   match(Set dst (DivD dst src));
 10269   format %{ "DIVSD  $dst,$src" %}
 10270   opcode(0xF2, 0x0F, 0x5E);
 10271   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10272   ins_pipe( pipe_slow );
 10273 %}
 10275 instruct divXD_imm(regXD dst, immXD con) %{
 10276   predicate(UseSSE>=2);
 10277   match(Set dst (DivD dst con));
 10278   format %{ "DIVSD  $dst,[$con]" %}
 10279   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
 10280   ins_pipe( pipe_slow );
 10281 %}
 10283 instruct divXD_mem(regXD dst, memory mem) %{
 10284   predicate(UseSSE>=2);
 10285   match(Set dst (DivD dst (LoadD mem)));
 10286   format %{ "DIVSD  $dst,$mem" %}
 10287   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10288   ins_pipe( pipe_slow );
 10289 %}
 10292 instruct mulD_reg(regD dst, regD src) %{
 10293   predicate(UseSSE<=1);
 10294   match(Set dst (MulD dst src));
 10295   format %{ "FLD    $src\n\t"
 10296             "DMULp  $dst,ST" %}
 10297   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10298   ins_cost(150);
 10299   ins_encode( Push_Reg_D(src),
 10300               OpcP, RegOpc(dst) );
 10301   ins_pipe( fpu_reg_reg );
 10302 %}
 10304 // Strict FP instruction biases argument before multiply then
 10305 // biases result to avoid double rounding of subnormals.
 10306 //
 10307 // scale arg1 by multiplying arg1 by 2^(-15360)
 10308 // load arg2
 10309 // multiply scaled arg1 by arg2
 10310 // rescale product by 2^(15360)
 10311 //
 10312 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10313   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10314   match(Set dst (MulD dst src));
 10315   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10317   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10318             "DMULp  $dst,ST\n\t"
 10319             "FLD    $src\n\t"
 10320             "DMULp  $dst,ST\n\t"
 10321             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10322             "DMULp  $dst,ST\n\t" %}
 10323   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10324   ins_encode( strictfp_bias1(dst),
 10325               Push_Reg_D(src),
 10326               OpcP, RegOpc(dst),
 10327               strictfp_bias2(dst) );
 10328   ins_pipe( fpu_reg_reg );
 10329 %}
 10331 instruct mulD_reg_imm(regD dst, immD src) %{
 10332   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10333   match(Set dst (MulD dst src));
 10334   ins_cost(200);
 10335   format %{ "FLD_D  [$src]\n\t"
 10336             "DMULp  $dst,ST" %}
 10337   opcode(0xDE, 0x1); /* DE /1 */
 10338   ins_encode( LdImmD(src),
 10339               OpcP, RegOpc(dst) );
 10340   ins_pipe( fpu_reg_mem );
 10341 %}
 10344 instruct mulD_reg_mem(regD dst, memory src) %{
 10345   predicate( UseSSE<=1 );
 10346   match(Set dst (MulD dst (LoadD src)));
 10347   ins_cost(200);
 10348   format %{ "FLD_D  $src\n\t"
 10349             "DMULp  $dst,ST" %}
 10350   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10351   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10352               OpcP, RegOpc(dst) );
 10353   ins_pipe( fpu_reg_mem );
 10354 %}
 10356 //
 10357 // Cisc-alternate to reg-reg multiply
 10358 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10359   predicate( UseSSE<=1 );
 10360   match(Set dst (MulD src (LoadD mem)));
 10361   ins_cost(250);
 10362   format %{ "FLD_D  $mem\n\t"
 10363             "DMUL   ST,$src\n\t"
 10364             "FSTP_D $dst" %}
 10365   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10366   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10367               OpcReg_F(src),
 10368               Pop_Reg_D(dst) );
 10369   ins_pipe( fpu_reg_reg_mem );
 10370 %}
 10373 // MACRO3 -- addD a mulD
 10374 // This instruction is a '2-address' instruction in that the result goes
 10375 // back to src2.  This eliminates a move from the macro; possibly the
 10376 // register allocator will have to add it back (and maybe not).
 10377 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10378   predicate( UseSSE<=1 );
 10379   match(Set src2 (AddD (MulD src0 src1) src2));
 10380   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10381             "DMUL   ST,$src1\n\t"
 10382             "DADDp  $src2,ST" %}
 10383   ins_cost(250);
 10384   opcode(0xDD); /* LoadD DD /0 */
 10385   ins_encode( Push_Reg_F(src0),
 10386               FMul_ST_reg(src1),
 10387               FAddP_reg_ST(src2) );
 10388   ins_pipe( fpu_reg_reg_reg );
 10389 %}
 10392 // MACRO3 -- subD a mulD
 10393 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10394   predicate( UseSSE<=1 );
 10395   match(Set src2 (SubD (MulD src0 src1) src2));
 10396   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10397             "DMUL   ST,$src1\n\t"
 10398             "DSUBRp $src2,ST" %}
 10399   ins_cost(250);
 10400   ins_encode( Push_Reg_F(src0),
 10401               FMul_ST_reg(src1),
 10402               Opcode(0xDE), Opc_plus(0xE0,src2));
 10403   ins_pipe( fpu_reg_reg_reg );
 10404 %}
 10407 instruct divD_reg(regD dst, regD src) %{
 10408   predicate( UseSSE<=1 );
 10409   match(Set dst (DivD dst src));
 10411   format %{ "FLD    $src\n\t"
 10412             "FDIVp  $dst,ST" %}
 10413   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10414   ins_cost(150);
 10415   ins_encode( Push_Reg_D(src),
 10416               OpcP, RegOpc(dst) );
 10417   ins_pipe( fpu_reg_reg );
 10418 %}
 10420 // Strict FP instruction biases argument before division then
 10421 // biases result, to avoid double rounding of subnormals.
 10422 //
 10423 // scale dividend by multiplying dividend by 2^(-15360)
 10424 // load divisor
 10425 // divide scaled dividend by divisor
 10426 // rescale quotient by 2^(15360)
 10427 //
 10428 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10429   predicate (UseSSE<=1);
 10430   match(Set dst (DivD dst src));
 10431   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10432   ins_cost(01);
 10434   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10435             "DMULp  $dst,ST\n\t"
 10436             "FLD    $src\n\t"
 10437             "FDIVp  $dst,ST\n\t"
 10438             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10439             "DMULp  $dst,ST\n\t" %}
 10440   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10441   ins_encode( strictfp_bias1(dst),
 10442               Push_Reg_D(src),
 10443               OpcP, RegOpc(dst),
 10444               strictfp_bias2(dst) );
 10445   ins_pipe( fpu_reg_reg );
 10446 %}
 10448 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10449   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10450   match(Set dst (RoundDouble (DivD src1 src2)));
 10452   format %{ "FLD    $src1\n\t"
 10453             "FDIV   ST,$src2\n\t"
 10454             "FSTP_D $dst\t# D-round" %}
 10455   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10456   ins_encode( Push_Reg_D(src1),
 10457               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10458   ins_pipe( fpu_mem_reg_reg );
 10459 %}
 10462 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10463   predicate(UseSSE<=1);
 10464   match(Set dst (ModD dst src));
 10465   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10467   format %{ "DMOD   $dst,$src" %}
 10468   ins_cost(250);
 10469   ins_encode(Push_Reg_Mod_D(dst, src),
 10470               emitModD(),
 10471               Push_Result_Mod_D(src),
 10472               Pop_Reg_D(dst));
 10473   ins_pipe( pipe_slow );
 10474 %}
 10476 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10477   predicate(UseSSE>=2);
 10478   match(Set dst (ModD src0 src1));
 10479   effect(KILL rax, KILL cr);
 10481   format %{ "SUB    ESP,8\t # DMOD\n"
 10482           "\tMOVSD  [ESP+0],$src1\n"
 10483           "\tFLD_D  [ESP+0]\n"
 10484           "\tMOVSD  [ESP+0],$src0\n"
 10485           "\tFLD_D  [ESP+0]\n"
 10486      "loop:\tFPREM\n"
 10487           "\tFWAIT\n"
 10488           "\tFNSTSW AX\n"
 10489           "\tSAHF\n"
 10490           "\tJP     loop\n"
 10491           "\tFSTP_D [ESP+0]\n"
 10492           "\tMOVSD  $dst,[ESP+0]\n"
 10493           "\tADD    ESP,8\n"
 10494           "\tFSTP   ST0\t # Restore FPU Stack"
 10495     %}
 10496   ins_cost(250);
 10497   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10498   ins_pipe( pipe_slow );
 10499 %}
 10501 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10502   predicate (UseSSE<=1);
 10503   match(Set dst (SinD src));
 10504   ins_cost(1800);
 10505   format %{ "DSIN   $dst" %}
 10506   opcode(0xD9, 0xFE);
 10507   ins_encode( OpcP, OpcS );
 10508   ins_pipe( pipe_slow );
 10509 %}
 10511 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10512   predicate (UseSSE>=2);
 10513   match(Set dst (SinD dst));
 10514   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10515   ins_cost(1800);
 10516   format %{ "DSIN   $dst" %}
 10517   opcode(0xD9, 0xFE);
 10518   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10519   ins_pipe( pipe_slow );
 10520 %}
 10522 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10523   predicate (UseSSE<=1);
 10524   match(Set dst (CosD src));
 10525   ins_cost(1800);
 10526   format %{ "DCOS   $dst" %}
 10527   opcode(0xD9, 0xFF);
 10528   ins_encode( OpcP, OpcS );
 10529   ins_pipe( pipe_slow );
 10530 %}
 10532 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10533   predicate (UseSSE>=2);
 10534   match(Set dst (CosD dst));
 10535   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10536   ins_cost(1800);
 10537   format %{ "DCOS   $dst" %}
 10538   opcode(0xD9, 0xFF);
 10539   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10540   ins_pipe( pipe_slow );
 10541 %}
 10543 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10544   predicate (UseSSE<=1);
 10545   match(Set dst(TanD src));
 10546   format %{ "DTAN   $dst" %}
 10547   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10548               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10549   ins_pipe( pipe_slow );
 10550 %}
 10552 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10553   predicate (UseSSE>=2);
 10554   match(Set dst(TanD dst));
 10555   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10556   format %{ "DTAN   $dst" %}
 10557   ins_encode( Push_SrcXD(dst),
 10558               Opcode(0xD9), Opcode(0xF2),    // fptan
 10559               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10560               Push_ResultXD(dst) );
 10561   ins_pipe( pipe_slow );
 10562 %}
 10564 instruct atanD_reg(regD dst, regD src) %{
 10565   predicate (UseSSE<=1);
 10566   match(Set dst(AtanD dst src));
 10567   format %{ "DATA   $dst,$src" %}
 10568   opcode(0xD9, 0xF3);
 10569   ins_encode( Push_Reg_D(src),
 10570               OpcP, OpcS, RegOpc(dst) );
 10571   ins_pipe( pipe_slow );
 10572 %}
 10574 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10575   predicate (UseSSE>=2);
 10576   match(Set dst(AtanD dst src));
 10577   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10578   format %{ "DATA   $dst,$src" %}
 10579   opcode(0xD9, 0xF3);
 10580   ins_encode( Push_SrcXD(src),
 10581               OpcP, OpcS, Push_ResultXD(dst) );
 10582   ins_pipe( pipe_slow );
 10583 %}
 10585 instruct sqrtD_reg(regD dst, regD src) %{
 10586   predicate (UseSSE<=1);
 10587   match(Set dst (SqrtD src));
 10588   format %{ "DSQRT  $dst,$src" %}
 10589   opcode(0xFA, 0xD9);
 10590   ins_encode( Push_Reg_D(src),
 10591               OpcS, OpcP, Pop_Reg_D(dst) );
 10592   ins_pipe( pipe_slow );
 10593 %}
 10595 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10596   predicate (UseSSE<=1);
 10597   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10598   effect(KILL rax, KILL rbx, KILL rcx);
 10599   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10600             "FLD_D  $X\n\t"
 10601             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10603             "FDUP   \t\t\t# Q Q\n\t"
 10604             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10605             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10606             "FISTP  dword [ESP]\n\t"
 10607             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10608             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10609             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10610             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10611             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10612             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10613             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10614             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10615             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10616             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10617             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10618             "MOV    [ESP+0],0\n\t"
 10619             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10621             "ADD    ESP,8"
 10622              %}
 10623   ins_encode( push_stack_temp_qword,
 10624               Push_Reg_D(X),
 10625               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10626               pow_exp_core_encoding,
 10627               pop_stack_temp_qword);
 10628   ins_pipe( pipe_slow );
 10629 %}
 10631 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10632   predicate (UseSSE>=2);
 10633   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10634   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10635   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10636             "MOVSD  [ESP],$src1\n\t"
 10637             "FLD    FPR1,$src1\n\t"
 10638             "MOVSD  [ESP],$src0\n\t"
 10639             "FLD    FPR1,$src0\n\t"
 10640             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10642             "FDUP   \t\t\t# Q Q\n\t"
 10643             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10644             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10645             "FISTP  dword [ESP]\n\t"
 10646             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10647             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10648             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10649             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10650             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10651             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10652             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10653             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10654             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10655             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10656             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10657             "MOV    [ESP+0],0\n\t"
 10658             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10660             "FST_D  [ESP]\n\t"
 10661             "MOVSD  $dst,[ESP]\n\t"
 10662             "ADD    ESP,8"
 10663              %}
 10664   ins_encode( push_stack_temp_qword,
 10665               push_xmm_to_fpr1(src1),
 10666               push_xmm_to_fpr1(src0),
 10667               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10668               pow_exp_core_encoding,
 10669               Push_ResultXD(dst) );
 10670   ins_pipe( pipe_slow );
 10671 %}
 10674 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10675   predicate (UseSSE<=1);
 10676   match(Set dpr1 (ExpD dpr1));
 10677   effect(KILL rax, KILL rbx, KILL rcx);
 10678   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10679             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10680             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10682             "FDUP   \t\t\t# Q Q\n\t"
 10683             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10684             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10685             "FISTP  dword [ESP]\n\t"
 10686             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10687             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10688             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10689             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10690             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10691             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10692             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10693             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10694             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10695             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10696             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10697             "MOV    [ESP+0],0\n\t"
 10698             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10700             "ADD    ESP,8"
 10701              %}
 10702   ins_encode( push_stack_temp_qword,
 10703               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10704               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10705               pow_exp_core_encoding,
 10706               pop_stack_temp_qword);
 10707   ins_pipe( pipe_slow );
 10708 %}
 10710 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10711   predicate (UseSSE>=2);
 10712   match(Set dst (ExpD src));
 10713   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10714   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10715             "MOVSD  [ESP],$src\n\t"
 10716             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10717             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10719             "FDUP   \t\t\t# Q Q\n\t"
 10720             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10721             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10722             "FISTP  dword [ESP]\n\t"
 10723             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10724             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10725             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10726             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10727             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10728             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10729             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10730             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10731             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10732             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10733             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10734             "MOV    [ESP+0],0\n\t"
 10735             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10737             "FST_D  [ESP]\n\t"
 10738             "MOVSD  $dst,[ESP]\n\t"
 10739             "ADD    ESP,8"
 10740              %}
 10741   ins_encode( Push_SrcXD(src),
 10742               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10743               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10744               pow_exp_core_encoding,
 10745               Push_ResultXD(dst) );
 10746   ins_pipe( pipe_slow );
 10747 %}
 10751 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10752   predicate (UseSSE<=1);
 10753   // The source Double operand on FPU stack
 10754   match(Set dst (Log10D src));
 10755   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10756   // fxch         ; swap ST(0) with ST(1)
 10757   // fyl2x        ; compute log_10(2) * log_2(x)
 10758   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10759             "FXCH   \n\t"
 10760             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10761          %}
 10762   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10763               Opcode(0xD9), Opcode(0xC9),   // fxch
 10764               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10766   ins_pipe( pipe_slow );
 10767 %}
 10769 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10770   predicate (UseSSE>=2);
 10771   effect(KILL cr);
 10772   match(Set dst (Log10D src));
 10773   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10774   // fyl2x        ; compute log_10(2) * log_2(x)
 10775   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10776             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10777          %}
 10778   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10779               Push_SrcXD(src),
 10780               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10781               Push_ResultXD(dst));
 10783   ins_pipe( pipe_slow );
 10784 %}
 10786 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10787   predicate (UseSSE<=1);
 10788   // The source Double operand on FPU stack
 10789   match(Set dst (LogD src));
 10790   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10791   // fxch         ; swap ST(0) with ST(1)
 10792   // fyl2x        ; compute log_e(2) * log_2(x)
 10793   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10794             "FXCH   \n\t"
 10795             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10796          %}
 10797   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10798               Opcode(0xD9), Opcode(0xC9),   // fxch
 10799               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10801   ins_pipe( pipe_slow );
 10802 %}
 10804 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10805   predicate (UseSSE>=2);
 10806   effect(KILL cr);
 10807   // The source and result Double operands in XMM registers
 10808   match(Set dst (LogD src));
 10809   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10810   // fyl2x        ; compute log_e(2) * log_2(x)
 10811   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10812             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10813          %}
 10814   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10815               Push_SrcXD(src),
 10816               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10817               Push_ResultXD(dst));
 10818   ins_pipe( pipe_slow );
 10819 %}
 10821 //-------------Float Instructions-------------------------------
 10822 // Float Math
 10824 // Code for float compare:
 10825 //     fcompp();
 10826 //     fwait(); fnstsw_ax();
 10827 //     sahf();
 10828 //     movl(dst, unordered_result);
 10829 //     jcc(Assembler::parity, exit);
 10830 //     movl(dst, less_result);
 10831 //     jcc(Assembler::below, exit);
 10832 //     movl(dst, equal_result);
 10833 //     jcc(Assembler::equal, exit);
 10834 //     movl(dst, greater_result);
 10835 //   exit:
 10837 // P6 version of float compare, sets condition codes in EFLAGS
 10838 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10839   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10840   match(Set cr (CmpF src1 src2));
 10841   effect(KILL rax);
 10842   ins_cost(150);
 10843   format %{ "FLD    $src1\n\t"
 10844             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10845             "JNP    exit\n\t"
 10846             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10847             "SAHF\n"
 10848      "exit:\tNOP               // avoid branch to branch" %}
 10849   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10850   ins_encode( Push_Reg_D(src1),
 10851               OpcP, RegOpc(src2),
 10852               cmpF_P6_fixup );
 10853   ins_pipe( pipe_slow );
 10854 %}
 10856 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10857   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10858   match(Set cr (CmpF src1 src2));
 10859   ins_cost(100);
 10860   format %{ "FLD    $src1\n\t"
 10861             "FUCOMIP ST,$src2  // P6 instruction" %}
 10862   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10863   ins_encode( Push_Reg_D(src1),
 10864               OpcP, RegOpc(src2));
 10865   ins_pipe( pipe_slow );
 10866 %}
 10869 // Compare & branch
 10870 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10871   predicate(UseSSE == 0);
 10872   match(Set cr (CmpF src1 src2));
 10873   effect(KILL rax);
 10874   ins_cost(200);
 10875   format %{ "FLD    $src1\n\t"
 10876             "FCOMp  $src2\n\t"
 10877             "FNSTSW AX\n\t"
 10878             "TEST   AX,0x400\n\t"
 10879             "JZ,s   flags\n\t"
 10880             "MOV    AH,1\t# unordered treat as LT\n"
 10881     "flags:\tSAHF" %}
 10882   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10883   ins_encode( Push_Reg_D(src1),
 10884               OpcP, RegOpc(src2),
 10885               fpu_flags);
 10886   ins_pipe( pipe_slow );
 10887 %}
 10889 // Compare vs zero into -1,0,1
 10890 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 10891   predicate(UseSSE == 0);
 10892   match(Set dst (CmpF3 src1 zero));
 10893   effect(KILL cr, KILL rax);
 10894   ins_cost(280);
 10895   format %{ "FTSTF  $dst,$src1" %}
 10896   opcode(0xE4, 0xD9);
 10897   ins_encode( Push_Reg_D(src1),
 10898               OpcS, OpcP, PopFPU,
 10899               CmpF_Result(dst));
 10900   ins_pipe( pipe_slow );
 10901 %}
 10903 // Compare into -1,0,1
 10904 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 10905   predicate(UseSSE == 0);
 10906   match(Set dst (CmpF3 src1 src2));
 10907   effect(KILL cr, KILL rax);
 10908   ins_cost(300);
 10909   format %{ "FCMPF  $dst,$src1,$src2" %}
 10910   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10911   ins_encode( Push_Reg_D(src1),
 10912               OpcP, RegOpc(src2),
 10913               CmpF_Result(dst));
 10914   ins_pipe( pipe_slow );
 10915 %}
 10917 // float compare and set condition codes in EFLAGS by XMM regs
 10918 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 10919   predicate(UseSSE>=1);
 10920   match(Set cr (CmpF dst src));
 10921   effect(KILL rax);
 10922   ins_cost(145);
 10923   format %{ "COMISS $dst,$src\n"
 10924           "\tJNP    exit\n"
 10925           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10926           "\tSAHF\n"
 10927      "exit:\tNOP               // avoid branch to branch" %}
 10928   opcode(0x0F, 0x2F);
 10929   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 10930   ins_pipe( pipe_slow );
 10931 %}
 10933 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 10934   predicate(UseSSE>=1);
 10935   match(Set cr (CmpF dst src));
 10936   ins_cost(100);
 10937   format %{ "COMISS $dst,$src" %}
 10938   opcode(0x0F, 0x2F);
 10939   ins_encode(OpcP, OpcS, RegReg(dst, src));
 10940   ins_pipe( pipe_slow );
 10941 %}
 10943 // float compare and set condition codes in EFLAGS by XMM regs
 10944 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 10945   predicate(UseSSE>=1);
 10946   match(Set cr (CmpF dst (LoadF src)));
 10947   effect(KILL rax);
 10948   ins_cost(165);
 10949   format %{ "COMISS $dst,$src\n"
 10950           "\tJNP    exit\n"
 10951           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10952           "\tSAHF\n"
 10953      "exit:\tNOP               // avoid branch to branch" %}
 10954   opcode(0x0F, 0x2F);
 10955   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 10956   ins_pipe( pipe_slow );
 10957 %}
 10959 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 10960   predicate(UseSSE>=1);
 10961   match(Set cr (CmpF dst (LoadF src)));
 10962   ins_cost(100);
 10963   format %{ "COMISS $dst,$src" %}
 10964   opcode(0x0F, 0x2F);
 10965   ins_encode(OpcP, OpcS, RegMem(dst, src));
 10966   ins_pipe( pipe_slow );
 10967 %}
 10969 // Compare into -1,0,1 in XMM
 10970 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 10971   predicate(UseSSE>=1);
 10972   match(Set dst (CmpF3 src1 src2));
 10973   effect(KILL cr);
 10974   ins_cost(255);
 10975   format %{ "XOR    $dst,$dst\n"
 10976           "\tCOMISS $src1,$src2\n"
 10977           "\tJP,s   nan\n"
 10978           "\tJEQ,s  exit\n"
 10979           "\tJA,s   inc\n"
 10980       "nan:\tDEC    $dst\n"
 10981           "\tJMP,s  exit\n"
 10982       "inc:\tINC    $dst\n"
 10983       "exit:"
 10984                 %}
 10985   opcode(0x0F, 0x2F);
 10986   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 10987   ins_pipe( pipe_slow );
 10988 %}
 10990 // Compare into -1,0,1 in XMM and memory
 10991 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 10992   predicate(UseSSE>=1);
 10993   match(Set dst (CmpF3 src1 (LoadF mem)));
 10994   effect(KILL cr);
 10995   ins_cost(275);
 10996   format %{ "COMISS $src1,$mem\n"
 10997           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10998           "\tJP,s   nan\n"
 10999           "\tJEQ,s  exit\n"
 11000           "\tJA,s   inc\n"
 11001       "nan:\tDEC    $dst\n"
 11002           "\tJMP,s  exit\n"
 11003       "inc:\tINC    $dst\n"
 11004       "exit:"
 11005                 %}
 11006   opcode(0x0F, 0x2F);
 11007   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 11008   ins_pipe( pipe_slow );
 11009 %}
 11011 // Spill to obtain 24-bit precision
 11012 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11013   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11014   match(Set dst (SubF src1 src2));
 11016   format %{ "FSUB   $dst,$src1 - $src2" %}
 11017   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 11018   ins_encode( Push_Reg_F(src1),
 11019               OpcReg_F(src2),
 11020               Pop_Mem_F(dst) );
 11021   ins_pipe( fpu_mem_reg_reg );
 11022 %}
 11023 //
 11024 // This instruction does not round to 24-bits
 11025 instruct subF_reg(regF dst, regF src) %{
 11026   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11027   match(Set dst (SubF dst src));
 11029   format %{ "FSUB   $dst,$src" %}
 11030   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 11031   ins_encode( Push_Reg_F(src),
 11032               OpcP, RegOpc(dst) );
 11033   ins_pipe( fpu_reg_reg );
 11034 %}
 11036 // Spill to obtain 24-bit precision
 11037 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11038   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11039   match(Set dst (AddF src1 src2));
 11041   format %{ "FADD   $dst,$src1,$src2" %}
 11042   opcode(0xD8, 0x0); /* D8 C0+i */
 11043   ins_encode( Push_Reg_F(src2),
 11044               OpcReg_F(src1),
 11045               Pop_Mem_F(dst) );
 11046   ins_pipe( fpu_mem_reg_reg );
 11047 %}
 11048 //
 11049 // This instruction does not round to 24-bits
 11050 instruct addF_reg(regF dst, regF src) %{
 11051   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11052   match(Set dst (AddF dst src));
 11054   format %{ "FLD    $src\n\t"
 11055             "FADDp  $dst,ST" %}
 11056   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 11057   ins_encode( Push_Reg_F(src),
 11058               OpcP, RegOpc(dst) );
 11059   ins_pipe( fpu_reg_reg );
 11060 %}
 11062 // Add two single precision floating point values in xmm
 11063 instruct addX_reg(regX dst, regX src) %{
 11064   predicate(UseSSE>=1);
 11065   match(Set dst (AddF dst src));
 11066   format %{ "ADDSS  $dst,$src" %}
 11067   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 11068   ins_pipe( pipe_slow );
 11069 %}
 11071 instruct addX_imm(regX dst, immXF con) %{
 11072   predicate(UseSSE>=1);
 11073   match(Set dst (AddF dst con));
 11074   format %{ "ADDSS  $dst,[$con]" %}
 11075   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 11076   ins_pipe( pipe_slow );
 11077 %}
 11079 instruct addX_mem(regX dst, memory mem) %{
 11080   predicate(UseSSE>=1);
 11081   match(Set dst (AddF dst (LoadF mem)));
 11082   format %{ "ADDSS  $dst,$mem" %}
 11083   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 11084   ins_pipe( pipe_slow );
 11085 %}
 11087 // Subtract two single precision floating point values in xmm
 11088 instruct subX_reg(regX dst, regX src) %{
 11089   predicate(UseSSE>=1);
 11090   match(Set dst (SubF dst src));
 11091   format %{ "SUBSS  $dst,$src" %}
 11092   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 11093   ins_pipe( pipe_slow );
 11094 %}
 11096 instruct subX_imm(regX dst, immXF con) %{
 11097   predicate(UseSSE>=1);
 11098   match(Set dst (SubF dst con));
 11099   format %{ "SUBSS  $dst,[$con]" %}
 11100   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 11101   ins_pipe( pipe_slow );
 11102 %}
 11104 instruct subX_mem(regX dst, memory mem) %{
 11105   predicate(UseSSE>=1);
 11106   match(Set dst (SubF dst (LoadF mem)));
 11107   format %{ "SUBSS  $dst,$mem" %}
 11108   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 11109   ins_pipe( pipe_slow );
 11110 %}
 11112 // Multiply two single precision floating point values in xmm
 11113 instruct mulX_reg(regX dst, regX src) %{
 11114   predicate(UseSSE>=1);
 11115   match(Set dst (MulF dst src));
 11116   format %{ "MULSS  $dst,$src" %}
 11117   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 11118   ins_pipe( pipe_slow );
 11119 %}
 11121 instruct mulX_imm(regX dst, immXF con) %{
 11122   predicate(UseSSE>=1);
 11123   match(Set dst (MulF dst con));
 11124   format %{ "MULSS  $dst,[$con]" %}
 11125   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 11126   ins_pipe( pipe_slow );
 11127 %}
 11129 instruct mulX_mem(regX dst, memory mem) %{
 11130   predicate(UseSSE>=1);
 11131   match(Set dst (MulF dst (LoadF mem)));
 11132   format %{ "MULSS  $dst,$mem" %}
 11133   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 11134   ins_pipe( pipe_slow );
 11135 %}
 11137 // Divide two single precision floating point values in xmm
 11138 instruct divX_reg(regX dst, regX src) %{
 11139   predicate(UseSSE>=1);
 11140   match(Set dst (DivF dst src));
 11141   format %{ "DIVSS  $dst,$src" %}
 11142   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 11143   ins_pipe( pipe_slow );
 11144 %}
 11146 instruct divX_imm(regX dst, immXF con) %{
 11147   predicate(UseSSE>=1);
 11148   match(Set dst (DivF dst con));
 11149   format %{ "DIVSS  $dst,[$con]" %}
 11150   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 11151   ins_pipe( pipe_slow );
 11152 %}
 11154 instruct divX_mem(regX dst, memory mem) %{
 11155   predicate(UseSSE>=1);
 11156   match(Set dst (DivF dst (LoadF mem)));
 11157   format %{ "DIVSS  $dst,$mem" %}
 11158   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11159   ins_pipe( pipe_slow );
 11160 %}
 11162 // Get the square root of a single precision floating point values in xmm
 11163 instruct sqrtX_reg(regX dst, regX src) %{
 11164   predicate(UseSSE>=1);
 11165   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11166   format %{ "SQRTSS $dst,$src" %}
 11167   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11168   ins_pipe( pipe_slow );
 11169 %}
 11171 instruct sqrtX_mem(regX dst, memory mem) %{
 11172   predicate(UseSSE>=1);
 11173   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11174   format %{ "SQRTSS $dst,$mem" %}
 11175   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11176   ins_pipe( pipe_slow );
 11177 %}
 11179 // Get the square root of a double precision floating point values in xmm
 11180 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11181   predicate(UseSSE>=2);
 11182   match(Set dst (SqrtD src));
 11183   format %{ "SQRTSD $dst,$src" %}
 11184   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11185   ins_pipe( pipe_slow );
 11186 %}
 11188 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11189   predicate(UseSSE>=2);
 11190   match(Set dst (SqrtD (LoadD mem)));
 11191   format %{ "SQRTSD $dst,$mem" %}
 11192   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11193   ins_pipe( pipe_slow );
 11194 %}
 11196 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11197   predicate(UseSSE==0);
 11198   match(Set dst (AbsF src));
 11199   ins_cost(100);
 11200   format %{ "FABS" %}
 11201   opcode(0xE1, 0xD9);
 11202   ins_encode( OpcS, OpcP );
 11203   ins_pipe( fpu_reg_reg );
 11204 %}
 11206 instruct absX_reg(regX dst ) %{
 11207   predicate(UseSSE>=1);
 11208   match(Set dst (AbsF dst));
 11209   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11210   ins_encode( AbsXF_encoding(dst));
 11211   ins_pipe( pipe_slow );
 11212 %}
 11214 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11215   predicate(UseSSE==0);
 11216   match(Set dst (NegF src));
 11217   ins_cost(100);
 11218   format %{ "FCHS" %}
 11219   opcode(0xE0, 0xD9);
 11220   ins_encode( OpcS, OpcP );
 11221   ins_pipe( fpu_reg_reg );
 11222 %}
 11224 instruct negX_reg( regX dst ) %{
 11225   predicate(UseSSE>=1);
 11226   match(Set dst (NegF dst));
 11227   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11228   ins_encode( NegXF_encoding(dst));
 11229   ins_pipe( pipe_slow );
 11230 %}
 11232 // Cisc-alternate to addF_reg
 11233 // Spill to obtain 24-bit precision
 11234 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11235   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11236   match(Set dst (AddF src1 (LoadF src2)));
 11238   format %{ "FLD    $src2\n\t"
 11239             "FADD   ST,$src1\n\t"
 11240             "FSTP_S $dst" %}
 11241   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11242   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11243               OpcReg_F(src1),
 11244               Pop_Mem_F(dst) );
 11245   ins_pipe( fpu_mem_reg_mem );
 11246 %}
 11247 //
 11248 // Cisc-alternate to addF_reg
 11249 // This instruction does not round to 24-bits
 11250 instruct addF_reg_mem(regF dst, memory src) %{
 11251   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11252   match(Set dst (AddF dst (LoadF src)));
 11254   format %{ "FADD   $dst,$src" %}
 11255   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11256   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11257               OpcP, RegOpc(dst) );
 11258   ins_pipe( fpu_reg_mem );
 11259 %}
 11261 // // Following two instructions for _222_mpegaudio
 11262 // Spill to obtain 24-bit precision
 11263 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11264   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11265   match(Set dst (AddF src1 src2));
 11267   format %{ "FADD   $dst,$src1,$src2" %}
 11268   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11269   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11270               OpcReg_F(src2),
 11271               Pop_Mem_F(dst) );
 11272   ins_pipe( fpu_mem_reg_mem );
 11273 %}
 11275 // Cisc-spill variant
 11276 // Spill to obtain 24-bit precision
 11277 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11278   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11279   match(Set dst (AddF src1 (LoadF src2)));
 11281   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11282   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11283   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11284               set_instruction_start,
 11285               OpcP, RMopc_Mem(secondary,src1),
 11286               Pop_Mem_F(dst) );
 11287   ins_pipe( fpu_mem_mem_mem );
 11288 %}
 11290 // Spill to obtain 24-bit precision
 11291 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11292   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11293   match(Set dst (AddF src1 src2));
 11295   format %{ "FADD   $dst,$src1,$src2" %}
 11296   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11297   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11298               set_instruction_start,
 11299               OpcP, RMopc_Mem(secondary,src1),
 11300               Pop_Mem_F(dst) );
 11301   ins_pipe( fpu_mem_mem_mem );
 11302 %}
 11305 // Spill to obtain 24-bit precision
 11306 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11307   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11308   match(Set dst (AddF src1 src2));
 11309   format %{ "FLD    $src1\n\t"
 11310             "FADD   $src2\n\t"
 11311             "FSTP_S $dst"  %}
 11312   opcode(0xD8, 0x00);       /* D8 /0 */
 11313   ins_encode( Push_Reg_F(src1),
 11314               Opc_MemImm_F(src2),
 11315               Pop_Mem_F(dst));
 11316   ins_pipe( fpu_mem_reg_con );
 11317 %}
 11318 //
 11319 // This instruction does not round to 24-bits
 11320 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 11321   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11322   match(Set dst (AddF src1 src2));
 11323   format %{ "FLD    $src1\n\t"
 11324             "FADD   $src2\n\t"
 11325             "FSTP_S $dst"  %}
 11326   opcode(0xD8, 0x00);       /* D8 /0 */
 11327   ins_encode( Push_Reg_F(src1),
 11328               Opc_MemImm_F(src2),
 11329               Pop_Reg_F(dst));
 11330   ins_pipe( fpu_reg_reg_con );
 11331 %}
 11333 // Spill to obtain 24-bit precision
 11334 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11335   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11336   match(Set dst (MulF src1 src2));
 11338   format %{ "FLD    $src1\n\t"
 11339             "FMUL   $src2\n\t"
 11340             "FSTP_S $dst"  %}
 11341   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11342   ins_encode( Push_Reg_F(src1),
 11343               OpcReg_F(src2),
 11344               Pop_Mem_F(dst) );
 11345   ins_pipe( fpu_mem_reg_reg );
 11346 %}
 11347 //
 11348 // This instruction does not round to 24-bits
 11349 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11350   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11351   match(Set dst (MulF src1 src2));
 11353   format %{ "FLD    $src1\n\t"
 11354             "FMUL   $src2\n\t"
 11355             "FSTP_S $dst"  %}
 11356   opcode(0xD8, 0x1); /* D8 C8+i */
 11357   ins_encode( Push_Reg_F(src2),
 11358               OpcReg_F(src1),
 11359               Pop_Reg_F(dst) );
 11360   ins_pipe( fpu_reg_reg_reg );
 11361 %}
 11364 // Spill to obtain 24-bit precision
 11365 // Cisc-alternate to reg-reg multiply
 11366 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11367   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11368   match(Set dst (MulF src1 (LoadF src2)));
 11370   format %{ "FLD_S  $src2\n\t"
 11371             "FMUL   $src1\n\t"
 11372             "FSTP_S $dst"  %}
 11373   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11374   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11375               OpcReg_F(src1),
 11376               Pop_Mem_F(dst) );
 11377   ins_pipe( fpu_mem_reg_mem );
 11378 %}
 11379 //
 11380 // This instruction does not round to 24-bits
 11381 // Cisc-alternate to reg-reg multiply
 11382 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11383   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11384   match(Set dst (MulF src1 (LoadF src2)));
 11386   format %{ "FMUL   $dst,$src1,$src2" %}
 11387   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11388   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11389               OpcReg_F(src1),
 11390               Pop_Reg_F(dst) );
 11391   ins_pipe( fpu_reg_reg_mem );
 11392 %}
 11394 // Spill to obtain 24-bit precision
 11395 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11396   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11397   match(Set dst (MulF src1 src2));
 11399   format %{ "FMUL   $dst,$src1,$src2" %}
 11400   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11401   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11402               set_instruction_start,
 11403               OpcP, RMopc_Mem(secondary,src1),
 11404               Pop_Mem_F(dst) );
 11405   ins_pipe( fpu_mem_mem_mem );
 11406 %}
 11408 // Spill to obtain 24-bit precision
 11409 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11410   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11411   match(Set dst (MulF src1 src2));
 11413   format %{ "FMULc $dst,$src1,$src2" %}
 11414   opcode(0xD8, 0x1);  /* D8 /1*/
 11415   ins_encode( Push_Reg_F(src1),
 11416               Opc_MemImm_F(src2),
 11417               Pop_Mem_F(dst));
 11418   ins_pipe( fpu_mem_reg_con );
 11419 %}
 11420 //
 11421 // This instruction does not round to 24-bits
 11422 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11423   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11424   match(Set dst (MulF src1 src2));
 11426   format %{ "FMULc $dst. $src1, $src2" %}
 11427   opcode(0xD8, 0x1);  /* D8 /1*/
 11428   ins_encode( Push_Reg_F(src1),
 11429               Opc_MemImm_F(src2),
 11430               Pop_Reg_F(dst));
 11431   ins_pipe( fpu_reg_reg_con );
 11432 %}
 11435 //
 11436 // MACRO1 -- subsume unshared load into mulF
 11437 // This instruction does not round to 24-bits
 11438 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11439   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11440   match(Set dst (MulF (LoadF mem1) src));
 11442   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11443             "FMUL   ST,$src\n\t"
 11444             "FSTP   $dst" %}
 11445   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11446   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11447               OpcReg_F(src),
 11448               Pop_Reg_F(dst) );
 11449   ins_pipe( fpu_reg_reg_mem );
 11450 %}
 11451 //
 11452 // MACRO2 -- addF a mulF which subsumed an unshared load
 11453 // This instruction does not round to 24-bits
 11454 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11455   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11456   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11457   ins_cost(95);
 11459   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11460             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11461             "FADD   ST,$src2\n\t"
 11462             "FSTP   $dst" %}
 11463   opcode(0xD9); /* LoadF D9 /0 */
 11464   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11465               FMul_ST_reg(src1),
 11466               FAdd_ST_reg(src2),
 11467               Pop_Reg_F(dst) );
 11468   ins_pipe( fpu_reg_mem_reg_reg );
 11469 %}
 11471 // MACRO3 -- addF a mulF
 11472 // This instruction does not round to 24-bits.  It is a '2-address'
 11473 // instruction in that the result goes back to src2.  This eliminates
 11474 // a move from the macro; possibly the register allocator will have
 11475 // to add it back (and maybe not).
 11476 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11477   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11478   match(Set src2 (AddF (MulF src0 src1) src2));
 11480   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11481             "FMUL   ST,$src1\n\t"
 11482             "FADDP  $src2,ST" %}
 11483   opcode(0xD9); /* LoadF D9 /0 */
 11484   ins_encode( Push_Reg_F(src0),
 11485               FMul_ST_reg(src1),
 11486               FAddP_reg_ST(src2) );
 11487   ins_pipe( fpu_reg_reg_reg );
 11488 %}
 11490 // MACRO4 -- divF subF
 11491 // This instruction does not round to 24-bits
 11492 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11493   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11494   match(Set dst (DivF (SubF src2 src1) src3));
 11496   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11497             "FSUB   ST,$src1\n\t"
 11498             "FDIV   ST,$src3\n\t"
 11499             "FSTP  $dst" %}
 11500   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11501   ins_encode( Push_Reg_F(src2),
 11502               subF_divF_encode(src1,src3),
 11503               Pop_Reg_F(dst) );
 11504   ins_pipe( fpu_reg_reg_reg_reg );
 11505 %}
 11507 // Spill to obtain 24-bit precision
 11508 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11509   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11510   match(Set dst (DivF src1 src2));
 11512   format %{ "FDIV   $dst,$src1,$src2" %}
 11513   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11514   ins_encode( Push_Reg_F(src1),
 11515               OpcReg_F(src2),
 11516               Pop_Mem_F(dst) );
 11517   ins_pipe( fpu_mem_reg_reg );
 11518 %}
 11519 //
 11520 // This instruction does not round to 24-bits
 11521 instruct divF_reg(regF dst, regF src) %{
 11522   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11523   match(Set dst (DivF dst src));
 11525   format %{ "FDIV   $dst,$src" %}
 11526   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11527   ins_encode( Push_Reg_F(src),
 11528               OpcP, RegOpc(dst) );
 11529   ins_pipe( fpu_reg_reg );
 11530 %}
 11533 // Spill to obtain 24-bit precision
 11534 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11535   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11536   match(Set dst (ModF src1 src2));
 11537   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11539   format %{ "FMOD   $dst,$src1,$src2" %}
 11540   ins_encode( Push_Reg_Mod_D(src1, src2),
 11541               emitModD(),
 11542               Push_Result_Mod_D(src2),
 11543               Pop_Mem_F(dst));
 11544   ins_pipe( pipe_slow );
 11545 %}
 11546 //
 11547 // This instruction does not round to 24-bits
 11548 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11549   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11550   match(Set dst (ModF dst src));
 11551   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11553   format %{ "FMOD   $dst,$src" %}
 11554   ins_encode(Push_Reg_Mod_D(dst, src),
 11555               emitModD(),
 11556               Push_Result_Mod_D(src),
 11557               Pop_Reg_F(dst));
 11558   ins_pipe( pipe_slow );
 11559 %}
 11561 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11562   predicate(UseSSE>=1);
 11563   match(Set dst (ModF src0 src1));
 11564   effect(KILL rax, KILL cr);
 11565   format %{ "SUB    ESP,4\t # FMOD\n"
 11566           "\tMOVSS  [ESP+0],$src1\n"
 11567           "\tFLD_S  [ESP+0]\n"
 11568           "\tMOVSS  [ESP+0],$src0\n"
 11569           "\tFLD_S  [ESP+0]\n"
 11570      "loop:\tFPREM\n"
 11571           "\tFWAIT\n"
 11572           "\tFNSTSW AX\n"
 11573           "\tSAHF\n"
 11574           "\tJP     loop\n"
 11575           "\tFSTP_S [ESP+0]\n"
 11576           "\tMOVSS  $dst,[ESP+0]\n"
 11577           "\tADD    ESP,4\n"
 11578           "\tFSTP   ST0\t # Restore FPU Stack"
 11579     %}
 11580   ins_cost(250);
 11581   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11582   ins_pipe( pipe_slow );
 11583 %}
 11586 //----------Arithmetic Conversion Instructions---------------------------------
 11587 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11589 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11590   predicate(UseSSE==0);
 11591   match(Set dst (RoundFloat src));
 11592   ins_cost(125);
 11593   format %{ "FST_S  $dst,$src\t# F-round" %}
 11594   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11595   ins_pipe( fpu_mem_reg );
 11596 %}
 11598 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11599   predicate(UseSSE<=1);
 11600   match(Set dst (RoundDouble src));
 11601   ins_cost(125);
 11602   format %{ "FST_D  $dst,$src\t# D-round" %}
 11603   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11604   ins_pipe( fpu_mem_reg );
 11605 %}
 11607 // Force rounding to 24-bit precision and 6-bit exponent
 11608 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11609   predicate(UseSSE==0);
 11610   match(Set dst (ConvD2F src));
 11611   format %{ "FST_S  $dst,$src\t# F-round" %}
 11612   expand %{
 11613     roundFloat_mem_reg(dst,src);
 11614   %}
 11615 %}
 11617 // Force rounding to 24-bit precision and 6-bit exponent
 11618 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11619   predicate(UseSSE==1);
 11620   match(Set dst (ConvD2F src));
 11621   effect( KILL cr );
 11622   format %{ "SUB    ESP,4\n\t"
 11623             "FST_S  [ESP],$src\t# F-round\n\t"
 11624             "MOVSS  $dst,[ESP]\n\t"
 11625             "ADD ESP,4" %}
 11626   ins_encode( D2X_encoding(dst, src) );
 11627   ins_pipe( pipe_slow );
 11628 %}
 11630 // Force rounding double precision to single precision
 11631 instruct convXD2X_reg(regX dst, regXD src) %{
 11632   predicate(UseSSE>=2);
 11633   match(Set dst (ConvD2F src));
 11634   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11635   opcode(0xF2, 0x0F, 0x5A);
 11636   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11637   ins_pipe( pipe_slow );
 11638 %}
 11640 instruct convF2D_reg_reg(regD dst, regF src) %{
 11641   predicate(UseSSE==0);
 11642   match(Set dst (ConvF2D src));
 11643   format %{ "FST_S  $dst,$src\t# D-round" %}
 11644   ins_encode( Pop_Reg_Reg_D(dst, src));
 11645   ins_pipe( fpu_reg_reg );
 11646 %}
 11648 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11649   predicate(UseSSE==1);
 11650   match(Set dst (ConvF2D src));
 11651   format %{ "FST_D  $dst,$src\t# D-round" %}
 11652   expand %{
 11653     roundDouble_mem_reg(dst,src);
 11654   %}
 11655 %}
 11657 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11658   predicate(UseSSE==1);
 11659   match(Set dst (ConvF2D src));
 11660   effect( KILL cr );
 11661   format %{ "SUB    ESP,4\n\t"
 11662             "MOVSS  [ESP] $src\n\t"
 11663             "FLD_S  [ESP]\n\t"
 11664             "ADD    ESP,4\n\t"
 11665             "FSTP   $dst\t# D-round" %}
 11666   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11667   ins_pipe( pipe_slow );
 11668 %}
 11670 instruct convX2XD_reg(regXD dst, regX src) %{
 11671   predicate(UseSSE>=2);
 11672   match(Set dst (ConvF2D src));
 11673   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11674   opcode(0xF3, 0x0F, 0x5A);
 11675   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11676   ins_pipe( pipe_slow );
 11677 %}
 11679 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11680 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11681   predicate(UseSSE<=1);
 11682   match(Set dst (ConvD2I src));
 11683   effect( KILL tmp, KILL cr );
 11684   format %{ "FLD    $src\t# Convert double to int \n\t"
 11685             "FLDCW  trunc mode\n\t"
 11686             "SUB    ESP,4\n\t"
 11687             "FISTp  [ESP + #0]\n\t"
 11688             "FLDCW  std/24-bit mode\n\t"
 11689             "POP    EAX\n\t"
 11690             "CMP    EAX,0x80000000\n\t"
 11691             "JNE,s  fast\n\t"
 11692             "FLD_D  $src\n\t"
 11693             "CALL   d2i_wrapper\n"
 11694       "fast:" %}
 11695   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11696   ins_pipe( pipe_slow );
 11697 %}
 11699 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11700 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11701   predicate(UseSSE>=2);
 11702   match(Set dst (ConvD2I src));
 11703   effect( KILL tmp, KILL cr );
 11704   format %{ "CVTTSD2SI $dst, $src\n\t"
 11705             "CMP    $dst,0x80000000\n\t"
 11706             "JNE,s  fast\n\t"
 11707             "SUB    ESP, 8\n\t"
 11708             "MOVSD  [ESP], $src\n\t"
 11709             "FLD_D  [ESP]\n\t"
 11710             "ADD    ESP, 8\n\t"
 11711             "CALL   d2i_wrapper\n"
 11712       "fast:" %}
 11713   opcode(0x1); // double-precision conversion
 11714   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11715   ins_pipe( pipe_slow );
 11716 %}
 11718 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11719   predicate(UseSSE<=1);
 11720   match(Set dst (ConvD2L src));
 11721   effect( KILL cr );
 11722   format %{ "FLD    $src\t# Convert double to long\n\t"
 11723             "FLDCW  trunc mode\n\t"
 11724             "SUB    ESP,8\n\t"
 11725             "FISTp  [ESP + #0]\n\t"
 11726             "FLDCW  std/24-bit mode\n\t"
 11727             "POP    EAX\n\t"
 11728             "POP    EDX\n\t"
 11729             "CMP    EDX,0x80000000\n\t"
 11730             "JNE,s  fast\n\t"
 11731             "TEST   EAX,EAX\n\t"
 11732             "JNE,s  fast\n\t"
 11733             "FLD    $src\n\t"
 11734             "CALL   d2l_wrapper\n"
 11735       "fast:" %}
 11736   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11737   ins_pipe( pipe_slow );
 11738 %}
 11740 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11741 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11742   predicate (UseSSE>=2);
 11743   match(Set dst (ConvD2L src));
 11744   effect( KILL cr );
 11745   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11746             "MOVSD  [ESP],$src\n\t"
 11747             "FLD_D  [ESP]\n\t"
 11748             "FLDCW  trunc mode\n\t"
 11749             "FISTp  [ESP + #0]\n\t"
 11750             "FLDCW  std/24-bit mode\n\t"
 11751             "POP    EAX\n\t"
 11752             "POP    EDX\n\t"
 11753             "CMP    EDX,0x80000000\n\t"
 11754             "JNE,s  fast\n\t"
 11755             "TEST   EAX,EAX\n\t"
 11756             "JNE,s  fast\n\t"
 11757             "SUB    ESP,8\n\t"
 11758             "MOVSD  [ESP],$src\n\t"
 11759             "FLD_D  [ESP]\n\t"
 11760             "CALL   d2l_wrapper\n"
 11761       "fast:" %}
 11762   ins_encode( XD2L_encoding(src) );
 11763   ins_pipe( pipe_slow );
 11764 %}
 11766 // Convert a double to an int.  Java semantics require we do complex
 11767 // manglations in the corner cases.  So we set the rounding mode to
 11768 // 'zero', store the darned double down as an int, and reset the
 11769 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11770 // if we would overflow or converted a NAN; we check for this and
 11771 // and go the slow path if needed.
 11772 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11773   predicate(UseSSE==0);
 11774   match(Set dst (ConvF2I src));
 11775   effect( KILL tmp, KILL cr );
 11776   format %{ "FLD    $src\t# Convert float to int \n\t"
 11777             "FLDCW  trunc mode\n\t"
 11778             "SUB    ESP,4\n\t"
 11779             "FISTp  [ESP + #0]\n\t"
 11780             "FLDCW  std/24-bit mode\n\t"
 11781             "POP    EAX\n\t"
 11782             "CMP    EAX,0x80000000\n\t"
 11783             "JNE,s  fast\n\t"
 11784             "FLD    $src\n\t"
 11785             "CALL   d2i_wrapper\n"
 11786       "fast:" %}
 11787   // D2I_encoding works for F2I
 11788   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11789   ins_pipe( pipe_slow );
 11790 %}
 11792 // Convert a float in xmm to an int reg.
 11793 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11794   predicate(UseSSE>=1);
 11795   match(Set dst (ConvF2I src));
 11796   effect( KILL tmp, KILL cr );
 11797   format %{ "CVTTSS2SI $dst, $src\n\t"
 11798             "CMP    $dst,0x80000000\n\t"
 11799             "JNE,s  fast\n\t"
 11800             "SUB    ESP, 4\n\t"
 11801             "MOVSS  [ESP], $src\n\t"
 11802             "FLD    [ESP]\n\t"
 11803             "ADD    ESP, 4\n\t"
 11804             "CALL   d2i_wrapper\n"
 11805       "fast:" %}
 11806   opcode(0x0); // single-precision conversion
 11807   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11808   ins_pipe( pipe_slow );
 11809 %}
 11811 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11812   predicate(UseSSE==0);
 11813   match(Set dst (ConvF2L src));
 11814   effect( KILL cr );
 11815   format %{ "FLD    $src\t# Convert float to long\n\t"
 11816             "FLDCW  trunc mode\n\t"
 11817             "SUB    ESP,8\n\t"
 11818             "FISTp  [ESP + #0]\n\t"
 11819             "FLDCW  std/24-bit mode\n\t"
 11820             "POP    EAX\n\t"
 11821             "POP    EDX\n\t"
 11822             "CMP    EDX,0x80000000\n\t"
 11823             "JNE,s  fast\n\t"
 11824             "TEST   EAX,EAX\n\t"
 11825             "JNE,s  fast\n\t"
 11826             "FLD    $src\n\t"
 11827             "CALL   d2l_wrapper\n"
 11828       "fast:" %}
 11829   // D2L_encoding works for F2L
 11830   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11831   ins_pipe( pipe_slow );
 11832 %}
 11834 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11835 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11836   predicate (UseSSE>=1);
 11837   match(Set dst (ConvF2L src));
 11838   effect( KILL cr );
 11839   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11840             "MOVSS  [ESP],$src\n\t"
 11841             "FLD_S  [ESP]\n\t"
 11842             "FLDCW  trunc mode\n\t"
 11843             "FISTp  [ESP + #0]\n\t"
 11844             "FLDCW  std/24-bit mode\n\t"
 11845             "POP    EAX\n\t"
 11846             "POP    EDX\n\t"
 11847             "CMP    EDX,0x80000000\n\t"
 11848             "JNE,s  fast\n\t"
 11849             "TEST   EAX,EAX\n\t"
 11850             "JNE,s  fast\n\t"
 11851             "SUB    ESP,4\t# Convert float to long\n\t"
 11852             "MOVSS  [ESP],$src\n\t"
 11853             "FLD_S  [ESP]\n\t"
 11854             "ADD    ESP,4\n\t"
 11855             "CALL   d2l_wrapper\n"
 11856       "fast:" %}
 11857   ins_encode( X2L_encoding(src) );
 11858   ins_pipe( pipe_slow );
 11859 %}
 11861 instruct convI2D_reg(regD dst, stackSlotI src) %{
 11862   predicate( UseSSE<=1 );
 11863   match(Set dst (ConvI2D src));
 11864   format %{ "FILD   $src\n\t"
 11865             "FSTP   $dst" %}
 11866   opcode(0xDB, 0x0);  /* DB /0 */
 11867   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 11868   ins_pipe( fpu_reg_mem );
 11869 %}
 11871 instruct convI2XD_reg(regXD dst, eRegI src) %{
 11872   predicate( UseSSE>=2 && !UseXmmI2D );
 11873   match(Set dst (ConvI2D src));
 11874   format %{ "CVTSI2SD $dst,$src" %}
 11875   opcode(0xF2, 0x0F, 0x2A);
 11876   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11877   ins_pipe( pipe_slow );
 11878 %}
 11880 instruct convI2XD_mem(regXD dst, memory mem) %{
 11881   predicate( UseSSE>=2 );
 11882   match(Set dst (ConvI2D (LoadI mem)));
 11883   format %{ "CVTSI2SD $dst,$mem" %}
 11884   opcode(0xF2, 0x0F, 0x2A);
 11885   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 11886   ins_pipe( pipe_slow );
 11887 %}
 11889 instruct convXI2XD_reg(regXD dst, eRegI src)
 11890 %{
 11891   predicate( UseSSE>=2 && UseXmmI2D );
 11892   match(Set dst (ConvI2D src));
 11894   format %{ "MOVD  $dst,$src\n\t"
 11895             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11896   ins_encode %{
 11897     __ movdl($dst$$XMMRegister, $src$$Register);
 11898     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11899   %}
 11900   ins_pipe(pipe_slow); // XXX
 11901 %}
 11903 instruct convI2D_mem(regD dst, memory mem) %{
 11904   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11905   match(Set dst (ConvI2D (LoadI mem)));
 11906   format %{ "FILD   $mem\n\t"
 11907             "FSTP   $dst" %}
 11908   opcode(0xDB);      /* DB /0 */
 11909   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11910               Pop_Reg_D(dst));
 11911   ins_pipe( fpu_reg_mem );
 11912 %}
 11914 // Convert a byte to a float; no rounding step needed.
 11915 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 11916   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11917   match(Set dst (ConvI2F src));
 11918   format %{ "FILD   $src\n\t"
 11919             "FSTP   $dst" %}
 11921   opcode(0xDB, 0x0);  /* DB /0 */
 11922   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 11923   ins_pipe( fpu_reg_mem );
 11924 %}
 11926 // In 24-bit mode, force exponent rounding by storing back out
 11927 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 11928   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11929   match(Set dst (ConvI2F src));
 11930   ins_cost(200);
 11931   format %{ "FILD   $src\n\t"
 11932             "FSTP_S $dst" %}
 11933   opcode(0xDB, 0x0);  /* DB /0 */
 11934   ins_encode( Push_Mem_I(src),
 11935               Pop_Mem_F(dst));
 11936   ins_pipe( fpu_mem_mem );
 11937 %}
 11939 // In 24-bit mode, force exponent rounding by storing back out
 11940 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 11941   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11942   match(Set dst (ConvI2F (LoadI mem)));
 11943   ins_cost(200);
 11944   format %{ "FILD   $mem\n\t"
 11945             "FSTP_S $dst" %}
 11946   opcode(0xDB);  /* DB /0 */
 11947   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11948               Pop_Mem_F(dst));
 11949   ins_pipe( fpu_mem_mem );
 11950 %}
 11952 // This instruction does not round to 24-bits
 11953 instruct convI2F_reg(regF dst, stackSlotI src) %{
 11954   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11955   match(Set dst (ConvI2F src));
 11956   format %{ "FILD   $src\n\t"
 11957             "FSTP   $dst" %}
 11958   opcode(0xDB, 0x0);  /* DB /0 */
 11959   ins_encode( Push_Mem_I(src),
 11960               Pop_Reg_F(dst));
 11961   ins_pipe( fpu_reg_mem );
 11962 %}
 11964 // This instruction does not round to 24-bits
 11965 instruct convI2F_mem(regF dst, memory mem) %{
 11966   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11967   match(Set dst (ConvI2F (LoadI mem)));
 11968   format %{ "FILD   $mem\n\t"
 11969             "FSTP   $dst" %}
 11970   opcode(0xDB);      /* DB /0 */
 11971   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11972               Pop_Reg_F(dst));
 11973   ins_pipe( fpu_reg_mem );
 11974 %}
 11976 // Convert an int to a float in xmm; no rounding step needed.
 11977 instruct convI2X_reg(regX dst, eRegI src) %{
 11978   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11979   match(Set dst (ConvI2F src));
 11980   format %{ "CVTSI2SS $dst, $src" %}
 11982   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 11983   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11984   ins_pipe( pipe_slow );
 11985 %}
 11987  instruct convXI2X_reg(regX dst, eRegI src)
 11988 %{
 11989   predicate( UseSSE>=2 && UseXmmI2F );
 11990   match(Set dst (ConvI2F src));
 11992   format %{ "MOVD  $dst,$src\n\t"
 11993             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11994   ins_encode %{
 11995     __ movdl($dst$$XMMRegister, $src$$Register);
 11996     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11997   %}
 11998   ins_pipe(pipe_slow); // XXX
 11999 %}
 12001 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 12002   match(Set dst (ConvI2L src));
 12003   effect(KILL cr);
 12004   ins_cost(375);
 12005   format %{ "MOV    $dst.lo,$src\n\t"
 12006             "MOV    $dst.hi,$src\n\t"
 12007             "SAR    $dst.hi,31" %}
 12008   ins_encode(convert_int_long(dst,src));
 12009   ins_pipe( ialu_reg_reg_long );
 12010 %}
 12012 // Zero-extend convert int to long
 12013 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 12014   match(Set dst (AndL (ConvI2L src) mask) );
 12015   effect( KILL flags );
 12016   ins_cost(250);
 12017   format %{ "MOV    $dst.lo,$src\n\t"
 12018             "XOR    $dst.hi,$dst.hi" %}
 12019   opcode(0x33); // XOR
 12020   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12021   ins_pipe( ialu_reg_reg_long );
 12022 %}
 12024 // Zero-extend long
 12025 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 12026   match(Set dst (AndL src mask) );
 12027   effect( KILL flags );
 12028   ins_cost(250);
 12029   format %{ "MOV    $dst.lo,$src.lo\n\t"
 12030             "XOR    $dst.hi,$dst.hi\n\t" %}
 12031   opcode(0x33); // XOR
 12032   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12033   ins_pipe( ialu_reg_reg_long );
 12034 %}
 12036 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 12037   predicate (UseSSE<=1);
 12038   match(Set dst (ConvL2D src));
 12039   effect( KILL cr );
 12040   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12041             "PUSH   $src.lo\n\t"
 12042             "FILD   ST,[ESP + #0]\n\t"
 12043             "ADD    ESP,8\n\t"
 12044             "FSTP_D $dst\t# D-round" %}
 12045   opcode(0xDF, 0x5);  /* DF /5 */
 12046   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 12047   ins_pipe( pipe_slow );
 12048 %}
 12050 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 12051   predicate (UseSSE>=2);
 12052   match(Set dst (ConvL2D src));
 12053   effect( KILL cr );
 12054   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12055             "PUSH   $src.lo\n\t"
 12056             "FILD_D [ESP]\n\t"
 12057             "FSTP_D [ESP]\n\t"
 12058             "MOVSD  $dst,[ESP]\n\t"
 12059             "ADD    ESP,8" %}
 12060   opcode(0xDF, 0x5);  /* DF /5 */
 12061   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 12062   ins_pipe( pipe_slow );
 12063 %}
 12065 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 12066   predicate (UseSSE>=1);
 12067   match(Set dst (ConvL2F src));
 12068   effect( KILL cr );
 12069   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12070             "PUSH   $src.lo\n\t"
 12071             "FILD_D [ESP]\n\t"
 12072             "FSTP_S [ESP]\n\t"
 12073             "MOVSS  $dst,[ESP]\n\t"
 12074             "ADD    ESP,8" %}
 12075   opcode(0xDF, 0x5);  /* DF /5 */
 12076   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 12077   ins_pipe( pipe_slow );
 12078 %}
 12080 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 12081   match(Set dst (ConvL2F src));
 12082   effect( KILL cr );
 12083   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12084             "PUSH   $src.lo\n\t"
 12085             "FILD   ST,[ESP + #0]\n\t"
 12086             "ADD    ESP,8\n\t"
 12087             "FSTP_S $dst\t# F-round" %}
 12088   opcode(0xDF, 0x5);  /* DF /5 */
 12089   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 12090   ins_pipe( pipe_slow );
 12091 %}
 12093 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 12094   match(Set dst (ConvL2I src));
 12095   effect( DEF dst, USE src );
 12096   format %{ "MOV    $dst,$src.lo" %}
 12097   ins_encode(enc_CopyL_Lo(dst,src));
 12098   ins_pipe( ialu_reg_reg );
 12099 %}
 12102 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 12103   match(Set dst (MoveF2I src));
 12104   effect( DEF dst, USE src );
 12105   ins_cost(100);
 12106   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 12107   opcode(0x8B);
 12108   ins_encode( OpcP, RegMem(dst,src));
 12109   ins_pipe( ialu_reg_mem );
 12110 %}
 12112 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 12113   predicate(UseSSE==0);
 12114   match(Set dst (MoveF2I src));
 12115   effect( DEF dst, USE src );
 12117   ins_cost(125);
 12118   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 12119   ins_encode( Pop_Mem_Reg_F(dst, src) );
 12120   ins_pipe( fpu_mem_reg );
 12121 %}
 12123 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 12124   predicate(UseSSE>=1);
 12125   match(Set dst (MoveF2I src));
 12126   effect( DEF dst, USE src );
 12128   ins_cost(95);
 12129   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 12130   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 12131   ins_pipe( pipe_slow );
 12132 %}
 12134 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 12135   predicate(UseSSE>=2);
 12136   match(Set dst (MoveF2I src));
 12137   effect( DEF dst, USE src );
 12138   ins_cost(85);
 12139   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 12140   ins_encode( MovX2I_reg(dst, src));
 12141   ins_pipe( pipe_slow );
 12142 %}
 12144 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12145   match(Set dst (MoveI2F src));
 12146   effect( DEF dst, USE src );
 12148   ins_cost(100);
 12149   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12150   opcode(0x89);
 12151   ins_encode( OpcPRegSS( dst, src ) );
 12152   ins_pipe( ialu_mem_reg );
 12153 %}
 12156 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12157   predicate(UseSSE==0);
 12158   match(Set dst (MoveI2F src));
 12159   effect(DEF dst, USE src);
 12161   ins_cost(125);
 12162   format %{ "FLD_S  $src\n\t"
 12163             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12164   opcode(0xD9);               /* D9 /0, FLD m32real */
 12165   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12166               Pop_Reg_F(dst) );
 12167   ins_pipe( fpu_reg_mem );
 12168 %}
 12170 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12171   predicate(UseSSE>=1);
 12172   match(Set dst (MoveI2F src));
 12173   effect( DEF dst, USE src );
 12175   ins_cost(95);
 12176   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12177   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12178   ins_pipe( pipe_slow );
 12179 %}
 12181 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12182   predicate(UseSSE>=2);
 12183   match(Set dst (MoveI2F src));
 12184   effect( DEF dst, USE src );
 12186   ins_cost(85);
 12187   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12188   ins_encode( MovI2X_reg(dst, src) );
 12189   ins_pipe( pipe_slow );
 12190 %}
 12192 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12193   match(Set dst (MoveD2L src));
 12194   effect(DEF dst, USE src);
 12196   ins_cost(250);
 12197   format %{ "MOV    $dst.lo,$src\n\t"
 12198             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12199   opcode(0x8B, 0x8B);
 12200   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12201   ins_pipe( ialu_mem_long_reg );
 12202 %}
 12204 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12205   predicate(UseSSE<=1);
 12206   match(Set dst (MoveD2L src));
 12207   effect(DEF dst, USE src);
 12209   ins_cost(125);
 12210   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12211   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12212   ins_pipe( fpu_mem_reg );
 12213 %}
 12215 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12216   predicate(UseSSE>=2);
 12217   match(Set dst (MoveD2L src));
 12218   effect(DEF dst, USE src);
 12219   ins_cost(95);
 12221   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12222   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12223   ins_pipe( pipe_slow );
 12224 %}
 12226 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12227   predicate(UseSSE>=2);
 12228   match(Set dst (MoveD2L src));
 12229   effect(DEF dst, USE src, TEMP tmp);
 12230   ins_cost(85);
 12231   format %{ "MOVD   $dst.lo,$src\n\t"
 12232             "PSHUFLW $tmp,$src,0x4E\n\t"
 12233             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12234   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12235   ins_pipe( pipe_slow );
 12236 %}
 12238 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12239   match(Set dst (MoveL2D src));
 12240   effect(DEF dst, USE src);
 12242   ins_cost(200);
 12243   format %{ "MOV    $dst,$src.lo\n\t"
 12244             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12245   opcode(0x89, 0x89);
 12246   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12247   ins_pipe( ialu_mem_long_reg );
 12248 %}
 12251 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12252   predicate(UseSSE<=1);
 12253   match(Set dst (MoveL2D src));
 12254   effect(DEF dst, USE src);
 12255   ins_cost(125);
 12257   format %{ "FLD_D  $src\n\t"
 12258             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12259   opcode(0xDD);               /* DD /0, FLD m64real */
 12260   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12261               Pop_Reg_D(dst) );
 12262   ins_pipe( fpu_reg_mem );
 12263 %}
 12266 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12267   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12268   match(Set dst (MoveL2D src));
 12269   effect(DEF dst, USE src);
 12271   ins_cost(95);
 12272   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12273   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12274   ins_pipe( pipe_slow );
 12275 %}
 12277 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12278   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12279   match(Set dst (MoveL2D src));
 12280   effect(DEF dst, USE src);
 12282   ins_cost(95);
 12283   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12284   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12285   ins_pipe( pipe_slow );
 12286 %}
 12288 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12289   predicate(UseSSE>=2);
 12290   match(Set dst (MoveL2D src));
 12291   effect(TEMP dst, USE src, TEMP tmp);
 12292   ins_cost(85);
 12293   format %{ "MOVD   $dst,$src.lo\n\t"
 12294             "MOVD   $tmp,$src.hi\n\t"
 12295             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12296   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12297   ins_pipe( pipe_slow );
 12298 %}
 12300 // Replicate scalar to packed byte (1 byte) values in xmm
 12301 instruct Repl8B_reg(regXD dst, regXD src) %{
 12302   predicate(UseSSE>=2);
 12303   match(Set dst (Replicate8B src));
 12304   format %{ "MOVDQA  $dst,$src\n\t"
 12305             "PUNPCKLBW $dst,$dst\n\t"
 12306             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12307   ins_encode( pshufd_8x8(dst, src));
 12308   ins_pipe( pipe_slow );
 12309 %}
 12311 // Replicate scalar to packed byte (1 byte) values in xmm
 12312 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12313   predicate(UseSSE>=2);
 12314   match(Set dst (Replicate8B src));
 12315   format %{ "MOVD    $dst,$src\n\t"
 12316             "PUNPCKLBW $dst,$dst\n\t"
 12317             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12318   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12319   ins_pipe( pipe_slow );
 12320 %}
 12322 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12323 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12324   predicate(UseSSE>=2);
 12325   match(Set dst (Replicate8B zero));
 12326   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12327   ins_encode( pxor(dst, dst));
 12328   ins_pipe( fpu_reg_reg );
 12329 %}
 12331 // Replicate scalar to packed shore (2 byte) values in xmm
 12332 instruct Repl4S_reg(regXD dst, regXD src) %{
 12333   predicate(UseSSE>=2);
 12334   match(Set dst (Replicate4S src));
 12335   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12336   ins_encode( pshufd_4x16(dst, src));
 12337   ins_pipe( fpu_reg_reg );
 12338 %}
 12340 // Replicate scalar to packed shore (2 byte) values in xmm
 12341 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12342   predicate(UseSSE>=2);
 12343   match(Set dst (Replicate4S src));
 12344   format %{ "MOVD    $dst,$src\n\t"
 12345             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12346   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12347   ins_pipe( fpu_reg_reg );
 12348 %}
 12350 // Replicate scalar zero to packed short (2 byte) values in xmm
 12351 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12352   predicate(UseSSE>=2);
 12353   match(Set dst (Replicate4S zero));
 12354   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12355   ins_encode( pxor(dst, dst));
 12356   ins_pipe( fpu_reg_reg );
 12357 %}
 12359 // Replicate scalar to packed char (2 byte) values in xmm
 12360 instruct Repl4C_reg(regXD dst, regXD src) %{
 12361   predicate(UseSSE>=2);
 12362   match(Set dst (Replicate4C src));
 12363   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12364   ins_encode( pshufd_4x16(dst, src));
 12365   ins_pipe( fpu_reg_reg );
 12366 %}
 12368 // Replicate scalar to packed char (2 byte) values in xmm
 12369 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12370   predicate(UseSSE>=2);
 12371   match(Set dst (Replicate4C src));
 12372   format %{ "MOVD    $dst,$src\n\t"
 12373             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12374   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12375   ins_pipe( fpu_reg_reg );
 12376 %}
 12378 // Replicate scalar zero to packed char (2 byte) values in xmm
 12379 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12380   predicate(UseSSE>=2);
 12381   match(Set dst (Replicate4C zero));
 12382   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12383   ins_encode( pxor(dst, dst));
 12384   ins_pipe( fpu_reg_reg );
 12385 %}
 12387 // Replicate scalar to packed integer (4 byte) values in xmm
 12388 instruct Repl2I_reg(regXD dst, regXD src) %{
 12389   predicate(UseSSE>=2);
 12390   match(Set dst (Replicate2I src));
 12391   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12392   ins_encode( pshufd(dst, src, 0x00));
 12393   ins_pipe( fpu_reg_reg );
 12394 %}
 12396 // Replicate scalar to packed integer (4 byte) values in xmm
 12397 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12398   predicate(UseSSE>=2);
 12399   match(Set dst (Replicate2I src));
 12400   format %{ "MOVD   $dst,$src\n\t"
 12401             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12402   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12403   ins_pipe( fpu_reg_reg );
 12404 %}
 12406 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12407 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12408   predicate(UseSSE>=2);
 12409   match(Set dst (Replicate2I zero));
 12410   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12411   ins_encode( pxor(dst, dst));
 12412   ins_pipe( fpu_reg_reg );
 12413 %}
 12415 // Replicate scalar to packed single precision floating point values in xmm
 12416 instruct Repl2F_reg(regXD dst, regXD src) %{
 12417   predicate(UseSSE>=2);
 12418   match(Set dst (Replicate2F src));
 12419   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12420   ins_encode( pshufd(dst, src, 0xe0));
 12421   ins_pipe( fpu_reg_reg );
 12422 %}
 12424 // Replicate scalar to packed single precision floating point values in xmm
 12425 instruct Repl2F_regX(regXD dst, regX src) %{
 12426   predicate(UseSSE>=2);
 12427   match(Set dst (Replicate2F src));
 12428   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12429   ins_encode( pshufd(dst, src, 0xe0));
 12430   ins_pipe( fpu_reg_reg );
 12431 %}
 12433 // Replicate scalar to packed single precision floating point values in xmm
 12434 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12435   predicate(UseSSE>=2);
 12436   match(Set dst (Replicate2F zero));
 12437   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12438   ins_encode( pxor(dst, dst));
 12439   ins_pipe( fpu_reg_reg );
 12440 %}
 12442 // =======================================================================
 12443 // fast clearing of an array
 12444 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12445   match(Set dummy (ClearArray cnt base));
 12446   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12447   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12448             "XOR    EAX,EAX\n\t"
 12449             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12450   opcode(0,0x4);
 12451   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12452               OpcRegReg(0x33,EAX,EAX),
 12453               Opcode(0xF3), Opcode(0xAB) );
 12454   ins_pipe( pipe_slow );
 12455 %}
 12457 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
 12458                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
 12459   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12460   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12462   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 12463   ins_encode %{
 12464     __ string_compare($str1$$Register, $str2$$Register,
 12465                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12466                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12467   %}
 12468   ins_pipe( pipe_slow );
 12469 %}
 12471 // fast string equals
 12472 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12473                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12474   match(Set result (StrEquals (Binary str1 str2) cnt));
 12475   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12477   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12478   ins_encode %{
 12479     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12480                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12481                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12482   %}
 12483   ins_pipe( pipe_slow );
 12484 %}
 12486 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12487                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
 12488   predicate(UseSSE42Intrinsics);
 12489   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12490   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 12492   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
 12493   ins_encode %{
 12494     __ string_indexof($str1$$Register, $str2$$Register,
 12495                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12496                       $tmp1$$XMMRegister, $tmp2$$Register);
 12497   %}
 12498   ins_pipe( pipe_slow );
 12499 %}
 12501 // fast array equals
 12502 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12503                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12504 %{
 12505   match(Set result (AryEq ary1 ary2));
 12506   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12507   //ins_cost(300);
 12509   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12510   ins_encode %{
 12511     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12512                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12513                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12514   %}
 12515   ins_pipe( pipe_slow );
 12516 %}
 12518 //----------Control Flow Instructions------------------------------------------
 12519 // Signed compare Instructions
 12520 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12521   match(Set cr (CmpI op1 op2));
 12522   effect( DEF cr, USE op1, USE op2 );
 12523   format %{ "CMP    $op1,$op2" %}
 12524   opcode(0x3B);  /* Opcode 3B /r */
 12525   ins_encode( OpcP, RegReg( op1, op2) );
 12526   ins_pipe( ialu_cr_reg_reg );
 12527 %}
 12529 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12530   match(Set cr (CmpI op1 op2));
 12531   effect( DEF cr, USE op1 );
 12532   format %{ "CMP    $op1,$op2" %}
 12533   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12534   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12535   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12536   ins_pipe( ialu_cr_reg_imm );
 12537 %}
 12539 // Cisc-spilled version of cmpI_eReg
 12540 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12541   match(Set cr (CmpI op1 (LoadI op2)));
 12543   format %{ "CMP    $op1,$op2" %}
 12544   ins_cost(500);
 12545   opcode(0x3B);  /* Opcode 3B /r */
 12546   ins_encode( OpcP, RegMem( op1, op2) );
 12547   ins_pipe( ialu_cr_reg_mem );
 12548 %}
 12550 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12551   match(Set cr (CmpI src zero));
 12552   effect( DEF cr, USE src );
 12554   format %{ "TEST   $src,$src" %}
 12555   opcode(0x85);
 12556   ins_encode( OpcP, RegReg( src, src ) );
 12557   ins_pipe( ialu_cr_reg_imm );
 12558 %}
 12560 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12561   match(Set cr (CmpI (AndI src con) zero));
 12563   format %{ "TEST   $src,$con" %}
 12564   opcode(0xF7,0x00);
 12565   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12566   ins_pipe( ialu_cr_reg_imm );
 12567 %}
 12569 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12570   match(Set cr (CmpI (AndI src mem) zero));
 12572   format %{ "TEST   $src,$mem" %}
 12573   opcode(0x85);
 12574   ins_encode( OpcP, RegMem( src, mem ) );
 12575   ins_pipe( ialu_cr_reg_mem );
 12576 %}
 12578 // Unsigned compare Instructions; really, same as signed except they
 12579 // produce an eFlagsRegU instead of eFlagsReg.
 12580 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12581   match(Set cr (CmpU op1 op2));
 12583   format %{ "CMPu   $op1,$op2" %}
 12584   opcode(0x3B);  /* Opcode 3B /r */
 12585   ins_encode( OpcP, RegReg( op1, op2) );
 12586   ins_pipe( ialu_cr_reg_reg );
 12587 %}
 12589 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12590   match(Set cr (CmpU op1 op2));
 12592   format %{ "CMPu   $op1,$op2" %}
 12593   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12594   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12595   ins_pipe( ialu_cr_reg_imm );
 12596 %}
 12598 // // Cisc-spilled version of cmpU_eReg
 12599 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12600   match(Set cr (CmpU op1 (LoadI op2)));
 12602   format %{ "CMPu   $op1,$op2" %}
 12603   ins_cost(500);
 12604   opcode(0x3B);  /* Opcode 3B /r */
 12605   ins_encode( OpcP, RegMem( op1, op2) );
 12606   ins_pipe( ialu_cr_reg_mem );
 12607 %}
 12609 // // Cisc-spilled version of cmpU_eReg
 12610 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12611 //  match(Set cr (CmpU (LoadI op1) op2));
 12612 //
 12613 //  format %{ "CMPu   $op1,$op2" %}
 12614 //  ins_cost(500);
 12615 //  opcode(0x39);  /* Opcode 39 /r */
 12616 //  ins_encode( OpcP, RegMem( op1, op2) );
 12617 //%}
 12619 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12620   match(Set cr (CmpU src zero));
 12622   format %{ "TESTu  $src,$src" %}
 12623   opcode(0x85);
 12624   ins_encode( OpcP, RegReg( src, src ) );
 12625   ins_pipe( ialu_cr_reg_imm );
 12626 %}
 12628 // Unsigned pointer compare Instructions
 12629 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12630   match(Set cr (CmpP op1 op2));
 12632   format %{ "CMPu   $op1,$op2" %}
 12633   opcode(0x3B);  /* Opcode 3B /r */
 12634   ins_encode( OpcP, RegReg( op1, op2) );
 12635   ins_pipe( ialu_cr_reg_reg );
 12636 %}
 12638 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12639   match(Set cr (CmpP op1 op2));
 12641   format %{ "CMPu   $op1,$op2" %}
 12642   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12643   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12644   ins_pipe( ialu_cr_reg_imm );
 12645 %}
 12647 // // Cisc-spilled version of cmpP_eReg
 12648 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12649   match(Set cr (CmpP op1 (LoadP op2)));
 12651   format %{ "CMPu   $op1,$op2" %}
 12652   ins_cost(500);
 12653   opcode(0x3B);  /* Opcode 3B /r */
 12654   ins_encode( OpcP, RegMem( op1, op2) );
 12655   ins_pipe( ialu_cr_reg_mem );
 12656 %}
 12658 // // Cisc-spilled version of cmpP_eReg
 12659 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12660 //  match(Set cr (CmpP (LoadP op1) op2));
 12661 //
 12662 //  format %{ "CMPu   $op1,$op2" %}
 12663 //  ins_cost(500);
 12664 //  opcode(0x39);  /* Opcode 39 /r */
 12665 //  ins_encode( OpcP, RegMem( op1, op2) );
 12666 //%}
 12668 // Compare raw pointer (used in out-of-heap check).
 12669 // Only works because non-oop pointers must be raw pointers
 12670 // and raw pointers have no anti-dependencies.
 12671 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12672   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12673   match(Set cr (CmpP op1 (LoadP op2)));
 12675   format %{ "CMPu   $op1,$op2" %}
 12676   opcode(0x3B);  /* Opcode 3B /r */
 12677   ins_encode( OpcP, RegMem( op1, op2) );
 12678   ins_pipe( ialu_cr_reg_mem );
 12679 %}
 12681 //
 12682 // This will generate a signed flags result. This should be ok
 12683 // since any compare to a zero should be eq/neq.
 12684 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12685   match(Set cr (CmpP src zero));
 12687   format %{ "TEST   $src,$src" %}
 12688   opcode(0x85);
 12689   ins_encode( OpcP, RegReg( src, src ) );
 12690   ins_pipe( ialu_cr_reg_imm );
 12691 %}
 12693 // Cisc-spilled version of testP_reg
 12694 // This will generate a signed flags result. This should be ok
 12695 // since any compare to a zero should be eq/neq.
 12696 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12697   match(Set cr (CmpP (LoadP op) zero));
 12699   format %{ "TEST   $op,0xFFFFFFFF" %}
 12700   ins_cost(500);
 12701   opcode(0xF7);               /* Opcode F7 /0 */
 12702   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12703   ins_pipe( ialu_cr_reg_imm );
 12704 %}
 12706 // Yanked all unsigned pointer compare operations.
 12707 // Pointer compares are done with CmpP which is already unsigned.
 12709 //----------Max and Min--------------------------------------------------------
 12710 // Min Instructions
 12711 ////
 12712 //   *** Min and Max using the conditional move are slower than the
 12713 //   *** branch version on a Pentium III.
 12714 // // Conditional move for min
 12715 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12716 //  effect( USE_DEF op2, USE op1, USE cr );
 12717 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12718 //  opcode(0x4C,0x0F);
 12719 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12720 //  ins_pipe( pipe_cmov_reg );
 12721 //%}
 12722 //
 12723 //// Min Register with Register (P6 version)
 12724 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12725 //  predicate(VM_Version::supports_cmov() );
 12726 //  match(Set op2 (MinI op1 op2));
 12727 //  ins_cost(200);
 12728 //  expand %{
 12729 //    eFlagsReg cr;
 12730 //    compI_eReg(cr,op1,op2);
 12731 //    cmovI_reg_lt(op2,op1,cr);
 12732 //  %}
 12733 //%}
 12735 // Min Register with Register (generic version)
 12736 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12737   match(Set dst (MinI dst src));
 12738   effect(KILL flags);
 12739   ins_cost(300);
 12741   format %{ "MIN    $dst,$src" %}
 12742   opcode(0xCC);
 12743   ins_encode( min_enc(dst,src) );
 12744   ins_pipe( pipe_slow );
 12745 %}
 12747 // Max Register with Register
 12748 //   *** Min and Max using the conditional move are slower than the
 12749 //   *** branch version on a Pentium III.
 12750 // // Conditional move for max
 12751 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12752 //  effect( USE_DEF op2, USE op1, USE cr );
 12753 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12754 //  opcode(0x4F,0x0F);
 12755 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12756 //  ins_pipe( pipe_cmov_reg );
 12757 //%}
 12758 //
 12759 // // Max Register with Register (P6 version)
 12760 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12761 //  predicate(VM_Version::supports_cmov() );
 12762 //  match(Set op2 (MaxI op1 op2));
 12763 //  ins_cost(200);
 12764 //  expand %{
 12765 //    eFlagsReg cr;
 12766 //    compI_eReg(cr,op1,op2);
 12767 //    cmovI_reg_gt(op2,op1,cr);
 12768 //  %}
 12769 //%}
 12771 // Max Register with Register (generic version)
 12772 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12773   match(Set dst (MaxI dst src));
 12774   effect(KILL flags);
 12775   ins_cost(300);
 12777   format %{ "MAX    $dst,$src" %}
 12778   opcode(0xCC);
 12779   ins_encode( max_enc(dst,src) );
 12780   ins_pipe( pipe_slow );
 12781 %}
 12783 // ============================================================================
 12784 // Branch Instructions
 12785 // Jump Table
 12786 instruct jumpXtnd(eRegI switch_val) %{
 12787   match(Jump switch_val);
 12788   ins_cost(350);
 12790   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12792   ins_encode %{
 12793     address table_base  = __ address_table_constant(_index2label);
 12795     // Jump to Address(table_base + switch_reg)
 12796     InternalAddress table(table_base);
 12797     Address index(noreg, $switch_val$$Register, Address::times_1);
 12798     __ jump(ArrayAddress(table, index));
 12799   %}
 12800   ins_pc_relative(1);
 12801   ins_pipe(pipe_jmp);
 12802 %}
 12804 // Jump Direct - Label defines a relative address from JMP+1
 12805 instruct jmpDir(label labl) %{
 12806   match(Goto);
 12807   effect(USE labl);
 12809   ins_cost(300);
 12810   format %{ "JMP    $labl" %}
 12811   size(5);
 12812   opcode(0xE9);
 12813   ins_encode( OpcP, Lbl( labl ) );
 12814   ins_pipe( pipe_jmp );
 12815   ins_pc_relative(1);
 12816 %}
 12818 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12819 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12820   match(If cop cr);
 12821   effect(USE labl);
 12823   ins_cost(300);
 12824   format %{ "J$cop    $labl" %}
 12825   size(6);
 12826   opcode(0x0F, 0x80);
 12827   ins_encode( Jcc( cop, labl) );
 12828   ins_pipe( pipe_jcc );
 12829   ins_pc_relative(1);
 12830 %}
 12832 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12833 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12834   match(CountedLoopEnd cop cr);
 12835   effect(USE labl);
 12837   ins_cost(300);
 12838   format %{ "J$cop    $labl\t# Loop end" %}
 12839   size(6);
 12840   opcode(0x0F, 0x80);
 12841   ins_encode( Jcc( cop, labl) );
 12842   ins_pipe( pipe_jcc );
 12843   ins_pc_relative(1);
 12844 %}
 12846 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12847 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12848   match(CountedLoopEnd cop cmp);
 12849   effect(USE labl);
 12851   ins_cost(300);
 12852   format %{ "J$cop,u  $labl\t# Loop end" %}
 12853   size(6);
 12854   opcode(0x0F, 0x80);
 12855   ins_encode( Jcc( cop, labl) );
 12856   ins_pipe( pipe_jcc );
 12857   ins_pc_relative(1);
 12858 %}
 12860 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12861   match(CountedLoopEnd cop cmp);
 12862   effect(USE labl);
 12864   ins_cost(200);
 12865   format %{ "J$cop,u  $labl\t# Loop end" %}
 12866   size(6);
 12867   opcode(0x0F, 0x80);
 12868   ins_encode( Jcc( cop, labl) );
 12869   ins_pipe( pipe_jcc );
 12870   ins_pc_relative(1);
 12871 %}
 12873 // Jump Direct Conditional - using unsigned comparison
 12874 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12875   match(If cop cmp);
 12876   effect(USE labl);
 12878   ins_cost(300);
 12879   format %{ "J$cop,u  $labl" %}
 12880   size(6);
 12881   opcode(0x0F, 0x80);
 12882   ins_encode(Jcc(cop, labl));
 12883   ins_pipe(pipe_jcc);
 12884   ins_pc_relative(1);
 12885 %}
 12887 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12888   match(If cop cmp);
 12889   effect(USE labl);
 12891   ins_cost(200);
 12892   format %{ "J$cop,u  $labl" %}
 12893   size(6);
 12894   opcode(0x0F, 0x80);
 12895   ins_encode(Jcc(cop, labl));
 12896   ins_pipe(pipe_jcc);
 12897   ins_pc_relative(1);
 12898 %}
 12900 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12901   match(If cop cmp);
 12902   effect(USE labl);
 12904   ins_cost(200);
 12905   format %{ $$template
 12906     if ($cop$$cmpcode == Assembler::notEqual) {
 12907       $$emit$$"JP,u   $labl\n\t"
 12908       $$emit$$"J$cop,u   $labl"
 12909     } else {
 12910       $$emit$$"JP,u   done\n\t"
 12911       $$emit$$"J$cop,u   $labl\n\t"
 12912       $$emit$$"done:"
 12914   %}
 12915   size(12);
 12916   opcode(0x0F, 0x80);
 12917   ins_encode %{
 12918     Label* l = $labl$$label;
 12919     $$$emit8$primary;
 12920     emit_cc(cbuf, $secondary, Assembler::parity);
 12921     int parity_disp = -1;
 12922     bool ok = false;
 12923     if ($cop$$cmpcode == Assembler::notEqual) {
 12924        // the two jumps 6 bytes apart so the jump distances are too
 12925        parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
 12926     } else if ($cop$$cmpcode == Assembler::equal) {
 12927        parity_disp = 6;
 12928        ok = true;
 12929     } else {
 12930        ShouldNotReachHere();
 12932     emit_d32(cbuf, parity_disp);
 12933     $$$emit8$primary;
 12934     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12935     int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
 12936     emit_d32(cbuf, disp);
 12937   %}
 12938   ins_pipe(pipe_jcc);
 12939   ins_pc_relative(1);
 12940 %}
 12942 // ============================================================================
 12943 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12944 // array for an instance of the superklass.  Set a hidden internal cache on a
 12945 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12946 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12947 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12948   match(Set result (PartialSubtypeCheck sub super));
 12949   effect( KILL rcx, KILL cr );
 12951   ins_cost(1100);  // slightly larger than the next version
 12952   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12953             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12954             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12955             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12956             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12957             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12958             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12959      "miss:\t" %}
 12961   opcode(0x1); // Force a XOR of EDI
 12962   ins_encode( enc_PartialSubtypeCheck() );
 12963   ins_pipe( pipe_slow );
 12964 %}
 12966 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12967   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12968   effect( KILL rcx, KILL result );
 12970   ins_cost(1000);
 12971   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12972             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12973             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12974             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12975             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12976             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12977      "miss:\t" %}
 12979   opcode(0x0);  // No need to XOR EDI
 12980   ins_encode( enc_PartialSubtypeCheck() );
 12981   ins_pipe( pipe_slow );
 12982 %}
 12984 // ============================================================================
 12985 // Branch Instructions -- short offset versions
 12986 //
 12987 // These instructions are used to replace jumps of a long offset (the default
 12988 // match) with jumps of a shorter offset.  These instructions are all tagged
 12989 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12990 // match rules in general matching.  Instead, the ADLC generates a conversion
 12991 // method in the MachNode which can be used to do in-place replacement of the
 12992 // long variant with the shorter variant.  The compiler will determine if a
 12993 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12994 // specific code section of the file.
 12996 // Jump Direct - Label defines a relative address from JMP+1
 12997 instruct jmpDir_short(label labl) %{
 12998   match(Goto);
 12999   effect(USE labl);
 13001   ins_cost(300);
 13002   format %{ "JMP,s  $labl" %}
 13003   size(2);
 13004   opcode(0xEB);
 13005   ins_encode( OpcP, LblShort( labl ) );
 13006   ins_pipe( pipe_jmp );
 13007   ins_pc_relative(1);
 13008   ins_short_branch(1);
 13009 %}
 13011 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13012 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13013   match(If cop cr);
 13014   effect(USE labl);
 13016   ins_cost(300);
 13017   format %{ "J$cop,s  $labl" %}
 13018   size(2);
 13019   opcode(0x70);
 13020   ins_encode( JccShort( cop, labl) );
 13021   ins_pipe( pipe_jcc );
 13022   ins_pc_relative(1);
 13023   ins_short_branch(1);
 13024 %}
 13026 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13027 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13028   match(CountedLoopEnd cop cr);
 13029   effect(USE labl);
 13031   ins_cost(300);
 13032   format %{ "J$cop,s  $labl\t# Loop end" %}
 13033   size(2);
 13034   opcode(0x70);
 13035   ins_encode( JccShort( cop, labl) );
 13036   ins_pipe( pipe_jcc );
 13037   ins_pc_relative(1);
 13038   ins_short_branch(1);
 13039 %}
 13041 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13042 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13043   match(CountedLoopEnd cop cmp);
 13044   effect(USE labl);
 13046   ins_cost(300);
 13047   format %{ "J$cop,us $labl\t# Loop end" %}
 13048   size(2);
 13049   opcode(0x70);
 13050   ins_encode( JccShort( cop, labl) );
 13051   ins_pipe( pipe_jcc );
 13052   ins_pc_relative(1);
 13053   ins_short_branch(1);
 13054 %}
 13056 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13057   match(CountedLoopEnd cop cmp);
 13058   effect(USE labl);
 13060   ins_cost(300);
 13061   format %{ "J$cop,us $labl\t# Loop end" %}
 13062   size(2);
 13063   opcode(0x70);
 13064   ins_encode( JccShort( cop, labl) );
 13065   ins_pipe( pipe_jcc );
 13066   ins_pc_relative(1);
 13067   ins_short_branch(1);
 13068 %}
 13070 // Jump Direct Conditional - using unsigned comparison
 13071 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13072   match(If cop cmp);
 13073   effect(USE labl);
 13075   ins_cost(300);
 13076   format %{ "J$cop,us $labl" %}
 13077   size(2);
 13078   opcode(0x70);
 13079   ins_encode( JccShort( cop, labl) );
 13080   ins_pipe( pipe_jcc );
 13081   ins_pc_relative(1);
 13082   ins_short_branch(1);
 13083 %}
 13085 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13086   match(If cop cmp);
 13087   effect(USE labl);
 13089   ins_cost(300);
 13090   format %{ "J$cop,us $labl" %}
 13091   size(2);
 13092   opcode(0x70);
 13093   ins_encode( JccShort( cop, labl) );
 13094   ins_pipe( pipe_jcc );
 13095   ins_pc_relative(1);
 13096   ins_short_branch(1);
 13097 %}
 13099 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13100   match(If cop cmp);
 13101   effect(USE labl);
 13103   ins_cost(300);
 13104   format %{ $$template
 13105     if ($cop$$cmpcode == Assembler::notEqual) {
 13106       $$emit$$"JP,u,s   $labl\n\t"
 13107       $$emit$$"J$cop,u,s   $labl"
 13108     } else {
 13109       $$emit$$"JP,u,s   done\n\t"
 13110       $$emit$$"J$cop,u,s  $labl\n\t"
 13111       $$emit$$"done:"
 13113   %}
 13114   size(4);
 13115   opcode(0x70);
 13116   ins_encode %{
 13117     Label* l = $labl$$label;
 13118     emit_cc(cbuf, $primary, Assembler::parity);
 13119     int parity_disp = -1;
 13120     if ($cop$$cmpcode == Assembler::notEqual) {
 13121       parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
 13122     } else if ($cop$$cmpcode == Assembler::equal) {
 13123       parity_disp = 2;
 13124     } else {
 13125       ShouldNotReachHere();
 13127     emit_d8(cbuf, parity_disp);
 13128     emit_cc(cbuf, $primary, $cop$$cmpcode);
 13129     int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
 13130     emit_d8(cbuf, disp);
 13131     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 13132     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 13133   %}
 13134   ins_pipe(pipe_jcc);
 13135   ins_pc_relative(1);
 13136   ins_short_branch(1);
 13137 %}
 13139 // ============================================================================
 13140 // Long Compare
 13141 //
 13142 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 13143 // is tricky.  The flavor of compare used depends on whether we are testing
 13144 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13145 // The GE test is the negated LT test.  The LE test can be had by commuting
 13146 // the operands (yielding a GE test) and then negating; negate again for the
 13147 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13148 // NE test is negated from that.
 13150 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13151 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13152 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13153 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13154 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13155 // foo match ends up with the wrong leaf.  One fix is to not match both
 13156 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13157 // both forms beat the trinary form of long-compare and both are very useful
 13158 // on Intel which has so few registers.
 13160 // Manifest a CmpL result in an integer register.  Very painful.
 13161 // This is the test to avoid.
 13162 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13163   match(Set dst (CmpL3 src1 src2));
 13164   effect( KILL flags );
 13165   ins_cost(1000);
 13166   format %{ "XOR    $dst,$dst\n\t"
 13167             "CMP    $src1.hi,$src2.hi\n\t"
 13168             "JLT,s  m_one\n\t"
 13169             "JGT,s  p_one\n\t"
 13170             "CMP    $src1.lo,$src2.lo\n\t"
 13171             "JB,s   m_one\n\t"
 13172             "JEQ,s  done\n"
 13173     "p_one:\tINC    $dst\n\t"
 13174             "JMP,s  done\n"
 13175     "m_one:\tDEC    $dst\n"
 13176      "done:" %}
 13177   ins_encode %{
 13178     Label p_one, m_one, done;
 13179     __ xorptr($dst$$Register, $dst$$Register);
 13180     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13181     __ jccb(Assembler::less,    m_one);
 13182     __ jccb(Assembler::greater, p_one);
 13183     __ cmpl($src1$$Register, $src2$$Register);
 13184     __ jccb(Assembler::below,   m_one);
 13185     __ jccb(Assembler::equal,   done);
 13186     __ bind(p_one);
 13187     __ incrementl($dst$$Register);
 13188     __ jmpb(done);
 13189     __ bind(m_one);
 13190     __ decrementl($dst$$Register);
 13191     __ bind(done);
 13192   %}
 13193   ins_pipe( pipe_slow );
 13194 %}
 13196 //======
 13197 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13198 // compares.  Can be used for LE or GT compares by reversing arguments.
 13199 // NOT GOOD FOR EQ/NE tests.
 13200 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13201   match( Set flags (CmpL src zero ));
 13202   ins_cost(100);
 13203   format %{ "TEST   $src.hi,$src.hi" %}
 13204   opcode(0x85);
 13205   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13206   ins_pipe( ialu_cr_reg_reg );
 13207 %}
 13209 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13210 // compares.  Can be used for LE or GT compares by reversing arguments.
 13211 // NOT GOOD FOR EQ/NE tests.
 13212 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13213   match( Set flags (CmpL src1 src2 ));
 13214   effect( TEMP tmp );
 13215   ins_cost(300);
 13216   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13217             "MOV    $tmp,$src1.hi\n\t"
 13218             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13219   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13220   ins_pipe( ialu_cr_reg_reg );
 13221 %}
 13223 // Long compares reg < zero/req OR reg >= zero/req.
 13224 // Just a wrapper for a normal branch, plus the predicate test.
 13225 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13226   match(If cmp flags);
 13227   effect(USE labl);
 13228   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13229   expand %{
 13230     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13231   %}
 13232 %}
 13234 // Compare 2 longs and CMOVE longs.
 13235 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13236   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13237   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13238   ins_cost(400);
 13239   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13240             "CMOV$cmp $dst.hi,$src.hi" %}
 13241   opcode(0x0F,0x40);
 13242   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13243   ins_pipe( pipe_cmov_reg_long );
 13244 %}
 13246 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13247   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13248   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13249   ins_cost(500);
 13250   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13251             "CMOV$cmp $dst.hi,$src.hi" %}
 13252   opcode(0x0F,0x40);
 13253   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13254   ins_pipe( pipe_cmov_reg_long );
 13255 %}
 13257 // Compare 2 longs and CMOVE ints.
 13258 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13259   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13260   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13261   ins_cost(200);
 13262   format %{ "CMOV$cmp $dst,$src" %}
 13263   opcode(0x0F,0x40);
 13264   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13265   ins_pipe( pipe_cmov_reg );
 13266 %}
 13268 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13269   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13270   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13271   ins_cost(250);
 13272   format %{ "CMOV$cmp $dst,$src" %}
 13273   opcode(0x0F,0x40);
 13274   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13275   ins_pipe( pipe_cmov_mem );
 13276 %}
 13278 // Compare 2 longs and CMOVE ints.
 13279 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13280   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13281   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13282   ins_cost(200);
 13283   format %{ "CMOV$cmp $dst,$src" %}
 13284   opcode(0x0F,0x40);
 13285   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13286   ins_pipe( pipe_cmov_reg );
 13287 %}
 13289 // Compare 2 longs and CMOVE doubles
 13290 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13291   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13292   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13293   ins_cost(200);
 13294   expand %{
 13295     fcmovD_regS(cmp,flags,dst,src);
 13296   %}
 13297 %}
 13299 // Compare 2 longs and CMOVE doubles
 13300 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13301   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13302   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13303   ins_cost(200);
 13304   expand %{
 13305     fcmovXD_regS(cmp,flags,dst,src);
 13306   %}
 13307 %}
 13309 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13310   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13311   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13312   ins_cost(200);
 13313   expand %{
 13314     fcmovF_regS(cmp,flags,dst,src);
 13315   %}
 13316 %}
 13318 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13319   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13320   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13321   ins_cost(200);
 13322   expand %{
 13323     fcmovX_regS(cmp,flags,dst,src);
 13324   %}
 13325 %}
 13327 //======
 13328 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13329 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13330   match( Set flags (CmpL src zero ));
 13331   effect(TEMP tmp);
 13332   ins_cost(200);
 13333   format %{ "MOV    $tmp,$src.lo\n\t"
 13334             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13335   ins_encode( long_cmp_flags0( src, tmp ) );
 13336   ins_pipe( ialu_reg_reg_long );
 13337 %}
 13339 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13340 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13341   match( Set flags (CmpL src1 src2 ));
 13342   ins_cost(200+300);
 13343   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13344             "JNE,s  skip\n\t"
 13345             "CMP    $src1.hi,$src2.hi\n\t"
 13346      "skip:\t" %}
 13347   ins_encode( long_cmp_flags1( src1, src2 ) );
 13348   ins_pipe( ialu_cr_reg_reg );
 13349 %}
 13351 // Long compare reg == zero/reg OR reg != zero/reg
 13352 // Just a wrapper for a normal branch, plus the predicate test.
 13353 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13354   match(If cmp flags);
 13355   effect(USE labl);
 13356   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13357   expand %{
 13358     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13359   %}
 13360 %}
 13362 // Compare 2 longs and CMOVE longs.
 13363 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13364   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13365   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13366   ins_cost(400);
 13367   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13368             "CMOV$cmp $dst.hi,$src.hi" %}
 13369   opcode(0x0F,0x40);
 13370   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13371   ins_pipe( pipe_cmov_reg_long );
 13372 %}
 13374 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13375   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13376   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13377   ins_cost(500);
 13378   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13379             "CMOV$cmp $dst.hi,$src.hi" %}
 13380   opcode(0x0F,0x40);
 13381   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13382   ins_pipe( pipe_cmov_reg_long );
 13383 %}
 13385 // Compare 2 longs and CMOVE ints.
 13386 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13387   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13388   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13389   ins_cost(200);
 13390   format %{ "CMOV$cmp $dst,$src" %}
 13391   opcode(0x0F,0x40);
 13392   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13393   ins_pipe( pipe_cmov_reg );
 13394 %}
 13396 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13397   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13398   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13399   ins_cost(250);
 13400   format %{ "CMOV$cmp $dst,$src" %}
 13401   opcode(0x0F,0x40);
 13402   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13403   ins_pipe( pipe_cmov_mem );
 13404 %}
 13406 // Compare 2 longs and CMOVE ints.
 13407 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13408   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13409   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13410   ins_cost(200);
 13411   format %{ "CMOV$cmp $dst,$src" %}
 13412   opcode(0x0F,0x40);
 13413   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13414   ins_pipe( pipe_cmov_reg );
 13415 %}
 13417 // Compare 2 longs and CMOVE doubles
 13418 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13419   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13420   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13421   ins_cost(200);
 13422   expand %{
 13423     fcmovD_regS(cmp,flags,dst,src);
 13424   %}
 13425 %}
 13427 // Compare 2 longs and CMOVE doubles
 13428 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13429   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13430   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13431   ins_cost(200);
 13432   expand %{
 13433     fcmovXD_regS(cmp,flags,dst,src);
 13434   %}
 13435 %}
 13437 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13438   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13439   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13440   ins_cost(200);
 13441   expand %{
 13442     fcmovF_regS(cmp,flags,dst,src);
 13443   %}
 13444 %}
 13446 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13447   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13448   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13449   ins_cost(200);
 13450   expand %{
 13451     fcmovX_regS(cmp,flags,dst,src);
 13452   %}
 13453 %}
 13455 //======
 13456 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13457 // Same as cmpL_reg_flags_LEGT except must negate src
 13458 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13459   match( Set flags (CmpL src zero ));
 13460   effect( TEMP tmp );
 13461   ins_cost(300);
 13462   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13463             "CMP    $tmp,$src.lo\n\t"
 13464             "SBB    $tmp,$src.hi\n\t" %}
 13465   ins_encode( long_cmp_flags3(src, tmp) );
 13466   ins_pipe( ialu_reg_reg_long );
 13467 %}
 13469 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13470 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13471 // requires a commuted test to get the same result.
 13472 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13473   match( Set flags (CmpL src1 src2 ));
 13474   effect( TEMP tmp );
 13475   ins_cost(300);
 13476   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13477             "MOV    $tmp,$src2.hi\n\t"
 13478             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13479   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13480   ins_pipe( ialu_cr_reg_reg );
 13481 %}
 13483 // Long compares reg < zero/req OR reg >= zero/req.
 13484 // Just a wrapper for a normal branch, plus the predicate test
 13485 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13486   match(If cmp flags);
 13487   effect(USE labl);
 13488   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13489   ins_cost(300);
 13490   expand %{
 13491     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13492   %}
 13493 %}
 13495 // Compare 2 longs and CMOVE longs.
 13496 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13497   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13498   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13499   ins_cost(400);
 13500   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13501             "CMOV$cmp $dst.hi,$src.hi" %}
 13502   opcode(0x0F,0x40);
 13503   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13504   ins_pipe( pipe_cmov_reg_long );
 13505 %}
 13507 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13508   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13509   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13510   ins_cost(500);
 13511   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13512             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13513   opcode(0x0F,0x40);
 13514   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13515   ins_pipe( pipe_cmov_reg_long );
 13516 %}
 13518 // Compare 2 longs and CMOVE ints.
 13519 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13520   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13521   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13522   ins_cost(200);
 13523   format %{ "CMOV$cmp $dst,$src" %}
 13524   opcode(0x0F,0x40);
 13525   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13526   ins_pipe( pipe_cmov_reg );
 13527 %}
 13529 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13530   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13531   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13532   ins_cost(250);
 13533   format %{ "CMOV$cmp $dst,$src" %}
 13534   opcode(0x0F,0x40);
 13535   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13536   ins_pipe( pipe_cmov_mem );
 13537 %}
 13539 // Compare 2 longs and CMOVE ptrs.
 13540 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13541   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13542   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13543   ins_cost(200);
 13544   format %{ "CMOV$cmp $dst,$src" %}
 13545   opcode(0x0F,0x40);
 13546   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13547   ins_pipe( pipe_cmov_reg );
 13548 %}
 13550 // Compare 2 longs and CMOVE doubles
 13551 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13552   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13553   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13554   ins_cost(200);
 13555   expand %{
 13556     fcmovD_regS(cmp,flags,dst,src);
 13557   %}
 13558 %}
 13560 // Compare 2 longs and CMOVE doubles
 13561 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13562   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13563   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13564   ins_cost(200);
 13565   expand %{
 13566     fcmovXD_regS(cmp,flags,dst,src);
 13567   %}
 13568 %}
 13570 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13571   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13572   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13573   ins_cost(200);
 13574   expand %{
 13575     fcmovF_regS(cmp,flags,dst,src);
 13576   %}
 13577 %}
 13580 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13581   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13582   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13583   ins_cost(200);
 13584   expand %{
 13585     fcmovX_regS(cmp,flags,dst,src);
 13586   %}
 13587 %}
 13590 // ============================================================================
 13591 // Procedure Call/Return Instructions
 13592 // Call Java Static Instruction
 13593 // Note: If this code changes, the corresponding ret_addr_offset() and
 13594 //       compute_padding() functions will have to be adjusted.
 13595 instruct CallStaticJavaDirect(method meth) %{
 13596   match(CallStaticJava);
 13597   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13598   effect(USE meth);
 13600   ins_cost(300);
 13601   format %{ "CALL,static " %}
 13602   opcode(0xE8); /* E8 cd */
 13603   ins_encode( pre_call_FPU,
 13604               Java_Static_Call( meth ),
 13605               call_epilog,
 13606               post_call_FPU );
 13607   ins_pipe( pipe_slow );
 13608   ins_pc_relative(1);
 13609   ins_alignment(4);
 13610 %}
 13612 // Call Java Static Instruction (method handle version)
 13613 // Note: If this code changes, the corresponding ret_addr_offset() and
 13614 //       compute_padding() functions will have to be adjusted.
 13615 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13616   match(CallStaticJava);
 13617   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13618   effect(USE meth);
 13619   // EBP is saved by all callees (for interpreter stack correction).
 13620   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13622   ins_cost(300);
 13623   format %{ "CALL,static/MethodHandle " %}
 13624   opcode(0xE8); /* E8 cd */
 13625   ins_encode( pre_call_FPU,
 13626               preserve_SP,
 13627               Java_Static_Call( meth ),
 13628               restore_SP,
 13629               call_epilog,
 13630               post_call_FPU );
 13631   ins_pipe( pipe_slow );
 13632   ins_pc_relative(1);
 13633   ins_alignment(4);
 13634 %}
 13636 // Call Java Dynamic Instruction
 13637 // Note: If this code changes, the corresponding ret_addr_offset() and
 13638 //       compute_padding() functions will have to be adjusted.
 13639 instruct CallDynamicJavaDirect(method meth) %{
 13640   match(CallDynamicJava);
 13641   effect(USE meth);
 13643   ins_cost(300);
 13644   format %{ "MOV    EAX,(oop)-1\n\t"
 13645             "CALL,dynamic" %}
 13646   opcode(0xE8); /* E8 cd */
 13647   ins_encode( pre_call_FPU,
 13648               Java_Dynamic_Call( meth ),
 13649               call_epilog,
 13650               post_call_FPU );
 13651   ins_pipe( pipe_slow );
 13652   ins_pc_relative(1);
 13653   ins_alignment(4);
 13654 %}
 13656 // Call Runtime Instruction
 13657 instruct CallRuntimeDirect(method meth) %{
 13658   match(CallRuntime );
 13659   effect(USE meth);
 13661   ins_cost(300);
 13662   format %{ "CALL,runtime " %}
 13663   opcode(0xE8); /* E8 cd */
 13664   // Use FFREEs to clear entries in float stack
 13665   ins_encode( pre_call_FPU,
 13666               FFree_Float_Stack_All,
 13667               Java_To_Runtime( meth ),
 13668               post_call_FPU );
 13669   ins_pipe( pipe_slow );
 13670   ins_pc_relative(1);
 13671 %}
 13673 // Call runtime without safepoint
 13674 instruct CallLeafDirect(method meth) %{
 13675   match(CallLeaf);
 13676   effect(USE meth);
 13678   ins_cost(300);
 13679   format %{ "CALL_LEAF,runtime " %}
 13680   opcode(0xE8); /* E8 cd */
 13681   ins_encode( pre_call_FPU,
 13682               FFree_Float_Stack_All,
 13683               Java_To_Runtime( meth ),
 13684               Verify_FPU_For_Leaf, post_call_FPU );
 13685   ins_pipe( pipe_slow );
 13686   ins_pc_relative(1);
 13687 %}
 13689 instruct CallLeafNoFPDirect(method meth) %{
 13690   match(CallLeafNoFP);
 13691   effect(USE meth);
 13693   ins_cost(300);
 13694   format %{ "CALL_LEAF_NOFP,runtime " %}
 13695   opcode(0xE8); /* E8 cd */
 13696   ins_encode(Java_To_Runtime(meth));
 13697   ins_pipe( pipe_slow );
 13698   ins_pc_relative(1);
 13699 %}
 13702 // Return Instruction
 13703 // Remove the return address & jump to it.
 13704 instruct Ret() %{
 13705   match(Return);
 13706   format %{ "RET" %}
 13707   opcode(0xC3);
 13708   ins_encode(OpcP);
 13709   ins_pipe( pipe_jmp );
 13710 %}
 13712 // Tail Call; Jump from runtime stub to Java code.
 13713 // Also known as an 'interprocedural jump'.
 13714 // Target of jump will eventually return to caller.
 13715 // TailJump below removes the return address.
 13716 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13717   match(TailCall jump_target method_oop );
 13718   ins_cost(300);
 13719   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13720   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13721   ins_encode( OpcP, RegOpc(jump_target) );
 13722   ins_pipe( pipe_jmp );
 13723 %}
 13726 // Tail Jump; remove the return address; jump to target.
 13727 // TailCall above leaves the return address around.
 13728 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13729   match( TailJump jump_target ex_oop );
 13730   ins_cost(300);
 13731   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13732             "JMP    $jump_target " %}
 13733   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13734   ins_encode( enc_pop_rdx,
 13735               OpcP, RegOpc(jump_target) );
 13736   ins_pipe( pipe_jmp );
 13737 %}
 13739 // Create exception oop: created by stack-crawling runtime code.
 13740 // Created exception is now available to this handler, and is setup
 13741 // just prior to jumping to this handler.  No code emitted.
 13742 instruct CreateException( eAXRegP ex_oop )
 13743 %{
 13744   match(Set ex_oop (CreateEx));
 13746   size(0);
 13747   // use the following format syntax
 13748   format %{ "# exception oop is in EAX; no code emitted" %}
 13749   ins_encode();
 13750   ins_pipe( empty );
 13751 %}
 13754 // Rethrow exception:
 13755 // The exception oop will come in the first argument position.
 13756 // Then JUMP (not call) to the rethrow stub code.
 13757 instruct RethrowException()
 13758 %{
 13759   match(Rethrow);
 13761   // use the following format syntax
 13762   format %{ "JMP    rethrow_stub" %}
 13763   ins_encode(enc_rethrow);
 13764   ins_pipe( pipe_jmp );
 13765 %}
 13767 // inlined locking and unlocking
 13770 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13771   match( Set cr (FastLock object box) );
 13772   effect( TEMP tmp, TEMP scr );
 13773   ins_cost(300);
 13774   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13775   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13776   ins_pipe( pipe_slow );
 13777   ins_pc_relative(1);
 13778 %}
 13780 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13781   match( Set cr (FastUnlock object box) );
 13782   effect( TEMP tmp );
 13783   ins_cost(300);
 13784   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13785   ins_encode( Fast_Unlock(object,box,tmp) );
 13786   ins_pipe( pipe_slow );
 13787   ins_pc_relative(1);
 13788 %}
 13792 // ============================================================================
 13793 // Safepoint Instruction
 13794 instruct safePoint_poll(eFlagsReg cr) %{
 13795   match(SafePoint);
 13796   effect(KILL cr);
 13798   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13799   // On SPARC that might be acceptable as we can generate the address with
 13800   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13801   // putting additional pressure on the index-0 in the D$.  Because of
 13802   // alignment (just like the situation at hand) the lower indices tend
 13803   // to see more traffic.  It'd be better to change the polling address
 13804   // to offset 0 of the last $line in the polling page.
 13806   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13807   ins_cost(125);
 13808   size(6) ;
 13809   ins_encode( Safepoint_Poll() );
 13810   ins_pipe( ialu_reg_mem );
 13811 %}
 13813 //----------PEEPHOLE RULES-----------------------------------------------------
 13814 // These must follow all instruction definitions as they use the names
 13815 // defined in the instructions definitions.
 13816 //
 13817 // peepmatch ( root_instr_name [preceding_instruction]* );
 13818 //
 13819 // peepconstraint %{
 13820 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13821 //  [, ...] );
 13822 // // instruction numbers are zero-based using left to right order in peepmatch
 13823 //
 13824 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13825 // // provide an instruction_number.operand_name for each operand that appears
 13826 // // in the replacement instruction's match rule
 13827 //
 13828 // ---------VM FLAGS---------------------------------------------------------
 13829 //
 13830 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13831 //
 13832 // Each peephole rule is given an identifying number starting with zero and
 13833 // increasing by one in the order seen by the parser.  An individual peephole
 13834 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13835 // on the command-line.
 13836 //
 13837 // ---------CURRENT LIMITATIONS----------------------------------------------
 13838 //
 13839 // Only match adjacent instructions in same basic block
 13840 // Only equality constraints
 13841 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13842 // Only one replacement instruction
 13843 //
 13844 // ---------EXAMPLE----------------------------------------------------------
 13845 //
 13846 // // pertinent parts of existing instructions in architecture description
 13847 // instruct movI(eRegI dst, eRegI src) %{
 13848 //   match(Set dst (CopyI src));
 13849 // %}
 13850 //
 13851 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13852 //   match(Set dst (AddI dst src));
 13853 //   effect(KILL cr);
 13854 // %}
 13855 //
 13856 // // Change (inc mov) to lea
 13857 // peephole %{
 13858 //   // increment preceeded by register-register move
 13859 //   peepmatch ( incI_eReg movI );
 13860 //   // require that the destination register of the increment
 13861 //   // match the destination register of the move
 13862 //   peepconstraint ( 0.dst == 1.dst );
 13863 //   // construct a replacement instruction that sets
 13864 //   // the destination to ( move's source register + one )
 13865 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13866 // %}
 13867 //
 13868 // Implementation no longer uses movX instructions since
 13869 // machine-independent system no longer uses CopyX nodes.
 13870 //
 13871 // peephole %{
 13872 //   peepmatch ( incI_eReg movI );
 13873 //   peepconstraint ( 0.dst == 1.dst );
 13874 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13875 // %}
 13876 //
 13877 // peephole %{
 13878 //   peepmatch ( decI_eReg movI );
 13879 //   peepconstraint ( 0.dst == 1.dst );
 13880 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13881 // %}
 13882 //
 13883 // peephole %{
 13884 //   peepmatch ( addI_eReg_imm movI );
 13885 //   peepconstraint ( 0.dst == 1.dst );
 13886 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13887 // %}
 13888 //
 13889 // peephole %{
 13890 //   peepmatch ( addP_eReg_imm movP );
 13891 //   peepconstraint ( 0.dst == 1.dst );
 13892 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13893 // %}
 13895 // // Change load of spilled value to only a spill
 13896 // instruct storeI(memory mem, eRegI src) %{
 13897 //   match(Set mem (StoreI mem src));
 13898 // %}
 13899 //
 13900 // instruct loadI(eRegI dst, memory mem) %{
 13901 //   match(Set dst (LoadI mem));
 13902 // %}
 13903 //
 13904 peephole %{
 13905   peepmatch ( loadI storeI );
 13906   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13907   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13908 %}
 13910 //----------SMARTSPILL RULES---------------------------------------------------
 13911 // These must follow all instruction definitions as they use the names
 13912 // defined in the instructions definitions.

mercurial