src/cpu/mips/vm/mips_64.ad

Wed, 15 Feb 2017 12:37:43 -0500

author
fujie
date
Wed, 15 Feb 2017 12:37:43 -0500
changeset 302
f4ccb4aa25f1
parent 301
d585b6706dc2
child 303
3c47814d2976
permissions
-rw-r--r--

[C2] Add instruct convL2I2L_reg in mips_64.ad

     1 //
     2 // Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 // GodSon3 Architecture Description File
    28 //----------REGISTER DEFINITION BLOCK------------------------------------------
    29 // This information is used by the matcher and the register allocator to
    30 // describe individual registers and classes of registers within the target
    31 // archtecture.
    33 // format:
    34 // reg_def name (call convention, c-call convention, ideal type, encoding);
    35 // 		call convention : 
    36 //			NS  = No-Save
    37 //			SOC = Save-On-Call
    38 //			SOE = Save-On-Entry
    39 //			AS  = Always-Save
    40 //		ideal type :
    41 //			see opto/opcodes.hpp for more info
    42 // reg_class name (reg, ...);
    43 // alloc_class name (reg, ...); 
    44 register %{
    46 // General Registers
    47 // Integer Registers
    48 	reg_def R0	    ( NS,  NS, 	Op_RegI,  0, VMRegImpl::Bad());
    49 	reg_def AT		( NS,  NS, 	Op_RegI,  1, AT->as_VMReg());
    50 	reg_def AT_H    ( NS,  NS,  Op_RegI,  1, AT->as_VMReg()->next());
    51 	reg_def V0		(SOC, SOC,	Op_RegI,  2, V0->as_VMReg());
    52 	reg_def V0_H	(SOC, SOC,	Op_RegI,  2, V0->as_VMReg()->next());
    53 	reg_def V1		(SOC, SOC,	Op_RegI,  3, V1->as_VMReg());
    54 	reg_def V1_H	(SOC, SOC,	Op_RegI,  3, V1->as_VMReg()->next());
    55 	reg_def A0		(SOC, SOC,	Op_RegI,  4, A0->as_VMReg());
    56 	reg_def A0_H	(SOC, SOC,	Op_RegI,  4, A0->as_VMReg()->next());
    57 	reg_def A1		(SOC, SOC,	Op_RegI,  5, A1->as_VMReg());
    58 	reg_def A1_H	(SOC, SOC,	Op_RegI,  5, A1->as_VMReg()->next());
    59 	reg_def A2		(SOC, SOC,	Op_RegI,  6, A2->as_VMReg());
    60 	reg_def A2_H	(SOC, SOC,	Op_RegI,  6, A2->as_VMReg()->next());
    61 	reg_def A3		(SOC, SOC,	Op_RegI,  7, A3->as_VMReg());
    62 	reg_def A3_H	(SOC, SOC,	Op_RegI,  7, A3->as_VMReg()->next());
    63 	reg_def A4		(SOC, SOC,	Op_RegI,  8, A4->as_VMReg());
    64 	reg_def A4_H	(SOC, SOC,	Op_RegI,  8, A4->as_VMReg()->next());
    65 	reg_def A5		(SOC, SOC,	Op_RegI,  9, A5->as_VMReg());
    66 	reg_def A5_H	(SOC, SOC,	Op_RegI,  9, A5->as_VMReg()->next());
    67 	reg_def A6		(SOC, SOC,	Op_RegI,  10, A6->as_VMReg());
    68 	reg_def A6_H	(SOC, SOC,	Op_RegI,  10, A6->as_VMReg()->next());
    69 	reg_def A7		(SOC, SOC,	Op_RegI,  11, A7->as_VMReg());
    70 	reg_def A7_H	(SOC, SOC,	Op_RegI,  11, A7->as_VMReg()->next());
    71 	reg_def T0		(SOC, SOC,	Op_RegI,  12, T0->as_VMReg());
    72 	reg_def T0_H	(SOC, SOC,	Op_RegI,  12, T0->as_VMReg()->next());
    73 	reg_def T1		(SOC, SOC,	Op_RegI,  13, T1->as_VMReg());
    74 	reg_def T1_H	(SOC, SOC,	Op_RegI,  13, T1->as_VMReg()->next());
    75 	reg_def T2		(SOC, SOC,	Op_RegI,  14, T2->as_VMReg());
    76 	reg_def T2_H	(SOC, SOC,	Op_RegI,  14, T2->as_VMReg()->next());
    77 	reg_def T3		(SOC, SOC,	Op_RegI,  15, T3->as_VMReg());
    78 	reg_def T3_H	(SOC, SOC,	Op_RegI,  15, T3->as_VMReg()->next());
    79 	reg_def S0		(SOC, SOE,	Op_RegI,  16, S0->as_VMReg());
    80 	reg_def S0_H	(SOC, SOE,	Op_RegI,  16, S0->as_VMReg()->next());
    81 	reg_def S1		(SOC, SOE,	Op_RegI,  17, S1->as_VMReg());
    82 	reg_def S1_H	(SOC, SOE,	Op_RegI,  17, S1->as_VMReg()->next());
    83 	reg_def S2		(SOC, SOE,	Op_RegI,  18, S2->as_VMReg());
    84 	reg_def S2_H	(SOC, SOE,	Op_RegI,  18, S2->as_VMReg()->next());
    85 	reg_def S3		(SOC, SOE,	Op_RegI,  19, S3->as_VMReg());
    86 	reg_def S3_H	(SOC, SOE,	Op_RegI,  19, S3->as_VMReg()->next());
    87 	reg_def S4		(SOC, SOE,	Op_RegI,  20, S4->as_VMReg());
    88 	reg_def S4_H	(SOC, SOE,	Op_RegI,  20, S4->as_VMReg()->next());
    89 	reg_def S5		(SOC, SOE,	Op_RegI,  21, S5->as_VMReg());
    90 	reg_def S5_H	(SOC, SOE,	Op_RegI,  21, S5->as_VMReg()->next());
    91 	reg_def S6		(SOC, SOE,	Op_RegI,  22, S6->as_VMReg());
    92 	reg_def S6_H	(SOC, SOE,	Op_RegI,  22, S6->as_VMReg()->next());
    93 	reg_def S7		(SOC, SOE,	Op_RegI,  23, S7->as_VMReg());
    94 	reg_def S7_H	(SOC, SOE,	Op_RegI,  23, S7->as_VMReg()->next());
    95 	reg_def T8		(SOC, SOC,	Op_RegI,  24, T8->as_VMReg());
    96 	reg_def T8_H	(SOC, SOC,	Op_RegI,  24, T8->as_VMReg()->next());
    97 	reg_def T9		(SOC, SOC,	Op_RegI,  25, T9->as_VMReg());
    98 	reg_def T9_H	(SOC, SOC,	Op_RegI,  25, T9->as_VMReg()->next());
   100 // Special Registers
   101 	reg_def K0		( NS,  NS,	Op_RegI, 26, K0->as_VMReg());
   102 	reg_def K1		( NS,  NS,	Op_RegI, 27, K1->as_VMReg());
   103 	reg_def GP		( NS,  NS,	Op_RegI, 28, GP->as_VMReg());
   104 	reg_def GP_H	( NS,  NS,	Op_RegI, 28, GP->as_VMReg()->next());
   105 	reg_def SP		( NS,  NS,	Op_RegI, 29, SP->as_VMReg());
   106 	reg_def SP_H	( NS,  NS,	Op_RegI, 29, SP->as_VMReg()->next());
   107 	reg_def FP		( NS,  NS,	Op_RegI, 30, FP->as_VMReg());
   108 	reg_def FP_H	( NS,  NS,	Op_RegI, 30, FP->as_VMReg()->next());
   109 	reg_def RA		( NS,  NS,	Op_RegI, 31, RA->as_VMReg());
   110 	reg_def RA_H	( NS,  NS,	Op_RegI, 31, RA->as_VMReg()->next());
   112 // Floating registers. 
   113 reg_def F0          ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
   114 reg_def F0_H        ( SOC, SOC, Op_RegF, 0, F0->as_VMReg()->next());
   115 reg_def F1          ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
   116 reg_def F1_H        ( SOC, SOC, Op_RegF, 1, F1->as_VMReg()->next());
   117 reg_def F2          ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
   118 reg_def F2_H        ( SOC, SOC, Op_RegF, 2, F2->as_VMReg()->next());
   119 reg_def F3          ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
   120 reg_def F3_H        ( SOC, SOC, Op_RegF, 3, F3->as_VMReg()->next());
   121 reg_def F4          ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
   122 reg_def F4_H        ( SOC, SOC, Op_RegF, 4, F4->as_VMReg()->next());
   123 reg_def F5          ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
   124 reg_def F5_H        ( SOC, SOC, Op_RegF, 5, F5->as_VMReg()->next());
   125 reg_def F6          ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
   126 reg_def F6_H        ( SOC, SOC, Op_RegF, 6, F6->as_VMReg()->next());
   127 reg_def F7          ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
   128 reg_def F7_H        ( SOC, SOC, Op_RegF, 7, F7->as_VMReg()->next());
   129 reg_def F8          ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
   130 reg_def F8_H        ( SOC, SOC, Op_RegF, 8, F8->as_VMReg()->next());
   131 reg_def F9          ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
   132 reg_def F9_H        ( SOC, SOC, Op_RegF, 9, F9->as_VMReg()->next());
   133 reg_def F10         ( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   134 reg_def F10_H       ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()->next());
   135 reg_def F11         ( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   136 reg_def F11_H       ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()->next());
   137 reg_def F12         ( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   138 reg_def F12_H       ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()->next());
   139 reg_def F13         ( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   140 reg_def F13_H       ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()->next());
   141 reg_def F14         ( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   142 reg_def F14_H       ( SOC, SOC, Op_RegF, 14, F14->as_VMReg()->next());
   143 reg_def F15         ( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   144 reg_def F15_H       ( SOC, SOC, Op_RegF, 15, F15->as_VMReg()->next());
   145 reg_def F16         ( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   146 reg_def F16_H       ( SOC, SOC, Op_RegF, 16, F16->as_VMReg()->next());
   147 reg_def F17         ( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   148 reg_def F17_H       ( SOC, SOC, Op_RegF, 17, F17->as_VMReg()->next());
   149 reg_def F18         ( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   150 reg_def F18_H       ( SOC, SOC, Op_RegF, 18, F18->as_VMReg()->next());
   151 reg_def F19         ( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   152 reg_def F19_H       ( SOC, SOC, Op_RegF, 19, F19->as_VMReg()->next());
   153 reg_def F20         ( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   154 reg_def F20_H       ( SOC, SOC, Op_RegF, 20, F20->as_VMReg()->next());
   155 reg_def F21         ( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   156 reg_def F21_H       ( SOC, SOC, Op_RegF, 21, F21->as_VMReg()->next());
   157 reg_def F22         ( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   158 reg_def F22_H       ( SOC, SOC, Op_RegF, 22, F22->as_VMReg()->next());
   159 reg_def F23         ( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   160 reg_def F23_H       ( SOC, SOC, Op_RegF, 23, F23->as_VMReg()->next());
   161 reg_def F24         ( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   162 reg_def F24_H       ( SOC, SOC, Op_RegF, 24, F24->as_VMReg()->next());
   163 reg_def F25         ( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   164 reg_def F25_H       ( SOC, SOC, Op_RegF, 25, F25->as_VMReg()->next());
   165 reg_def F26         ( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   166 reg_def F26_H       ( SOC, SOC, Op_RegF, 26, F26->as_VMReg()->next());
   167 reg_def F27         ( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   168 reg_def F27_H       ( SOC, SOC, Op_RegF, 27, F27->as_VMReg()->next());
   169 reg_def F28         ( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   170 reg_def F28_H       ( SOC, SOC, Op_RegF, 28, F28->as_VMReg()->next());
   171 reg_def F29         ( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   172 reg_def F29_H       ( SOC, SOC, Op_RegF, 29, F29->as_VMReg()->next());
   173 reg_def F30         ( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   174 reg_def F30_H       ( SOC, SOC, Op_RegF, 30, F30->as_VMReg()->next());
   175 reg_def F31         ( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   176 reg_def F31_H       ( SOC, SOC, Op_RegF, 31, F31->as_VMReg()->next());
   179 // ----------------------------
   180 // Special Registers
   181 // Condition Codes Flag Registers
   182 reg_def MIPS_FLAG (SOC, SOC,  Op_RegFlags, 1, as_Register(1)->as_VMReg());
   183 //S6 is used for get_thread(S6)
   184 //S5 is uesd for heapbase of compressed oop
   185 alloc_class chunk0(  
   186                      S7, S7_H,
   187                      S0, S0_H,
   188                      S1, S1_H,
   189                      S2, S2_H,
   190                      S4, S4_H,
   191                      S5, S5_H,
   192                      S6, S6_H,
   193                      S3, S3_H,
   194                      T2, T2_H,
   195                      T3, T3_H,
   196                      T8, T8_H,
   197                      T9, T9_H,
   198                      T1, T1_H, // inline_cache_reg
   199                      V1, V1_H,
   200                      A7, A7_H,
   201                      A6, A6_H,
   202                      A5, A5_H,
   203                      A4, A4_H,
   204                      V0, V0_H,
   205                      A3, A3_H,
   206                      A2, A2_H,
   207                      A1, A1_H,
   208                      A0, A0_H,
   209                      T0, T0_H,
   210                      GP, GP_H 
   211                      RA, RA_H,
   212                      SP, SP_H, // stack_pointer
   213                      FP, FP_H  // frame_pointer
   214                  );
   216 alloc_class chunk1(  F0, F0_H,
   217                      F1, F1_H,
   218                      F2, F2_H,
   219                      F3, F3_H,
   220                      F4, F4_H,
   221                      F5, F5_H,
   222                      F6, F6_H,
   223                      F7, F7_H,
   224                      F8, F8_H,
   225                      F9, F9_H,
   226                      F10, F10_H,
   227                      F11, F11_H,
   228                      F20, F20_H,
   229                      F21, F21_H,
   230                      F22, F22_H,
   231                      F23, F23_H,
   232                      F24, F24_H,
   233                      F25, F25_H,
   234                      F26, F26_H,
   235                      F27, F27_H,
   236                      F28, F28_H,
   237                      F19, F19_H,
   238                      F18, F18_H,
   239                      F17, F17_H,
   240                      F16, F16_H,
   241                      F15, F15_H,
   242                      F14, F14_H,
   243                      F13, F13_H,
   244                      F12, F12_H,
   245                      F29, F29_H,
   246                      F30, F30_H,
   247                      F31, F31_H);
   249 alloc_class chunk2(MIPS_FLAG);
   251 reg_class s_reg( S0, S1, S2, S3, S4, S5, S6, S7 );
   252 reg_class s0_reg( S0 );
   253 reg_class s1_reg( S1 );
   254 reg_class s2_reg( S2 );
   255 reg_class s3_reg( S3 );
   256 reg_class s4_reg( S4 );
   257 reg_class s5_reg( S5 );
   258 reg_class s6_reg( S6 );
   259 reg_class s7_reg( S7 );
   261 reg_class t_reg( T0, T1, T2, T3, T8, T9 );
   262 reg_class t0_reg( T0 );
   263 reg_class t1_reg( T1 );
   264 reg_class t2_reg( T2 );
   265 reg_class t3_reg( T3 );
   266 reg_class t8_reg( T8 );
   267 reg_class t9_reg( T9 );
   269 reg_class a_reg( A0, A1, A2, A3, A4, A5, A6, A7 );
   270 reg_class a0_reg( A0 );
   271 reg_class a1_reg( A1 );
   272 reg_class a2_reg( A2 );
   273 reg_class a3_reg( A3 );
   274 reg_class a4_reg( A4 );
   275 reg_class a5_reg( A5 );
   276 reg_class a6_reg( A6 );
   277 reg_class a7_reg( A7 );
   279 reg_class v0_reg( V0 );
   280 reg_class v1_reg( V1 );
   282 reg_class sp_reg( SP, SP_H );
   283 reg_class fp_reg( FP, FP_H );
   285 reg_class mips_flags(MIPS_FLAG);
   287 reg_class v0_long_reg( V0, V0_H );
   288 reg_class v1_long_reg( V1, V1_H );
   289 reg_class a0_long_reg( A0, A0_H );
   290 reg_class a1_long_reg( A1, A1_H );
   291 reg_class a2_long_reg( A2, A2_H );
   292 reg_class a3_long_reg( A3, A3_H );
   293 reg_class a4_long_reg( A4, A4_H );
   294 reg_class a5_long_reg( A5, A5_H );
   295 reg_class a6_long_reg( A6, A6_H );
   296 reg_class a7_long_reg( A7, A7_H );
   297 reg_class t0_long_reg( T0, T0_H );
   298 reg_class t1_long_reg( T1, T1_H );
   299 reg_class t2_long_reg( T2, T2_H );
   300 reg_class t3_long_reg( T3, T3_H );
   301 reg_class t8_long_reg( T8, T8_H );
   302 reg_class t9_long_reg( T9, T9_H );
   303 reg_class s0_long_reg( S0, S0_H );
   304 reg_class s1_long_reg( S1, S1_H );
   305 reg_class s2_long_reg( S2, S2_H );
   306 reg_class s3_long_reg( S3, S3_H );
   307 reg_class s4_long_reg( S4, S4_H );
   308 reg_class s5_long_reg( S5, S5_H );
   309 reg_class s6_long_reg( S6, S6_H );
   310 reg_class s7_long_reg( S7, S7_H );
   312 reg_class int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, A7, A6, A5, A4, V0, A3, A2, A1, A0, T0 );
   314 reg_class no_Ax_int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, V0, T0 );
   316 reg_class p_reg( 
   317                  S7, S7_H,
   318                  S0, S0_H,
   319                  S1, S1_H,
   320                  S2, S2_H,
   321                  S4, S4_H,
   322                  S3, S3_H,
   323                  T8, T8_H,
   324                  T2, T2_H,
   325                  T3, T3_H,
   326                  T1, T1_H,
   327                  A7, A7_H,
   328                  A6, A6_H,
   329                  A5, A5_H,
   330                  A4, A4_H,
   331                  A3, A3_H,
   332                  A2, A2_H,
   333                  A1, A1_H,
   334                  A0, A0_H,
   335                  T0, T0_H
   336                );
   338 reg_class no_T8_p_reg( 
   339                  S7, S7_H,
   340                  S0, S0_H,
   341                  S1, S1_H,
   342                  S2, S2_H,
   343                  S4, S4_H,
   344                  S3, S3_H,
   345                  T2, T2_H,
   346                  T3, T3_H,
   347                  T1, T1_H,
   348                  A7, A7_H,
   349                  A6, A6_H,
   350                  A5, A5_H,
   351                  A4, A4_H,
   352                  A3, A3_H,
   353                  A2, A2_H,
   354                  A1, A1_H,
   355                  A0, A0_H,
   356                  T0, T0_H
   357                );
   359 reg_class long_reg( 
   360                     S7, S7_H,
   361                     S0, S0_H,
   362                     S1, S1_H,
   363                     S2, S2_H,
   364                     S4, S4_H,
   365                     S3, S3_H,
   366                     T8, T8_H,
   367                     T2, T2_H,
   368                     T3, T3_H,
   369                     T1, T1_H,
   370                     A7, A7_H,
   371                     A6, A6_H,
   372                     A5, A5_H,
   373                     A4, A4_H,
   374                     A3, A3_H,
   375                     A2, A2_H,
   376                     A1, A1_H,
   377                     A0, A0_H,
   378                     T0, T0_H
   379                   );
   382 // Floating point registers.
   383 // 2012/8/23 Fu: F30/F31 are used as temporary registers in D2I
   384 // 2016/12/1 aoqi: F31 are not used as temporary registers in D2I
   385 reg_class flt_reg( F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F31);
   386 reg_class dbl_reg( F0, F0_H,
   387                    F1, F1_H,
   388                    F2, F2_H,
   389                    F3, F3_H,
   390                    F4, F4_H,
   391                    F5, F5_H,
   392                    F6, F6_H,
   393                    F7, F7_H,
   394                    F8, F8_H,
   395                    F9, F9_H,
   396                    F10, F10_H, 
   397                    F11, F11_H, 
   398                    F12, F12_H, 
   399                    F13, F13_H, 
   400                    F14, F14_H, 
   401                    F15, F15_H, 
   402                    F16, F16_H, 
   403                    F17, F17_H, 
   404                    F18, F18_H, 
   405                    F19, F19_H, 
   406                    F20, F20_H, 
   407                    F21, F21_H, 
   408                    F22, F22_H, 
   409                    F23, F23_H, 
   410                    F24, F24_H, 
   411                    F25, F25_H, 
   412                    F26, F26_H, 
   413                    F27, F27_H, 
   414                    F28, F28_H, 
   415                    F29, F29_H, 
   416                    F31, F31_H);
   418 reg_class flt_arg0( F12 );
   419 reg_class dbl_arg0( F12, F12_H );
   420 reg_class dbl_arg1( F14, F14_H );
   422 %} 
   424 //----------DEFINITION BLOCK---------------------------------------------------
   425 // Define name --> value mappings to inform the ADLC of an integer valued name
   426 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   427 // Format:
   428 //        int_def  <name>         ( <int_value>, <expression>);
   429 // Generated Code in ad_<arch>.hpp
   430 //        #define  <name>   (<expression>)
   431 //        // value == <int_value>
   432 // Generated code in ad_<arch>.cpp adlc_verification()
   433 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   434 //
   435 definitions %{
   436 	int_def DEFAULT_COST      (    100,     100);
   437 	int_def HUGE_COST         (1000000, 1000000);
   439 	// Memory refs are twice as expensive as run-of-the-mill.
   440 	int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   442 	// Branches are even more expensive.
   443 	int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   444 	// we use jr instruction to construct call, so more expensive
   445 	// by yjl 2/28/2006
   446 	int_def CALL_COST         (    500, DEFAULT_COST * 5);
   447 /*
   448         int_def EQUAL             (   1, 1  );
   449         int_def NOT_EQUAL         (   2, 2  );
   450         int_def GREATER           (   3, 3  );
   451         int_def GREATER_EQUAL     (   4, 4  );
   452         int_def LESS              (   5, 5  );
   453         int_def LESS_EQUAL        (   6, 6  );
   454 */
   455 %}
   459 //----------SOURCE BLOCK-------------------------------------------------------
   460 // This is a block of C++ code which provides values, functions, and
   461 // definitions necessary in the rest of the architecture description
   463 source_hpp %{
   464 // Header information of the source block.
   465 // Method declarations/definitions which are used outside
   466 // the ad-scope can conveniently be defined here.
   467 //
   468 // To keep related declarations/definitions/uses close together,
   469 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   471 class CallStubImpl {
   473   //--------------------------------------------------------------
   474   //---<  Used for optimization in Compile::shorten_branches  >---
   475   //--------------------------------------------------------------
   477  public:
   478   // Size of call trampoline stub.
   479   static uint size_call_trampoline() {
   480     return 0; // no call trampolines on this platform
   481   }
   483   // number of relocations needed by a call trampoline stub
   484   static uint reloc_call_trampoline() { 
   485     return 0; // no call trampolines on this platform
   486   }
   487 };
   489 class HandlerImpl {
   491  public:
   493   static int emit_exception_handler(CodeBuffer &cbuf);
   494   static int emit_deopt_handler(CodeBuffer& cbuf);
   496   static uint size_exception_handler() {
   497     // NativeCall instruction size is the same as NativeJump.
   498     // exception handler starts out as jump and can be patched to
   499     // a call be deoptimization.  (4932387)
   500     // Note that this value is also credited (in output.cpp) to
   501     // the size of the code section.
   502 //    return NativeJump::instruction_size;
   503     int size = NativeCall::instruction_size;
   504     return round_to(size, 16);
   505   }
   507 #ifdef _LP64
   508   static uint size_deopt_handler() {
   509     int size = NativeCall::instruction_size;
   510     return round_to(size, 16);
   511   }
   512 #else
   513   static uint size_deopt_handler() {
   514     // NativeCall instruction size is the same as NativeJump.
   515     // exception handler starts out as jump and can be patched to
   516     // a call be deoptimization.  (4932387)
   517     // Note that this value is also credited (in output.cpp) to
   518     // the size of the code section.
   519     return 5 + NativeJump::instruction_size; // pushl(); jmp;
   520   }
   521 #endif
   522 };
   524 %} // end source_hpp
   526 source %{
   528 #define   NO_INDEX    0
   529 #define   RELOC_IMM64    Assembler::imm_operand
   530 #define   RELOC_DISP32   Assembler::disp32_operand
   533 #define __ _masm.
   536 // Emit exception handler code.
   537 // Stuff framesize into a register and call a VM stub routine.
   538 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
   539 /*
   540   // Note that the code buffer's insts_mark is always relative to insts.
   541   // That's why we must use the macroassembler to generate a handler.
   542   MacroAssembler _masm(&cbuf);
   543   address base = __ start_a_stub(size_exception_handler());
   544   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   545   int offset = __ offset();
   546   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
   547   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   548   __ end_a_stub();
   549   return offset;
   550 */
   551   // Note that the code buffer's insts_mark is always relative to insts.
   552   // That's why we must use the macroassembler to generate a handler.
   553   MacroAssembler _masm(&cbuf);
   554   address base =
   555   __ start_a_stub(size_exception_handler());
   556   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   557   int offset = __ offset();
   559   __ block_comment("; emit_exception_handler");
   561   /* 2012/9/25 FIXME Jin: According to X86, we should use direct jumpt.
   562  *    *  However, this will trigger an assert after the 40th method:
   563  *       *
   564  *          *        39   b   java.lang.Throwable::<init> (25 bytes)
   565  *             *       ---   ns  java.lang.Throwable::fillInStackTrace
   566  *                *        40  !b   java.net.URLClassLoader::findClass (29 bytes)
   567  *                   *       /vm/opto/runtime.cpp, 900 , assert(caller.is_compiled_frame(),"must be")
   568  *                      *        40   made not entrant  (2)  java.net.URLClassLoader::findClass (29 bytes)
   569  *                         *
   570  *                            *  If we change from JR to JALR, the assert will disappear, but WebClient will
   571  *                               *  fail  after the 403th method with unknown reason.
   572  *                                  */
   573   __ li48(T9, (long)OptoRuntime::exception_blob()->entry_point());
   574   __ jr(T9);
   575   __ delayed()->nop();
   576   __ align(16);
   577   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   578   __ end_a_stub();
   579   return offset;
   580 }
   582 // Emit deopt handler code.
   583 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
   584 /*
   585   // Note that the code buffer's insts_mark is always relative to insts.
   586   // That's why we must use the macroassembler to generate a handler.
   587   MacroAssembler _masm(&cbuf);
   588   address base = __ start_a_stub(size_deopt_handler());
   589   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   590   int offset = __ offset();
   592 #ifdef _LP64
   593   address the_pc = (address) __ pc();
   594   Label next;
   595   // push a "the_pc" on the stack without destroying any registers
   596   // as they all may be live.
   598   // push address of "next"
   599   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
   600   __ bind(next);
   601   // adjust it so it matches "the_pc"
   602   __ subptr(Address(rsp, 0), __ offset() - offset);
   603 #else
   604   InternalAddress here(__ pc());
   605   __ pushptr(here.addr());
   606 #endif
   608   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   609   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   610   __ end_a_stub();
   611   return offset;
   612 */
   613   // Note that the code buffer's insts_mark is always relative to insts.
   614   // That's why we must use the macroassembler to generate a handler.
   615   MacroAssembler _masm(&cbuf);
   616   address base =
   617   __ start_a_stub(size_deopt_handler());
   619   // FIXME
   620   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   621   int offset = __ offset();
   623   __ block_comment("; emit_deopt_handler");
   625   cbuf.set_insts_mark();
   626   __ relocate(relocInfo::runtime_call_type);
   628   __ li48(T9, (long)SharedRuntime::deopt_blob()->unpack());
   629   __ jalr(T9);
   630   __ delayed()->nop();
   631   __ align(16);
   632   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   633   __ end_a_stub();
   634   return offset;
   635 }
   638 const bool Matcher::match_rule_supported(int opcode) {
   639   if (!has_match_rule(opcode))
   640     return false;
   642   switch (opcode) {
   643     //Op_CountLeadingZerosI Op_CountLeadingZerosL can be deleted, all MIPS CPUs support clz & dclz.
   644     case Op_CountLeadingZerosI:
   645     case Op_CountLeadingZerosL:
   646       if (!UseCountLeadingZerosInstruction)
   647         return false;
   648       break;
   649     case Op_CountTrailingZerosI:
   650     case Op_CountTrailingZerosL:
   651       if (!UseCountTrailingZerosInstruction)
   652         return false;
   653       break;
   654   }
   656   return true;  // Per default match rules are supported.
   657 }
   659 //FIXME
   660 // emit call stub, compiled java to interpreter
   661 void emit_java_to_interp(CodeBuffer &cbuf ) {
   662   // Stub is fixed up when the corresponding call is converted from calling
   663   // compiled code to calling interpreted code.
   664   // mov rbx,0
   665   // jmp -1
   667   address mark = cbuf.insts_mark();  // get mark within main instrs section
   669   // Note that the code buffer's insts_mark is always relative to insts.
   670   // That's why we must use the macroassembler to generate a stub.
   671   MacroAssembler _masm(&cbuf);
   673   address base =
   674   __ start_a_stub(Compile::MAX_stubs_size);
   675   if (base == NULL)  return;  // CodeBuffer::expand failed
   676   // static stub relocation stores the instruction address of the call
   678   __ relocate(static_stub_Relocation::spec(mark), 0);
   680   /* 2012/10/29 Jin: Rmethod contains methodOop, it should be relocated for GC */
   681 /*
   682   int oop_index = __ oop_recorder()->allocate_index(NULL);
   683   RelocationHolder rspec = oop_Relocation::spec(oop_index);
   684   __ relocate(rspec);
   685 */
   687   // static stub relocation also tags the methodOop in the code-stream.
   688   __ li48(S3, (long)0);
   689   // This is recognized as unresolved by relocs/nativeInst/ic code
   691   __ relocate(relocInfo::runtime_call_type);
   693   cbuf.set_insts_mark();
   694   address call_pc = (address)-1;
   695   __ li48(AT, (long)call_pc);
   696   __ jr(AT);
   697   __ nop();
   698   __ align(16);
   699   __ end_a_stub();
   700   // Update current stubs pointer and restore code_end.
   701 }
   703 // size of call stub, compiled java to interpretor
   704 uint size_java_to_interp() {
   705   int size = 4 * 4 + NativeCall::instruction_size; // sizeof(li48) + NativeCall::instruction_size
   706   return round_to(size, 16);
   707 }
   709 // relocation entries for call stub, compiled java to interpreter
   710 uint reloc_java_to_interp() {
   711   return 16;  //  in emit_java_to_interp +  in Java_Static_Call
   712 }
   714 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
   715  if( Assembler::is_simm16(offset) ) return true;
   716  else 
   717  {
   718     assert(false, "Not implemented yet !" );
   719     Unimplemented();
   720  }
   721 }
   724 // No additional cost for CMOVL.
   725 const int Matcher::long_cmove_cost() { return 0; }
   727 // No CMOVF/CMOVD with SSE2
   728 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
   730 // Does the CPU require late expand (see block.cpp for description of late expand)?
   731 const bool Matcher::require_postalloc_expand = false;
   733 // Should the Matcher clone shifts on addressing modes, expecting them
   734 // to be subsumed into complex addressing expressions or compute them
   735 // into registers?  True for Intel but false for most RISCs
   736 const bool Matcher::clone_shift_expressions = false;
   738 // Do we need to mask the count passed to shift instructions or does
   739 // the cpu only look at the lower 5/6 bits anyway?
   740 const bool Matcher::need_masked_shift_count = false;
   742 bool Matcher::narrow_oop_use_complex_address() {
   743   NOT_LP64(ShouldNotCallThis());
   744   assert(UseCompressedOops, "only for compressed oops code");
   745   return false;
   746 }
   748 bool Matcher::narrow_klass_use_complex_address() {
   749   NOT_LP64(ShouldNotCallThis());
   750   assert(UseCompressedClassPointers, "only for compressed klass code");
   751   return false;
   752 }
   754 // This is UltraSparc specific, true just means we have fast l2f conversion
   755 const bool Matcher::convL2FSupported(void) {
   756   return true;
   757 }
   759 // Max vector size in bytes. 0 if not supported.
   760 const int Matcher::vector_width_in_bytes(BasicType bt) {
   761   assert(MaxVectorSize == 8, "");
   762   return 8;
   763 }
   765 // Vector ideal reg
   766 const int Matcher::vector_ideal_reg(int size) {
   767   assert(MaxVectorSize == 8, "");
   768   switch(size) {
   769     case  8: return Op_VecD;
   770   }
   771   ShouldNotReachHere();
   772   return 0;
   773 }
   775 // Only lowest bits of xmm reg are used for vector shift count.
   776 const int Matcher::vector_shift_count_ideal_reg(int size) {
   777   fatal("vector shift is not supported");
   778   return Node::NotAMachineReg;
   779 }
   781 // Limits on vector size (number of elements) loaded into vector.
   782 const int Matcher::max_vector_size(const BasicType bt) {
   783   assert(is_java_primitive(bt), "only primitive type vectors");
   784   return vector_width_in_bytes(bt)/type2aelembytes(bt);
   785 }
   787 const int Matcher::min_vector_size(const BasicType bt) {
   788   return max_vector_size(bt); // Same as max.
   789 }
   791 // MIPS supports misaligned vectors store/load? FIXME
   792 const bool Matcher::misaligned_vectors_ok() {
   793   return false;
   794   //return !AlignVector; // can be changed by flag
   795 }
   797 // Register for DIVI projection of divmodI
   798 RegMask Matcher::divI_proj_mask() {
   799   ShouldNotReachHere();
   800   return RegMask();
   801 }
   803 // Register for MODI projection of divmodI
   804 RegMask Matcher::modI_proj_mask() {
   805   ShouldNotReachHere();
   806   return RegMask();
   807 }
   809 // Register for DIVL projection of divmodL
   810 RegMask Matcher::divL_proj_mask() {
   811   ShouldNotReachHere();
   812   return RegMask();
   813 }
   815 int Matcher::regnum_to_fpu_offset(int regnum) {
   816   return regnum - 32; // The FP registers are in the second chunk
   817 }
   820 const bool Matcher::isSimpleConstant64(jlong value) {
   821   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
   822   return true;
   823 }
   826 // Return whether or not this register is ever used as an argument.  This
   827 // function is used on startup to build the trampoline stubs in generateOptoStub.
   828 // Registers not mentioned will be killed by the VM call in the trampoline, and
   829 // arguments in those registers not be available to the callee.
   830 bool Matcher::can_be_java_arg( int reg ) {
   831   /* Refer to: [sharedRuntime_mips_64.cpp] SharedRuntime::java_calling_convention() */
   832   if (    reg == T0_num || reg == T0_H_num
   833 	   || reg == A0_num || reg == A0_H_num 
   834        || reg == A1_num || reg == A1_H_num 
   835        || reg == A2_num || reg == A2_H_num 
   836        || reg == A3_num || reg == A3_H_num 
   837        || reg == A4_num || reg == A4_H_num 
   838        || reg == A5_num || reg == A5_H_num 
   839        || reg == A6_num || reg == A6_H_num 
   840        || reg == A7_num || reg == A7_H_num )
   841     return true;
   843   if (    reg == F12_num || reg == F12_H_num
   844        || reg == F13_num || reg == F13_H_num 
   845        || reg == F14_num || reg == F14_H_num 
   846        || reg == F15_num || reg == F15_H_num 
   847        || reg == F16_num || reg == F16_H_num 
   848        || reg == F17_num || reg == F17_H_num 
   849        || reg == F18_num || reg == F18_H_num 
   850        || reg == F19_num || reg == F19_H_num )
   851     return true;
   853   return false;
   854 }
   856 bool Matcher::is_spillable_arg( int reg ) {
   857   return can_be_java_arg(reg);
   858 }
   860 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
   861   return false;
   862 }
   864 // Register for MODL projection of divmodL
   865 RegMask Matcher::modL_proj_mask() {
   866   ShouldNotReachHere();
   867   return RegMask();
   868 }
   870 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
   871   return FP_REG_mask();
   872 }
   874 // MIPS doesn't support AES intrinsics
   875 const bool Matcher::pass_original_key_for_aes() {
   876   return false;
   877 }
   879 // The address of the call instruction needs to be 16-byte aligned to
   880 // ensure that it does not span a cache line so that it can be patched.
   882 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   883   //lui
   884   //ori
   885   //dsll
   886   //ori
   888   //jalr
   889   //nop
   891   return round_to(current_offset, alignment_required()) - current_offset;
   892 }
   894 // The address of the call instruction needs to be 16-byte aligned to
   895 // ensure that it does not span a cache line so that it can be patched.
   896 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   897   //li64   <--- skip
   899   //lui
   900   //ori
   901   //dsll
   902   //ori
   904   //jalr
   905   //nop
   907   current_offset += 4 * 6; // skip li64 
   908   return round_to(current_offset, alignment_required()) - current_offset;
   909 }
   911 int CallLeafNoFPDirectNode::compute_padding(int current_offset) const {
   912   //lui
   913   //ori
   914   //dsll
   915   //ori
   917   //jalr
   918   //nop
   920   return round_to(current_offset, alignment_required()) - current_offset;
   921 }
   923 int CallLeafDirectNode::compute_padding(int current_offset) const {
   924   //lui
   925   //ori
   926   //dsll
   927   //ori
   929   //jalr
   930   //nop
   932   return round_to(current_offset, alignment_required()) - current_offset;
   933 }
   935 int CallRuntimeDirectNode::compute_padding(int current_offset) const {
   936   //lui
   937   //ori
   938   //dsll
   939   //ori
   941   //jalr
   942   //nop
   944   return round_to(current_offset, alignment_required()) - current_offset;
   945 }
   947 // If CPU can load and store mis-aligned doubles directly then no fixup is
   948 // needed.  Else we split the double into 2 integer pieces and move it
   949 // piece-by-piece.  Only happens when passing doubles into C code as the
   950 // Java calling convention forces doubles to be aligned.
   951 const bool Matcher::misaligned_doubles_ok = false;
   952 // Do floats take an entire double register or just half?
   953 //const bool Matcher::float_in_double = true;
   954 bool Matcher::float_in_double() { return false; }
   955 // Threshold size for cleararray.
   956 const int Matcher::init_array_short_size = 8 * BytesPerLong;
   957 // Do ints take an entire long register or just half?
   958 const bool Matcher::int_in_long = true;
   959 // Is it better to copy float constants, or load them directly from memory?
   960 // Intel can load a float constant from a direct address, requiring no
   961 // extra registers.  Most RISCs will have to materialize an address into a
   962 // register first, so they would do better to copy the constant from stack.
   963 const bool Matcher::rematerialize_float_constants = false;
   964 // Advertise here if the CPU requires explicit rounding operations
   965 // to implement the UseStrictFP mode.
   966 const bool Matcher::strict_fp_requires_explicit_rounding = false;
   967 // The ecx parameter to rep stos for the ClearArray node is in dwords.
   968 const bool Matcher::init_array_count_is_in_bytes = false;
   971 // Indicate if the safepoint node needs the polling page as an input.
   972 // Since MIPS doesn't have absolute addressing, it needs.
   973 bool SafePointNode::needs_polling_address_input() {
   974   return true;
   975 }
   977 // !!!!! Special hack to get all type of calls to specify the byte offset
   978 //       from the start of the call to the point where the return address
   979 //       will point.
   980 int MachCallStaticJavaNode::ret_addr_offset() {
   981   assert(NativeCall::instruction_size == 24, "in MachCallStaticJavaNode::ret_addr_offset");
   982   //The value ought to be 16 bytes.
   983   //lui
   984   //ori
   985   //dsll
   986   //ori
   987   //jalr
   988   //nop
   989   return NativeCall::instruction_size; 
   990 }
   992 int MachCallDynamicJavaNode::ret_addr_offset() {
   993   /* 2012/9/10 Jin: must be kept in sync with Java_Dynamic_Call */
   995  // return NativeCall::instruction_size; 
   996   assert(NativeCall::instruction_size == 24, "in MachCallDynamicJavaNode::ret_addr_offset");
   997   //The value ought to be 4 + 16 bytes.
   998   //lui IC_Klass,
   999   //ori IC_Klass,
  1000   //dsll IC_Klass
  1001   //ori IC_Klass
  1002   //lui T9
  1003   //ori T9
  1004   //dsll T9
  1005   //ori T9
  1006   //jalr T9
  1007   //nop
  1008   return 6 * 4 + NativeCall::instruction_size; 
  1012 /*
  1013 // EMIT_OPCODE()
  1014 void emit_opcode(CodeBuffer &cbuf, int code) {
  1015   *(cbuf.code_end()) = (unsigned char)code;
  1016   cbuf.set_code_end(cbuf.code_end() + 1);
  1018 */
  1020 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
  1021         int format) {
  1022   cbuf.relocate(cbuf.insts_mark(), reloc, format);
  1023   cbuf.insts()->emit_int32(d32);
  1026 //=============================================================================
  1028 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1029 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1030 static enum RC rc_class( OptoReg::Name reg ) {
  1031   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1032   if (OptoReg::is_stack(reg)) return rc_stack;
  1033   VMReg r = OptoReg::as_VMReg(reg);
  1034   if (r->is_Register()) return rc_int;
  1035   assert(r->is_FloatRegister(), "must be");
  1036   return rc_float;
  1039 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
  1040   // Get registers to move
  1041   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1042   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1043   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1044   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1046   enum RC src_second_rc = rc_class(src_second);
  1047   enum RC src_first_rc = rc_class(src_first);
  1048   enum RC dst_second_rc = rc_class(dst_second);
  1049   enum RC dst_first_rc = rc_class(dst_first);
  1051   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1053   // Generate spill code!
  1054   int size = 0;
  1056   if( src_first == dst_first && src_second == dst_second )
  1057     return 0;            // Self copy, no move
  1059   if (src_first_rc == rc_stack) {
  1060     // mem ->
  1061     if (dst_first_rc == rc_stack) {
  1062       // mem -> mem
  1063       assert(src_second != dst_first, "overlap");
  1064       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1065           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1066         // 64-bit
  1067         int src_offset = ra_->reg2offset(src_first);
  1068         int dst_offset = ra_->reg2offset(dst_first);
  1069         if (cbuf) {
  1070           MacroAssembler _masm(cbuf);
  1071           __ ld(AT, Address(SP, src_offset));
  1072           __ sd(AT, Address(SP, dst_offset));
  1073 #ifndef PRODUCT
  1074         } else {
  1075 			if(!do_size){
  1076 				if (size != 0) st->print("\n\t");
  1077 				st->print("ld    AT, [SP + #%d]\t# 64-bit mem-mem spill 1\n\t"
  1078 						  "sd    AT, [SP + #%d]",
  1079 						  src_offset, dst_offset);
  1081 #endif
  1083 		size += 8;
  1084       } else {
  1085         // 32-bit
  1086         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1087         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1088         // No pushl/popl, so:
  1089         int src_offset = ra_->reg2offset(src_first);
  1090         int dst_offset = ra_->reg2offset(dst_first);
  1091         if (cbuf) {
  1092           MacroAssembler _masm(cbuf);
  1093           __ lw(AT, Address(SP, src_offset));
  1094           __ sw(AT, Address(SP, dst_offset));
  1095 #ifndef PRODUCT
  1096         } else {
  1097 			if(!do_size){
  1098 				if (size != 0) st->print("\n\t");
  1099 				st->print("lw    AT, [SP + #%d] spill 2\n\t"
  1100 						  "sw    AT, [SP + #%d]\n\t",
  1101 						  src_offset, dst_offset);
  1103 #endif
  1105 		size += 8;
  1107       return size;
  1108     } else if (dst_first_rc == rc_int) {
  1109       // mem -> gpr
  1110       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1111           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1112         // 64-bit
  1113         int offset = ra_->reg2offset(src_first);
  1114         if (cbuf) {
  1115           MacroAssembler _masm(cbuf);
  1116           __ ld(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1117 #ifndef PRODUCT
  1118         } else {
  1119 			if(!do_size){
  1120 				if (size != 0) st->print("\n\t");
  1121 				st->print("ld    %s, [SP + #%d]\t# spill 3",
  1122 						  Matcher::regName[dst_first],
  1123 						  offset);
  1125 #endif
  1127 		size += 4;
  1128       } else {
  1129         // 32-bit
  1130         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1131         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1132         int offset = ra_->reg2offset(src_first);
  1133         if (cbuf) {
  1134           MacroAssembler _masm(cbuf);
  1135           if (this->ideal_reg() == Op_RegI)
  1136             __ lw(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1137           else
  1138             __ lwu(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1139 #ifndef PRODUCT
  1140         } else {
  1141 			if(!do_size){
  1142 				if (size != 0) st->print("\n\t");
  1143           if (this->ideal_reg() == Op_RegI)
  1144 				st->print("lw    %s, [SP + #%d]\t# spill 4",
  1145 						   Matcher::regName[dst_first],
  1146 						   offset);
  1147 		  else
  1148 				st->print("lwu    %s, [SP + #%d]\t# spill 5",
  1149 						   Matcher::regName[dst_first],
  1150 						   offset);
  1152 #endif
  1154 		size += 4;
  1156       return size;
  1157     } else if (dst_first_rc == rc_float) {
  1158       // mem-> xmm
  1159       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1160           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1161         // 64-bit
  1162         int offset = ra_->reg2offset(src_first);
  1163         if (cbuf) {
  1164           MacroAssembler _masm(cbuf);
  1165           __ ldc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1166 #ifndef PRODUCT
  1167         } else {
  1168 			if(!do_size){
  1169 				if (size != 0) st->print("\n\t");
  1170 				st->print("ldc1  %s, [SP + #%d]\t# spill 6",
  1171 						  Matcher::regName[dst_first],
  1172 						  offset);
  1174 #endif
  1176 		size += 4;
  1177       } else {
  1178         // 32-bit
  1179         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1180         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1181         int offset = ra_->reg2offset(src_first);
  1182         if (cbuf) {
  1183           MacroAssembler _masm(cbuf);
  1184           __ lwc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1185 #ifndef PRODUCT
  1186         } else {
  1187 			if(!do_size){
  1188 				if (size != 0) st->print("\n\t");
  1189 				st->print("lwc1   %s, [SP + #%d]\t# spill 7",
  1190 						  Matcher::regName[dst_first],
  1191 						  offset);
  1193 #endif
  1195 		size += 4;
  1197       return size;
  1199   } else if (src_first_rc == rc_int) {
  1200     // gpr ->
  1201     if (dst_first_rc == rc_stack) {
  1202       // gpr -> mem
  1203       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1204           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1205         // 64-bit
  1206         int offset = ra_->reg2offset(dst_first);
  1207         if (cbuf) {
  1208           MacroAssembler _masm(cbuf);
  1209           __ sd(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1210 #ifndef PRODUCT
  1211         } else {
  1212 			if(!do_size){
  1213 				if (size != 0) st->print("\n\t");
  1214 				st->print("sd    %s, [SP + #%d] # spill 8",
  1215 						  Matcher::regName[src_first],
  1216 						  offset);
  1218 #endif
  1220 		size += 4;
  1221       } else {
  1222         // 32-bit
  1223         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1224         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1225         int offset = ra_->reg2offset(dst_first);
  1226         if (cbuf) {
  1227           MacroAssembler _masm(cbuf);
  1228           __ sw(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1229 #ifndef PRODUCT
  1230         } else {
  1231 			if(!do_size){
  1232 				if (size != 0) st->print("\n\t");
  1233 				st->print("sw    %s, [SP + #%d]\t# spill 9",
  1234 						Matcher::regName[src_first], offset);
  1236 #endif
  1238 		size += 4;
  1240       return size;
  1241     } else if (dst_first_rc == rc_int) {
  1242       // gpr -> gpr
  1243       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1244           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1245         // 64-bit
  1246         if (cbuf) {
  1247           MacroAssembler _masm(cbuf);
  1248           __ move(as_Register(Matcher::_regEncode[dst_first]),
  1249                   as_Register(Matcher::_regEncode[src_first]));
  1250 #ifndef PRODUCT
  1251         } else {
  1252 			if(!do_size){
  1253 				if (size != 0) st->print("\n\t");
  1254 				st->print("move(64bit)    %s <-- %s\t# spill 10",
  1255 						  Matcher::regName[dst_first],
  1256 						  Matcher::regName[src_first]);
  1258 #endif
  1260 		size += 4;
  1261         return size;
  1262       } else {
  1263         // 32-bit
  1264         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1265         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1266         if (cbuf) {
  1267           MacroAssembler _masm(cbuf);
  1268           if (this->ideal_reg() == Op_RegI)
  1269               __ move_u32(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
  1270           else
  1271               __ daddu(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]), R0);
  1273 #ifndef PRODUCT
  1274         } else {
  1275 			if(!do_size){
  1276 				if (size != 0) st->print("\n\t");
  1277 				st->print("move(32-bit)    %s <-- %s\t# spill 11",
  1278 						  Matcher::regName[dst_first],
  1279 						  Matcher::regName[src_first]);
  1281 #endif
  1283 		size += 4;	
  1284         return size;
  1286     } else if (dst_first_rc == rc_float) {
  1287       // gpr -> xmm
  1288       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1289           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1290         // 64-bit
  1291         if (cbuf) {
  1292           MacroAssembler _masm(cbuf);
  1293           __ dmtc1(as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]));
  1294 #ifndef PRODUCT
  1295         } else {
  1296 			if(!do_size){
  1297 				if (size != 0) st->print("\n\t");
  1298 				st->print("dmtc1   %s, %s\t# spill 12",
  1299 						  Matcher::regName[dst_first],
  1300 						  Matcher::regName[src_first]);
  1302 #endif
  1304 		size += 4;
  1305       } else {
  1306         // 32-bit
  1307         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1308         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1309         if (cbuf) {
  1310           MacroAssembler _masm(cbuf);
  1311           __ mtc1( as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]) );
  1312 #ifndef PRODUCT
  1313         } else {
  1314 			if(!do_size){
  1315 				if (size != 0) st->print("\n\t");
  1316 				st->print("mtc1   %s, %s\t# spill 13",
  1317 						  Matcher::regName[dst_first],
  1318 						  Matcher::regName[src_first]);
  1320 #endif
  1322 		size += 4;
  1324       return size;
  1326   } else if (src_first_rc == rc_float) {
  1327     // xmm ->
  1328     if (dst_first_rc == rc_stack) {
  1329       // xmm -> mem
  1330       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1331           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1332         // 64-bit
  1333         int offset = ra_->reg2offset(dst_first);
  1334         if (cbuf) {
  1335           MacroAssembler _masm(cbuf);
  1336           __ sdc1( as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset) );
  1337 #ifndef PRODUCT
  1338         } else {
  1339 			if(!do_size){
  1340 				if (size != 0) st->print("\n\t");
  1341 				st->print("sdc1   %s, [SP + #%d]\t# spill 14",
  1342 						  Matcher::regName[src_first],
  1343 						  offset);
  1345 #endif
  1347 		size += 4;
  1348       } else {
  1349         // 32-bit
  1350         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1351         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1352         int offset = ra_->reg2offset(dst_first);
  1353         if (cbuf) {
  1354           MacroAssembler _masm(cbuf);
  1355           __ swc1(as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset));
  1356 #ifndef PRODUCT
  1357         } else {
  1358 			if(!do_size){
  1359 				if (size != 0) st->print("\n\t");
  1360 				st->print("swc1   %s, [SP + #%d]\t# spill 15",
  1361 						Matcher::regName[src_first],
  1362 						offset);
  1364 #endif
  1366 		size += 4;
  1368       return size;
  1369     } else if (dst_first_rc == rc_int) {
  1370       // xmm -> gpr
  1371       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1372           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1373         // 64-bit
  1374         if (cbuf) {
  1375           MacroAssembler _masm(cbuf);
  1376           __ dmfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1377 #ifndef PRODUCT
  1378         } else {
  1379 			if(!do_size){
  1380 				if (size != 0) st->print("\n\t");
  1381 				st->print("dmfc1   %s, %s\t# spill 16",
  1382 						  Matcher::regName[dst_first],
  1383 						  Matcher::regName[src_first]);
  1385 #endif
  1387 		size += 4;
  1388       } else {
  1389         // 32-bit
  1390         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1391         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1392         if (cbuf) {
  1393           MacroAssembler _masm(cbuf);
  1394           __ mfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1395 #ifndef PRODUCT
  1396         } else {
  1397 			if(!do_size){
  1398 				if (size != 0) st->print("\n\t");
  1399 				st->print("mfc1   %s, %s\t# spill 17",
  1400 						  Matcher::regName[dst_first],
  1401 						  Matcher::regName[src_first]);
  1403 #endif
  1405 		size += 4;
  1407       return size;
  1408     } else if (dst_first_rc == rc_float) {
  1409       // xmm -> xmm
  1410       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1411           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1412         // 64-bit
  1413         if (cbuf) {
  1414           MacroAssembler _masm(cbuf);
  1415           __ mov_d( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1416 #ifndef PRODUCT
  1417         } else {
  1418 			if(!do_size){
  1419 				if (size != 0) st->print("\n\t");
  1420 				st->print("mov_d  %s <-- %s\t# spill 18",
  1421 						  Matcher::regName[dst_first],
  1422 						  Matcher::regName[src_first]);
  1424 #endif
  1426 		size += 4;
  1427       } else {
  1428         // 32-bit
  1429         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1430         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1431         if (cbuf) {
  1432           MacroAssembler _masm(cbuf);
  1433           __ mov_s( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1434 #ifndef PRODUCT
  1435         } else {
  1436 			if(!do_size){
  1437 				if (size != 0) st->print("\n\t");
  1438 				st->print("mov_s  %s <-- %s\t# spill 19",
  1439 						  Matcher::regName[dst_first],
  1440 						  Matcher::regName[src_first]);
  1442 #endif
  1444 		size += 4;
  1446       return size;
  1450   assert(0," foo ");
  1451   Unimplemented();
  1452   return size;
  1456 #ifndef PRODUCT
  1457 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1458   implementation( NULL, ra_, false, st );
  1460 #endif
  1462 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1463   implementation( &cbuf, ra_, false, NULL );
  1466 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1467   return implementation( NULL, ra_, true, NULL );
  1470 //=============================================================================
  1473 #ifndef PRODUCT
  1474 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1475   st->print("INT3");
  1477 #endif
  1479 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc* ra_) const {
  1480   MacroAssembler _masm(&cbuf);
  1481   __ int3();
  1484 uint MachBreakpointNode::size(PhaseRegAlloc* ra_) const {
  1485   return MachNode::size(ra_);
  1489 //=============================================================================
  1490 #ifndef PRODUCT
  1491 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1492   Compile *C = ra_->C;
  1493   int framesize = C->frame_size_in_bytes();
  1495   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1497   st->print("daddiu   SP, SP, %d # Rlease stack @ MachEpilogNode",framesize);
  1498   st->cr(); st->print("\t");
  1499   if (UseLoongsonISA) {
  1500      st->print("gslq  RA, FP, SP, %d # Restore FP & RA @ MachEpilogNode", -wordSize*2);
  1501   } else {
  1502      st->print("ld    RA, SP, %d # Restore RA @ MachEpilogNode", -wordSize);
  1503      st->cr(); st->print("\t");
  1504      st->print("ld    FP, SP, %d # Restore FP @ MachEpilogNode", -wordSize*2);
  1507   if( do_polling() && C->is_method_compilation() ) {
  1508     st->print("Poll Safepoint # MachEpilogNode");
  1511 #endif
  1513 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1514   Compile *C = ra_->C;
  1515   MacroAssembler _masm(&cbuf);
  1516   int framesize = C->frame_size_in_bytes();
  1518   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1520   __ daddiu(SP, SP, framesize);
  1522   if (UseLoongsonISA) {
  1523     __ gslq(RA, FP, SP, -wordSize*2);
  1524   } else {
  1525     __ ld(RA, SP, -wordSize );
  1526     __ ld(FP, SP, -wordSize*2 );
  1529   /* 2012/11/19 Jin: The epilog in a RuntimeStub should not contain a safepoint */
  1530   if( do_polling() && C->is_method_compilation() ) {
  1531 #ifndef OPT_SAFEPOINT
  1532     __ set64(AT, (long)os::get_polling_page());
  1533     __ relocate(relocInfo::poll_return_type);
  1534     __ lw(AT, AT, 0);
  1535 #else
  1536     __ lui(AT, Assembler::split_high((intptr_t)os::get_polling_page()));
  1537     __ relocate(relocInfo::poll_return_type);
  1538     __ lw(AT, AT, Assembler::split_low((intptr_t)os::get_polling_page()));
  1539 #endif
  1543 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1544   return MachNode::size(ra_); // too many variables; just compute it the hard way  fujie debug
  1547 int MachEpilogNode::reloc() const {
  1548   return 0; // a large enough number
  1551 const Pipeline * MachEpilogNode::pipeline() const {
  1552   return MachNode::pipeline_class();
  1555 int MachEpilogNode::safepoint_offset() const { return 0; }
  1557 //=============================================================================
  1559 #ifndef PRODUCT
  1560 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1561   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1562   int reg = ra_->get_reg_first(this);
  1563   st->print("ADDI %s, SP, %d   @BoxLockNode",Matcher::regName[reg],offset);
  1565 #endif
  1568 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1569   return 4;
  1572 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1573   MacroAssembler _masm(&cbuf);
  1574   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1575   int reg = ra_->get_encode(this);
  1577   __ addi(as_Register(reg), SP, offset);
  1578 /*
  1579   if( offset >= 128 ) {
  1580     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1581     emit_rm(cbuf, 0x2, reg, 0x04);
  1582     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1583     emit_d32(cbuf, offset);
  1585   else {
  1586     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1587     emit_rm(cbuf, 0x1, reg, 0x04);
  1588     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1589     emit_d8(cbuf, offset);
  1591 */
  1595 //static int sizeof_FFree_Float_Stack_All = -1;
  1597 int MachCallRuntimeNode::ret_addr_offset() {
  1598   //lui
  1599   //ori
  1600   //dsll
  1601   //ori
  1602   //jalr
  1603   //nop
  1604   assert(NativeCall::instruction_size == 24, "in MachCallRuntimeNode::ret_addr_offset()");
  1605   return NativeCall::instruction_size;
  1606 //  return 16;
  1613 //=============================================================================
  1614 #ifndef PRODUCT
  1615 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1616   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1618 #endif
  1620 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1621   MacroAssembler _masm(&cbuf);
  1622   int i = 0;
  1623   for(i = 0; i < _count; i++)
  1624      __ nop();
  1627 uint MachNopNode::size(PhaseRegAlloc *) const {
  1628   return 4 * _count; 
  1630 const Pipeline* MachNopNode::pipeline() const {
  1631   return MachNode::pipeline_class();
  1634 //=============================================================================
  1636 //=============================================================================
  1637 #ifndef PRODUCT
  1638 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1639   st->print_cr("load_klass(AT, T0)");
  1640   st->print_cr("\tbeq(AT, iCache, L)");
  1641   st->print_cr("\tnop");
  1642   st->print_cr("\tjmp(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type)");
  1643   st->print_cr("\tnop");
  1644   st->print_cr("\tnop");
  1645   st->print_cr("    L:");
  1647 #endif
  1650 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1651   MacroAssembler _masm(&cbuf);
  1652 #ifdef ASSERT
  1653   //uint code_size = cbuf.code_size();
  1654 #endif
  1655   int  ic_reg = Matcher::inline_cache_reg_encode();
  1656   Label L;
  1657   Register receiver = T0;
  1658   Register   iCache = as_Register(ic_reg);
  1659   __ load_klass(AT, receiver);
  1660   __ beq(AT, iCache, L);
  1661   __ nop();
  1663   __ relocate(relocInfo::runtime_call_type);
  1664   __ li48(T9, (long)SharedRuntime::get_ic_miss_stub());
  1665   __ jr(T9);
  1666   __ nop();
  1668   /* WARNING these NOPs are critical so that verified entry point is properly
  1669    *      8 bytes aligned for patching by NativeJump::patch_verified_entry() */
  1670   __ align(CodeEntryAlignment);
  1671   __ bind(L);
  1674 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1675   return MachNode::size(ra_); 
  1680 //=============================================================================
  1682 const RegMask& MachConstantBaseNode::_out_RegMask = P_REG_mask();
  1684 int Compile::ConstantTable::calculate_table_base_offset() const {
  1685   return 0;  // absolute addressing, no offset
  1688 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1689 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1690   ShouldNotReachHere();
  1693 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1694   Compile* C = ra_->C;
  1695   Compile::ConstantTable& constant_table = C->constant_table();
  1696   MacroAssembler _masm(&cbuf);
  1698   Register Rtoc = as_Register(ra_->get_encode(this));
  1699   CodeSection* consts_section = __ code()->consts();
  1700   int consts_size = consts_section->align_at_start(consts_section->size());
  1701   assert(constant_table.size() == consts_size, "must be equal");
  1703   if (consts_section->size()) {
  1704     // Materialize the constant table base.
  1705     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1706     // RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1707     __ relocate(relocInfo::internal_pc_type);
  1708     __ li48(Rtoc, (long)baseaddr);
  1712 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1713   // li48 (4 insts)
  1714   return 4 * 4;
  1717 #ifndef PRODUCT
  1718 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1719   Register r = as_Register(ra_->get_encode(this));
  1720   st->print("li48    %s, &constanttable (constant table base) @ MachConstantBaseNode", r->name());
  1722 #endif
  1725 //=============================================================================
  1726 #ifndef PRODUCT
  1727 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1728   Compile* C = ra_->C;
  1730   int framesize = C->frame_size_in_bytes();
  1731   int bangsize = C->bang_size_in_bytes();
  1732   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1734   // Calls to C2R adapters often do not accept exceptional returns.
  1735   // We require that their callers must bang for them.  But be careful, because
  1736   // some VM calls (such as call site linkage) can use several kilobytes of
  1737   // stack.  But the stack safety zone should account for that.
  1738   // See bugs 4446381, 4468289, 4497237.
  1739   if (C->need_stack_bang(bangsize)) {
  1740     st->print_cr("# stack bang"); st->print("\t");
  1742     if (UseLoongsonISA) {
  1743        st->print("gssq     RA, FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1744     } else {
  1745        st->print("sd       RA, %d(SP)  @ MachPrologNode\n\t", -wordSize);
  1746        st->print("sd       FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1748     st->print("daddiu   FP, SP, -%d \n\t", wordSize*2);
  1749     st->print("daddiu   SP, SP, -%d \t",framesize);
  1751 #endif
  1754 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1755   Compile* C = ra_->C;
  1756   MacroAssembler _masm(&cbuf);
  1758   int framesize = C->frame_size_in_bytes();
  1759   int bangsize = C->bang_size_in_bytes();
  1761 //  __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
  1763   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1765   if (C->need_stack_bang(framesize)) {
  1766     __ generate_stack_overflow_check(framesize);
  1769   if (UseLoongsonISA) {
  1770      __ gssq(RA, FP, SP, -wordSize*2); 
  1771   } else {
  1772      __ sd(RA, SP, -wordSize);
  1773      __ sd(FP, SP, -wordSize*2);
  1775   __ daddiu(FP, SP, -wordSize*2);
  1776   __ daddiu(SP, SP, -framesize);
  1777   __ nop(); /* 2013.10.22 Jin: Make enough room for patch_verified_entry() */
  1778   __ nop();
  1780   C->set_frame_complete(cbuf.insts_size());
  1781   if (C->has_mach_constant_base_node()) {
  1782 	  // NOTE: We set the table base offset here because users might be
  1783 	  // emitted before MachConstantBaseNode.
  1784 	  Compile::ConstantTable& constant_table = C->constant_table();
  1785 	  constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1791 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1792 //fprintf(stderr, "\nPrologNode::size(ra_)= %d \n", MachNode::size(ra_));//fujie debug
  1793   return MachNode::size(ra_); // too many variables; just compute it the hard way
  1796 int MachPrologNode::reloc() const {
  1797   return 0; // a large enough number
  1800 %}
  1802 //----------ENCODING BLOCK-----------------------------------------------------
  1803 // This block specifies the encoding classes used by the compiler to output
  1804 // byte streams.  Encoding classes generate functions which are called by
  1805 // Machine Instruction Nodes in order to generate the bit encoding of the
  1806 // instruction.  Operands specify their base encoding interface with the
  1807 // interface keyword.  There are currently supported four interfaces,
  1808 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1809 // operand to generate a function which returns its register number when
  1810 // queried.   CONST_INTER causes an operand to generate a function which
  1811 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1812 // operand to generate four functions which return the Base Register, the
  1813 // Index Register, the Scale Value, and the Offset Value of the operand when
  1814 // queried.  COND_INTER causes an operand to generate six functions which
  1815 // return the encoding code (ie - encoding bits for the instruction)
  1816 // associated with each basic boolean condition for a conditional instruction.
  1817 // Instructions specify two basic values for encoding.  They use the
  1818 // ins_encode keyword to specify their encoding class (which must be one of
  1819 // the class names specified in the encoding block), and they use the
  1820 // opcode keyword to specify, in order, their primary, secondary, and
  1821 // tertiary opcode.  Only the opcode sections which a particular instruction
  1822 // needs for encoding need to be specified.
  1823 encode %{
  1824 /*
  1825 Alias:
  1826 1044   b   java.io.ObjectInputStream::readHandle (130 bytes)
  1827     118   B14: #    B19 B15 <- B13  Freq: 0.899955
  1828     118     add    S1, S2, V0 #@addP_reg_reg
  1829     11c     lb   S0, [S1 + #-8257524] #@loadB
  1830     120     BReq   S0, #3, B19 #@branchConI_reg_imm  P=0.100000 C=-1.000000
  1831 */
  1832   //Load byte signed
  1833   enc_class load_B_enc (mRegI dst, memory mem) %{
  1834      MacroAssembler _masm(&cbuf);
  1835      int  dst = $dst$$reg;
  1836      int  base = $mem$$base;
  1837      int  index = $mem$$index;
  1838      int  scale = $mem$$scale;
  1839      int  disp = $mem$$disp;
  1841      if( index != 0 ) {
  1842         if( Assembler::is_simm16(disp) ) { 
  1843            if( UseLoongsonISA ) {
  1844               if (scale == 0) {
  1845                  __ gslbx(as_Register(dst), as_Register(base), as_Register(index), disp);
  1846               } else {
  1847                  __ dsll(AT, as_Register(index), scale);
  1848                  __ gslbx(as_Register(dst), as_Register(base), AT, disp);
  1850            } else {
  1851               if (scale == 0) {
  1852                  __ addu(AT, as_Register(base), as_Register(index));
  1853               } else {
  1854                  __ dsll(AT, as_Register(index), scale);
  1855                  __ addu(AT, as_Register(base), AT);
  1857               __ lb(as_Register(dst), AT, disp);
  1859         } else {
  1860            if (scale == 0) {
  1861               __ addu(AT, as_Register(base), as_Register(index));
  1862            } else {
  1863               __ dsll(AT, as_Register(index), scale);
  1864               __ addu(AT, as_Register(base), AT);
  1866            __ move(T9, disp);
  1867            if( UseLoongsonISA ) {
  1868               __ gslbx(as_Register(dst), AT, T9, 0);
  1869            } else {
  1870               __ addu(AT, AT, T9); 
  1871               __ lb(as_Register(dst), AT, 0);
  1874      } else {
  1875         if( Assembler::is_simm16(disp) ) { 
  1876            __ lb(as_Register(dst), as_Register(base), disp);
  1877         } else {
  1878            __ move(T9, disp);   
  1879            if( UseLoongsonISA ) {
  1880               __ gslbx(as_Register(dst), as_Register(base), T9, 0);
  1881            } else {
  1882               __ addu(AT, as_Register(base), T9); 
  1883               __ lb(as_Register(dst), AT, 0);
  1887   %}
  1889   //Load byte unsigned
  1890   enc_class load_UB_enc (mRegI dst, memory mem) %{
  1891      MacroAssembler _masm(&cbuf);
  1892      int  dst = $dst$$reg;
  1893      int  base = $mem$$base;
  1894      int  index = $mem$$index;
  1895      int  scale = $mem$$scale;
  1896      int  disp = $mem$$disp;
  1898      if( index != 0 ) {
  1899         if (scale == 0) {
  1900            __ daddu(AT, as_Register(base), as_Register(index));
  1901         } else {
  1902            __ dsll(AT, as_Register(index), scale);
  1903            __ daddu(AT, as_Register(base), AT);
  1905         if( Assembler::is_simm16(disp) ) { 
  1906            __ lbu(as_Register(dst), AT, disp);
  1907         } else {
  1908            __ move(T9, disp);
  1909            __ daddu(AT, AT, T9); 
  1910            __ lbu(as_Register(dst), AT, 0);
  1912      } else {
  1913         if( Assembler::is_simm16(disp) ) { 
  1914            __ lbu(as_Register(dst), as_Register(base), disp);
  1915         } else {
  1916            __ move(T9, disp);   
  1917            __ daddu(AT, as_Register(base), T9); 
  1918            __ lbu(as_Register(dst), AT, 0);
  1921   %}
  1923   enc_class store_B_reg_enc (memory mem, mRegI src) %{
  1924      MacroAssembler _masm(&cbuf);
  1925      int  src = $src$$reg;
  1926      int  base = $mem$$base;
  1927      int  index = $mem$$index;
  1928      int  scale = $mem$$scale;
  1929      int  disp = $mem$$disp;
  1931      if( index != 0 ) {
  1932         if (scale == 0) {
  1933            if( Assembler::is_simm(disp, 8) ) { 
  1934               if (UseLoongsonISA) {
  1935                  __ gssbx(as_Register(src), as_Register(base), as_Register(index), disp);
  1936               } else {
  1937                  __ addu(AT, as_Register(base), as_Register(index));
  1938                  __ sb(as_Register(src), AT, disp);
  1940            } else if( Assembler::is_simm16(disp) ) { 
  1941               __ addu(AT, as_Register(base), as_Register(index));
  1942               __ sb(as_Register(src), AT, disp);
  1943            } else {
  1944               __ addu(AT, as_Register(base), as_Register(index));
  1945               __ move(T9, disp);
  1946               if (UseLoongsonISA) {
  1947                  __ gssbx(as_Register(src), AT, T9, 0);
  1948               } else {
  1949                  __ addu(AT, AT, T9); 
  1950                  __ sb(as_Register(src), AT, 0);
  1953         } else {
  1954            __ dsll(AT, as_Register(index), scale);
  1955            if( Assembler::is_simm(disp, 8) ) { 
  1956               if (UseLoongsonISA) {
  1957                  __ gssbx(as_Register(src), AT, as_Register(base), disp);
  1958               } else {
  1959                  __ addu(AT, as_Register(base), AT);
  1960                  __ sb(as_Register(src), AT, disp);
  1962            } else if( Assembler::is_simm16(disp) ) { 
  1963               __ addu(AT, as_Register(base), AT);
  1964               __ sb(as_Register(src), AT, disp);
  1965            } else {
  1966               __ addu(AT, as_Register(base), AT);
  1967               __ move(T9, disp);
  1968               if (UseLoongsonISA) {
  1969                  __ gssbx(as_Register(src), AT, T9, 0);
  1970               } else {
  1971                  __ addu(AT, AT, T9); 
  1972                  __ sb(as_Register(src), AT, 0);
  1976      } else {
  1977         if( Assembler::is_simm16(disp) ) { 
  1978            __ sb(as_Register(src), as_Register(base), disp);
  1979         } else {
  1980            __ move(T9, disp);   
  1981            if (UseLoongsonISA) {
  1982               __ gssbx(as_Register(src), as_Register(base), T9, 0);
  1983            } else {
  1984               __ addu(AT, as_Register(base), T9); 
  1985               __ sb(as_Register(src), AT, 0);
  1989   %}
  1991   enc_class store_B_immI_enc (memory mem, immI8 src) %{
  1992      MacroAssembler _masm(&cbuf);
  1993      int  base = $mem$$base;
  1994      int  index = $mem$$index;
  1995      int  scale = $mem$$scale;
  1996      int  disp = $mem$$disp;
  1997      int value = $src$$constant;
  1999      if( index != 0 ) {
  2000         if (!UseLoongsonISA) {
  2001            if (scale == 0) {
  2002               __ daddu(AT, as_Register(base), as_Register(index));
  2003            } else {
  2004               __ dsll(AT, as_Register(index), scale);
  2005               __ daddu(AT, as_Register(base), AT);
  2007            if( Assembler::is_simm16(disp) ) { 
  2008               if (value == 0) {
  2009                  __ sb(R0, AT, disp);
  2010               } else {
  2011                  __ move(T9, value);
  2012                  __ sb(T9, AT, disp);
  2014            } else {
  2015               if (value == 0) {
  2016                  __ move(T9, disp);
  2017                  __ daddu(AT, AT, T9); 
  2018                  __ sb(R0, AT, 0);
  2019               } else {
  2020                  __ move(T9, disp);
  2021                  __ daddu(AT, AT, T9); 
  2022                  __ move(T9, value);
  2023                  __ sb(T9, AT, 0);
  2026         } else {
  2028            if (scale == 0) {
  2029               if( Assembler::is_simm(disp, 8) ) { 
  2030                  if (value == 0) {
  2031                     __ gssbx(R0, as_Register(base), as_Register(index), disp);
  2032                  } else {
  2033                     __ move(T9, value);
  2034                     __ gssbx(T9, as_Register(base), as_Register(index), disp);
  2036               } else if( Assembler::is_simm16(disp) ) { 
  2037                  __ daddu(AT, as_Register(base), as_Register(index));
  2038                  if (value == 0) {
  2039                     __ sb(R0, AT, disp);
  2040                  } else {
  2041                     __ move(T9, value);
  2042                     __ sb(T9, AT, disp);
  2044               } else {
  2045                  if (value == 0) {
  2046                     __ daddu(AT, as_Register(base), as_Register(index));
  2047                     __ move(T9, disp);
  2048                     __ gssbx(R0, AT, T9, 0);
  2049                  } else {
  2050                     __ move(AT, disp);
  2051                     __ move(T9, value);
  2052                     __ daddu(AT, as_Register(base), AT);
  2053                     __ gssbx(T9, AT, as_Register(index), 0);
  2057            } else {
  2059               if( Assembler::is_simm(disp, 8) ) { 
  2060                  __ dsll(AT, as_Register(index), scale);
  2061                  if (value == 0) {
  2062                     __ gssbx(R0, as_Register(base), AT, disp);
  2063                  } else {
  2064                     __ move(T9, value);
  2065                     __ gssbx(T9, as_Register(base), AT, disp);
  2067               } else if( Assembler::is_simm16(disp) ) { 
  2068                  __ dsll(AT, as_Register(index), scale);
  2069                  __ daddu(AT, as_Register(base), AT);
  2070                  if (value == 0) {
  2071                     __ sb(R0, AT, disp);
  2072                  } else {
  2073                     __ move(T9, value);
  2074                     __ sb(T9, AT, disp);
  2076               } else {
  2077                  __ dsll(AT, as_Register(index), scale);
  2078                  if (value == 0) {
  2079                     __ daddu(AT, as_Register(base), AT);
  2080                     __ move(T9, disp);
  2081                     __ gssbx(R0, AT, T9, 0);
  2082                  } else {
  2083                     __ move(T9, disp);
  2084                     __ daddu(AT, AT, T9); 
  2085                     __ move(T9, value);
  2086                     __ gssbx(T9, as_Register(base), AT, 0);
  2091      } else {
  2092         if( Assembler::is_simm16(disp) ) { 
  2093            if (value == 0) {
  2094               __ sb(R0, as_Register(base), disp);
  2095            } else {
  2096               __ move(AT, value);
  2097               __ sb(AT, as_Register(base), disp);
  2099         } else {
  2100            if (value == 0) {
  2101               __ move(T9, disp);   
  2102               if (UseLoongsonISA) {
  2103                 __ gssbx(R0, as_Register(base), T9, 0);
  2104               } else {
  2105                 __ daddu(AT, as_Register(base), T9); 
  2106                 __ sb(R0, AT, 0);
  2108            } else {
  2109               __ move(T9, disp);   
  2110               if (UseLoongsonISA) {
  2111                 __ move(AT, value);
  2112                 __ gssbx(AT, as_Register(base), T9, 0);
  2113               } else {
  2114                 __ daddu(AT, as_Register(base), T9); 
  2115                 __ move(T9, value);
  2116                 __ sb(T9, AT, 0);
  2121   %}
  2124   enc_class store_B_immI_enc_sync (memory mem, immI8 src) %{
  2125      MacroAssembler _masm(&cbuf);
  2126      int  base = $mem$$base;
  2127      int  index = $mem$$index;
  2128      int  scale = $mem$$scale;
  2129      int  disp = $mem$$disp;
  2130      int value = $src$$constant;
  2132      if( index != 0 ) {
  2133         if (scale == 0) {
  2134            __ daddu(AT, as_Register(base), as_Register(index));
  2135         } else {
  2136            __ dsll(AT, as_Register(index), scale);
  2137            __ daddu(AT, as_Register(base), AT);
  2139         if( Assembler::is_simm16(disp) ) { 
  2140            if (value == 0) {
  2141               __ sb(R0, AT, disp);
  2142            } else {
  2143               __ move(T9, value);
  2144               __ sb(T9, AT, disp);
  2146         } else {
  2147            if (value == 0) {
  2148               __ move(T9, disp);
  2149               __ daddu(AT, AT, T9); 
  2150               __ sb(R0, AT, 0);
  2151            } else {
  2152               __ move(T9, disp);
  2153               __ daddu(AT, AT, T9); 
  2154               __ move(T9, value);
  2155               __ sb(T9, AT, 0);
  2158      } else {
  2159         if( Assembler::is_simm16(disp) ) { 
  2160            if (value == 0) {
  2161               __ sb(R0, as_Register(base), disp);
  2162            } else {
  2163               __ move(AT, value);
  2164               __ sb(AT, as_Register(base), disp);
  2166         } else {
  2167            if (value == 0) {
  2168               __ move(T9, disp);   
  2169               __ daddu(AT, as_Register(base), T9); 
  2170               __ sb(R0, AT, 0);
  2171            } else {
  2172               __ move(T9, disp);   
  2173               __ daddu(AT, as_Register(base), T9); 
  2174               __ move(T9, value);
  2175               __ sb(T9, AT, 0);
  2180      __ sync();
  2181   %}
  2183   // Load Short (16bit signed)
  2184   enc_class load_S_enc (mRegI dst, memory mem) %{
  2185      MacroAssembler _masm(&cbuf);
  2186      int  dst = $dst$$reg;
  2187      int  base = $mem$$base;
  2188      int  index = $mem$$index;
  2189      int  scale = $mem$$scale;
  2190      int  disp = $mem$$disp;
  2192      if( index != 0 ) {
  2193         if (scale == 0) {
  2194            __ daddu(AT, as_Register(base), as_Register(index));
  2195         } else {
  2196            __ dsll(AT, as_Register(index), scale);
  2197            __ daddu(AT, as_Register(base), AT);
  2199         if( Assembler::is_simm16(disp) ) { 
  2200            __ lh(as_Register(dst), AT, disp);
  2201         } else {
  2202            __ move(T9, disp);
  2203            __ addu(AT, AT, T9); 
  2204            __ lh(as_Register(dst), AT, 0);
  2206      } else {
  2207         if( Assembler::is_simm16(disp) ) { 
  2208            __ lh(as_Register(dst), as_Register(base), disp);
  2209         } else {
  2210            __ move(T9, disp);   
  2211            __ addu(AT, as_Register(base), T9); 
  2212            __ lh(as_Register(dst), AT, 0);
  2215   %}
  2217   // Load Char (16bit unsigned)
  2218   enc_class load_C_enc (mRegI dst, memory mem) %{
  2219      MacroAssembler _masm(&cbuf);
  2220      int  dst = $dst$$reg;
  2221      int  base = $mem$$base;
  2222      int  index = $mem$$index;
  2223      int  scale = $mem$$scale;
  2224      int  disp = $mem$$disp;
  2226      if( index != 0 ) {
  2227         if (scale == 0) {
  2228            __ daddu(AT, as_Register(base), as_Register(index));
  2229         } else {
  2230            __ dsll(AT, as_Register(index), scale);
  2231            __ daddu(AT, as_Register(base), AT);
  2233         if( Assembler::is_simm16(disp) ) { 
  2234            __ lhu(as_Register(dst), AT, disp);
  2235         } else {
  2236            __ move(T9, disp);
  2237            __ addu(AT, AT, T9); 
  2238            __ lhu(as_Register(dst), AT, 0);
  2240      } else {
  2241         if( Assembler::is_simm16(disp) ) { 
  2242            __ lhu(as_Register(dst), as_Register(base), disp);
  2243         } else {
  2244            __ move(T9, disp);   
  2245            __ daddu(AT, as_Register(base), T9); 
  2246            __ lhu(as_Register(dst), AT, 0);
  2249   %}
  2251   // Store Char (16bit unsigned)
  2252   enc_class store_C_reg_enc (memory mem, mRegI src) %{
  2253      MacroAssembler _masm(&cbuf);
  2254      int  src = $src$$reg;
  2255      int  base = $mem$$base;
  2256      int  index = $mem$$index;
  2257      int  scale = $mem$$scale;
  2258      int  disp = $mem$$disp;
  2260      if( index != 0 ) {
  2261         if( Assembler::is_simm16(disp) ) { 
  2262            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2263               if (scale == 0) {
  2264                  __ gsshx(as_Register(src), as_Register(base), as_Register(index), disp);
  2265               } else {
  2266                  __ dsll(AT, as_Register(index), scale);
  2267                  __ gsshx(as_Register(src), as_Register(base), AT, disp);
  2269            } else {
  2270               if (scale == 0) {
  2271                  __ addu(AT, as_Register(base), as_Register(index));
  2272               } else {
  2273                  __ dsll(AT, as_Register(index), scale);
  2274                  __ addu(AT, as_Register(base), AT);
  2276               __ sh(as_Register(src), AT, disp);
  2278         } else {
  2279            if (scale == 0) {
  2280               __ addu(AT, as_Register(base), as_Register(index));
  2281            } else {
  2282               __ dsll(AT, as_Register(index), scale);
  2283               __ addu(AT, as_Register(base), AT);
  2285            __ move(T9, disp);
  2286            if( UseLoongsonISA ) {
  2287               __ gsshx(as_Register(src), AT, T9, 0);
  2288            } else {
  2289               __ addu(AT, AT, T9); 
  2290               __ sh(as_Register(src), AT, 0);
  2293      } else {
  2294         if( Assembler::is_simm16(disp) ) { 
  2295            __ sh(as_Register(src), as_Register(base), disp);
  2296         } else {
  2297            __ move(T9, disp);   
  2298            if( UseLoongsonISA ) {
  2299               __ gsshx(as_Register(src), as_Register(base), T9, 0);
  2300            } else {
  2301               __ addu(AT, as_Register(base), T9); 
  2302               __ sh(as_Register(src), AT, 0);
  2306   %}
  2308   enc_class load_I_enc (mRegI dst, memory mem) %{
  2309      MacroAssembler _masm(&cbuf);
  2310      int  dst = $dst$$reg;
  2311      int  base = $mem$$base;
  2312      int  index = $mem$$index;
  2313      int  scale = $mem$$scale;
  2314      int  disp = $mem$$disp;
  2316      if( index != 0 ) {
  2317         if( Assembler::is_simm16(disp) ) { 
  2318            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2319               if (scale == 0) {
  2320                  __ gslwx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2321               } else {
  2322                  __ dsll(AT, as_Register(index), scale);
  2323                  __ gslwx(as_Register(dst), as_Register(base), AT, disp);
  2325            } else {
  2326               if (scale == 0) {
  2327                  __ addu(AT, as_Register(base), as_Register(index));
  2328               } else {
  2329                  __ dsll(AT, as_Register(index), scale);
  2330                  __ addu(AT, as_Register(base), AT);
  2332               __ lw(as_Register(dst), AT, disp);
  2334         } else {
  2335            if (scale == 0) {
  2336               __ addu(AT, as_Register(base), as_Register(index));
  2337            } else {
  2338               __ dsll(AT, as_Register(index), scale);
  2339               __ addu(AT, as_Register(base), AT);
  2341            __ move(T9, disp);
  2342            if( UseLoongsonISA ) {
  2343               __ gslwx(as_Register(dst), AT, T9, 0);
  2344            } else {
  2345               __ addu(AT, AT, T9); 
  2346               __ lw(as_Register(dst), AT, 0);
  2349      } else {
  2350         if( Assembler::is_simm16(disp) ) { 
  2351            __ lw(as_Register(dst), as_Register(base), disp);
  2352         } else {
  2353            __ move(T9, disp);   
  2354            if( UseLoongsonISA ) {
  2355               __ gslwx(as_Register(dst), as_Register(base), T9, 0);
  2356            } else {
  2357               __ addu(AT, as_Register(base), T9); 
  2358               __ lw(as_Register(dst), AT, 0);
  2362   %}
  2364   enc_class store_I_reg_enc (memory mem, mRegI src) %{
  2365      MacroAssembler _masm(&cbuf);
  2366      int  src = $src$$reg;
  2367      int  base = $mem$$base;
  2368      int  index = $mem$$index;
  2369      int  scale = $mem$$scale;
  2370      int  disp = $mem$$disp;
  2372      if( index != 0 ) {
  2373         if( Assembler::is_simm16(disp) ) { 
  2374            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2375               if (scale == 0) {
  2376                  __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2377               } else {
  2378                  __ dsll(AT, as_Register(index), scale);
  2379                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2381            } else {
  2382               if (scale == 0) {
  2383                  __ addu(AT, as_Register(base), as_Register(index));
  2384               } else {
  2385                  __ dsll(AT, as_Register(index), scale);
  2386                  __ addu(AT, as_Register(base), AT);
  2388               __ sw(as_Register(src), AT, disp);
  2390         } else {
  2391            if (scale == 0) {
  2392               __ addu(AT, as_Register(base), as_Register(index));
  2393            } else {
  2394               __ dsll(AT, as_Register(index), scale);
  2395               __ addu(AT, as_Register(base), AT);
  2397            __ move(T9, disp);
  2398            if( UseLoongsonISA ) {
  2399               __ gsswx(as_Register(src), AT, T9, 0);
  2400            } else {
  2401               __ addu(AT, AT, T9); 
  2402               __ sw(as_Register(src), AT, 0);
  2405      } else {
  2406         if( Assembler::is_simm16(disp) ) { 
  2407            __ sw(as_Register(src), as_Register(base), disp);
  2408         } else {
  2409            __ move(T9, disp);   
  2410            if( UseLoongsonISA ) {
  2411               __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2412            } else {
  2413               __ addu(AT, as_Register(base), T9); 
  2414               __ sw(as_Register(src), AT, 0);
  2418   %}
  2420   enc_class store_I_immI_enc (memory mem, immI src) %{
  2421      MacroAssembler _masm(&cbuf);
  2422      int  base = $mem$$base;
  2423      int  index = $mem$$index;
  2424      int  scale = $mem$$scale;
  2425      int  disp = $mem$$disp;
  2426      int value = $src$$constant;
  2428      if( index != 0 ) {
  2429         if (scale == 0) {
  2430            __ daddu(AT, as_Register(base), as_Register(index));
  2431         } else {
  2432            __ dsll(AT, as_Register(index), scale);
  2433            __ daddu(AT, as_Register(base), AT);
  2435         if( Assembler::is_simm16(disp) ) { 
  2436            if (value == 0) {
  2437               __ sw(R0, AT, disp);
  2438            } else {
  2439               __ move(T9, value);
  2440               __ sw(T9, AT, disp);
  2442         } else {
  2443            if (value == 0) {
  2444               __ move(T9, disp);
  2445               __ addu(AT, AT, T9); 
  2446               __ sw(R0, AT, 0);
  2447            } else {
  2448               __ move(T9, disp);
  2449               __ addu(AT, AT, T9); 
  2450               __ move(T9, value);
  2451               __ sw(T9, AT, 0);
  2454      } else {
  2455         if( Assembler::is_simm16(disp) ) { 
  2456            if (value == 0) {
  2457               __ sw(R0, as_Register(base), disp);
  2458            } else {
  2459               __ move(AT, value);
  2460               __ sw(AT, as_Register(base), disp);
  2462         } else {
  2463            if (value == 0) {
  2464               __ move(T9, disp);   
  2465               __ addu(AT, as_Register(base), T9); 
  2466               __ sw(R0, AT, 0);
  2467            } else {
  2468               __ move(T9, disp);   
  2469               __ addu(AT, as_Register(base), T9); 
  2470               __ move(T9, value);
  2471               __ sw(T9, AT, 0);
  2475   %}
  2477   enc_class load_N_enc (mRegN dst, memory mem) %{
  2478      MacroAssembler _masm(&cbuf);
  2479      int  dst = $dst$$reg;
  2480      int  base = $mem$$base;
  2481      int  index = $mem$$index;
  2482      int  scale = $mem$$scale;
  2483      int  disp = $mem$$disp;
  2484 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2485 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2487      if( index != 0 ) {
  2488         if (scale == 0) {
  2489            __ daddu(AT, as_Register(base), as_Register(index));
  2490         } else {
  2491            __ dsll(AT, as_Register(index), scale);
  2492            __ daddu(AT, as_Register(base), AT);
  2494         if( Assembler::is_simm16(disp) ) { 
  2495            __ lwu(as_Register(dst), AT, disp);
  2496         } else {
  2497            __ li(T9, disp);
  2498            __ daddu(AT, AT, T9);
  2499            __ lwu(as_Register(dst), AT, 0);
  2501      } else {
  2502         if( Assembler::is_simm16(disp) ) { 
  2503            __ lwu(as_Register(dst), as_Register(base), disp);
  2504         } else {
  2505            __ li(T9, disp);   
  2506            __ daddu(AT, as_Register(base), T9);
  2507            __ lwu(as_Register(dst), AT, 0);
  2511   %}
  2514   enc_class load_P_enc (mRegP dst, memory mem) %{
  2515      MacroAssembler _masm(&cbuf);
  2516      int  dst = $dst$$reg;
  2517      int  base = $mem$$base;
  2518      int  index = $mem$$index;
  2519      int  scale = $mem$$scale;
  2520      int  disp = $mem$$disp;
  2521 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2522 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2524      if( index != 0 ) {
  2525         if (scale == 0) {
  2526            __ daddu(AT, as_Register(base), as_Register(index));
  2527         } else {
  2528            __ dsll(AT, as_Register(index), scale);
  2529            __ daddu(AT, as_Register(base), AT);
  2531         if( Assembler::is_simm16(disp) ) { 
  2532            __ ld(as_Register(dst), AT, disp);
  2533         } else {
  2534            __ li(T9, disp);
  2535            __ daddu(AT, AT, T9);
  2536            __ ld(as_Register(dst), AT, 0);
  2538      } else {
  2539         if( Assembler::is_simm16(disp) ) { 
  2540            __ ld(as_Register(dst), as_Register(base), disp);
  2541         } else {
  2542            __ li(T9, disp);   
  2543            __ daddu(AT, as_Register(base), T9);
  2544            __ ld(as_Register(dst), AT, 0);
  2547 //     if( disp_reloc != relocInfo::none) __ ld(as_Register(dst), as_Register(dst), 0);
  2548   %}
  2550   enc_class store_P_reg_enc (memory mem, mRegP src) %{
  2551      MacroAssembler _masm(&cbuf);
  2552      int  src = $src$$reg;
  2553      int  base = $mem$$base;
  2554      int  index = $mem$$index;
  2555      int  scale = $mem$$scale;
  2556      int  disp = $mem$$disp;
  2558      if( index != 0 ) {
  2559         if (scale == 0) {
  2560            __ daddu(AT, as_Register(base), as_Register(index));
  2561         } else {
  2562            __ dsll(AT, as_Register(index), scale);
  2563            __ daddu(AT, as_Register(base), AT);
  2565         if( Assembler::is_simm16(disp) ) { 
  2566            __ sd(as_Register(src), AT, disp);
  2567         } else {
  2568            __ move(T9, disp);
  2569            __ daddu(AT, AT, T9); 
  2570            __ sd(as_Register(src), AT, 0);
  2572      } else {
  2573         if( Assembler::is_simm16(disp) ) { 
  2574            __ sd(as_Register(src), as_Register(base), disp);
  2575         } else {
  2576            __ move(T9, disp);   
  2577            __ daddu(AT, as_Register(base), T9); 
  2578            __ sd(as_Register(src), AT, 0);
  2581   %}
  2583   enc_class store_N_reg_enc (memory mem, mRegN src) %{
  2584      MacroAssembler _masm(&cbuf);
  2585      int  src = $src$$reg;
  2586      int  base = $mem$$base;
  2587      int  index = $mem$$index;
  2588      int  scale = $mem$$scale;
  2589      int  disp = $mem$$disp;
  2591      if( index != 0 ) {
  2592         if (scale == 0) {
  2593            __ daddu(AT, as_Register(base), as_Register(index));
  2594         } else {
  2595            __ dsll(AT, as_Register(index), scale);
  2596            __ daddu(AT, as_Register(base), AT);
  2598         if( Assembler::is_simm16(disp) ) { 
  2599            __ sw(as_Register(src), AT, disp);
  2600         } else {
  2601            __ move(T9, disp);
  2602            __ addu(AT, AT, T9); 
  2603            __ sw(as_Register(src), AT, 0);
  2605      } else {
  2606         if( Assembler::is_simm16(disp) ) { 
  2607            __ sw(as_Register(src), as_Register(base), disp);
  2608         } else {
  2609            __ move(T9, disp);   
  2610            __ addu(AT, as_Register(base), T9); 
  2611            __ sw(as_Register(src), AT, 0);
  2614   %}
  2616   enc_class store_P_immP_enc (memory mem, immP31 src) %{
  2617      MacroAssembler _masm(&cbuf);
  2618      int  base = $mem$$base;
  2619      int  index = $mem$$index;
  2620      int  scale = $mem$$scale;
  2621      int  disp = $mem$$disp;
  2622      long value = $src$$constant;
  2624      if( index != 0 ) {
  2625         if (scale == 0) {
  2626            __ daddu(AT, as_Register(base), as_Register(index));
  2627         } else {
  2628            __ dsll(AT, as_Register(index), scale);
  2629            __ daddu(AT, as_Register(base), AT);
  2631         if( Assembler::is_simm16(disp) ) { 
  2632            if (value == 0) {
  2633               __ sd(R0, AT, disp);
  2634            } else {
  2635               __ move(T9, value);
  2636               __ sd(T9, AT, disp);
  2638         } else {
  2639            if (value == 0) {
  2640               __ move(T9, disp);
  2641               __ daddu(AT, AT, T9); 
  2642               __ sd(R0, AT, 0);
  2643            } else {
  2644               __ move(T9, disp);
  2645               __ daddu(AT, AT, T9); 
  2646               __ move(T9, value);
  2647               __ sd(T9, AT, 0);
  2650      } else {
  2651         if( Assembler::is_simm16(disp) ) { 
  2652            if (value == 0) {
  2653               __ sd(R0, as_Register(base), disp);
  2654            } else {
  2655               __ move(AT, value);
  2656               __ sd(AT, as_Register(base), disp);
  2658         } else {
  2659            if (value == 0) {
  2660               __ move(T9, disp);   
  2661               __ daddu(AT, as_Register(base), T9); 
  2662               __ sd(R0, AT, 0);
  2663            } else {
  2664               __ move(T9, disp);   
  2665               __ daddu(AT, as_Register(base), T9); 
  2666               __ move(T9, value);
  2667               __ sd(T9, AT, 0);
  2671   %}
  2673 /*
  2674  * 1d4     storeImmN    [S0 + #16 (8-bit)], narrowoop: spec/benchmarks/_213_javac/Identifier:exact *   
  2675  *                      # compressed ptr ! Field: spec/benchmarks/_213_javac/Identifier.value
  2676  *  0x00000055648065d4: daddu at, s0, zero
  2677  *  0x00000055648065d8: lui t9, 0x0       ;   {oop(a 'spec/benchmarks/_213_javac/Identifier')}
  2678  *  0x00000055648065dc: ori t9, t9, 0xfffff610
  2679  *  0x00000055648065e0: dsll t9, t9, 16
  2680  *  0x00000055648065e4: ori t9, t9, 0xffffc628
  2681  *  0x00000055648065e8: sw t9, 0x10(at)
  2682  */
  2683   enc_class storeImmN_enc (memory mem, immN src) %{
  2684      MacroAssembler _masm(&cbuf);
  2685      int  base = $mem$$base;
  2686      int  index = $mem$$index;
  2687      int  scale = $mem$$scale;
  2688      int  disp = $mem$$disp;
  2689      long * value = (long *)$src$$constant;
  2691      if (value == NULL) {
  2692          guarantee(Assembler::is_simm16(disp), "FIXME: disp is not simm16!");
  2693          if (index == 0) {
  2694              __ sw(R0, as_Register(base), disp);
  2695          } else {
  2696              if (scale == 0) {
  2697                 __ daddu(AT, as_Register(base), as_Register(index));
  2698              } else {
  2699                 __ dsll(AT, as_Register(index), scale);
  2700                 __ daddu(AT, as_Register(base), AT);
  2702              __ sw(R0, AT, disp);
  2705          return;
  2708      int oop_index = __ oop_recorder()->find_index((jobject)value);
  2709      RelocationHolder rspec = oop_Relocation::spec(oop_index);
  2711      guarantee(scale == 0, "FIXME: scale is not zero !");
  2712      guarantee(value != 0, "FIXME: value is zero !");
  2714     if (index != 0) {
  2715          if (scale == 0) {
  2716             __ daddu(AT, as_Register(base), as_Register(index));
  2717          } else {
  2718             __ dsll(AT, as_Register(index), scale);
  2719             __ daddu(AT, as_Register(base), AT);
  2721 	 if( Assembler::is_simm16(disp) ) { 
  2722 		 if(rspec.type() != relocInfo::none) {
  2723 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2724 			 __ li48(T9, oop_index);
  2725 		 } else {
  2726 			 __ set64(T9, oop_index);
  2728 		 __ sw(T9, AT, disp);
  2729 	 } else {
  2730 		 __ move(T9, disp);
  2731 		 __ addu(AT, AT, T9); 
  2733 		 if(rspec.type() != relocInfo::none) {
  2734 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2735 			 __ li48(T9, oop_index);
  2736 		 } else {
  2737 			 __ set64(T9, oop_index);
  2739 		 __ sw(T9, AT, 0);
  2742      else {
  2743          if( Assembler::is_simm16(disp) ) { 
  2744 		 if($src->constant_reloc() != relocInfo::none) {
  2745 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2746 			 __ li48(T9, oop_index);
  2747 		 } else {
  2748                          __ set64(T9, oop_index);
  2750 	         __ sw(T9, as_Register(base), disp);
  2751 	 } else {
  2752 		 __ move(T9, disp);
  2753 		 __ daddu(AT, as_Register(base), T9);  
  2755 		 if($src->constant_reloc() != relocInfo::none){
  2756 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2757 			 __ li48(T9, oop_index);
  2758 		 } else {
  2759 			 __ set64(T9, oop_index);
  2761 		 __ sw(T9, AT, 0);
  2764   %}
  2766   enc_class storeImmNKlass_enc (memory mem, immNKlass src) %{
  2767      MacroAssembler _masm(&cbuf);
  2769      assert (UseCompressedOops, "should only be used for compressed headers");
  2770      assert (__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2772      int  base = $mem$$base;
  2773      int  index = $mem$$index;
  2774      int  scale = $mem$$scale;
  2775      int  disp = $mem$$disp;
  2776      long value = $src$$constant;
  2778 	 int klass_index = __ oop_recorder()->find_index((Klass*)value);
  2779 	 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  2780 	 long narrowp = Klass::encode_klass((Klass*)value);
  2782 	 if(index!=0){
  2783                  if (scale == 0) {
  2784                     __ daddu(AT, as_Register(base), as_Register(index));
  2785                  } else {
  2786                     __ dsll(AT, as_Register(index), scale);
  2787                     __ daddu(AT, as_Register(base), AT);
  2790 		 if( Assembler::is_simm16(disp) ) { 
  2791 			 if(rspec.type() != relocInfo::none){
  2792 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2793 				 __ li48(T9, narrowp);
  2794 			 } else {
  2795 				 __ set64(T9, narrowp);
  2797 			 __ sw(T9, AT, disp);
  2798 		 } else {
  2799 			 __ move(T9, disp);
  2800 			 __ daddu(AT, AT, T9); 
  2802 			 if(rspec.type() != relocInfo::none){
  2803 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2804 				 __ li48(T9, narrowp);
  2805 			 } else {
  2806 				 __ set64(T9, narrowp);
  2809 			 __ sw(T9, AT, 0);
  2811 	 } else {
  2812 		 if( Assembler::is_simm16(disp) ) { 
  2813 			 if(rspec.type() != relocInfo::none){
  2814 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2815 				 __ li48(T9, narrowp);
  2817 			 else {
  2818 				 __ set64(T9, narrowp);
  2820 			 __ sw(T9, as_Register(base), disp);
  2821 		 } else {
  2822 			 __ move(T9, disp);
  2823 			 __ daddu(AT, as_Register(base), T9); 
  2825 			 if(rspec.type() != relocInfo::none){
  2826 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2827 				 __ li48(T9, narrowp);
  2828 			 } else {
  2829 				 __ set64(T9, narrowp);
  2831 			 __ sw(T9, AT, 0);
  2834   %}
  2836   enc_class storeImmN0_enc(memory mem, ImmN0 src) %{
  2837      MacroAssembler _masm(&cbuf);
  2838      int  base = $mem$$base;
  2839      int  index = $mem$$index;
  2840      int  scale = $mem$$scale;
  2841      int  disp = $mem$$disp;
  2843 	 if(index!=0){
  2844                  if (scale == 0) {
  2845                     __ daddu(AT, as_Register(base), as_Register(index));
  2846                  } else {
  2847                     __ dsll(AT, as_Register(index), scale);
  2848                     __ daddu(AT, as_Register(base), AT);
  2851 		 if( Assembler::is_simm16(disp) ) { 
  2852 			 __ sw(R0, AT, disp);
  2853 		 } else {
  2854 			 __ move(T9, disp);
  2855 			 __ daddu(AT, AT, T9); 
  2856 			 __ sw(R0, AT, 0);
  2859      else {
  2860 		 if( Assembler::is_simm16(disp) ) { 
  2861 			 __ sw(R0, as_Register(base), disp);
  2862 		 } else {
  2863 			 __ move(T9, disp);
  2864 			 __ daddu(AT, as_Register(base), T9); 
  2865 			 __ sw(R0, AT, 0);
  2868   %} 
  2870   enc_class load_L_enc (mRegL dst, memory mem) %{
  2871      MacroAssembler _masm(&cbuf);
  2872      int  base = $mem$$base;
  2873      int  index = $mem$$index;
  2874      int  scale = $mem$$scale;
  2875      int  disp = $mem$$disp;
  2876      Register  dst_reg = as_Register($dst$$reg);
  2878      /*********************2013/03/27**************************
  2879       * Jin: $base may contain a null object.
  2880       * Server JIT force the exception_offset to be the pos of 
  2881       * the first instruction.
  2882       * I insert such a 'null_check' at the beginning.
  2883       *******************************************************/
  2885      __ lw(AT, as_Register(base), 0);
  2887      /*********************2012/10/04**************************
  2888       * Error case found in SortTest
  2889       * 337   b   java.util.Arrays::sort1 (401 bytes)
  2890       * B73:
  2891       *       d34     lw    T4.lo, [T4 + #16]   #@loadL-lo
  2892       *               lw    T4.hi, [T4 + #16]+4 #@loadL-hi
  2894       * The original instructions generated here are :
  2895       *       __ lw(dst_lo, as_Register(base), disp);
  2896       *       __ lw(dst_hi, as_Register(base), disp + 4);
  2897       *******************************************************/
  2899      if( index != 0 ) {
  2900         if (scale == 0) {
  2901            __ daddu(AT, as_Register(base), as_Register(index));
  2902         } else {
  2903            __ dsll(AT, as_Register(index), scale);
  2904            __ daddu(AT, as_Register(base), AT);
  2906         if( Assembler::is_simm16(disp) ) { 
  2907            __ ld(dst_reg, AT, disp);
  2908         } else {
  2909            __ move(T9, disp);
  2910            __ daddu(AT, AT, T9); 
  2911            __ ld(dst_reg, AT, 0);
  2913      } else {
  2914         if( Assembler::is_simm16(disp) ) { 
  2915            __ move(AT, as_Register(base));
  2916            __ ld(dst_reg, AT, disp);
  2917         } else {
  2918            __ move(T9, disp);   
  2919            __ daddu(AT, as_Register(base), T9); 
  2920            __ ld(dst_reg, AT, 0);
  2923   %}
  2925   enc_class store_L_reg_enc (memory mem, mRegL src) %{
  2926      MacroAssembler _masm(&cbuf);
  2927      int  base = $mem$$base;
  2928      int  index = $mem$$index;
  2929      int  scale = $mem$$scale;
  2930      int  disp = $mem$$disp;
  2931      Register  src_reg = as_Register($src$$reg);
  2933      if( index != 0 ) {
  2934         if (scale == 0) {
  2935            __ daddu(AT, as_Register(base), as_Register(index));
  2936         } else {
  2937            __ dsll(AT, as_Register(index), scale);
  2938            __ daddu(AT, as_Register(base), AT);
  2940         if( Assembler::is_simm16(disp) ) { 
  2941            __ sd(src_reg, AT, disp);
  2942         } else {
  2943            __ move(T9, disp);
  2944            __ daddu(AT, AT, T9); 
  2945            __ sd(src_reg, AT, 0);
  2947      } else {
  2948         if( Assembler::is_simm16(disp) ) { 
  2949            __ move(AT, as_Register(base));
  2950            __ sd(src_reg, AT, disp);
  2951         } else {
  2952            __ move(T9, disp);   
  2953            __ daddu(AT, as_Register(base), T9); 
  2954            __ sd(src_reg, AT, 0);
  2957   %}
  2959   enc_class store_L_immL0_enc (memory mem, immL0 src) %{
  2960      MacroAssembler _masm(&cbuf);
  2961      int  base = $mem$$base;
  2962      int  index = $mem$$index;
  2963      int  scale = $mem$$scale;
  2964      int  disp = $mem$$disp;
  2966      if( index != 0 ) {
  2967         if (scale == 0) {
  2968            __ daddu(AT, as_Register(base), as_Register(index));
  2969         } else {
  2970            __ dsll(AT, as_Register(index), scale);
  2971            __ daddu(AT, as_Register(base), AT);
  2973         if( Assembler::is_simm16(disp) ) { 
  2974            __ sd(R0, AT, disp);
  2975         } else {
  2976            __ move(T9, disp);
  2977            __ addu(AT, AT, T9); 
  2978            __ sd(R0, AT, 0);
  2980      } else {
  2981         if( Assembler::is_simm16(disp) ) { 
  2982            __ move(AT, as_Register(base));
  2983            __ sd(R0, AT, disp);
  2984         } else {
  2985            __ move(T9, disp);   
  2986            __ addu(AT, as_Register(base), T9); 
  2987            __ sd(R0, AT, 0);
  2990   %}
  2992   enc_class store_L_immL_enc (memory mem, immL src) %{
  2993      MacroAssembler _masm(&cbuf);
  2994      int  base = $mem$$base;
  2995      int  index = $mem$$index;
  2996      int  scale = $mem$$scale;
  2997      int  disp = $mem$$disp;
  2998      long  imm = $src$$constant; 
  3000      if( index != 0 ) {
  3001         if (scale == 0) {
  3002            __ daddu(AT, as_Register(base), as_Register(index));
  3003         } else {
  3004            __ dsll(AT, as_Register(index), scale);
  3005            __ daddu(AT, as_Register(base), AT);
  3007         if( Assembler::is_simm16(disp) ) { 
  3008            __ li(T9, imm);
  3009            __ sd(T9, AT, disp);
  3010         } else {
  3011            __ move(T9, disp);
  3012            __ addu(AT, AT, T9); 
  3013            __ li(T9, imm);
  3014            __ sd(T9, AT, 0);
  3016      } else {
  3017         if( Assembler::is_simm16(disp) ) { 
  3018            __ move(AT, as_Register(base));
  3019            __ li(T9, imm);
  3020            __ sd(T9, AT, disp);
  3021         } else {
  3022            __ move(T9, disp);   
  3023            __ addu(AT, as_Register(base), T9); 
  3024            __ li(T9, imm);
  3025            __ sd(T9, AT, 0);
  3028   %}
  3030   enc_class load_F_enc (regF dst, memory mem) %{
  3031      MacroAssembler _masm(&cbuf);
  3032      int  base = $mem$$base;
  3033      int  index = $mem$$index;
  3034      int  scale = $mem$$scale;
  3035      int  disp = $mem$$disp;
  3036      FloatRegister dst = $dst$$FloatRegister;
  3038      if( index != 0 ) {
  3039         if( Assembler::is_simm16(disp) ) { 
  3040            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3041               if (scale == 0) {
  3042                  __ gslwxc1(dst, as_Register(base), as_Register(index), disp);
  3043               } else {
  3044                  __ dsll(AT, as_Register(index), scale);
  3045                  __ gslwxc1(dst, as_Register(base), AT, disp);
  3047            } else {
  3048               if (scale == 0) {
  3049                  __ daddu(AT, as_Register(base), as_Register(index));
  3050               } else {
  3051                  __ dsll(AT, as_Register(index), scale);
  3052                  __ daddu(AT, as_Register(base), AT);
  3054               __ lwc1(dst, AT, disp);
  3056         } else {
  3057            if (scale == 0) {
  3058               __ daddu(AT, as_Register(base), as_Register(index));
  3059            } else {
  3060               __ dsll(AT, as_Register(index), scale);
  3061               __ daddu(AT, as_Register(base), AT);
  3063            __ move(T9, disp);
  3064            if( UseLoongsonISA ) {
  3065               __ gslwxc1(dst, AT, T9, 0);
  3066            } else {
  3067               __ daddu(AT, AT, T9); 
  3068               __ lwc1(dst, AT, 0);
  3071      } else {
  3072         if( Assembler::is_simm16(disp) ) { 
  3073            __ lwc1(dst, as_Register(base), disp);
  3074         } else {
  3075            __ move(T9, disp);   
  3076            if( UseLoongsonISA ) {
  3077               __ gslwxc1(dst, as_Register(base), T9, 0);
  3078            } else {
  3079               __ daddu(AT, as_Register(base), T9); 
  3080               __ lwc1(dst, AT, 0);
  3084   %}
  3086   enc_class store_F_reg_enc (memory mem, regF src) %{
  3087      MacroAssembler _masm(&cbuf);
  3088      int  base = $mem$$base;
  3089      int  index = $mem$$index;
  3090      int  scale = $mem$$scale;
  3091      int  disp = $mem$$disp;
  3092      FloatRegister src = $src$$FloatRegister;
  3094      if( index != 0 ) {
  3095         if( Assembler::is_simm16(disp) ) { 
  3096            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3097               if (scale == 0) {
  3098                  __ gsswxc1(src, as_Register(base), as_Register(index), disp);
  3099               } else {
  3100                  __ dsll(AT, as_Register(index), scale);
  3101                  __ gsswxc1(src, as_Register(base), AT, disp);
  3103            } else {
  3104               if (scale == 0) {
  3105                  __ daddu(AT, as_Register(base), as_Register(index));
  3106               } else {
  3107                  __ dsll(AT, as_Register(index), scale);
  3108                  __ daddu(AT, as_Register(base), AT);
  3110               __ swc1(src, AT, disp);
  3112         } else {
  3113            if (scale == 0) {
  3114               __ daddu(AT, as_Register(base), as_Register(index));
  3115            } else {
  3116               __ dsll(AT, as_Register(index), scale);
  3117               __ daddu(AT, as_Register(base), AT);
  3119            __ move(T9, disp);
  3120            if( UseLoongsonISA ) {
  3121               __ gsswxc1(src, AT, T9, 0);
  3122            } else {
  3123               __ daddu(AT, AT, T9); 
  3124               __ swc1(src, AT, 0);
  3127      } else {
  3128         if( Assembler::is_simm16(disp) ) { 
  3129            __ swc1(src, as_Register(base), disp);
  3130         } else {
  3131            __ move(T9, disp);   
  3132            if( UseLoongsonISA ) {
  3133               __ gslwxc1(src, as_Register(base), T9, 0);
  3134            } else {
  3135               __ daddu(AT, as_Register(base), T9); 
  3136               __ swc1(src, AT, 0);
  3140   %}
  3142   enc_class load_D_enc (regD dst, memory mem) %{
  3143      MacroAssembler _masm(&cbuf);
  3144      int  base = $mem$$base;
  3145      int  index = $mem$$index;
  3146      int  scale = $mem$$scale;
  3147      int  disp = $mem$$disp;
  3148      FloatRegister dst_reg = as_FloatRegister($dst$$reg);
  3150      if( index != 0 ) {
  3151         if( Assembler::is_simm16(disp) ) { 
  3152            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3153               if (scale == 0) {
  3154                  __ gsldxc1(dst_reg, as_Register(base), as_Register(index), disp);
  3155               } else {
  3156                  __ dsll(AT, as_Register(index), scale);
  3157                  __ gsldxc1(dst_reg, as_Register(base), AT, disp);
  3159            } else {
  3160               if (scale == 0) {
  3161                  __ daddu(AT, as_Register(base), as_Register(index));
  3162               } else {
  3163                  __ dsll(AT, as_Register(index), scale);
  3164                  __ daddu(AT, as_Register(base), AT);
  3166               __ ldc1(dst_reg, AT, disp);
  3168         } else {
  3169            if (scale == 0) {
  3170               __ daddu(AT, as_Register(base), as_Register(index));
  3171            } else {
  3172               __ dsll(AT, as_Register(index), scale);
  3173               __ daddu(AT, as_Register(base), AT);
  3175            __ move(T9, disp);
  3176            if( UseLoongsonISA ) {
  3177               __ gsldxc1(dst_reg, AT, T9, 0);
  3178            } else {
  3179               __ addu(AT, AT, T9); 
  3180               __ ldc1(dst_reg, AT, 0);
  3183      } else {
  3184         if( Assembler::is_simm16(disp) ) { 
  3185            __ ldc1(dst_reg, as_Register(base), disp);
  3186         } else {
  3187            __ move(T9, disp);   
  3188            if( UseLoongsonISA ) {
  3189               __ gsldxc1(dst_reg, as_Register(base), T9, 0);
  3190            } else {
  3191               __ addu(AT, as_Register(base), T9); 
  3192               __ ldc1(dst_reg, AT, 0);
  3196   %}
  3198   enc_class store_D_reg_enc (memory mem, regD src) %{
  3199      MacroAssembler _masm(&cbuf);
  3200      int  base = $mem$$base;
  3201      int  index = $mem$$index;
  3202      int  scale = $mem$$scale;
  3203      int  disp = $mem$$disp;
  3204      FloatRegister src_reg = as_FloatRegister($src$$reg);
  3206      if( index != 0 ) {
  3207         if( Assembler::is_simm16(disp) ) { 
  3208            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3209               if (scale == 0) {
  3210                  __ gssdxc1(src_reg, as_Register(base), as_Register(index), disp);
  3211               } else {
  3212                  __ dsll(AT, as_Register(index), scale);
  3213                  __ gssdxc1(src_reg, as_Register(base), AT, disp);
  3215            } else {
  3216               if (scale == 0) {
  3217                  __ daddu(AT, as_Register(base), as_Register(index));
  3218               } else {
  3219                  __ dsll(AT, as_Register(index), scale);
  3220                  __ daddu(AT, as_Register(base), AT);
  3222               __ sdc1(src_reg, AT, disp);
  3224         } else {
  3225            if (scale == 0) {
  3226               __ daddu(AT, as_Register(base), as_Register(index));
  3227            } else {
  3228               __ dsll(AT, as_Register(index), scale);
  3229               __ daddu(AT, as_Register(base), AT);
  3231            __ move(T9, disp);
  3232            if( UseLoongsonISA ) {
  3233               __ gssdxc1(src_reg, AT, T9, 0);
  3234            } else {
  3235               __ addu(AT, AT, T9); 
  3236               __ sdc1(src_reg, AT, 0);
  3239      } else {
  3240         if( Assembler::is_simm16(disp) ) { 
  3241            __ sdc1(src_reg, as_Register(base), disp);
  3242         } else {
  3243            __ move(T9, disp);   
  3244            if( UseLoongsonISA ) {
  3245               __ gssdxc1(src_reg, as_Register(base), T9, 0);
  3246            } else {
  3247               __ addu(AT, as_Register(base), T9); 
  3248               __ sdc1(src_reg, AT, 0);
  3252   %}
  3254   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  3255       MacroAssembler _masm(&cbuf);
  3256     // This is the instruction starting address for relocation info.
  3257     __ block_comment("Java_To_Runtime");
  3258     cbuf.set_insts_mark();
  3259     __ relocate(relocInfo::runtime_call_type);
  3261     __ li48(T9, (long)$meth$$method);
  3262     __ jalr(T9);
  3263     __ nop();
  3264     %}
  3266   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  3267     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  3268     // who we intended to call.
  3269     MacroAssembler _masm(&cbuf);
  3270     cbuf.set_insts_mark();
  3272     if ( !_method ) {
  3273       __ relocate(relocInfo::runtime_call_type);
  3274       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3275       //               runtime_call_Relocation::spec(), RELOC_IMM32 );
  3276     } else if(_optimized_virtual) {
  3277       __ relocate(relocInfo::opt_virtual_call_type);
  3278       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3279       //               opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  3280     } else {
  3281       __ relocate(relocInfo::static_call_type);
  3282       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3283       //               static_call_Relocation::spec(), RELOC_IMM32 );
  3286     __ li(T9, $meth$$method);
  3287     __ jalr(T9);
  3288     __ nop();
  3289     if( _method ) {  // Emit stub for static call
  3290       emit_java_to_interp(cbuf);
  3292   %}
  3295 /*
  3296  * [Ref: LIR_Assembler::ic_call() ]
  3297  */
  3298 enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  3299     MacroAssembler _masm(&cbuf);
  3300 	__ block_comment("Java_Dynamic_Call");
  3301 	__ ic_call((address)$meth$$method);
  3302   %}
  3305   enc_class Set_Flags_After_Fast_Lock_Unlock(FlagsReg cr) %{
  3306     Register flags = $cr$$Register;
  3307     Label  L;
  3309     MacroAssembler _masm(&cbuf);
  3311     __ addu(flags, R0, R0);    
  3312     __ beq(AT, R0, L);
  3313     __ delayed()->nop();
  3314     __ move(flags, 0xFFFFFFFF);
  3315     __ bind(L);
  3316   %}
  3318   enc_class enc_PartialSubtypeCheck(mRegP result, mRegP sub, mRegP super, mRegI tmp) %{
  3319     Register result = $result$$Register;
  3320     Register sub    = $sub$$Register;
  3321     Register super  = $super$$Register;
  3322     Register length = $tmp$$Register;
  3323     Register tmp    = T9;
  3324     Label miss;
  3326     /* 2012/9/28 Jin: result may be the same as sub
  3327      *    47c   B40: #    B21 B41 <- B20  Freq: 0.155379
  3328      *    47c     partialSubtypeCheck result=S1, sub=S1, super=S3, length=S0
  3329      *    4bc     mov   S2, NULL #@loadConP
  3330      *    4c0     beq   S1, S2, B21 #@branchConP  P=0.999999 C=-1.000000
  3331     */
  3332     MacroAssembler _masm(&cbuf);
  3333     Label done;
  3334     __ check_klass_subtype_slow_path(sub, super, length, tmp,
  3335                                      NULL, &miss,
  3336                                      /*set_cond_codes:*/ true);
  3337     /* 2013/7/22 Jin: Refer to X86_64's RDI */
  3338     __ move(result, 0);
  3339     __ b(done);
  3340     __ nop();
  3342     __ bind(miss);
  3343     __ move(result, 1);
  3344     __ bind(done);
  3345   %}
  3347 %}
  3350 //---------MIPS FRAME--------------------------------------------------------------
  3351 // Definition of frame structure and management information.
  3352 //
  3353 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3354 //                             |   (to get allocators register number
  3355 //  G  Owned by    |        |  v    add SharedInfo::stack0)
  3356 //  r   CALLER     |        |
  3357 //  o     |        +--------+      pad to even-align allocators stack-slot 
  3358 //  w     V        |  pad0  |        numbers; owned by CALLER
  3359 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3360 //  h     ^        |   in   |  5   
  3361 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3362 //  |     |    old |        |  3
  3363 //  |     |     SP-+--------+----> Matcher::_old_SP, even aligned
  3364 //  v     |        |  ret   |  3   return address
  3365 //     Owned by    +--------+
  3366 //      Self       |  pad2  |  2   pad to align old SP
  3367 //        |        +--------+  1
  3368 //        |        | locks  |  0
  3369 //        |        +--------+----> SharedInfo::stack0, even aligned  
  3370 //        |        |  pad1  | 11   pad to align new SP
  3371 //        |        +--------+
  3372 //        |        |        | 10
  3373 //        |        | spills |  9   spills
  3374 //        V        |        |  8   (pad0 slot for callee)
  3375 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3376 //        ^        |  out   |  7   
  3377 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3378 //   Owned by  new |				|
  3379 //		Callee    SP-+--------+----> Matcher::_new_SP, even aligned
  3380 //           			 |        |
  3381 //
  3382 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is 
  3383 //         known from SELF's arguments and the Java calling convention.
  3384 //         Region 6-7 is determined per call site.
  3385 // Note 2: If the calling convention leaves holes in the incoming argument 
  3386 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3387 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3388 //         incoming area, as the Java calling convention is completely under
  3389 //         the control of the AD file.  Doubles can be sorted and packed to
  3390 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3391 //         varargs C calling conventions.
  3392 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is 
  3393 //         even aligned with pad0 as needed.
  3394 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3395 //         region 6-11 is even aligned; it may be padded out more so that
  3396 //         the region from SP to FP meets the minimum stack alignment.
  3397 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  3398 //         alignment.  Region 11, pad1, may be dynamically extended so that
  3399 //         SP meets the minimum alignment.
  3402 frame %{
  3404   stack_direction(TOWARDS_LOW);
  3406   // These two registers define part of the calling convention 
  3407   // between compiled code and the interpreter.
  3408 	// SEE StartI2CNode::calling_convention & StartC2INode::calling_convention & StartOSRNode::calling_convention 
  3409 	// for more information. by yjl 3/16/2006
  3411   inline_cache_reg(T1);                // Inline Cache Register
  3412   interpreter_method_oop_reg(S3);      // Method Oop Register when calling interpreter
  3413  /*
  3414   inline_cache_reg(T1);          // Inline Cache Register or methodOop for I2C
  3415   interpreter_arg_ptr_reg(A0);         // Argument pointer for I2C adapters
  3416 */
  3418   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3419   cisc_spilling_operand_name(indOffset32);  
  3421   // Number of stack slots consumed by locking an object
  3422 	// generate Compile::sync_stack_slots
  3423 #ifdef _LP64
  3424   sync_stack_slots(2);
  3425 #else
  3426   sync_stack_slots(1);
  3427 #endif
  3429   frame_pointer(SP);
  3431   // Interpreter stores its frame pointer in a register which is 
  3432   // stored to the stack by I2CAdaptors.
  3433   // I2CAdaptors convert from interpreted java to compiled java.
  3435   interpreter_frame_pointer(FP);
  3437 	// generate Matcher::stack_alignment
  3438   stack_alignment(StackAlignmentInBytes);  //wordSize = sizeof(char*);            
  3440   // Number of stack slots between incoming argument block and the start of 
  3441   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3442   // EPILOG must remove this many slots.  Intel needs one slot for
  3443   // return address.
  3444 	// generate Matcher::in_preserve_stack_slots
  3445   //in_preserve_stack_slots(VerifyStackAtCalls + 2);  //Now VerifyStackAtCalls is defined as false ! Leave one stack slot for ra and fp
  3446   in_preserve_stack_slots(4);  //Now VerifyStackAtCalls is defined as false ! Leave two stack slots for ra and fp
  3448   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3449   // for calls to C.  Supports the var-args backing area for register parms.
  3450   varargs_C_out_slots_killed(0);
  3452   // The after-PROLOG location of the return address.  Location of
  3453   // return address specifies a type (REG or STACK) and a number
  3454   // representing the register number (i.e. - use a register name) or
  3455   // stack slot.
  3456   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3457   // Otherwise, it is above the locks and verification slot and alignment word
  3458   //return_addr(STACK -1+ round_to(1+VerifyStackAtCalls+Compile::current()->sync()*Compile::current()->sync_stack_slots(),WordsPerLong));
  3459   return_addr(REG RA);
  3461   // Body of function which returns an integer array locating
  3462   // arguments either in registers or in stack slots.  Passed an array
  3463   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3464   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3465   // arguments for a CALLEE.  Incoming stack arguments are
  3466   // automatically biased by the preserve_stack_slots field above.
  3469 	// will generated to Matcher::calling_convention(OptoRegPair *sig, uint length, bool is_outgoing)
  3470 	// StartNode::calling_convention call this. by yjl 3/16/2006
  3471   calling_convention %{           
  3472     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3473   %}
  3478   // Body of function which returns an integer array locating
  3479   // arguments either in registers or in stack slots.  Passed an array
  3480   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3481   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3482   // arguments for a CALLEE.  Incoming stack arguments are
  3483   // automatically biased by the preserve_stack_slots field above.
  3486 	// SEE CallRuntimeNode::calling_convention for more information. by yjl 3/16/2006
  3487   c_calling_convention %{          
  3488    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3489   %}
  3492   // Location of C & interpreter return values
  3493 	// register(s) contain(s) return value for Op_StartI2C and Op_StartOSR. 
  3494 	// SEE Matcher::match. by yjl 3/16/2006
  3495   c_return_value %{
  3496     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3497                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3498     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,    V0_num };
  3499     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,  V0_H_num };
  3500     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3501   %}
  3503   // Location of return values
  3504 	// register(s) contain(s) return value for Op_StartC2I and Op_Start. 
  3505 	// SEE Matcher::match. by yjl 3/16/2006
  3507   return_value %{
  3508     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3509                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3510     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,     V0_num };
  3511     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,   V0_H_num};
  3512     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3513   %}
  3515 %}
  3517 //----------ATTRIBUTES---------------------------------------------------------
  3518 //----------Operand Attributes-------------------------------------------------
  3519 op_attrib op_cost(0);        // Required cost attribute
  3521 //----------Instruction Attributes---------------------------------------------
  3522 ins_attrib ins_cost(100);       // Required cost attribute
  3523 ins_attrib ins_size(32);         // Required size attribute (in bits)
  3524 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  3525 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3526                                 // non-matching short branch variant of some
  3527                                                             // long branch?
  3528 ins_attrib ins_alignment(4);    // Required alignment attribute (must be a power of 2)
  3529                                 // specifies the alignment that some part of the instruction (not
  3530                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3531                                 // function must be provided for the instruction
  3533 //----------OPERANDS-----------------------------------------------------------
  3534 // Operand definitions must precede instruction definitions for correct parsing
  3535 // in the ADLC because operands constitute user defined types which are used in
  3536 // instruction definitions.
  3538 // Vectors
  3539 operand vecD() %{
  3540   constraint(ALLOC_IN_RC(dbl_reg));
  3541   match(VecD);
  3543   format %{ %}
  3544   interface(REG_INTER);
  3545 %}
  3547 // Flags register, used as output of compare instructions
  3548 operand FlagsReg() %{
  3549   constraint(ALLOC_IN_RC(mips_flags));
  3550   match(RegFlags);
  3552   format %{ "EFLAGS" %}
  3553   interface(REG_INTER);
  3554 %}
  3556 //----------Simple Operands----------------------------------------------------
  3557 //TODO: Should we need to define some more special immediate number ?
  3558 // Immediate Operands
  3559 // Integer Immediate
  3560 operand immI() %{
  3561   match(ConI);
  3562   //TODO: should not match immI8 here LEE
  3563   match(immI8);
  3565   op_cost(20);
  3566   format %{ %}
  3567   interface(CONST_INTER);
  3568 %}
  3570 // Long Immediate 8-bit
  3571 operand immL8()
  3572 %{
  3573   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  3574   match(ConL);
  3576   op_cost(5);
  3577   format %{ %}
  3578   interface(CONST_INTER);
  3579 %}
  3581 // Constant for test vs zero
  3582 operand immI0() %{
  3583   predicate(n->get_int() == 0);
  3584   match(ConI);
  3586   op_cost(0);
  3587   format %{ %}
  3588   interface(CONST_INTER);
  3589 %}
  3591 // Constant for increment
  3592 operand immI1() %{
  3593   predicate(n->get_int() == 1);
  3594   match(ConI);
  3596   op_cost(0);
  3597   format %{ %}
  3598   interface(CONST_INTER);
  3599 %}
  3601 // Constant for decrement
  3602 operand immI_M1() %{
  3603   predicate(n->get_int() == -1);
  3604   match(ConI);
  3606   op_cost(0);
  3607   format %{ %}
  3608   interface(CONST_INTER);
  3609 %}
  3611 // Valid scale values for addressing modes
  3612 operand immI2() %{
  3613   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3614   match(ConI);
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3620 operand immI8() %{
  3621   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3622   match(ConI);
  3624   op_cost(5);
  3625   format %{ %}
  3626   interface(CONST_INTER);
  3627 %}
  3629 operand immI16() %{
  3630   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3631   match(ConI);
  3633   op_cost(10);
  3634   format %{ %}
  3635   interface(CONST_INTER);
  3636 %}
  3638 // Constant for long shifts
  3639 operand immI_32() %{
  3640   predicate( n->get_int() == 32 );
  3641   match(ConI);
  3643   op_cost(0);
  3644   format %{ %}
  3645   interface(CONST_INTER);
  3646 %}
  3648 operand immI_63() %{
  3649   predicate( n->get_int() == 63 );
  3650   match(ConI);
  3652   op_cost(0);
  3653   format %{ %}
  3654   interface(CONST_INTER);
  3655 %}
  3657 operand immI_0_31() %{
  3658   predicate( n->get_int() >= 0 && n->get_int() <= 31 );
  3659   match(ConI);
  3661   op_cost(0);
  3662   format %{ %}
  3663   interface(CONST_INTER);
  3664 %}
  3666 // Operand for non-negtive integer mask
  3667 operand immI_nonneg_mask() %{
  3668   predicate( (n->get_int() >= 0) && (Assembler::is_int_mask(n->get_int()) != -1) );
  3669   match(ConI);
  3671   op_cost(0);
  3672   format %{ %}
  3673   interface(CONST_INTER);
  3674 %}
  3676 operand immI_32_63() %{
  3677   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3678   match(ConI);
  3679   op_cost(0);
  3681   format %{ %}
  3682   interface(CONST_INTER);
  3683 %}
  3685 operand immI16_sub() %{
  3686   predicate((-32767 <= n->get_int()) && (n->get_int() <= 32768));
  3687   match(ConI);
  3689   op_cost(10);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 operand immI_0_32767() %{
  3695   predicate( n->get_int() >= 0 && n->get_int() <= 32767 );
  3696   match(ConI);
  3697   op_cost(0);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 operand immI_0_65535() %{
  3704   predicate( n->get_int() >= 0 && n->get_int() <= 65535 );
  3705   match(ConI);
  3706   op_cost(0);
  3708   format %{ %}
  3709   interface(CONST_INTER);
  3710 %}
  3712 operand immI_1() %{
  3713   predicate( n->get_int() == 1 );
  3714   match(ConI);
  3716   op_cost(0);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 operand immI_2() %{
  3722   predicate( n->get_int() == 2 );
  3723   match(ConI);
  3725   op_cost(0);
  3726   format %{ %}
  3727   interface(CONST_INTER);
  3728 %}
  3730 operand immI_3() %{
  3731   predicate( n->get_int() == 3 );
  3732   match(ConI);
  3734   op_cost(0);
  3735   format %{ %}
  3736   interface(CONST_INTER);
  3737 %}
  3739 operand immI_7() %{
  3740   predicate( n->get_int() == 7 );
  3741   match(ConI);
  3743   format %{ %}
  3744   interface(CONST_INTER);
  3745 %}
  3747 // Immediates for special shifts (sign extend)
  3749 // Constants for increment
  3750 operand immI_16() %{
  3751   predicate( n->get_int() == 16 );
  3752   match(ConI);
  3754   format %{ %}
  3755   interface(CONST_INTER);
  3756 %}
  3758 operand immI_24() %{
  3759   predicate( n->get_int() == 24 );
  3760   match(ConI);
  3762   format %{ %}
  3763   interface(CONST_INTER);
  3764 %}
  3766 // Constant for byte-wide masking
  3767 operand immI_255() %{
  3768   predicate( n->get_int() == 255 );
  3769   match(ConI);
  3771   op_cost(0);
  3772   format %{ %}
  3773   interface(CONST_INTER);
  3774 %}
  3776 operand immI_65535() %{
  3777   predicate( n->get_int() == 65535 );
  3778   match(ConI);
  3780   op_cost(5);
  3781   format %{ %}
  3782   interface(CONST_INTER);
  3783 %}
  3785 operand immI_65536() %{
  3786   predicate( n->get_int() == 65536 );
  3787   match(ConI);
  3789   op_cost(5);
  3790   format %{ %}
  3791   interface(CONST_INTER);
  3792 %}
  3794 // Pointer Immediate
  3795 operand immP() %{
  3796   match(ConP);
  3798   op_cost(10);
  3799   format %{ %}
  3800   interface(CONST_INTER);
  3801 %}
  3803 operand immP31()
  3804 %{
  3805   predicate(n->as_Type()->type()->reloc() == relocInfo::none
  3806             && (n->get_ptr() >> 31) == 0);
  3807   match(ConP);
  3809   op_cost(5);
  3810   format %{ %} 
  3811   interface(CONST_INTER);
  3812 %}
  3814 // NULL Pointer Immediate
  3815 operand immP0() %{
  3816   predicate( n->get_ptr() == 0 );
  3817   match(ConP);
  3818   op_cost(0);
  3820   format %{ %}
  3821   interface(CONST_INTER);
  3822 %}
  3824 // Pointer Immediate: 64-bit
  3825 operand immP_set() %{
  3826   match(ConP);
  3828   op_cost(5);
  3829   // formats are generated automatically for constants and base registers
  3830   format %{ %}
  3831   interface(CONST_INTER);
  3832 %}
  3834 // Pointer Immediate: 64-bit
  3835 operand immP_load() %{
  3836   predicate(n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set64(n->get_ptr()) > 3));
  3837   match(ConP);
  3839   op_cost(5);
  3840   // formats are generated automatically for constants and base registers
  3841   format %{ %}
  3842   interface(CONST_INTER);
  3843 %}
  3845 // Pointer Immediate: 64-bit
  3846 operand immP_no_oop_cheap() %{
  3847   predicate(!n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set64(n->get_ptr()) <= 3));
  3848   match(ConP);
  3850   op_cost(5);
  3851   // formats are generated automatically for constants and base registers
  3852   format %{ %}
  3853   interface(CONST_INTER);
  3854 %}
  3856 // Pointer for polling page 
  3857 operand immP_poll() %{
  3858   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3859   match(ConP);
  3860   op_cost(5);
  3862   format %{ %}
  3863   interface(CONST_INTER);
  3864 %}
  3866 // Pointer Immediate
  3867 operand immN() %{
  3868   match(ConN);
  3870   op_cost(10);
  3871   format %{ %}
  3872   interface(CONST_INTER);
  3873 %}
  3875 operand immNKlass() %{
  3876   match(ConNKlass);
  3878   op_cost(10);
  3879   format %{ %}
  3880   interface(CONST_INTER);
  3881 %}
  3883 // NULL Pointer Immediate
  3884 operand immN0() %{
  3885   predicate(n->get_narrowcon() == 0);
  3886   match(ConN);
  3888   op_cost(5);
  3889   format %{ %}
  3890   interface(CONST_INTER);
  3891 %}
  3893 // Long Immediate
  3894 operand immL() %{
  3895   match(ConL);
  3897   op_cost(20);
  3898   format %{ %}
  3899   interface(CONST_INTER);
  3900 %}
  3902 // Long Immediate zero
  3903 operand immL0() %{
  3904   predicate( n->get_long() == 0L );
  3905   match(ConL);
  3906   op_cost(0);
  3908   format %{ %}
  3909   interface(CONST_INTER);
  3910 %}
  3912 operand immL7() %{
  3913   predicate( n->get_long() == 7L );
  3914   match(ConL);
  3915   op_cost(0);
  3917   format %{ %}
  3918   interface(CONST_INTER);
  3919 %}
  3921 operand immL_M1() %{
  3922   predicate( n->get_long() == -1L );
  3923   match(ConL);
  3924   op_cost(0);
  3926   format %{ %}
  3927   interface(CONST_INTER);
  3928 %}
  3930 // bit 0..2 zero
  3931 operand immL_M8() %{
  3932   predicate( n->get_long() == -8L );
  3933   match(ConL);
  3934   op_cost(0);
  3936   format %{ %}
  3937   interface(CONST_INTER);
  3938 %}
  3940 // bit 2 zero
  3941 operand immL_M5() %{
  3942   predicate( n->get_long() == -5L );
  3943   match(ConL);
  3944   op_cost(0);
  3946   format %{ %}
  3947   interface(CONST_INTER);
  3948 %}
  3950 // bit 1..2 zero
  3951 operand immL_M7() %{
  3952   predicate( n->get_long() == -7L );
  3953   match(ConL);
  3954   op_cost(0);
  3956   format %{ %}
  3957   interface(CONST_INTER);
  3958 %}
  3960 // bit 0..1 zero
  3961 operand immL_M4() %{
  3962   predicate( n->get_long() == -4L );
  3963   match(ConL);
  3964   op_cost(0);
  3966   format %{ %}
  3967   interface(CONST_INTER);
  3968 %}
  3970 // bit 3..6 zero
  3971 operand immL_M121() %{
  3972   predicate( n->get_long() == -121L );
  3973   match(ConL);
  3974   op_cost(0);
  3976   format %{ %}
  3977   interface(CONST_INTER);
  3978 %}
  3980 // Long immediate from 0 to 127.
  3981 // Used for a shorter form of long mul by 10.
  3982 operand immL_127() %{
  3983   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3984   match(ConL);
  3985   op_cost(0);
  3987   format %{ %}
  3988   interface(CONST_INTER);
  3989 %}
  3991 // Operand for non-negtive long mask
  3992 operand immL_nonneg_mask() %{
  3993   predicate( (n->get_long() >= 0) && (Assembler::is_jlong_mask(n->get_long()) != -1) );
  3994   match(ConL);
  3996   op_cost(0);
  3997   format %{ %}
  3998   interface(CONST_INTER);
  3999 %}
  4001 operand immL_0_65535() %{
  4002   predicate( n->get_long() >= 0 && n->get_long() <= 65535 );
  4003   match(ConL);
  4004   op_cost(0);
  4006   format %{ %}
  4007   interface(CONST_INTER);
  4008 %}
  4010 // Long Immediate: cheap (materialize in <= 3 instructions)
  4011 operand immL_cheap() %{
  4012   predicate(MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  4013   match(ConL);
  4014   op_cost(0);
  4016   format %{ %}
  4017   interface(CONST_INTER);
  4018 %}
  4020 // Long Immediate: expensive (materialize in > 3 instructions)
  4021 operand immL_expensive() %{
  4022   predicate(MacroAssembler::insts_for_set64(n->get_long()) > 3);
  4023   match(ConL);
  4024   op_cost(0);
  4026   format %{ %}
  4027   interface(CONST_INTER);
  4028 %}
  4030 operand immL16() %{
  4031   predicate((-32768 <= n->get_long()) && (n->get_long() <= 32767));
  4032   match(ConL);
  4034   op_cost(10);
  4035   format %{ %}
  4036   interface(CONST_INTER);
  4037 %}
  4039 operand immL16_sub() %{
  4040   predicate((-32767 <= n->get_long()) && (n->get_long() <= 32768));
  4041   match(ConL);
  4043   op_cost(10);
  4044   format %{ %}
  4045   interface(CONST_INTER);
  4046 %}
  4048 // Long Immediate: low 32-bit mask
  4049 operand immL_32bits() %{
  4050   predicate(n->get_long() == 0xFFFFFFFFL);
  4051   match(ConL);
  4052   op_cost(20);
  4054   format %{ %}
  4055   interface(CONST_INTER);
  4056 %}
  4058 // Long Immediate 32-bit signed
  4059 operand immL32()
  4060 %{
  4061   predicate(n->get_long() == (int) (n->get_long()));
  4062   match(ConL);
  4064   op_cost(15);
  4065   format %{ %}
  4066   interface(CONST_INTER);
  4067 %}
  4070 //single-precision floating-point zero
  4071 operand immF0() %{
  4072   predicate(jint_cast(n->getf()) == 0);
  4073   match(ConF);
  4075   op_cost(5);
  4076   format %{ %}
  4077   interface(CONST_INTER);
  4078 %}
  4080 //single-precision floating-point immediate
  4081 operand immF() %{
  4082   match(ConF);
  4084   op_cost(20);
  4085   format %{ %}
  4086   interface(CONST_INTER);
  4087 %}
  4089 //double-precision floating-point zero 
  4090 operand immD0() %{
  4091   predicate(jlong_cast(n->getd()) == 0);
  4092   match(ConD);
  4094   op_cost(5);
  4095   format %{ %}
  4096   interface(CONST_INTER);
  4097 %}
  4099 //double-precision floating-point immediate
  4100 operand immD() %{
  4101   match(ConD);
  4103   op_cost(20);
  4104   format %{ %}
  4105   interface(CONST_INTER);
  4106 %}
  4108 // Register Operands
  4109 // Integer Register
  4110 operand mRegI() %{
  4111   constraint(ALLOC_IN_RC(int_reg));
  4112   match(RegI);
  4114   format %{ %}
  4115   interface(REG_INTER);
  4116 %}
  4118 operand no_Ax_mRegI() %{
  4119   constraint(ALLOC_IN_RC(no_Ax_int_reg));
  4120   match(RegI);
  4121   match(mRegI);
  4123   format %{  %}
  4124   interface(REG_INTER);
  4125 %} 
  4127 operand mS0RegI() %{
  4128   constraint(ALLOC_IN_RC(s0_reg));
  4129   match(RegI);
  4130   match(mRegI);
  4132   format %{ "S0" %}
  4133   interface(REG_INTER);
  4134 %}
  4136 operand mS1RegI() %{
  4137   constraint(ALLOC_IN_RC(s1_reg));
  4138   match(RegI);
  4139   match(mRegI);
  4141   format %{ "S1" %}
  4142   interface(REG_INTER);
  4143 %}
  4145 operand mS2RegI() %{
  4146   constraint(ALLOC_IN_RC(s2_reg));
  4147   match(RegI);
  4148   match(mRegI);
  4150   format %{ "S2" %}
  4151   interface(REG_INTER);
  4152 %}
  4154 operand mS3RegI() %{
  4155   constraint(ALLOC_IN_RC(s3_reg));
  4156   match(RegI);
  4157   match(mRegI);
  4159   format %{ "S3" %}
  4160   interface(REG_INTER);
  4161 %}
  4163 operand mS4RegI() %{
  4164   constraint(ALLOC_IN_RC(s4_reg));
  4165   match(RegI);
  4166   match(mRegI);
  4168   format %{ "S4" %}
  4169   interface(REG_INTER);
  4170 %}
  4172 operand mS5RegI() %{
  4173   constraint(ALLOC_IN_RC(s5_reg));
  4174   match(RegI);
  4175   match(mRegI);
  4177   format %{ "S5" %}
  4178   interface(REG_INTER);
  4179 %}
  4181 operand mS6RegI() %{
  4182   constraint(ALLOC_IN_RC(s6_reg));
  4183   match(RegI);
  4184   match(mRegI);
  4186   format %{ "S6" %}
  4187   interface(REG_INTER);
  4188 %}
  4190 operand mS7RegI() %{
  4191   constraint(ALLOC_IN_RC(s7_reg));
  4192   match(RegI);
  4193   match(mRegI);
  4195   format %{ "S7" %}
  4196   interface(REG_INTER);
  4197 %}
  4200 operand mT0RegI() %{
  4201   constraint(ALLOC_IN_RC(t0_reg));
  4202   match(RegI);
  4203   match(mRegI);
  4205   format %{ "T0" %}
  4206   interface(REG_INTER);
  4207 %}
  4209 operand mT1RegI() %{
  4210   constraint(ALLOC_IN_RC(t1_reg));
  4211   match(RegI);
  4212   match(mRegI);
  4214   format %{ "T1" %}
  4215   interface(REG_INTER);
  4216 %}
  4218 operand mT2RegI() %{
  4219   constraint(ALLOC_IN_RC(t2_reg));
  4220   match(RegI);
  4221   match(mRegI);
  4223   format %{ "T2" %}
  4224   interface(REG_INTER);
  4225 %}
  4227 operand mT3RegI() %{
  4228   constraint(ALLOC_IN_RC(t3_reg));
  4229   match(RegI);
  4230   match(mRegI);
  4232   format %{ "T3" %}
  4233   interface(REG_INTER);
  4234 %}
  4236 operand mT8RegI() %{
  4237   constraint(ALLOC_IN_RC(t8_reg));
  4238   match(RegI);
  4239   match(mRegI);
  4241   format %{ "T8" %}
  4242   interface(REG_INTER);
  4243 %}
  4245 operand mT9RegI() %{
  4246   constraint(ALLOC_IN_RC(t9_reg));
  4247   match(RegI);
  4248   match(mRegI);
  4250   format %{ "T9" %}
  4251   interface(REG_INTER);
  4252 %}
  4254 operand mA0RegI() %{
  4255   constraint(ALLOC_IN_RC(a0_reg));
  4256   match(RegI);
  4257   match(mRegI);
  4259   format %{ "A0" %}
  4260   interface(REG_INTER);
  4261 %}
  4263 operand mA1RegI() %{
  4264   constraint(ALLOC_IN_RC(a1_reg));
  4265   match(RegI);
  4266   match(mRegI);
  4268   format %{ "A1" %}
  4269   interface(REG_INTER);
  4270 %}
  4272 operand mA2RegI() %{
  4273   constraint(ALLOC_IN_RC(a2_reg));
  4274   match(RegI);
  4275   match(mRegI);
  4277   format %{ "A2" %}
  4278   interface(REG_INTER);
  4279 %}
  4281 operand mA3RegI() %{
  4282   constraint(ALLOC_IN_RC(a3_reg));
  4283   match(RegI);
  4284   match(mRegI);
  4286   format %{ "A3" %}
  4287   interface(REG_INTER);
  4288 %}
  4290 operand mA4RegI() %{
  4291   constraint(ALLOC_IN_RC(a4_reg));
  4292   match(RegI);
  4293   match(mRegI);
  4295   format %{ "A4" %}
  4296   interface(REG_INTER);
  4297 %}
  4299 operand mA5RegI() %{
  4300   constraint(ALLOC_IN_RC(a5_reg));
  4301   match(RegI);
  4302   match(mRegI);
  4304   format %{ "A5" %}
  4305   interface(REG_INTER);
  4306 %}
  4308 operand mA6RegI() %{
  4309   constraint(ALLOC_IN_RC(a6_reg));
  4310   match(RegI);
  4311   match(mRegI);
  4313   format %{ "A6" %}
  4314   interface(REG_INTER);
  4315 %}
  4317 operand mA7RegI() %{
  4318   constraint(ALLOC_IN_RC(a7_reg));
  4319   match(RegI);
  4320   match(mRegI);
  4322   format %{ "A7" %}
  4323   interface(REG_INTER);
  4324 %}
  4326 operand mV0RegI() %{
  4327   constraint(ALLOC_IN_RC(v0_reg));
  4328   match(RegI);
  4329   match(mRegI);
  4331   format %{ "V0" %}
  4332   interface(REG_INTER);
  4333 %}
  4335 operand mV1RegI() %{
  4336   constraint(ALLOC_IN_RC(v1_reg));
  4337   match(RegI);
  4338   match(mRegI);
  4340   format %{ "V1" %}
  4341   interface(REG_INTER);
  4342 %}
  4344 operand mRegN() %{
  4345   constraint(ALLOC_IN_RC(int_reg));
  4346   match(RegN);
  4348   format %{ %}
  4349   interface(REG_INTER);
  4350 %}
  4352 operand t0_RegN() %{
  4353   constraint(ALLOC_IN_RC(t0_reg));
  4354   match(RegN);
  4355   match(mRegN);
  4357   format %{ %}
  4358   interface(REG_INTER);
  4359 %}
  4361 operand t1_RegN() %{
  4362   constraint(ALLOC_IN_RC(t1_reg));
  4363   match(RegN);
  4364   match(mRegN);
  4366   format %{ %}
  4367   interface(REG_INTER);
  4368 %}
  4370 operand t2_RegN() %{
  4371   constraint(ALLOC_IN_RC(t2_reg));
  4372   match(RegN);
  4373   match(mRegN);
  4375   format %{ %}
  4376   interface(REG_INTER);
  4377 %}
  4379 operand t3_RegN() %{
  4380   constraint(ALLOC_IN_RC(t3_reg));
  4381   match(RegN);
  4382   match(mRegN);
  4384   format %{ %}
  4385   interface(REG_INTER);
  4386 %}
  4388 operand t8_RegN() %{
  4389   constraint(ALLOC_IN_RC(t8_reg));
  4390   match(RegN);
  4391   match(mRegN);
  4393   format %{ %}
  4394   interface(REG_INTER);
  4395 %}
  4397 operand t9_RegN() %{
  4398   constraint(ALLOC_IN_RC(t9_reg));
  4399   match(RegN);
  4400   match(mRegN);
  4402   format %{ %}
  4403   interface(REG_INTER);
  4404 %}
  4406 operand a0_RegN() %{
  4407   constraint(ALLOC_IN_RC(a0_reg));
  4408   match(RegN);
  4409   match(mRegN);
  4411   format %{ %}
  4412   interface(REG_INTER);
  4413 %}
  4415 operand a1_RegN() %{
  4416   constraint(ALLOC_IN_RC(a1_reg));
  4417   match(RegN);
  4418   match(mRegN);
  4420   format %{ %}
  4421   interface(REG_INTER);
  4422 %}
  4424 operand a2_RegN() %{
  4425   constraint(ALLOC_IN_RC(a2_reg));
  4426   match(RegN);
  4427   match(mRegN);
  4429   format %{ %}
  4430   interface(REG_INTER);
  4431 %}
  4433 operand a3_RegN() %{
  4434   constraint(ALLOC_IN_RC(a3_reg));
  4435   match(RegN);
  4436   match(mRegN);
  4438   format %{ %}
  4439   interface(REG_INTER);
  4440 %}
  4442 operand a4_RegN() %{
  4443   constraint(ALLOC_IN_RC(a4_reg));
  4444   match(RegN);
  4445   match(mRegN);
  4447   format %{ %}
  4448   interface(REG_INTER);
  4449 %}
  4451 operand a5_RegN() %{
  4452   constraint(ALLOC_IN_RC(a5_reg));
  4453   match(RegN);
  4454   match(mRegN);
  4456   format %{ %}
  4457   interface(REG_INTER);
  4458 %}
  4460 operand a6_RegN() %{
  4461   constraint(ALLOC_IN_RC(a6_reg));
  4462   match(RegN);
  4463   match(mRegN);
  4465   format %{ %}
  4466   interface(REG_INTER);
  4467 %}
  4469 operand a7_RegN() %{
  4470   constraint(ALLOC_IN_RC(a7_reg));
  4471   match(RegN);
  4472   match(mRegN);
  4474   format %{ %}
  4475   interface(REG_INTER);
  4476 %}
  4478 operand s0_RegN() %{
  4479   constraint(ALLOC_IN_RC(s0_reg));
  4480   match(RegN);
  4481   match(mRegN);
  4483   format %{ %}
  4484   interface(REG_INTER);
  4485 %}
  4487 operand s1_RegN() %{
  4488   constraint(ALLOC_IN_RC(s1_reg));
  4489   match(RegN);
  4490   match(mRegN);
  4492   format %{ %}
  4493   interface(REG_INTER);
  4494 %}
  4496 operand s2_RegN() %{
  4497   constraint(ALLOC_IN_RC(s2_reg));
  4498   match(RegN);
  4499   match(mRegN);
  4501   format %{ %}
  4502   interface(REG_INTER);
  4503 %}
  4505 operand s3_RegN() %{
  4506   constraint(ALLOC_IN_RC(s3_reg));
  4507   match(RegN);
  4508   match(mRegN);
  4510   format %{ %}
  4511   interface(REG_INTER);
  4512 %}
  4514 operand s4_RegN() %{
  4515   constraint(ALLOC_IN_RC(s4_reg));
  4516   match(RegN);
  4517   match(mRegN);
  4519   format %{ %}
  4520   interface(REG_INTER);
  4521 %}
  4523 operand s5_RegN() %{
  4524   constraint(ALLOC_IN_RC(s5_reg));
  4525   match(RegN);
  4526   match(mRegN);
  4528   format %{ %}
  4529   interface(REG_INTER);
  4530 %}
  4532 operand s6_RegN() %{
  4533   constraint(ALLOC_IN_RC(s6_reg));
  4534   match(RegN);
  4535   match(mRegN);
  4537   format %{ %}
  4538   interface(REG_INTER);
  4539 %}
  4541 operand s7_RegN() %{
  4542   constraint(ALLOC_IN_RC(s7_reg));
  4543   match(RegN);
  4544   match(mRegN);
  4546   format %{ %}
  4547   interface(REG_INTER);
  4548 %}
  4550 operand v0_RegN() %{
  4551   constraint(ALLOC_IN_RC(v0_reg));
  4552   match(RegN);
  4553   match(mRegN);
  4555   format %{ %}
  4556   interface(REG_INTER);
  4557 %}
  4559 operand v1_RegN() %{
  4560   constraint(ALLOC_IN_RC(v1_reg));
  4561   match(RegN);
  4562   match(mRegN);
  4564   format %{ %}
  4565   interface(REG_INTER);
  4566 %}
  4568 // Pointer Register
  4569 operand mRegP() %{
  4570   constraint(ALLOC_IN_RC(p_reg));
  4571   match(RegP);
  4573   format %{  %}
  4574   interface(REG_INTER);
  4575 %} 
  4577 operand no_T8_mRegP() %{
  4578   constraint(ALLOC_IN_RC(no_T8_p_reg));
  4579   match(RegP);
  4580   match(mRegP);
  4582   format %{  %}
  4583   interface(REG_INTER);
  4584 %} 
  4586 operand s0_RegP()
  4587 %{
  4588   constraint(ALLOC_IN_RC(s0_long_reg));
  4589   match(RegP);
  4590   match(mRegP);
  4591   match(no_T8_mRegP);
  4593   format %{ %}
  4594   interface(REG_INTER);
  4595 %}
  4597 operand s1_RegP()
  4598 %{
  4599   constraint(ALLOC_IN_RC(s1_long_reg));
  4600   match(RegP);
  4601   match(mRegP);
  4602   match(no_T8_mRegP);
  4604   format %{ %}
  4605   interface(REG_INTER);
  4606 %}
  4608 operand s2_RegP()
  4609 %{
  4610   constraint(ALLOC_IN_RC(s2_long_reg));
  4611   match(RegP);
  4612   match(mRegP);
  4613   match(no_T8_mRegP);
  4615   format %{ %}
  4616   interface(REG_INTER);
  4617 %}
  4619 operand s3_RegP()
  4620 %{
  4621   constraint(ALLOC_IN_RC(s3_long_reg));
  4622   match(RegP);
  4623   match(mRegP);
  4624   match(no_T8_mRegP);
  4626   format %{ %}
  4627   interface(REG_INTER);
  4628 %}
  4630 operand s4_RegP()
  4631 %{
  4632   constraint(ALLOC_IN_RC(s4_long_reg));
  4633   match(RegP);
  4634   match(mRegP);
  4635   match(no_T8_mRegP);
  4637   format %{ %}
  4638   interface(REG_INTER);
  4639 %}
  4641 operand s5_RegP()
  4642 %{
  4643   constraint(ALLOC_IN_RC(s5_long_reg));
  4644   match(RegP);
  4645   match(mRegP);
  4646   match(no_T8_mRegP);
  4648   format %{ %}
  4649   interface(REG_INTER);
  4650 %}
  4652 operand s6_RegP()
  4653 %{
  4654   constraint(ALLOC_IN_RC(s6_long_reg));
  4655   match(RegP);
  4656   match(mRegP);
  4657   match(no_T8_mRegP);
  4659   format %{ %}
  4660   interface(REG_INTER);
  4661 %}
  4663 operand s7_RegP()
  4664 %{
  4665   constraint(ALLOC_IN_RC(s7_long_reg));
  4666   match(RegP);
  4667   match(mRegP);
  4668   match(no_T8_mRegP);
  4670   format %{ %}
  4671   interface(REG_INTER);
  4672 %}
  4674 operand t0_RegP()
  4675 %{
  4676   constraint(ALLOC_IN_RC(t0_long_reg));
  4677   match(RegP);
  4678   match(mRegP);
  4679   match(no_T8_mRegP);
  4681   format %{ %}
  4682   interface(REG_INTER);
  4683 %}
  4685 operand t1_RegP()
  4686 %{
  4687   constraint(ALLOC_IN_RC(t1_long_reg));
  4688   match(RegP);
  4689   match(mRegP);
  4690   match(no_T8_mRegP);
  4692   format %{ %}
  4693   interface(REG_INTER);
  4694 %}
  4696 operand t2_RegP()
  4697 %{
  4698   constraint(ALLOC_IN_RC(t2_long_reg));
  4699   match(RegP);
  4700   match(mRegP);
  4701   match(no_T8_mRegP);
  4703   format %{ %}
  4704   interface(REG_INTER);
  4705 %}
  4707 operand t3_RegP()
  4708 %{
  4709   constraint(ALLOC_IN_RC(t3_long_reg));
  4710   match(RegP);
  4711   match(mRegP);
  4712   match(no_T8_mRegP);
  4714   format %{ %}
  4715   interface(REG_INTER);
  4716 %}
  4718 operand t8_RegP()
  4719 %{
  4720   constraint(ALLOC_IN_RC(t8_long_reg));
  4721   match(RegP);
  4722   match(mRegP);
  4724   format %{ %}
  4725   interface(REG_INTER);
  4726 %}
  4728 operand t9_RegP()
  4729 %{
  4730   constraint(ALLOC_IN_RC(t9_long_reg));
  4731   match(RegP);
  4732   match(mRegP);
  4733   match(no_T8_mRegP);
  4735   format %{ %}
  4736   interface(REG_INTER);
  4737 %}
  4739 operand a0_RegP()
  4740 %{
  4741   constraint(ALLOC_IN_RC(a0_long_reg));
  4742   match(RegP);
  4743   match(mRegP);
  4744   match(no_T8_mRegP);
  4746   format %{ %}
  4747   interface(REG_INTER);
  4748 %}
  4750 operand a1_RegP()
  4751 %{
  4752   constraint(ALLOC_IN_RC(a1_long_reg));
  4753   match(RegP);
  4754   match(mRegP);
  4755   match(no_T8_mRegP);
  4757   format %{ %}
  4758   interface(REG_INTER);
  4759 %}
  4761 operand a2_RegP()
  4762 %{
  4763   constraint(ALLOC_IN_RC(a2_long_reg));
  4764   match(RegP);
  4765   match(mRegP);
  4766   match(no_T8_mRegP);
  4768   format %{ %}
  4769   interface(REG_INTER);
  4770 %}
  4772 operand a3_RegP()
  4773 %{
  4774   constraint(ALLOC_IN_RC(a3_long_reg));
  4775   match(RegP);
  4776   match(mRegP);
  4777   match(no_T8_mRegP);
  4779   format %{ %}
  4780   interface(REG_INTER);
  4781 %}
  4783 operand a4_RegP()
  4784 %{
  4785   constraint(ALLOC_IN_RC(a4_long_reg));
  4786   match(RegP);
  4787   match(mRegP);
  4788   match(no_T8_mRegP);
  4790   format %{ %}
  4791   interface(REG_INTER);
  4792 %}
  4795 operand a5_RegP()
  4796 %{
  4797   constraint(ALLOC_IN_RC(a5_long_reg));
  4798   match(RegP);
  4799   match(mRegP);
  4800   match(no_T8_mRegP);
  4802   format %{ %}
  4803   interface(REG_INTER);
  4804 %}
  4806 operand a6_RegP()
  4807 %{
  4808   constraint(ALLOC_IN_RC(a6_long_reg));
  4809   match(RegP);
  4810   match(mRegP);
  4811   match(no_T8_mRegP);
  4813   format %{ %}
  4814   interface(REG_INTER);
  4815 %}
  4817 operand a7_RegP()
  4818 %{
  4819   constraint(ALLOC_IN_RC(a7_long_reg));
  4820   match(RegP);
  4821   match(mRegP);
  4822   match(no_T8_mRegP);
  4824   format %{ %}
  4825   interface(REG_INTER);
  4826 %}
  4828 operand v0_RegP()
  4829 %{
  4830   constraint(ALLOC_IN_RC(v0_long_reg));
  4831   match(RegP);
  4832   match(mRegP);
  4833   match(no_T8_mRegP);
  4835   format %{ %}
  4836   interface(REG_INTER);
  4837 %}
  4839 operand v1_RegP()
  4840 %{
  4841   constraint(ALLOC_IN_RC(v1_long_reg));
  4842   match(RegP);
  4843   match(mRegP);
  4844   match(no_T8_mRegP);
  4846   format %{ %}
  4847   interface(REG_INTER);
  4848 %}
  4850 /*
  4851 operand mSPRegP(mRegP reg) %{
  4852   constraint(ALLOC_IN_RC(sp_reg));
  4853   match(reg);
  4855   format %{ "SP"  %}
  4856   interface(REG_INTER);
  4857 %}
  4859 operand mFPRegP(mRegP reg) %{
  4860   constraint(ALLOC_IN_RC(fp_reg));
  4861   match(reg);
  4863   format %{ "FP"  %}
  4864   interface(REG_INTER);
  4865 %}
  4866 */
  4868 operand mRegL() %{
  4869   constraint(ALLOC_IN_RC(long_reg));
  4870   match(RegL);
  4872   format %{ %}
  4873   interface(REG_INTER);
  4874 %}
  4876 operand v0RegL() %{
  4877   constraint(ALLOC_IN_RC(v0_long_reg));
  4878   match(RegL);
  4879   match(mRegL);
  4881   format %{ %}
  4882   interface(REG_INTER);
  4883 %}
  4885 operand v1RegL() %{
  4886   constraint(ALLOC_IN_RC(v1_long_reg));
  4887   match(RegL);
  4888   match(mRegL);
  4890   format %{ %}
  4891   interface(REG_INTER);
  4892 %}
  4894 operand a0RegL() %{
  4895   constraint(ALLOC_IN_RC(a0_long_reg));
  4896   match(RegL);
  4897   match(mRegL);
  4899   format %{ "A0" %}
  4900   interface(REG_INTER);
  4901 %}
  4903 operand a1RegL() %{
  4904   constraint(ALLOC_IN_RC(a1_long_reg));
  4905   match(RegL);
  4906   match(mRegL);
  4908   format %{ %}
  4909   interface(REG_INTER);
  4910 %}
  4912 operand a2RegL() %{
  4913   constraint(ALLOC_IN_RC(a2_long_reg));
  4914   match(RegL);
  4915   match(mRegL);
  4917   format %{ %}
  4918   interface(REG_INTER);
  4919 %}
  4921 operand a3RegL() %{
  4922   constraint(ALLOC_IN_RC(a3_long_reg));
  4923   match(RegL);
  4924   match(mRegL);
  4926   format %{ %}
  4927   interface(REG_INTER);
  4928 %}
  4930 operand t0RegL() %{
  4931   constraint(ALLOC_IN_RC(t0_long_reg));
  4932   match(RegL);
  4933   match(mRegL);
  4935   format %{ %}
  4936   interface(REG_INTER);
  4937 %}
  4939 operand t1RegL() %{
  4940   constraint(ALLOC_IN_RC(t1_long_reg));
  4941   match(RegL);
  4942   match(mRegL);
  4944   format %{ %}
  4945   interface(REG_INTER);
  4946 %}
  4948 operand t2RegL() %{
  4949   constraint(ALLOC_IN_RC(t2_long_reg));
  4950   match(RegL);
  4951   match(mRegL);
  4953   format %{ %}
  4954   interface(REG_INTER);
  4955 %}
  4957 operand t3RegL() %{
  4958   constraint(ALLOC_IN_RC(t3_long_reg));
  4959   match(RegL);
  4960   match(mRegL);
  4962   format %{ %}
  4963   interface(REG_INTER);
  4964 %}
  4966 operand t8RegL() %{
  4967   constraint(ALLOC_IN_RC(t8_long_reg));
  4968   match(RegL);
  4969   match(mRegL);
  4971   format %{ %}
  4972   interface(REG_INTER);
  4973 %}
  4975 operand a4RegL() %{
  4976   constraint(ALLOC_IN_RC(a4_long_reg));
  4977   match(RegL);
  4978   match(mRegL);
  4980   format %{ %}
  4981   interface(REG_INTER);
  4982 %}
  4984 operand a5RegL() %{
  4985   constraint(ALLOC_IN_RC(a5_long_reg));
  4986   match(RegL);
  4987   match(mRegL);
  4989   format %{ %}
  4990   interface(REG_INTER);
  4991 %}
  4993 operand a6RegL() %{
  4994   constraint(ALLOC_IN_RC(a6_long_reg));
  4995   match(RegL);
  4996   match(mRegL);
  4998   format %{ %}
  4999   interface(REG_INTER);
  5000 %}
  5002 operand a7RegL() %{
  5003   constraint(ALLOC_IN_RC(a7_long_reg));
  5004   match(RegL);
  5005   match(mRegL);
  5007   format %{ %}
  5008   interface(REG_INTER);
  5009 %}
  5011 operand s0RegL() %{
  5012   constraint(ALLOC_IN_RC(s0_long_reg));
  5013   match(RegL);
  5014   match(mRegL);
  5016   format %{ %}
  5017   interface(REG_INTER);
  5018 %}
  5020 operand s1RegL() %{
  5021   constraint(ALLOC_IN_RC(s1_long_reg));
  5022   match(RegL);
  5023   match(mRegL);
  5025   format %{ %}
  5026   interface(REG_INTER);
  5027 %}
  5029 operand s2RegL() %{
  5030   constraint(ALLOC_IN_RC(s2_long_reg));
  5031   match(RegL);
  5032   match(mRegL);
  5034   format %{ %}
  5035   interface(REG_INTER);
  5036 %}
  5038 operand s3RegL() %{
  5039   constraint(ALLOC_IN_RC(s3_long_reg));
  5040   match(RegL);
  5041   match(mRegL);
  5043   format %{ %}
  5044   interface(REG_INTER);
  5045 %}
  5047 operand s4RegL() %{
  5048   constraint(ALLOC_IN_RC(s4_long_reg));
  5049   match(RegL);
  5050   match(mRegL);
  5052   format %{ %}
  5053   interface(REG_INTER);
  5054 %}
  5056 operand s7RegL() %{
  5057   constraint(ALLOC_IN_RC(s7_long_reg));
  5058   match(RegL);
  5059   match(mRegL);
  5061   format %{ %}
  5062   interface(REG_INTER);
  5063 %}
  5065 // Floating register operands
  5066 operand regF() %{
  5067   constraint(ALLOC_IN_RC(flt_reg));
  5068   match(RegF);
  5070   format %{ %}
  5071   interface(REG_INTER);
  5072 %}
  5074 //Double Precision Floating register operands
  5075 operand regD() %{
  5076   constraint(ALLOC_IN_RC(dbl_reg));
  5077   match(RegD);
  5079   format %{ %}
  5080   interface(REG_INTER);
  5081 %}
  5083 //----------Memory Operands----------------------------------------------------
  5084 // Indirect Memory Operand
  5085 operand indirect(mRegP reg) %{
  5086   constraint(ALLOC_IN_RC(p_reg));
  5087   match(reg);
  5089   format %{ "[$reg] @ indirect" %}
  5090   interface(MEMORY_INTER) %{
  5091     base($reg);
  5092     index(0x0);	/* NO_INDEX */
  5093     scale(0x0);
  5094     disp(0x0);
  5095   %}
  5096 %}
  5098 // Indirect Memory Plus Short Offset Operand
  5099 operand indOffset8(mRegP reg, immL8 off)
  5100 %{
  5101   constraint(ALLOC_IN_RC(p_reg));
  5102   match(AddP reg off);
  5104   format %{ "[$reg + $off (8-bit)] @ indOffset8" %}
  5105   interface(MEMORY_INTER) %{
  5106     base($reg);
  5107     index(0x0); /* NO_INDEX */
  5108     scale(0x0);
  5109     disp($off);
  5110   %}
  5111 %}
  5113 // Indirect Memory Times Scale Plus Index Register
  5114 operand indIndexScale(mRegP reg, mRegL lreg, immI2 scale)
  5115 %{
  5116   constraint(ALLOC_IN_RC(p_reg));
  5117   match(AddP reg (LShiftL lreg scale));
  5119   op_cost(10);
  5120   format %{"[$reg + $lreg << $scale] @ indIndexScale" %}
  5121   interface(MEMORY_INTER) %{
  5122     base($reg);
  5123     index($lreg);
  5124     scale($scale);
  5125     disp(0x0);
  5126   %}
  5127 %}
  5130 // [base + index + offset] 
  5131 operand baseIndexOffset8(mRegP base, mRegL index, immL8 off)
  5132 %{
  5133   constraint(ALLOC_IN_RC(p_reg));
  5134   op_cost(5);
  5135   match(AddP (AddP base index) off);
  5137   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8" %}
  5138   interface(MEMORY_INTER) %{
  5139     base($base);
  5140     index($index);
  5141     scale(0x0);
  5142     disp($off);
  5143   %}
  5144 %}
  5146 // [base + index + offset] 
  5147 operand baseIndexOffset8_convI2L(mRegP base, mRegI index, immL8 off)
  5148 %{
  5149   constraint(ALLOC_IN_RC(p_reg));
  5150   op_cost(5);
  5151   match(AddP (AddP base (ConvI2L index)) off);
  5153   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8_convI2L" %}
  5154   interface(MEMORY_INTER) %{
  5155     base($base);
  5156     index($index);
  5157     scale(0x0);
  5158     disp($off);
  5159   %}
  5160 %}
  5162 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5163 operand indIndexScaleOffset8(mRegP reg, immL8 off, mRegL lreg, immI2 scale)
  5164 %{
  5165   constraint(ALLOC_IN_RC(p_reg));
  5166   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5168   op_cost(10);
  5169   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffset8" %}
  5170   interface(MEMORY_INTER) %{
  5171     base($reg);
  5172     index($lreg);
  5173     scale($scale);
  5174     disp($off);
  5175   %}
  5176 %}
  5178 operand indIndexScaleOffset8_convI2L(mRegP reg, immL8 off, mRegI ireg, immI2 scale)
  5179 %{
  5180   constraint(ALLOC_IN_RC(p_reg));
  5181   match(AddP (AddP reg (LShiftL (ConvI2L ireg) scale)) off);
  5183   op_cost(10);
  5184   format %{"[$reg + $off + $ireg << $scale] @ indIndexScaleOffset8_convI2L" %}
  5185   interface(MEMORY_INTER) %{
  5186     base($reg);
  5187     index($ireg);
  5188     scale($scale);
  5189     disp($off);
  5190   %}
  5191 %}
  5193 // [base + index<<scale + offset] 
  5194 operand basePosIndexScaleOffset8(mRegP base, mRegI index, immL8 off, immI_0_31 scale)
  5195 %{
  5196   constraint(ALLOC_IN_RC(p_reg));
  5197   //predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5198   op_cost(10);
  5199   match(AddP (AddP base (LShiftL (ConvI2L index) scale)) off);
  5201   format %{ "[$base + $index << $scale + $off (8-bit)] @ basePosIndexScaleOffset8" %}
  5202   interface(MEMORY_INTER) %{
  5203     base($base);
  5204     index($index);
  5205     scale($scale);
  5206     disp($off);
  5207   %}
  5208 %}
  5210 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5211 operand indIndexScaleOffsetNarrow(mRegN reg, immL8 off, mRegL lreg, immI2 scale)
  5212 %{
  5213   predicate(Universe::narrow_oop_shift() == 0);
  5214   constraint(ALLOC_IN_RC(p_reg));
  5215   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
  5217   op_cost(10);
  5218   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffsetNarrow" %}
  5219   interface(MEMORY_INTER) %{
  5220     base($reg);
  5221     index($lreg);
  5222     scale($scale);
  5223     disp($off);
  5224   %}
  5225 %}
  5227 // [base + index<<scale + offset] for compressd Oops
  5228 operand indPosIndexI2LScaleOffset8Narrow(mRegN base, mRegI index, immL8 off, immI_0_31 scale)
  5229 %{
  5230   constraint(ALLOC_IN_RC(p_reg));
  5231   //predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5232   predicate(Universe::narrow_oop_shift() == 0);
  5233   op_cost(10);
  5234   match(AddP (AddP (DecodeN base) (LShiftL (ConvI2L index) scale)) off);
  5236   format %{ "[$base + $index << $scale + $off (8-bit)] @ indPosIndexI2LScaleOffset8Narrow" %}
  5237   interface(MEMORY_INTER) %{
  5238     base($base);
  5239     index($index);
  5240     scale($scale);
  5241     disp($off);
  5242   %}
  5243 %}
  5245 //FIXME: I think it's better to limit the immI to be 16-bit at most!
  5246 // Indirect Memory Plus Long Offset Operand
  5247 operand indOffset32(mRegP reg, immL32 off) %{
  5248   constraint(ALLOC_IN_RC(p_reg));
  5249   op_cost(20);
  5250   match(AddP reg off);
  5252   format %{ "[$reg + $off (32-bit)] @ indOffset32" %}
  5253   interface(MEMORY_INTER) %{
  5254     base($reg);
  5255     index(0x0); 	/* NO_INDEX */
  5256     scale(0x0);
  5257     disp($off);
  5258   %}
  5259 %}
  5261 // Indirect Memory Plus Index Register 
  5262 operand indIndex(mRegP addr, mRegL index) %{
  5263   constraint(ALLOC_IN_RC(p_reg));
  5264   match(AddP addr index);
  5266   op_cost(20);
  5267   format %{"[$addr + $index] @ indIndex" %}
  5268   interface(MEMORY_INTER) %{
  5269     base($addr);
  5270     index($index);
  5271     scale(0x0);
  5272     disp(0x0);
  5273   %}
  5274 %}
  5276 operand indirectNarrowKlass(mRegN reg)
  5277 %{
  5278   predicate(Universe::narrow_klass_shift() == 0);
  5279   constraint(ALLOC_IN_RC(p_reg));
  5280   op_cost(10);
  5281   match(DecodeNKlass reg);
  5283   format %{ "[$reg] @ indirectNarrowKlass" %}
  5284   interface(MEMORY_INTER) %{
  5285     base($reg);
  5286     index(0x0);
  5287     scale(0x0);
  5288     disp(0x0);
  5289   %}
  5290 %}
  5292 operand indOffset8NarrowKlass(mRegN reg, immL8 off)
  5293 %{
  5294   predicate(Universe::narrow_klass_shift() == 0);
  5295   constraint(ALLOC_IN_RC(p_reg));
  5296   op_cost(10);
  5297   match(AddP (DecodeNKlass reg) off);
  5299   format %{ "[$reg + $off (8-bit)] @ indOffset8NarrowKlass" %}
  5300   interface(MEMORY_INTER) %{
  5301     base($reg);
  5302     index(0x0);
  5303     scale(0x0);
  5304     disp($off);
  5305   %}
  5306 %}
  5308 operand indOffset32NarrowKlass(mRegN reg, immL32 off)
  5309 %{
  5310   predicate(Universe::narrow_klass_shift() == 0);
  5311   constraint(ALLOC_IN_RC(p_reg));
  5312   op_cost(10);
  5313   match(AddP (DecodeNKlass reg) off);
  5315   format %{ "[$reg + $off (32-bit)] @ indOffset32NarrowKlass" %}
  5316   interface(MEMORY_INTER) %{
  5317     base($reg);
  5318     index(0x0);
  5319     scale(0x0);
  5320     disp($off);
  5321   %}
  5322 %}
  5324 operand indIndexOffsetNarrowKlass(mRegN reg, mRegL lreg, immL32 off)
  5325 %{
  5326   predicate(Universe::narrow_klass_shift() == 0);
  5327   constraint(ALLOC_IN_RC(p_reg));
  5328   match(AddP (AddP (DecodeNKlass reg) lreg) off);
  5330   op_cost(10);
  5331   format %{"[$reg + $off + $lreg] @ indIndexOffsetNarrowKlass" %}
  5332   interface(MEMORY_INTER) %{
  5333     base($reg);
  5334     index($lreg);
  5335     scale(0x0);
  5336     disp($off);
  5337   %}
  5338 %}
  5340 operand indIndexNarrowKlass(mRegN reg, mRegL lreg)
  5341 %{
  5342   predicate(Universe::narrow_klass_shift() == 0);
  5343   constraint(ALLOC_IN_RC(p_reg));
  5344   match(AddP (DecodeNKlass reg) lreg);
  5346   op_cost(10);
  5347   format %{"[$reg + $lreg] @ indIndexNarrowKlass" %}
  5348   interface(MEMORY_INTER) %{
  5349     base($reg);
  5350     index($lreg);
  5351     scale(0x0);
  5352     disp(0x0);
  5353   %}
  5354 %}
  5356 // Indirect Memory Operand
  5357 operand indirectNarrow(mRegN reg)
  5358 %{
  5359   predicate(Universe::narrow_oop_shift() == 0);
  5360   constraint(ALLOC_IN_RC(p_reg));
  5361   op_cost(10);
  5362   match(DecodeN reg);
  5364   format %{ "[$reg] @ indirectNarrow" %}
  5365   interface(MEMORY_INTER) %{
  5366     base($reg);
  5367     index(0x0);
  5368     scale(0x0);
  5369     disp(0x0);
  5370   %}
  5371 %}
  5373 // Indirect Memory Plus Short Offset Operand
  5374 operand indOffset8Narrow(mRegN reg, immL8 off)
  5375 %{
  5376   predicate(Universe::narrow_oop_shift() == 0);
  5377   constraint(ALLOC_IN_RC(p_reg));
  5378   op_cost(10);
  5379   match(AddP (DecodeN reg) off);
  5381   format %{ "[$reg + $off (8-bit)] @ indOffset8Narrow" %}
  5382   interface(MEMORY_INTER) %{
  5383     base($reg);
  5384     index(0x0);
  5385     scale(0x0);
  5386     disp($off);
  5387   %}
  5388 %}
  5390 // Indirect Memory Plus Index Register Plus Offset Operand
  5391 operand indIndexOffset8Narrow(mRegN reg, mRegL lreg, immL8 off)
  5392 %{
  5393   predicate(Universe::narrow_oop_shift() == 0);
  5394   constraint(ALLOC_IN_RC(p_reg));
  5395   match(AddP (AddP (DecodeN reg) lreg) off);
  5397   op_cost(10);
  5398   format %{"[$reg + $off + $lreg] @ indIndexOffset8Narrow" %}
  5399   interface(MEMORY_INTER) %{
  5400     base($reg);
  5401     index($lreg);
  5402     scale(0x0);
  5403     disp($off);
  5404   %}
  5405 %}
  5407 //----------Load Long Memory Operands------------------------------------------
  5408 // The load-long idiom will use it's address expression again after loading
  5409 // the first word of the long.  If the load-long destination overlaps with
  5410 // registers used in the addressing expression, the 2nd half will be loaded
  5411 // from a clobbered address.  Fix this by requiring that load-long use
  5412 // address registers that do not overlap with the load-long target.
  5414 // load-long support
  5415 operand load_long_RegP() %{
  5416   constraint(ALLOC_IN_RC(p_reg));
  5417   match(RegP);
  5418   match(mRegP);
  5419   op_cost(100);
  5420   format %{  %}
  5421   interface(REG_INTER);
  5422 %}
  5424 // Indirect Memory Operand Long
  5425 operand load_long_indirect(load_long_RegP reg) %{
  5426   constraint(ALLOC_IN_RC(p_reg));
  5427   match(reg);
  5429   format %{ "[$reg]" %}
  5430   interface(MEMORY_INTER) %{
  5431     base($reg);
  5432     index(0x0);
  5433     scale(0x0);
  5434     disp(0x0);
  5435   %}
  5436 %}
  5438 // Indirect Memory Plus Long Offset Operand
  5439 operand load_long_indOffset32(load_long_RegP reg, immL32 off) %{
  5440   match(AddP reg off);
  5442   format %{ "[$reg + $off]" %}
  5443   interface(MEMORY_INTER) %{
  5444     base($reg);
  5445     index(0x0);
  5446     scale(0x0);
  5447     disp($off);
  5448   %}
  5449 %}
  5451 //----------Conditional Branch Operands----------------------------------------
  5452 // Comparison Op  - This is the operation of the comparison, and is limited to
  5453 //                  the following set of codes:
  5454 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5455 //
  5456 // Other attributes of the comparison, such as unsignedness, are specified
  5457 // by the comparison instruction that sets a condition code flags register.
  5458 // That result is represented by a flags operand whose subtype is appropriate
  5459 // to the unsignedness (etc.) of the comparison.
  5460 //
  5461 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5462 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5463 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5465 // Comparision Code
  5466 operand cmpOp() %{
  5467   match(Bool);
  5469   format %{ "" %}
  5470   interface(COND_INTER) %{
  5471     equal(0x01);
  5472     not_equal(0x02);
  5473     greater(0x03);
  5474     greater_equal(0x04);
  5475     less(0x05);
  5476     less_equal(0x06);
  5477     overflow(0x7);
  5478     no_overflow(0x8);
  5479   %}
  5480 %}
  5483 // Comparision Code
  5484 // Comparison Code, unsigned compare.  Used by FP also, with
  5485 // C2 (unordered) turned into GT or LT already.  The other bits
  5486 // C0 and C3 are turned into Carry & Zero flags.
  5487 operand cmpOpU() %{
  5488   match(Bool);
  5490   format %{ "" %}
  5491   interface(COND_INTER) %{
  5492     equal(0x01);
  5493     not_equal(0x02);
  5494     greater(0x03);
  5495     greater_equal(0x04);
  5496     less(0x05);
  5497     less_equal(0x06);
  5498     overflow(0x7);
  5499     no_overflow(0x8);
  5500   %}
  5501 %}
  5503 /*
  5504 // Comparison Code, unsigned compare.  Used by FP also, with
  5505 // C2 (unordered) turned into GT or LT already.  The other bits
  5506 // C0 and C3 are turned into Carry & Zero flags.
  5507 operand cmpOpU() %{
  5508   match(Bool);
  5510   format %{ "" %}
  5511   interface(COND_INTER) %{
  5512     equal(0x4);
  5513     not_equal(0x5);
  5514     less(0x2);
  5515     greater_equal(0x3);
  5516     less_equal(0x6);
  5517     greater(0x7);
  5518   %}
  5519 %}
  5520 */
  5521 /*
  5522 // Comparison Code for FP conditional move
  5523 operand cmpOp_fcmov() %{
  5524   match(Bool);
  5526   format %{ "" %}
  5527   interface(COND_INTER) %{
  5528     equal        (0x01);
  5529     not_equal    (0x02);
  5530     greater      (0x03);
  5531     greater_equal(0x04);
  5532     less         (0x05);
  5533     less_equal   (0x06);
  5534   %}
  5535 %}
  5537 // Comparision Code used in long compares
  5538 operand cmpOp_commute() %{
  5539   match(Bool);
  5541   format %{ "" %}
  5542   interface(COND_INTER) %{
  5543     equal(0x4);
  5544     not_equal(0x5);
  5545     less(0xF);
  5546     greater_equal(0xE);
  5547     less_equal(0xD);
  5548     greater(0xC);
  5549   %}
  5550 %}
  5551 */
  5553 //----------Special Memory Operands--------------------------------------------
  5554 // Stack Slot Operand - This operand is used for loading and storing temporary
  5555 //                      values on the stack where a match requires a value to
  5556 //                      flow through memory.
  5557 operand stackSlotP(sRegP reg) %{
  5558   constraint(ALLOC_IN_RC(stack_slots));
  5559   // No match rule because this operand is only generated in matching
  5560   op_cost(50);
  5561   format %{ "[$reg]" %}
  5562   interface(MEMORY_INTER) %{
  5563     base(0x1d);  // SP
  5564     index(0x0);  // No Index
  5565     scale(0x0);  // No Scale
  5566     disp($reg);  // Stack Offset
  5567   %}
  5568 %}
  5570 operand stackSlotI(sRegI reg) %{
  5571   constraint(ALLOC_IN_RC(stack_slots));
  5572   // No match rule because this operand is only generated in matching
  5573   op_cost(50);
  5574   format %{ "[$reg]" %}
  5575   interface(MEMORY_INTER) %{
  5576     base(0x1d);  // SP
  5577     index(0x0);  // No Index
  5578     scale(0x0);  // No Scale
  5579     disp($reg);  // Stack Offset
  5580   %}
  5581 %}
  5583 operand stackSlotF(sRegF reg) %{
  5584   constraint(ALLOC_IN_RC(stack_slots));
  5585   // No match rule because this operand is only generated in matching
  5586   op_cost(50);
  5587   format %{ "[$reg]" %}
  5588   interface(MEMORY_INTER) %{
  5589     base(0x1d);  // SP
  5590     index(0x0);  // No Index
  5591     scale(0x0);  // No Scale
  5592     disp($reg);  // Stack Offset
  5593   %}
  5594 %}
  5596 operand stackSlotD(sRegD reg) %{
  5597   constraint(ALLOC_IN_RC(stack_slots));
  5598   // No match rule because this operand is only generated in matching
  5599   op_cost(50);
  5600   format %{ "[$reg]" %}
  5601   interface(MEMORY_INTER) %{
  5602     base(0x1d);  // SP
  5603     index(0x0);  // No Index
  5604     scale(0x0);  // No Scale
  5605     disp($reg);  // Stack Offset
  5606   %}
  5607 %}
  5609 operand stackSlotL(sRegL reg) %{
  5610   constraint(ALLOC_IN_RC(stack_slots));
  5611   // No match rule because this operand is only generated in matching
  5612   op_cost(50);
  5613   format %{ "[$reg]" %}
  5614   interface(MEMORY_INTER) %{
  5615     base(0x1d);  // SP
  5616     index(0x0);  // No Index
  5617     scale(0x0);  // No Scale
  5618     disp($reg);  // Stack Offset
  5619   %}
  5620 %}
  5623 //------------------------OPERAND CLASSES--------------------------------------
  5624 //opclass memory( direct, indirect, indOffset16, indOffset32, indOffset32X, indIndexOffset );
  5625 opclass memory( indirect, indirectNarrow, indOffset8, indOffset32, indIndex, indIndexScale, load_long_indirect, load_long_indOffset32, baseIndexOffset8, baseIndexOffset8_convI2L, indIndexScaleOffset8, indIndexScaleOffset8_convI2L, basePosIndexScaleOffset8, indIndexScaleOffsetNarrow, indPosIndexI2LScaleOffset8Narrow, indOffset8Narrow, indIndexOffset8Narrow); 
  5628 //----------PIPELINE-----------------------------------------------------------
  5629 // Rules which define the behavior of the target architectures pipeline.
  5631 pipeline %{
  5633 //----------ATTRIBUTES---------------------------------------------------------
  5634 attributes %{
  5635  	fixed_size_instructions;        	// Fixed size instructions
  5636  	branch_has_delay_slot;			// branch have delay slot in gs2
  5637  	max_instructions_per_bundle = 1;   	// 1 instruction per bundle
  5638  	max_bundles_per_cycle = 4;       	// Up to 4 bundles per cycle
  5639         bundle_unit_size=4;
  5640  	instruction_unit_size = 4;         	// An instruction is 4 bytes long
  5641  	instruction_fetch_unit_size = 16;  	// The processor fetches one line
  5642  	instruction_fetch_units = 1;       	// of 16 bytes
  5644  	// List of nop instructions
  5645  	nops( MachNop );
  5646  %}
  5648  //----------RESOURCES----------------------------------------------------------
  5649  // Resources are the functional units available to the machine
  5651  resources(D1, D2, D3, D4, DECODE = D1 | D2 | D3| D4,  ALU1, ALU2,  ALU = ALU1 | ALU2,  FPU1, FPU2, FPU = FPU1 | FPU2,  MEM,  BR); 
  5653  //----------PIPELINE DESCRIPTION-----------------------------------------------
  5654  // Pipeline Description specifies the stages in the machine's pipeline
  5656  // IF: fetch
  5657  // ID: decode
  5658  // RD: read 
  5659  // CA: caculate 
  5660  // WB: write back 
  5661  // CM: commit 
  5663  pipe_desc(IF, ID, RD, CA, WB, CM);
  5666  //----------PIPELINE CLASSES---------------------------------------------------
  5667  // Pipeline Classes describe the stages in which input and output are
  5668  // referenced by the hardware pipeline.
  5670  //No.1 Integer ALU reg-reg operation : dst <-- reg1 op reg2  
  5671  pipe_class ialu_regI_regI(mRegI dst, mRegI src1, mRegI src2) %{
  5672         single_instruction;
  5673  	src1   : RD(read);
  5674  	src2   : RD(read);
  5675         dst    : WB(write)+1;
  5676         DECODE : ID;
  5677  	ALU    : CA;
  5678  %}
  5680  //No.19 Integer mult operation : dst <-- reg1 mult reg2  
  5681  pipe_class ialu_mult(mRegI dst, mRegI src1, mRegI src2) %{
  5682  	src1   : RD(read);
  5683  	src2   : RD(read);
  5684         dst    : WB(write)+5;
  5685         DECODE : ID;
  5686  	ALU2   : CA;
  5687  %}
  5689  pipe_class mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  5690  	src1   : RD(read);
  5691  	src2   : RD(read);
  5692         dst    : WB(write)+10;
  5693         DECODE : ID;
  5694  	ALU2   : CA;
  5695  %}
  5697  //No.19 Integer div operation : dst <-- reg1 div reg2  
  5698  pipe_class ialu_div(mRegI dst, mRegI src1, mRegI src2) %{
  5699  	src1   : RD(read);
  5700  	src2   : RD(read);
  5701         dst    : WB(write)+10;
  5702         DECODE : ID;
  5703  	ALU2   : CA;
  5704  %}
  5706  //No.19 Integer mod operation : dst <-- reg1 mod reg2  
  5707  pipe_class ialu_mod(mRegI dst, mRegI src1, mRegI src2) %{
  5708         instruction_count(2);
  5709  	src1   : RD(read);
  5710  	src2   : RD(read);
  5711         dst    : WB(write)+10;
  5712         DECODE : ID;
  5713  	ALU2   : CA;
  5714  %}
  5716  //No.15 Long ALU reg-reg operation : dst <-- reg1 op reg2  
  5717  pipe_class ialu_regL_regL(mRegL dst, mRegL src1, mRegL src2) %{
  5718         instruction_count(2);
  5719  	src1   : RD(read);
  5720  	src2   : RD(read);
  5721         dst    : WB(write);
  5722         DECODE : ID;
  5723  	ALU    : CA;
  5724  %}
  5726  //No.18 Long ALU reg-imm16 operation : dst <-- reg1 op imm16 
  5727  pipe_class ialu_regL_imm16(mRegL dst, mRegL src) %{
  5728         instruction_count(2);
  5729  	src    : RD(read);
  5730         dst    : WB(write);
  5731         DECODE : ID;
  5732  	ALU    : CA;
  5733  %}
  5735  //no.16 load Long from memory :                     
  5736  pipe_class ialu_loadL(mRegL dst, memory mem) %{
  5737  	instruction_count(2);
  5738  	mem    : RD(read);
  5739  	dst    : WB(write)+5;
  5740         DECODE : ID;
  5741  	MEM    : RD;
  5742  %}
  5744  //No.17 Store Long to Memory :                     
  5745  pipe_class ialu_storeL(mRegL src, memory mem) %{
  5746  	instruction_count(2);
  5747  	mem    : RD(read);
  5748  	src    : RD(read);
  5749         DECODE : ID;
  5750  	MEM    : RD;
  5751  %}
  5753  //No.2 Integer ALU reg-imm16 operation : dst <-- reg1 op imm16  
  5754  pipe_class ialu_regI_imm16(mRegI dst, mRegI src) %{
  5755         single_instruction;
  5756  	src    : RD(read);
  5757         dst    : WB(write);
  5758         DECODE : ID;
  5759  	ALU    : CA;
  5760  %}
  5762  //No.3 Integer move operation : dst <-- reg  
  5763  pipe_class ialu_regI_mov(mRegI dst, mRegI src) %{
  5764  	src    : RD(read);
  5765         dst    : WB(write);
  5766         DECODE : ID;
  5767  	ALU    : CA;
  5768  %}
  5770  //No.4 No instructions : do nothing 
  5771  pipe_class empty( ) %{
  5772         instruction_count(0);
  5773  %}
  5775  //No.5 UnConditional branch :
  5776  pipe_class pipe_jump( label labl ) %{
  5777         multiple_bundles;
  5778         DECODE : ID;
  5779 	BR     : RD;
  5780  %}
  5782  //No.6 ALU Conditional branch :
  5783  pipe_class pipe_alu_branch(mRegI src1, mRegI src2, label labl ) %{
  5784         multiple_bundles;
  5785         src1   : RD(read);
  5786         src2   : RD(read);
  5787         DECODE : ID;
  5788 	BR     : RD;
  5789  %}
  5791  //no.7 load integer from memory :                     
  5792  pipe_class ialu_loadI(mRegI dst, memory mem) %{
  5793  	mem    : RD(read);
  5794  	dst    : WB(write)+3;
  5795         DECODE : ID;
  5796  	MEM    : RD;
  5797  %}
  5799  //No.8 Store Integer to Memory :                     
  5800  pipe_class ialu_storeI(mRegI src, memory mem) %{
  5801  	mem    : RD(read);
  5802  	src    : RD(read);
  5803         DECODE : ID;
  5804  	MEM    : RD;
  5805  %}
  5808  //No.10 Floating FPU reg-reg operation : dst <-- reg1 op reg2  
  5809  pipe_class fpu_regF_regF(regF dst, regF src1, regF src2) %{
  5810  	src1   : RD(read);
  5811  	src2   : RD(read);
  5812         dst    : WB(write);
  5813         DECODE : ID;
  5814  	FPU    : CA;
  5815  %}
  5817  //No.22 Floating div operation : dst <-- reg1 div reg2  
  5818  pipe_class fpu_div(regF dst, regF src1, regF src2) %{
  5819  	src1   : RD(read);
  5820  	src2   : RD(read);
  5821         dst    : WB(write);
  5822         DECODE : ID;
  5823  	FPU2   : CA;
  5824  %}
  5826  pipe_class fcvt_I2D(regD dst, mRegI src) %{
  5827  	src    : RD(read);
  5828         dst    : WB(write);
  5829         DECODE : ID;
  5830  	FPU1   : CA;
  5831  %}
  5833  pipe_class fcvt_D2I(mRegI dst, regD src) %{
  5834  	src    : RD(read);
  5835         dst    : WB(write);
  5836         DECODE : ID;
  5837  	FPU1   : CA;
  5838  %}
  5840  pipe_class pipe_mfc1(mRegI dst, regD src) %{
  5841  	src    : RD(read);
  5842         dst    : WB(write);
  5843         DECODE : ID;
  5844  	MEM    : RD;
  5845  %}
  5847  pipe_class pipe_mtc1(regD dst, mRegI src) %{
  5848  	src    : RD(read);
  5849         dst    : WB(write);
  5850         DECODE : ID;
  5851  	MEM    : RD(5);
  5852  %}
  5854  //No.23 Floating sqrt operation : dst <-- reg1 sqrt reg2  
  5855  pipe_class fpu_sqrt(regF dst, regF src1, regF src2) %{
  5856         multiple_bundles;
  5857  	src1   : RD(read);
  5858  	src2   : RD(read);
  5859         dst    : WB(write);
  5860         DECODE : ID;
  5861  	FPU2   : CA;
  5862  %}
  5864  //No.11 Load Floating from Memory :                     
  5865  pipe_class fpu_loadF(regF dst, memory mem) %{
  5866         instruction_count(1);
  5867  	mem    : RD(read);
  5868  	dst    : WB(write)+3;
  5869         DECODE : ID;
  5870  	MEM    : RD;
  5871  %}
  5873  //No.12 Store Floating to Memory :                     
  5874  pipe_class fpu_storeF(regF src, memory mem) %{
  5875         instruction_count(1);
  5876  	mem    : RD(read);
  5877  	src    : RD(read);
  5878         DECODE : ID;
  5879  	MEM    : RD;
  5880  %}
  5882  //No.13 FPU Conditional branch :
  5883  pipe_class pipe_fpu_branch(regF src1, regF src2, label labl ) %{
  5884         multiple_bundles;
  5885         src1   : RD(read);
  5886         src2   : RD(read);
  5887         DECODE : ID;
  5888 	BR     : RD;
  5889  %}
  5891 //No.14 Floating FPU reg operation : dst <-- op reg  
  5892  pipe_class fpu1_regF(regF dst, regF src) %{
  5893  	src    : RD(read);
  5894         dst    : WB(write);
  5895         DECODE : ID;
  5896  	FPU    : CA;
  5897  %}
  5899  pipe_class long_memory_op() %{
  5900 	instruction_count(10); multiple_bundles; force_serialization;
  5901 	fixed_latency(30);
  5902  %}
  5904  pipe_class simple_call() %{
  5905 	instruction_count(10); multiple_bundles; force_serialization;
  5906 	fixed_latency(200);
  5907 	BR     : RD;
  5908  %}
  5910  pipe_class call() %{
  5911 	instruction_count(10); multiple_bundles; force_serialization;
  5912 	fixed_latency(200);
  5913  %}
  5915  //FIXME:
  5916  //No.9 Piple slow : for multi-instructions 
  5917  pipe_class pipe_slow(  ) %{
  5918 	instruction_count(20);
  5919         force_serialization;
  5920         multiple_bundles;
  5921 	fixed_latency(50);
  5922  %}
  5924 %}
  5928 //----------INSTRUCTIONS-------------------------------------------------------
  5929 // 
  5930 // match      -- States which machine-independent subtree may be replaced 
  5931 //               by this instruction.
  5932 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5933 //               selection to identify a minimum cost tree of machine 
  5934 //               instructions that matches a tree of machine-independent 
  5935 //               instructions.
  5936 // format     -- A string providing the disassembly for this instruction.
  5937 //               The value of an instruction's operand may be inserted 
  5938 //               by referring to it with a '$' prefix.
  5939 // opcode     -- Three instruction opcodes may be provided.  These are referred 
  5940 //               to within an encode class as $primary, $secondary, and $tertiary
  5941 //               respectively.  The primary opcode is commonly used to 
  5942 //               indicate the type of machine instruction, while secondary 
  5943 //               and tertiary are often used for prefix options or addressing 
  5944 //               modes.
  5945 // ins_encode -- A list of encode classes with parameters. The encode class
  5946 //               name must have been defined in an 'enc_class' specification
  5947 //               in the encode section of the architecture description.
  5950 // Load Integer
  5951 instruct loadI(mRegI dst, memory mem) %{
  5952   match(Set dst (LoadI mem));
  5954   ins_cost(125);
  5955   format %{ "lw    $dst, $mem 	#@loadI" %}
  5956   ins_encode (load_I_enc(dst, mem));
  5957   ins_pipe( ialu_loadI );
  5958 %}
  5960 instruct loadI_convI2L(mRegL dst, memory mem) %{
  5961   match(Set dst (ConvI2L (LoadI mem)));
  5963   ins_cost(125);
  5964   format %{ "lw    $dst, $mem 	#@loadI_convI2L" %}
  5965   ins_encode (load_I_enc(dst, mem));
  5966   ins_pipe( ialu_loadI );
  5967 %}
  5969 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5970 instruct loadI2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  5971   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5973   ins_cost(125);
  5974   format %{ "lb  $dst, $mem\t# int -> byte #@loadI2B" %}
  5975   ins_encode(load_B_enc(dst, mem));
  5976   ins_pipe(ialu_loadI);
  5977 %}
  5979 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5980 instruct loadI2UB(mRegI dst, memory mem, immI_255 mask) %{
  5981   match(Set dst (AndI (LoadI mem) mask));
  5983   ins_cost(125);
  5984   format %{ "lbu  $dst, $mem\t# int -> ubyte #@loadI2UB" %}
  5985   ins_encode(load_UB_enc(dst, mem));
  5986   ins_pipe(ialu_loadI);
  5987 %}
  5989 // Load Integer (32 bit signed) to Short (16 bit signed)
  5990 instruct loadI2S(mRegI dst, memory mem, immI_16 sixteen) %{
  5991   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5993   ins_cost(125);
  5994   format %{ "lh  $dst, $mem\t# int -> short #@loadI2S" %}
  5995   ins_encode(load_S_enc(dst, mem));
  5996   ins_pipe(ialu_loadI);
  5997 %}
  5999 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6000 instruct loadI2US(mRegI dst, memory mem, immI_65535 mask) %{
  6001   match(Set dst (AndI (LoadI mem) mask));
  6003   ins_cost(125);
  6004   format %{ "lhu  $dst, $mem\t# int -> ushort/char #@loadI2US" %}
  6005   ins_encode(load_C_enc(dst, mem));
  6006   ins_pipe(ialu_loadI);
  6007 %}
  6009 // Load Long.
  6010 instruct loadL(mRegL dst, memory mem) %{
  6011 //  predicate(!((LoadLNode*)n)->require_atomic_access());
  6012   match(Set dst (LoadL mem));
  6014   ins_cost(250);
  6015   format %{ "ld    $dst, $mem   #@loadL" %}
  6016   ins_encode(load_L_enc(dst, mem));
  6017   ins_pipe( ialu_loadL );
  6018 %}
  6020 // Load Long - UNaligned
  6021 instruct loadL_unaligned(mRegL dst, memory mem) %{
  6022   match(Set dst (LoadL_unaligned mem));
  6024   // FIXME: Jin: Need more effective ldl/ldr
  6025   ins_cost(450);
  6026   format %{ "ld    $dst, $mem   #@loadL_unaligned\n\t" %}
  6027   ins_encode(load_L_enc(dst, mem));
  6028   ins_pipe( ialu_loadL );
  6029 %}
  6031 // Store Long
  6032 instruct storeL_reg(memory mem, mRegL src) %{
  6033   predicate(!((StoreLNode*)n)->require_atomic_access());
  6034   match(Set mem (StoreL mem src));
  6036   ins_cost(200);
  6037   format %{ "sd    $mem,   $src #@storeL_reg\n" %}
  6038   ins_encode(store_L_reg_enc(mem, src));
  6039   ins_pipe( ialu_storeL );
  6040 %}
  6042 //FIXME:volatile! atomic!
  6043 // Volatile Store Long.  Must be atomic, so move it into
  6044 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6045 // target address before the store (for null-ptr checks)
  6046 // so the memory operand is used twice in the encoding.
  6047 instruct storeL_reg_atomic(memory mem, mRegL src) %{
  6048   predicate(((StoreLNode*)n)->require_atomic_access());
  6049   match(Set mem (StoreL mem src));
  6051   ins_cost(200);
  6052   format %{ "sw    $mem,   $src #@storeL_reg_atomic\n" %}
  6053   ins_encode %{
  6054     Register src = as_Register($src$$reg);
  6056     int      base = $mem$$base;
  6057     int     index = $mem$$index;
  6058     int     scale = $mem$$scale;
  6059     int      disp = $mem$$disp;
  6061     if( index != 0 ) {
  6062        if( Assembler::is_simm16(disp) ) { 
  6063           if (scale == 0) {
  6064              __ addu(AT, as_Register(base), as_Register(index));
  6065           } else {
  6066              __ dsll(AT, as_Register(index), scale);
  6067              __ addu(AT, as_Register(base), AT);
  6069           __ sd(src, AT, disp);
  6070        } else {
  6071           if (scale == 0) {
  6072              __ addu(AT, as_Register(base), as_Register(index));
  6073           } else {
  6074              __ dsll(AT, as_Register(index), scale);
  6075              __ addu(AT, as_Register(base), AT);
  6077           __ move(T9, disp);
  6078           __ addu(AT, AT, T9);
  6079           __ sd(src, AT, 0);
  6081     } else {
  6082        if( Assembler::is_simm16(disp) ) { 
  6083           __ move(AT, as_Register(base));
  6084           __ sd(src, AT, disp);
  6085        } else {
  6086           __ move(AT, as_Register(base));
  6087           __ move(T9, disp);
  6088           __ addu(AT, AT, T9);
  6089           __ sd(src, AT, 0);
  6093   %}
  6094   ins_pipe( ialu_storeL );
  6095 %}
  6097 instruct storeL_immL0(memory mem, immL0 zero) %{
  6098   match(Set mem (StoreL mem zero));
  6100   ins_cost(180);
  6101   format %{ "sd    $mem,   zero #@storeL_immL0" %}
  6102   ins_encode(store_L_immL0_enc(mem, zero));
  6103   ins_pipe( ialu_storeL );
  6104 %}
  6106 instruct storeL_imm(memory mem, immL src) %{
  6107   match(Set mem (StoreL mem src));
  6109   ins_cost(200);
  6110   format %{ "sw    $mem,   $src #@storeL_imm" %}
  6111   ins_encode(store_L_immL_enc(mem, src));
  6112   ins_pipe( ialu_storeL );
  6113 %}
  6115 // Load Compressed Pointer
  6116 instruct loadN(mRegN dst, memory mem)
  6117 %{
  6118    match(Set dst (LoadN mem));
  6120    ins_cost(125); // XXX
  6121    format %{ "lwu    $dst, $mem\t# compressed ptr @ loadN" %}
  6122 //TODO: Address should be implemented
  6123 /*
  6124    ins_encode %{
  6125      __ lwu($dst$$Register, $mem$$Address);
  6126    %}
  6127 */
  6128   ins_encode (load_N_enc(dst, mem));
  6129    ins_pipe( ialu_loadI ); // XXX
  6130 %}
  6132 // Load Pointer
  6133 instruct loadP(mRegP dst, memory mem) %{
  6134   match(Set dst (LoadP mem));
  6136   ins_cost(125);
  6137   format %{ "ld    $dst, $mem #@loadP" %}
  6138   ins_encode (load_P_enc(dst, mem));
  6139   ins_pipe( ialu_loadI );
  6140 %}
  6142 // Load Klass Pointer
  6143 instruct loadKlass(mRegP dst, memory mem) %{
  6144   match(Set dst (LoadKlass mem));
  6146   ins_cost(125);
  6147   format %{ "MOV    $dst,$mem @ loadKlass" %}
  6148   ins_encode (load_P_enc(dst, mem));
  6149   ins_pipe( ialu_loadI );
  6150 %}
  6152 // Load narrow Klass Pointer
  6153 instruct loadNKlass(mRegN dst, memory mem)
  6154 %{
  6155   match(Set dst (LoadNKlass mem));
  6157   ins_cost(125); // XXX
  6158   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadNKlass" %}
  6159   ins_encode (load_N_enc(dst, mem));
  6160 /*
  6161   ins_encode %{
  6162     __ lwu($dst$$Register, $mem$$Address);
  6163   %}
  6164 */
  6165   ins_pipe( ialu_loadI ); // XXX
  6166 %}
  6168 // Load Constant
  6169 instruct loadConI(mRegI dst, immI src) %{
  6170   match(Set dst src);
  6172   ins_cost(150);
  6173   format %{ "mov    $dst, $src #@loadConI" %}
  6174   ins_encode %{
  6175     Register dst = $dst$$Register;
  6176     int    value = $src$$constant;
  6177     __ move(dst, value);
  6178   %}
  6179   ins_pipe( ialu_regI_regI );
  6180 %}
  6182 // Load Constant 65536
  6183 instruct loadConI_65536(mRegI dst, immI_65536 src) %{
  6184   match(Set dst src);
  6186   ins_cost(100);
  6187   format %{ "mov    $dst, 65536 #@loadConI_65536" %}
  6188   ins_encode %{
  6189     Register dst = $dst$$Register;
  6191     __ lui(dst, 1);
  6192   %}
  6193   ins_pipe( ialu_regI_regI );
  6194 %}
  6196 instruct loadConL_set64(mRegL dst, immL src) %{
  6197   match(Set dst src);
  6198   ins_cost(120);
  6199   format %{ "li   $dst, $src @ loadConL_set64" %}
  6200   ins_encode %{
  6201     __ set64($dst$$Register, $src$$constant);
  6202   %}
  6203   ins_pipe(ialu_regL_regL);
  6204 %}
  6206 /*
  6207 // Load long value from constant table (predicated by immL_expensive).
  6208 instruct loadConL_load(mRegL dst, immL_expensive src) %{
  6209   match(Set dst src);
  6210   ins_cost(150);
  6211   format %{ "ld  $dst, $constantoffset[$constanttablebase] # load long $src from table @ loadConL_ldx" %}
  6212   ins_encode %{
  6213     int con_offset = $constantoffset($src);
  6215     if (Assembler::is_simm16(con_offset)) {
  6216        __ ld($dst$$Register, $constanttablebase, con_offset);
  6217     } else {
  6218        __ set64(AT, con_offset);
  6219        if (UseLoongsonISA) {
  6220           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6221        } else {
  6222           __ daddu(AT, $constanttablebase, AT);
  6223           __ ld($dst$$Register, AT, 0);
  6226   %}
  6227   ins_pipe(ialu_loadI);
  6228 %}
  6229 */
  6231 instruct loadConL16(mRegL dst, immL16 src) %{
  6232   match(Set dst src);
  6233   ins_cost(105);
  6234   format %{ "mov    $dst, $src #@loadConL16" %}
  6235   ins_encode %{
  6236     Register dst_reg = as_Register($dst$$reg);
  6237     int      value   = $src$$constant;
  6238     __ daddiu(dst_reg, R0, value);
  6239   %}
  6240   ins_pipe( ialu_regL_regL );
  6241 %}
  6244 instruct loadConL0(mRegL dst, immL0 src) %{
  6245   match(Set dst src);
  6246   ins_cost(100);
  6247   format %{ "mov    $dst, zero #@loadConL0" %}
  6248   ins_encode %{
  6249     Register dst_reg = as_Register($dst$$reg);
  6250     __ daddu(dst_reg, R0, R0);
  6251   %}
  6252   ins_pipe( ialu_regL_regL );
  6253 %}
  6255 // Load Range
  6256 instruct loadRange(mRegI dst, memory mem) %{
  6257   match(Set dst (LoadRange mem));
  6259   ins_cost(125);
  6260   format %{ "MOV    $dst,$mem @ loadRange" %}
  6261   ins_encode(load_I_enc(dst, mem));
  6262   ins_pipe( ialu_loadI );
  6263 %}
  6266 instruct storeP(memory mem, mRegP src ) %{
  6267   match(Set mem (StoreP mem src));
  6269   ins_cost(125);
  6270   format %{ "sd    $src, $mem #@storeP" %}
  6271   ins_encode(store_P_reg_enc(mem, src));
  6272   ins_pipe( ialu_storeI );
  6273 %}
  6275 /*
  6276 [Ref: loadConP]
  6278 Error:
  6279   0x2d4b6d40: lui t9, 0x4f			<--- handle
  6280   0x2d4b6d44: addiu t9, t9, 0xffff808c
  6281   0x2d4b6d48: sw t9, 0x4(s2)
  6283 OK:
  6284   0x2cc5ed40: lui t9, 0x336a 			<--- klass
  6285   0x2cc5ed44: addiu t9, t9, 0x5a10 
  6286   0x2cc5ed48: sw t9, 0x4(s2)
  6287 */
  6288 // Store Pointer Immediate; null pointers or constant oops that do not
  6289 // need card-mark barriers.
  6291 // Store NULL Pointer, mark word, or other simple pointer constant.
  6292 instruct storeImmP(memory mem, immP31 src) %{
  6293   match(Set mem (StoreP mem src));
  6295   ins_cost(150);
  6296   format %{ "mov    $mem, $src #@storeImmP" %}
  6297   ins_encode(store_P_immP_enc(mem, src));
  6298   ins_pipe( ialu_storeI );
  6299 %}
  6301 // Store Byte Immediate
  6302 instruct storeImmB(memory mem, immI8 src) %{
  6303   match(Set mem (StoreB mem src));
  6305   ins_cost(150);
  6306   format %{ "movb   $mem, $src #@storeImmB" %}
  6307   ins_encode(store_B_immI_enc(mem, src));
  6308   ins_pipe( ialu_storeI );
  6309 %}
  6311 // Store Compressed Pointer
  6312 instruct storeN(memory mem, mRegN src)
  6313 %{
  6314   match(Set mem (StoreN mem src));
  6316   ins_cost(125); // XXX
  6317   format %{ "sw    $mem, $src\t# compressed ptr @ storeN" %}
  6318   ins_encode(store_N_reg_enc(mem, src)); 
  6319   ins_pipe( ialu_storeI );
  6320 %}
  6322 instruct storeNKlass(memory mem, mRegN src)
  6323 %{
  6324   match(Set mem (StoreNKlass mem src));
  6326   ins_cost(125); // XXX
  6327   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeNKlass" %}
  6328   ins_encode(store_N_reg_enc(mem, src));
  6329   ins_pipe( ialu_storeI );
  6330 %}
  6332 instruct storeImmN0(memory mem, immN0 zero)
  6333 %{
  6334   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_klass_base() == NULL);
  6335   match(Set mem (StoreN mem zero));
  6337   ins_cost(125); // XXX
  6338   format %{ "storeN0    $mem, R12\t# compressed ptr" %}
  6339   ins_encode(storeImmN0_enc(mem, zero));
  6340   ins_pipe( ialu_storeI );
  6341 %}
  6343 instruct storeImmN(memory mem, immN src)
  6344 %{
  6345   match(Set mem (StoreN mem src));
  6347   ins_cost(150); // XXX
  6348   format %{ "storeImmN    $mem, $src\t# compressed ptr @ storeImmN" %}
  6349   ins_encode(storeImmN_enc(mem, src));
  6350   ins_pipe( ialu_storeI );
  6351 %}
  6353 instruct storeImmNKlass(memory mem, immNKlass src)
  6354 %{
  6355   match(Set mem (StoreNKlass mem src));
  6357   ins_cost(150); // XXX
  6358   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeImmNKlass" %}
  6359   ins_encode(storeImmNKlass_enc(mem, src));
  6360   ins_pipe( ialu_storeI );
  6361 %}
  6363 // Store Byte
  6364 instruct storeB(memory mem, mRegI src) %{
  6365   match(Set mem (StoreB mem src));
  6367   ins_cost(125);
  6368   format %{ "sb    $src, $mem #@storeB" %}
  6369   ins_encode(store_B_reg_enc(mem, src));
  6370   ins_pipe( ialu_storeI );
  6371 %}
  6373 // Load Byte (8bit signed)
  6374 instruct loadB(mRegI dst, memory mem) %{
  6375   match(Set dst (LoadB mem));
  6377   ins_cost(125);
  6378   format %{ "lb   $dst, $mem #@loadB" %}
  6379   ins_encode(load_B_enc(dst, mem));
  6380   ins_pipe( ialu_loadI );
  6381 %}
  6383 instruct loadB_convI2L(mRegL dst, memory mem) %{
  6384   match(Set dst (ConvI2L (LoadB mem)));
  6386   ins_cost(125);
  6387   format %{ "lb   $dst, $mem #@loadB_convI2L" %}
  6388   ins_encode(load_B_enc(dst, mem));
  6389   ins_pipe( ialu_loadI );
  6390 %}
  6392 // Load Byte (8bit UNsigned)
  6393 instruct loadUB(mRegI dst, memory mem) %{
  6394   match(Set dst (LoadUB mem));
  6396   ins_cost(125);
  6397   format %{ "lbu   $dst, $mem #@loadUB" %}
  6398   ins_encode(load_UB_enc(dst, mem));
  6399   ins_pipe( ialu_loadI );
  6400 %}
  6402 instruct loadUB_convI2L(mRegL dst, memory mem) %{
  6403   match(Set dst (ConvI2L (LoadUB mem)));
  6405   ins_cost(125);
  6406   format %{ "lbu   $dst, $mem #@loadUB_convI2L" %}
  6407   ins_encode(load_UB_enc(dst, mem));
  6408   ins_pipe( ialu_loadI );
  6409 %}
  6411 // Load Short (16bit signed)
  6412 instruct loadS(mRegI dst, memory mem) %{
  6413   match(Set dst (LoadS mem));
  6415   ins_cost(125);
  6416   format %{ "lh   $dst, $mem #@loadS" %}
  6417   ins_encode(load_S_enc(dst, mem));
  6418   ins_pipe( ialu_loadI );
  6419 %}
  6421 // Load Short (16 bit signed) to Byte (8 bit signed)
  6422 instruct loadS2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6423   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6425   ins_cost(125);
  6426   format %{ "lb $dst, $mem\t# short -> byte #@loadS2B" %}
  6427   ins_encode(load_B_enc(dst, mem));
  6428   ins_pipe(ialu_loadI);
  6429 %}
  6431 instruct loadS_convI2L(mRegL dst, memory mem) %{
  6432   match(Set dst (ConvI2L (LoadS mem)));
  6434   ins_cost(125);
  6435   format %{ "lh   $dst, $mem #@loadS_convI2L" %}
  6436   ins_encode(load_S_enc(dst, mem));
  6437   ins_pipe( ialu_loadI );
  6438 %}
  6440 // Store Integer Immediate
  6441 instruct storeImmI(memory mem, immI src) %{
  6442   match(Set mem (StoreI mem src));
  6444   ins_cost(150);
  6445   format %{ "mov    $mem, $src #@storeImmI" %}
  6446   ins_encode(store_I_immI_enc(mem, src));
  6447   ins_pipe( ialu_storeI );
  6448 %}
  6450 // Store Integer
  6451 instruct storeI(memory mem, mRegI src) %{
  6452   match(Set mem (StoreI mem src));
  6454   ins_cost(125);
  6455   format %{ "sw    $mem, $src #@storeI" %}
  6456   ins_encode(store_I_reg_enc(mem, src));
  6457   ins_pipe( ialu_storeI );
  6458 %}
  6460 instruct storeI_convL2I(memory mem, mRegL src) %{
  6461   match(Set mem (StoreI mem (ConvL2I src)));
  6463   ins_cost(125);
  6464   format %{ "sw    $mem, $src #@storeI_convL2I" %}
  6465   ins_encode(store_I_reg_enc(mem, src));
  6466   ins_pipe( ialu_storeI );
  6467 %}
  6469 // Load Float
  6470 instruct loadF(regF dst, memory mem) %{
  6471   match(Set dst (LoadF mem));
  6473   ins_cost(150);
  6474   format %{ "loadF $dst, $mem #@loadF" %}
  6475   ins_encode(load_F_enc(dst, mem));
  6476   ins_pipe( ialu_loadI );
  6477 %}
  6479 instruct loadConP_general(mRegP dst, immP src) %{
  6480   match(Set dst src);
  6482   ins_cost(120);
  6483   format %{ "li   $dst, $src #@loadConP_general" %}
  6485   ins_encode %{
  6486     Register dst = $dst$$Register;
  6487 	long* value = (long*)$src$$constant;
  6488 	bool is_need_reloc = $src->constant_reloc() != relocInfo::none;
  6490     /* During GC, klassOop may be moved to new position in the heap.
  6491      * It must be relocated.
  6492      * Refer: [c1_LIRAssembler_mips.cpp] jobject2reg()
  6493      */
  6494     if (is_need_reloc) {
  6495 		if($src->constant_reloc() == relocInfo::metadata_type){
  6496 			int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6497 			RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6499 			__ relocate(rspec);
  6500 			__ li48(dst, (long)value);
  6503 		if($src->constant_reloc() == relocInfo::oop_type){
  6504 			int oop_index = __ oop_recorder()->find_index((jobject)value);
  6505 			RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6507 			__ relocate(rspec);
  6508 			__ li48(dst, (long)value);
  6510     } else {
  6511                 __ set64(dst, (long)value);
  6513   %}
  6515   ins_pipe( ialu_regI_regI );
  6516 %}
  6518 /*
  6519 instruct loadConP_load(mRegP dst, immP_load src) %{
  6520   match(Set dst src);
  6522   ins_cost(100);
  6523   format %{ "ld     $dst, [$constanttablebase + $constantoffset] load from constant table: ptr=$src @ loadConP_load" %}
  6525   ins_encode %{
  6527     int con_offset = $constantoffset($src);
  6529     if (Assembler::is_simm16(con_offset)) {
  6530        __ ld($dst$$Register, $constanttablebase, con_offset);
  6531     } else {
  6532        __ set64(AT, con_offset);
  6533        if (UseLoongsonISA) {
  6534           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6535        } else {
  6536           __ daddu(AT, $constanttablebase, AT);
  6537           __ ld($dst$$Register, AT, 0);
  6540   %}
  6542   ins_pipe(ialu_loadI);
  6543 %}
  6544 */
  6546 instruct loadConP_no_oop_cheap(mRegP dst, immP_no_oop_cheap src) %{
  6547   match(Set dst src);
  6549   ins_cost(80);
  6550   format %{ "li    $dst, $src @ loadConP_no_oop_cheap" %}
  6552   ins_encode %{
  6553     __ set64($dst$$Register, $src$$constant);
  6554   %}
  6556   ins_pipe(ialu_regI_regI);
  6557 %}
  6560 instruct loadConP_poll(mRegP dst, immP_poll src) %{
  6561   match(Set dst src);
  6563   ins_cost(50);
  6564   format %{ "li   $dst, $src #@loadConP_poll" %}
  6566   ins_encode %{
  6567     Register dst = $dst$$Register;
  6568     intptr_t value = (intptr_t)$src$$constant;
  6570     __ set64(dst, (jlong)value);
  6571   %}
  6573   ins_pipe( ialu_regI_regI );
  6574 %}
  6576 instruct loadConP0(mRegP dst, immP0 src)
  6577 %{
  6578   match(Set dst src); 
  6580   ins_cost(50);
  6581   format %{ "mov    $dst, R0\t# ptr" %}
  6582   ins_encode %{
  6583      Register dst_reg = $dst$$Register;
  6584      __ daddu(dst_reg, R0, R0);
  6585   %}
  6586   ins_pipe( ialu_regI_regI );
  6587 %}
  6589 instruct loadConN0(mRegN dst, immN0 src) %{
  6590   match(Set dst src);
  6591   format %{ "move    $dst, R0\t# compressed NULL ptr" %}
  6592   ins_encode %{
  6593     __ move($dst$$Register, R0);
  6594   %}
  6595   ins_pipe( ialu_regI_regI );
  6596 %}
  6598 instruct loadConN(mRegN dst, immN src) %{
  6599   match(Set dst src);
  6601   ins_cost(125);
  6602   format %{ "li    $dst, $src\t# compressed ptr @ loadConN" %}
  6603   ins_encode %{
  6604     address con = (address)$src$$constant;
  6605     if (con == NULL) {
  6606       ShouldNotReachHere();
  6607     } else {
  6608 		assert (UseCompressedOops, "should only be used for compressed headers");
  6609 		assert (Universe::heap() != NULL, "java heap should be initialized");
  6610 		assert (__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6612 		Register dst = $dst$$Register;
  6613 		long*   value = (long*)$src$$constant;
  6614 		int oop_index = __ oop_recorder()->find_index((jobject)value);
  6615 		RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6616 		if(rspec.type()!=relocInfo::none){
  6617 			__ relocate(rspec, Assembler::narrow_oop_operand);
  6618 			__ li48(dst, oop_index);
  6619 		} else {
  6620 			__ set64(dst, oop_index);
  6623   %}
  6624   ins_pipe( ialu_regI_regI ); // XXX
  6625 %}
  6627 instruct loadConNKlass(mRegN dst, immNKlass src) %{
  6628   match(Set dst src);
  6630   ins_cost(125);
  6631   format %{ "li    $dst, $src\t# compressed klass ptr @ loadConNKlass" %}
  6632   ins_encode %{
  6633     address con = (address)$src$$constant;
  6634     if (con == NULL) {
  6635       ShouldNotReachHere();
  6636     } else {
  6637 		Register dst = $dst$$Register;
  6638 		long*   value = (long*)$src$$constant;
  6640 		int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6641 		RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6642 		long narrowp = (long)Klass::encode_klass((Klass*)value);
  6644 		if(rspec.type()!=relocInfo::none){
  6645 			__ relocate(rspec, Assembler::narrow_oop_operand);
  6646 			__ li48(dst, narrowp);
  6647 		} else {
  6648 			__ set64(dst, narrowp);
  6651   %}
  6652   ins_pipe( ialu_regI_regI ); // XXX
  6653 %}
  6655 //FIXME
  6656 // Tail Call; Jump from runtime stub to Java code.
  6657 // Also known as an 'interprocedural jump'.
  6658 // Target of jump will eventually return to caller.
  6659 // TailJump below removes the return address.
  6660 instruct TailCalljmpInd(mRegP jump_target, mRegP method_oop) %{
  6661   match(TailCall jump_target method_oop );
  6662   ins_cost(300);
  6663   format %{ "JMP    $jump_target \t# @TailCalljmpInd" %}
  6665   ins_encode %{
  6666     Register target = $jump_target$$Register;
  6667     Register    oop = $method_oop$$Register;
  6669     /* 2012/10/12 Jin: RA will be used in generate_forward_exception() */
  6670     __ push(RA);
  6672     __ move(S3, oop);
  6673     __ jr(target);
  6674     __ nop();
  6675   %}
  6677   ins_pipe( pipe_jump );
  6678 %}
  6680 // Create exception oop: created by stack-crawling runtime code.
  6681 // Created exception is now available to this handler, and is setup
  6682 // just prior to jumping to this handler.  No code emitted.
  6683 instruct CreateException( a0_RegP ex_oop )
  6684 %{
  6685   match(Set ex_oop (CreateEx));
  6687   // use the following format syntax
  6688   format %{ "# exception oop is in A0; no code emitted @CreateException" %}
  6689   ins_encode %{
  6690     /* Jin: X86 leaves this function empty */
  6691     __ block_comment("CreateException is empty in X86/MIPS");
  6692   %}
  6693   ins_pipe( empty );
  6694 //  ins_pipe( pipe_jump );
  6695 %}
  6698 /* 2012/9/14 Jin: The mechanism of exception handling is clear now.
  6700 - Common try/catch:
  6701  2012/9/14 Jin: [stubGenerator_mips.cpp] generate_forward_exception()
  6702                     |- V0, V1 are created
  6703                     |- T9 <= SharedRuntime::exception_handler_for_return_address
  6704                     `- jr T9
  6705                          `- the caller's exception_handler
  6706                                `- jr OptoRuntime::exception_blob
  6707                                       `- here
  6708 - Rethrow(e.g. 'unwind'):
  6709   * The callee:
  6710      |- an exception is triggered during execution
  6711      `- exits the callee method through RethrowException node
  6712           |- The callee pushes exception_oop(T0) and exception_pc(RA)
  6713           `- The callee jumps to OptoRuntime::rethrow_stub()
  6714   * In OptoRuntime::rethrow_stub:
  6715      |- The VM calls _rethrow_Java to determine the return address in the caller method
  6716      `- exits the stub with tailjmpInd
  6717           |- pops exception_oop(V0) and exception_pc(V1)
  6718           `- jumps to the return address(usually an exception_handler)
  6719   * The caller:
  6720      `- continues processing the exception_blob with V0/V1
  6721 */
  6723 /*
  6724 Disassembling OptoRuntime::rethrow_stub()
  6726 ; locals
  6727    0x2d3bf320: addiu sp, sp, 0xfffffff8
  6728    0x2d3bf324: sw ra, 0x4(sp)
  6729    0x2d3bf328: sw fp, 0x0(sp)
  6730    0x2d3bf32c: addu fp, sp, zero
  6731    0x2d3bf330: addiu sp, sp, 0xfffffff0
  6732    0x2d3bf334: sw ra, 0x8(sp)
  6733    0x2d3bf338: sw t0, 0x4(sp)
  6734    0x2d3bf33c: sw sp, 0x0(sp)
  6736 ; get_thread(S2)
  6737    0x2d3bf340: addu s2, sp, zero
  6738    0x2d3bf344: srl s2, s2, 12
  6739    0x2d3bf348: sll s2, s2, 2
  6740    0x2d3bf34c: lui at, 0x2c85
  6741    0x2d3bf350: addu at, at, s2
  6742    0x2d3bf354: lw s2, 0xffffcc80(at)
  6744    0x2d3bf358: lw s0, 0x0(sp)
  6745    0x2d3bf35c: sw s0, 0x118(s2)		// last_sp -> threa
  6746    0x2d3bf360: sw s2, 0xc(sp)
  6748 ; OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc)
  6749    0x2d3bf364: lw a0, 0x4(sp)
  6750    0x2d3bf368: lw a1, 0xc(sp)
  6751    0x2d3bf36c: lw a2, 0x8(sp)
  6752   ;; Java_To_Runtime
  6753    0x2d3bf370: lui t9, 0x2c34
  6754    0x2d3bf374: addiu t9, t9, 0xffff8a48
  6755    0x2d3bf378: jalr t9
  6756    0x2d3bf37c: nop
  6758    0x2d3bf380: addu s3, v0, zero		 ; S3: SharedRuntime::raw_exception_handler_for_return_address()
  6760    0x2d3bf384: lw s0, 0xc(sp)
  6761    0x2d3bf388: sw zero, 0x118(s0)
  6762    0x2d3bf38c: sw zero, 0x11c(s0)
  6763    0x2d3bf390: lw s1, 0x144(s0)			; ex_oop: S1
  6764    0x2d3bf394: addu s2, s0, zero
  6765    0x2d3bf398: sw zero, 0x144(s2)
  6766    0x2d3bf39c: lw s0, 0x4(s2)
  6767    0x2d3bf3a0: addiu s4, zero, 0x0
  6768    0x2d3bf3a4: bne s0, s4, 0x2d3bf3d4
  6769    0x2d3bf3a8: nop
  6770    0x2d3bf3ac: addiu sp, sp, 0x10
  6771    0x2d3bf3b0: addiu sp, sp, 0x8
  6772    0x2d3bf3b4: lw ra, 0xfffffffc(sp)
  6773    0x2d3bf3b8: lw fp, 0xfffffff8(sp)
  6774    0x2d3bf3bc: lui at, 0x2b48
  6775    0x2d3bf3c0: lw at, 0x100(at)
  6777 ; tailjmpInd: Restores exception_oop & exception_pc
  6778    0x2d3bf3c4: addu v1, ra, zero
  6779    0x2d3bf3c8: addu v0, s1, zero
  6780    0x2d3bf3cc: jr s3
  6781    0x2d3bf3d0: nop
  6782 ; Exception:
  6783    0x2d3bf3d4: lui s1, 0x2cc8		; generate_forward_exception()
  6784    0x2d3bf3d8: addiu s1, s1, 0x40
  6785    0x2d3bf3dc: addiu s2, zero, 0x0
  6786    0x2d3bf3e0: addiu sp, sp, 0x10
  6787    0x2d3bf3e4: addiu sp, sp, 0x8
  6788    0x2d3bf3e8: lw ra, 0xfffffffc(sp)
  6789    0x2d3bf3ec: lw fp, 0xfffffff8(sp)
  6790    0x2d3bf3f0: lui at, 0x2b48
  6791    0x2d3bf3f4: lw at, 0x100(at)
  6792 ; TailCalljmpInd 
  6793               __ push(RA);		; to be used in generate_forward_exception()
  6794    0x2d3bf3f8: addu t7, s2, zero
  6795    0x2d3bf3fc: jr s1
  6796    0x2d3bf400: nop
  6797 */
  6798 // Rethrow exception:
  6799 // The exception oop will come in the first argument position.
  6800 // Then JUMP (not call) to the rethrow stub code.
  6801 instruct RethrowException()
  6802 %{
  6803   match(Rethrow);
  6805   // use the following format syntax
  6806   format %{ "JMP    rethrow_stub #@RethrowException" %}
  6807   ins_encode %{
  6808     __ block_comment("@ RethrowException");
  6810     cbuf.set_insts_mark();
  6811     cbuf.relocate(cbuf.insts_mark(), runtime_call_Relocation::spec());
  6813     // call OptoRuntime::rethrow_stub to get the exception handler in parent method
  6814     __ li(T9, OptoRuntime::rethrow_stub());
  6815     __ jr(T9);
  6816     __ nop();
  6817   %}
  6818   ins_pipe( pipe_jump );
  6819 %}
  6821 instruct branchConP_zero(cmpOpU cmp, mRegP op1, immP0 zero, label labl) %{
  6822   match(If cmp (CmpP op1 zero));
  6823   effect(USE labl);
  6825   ins_cost(180);
  6826   format %{ "b$cmp   $op1, R0, $labl #@branchConP_zero" %}
  6828   ins_encode %{
  6829     Register op1 = $op1$$Register;
  6830     Register op2 = R0;
  6831     Label    &L  = *($labl$$label);
  6832     int     flag = $cmp$$cmpcode;
  6834     switch(flag)
  6836       case 0x01: //equal
  6837 	if (&L)
  6838         	__ beq(op1, op2, L); 
  6839 	else 
  6840         	__ beq(op1, op2, (int)0); 
  6841         break;
  6842       case 0x02: //not_equal
  6843 	if (&L)
  6844         	__ bne(op1, op2, L); 
  6845 	else
  6846         	__ bne(op1, op2, (int)0); 
  6847         break;
  6848 /*
  6849       case 0x03: //above
  6850         __ sltu(AT, op2, op1);
  6851         if(&L)
  6852         	__ bne(R0, AT, L); 
  6853         else
  6854                 __ bne(R0, AT, (int)0);
  6855         break;
  6856       case 0x04: //above_equal
  6857         __ sltu(AT, op1, op2);
  6858         if(&L)
  6859        	        __ beq(AT, R0, L);
  6860         else
  6861        	        __ beq(AT, R0, (int)0);
  6862         break;
  6863       case 0x05: //below
  6864         __ sltu(AT, op1, op2);
  6865         if(&L)
  6866       		 __ bne(R0, AT, L); 
  6867         else
  6868         	 __ bne(R0, AT, (int)0);
  6869         break;
  6870       case 0x06: //below_equal
  6871         __ sltu(AT, op2, op1);
  6872         if(&L)
  6873         	__ beq(AT, R0, L);
  6874         else
  6875         	__ beq(AT, R0, (int)0);
  6876        break;
  6877 */
  6878       default:
  6879           Unimplemented();
  6881     __ nop();
  6882   %}
  6884   ins_pc_relative(1);
  6885   ins_pipe( pipe_alu_branch );
  6886 %}
  6889 instruct branchConP(cmpOpU cmp, mRegP op1, mRegP op2, label labl) %{
  6890   match(If cmp (CmpP op1 op2));
  6891 //  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  6892   effect(USE labl);
  6894   ins_cost(200);
  6895   format %{ "b$cmp   $op1, $op2, $labl #@branchConP" %}
  6897   ins_encode %{
  6898     Register op1 = $op1$$Register;
  6899     Register op2 = $op2$$Register;
  6900     Label    &L  = *($labl$$label);
  6901     int     flag = $cmp$$cmpcode;
  6903     switch(flag)
  6905       case 0x01: //equal
  6906 	if (&L)
  6907         	__ beq(op1, op2, L); 
  6908 	else 
  6909         	__ beq(op1, op2, (int)0); 
  6910         break;
  6911       case 0x02: //not_equal
  6912 	if (&L)
  6913         	__ bne(op1, op2, L); 
  6914 	else
  6915         	__ bne(op1, op2, (int)0); 
  6916         break;
  6917       case 0x03: //above
  6918         __ sltu(AT, op2, op1);
  6919         if(&L)
  6920         	__ bne(R0, AT, L); 
  6921         else
  6922                 __ bne(R0, AT, (int)0);
  6923         break;
  6924       case 0x04: //above_equal
  6925         __ sltu(AT, op1, op2);
  6926         if(&L)
  6927        	        __ beq(AT, R0, L);
  6928         else
  6929        	        __ beq(AT, R0, (int)0);
  6930         break;
  6931       case 0x05: //below
  6932         __ sltu(AT, op1, op2);
  6933         if(&L)
  6934       		 __ bne(R0, AT, L); 
  6935         else
  6936         	 __ bne(R0, AT, (int)0);
  6937         break;
  6938       case 0x06: //below_equal
  6939         __ sltu(AT, op2, op1);
  6940         if(&L)
  6941         	__ beq(AT, R0, L);
  6942         else
  6943         	__ beq(AT, R0, (int)0);
  6944        break;
  6945       default:
  6946           Unimplemented();
  6948     __ nop();
  6949   %}
  6951   ins_pc_relative(1);
  6952   ins_pipe( pipe_alu_branch );
  6953 %}
  6955 instruct cmpN_null_branch(cmpOp cmp, mRegN op1, immN0 null, label labl) %{
  6956   match(If cmp (CmpN op1 null));
  6957   effect(USE labl);
  6959   ins_cost(180);
  6960   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  6961             "BP$cmp   $labl @ cmpN_null_branch" %}
  6962   ins_encode %{
  6963     Register op1 = $op1$$Register;
  6964     Register op2 = R0;
  6965     Label    &L  = *($labl$$label);
  6966     int     flag = $cmp$$cmpcode;
  6968     switch(flag)
  6970 		case 0x01: //equal
  6971 			if (&L)
  6972 				__ beq(op1, op2, L); 
  6973 			else 
  6974 				__ beq(op1, op2, (int)0); 
  6975 			break;
  6976 		case 0x02: //not_equal
  6977 			if (&L)
  6978 				__ bne(op1, op2, L); 
  6979 			else
  6980 				__ bne(op1, op2, (int)0); 
  6981 			break;
  6982 		default:
  6983           Unimplemented();
  6985     __ nop();
  6986   %}
  6987 //TODO: pipe_branchP or create pipe_branchN LEE
  6988   ins_pc_relative(1);
  6989   ins_pipe( pipe_alu_branch );
  6990 %}
  6992 instruct cmpN_reg_branch(cmpOp cmp, mRegN op1, mRegN op2, label labl) %{
  6993   match(If cmp (CmpN op1 op2));
  6994   effect(USE labl);
  6996   ins_cost(180);
  6997   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  6998             "BP$cmp   $labl" %}
  6999   ins_encode %{
  7000     Register op1_reg = $op1$$Register;
  7001     Register op2_reg = $op2$$Register;
  7002     Label    &L  = *($labl$$label);
  7003     int     flag = $cmp$$cmpcode;
  7005     switch(flag)
  7007 		case 0x01: //equal
  7008 			if (&L)
  7009 				__ beq(op1_reg, op2_reg, L); 
  7010 			else 
  7011 				__ beq(op1_reg, op2_reg, (int)0); 
  7012 			break;
  7013 		case 0x02: //not_equal
  7014 			if (&L)
  7015 				__ bne(op1_reg, op2_reg, L); 
  7016 			else
  7017 				__ bne(op1_reg, op2_reg, (int)0); 
  7018 			break;
  7019 		case 0x03: //above
  7020 			__ sltu(AT, op2_reg, op1_reg);
  7021 			if(&L)
  7022 				__ bne(R0, AT, L); 
  7023 			else
  7024 				__ bne(R0, AT, (int)0);
  7025 			break;
  7026 		case 0x04: //above_equal
  7027 			__ sltu(AT, op1_reg, op2_reg);
  7028 			if(&L)
  7029 				__ beq(AT, R0, L);
  7030 			else
  7031 				__ beq(AT, R0, (int)0);
  7032 			break;
  7033 		case 0x05: //below
  7034 			__ sltu(AT, op1_reg, op2_reg);
  7035 			if(&L)
  7036 				__ bne(R0, AT, L); 
  7037 			else
  7038 				__ bne(R0, AT, (int)0);
  7039 			break;
  7040 		case 0x06: //below_equal
  7041 			__ sltu(AT, op2_reg, op1_reg);
  7042 			if(&L)
  7043 				__ beq(AT, R0, L);
  7044 			else
  7045 				__ beq(AT, R0, (int)0);
  7046 			break;
  7047 		default:
  7048           Unimplemented();
  7050     __ nop();
  7051   %}
  7052   ins_pc_relative(1);
  7053   ins_pipe( pipe_alu_branch );
  7054 %}
  7056 instruct branchConIU_reg_reg(cmpOpU cmp, mRegI src1, mRegI src2, label labl) %{
  7057   match( If cmp (CmpU src1 src2) );
  7058   effect(USE labl);
  7059   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_reg" %}
  7061   ins_encode %{
  7062     Register op1 = $src1$$Register;
  7063     Register op2 = $src2$$Register;
  7064     Label     &L = *($labl$$label);
  7065     int     flag = $cmp$$cmpcode;
  7067     switch(flag)
  7069       case 0x01: //equal
  7070 	if (&L)
  7071         	__ beq(op1, op2, L); 
  7072 	else 
  7073         	__ beq(op1, op2, (int)0); 
  7074         break;
  7075       case 0x02: //not_equal
  7076 	if (&L)
  7077         	__ bne(op1, op2, L); 
  7078 	else
  7079         	__ bne(op1, op2, (int)0); 
  7080         break;
  7081       case 0x03: //above
  7082         __ sltu(AT, op2, op1);
  7083         if(&L)
  7084         	__ bne(AT, R0, L); 
  7085         else
  7086                 __ bne(AT, R0, (int)0);
  7087         break;
  7088       case 0x04: //above_equal
  7089         __ sltu(AT, op1, op2);
  7090         if(&L)
  7091         	__ beq(AT, R0, L);
  7092         else
  7093                 __ beq(AT, R0, (int)0);
  7094         break;
  7095       case 0x05: //below
  7096         __ sltu(AT, op1, op2);
  7097         if(&L)
  7098       		 __ bne(AT, R0, L); 
  7099         else
  7100         	 __ bne(AT, R0, (int)0);
  7101         break;
  7102       case 0x06: //below_equal
  7103         __ sltu(AT, op2, op1);
  7104         if(&L)
  7105         	__ beq(AT, R0, L);
  7106         else
  7107         	__ beq(AT, R0, (int)0);
  7108         break;
  7109       default:
  7110           Unimplemented();
  7112     __ nop();
  7113   %}
  7115   ins_pc_relative(1);
  7116   ins_pipe( pipe_alu_branch );
  7117 %}
  7120 instruct branchConIU_reg_imm(cmpOpU cmp, mRegI src1, immI src2, label labl) %{
  7121   match( If cmp (CmpU src1 src2) );
  7122   effect(USE labl);
  7123   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_imm" %}
  7125   ins_encode %{
  7126     Register op1 = $src1$$Register;
  7127     int      val = $src2$$constant;
  7128     Label     &L = *($labl$$label);
  7129     int     flag = $cmp$$cmpcode;
  7131     __ move(AT, val);
  7132     switch(flag)
  7134       case 0x01: //equal
  7135 	if (&L)
  7136         	__ beq(op1, AT, L); 
  7137 	else 
  7138         	__ beq(op1, AT, (int)0); 
  7139         break;
  7140       case 0x02: //not_equal
  7141 	if (&L)
  7142         	__ bne(op1, AT, L); 
  7143 	else
  7144         	__ bne(op1, AT, (int)0); 
  7145         break;
  7146       case 0x03: //above
  7147         __ sltu(AT, AT, op1);
  7148         if(&L)
  7149         	__ bne(R0, AT, L); 
  7150         else
  7151                 __ bne(R0, AT, (int)0);
  7152         break;
  7153       case 0x04: //above_equal
  7154         __ sltu(AT, op1, AT);
  7155         if(&L)
  7156         	__ beq(AT, R0, L);
  7157         else
  7158                 __ beq(AT, R0, (int)0);
  7159         break;
  7160       case 0x05: //below
  7161         __ sltu(AT, op1, AT);
  7162         if(&L)
  7163       		 __ bne(R0, AT, L); 
  7164         else
  7165         	 __ bne(R0, AT, (int)0);
  7166         break;
  7167       case 0x06: //below_equal
  7168         __ sltu(AT, AT, op1);
  7169         if(&L)
  7170         	__ beq(AT, R0, L);
  7171         else
  7172         	__ beq(AT, R0, (int)0);
  7173        break;
  7174       default:
  7175           Unimplemented();
  7177     __ nop();
  7178   %}
  7180   ins_pc_relative(1);
  7181   ins_pipe( pipe_alu_branch );
  7182 %}
  7184 instruct branchConI_reg_reg(cmpOp cmp, mRegI src1, mRegI src2, label labl) %{
  7185   match( If cmp (CmpI src1 src2) );
  7186   effect(USE labl);
  7187   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_reg" %}
  7189   ins_encode %{
  7190     Register op1 = $src1$$Register;
  7191     Register op2 = $src2$$Register;
  7192     Label     &L = *($labl$$label);
  7193     int     flag = $cmp$$cmpcode;
  7195     switch(flag)
  7197       case 0x01: //equal
  7198 	if (&L)
  7199         	__ beq(op1, op2, L); 
  7200 	else 
  7201         	__ beq(op1, op2, (int)0); 
  7202         break;
  7203       case 0x02: //not_equal
  7204 	if (&L)
  7205         	__ bne(op1, op2, L); 
  7206 	else
  7207         	__ bne(op1, op2, (int)0); 
  7208         break;
  7209       case 0x03: //above
  7210         __ slt(AT, op2, op1);
  7211         if(&L)
  7212         	__ bne(R0, AT, L); 
  7213         else
  7214                 __ bne(R0, AT, (int)0);
  7215         break;
  7216       case 0x04: //above_equal
  7217         __ slt(AT, op1, op2);
  7218         if(&L)
  7219         	__ beq(AT, R0, L);
  7220         else
  7221                 __ beq(AT, R0, (int)0);
  7222         break;
  7223       case 0x05: //below
  7224         __ slt(AT, op1, op2);
  7225         if(&L)
  7226       		 __ bne(R0, AT, L); 
  7227         else
  7228         	 __ bne(R0, AT, (int)0);
  7229         break;
  7230       case 0x06: //below_equal
  7231         __ slt(AT, op2, op1);
  7232         if(&L)
  7233         	__ beq(AT, R0, L);
  7234         else
  7235         	__ beq(AT, R0, (int)0);
  7236        break;
  7237       default:
  7238           Unimplemented();
  7240     __ nop();
  7241   %}
  7243   ins_pc_relative(1);
  7244   ins_pipe( pipe_alu_branch );
  7245 %}
  7247 instruct branchConI_reg_imm0(cmpOp cmp, mRegI src1, immI0 src2, label labl) %{
  7248   match( If cmp (CmpI src1 src2) );
  7249   effect(USE labl);
  7250   ins_cost(170);
  7251   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm0" %}
  7253   ins_encode %{
  7254     Register op1 = $src1$$Register;
  7255 //    int      val = $src2$$constant;
  7256     Label     &L =  *($labl$$label);
  7257     int     flag = $cmp$$cmpcode;
  7259     //__ move(AT, val);
  7260     switch(flag)
  7262       case 0x01: //equal
  7263 	if (&L)
  7264         	__ beq(op1, R0, L); 
  7265 	else 
  7266         	__ beq(op1, R0, (int)0); 
  7267         break;
  7268       case 0x02: //not_equal
  7269 	if (&L)
  7270         	__ bne(op1, R0, L); 
  7271 	else
  7272         	__ bne(op1, R0, (int)0); 
  7273         break;
  7274       case 0x03: //greater
  7275         if(&L)
  7276                __ bgtz(op1, L);
  7277         else
  7278                __ bgtz(op1, (int)0);
  7279         break;
  7280       case 0x04: //greater_equal
  7281         if(&L)
  7282                __ bgez(op1, L);
  7283         else
  7284                __ bgez(op1, (int)0);
  7285         break;
  7286       case 0x05: //less
  7287         if(&L)
  7288                 __ bltz(op1, L);
  7289         else
  7290                 __ bltz(op1, (int)0);
  7291         break;
  7292       case 0x06: //less_equal
  7293         if(&L)
  7294                __ blez(op1, L);
  7295         else
  7296                __ blez(op1, (int)0);
  7297        break;
  7298       default:
  7299           Unimplemented();
  7301     __ nop();
  7302   %}
  7304   ins_pc_relative(1);
  7305   ins_pipe( pipe_alu_branch );
  7306 %}
  7309 instruct branchConI_reg_imm(cmpOp cmp, mRegI src1, immI src2, label labl) %{
  7310   match( If cmp (CmpI src1 src2) );
  7311   effect(USE labl);
  7312   ins_cost(200);
  7313   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm" %}
  7315   ins_encode %{
  7316     Register op1 = $src1$$Register;
  7317     int      val = $src2$$constant;
  7318     Label     &L =  *($labl$$label);
  7319     int     flag = $cmp$$cmpcode;
  7321     __ move(AT, val);
  7322     switch(flag)
  7324       case 0x01: //equal
  7325 	if (&L)
  7326         	__ beq(op1, AT, L); 
  7327 	else 
  7328         	__ beq(op1, AT, (int)0); 
  7329         break;
  7330       case 0x02: //not_equal
  7331 	if (&L)
  7332         	__ bne(op1, AT, L); 
  7333 	else
  7334         	__ bne(op1, AT, (int)0); 
  7335         break;
  7336       case 0x03: //greater
  7337         __ slt(AT, AT, op1);
  7338         if(&L)
  7339         	__ bne(R0, AT, L); 
  7340         else
  7341                 __ bne(R0, AT, (int)0);
  7342         break;
  7343       case 0x04: //greater_equal
  7344         __ slt(AT, op1, AT);
  7345         if(&L)
  7346         	__ beq(AT, R0, L);
  7347         else
  7348                 __ beq(AT, R0, (int)0);
  7349         break;
  7350       case 0x05: //less
  7351         __ slt(AT, op1, AT);
  7352         if(&L)
  7353       		 __ bne(R0, AT, L); 
  7354         else
  7355         	 __ bne(R0, AT, (int)0);
  7356         break;
  7357       case 0x06: //less_equal
  7358         __ slt(AT, AT, op1);
  7359         if(&L)
  7360         	__ beq(AT, R0, L);
  7361         else
  7362         	__ beq(AT, R0, (int)0);
  7363        break;
  7364       default:
  7365           Unimplemented();
  7367     __ nop();
  7368   %}
  7370   ins_pc_relative(1);
  7371   ins_pipe( pipe_alu_branch );
  7372 %}
  7374 instruct branchConIU_reg_imm0(cmpOpU cmp, mRegI src1, immI0 zero, label labl) %{
  7375   match( If cmp (CmpU src1 zero) );
  7376   effect(USE labl);
  7377   format %{ "BR$cmp   $src1, zero, $labl #@branchConIU_reg_imm0" %}
  7379   ins_encode %{
  7380     Register op1 = $src1$$Register;
  7381     Label     &L = *($labl$$label);
  7382     int     flag = $cmp$$cmpcode;
  7384     switch(flag)
  7386       case 0x01: //equal
  7387        if (&L)
  7388                __ beq(op1, R0, L); 
  7389        else 
  7390                __ beq(op1, R0, (int)0); 
  7391         break;
  7392       case 0x02: //not_equal
  7393        if (&L)
  7394                __ bne(op1, R0, L); 
  7395        else
  7396                __ bne(op1, R0, (int)0); 
  7397         break;
  7398       case 0x03: //above
  7399         if(&L)
  7400                __ bne(R0, op1, L); 
  7401         else
  7402                 __ bne(R0, op1, (int)0);
  7403         break;
  7404       case 0x04: //above_equal
  7405         if(&L)
  7406                __ beq(R0, R0, L);
  7407         else
  7408                 __ beq(R0, R0, (int)0);
  7409         break;
  7410       case 0x05: //below
  7411         return;
  7412         break;
  7413       case 0x06: //below_equal
  7414         if(&L)
  7415                __ beq(op1, R0, L);
  7416         else
  7417                __ beq(op1, R0, (int)0);
  7418        break;
  7419       default:
  7420           Unimplemented();
  7422     __ nop();
  7423   %}
  7425   ins_pc_relative(1);
  7426   ins_pipe( pipe_alu_branch );
  7427 %}
  7430 instruct branchConIU_reg_immI16(cmpOpU cmp, mRegI src1, immI16 src2, label labl) %{
  7431   match( If cmp (CmpU src1 src2) );
  7432   effect(USE labl);
  7433   ins_cost(180);
  7434   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_immI16" %}
  7436   ins_encode %{
  7437     Register op1 = $src1$$Register;
  7438     int      val = $src2$$constant;
  7439     Label     &L = *($labl$$label);
  7440     int     flag = $cmp$$cmpcode;
  7442     switch(flag)
  7444       case 0x01: //equal
  7445         __ move(AT, val);
  7446        if (&L)
  7447                __ beq(op1, AT, L); 
  7448        else 
  7449                __ beq(op1, AT, (int)0); 
  7450         break;
  7451       case 0x02: //not_equal
  7452         __ move(AT, val);
  7453        if (&L)
  7454                __ bne(op1, AT, L); 
  7455        else
  7456                __ bne(op1, AT, (int)0); 
  7457         break;
  7458       case 0x03: //above
  7459         __ move(AT, val);
  7460         __ sltu(AT, AT, op1);
  7461         if(&L)
  7462                __ bne(R0, AT, L); 
  7463         else
  7464                 __ bne(R0, AT, (int)0);
  7465         break;
  7466       case 0x04: //above_equal
  7467         __ sltiu(AT, op1, val);
  7468         if(&L)
  7469                __ beq(AT, R0, L);
  7470         else
  7471                 __ beq(AT, R0, (int)0);
  7472         break;
  7473       case 0x05: //below
  7474         __ sltiu(AT, op1, val);
  7475         if(&L)
  7476                 __ bne(R0, AT, L); 
  7477         else
  7478                 __ bne(R0, AT, (int)0);
  7479         break;
  7480       case 0x06: //below_equal
  7481         __ move(AT, val);
  7482         __ sltu(AT, AT, op1);
  7483         if(&L)
  7484                __ beq(AT, R0, L);
  7485         else
  7486                __ beq(AT, R0, (int)0);
  7487        break;
  7488       default:
  7489           Unimplemented();
  7491     __ nop();
  7492   %}
  7494   ins_pc_relative(1);
  7495   ins_pipe( pipe_alu_branch );
  7496 %}
  7499 instruct branchConL_regL_regL(cmpOp cmp, mRegL src1, mRegL src2, label labl) %{
  7500   match( If cmp (CmpL src1 src2) );
  7501   effect(USE labl);
  7502   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_regL_regL" %}
  7503   ins_cost(250);
  7505   ins_encode %{
  7506     Register opr1_reg = as_Register($src1$$reg);
  7507     Register opr2_reg = as_Register($src2$$reg);
  7509     Label   &target = *($labl$$label);
  7510     int     flag = $cmp$$cmpcode;
  7512     switch(flag)
  7514       case 0x01: //equal
  7515         if (&target) 
  7516 			__ beq(opr1_reg, opr2_reg, target);
  7517         else
  7518 			__ beq(opr1_reg, opr2_reg, (int)0);
  7519         __ delayed()->nop();
  7520         break;
  7522       case 0x02: //not_equal
  7523         if(&target)
  7524            __ bne(opr1_reg, opr2_reg, target);
  7525         else
  7526            __ bne(opr1_reg, opr2_reg, (int)0);
  7527         __ delayed()->nop();
  7528         break;
  7530       case 0x03: //greater
  7531         __ slt(AT, opr2_reg, opr1_reg);
  7532         if(&target)
  7533            __ bne(AT, R0, target);
  7534         else
  7535            __ bne(AT, R0, (int)0);
  7536         __ delayed()->nop();
  7537         break;
  7539       case 0x04: //greater_equal
  7540         __ slt(AT, opr1_reg, opr2_reg);
  7541         if(&target)
  7542            __ beq(AT, R0, target);
  7543         else
  7544            __ beq(AT, R0, (int)0);
  7545         __ delayed()->nop();
  7547         break;
  7549       case 0x05: //less
  7550         __ slt(AT, opr1_reg, opr2_reg);
  7551         if(&target)
  7552            __ bne(AT, R0, target);
  7553         else
  7554            __ bne(AT, R0, (int)0);
  7555         __ delayed()->nop();
  7557         break;
  7559       case 0x06: //less_equal
  7560        __ slt(AT, opr2_reg, opr1_reg);
  7562        if(&target)
  7563           __ beq(AT, R0, target);
  7564        else
  7565           __ beq(AT, R0, (int)0);
  7566        __ delayed()->nop();
  7568        break;
  7570       default:
  7571           Unimplemented();
  7573   %}
  7576   ins_pc_relative(1);
  7577   ins_pipe( pipe_alu_branch );
  7578 %}
  7580 instruct branchConL_reg_immL16_sub(cmpOp cmp, mRegL src1, immL16_sub src2, label labl) %{
  7581   match( If cmp (CmpL src1 src2) );
  7582   effect(USE labl);
  7583   ins_cost(180);
  7584   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_reg_immL16_sub" %}
  7586   ins_encode %{
  7587     Register op1 = $src1$$Register;
  7588     int      val = $src2$$constant;
  7589     Label     &L =  *($labl$$label);
  7590     int     flag = $cmp$$cmpcode;
  7592     __ daddiu(AT, op1, -1 * val);
  7593     switch(flag)
  7595       case 0x01: //equal
  7596        if (&L)
  7597                __ beq(R0, AT, L); 
  7598        else 
  7599                __ beq(R0, AT, (int)0); 
  7600         break;
  7601       case 0x02: //not_equal
  7602        if (&L)
  7603                __ bne(R0, AT, L); 
  7604        else
  7605                __ bne(R0, AT, (int)0); 
  7606         break;
  7607       case 0x03: //greater
  7608         if(&L)
  7609                __ bgtz(AT, L); 
  7610         else
  7611                 __ bgtz(AT, (int)0);
  7612         break;
  7613       case 0x04: //greater_equal
  7614         if(&L)
  7615                __ bgez(AT, L);
  7616         else
  7617                 __ bgez(AT, (int)0);
  7618         break;
  7619       case 0x05: //less
  7620         if(&L)
  7621                 __ bltz(AT, L); 
  7622         else
  7623                 __ bltz(AT, (int)0);
  7624         break;
  7625       case 0x06: //less_equal
  7626         if(&L)
  7627                __ blez(AT, L);
  7628         else
  7629                __ blez(AT, (int)0);
  7630        break;
  7631       default:
  7632           Unimplemented();
  7634     __ nop();
  7635   %}
  7637   ins_pc_relative(1);
  7638   ins_pipe( pipe_alu_branch );
  7639 %}
  7642 instruct branchConI_reg_imm16_sub(cmpOp cmp, mRegI src1, immI16_sub src2, label labl) %{
  7643   match( If cmp (CmpI src1 src2) );
  7644   effect(USE labl);
  7645   ins_cost(180);
  7646   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm16_sub" %}
  7648   ins_encode %{
  7649     Register op1 = $src1$$Register;
  7650     int      val = $src2$$constant;
  7651     Label     &L =  *($labl$$label);
  7652     int     flag = $cmp$$cmpcode;
  7654     __ addiu32(AT, op1, -1 * val);
  7655     switch(flag)
  7657       case 0x01: //equal
  7658        if (&L)
  7659                __ beq(R0, AT, L); 
  7660        else 
  7661                __ beq(R0, AT, (int)0); 
  7662         break;
  7663       case 0x02: //not_equal
  7664        if (&L)
  7665                __ bne(R0, AT, L); 
  7666        else
  7667                __ bne(R0, AT, (int)0); 
  7668         break;
  7669       case 0x03: //greater
  7670         if(&L)
  7671                __ bgtz(AT, L); 
  7672         else
  7673                 __ bgtz(AT, (int)0);
  7674         break;
  7675       case 0x04: //greater_equal
  7676         if(&L)
  7677                __ bgez(AT, L);
  7678         else
  7679                 __ bgez(AT, (int)0);
  7680         break;
  7681       case 0x05: //less
  7682         if(&L)
  7683                 __ bltz(AT, L); 
  7684         else
  7685                 __ bltz(AT, (int)0);
  7686         break;
  7687       case 0x06: //less_equal
  7688         if(&L)
  7689                __ blez(AT, L);
  7690         else
  7691                __ blez(AT, (int)0);
  7692        break;
  7693       default:
  7694           Unimplemented();
  7696     __ nop();
  7697   %}
  7699   ins_pc_relative(1);
  7700   ins_pipe( pipe_alu_branch );
  7701 %}
  7703 instruct branchConL_regL_immL0(cmpOp cmp, mRegL src1, immL0 zero, label labl) %{
  7704   match( If cmp (CmpL src1 zero) );
  7705   effect(USE labl);
  7706   format %{ "BR$cmp   $src1, zero, $labl #@branchConL_regL_immL0" %}
  7707   ins_cost(150);
  7709   ins_encode %{
  7710     Register opr1_reg = as_Register($src1$$reg);
  7711     Label   &target = *($labl$$label);
  7712     int     flag = $cmp$$cmpcode;
  7714     switch(flag)
  7716       case 0x01: //equal
  7717         if (&target) 
  7718            __ beq(opr1_reg, R0, target);
  7719         else
  7720            __ beq(opr1_reg, R0, int(0));
  7721         break;
  7723       case 0x02: //not_equal
  7724         if(&target)
  7725            __ bne(opr1_reg, R0, target);
  7726         else
  7727            __ bne(opr1_reg, R0, (int)0);
  7728         break;
  7730       case 0x03: //greater
  7731         if(&target)
  7732            __ bgtz(opr1_reg, target);
  7733         else
  7734            __ bgtz(opr1_reg, (int)0);
  7735        break;
  7737       case 0x04: //greater_equal
  7738         if(&target)
  7739            __ bgez(opr1_reg, target);
  7740         else
  7741            __ bgez(opr1_reg, (int)0);
  7742         break;
  7744       case 0x05: //less
  7745         __ slt(AT, opr1_reg, R0);
  7746         if(&target)
  7747            __ bne(AT, R0, target);
  7748         else
  7749            __ bne(AT, R0, (int)0);
  7750         break;
  7752       case 0x06: //less_equal
  7753         if (&target) 
  7754            __ blez(opr1_reg, target);
  7755         else
  7756            __ blez(opr1_reg, int(0));
  7757         break;
  7759       default:
  7760           Unimplemented();
  7762 	__ delayed()->nop();
  7763   %}
  7766   ins_pc_relative(1);
  7767   ins_pipe( pipe_alu_branch );
  7768 %}
  7770 /*
  7771 // Conditional Direct Branch
  7772 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  7773   match(If cmp icc);
  7774   effect(USE labl);
  7776   size(8);
  7777   ins_cost(BRANCH_COST);
  7778   format %{ "BP$cmp   $icc,$labl" %}
  7779   // Prim = bits 24-22, Secnd = bits 31-30
  7780   ins_encode( enc_bp( labl, cmp, icc ) );
  7781   ins_pc_relative(1);
  7782   ins_pipe(br_cc);
  7783 %}
  7784 */
  7786 //FIXME
  7787 instruct branchConF_reg_reg(cmpOp cmp, regF src1, regF src2, label labl) %{
  7788   match( If cmp (CmpF src1 src2) );
  7789   effect(USE labl);
  7790   format %{ "BR$cmp   $src1, $src2, $labl #@branchConF_reg_reg" %}
  7792   ins_encode %{
  7793     FloatRegister reg_op1 = $src1$$FloatRegister;
  7794     FloatRegister reg_op2 = $src2$$FloatRegister;
  7795     Label     &L =  *($labl$$label);
  7796     int     flag = $cmp$$cmpcode;
  7798     switch(flag)
  7800       case 0x01: //equal
  7801         __ c_eq_s(reg_op1, reg_op2);
  7802 	if (&L)
  7803                 __ bc1t(L);
  7804 	else 
  7805                 __ bc1t((int)0);
  7806         break;
  7807       case 0x02: //not_equal
  7808         __ c_eq_s(reg_op1, reg_op2);
  7809 	if (&L)
  7810                 __ bc1f(L);
  7811 	else
  7812                 __ bc1f((int)0);
  7813         break;
  7814       case 0x03: //greater
  7815         __ c_ule_s(reg_op1, reg_op2);
  7816         if(&L)
  7817                 __ bc1f(L);
  7818         else
  7819                 __ bc1f((int)0);
  7820         break;
  7821       case 0x04: //greater_equal
  7822         __ c_ult_s(reg_op1, reg_op2);
  7823         if(&L)
  7824                 __ bc1f(L);
  7825         else
  7826                 __ bc1f((int)0);
  7827         break;
  7828       case 0x05: //less
  7829         __ c_ult_s(reg_op1, reg_op2);
  7830         if(&L)
  7831                 __ bc1t(L);
  7832         else
  7833                 __ bc1t((int)0);
  7834         break;
  7835       case 0x06: //less_equal
  7836         __ c_ule_s(reg_op1, reg_op2);
  7837         if(&L)
  7838                 __ bc1t(L);
  7839         else
  7840                 __ bc1t((int)0);
  7841        break;
  7842       default:
  7843           Unimplemented();
  7845     __ nop();
  7846   %}
  7848   ins_pc_relative(1);
  7849   ins_pipe(pipe_slow);
  7850 %}
  7852 instruct branchConD_reg_reg(cmpOp cmp, regD src1, regD src2, label labl) %{
  7853   match( If cmp (CmpD src1 src2) );
  7854   effect(USE labl);
  7855   format %{ "BR$cmp   $src1, $src2, $labl #@branchConD_reg_reg" %}
  7857   ins_encode %{
  7858     FloatRegister reg_op1 = $src1$$FloatRegister;
  7859     FloatRegister reg_op2 = $src2$$FloatRegister;
  7860     Label     &L =  *($labl$$label);
  7861     int     flag = $cmp$$cmpcode;
  7863     switch(flag)
  7865       case 0x01: //equal
  7866         __ c_eq_d(reg_op1, reg_op2);
  7867 	if (&L)
  7868                 __ bc1t(L);
  7869 	else 
  7870                 __ bc1t((int)0);
  7871         break;
  7872       case 0x02: //not_equal
  7873 //2016/4/19 aoqi: c_ueq_d cannot distinguish NaN from equal. Double.isNaN(Double) is implemented by 'f != f', so the use of c_ueq_d causes bugs.
  7874         __ c_eq_d(reg_op1, reg_op2);
  7875 	if (&L)
  7876                 __ bc1f(L);
  7877 	else
  7878                 __ bc1f((int)0);
  7879         break;
  7880       case 0x03: //greater
  7881         __ c_ule_d(reg_op1, reg_op2);
  7882         if(&L)
  7883                 __ bc1f(L);
  7884         else
  7885                 __ bc1f((int)0);
  7886         break;
  7887       case 0x04: //greater_equal
  7888         __ c_ult_d(reg_op1, reg_op2);
  7889         if(&L)
  7890                 __ bc1f(L);
  7891         else
  7892                 __ bc1f((int)0);
  7893         break;
  7894       case 0x05: //less
  7895         __ c_ult_d(reg_op1, reg_op2);
  7896         if(&L)
  7897                 __ bc1t(L);
  7898         else
  7899                 __ bc1t((int)0);
  7900         break;
  7901       case 0x06: //less_equal
  7902         __ c_ule_d(reg_op1, reg_op2);
  7903         if(&L)
  7904                 __ bc1t(L);
  7905         else
  7906                 __ bc1t((int)0);
  7907        break;
  7908       default:
  7909           Unimplemented();
  7911     __ nop();
  7912   %}
  7914   ins_pc_relative(1);
  7915   ins_pipe(pipe_slow);
  7916 %}
  7919 // Call Runtime Instruction
  7920 instruct CallRuntimeDirect(method meth) %{
  7921   match(CallRuntime );
  7922   effect(USE meth);
  7924   ins_cost(300);
  7925   format %{ "CALL,runtime #@CallRuntimeDirect" %}
  7926   ins_encode( Java_To_Runtime( meth ) );
  7927   ins_pipe( pipe_slow );
  7928   ins_alignment(16);
  7929 %}
  7933 //------------------------MemBar Instructions-------------------------------
  7934 //Memory barrier flavors
  7936 instruct membar_acquire() %{
  7937   match(MemBarAcquire);
  7938   ins_cost(0);
  7940   size(0);
  7941   format %{ "MEMBAR-acquire (empty) @ membar_acquire" %}
  7942   ins_encode();
  7943   ins_pipe(empty);
  7944 %}
  7946 instruct load_fence() %{
  7947   match(LoadFence);
  7948   ins_cost(400);
  7950   format %{ "MEMBAR @ load_fence" %}
  7951   ins_encode %{
  7952     __ sync(); 
  7953   %}
  7954   ins_pipe(pipe_slow);
  7955 %}
  7957 instruct membar_acquire_lock()
  7958 %{
  7959   match(MemBarAcquireLock);
  7960   ins_cost(0);
  7962   size(0);
  7963   format %{ "MEMBAR-acquire (acquire as part of CAS in prior FastLock so empty encoding) @ membar_acquire_lock" %}
  7964   ins_encode();
  7965   ins_pipe(empty);
  7966 %}
  7968 instruct membar_release() %{
  7969   match(MemBarRelease);
  7970   ins_cost(0);
  7972   size(0);
  7973   format %{ "MEMBAR-release (empty) @ membar_release" %}
  7974   ins_encode();
  7975   ins_pipe(empty);
  7976 %}
  7978 instruct store_fence() %{
  7979   match(StoreFence);
  7980   ins_cost(400);
  7982   format %{ "MEMBAR @ store_fence" %}
  7984   ins_encode %{
  7985     __ sync(); 
  7986   %}
  7988   ins_pipe(pipe_slow);
  7989 %}
  7991 instruct membar_release_lock()
  7992 %{
  7993   match(MemBarReleaseLock);
  7994   ins_cost(0);
  7996   size(0);
  7997   format %{ "MEMBAR-release-lock (release in FastUnlock so empty) @ membar_release_lock" %}
  7998   ins_encode();
  7999   ins_pipe(empty);
  8000 %}
  8003 instruct membar_volatile() %{
  8004   match(MemBarVolatile);
  8005   ins_cost(400);
  8007   format %{ "MEMBAR-volatile" %}
  8008   ins_encode %{
  8009     if( !os::is_MP() ) return;     // Not needed on single CPU
  8010     __ sync();
  8012   %}
  8013   ins_pipe(pipe_slow);
  8014 %}
  8016 instruct unnecessary_membar_volatile() %{
  8017   match(MemBarVolatile);
  8018   predicate(Matcher::post_store_load_barrier(n));
  8019   ins_cost(0);
  8021   size(0);
  8022   format %{ "MEMBAR-volatile (unnecessary so empty encoding) @ unnecessary_membar_volatile" %}
  8023   ins_encode( );
  8024   ins_pipe(empty);
  8025 %}
  8027 instruct membar_storestore() %{
  8028   match(MemBarStoreStore);
  8030   ins_cost(0);
  8031   size(0);
  8032   format %{ "MEMBAR-storestore (empty encoding) @ membar_storestore" %}
  8033   ins_encode( );
  8034   ins_pipe(empty);
  8035 %}
  8037 //----------Move Instructions--------------------------------------------------
  8038 instruct castX2P(mRegP dst, mRegL src) %{
  8039   match(Set dst (CastX2P src));
  8040   format %{ "castX2P  $dst, $src @ castX2P" %}
  8041   ins_encode %{
  8042     Register src = $src$$Register;
  8043     Register dst = $dst$$Register;
  8045 	if(src != dst)
  8046 		__ move(dst, src);
  8047   %}
  8048   ins_cost(10);
  8049   ins_pipe( ialu_regI_mov );
  8050 %}
  8052 instruct castP2X(mRegL dst, mRegP src ) %{
  8053   match(Set dst (CastP2X src));
  8055   format %{ "mov    $dst, $src\t  #@castP2X" %}
  8056   ins_encode %{
  8057     Register src = $src$$Register;
  8058     Register dst = $dst$$Register;
  8060 	if(src != dst)
  8061 		__ move(dst, src);    
  8062   %}
  8063   ins_pipe( ialu_regI_mov );
  8064 %}
  8066 instruct MoveF2I_reg_reg(mRegI dst, regF src) %{
  8067   match(Set dst (MoveF2I src));
  8068   effect(DEF dst, USE src);
  8069   ins_cost(85);
  8070   format %{ "MoveF2I   $dst, $src @ MoveF2I_reg_reg" %}
  8071   ins_encode %{
  8072     Register dst = as_Register($dst$$reg);
  8073     FloatRegister src = as_FloatRegister($src$$reg);
  8075     __ mfc1(dst, src);
  8076   %}
  8077   ins_pipe( pipe_slow );
  8078 %}
  8080 instruct MoveI2F_reg_reg(regF dst, mRegI src) %{
  8081   match(Set dst (MoveI2F src));
  8082   effect(DEF dst, USE src);
  8083   ins_cost(85);
  8084   format %{ "MoveI2F   $dst, $src @ MoveI2F_reg_reg" %}
  8085   ins_encode %{
  8086     Register src = as_Register($src$$reg);
  8087     FloatRegister dst = as_FloatRegister($dst$$reg);
  8089     __ mtc1(src, dst);
  8090   %}
  8091   ins_pipe( pipe_slow );
  8092 %}
  8094 instruct MoveD2L_reg_reg(mRegL dst, regD src) %{
  8095   match(Set dst (MoveD2L src));
  8096   effect(DEF dst, USE src);
  8097   ins_cost(85);
  8098   format %{ "MoveD2L   $dst, $src @ MoveD2L_reg_reg" %}
  8099   ins_encode %{
  8100     Register dst = as_Register($dst$$reg);
  8101     FloatRegister src = as_FloatRegister($src$$reg);
  8103     __ dmfc1(dst, src);
  8104   %}
  8105   ins_pipe( pipe_slow );
  8106 %}
  8108 instruct MoveL2D_reg_reg(regD dst, mRegL src) %{
  8109   match(Set dst (MoveL2D src));
  8110   effect(DEF dst, USE src);
  8111   ins_cost(85);
  8112   format %{ "MoveL2D   $dst, $src @ MoveL2D_reg_reg" %}
  8113   ins_encode %{
  8114     FloatRegister dst = as_FloatRegister($dst$$reg);
  8115     Register src = as_Register($src$$reg);
  8117     __ dmtc1(src, dst);
  8118   %}
  8119   ins_pipe( pipe_slow );
  8120 %}
  8122 //----------Conditional Move---------------------------------------------------
  8123 // Conditional move
  8124 instruct cmovI_cmpI_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8125   match(Set dst (CMoveI (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8126   ins_cost(80);
  8127   format %{
  8128              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpI_reg_reg\n"
  8129              "\tCMOV  $dst,$src \t @cmovI_cmpI_reg_reg"
  8130          %}
  8132   ins_encode %{
  8133     Register op1 = $tmp1$$Register;
  8134     Register op2 = $tmp2$$Register;
  8135     Register dst = $dst$$Register;
  8136     Register src = $src$$Register;
  8137     int     flag = $cop$$cmpcode;
  8139     switch(flag)
  8141       case 0x01: //equal
  8142         __ subu32(AT, op1, op2);
  8143         __ movz(dst, src, AT);
  8144         break;
  8146       case 0x02: //not_equal
  8147         __ subu32(AT, op1, op2);
  8148         __ movn(dst, src, AT);
  8149         break;
  8151       case 0x03: //great
  8152         __ slt(AT, op2, op1);
  8153         __ movn(dst, src, AT);
  8154         break;
  8156       case 0x04: //great_equal
  8157         __ slt(AT, op1, op2);
  8158         __ movz(dst, src, AT);
  8159         break;
  8161       case 0x05: //less
  8162         __ slt(AT, op1, op2);
  8163         __ movn(dst, src, AT);
  8164         break;
  8166       case 0x06: //less_equal
  8167         __ slt(AT, op2, op1);
  8168         __ movz(dst, src, AT);
  8169        break;
  8171       default:
  8172           Unimplemented();
  8174   %}
  8176   ins_pipe( pipe_slow );
  8177 %}
  8179 instruct cmovI_cmpP_reg_reg(mRegI dst, mRegI src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8180   match(Set dst (CMoveI (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8181   ins_cost(80);
  8182   format %{
  8183              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpP_reg_reg\n\t"
  8184              "CMOV $dst,$src\t @cmovI_cmpP_reg_reg"
  8185          %}
  8186   ins_encode %{
  8187     Register op1 = $tmp1$$Register;
  8188     Register op2 = $tmp2$$Register;
  8189     Register dst = $dst$$Register;
  8190     Register src = $src$$Register;
  8191     int     flag = $cop$$cmpcode;
  8193     switch(flag)
  8195       case 0x01: //equal
  8196         __ subu(AT, op1, op2);
  8197         __ movz(dst, src, AT);
  8198         break;
  8200       case 0x02: //not_equal
  8201         __ subu(AT, op1, op2);
  8202         __ movn(dst, src, AT);
  8203         break;
  8205       case 0x03: //above
  8206         __ sltu(AT, op2, op1);
  8207         __ movn(dst, src, AT);
  8208         break;
  8210       case 0x04: //above_equal
  8211         __ sltu(AT, op1, op2);
  8212         __ movz(dst, src, AT);
  8213         break;
  8215       case 0x05: //below
  8216         __ sltu(AT, op1, op2);
  8217         __ movn(dst, src, AT);
  8218         break;
  8220       case 0x06: //below_equal
  8221         __ sltu(AT, op2, op1);
  8222         __ movz(dst, src, AT);
  8223        break;
  8225       default:
  8226           Unimplemented();
  8228   %}
  8230   ins_pipe( pipe_slow );
  8231 %}
  8233 instruct cmovI_cmpN_reg_reg(mRegI dst, mRegI src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8234   match(Set dst (CMoveI (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8235   ins_cost(80);
  8236   format %{
  8237              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpN_reg_reg\n\t"
  8238              "CMOV $dst,$src\t @cmovI_cmpN_reg_reg"
  8239          %}
  8240   ins_encode %{
  8241     Register op1 = $tmp1$$Register;
  8242     Register op2 = $tmp2$$Register;
  8243     Register dst = $dst$$Register;
  8244     Register src = $src$$Register;
  8245     int     flag = $cop$$cmpcode;
  8247     switch(flag)
  8249       case 0x01: //equal
  8250         __ subu32(AT, op1, op2);
  8251         __ movz(dst, src, AT);
  8252         break;
  8254       case 0x02: //not_equal
  8255         __ subu32(AT, op1, op2);
  8256         __ movn(dst, src, AT);
  8257         break;
  8259       case 0x03: //above
  8260         __ sltu(AT, op2, op1);
  8261         __ movn(dst, src, AT);
  8262         break;
  8264       case 0x04: //above_equal
  8265         __ sltu(AT, op1, op2);
  8266         __ movz(dst, src, AT);
  8267         break;
  8269       case 0x05: //below
  8270         __ sltu(AT, op1, op2);
  8271         __ movn(dst, src, AT);
  8272         break;
  8274       case 0x06: //below_equal
  8275         __ sltu(AT, op2, op1);
  8276         __ movz(dst, src, AT);
  8277        break;
  8279       default:
  8280           Unimplemented();
  8282   %}
  8284   ins_pipe( pipe_slow );
  8285 %}
  8287 instruct cmovP_cmpN_reg_reg(mRegP dst, mRegP src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8288   match(Set dst (CMoveP (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8289   ins_cost(80);
  8290   format %{
  8291              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpN_reg_reg\n\t"
  8292              "CMOV $dst,$src\t @cmovP_cmpN_reg_reg"
  8293          %}
  8294   ins_encode %{
  8295     Register op1 = $tmp1$$Register;
  8296     Register op2 = $tmp2$$Register;
  8297     Register dst = $dst$$Register;
  8298     Register src = $src$$Register;
  8299     int     flag = $cop$$cmpcode;
  8301     switch(flag)
  8303       case 0x01: //equal
  8304         __ subu32(AT, op1, op2);
  8305         __ movz(dst, src, AT);
  8306         break;
  8308       case 0x02: //not_equal
  8309         __ subu32(AT, op1, op2);
  8310         __ movn(dst, src, AT);
  8311         break;
  8313       case 0x03: //above
  8314         __ sltu(AT, op2, op1);
  8315         __ movn(dst, src, AT);
  8316         break;
  8318       case 0x04: //above_equal
  8319         __ sltu(AT, op1, op2);
  8320         __ movz(dst, src, AT);
  8321         break;
  8323       case 0x05: //below
  8324         __ sltu(AT, op1, op2);
  8325         __ movn(dst, src, AT);
  8326         break;
  8328       case 0x06: //below_equal
  8329         __ sltu(AT, op2, op1);
  8330         __ movz(dst, src, AT);
  8331        break;
  8333       default:
  8334           Unimplemented();
  8336   %}
  8338   ins_pipe( pipe_slow );
  8339 %}
  8341 instruct cmovN_cmpP_reg_reg(mRegN dst, mRegN src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8342   match(Set dst (CMoveN (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8343   ins_cost(80);
  8344   format %{
  8345              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpP_reg_reg\n\t"
  8346              "CMOV $dst,$src\t @cmovN_cmpP_reg_reg"
  8347          %}
  8348   ins_encode %{
  8349     Register op1 = $tmp1$$Register;
  8350     Register op2 = $tmp2$$Register;
  8351     Register dst = $dst$$Register;
  8352     Register src = $src$$Register;
  8353     int     flag = $cop$$cmpcode;
  8355     switch(flag)
  8357       case 0x01: //equal
  8358         __ subu(AT, op1, op2);
  8359         __ movz(dst, src, AT);
  8360         break;
  8362       case 0x02: //not_equal
  8363         __ subu(AT, op1, op2);
  8364         __ movn(dst, src, AT);
  8365         break;
  8367       case 0x03: //above
  8368         __ sltu(AT, op2, op1);
  8369         __ movn(dst, src, AT);
  8370         break;
  8372       case 0x04: //above_equal
  8373         __ sltu(AT, op1, op2);
  8374         __ movz(dst, src, AT);
  8375         break;
  8377       case 0x05: //below
  8378         __ sltu(AT, op1, op2);
  8379         __ movn(dst, src, AT);
  8380         break;
  8382       case 0x06: //below_equal
  8383         __ sltu(AT, op2, op1);
  8384         __ movz(dst, src, AT);
  8385        break;
  8387       default:
  8388           Unimplemented();
  8390   %}
  8392   ins_pipe( pipe_slow );
  8393 %}
  8395 instruct cmovP_cmpD_reg_reg(mRegP dst, mRegP src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8396   match(Set dst (CMoveP (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8397   ins_cost(80);
  8398   format %{
  8399              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpD_reg_reg\n"
  8400              "\tCMOV  $dst,$src \t @cmovP_cmpD_reg_reg"
  8401          %}
  8402   ins_encode %{
  8403     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8404     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8405     Register dst = as_Register($dst$$reg);
  8406     Register src = as_Register($src$$reg);
  8408     int     flag = $cop$$cmpcode;
  8410     switch(flag)
  8412       case 0x01: //equal
  8413         __ c_eq_d(reg_op1, reg_op2);
  8414         __ movt(dst, src);
  8415         break;
  8416       case 0x02: //not_equal
  8417         __ c_eq_d(reg_op1, reg_op2);
  8418         __ movf(dst, src);
  8419         break;
  8420       case 0x03: //greater
  8421         __ c_ole_d(reg_op1, reg_op2);
  8422         __ movf(dst, src);
  8423         break;
  8424       case 0x04: //greater_equal
  8425         __ c_olt_d(reg_op1, reg_op2);
  8426         __ movf(dst, src);
  8427         break;
  8428       case 0x05: //less
  8429         __ c_ult_d(reg_op1, reg_op2);
  8430         __ movt(dst, src);
  8431         break;
  8432       case 0x06: //less_equal
  8433         __ c_ule_d(reg_op1, reg_op2);
  8434         __ movt(dst, src);
  8435         break;
  8436       default:
  8437           Unimplemented();
  8439   %}
  8441   ins_pipe( pipe_slow );
  8442 %}
  8445 instruct cmovN_cmpN_reg_reg(mRegN dst, mRegN src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8446   match(Set dst (CMoveN (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8447   ins_cost(80);
  8448   format %{
  8449              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpN_reg_reg\n\t"
  8450              "CMOV $dst,$src\t @cmovN_cmpN_reg_reg"
  8451          %}
  8452   ins_encode %{
  8453     Register op1 = $tmp1$$Register;
  8454     Register op2 = $tmp2$$Register;
  8455     Register dst = $dst$$Register;
  8456     Register src = $src$$Register;
  8457     int     flag = $cop$$cmpcode;
  8459     switch(flag)
  8461       case 0x01: //equal
  8462         __ subu32(AT, op1, op2);
  8463         __ movz(dst, src, AT);
  8464         break;
  8466       case 0x02: //not_equal
  8467         __ subu32(AT, op1, op2);
  8468         __ movn(dst, src, AT);
  8469         break;
  8471       case 0x03: //above
  8472         __ sltu(AT, op2, op1);
  8473         __ movn(dst, src, AT);
  8474         break;
  8476       case 0x04: //above_equal
  8477         __ sltu(AT, op1, op2);
  8478         __ movz(dst, src, AT);
  8479         break;
  8481       case 0x05: //below
  8482         __ sltu(AT, op1, op2);
  8483         __ movn(dst, src, AT);
  8484         break;
  8486       case 0x06: //below_equal
  8487         __ sltu(AT, op2, op1);
  8488         __ movz(dst, src, AT);
  8489        break;
  8491       default:
  8492           Unimplemented();
  8494   %}
  8496   ins_pipe( pipe_slow );
  8497 %}
  8500 instruct cmovI_cmpU_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOpU cop ) %{
  8501   match(Set dst (CMoveI (Binary cop (CmpU tmp1 tmp2)) (Binary dst src)));
  8502   ins_cost(80);
  8503   format %{
  8504              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpU_reg_reg\n\t"
  8505              "CMOV $dst,$src\t @cmovI_cmpU_reg_reg"
  8506          %}
  8507   ins_encode %{
  8508     Register op1 = $tmp1$$Register;
  8509     Register op2 = $tmp2$$Register;
  8510     Register dst = $dst$$Register;
  8511     Register src = $src$$Register;
  8512     int     flag = $cop$$cmpcode;
  8514     switch(flag)
  8516       case 0x01: //equal
  8517         __ subu(AT, op1, op2);
  8518         __ movz(dst, src, AT);
  8519         break;
  8521       case 0x02: //not_equal
  8522         __ subu(AT, op1, op2);
  8523         __ movn(dst, src, AT);
  8524         break;
  8526       case 0x03: //above
  8527         __ sltu(AT, op2, op1);
  8528         __ movn(dst, src, AT);
  8529         break;
  8531       case 0x04: //above_equal
  8532         __ sltu(AT, op1, op2);
  8533         __ movz(dst, src, AT);
  8534         break;
  8536       case 0x05: //below
  8537         __ sltu(AT, op1, op2);
  8538         __ movn(dst, src, AT);
  8539         break;
  8541       case 0x06: //below_equal
  8542         __ sltu(AT, op2, op1);
  8543         __ movz(dst, src, AT);
  8544        break;
  8546       default:
  8547           Unimplemented();
  8549   %}
  8551   ins_pipe( pipe_slow );
  8552 %}
  8554 instruct cmovI_cmpL_reg_reg(mRegI dst, mRegI src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8555   match(Set dst (CMoveI (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8556   ins_cost(80);
  8557   format %{
  8558              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpL_reg_reg\n"
  8559              "\tCMOV  $dst,$src \t @cmovI_cmpL_reg_reg"
  8560          %}
  8561   ins_encode %{
  8562     Register opr1 = as_Register($tmp1$$reg);
  8563     Register opr2 = as_Register($tmp2$$reg);
  8564     Register dst     = $dst$$Register;
  8565     Register src     = $src$$Register;
  8566     int     flag = $cop$$cmpcode;
  8568     switch(flag)
  8570       case 0x01: //equal
  8571         __ subu(AT, opr1, opr2);
  8572         __ movz(dst, src, AT);
  8573         break;
  8575       case 0x02: //not_equal
  8576         __ subu(AT, opr1, opr2);
  8577         __ movn(dst, src, AT);
  8578         break;
  8580       case 0x03: //greater
  8581 	__ slt(AT, opr2, opr1);
  8582         __ movn(dst, src, AT);
  8583         break;
  8585       case 0x04: //greater_equal
  8586         __ slt(AT, opr1, opr2);
  8587         __ movz(dst, src, AT);
  8588         break;
  8590       case 0x05: //less
  8591         __ slt(AT, opr1, opr2);
  8592         __ movn(dst, src, AT);
  8593         break;
  8595       case 0x06: //less_equal
  8596         __ slt(AT, opr2, opr1);
  8597         __ movz(dst, src, AT);
  8598         break;
  8600       default:
  8601           Unimplemented();
  8603   %}
  8605   ins_pipe( pipe_slow );
  8606 %}
  8608 instruct cmovP_cmpL_reg_reg(mRegP dst, mRegP src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8609   match(Set dst (CMoveP (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8610   ins_cost(80);
  8611   format %{
  8612              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpL_reg_reg\n"
  8613              "\tCMOV  $dst,$src \t @cmovP_cmpL_reg_reg"
  8614          %}
  8615   ins_encode %{
  8616     Register opr1 = as_Register($tmp1$$reg);
  8617     Register opr2 = as_Register($tmp2$$reg);
  8618     Register dst     = $dst$$Register;
  8619     Register src     = $src$$Register;
  8620     int     flag = $cop$$cmpcode;
  8622     switch(flag)
  8624       case 0x01: //equal
  8625         __ subu(AT, opr1, opr2);
  8626         __ movz(dst, src, AT);
  8627         break;
  8629       case 0x02: //not_equal
  8630         __ subu(AT, opr1, opr2);
  8631         __ movn(dst, src, AT);
  8632         break;
  8634       case 0x03: //greater
  8635         __ slt(AT, opr2, opr1);
  8636         __ movn(dst, src, AT);
  8637         break;
  8639       case 0x04: //greater_equal
  8640         __ slt(AT, opr1, opr2);
  8641         __ movz(dst, src, AT);
  8642         break;
  8644       case 0x05: //less
  8645         __ slt(AT, opr1, opr2);
  8646         __ movn(dst, src, AT);
  8647         break;
  8649       case 0x06: //less_equal
  8650         __ slt(AT, opr2, opr1);
  8651         __ movz(dst, src, AT);
  8652         break;
  8654       default:
  8655           Unimplemented();
  8657   %}
  8659   ins_pipe( pipe_slow );
  8660 %}
  8662 instruct cmovI_cmpD_reg_reg(mRegI dst, mRegI src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8663   match(Set dst (CMoveI (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8664   ins_cost(80);
  8665   format %{
  8666              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpD_reg_reg\n"
  8667              "\tCMOV  $dst,$src \t @cmovI_cmpD_reg_reg"
  8668          %}
  8669   ins_encode %{
  8670     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8671     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8672     Register dst = as_Register($dst$$reg);
  8673     Register src = as_Register($src$$reg);
  8675     int     flag = $cop$$cmpcode;
  8677     switch(flag)
  8679       case 0x01: //equal
  8680         __ c_eq_d(reg_op1, reg_op2);
  8681         __ movt(dst, src);
  8682         break;
  8683       case 0x02: //not_equal
  8684 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  8685         __ c_eq_d(reg_op1, reg_op2);
  8686         __ movf(dst, src);
  8687         break;
  8688       case 0x03: //greater
  8689         __ c_ole_d(reg_op1, reg_op2);
  8690         __ movf(dst, src);
  8691         break;
  8692       case 0x04: //greater_equal
  8693         __ c_olt_d(reg_op1, reg_op2);
  8694         __ movf(dst, src);
  8695         break;
  8696       case 0x05: //less
  8697         __ c_ult_d(reg_op1, reg_op2);
  8698         __ movt(dst, src);
  8699         break;
  8700       case 0x06: //less_equal
  8701         __ c_ule_d(reg_op1, reg_op2);
  8702         __ movt(dst, src);
  8703         break;
  8704       default:
  8705           Unimplemented();
  8707   %}
  8709   ins_pipe( pipe_slow );
  8710 %}
  8713 instruct cmovP_cmpP_reg_reg(mRegP dst, mRegP src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8714   match(Set dst (CMoveP (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8715   ins_cost(80);
  8716   format %{
  8717              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpP_reg_reg\n\t"
  8718              "CMOV $dst,$src\t @cmovP_cmpP_reg_reg"
  8719          %}
  8720   ins_encode %{
  8721     Register op1 = $tmp1$$Register;
  8722     Register op2 = $tmp2$$Register;
  8723     Register dst = $dst$$Register;
  8724     Register src = $src$$Register;
  8725     int     flag = $cop$$cmpcode;
  8727     switch(flag)
  8729       case 0x01: //equal
  8730         __ subu(AT, op1, op2);
  8731         __ movz(dst, src, AT);
  8732         break;
  8734       case 0x02: //not_equal
  8735         __ subu(AT, op1, op2);
  8736         __ movn(dst, src, AT);
  8737         break;
  8739       case 0x03: //above
  8740         __ sltu(AT, op2, op1);
  8741         __ movn(dst, src, AT);
  8742         break;
  8744       case 0x04: //above_equal
  8745         __ sltu(AT, op1, op2);
  8746         __ movz(dst, src, AT);
  8747         break;
  8749       case 0x05: //below
  8750         __ sltu(AT, op1, op2);
  8751         __ movn(dst, src, AT);
  8752         break;
  8754       case 0x06: //below_equal
  8755         __ sltu(AT, op2, op1);
  8756         __ movz(dst, src, AT);
  8757        break;
  8759       default:
  8760           Unimplemented();
  8762   %}
  8764   ins_pipe( pipe_slow );
  8765 %}
  8767 instruct cmovP_cmpI_reg_reg(mRegP dst, mRegP src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8768   match(Set dst (CMoveP (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8769   ins_cost(80);
  8770   format %{
  8771              "CMP$cop $tmp1,$tmp2\t @cmovP_cmpI_reg_reg\n\t"
  8772              "CMOV $dst,$src\t @cmovP_cmpI_reg_reg"
  8773          %}
  8774   ins_encode %{
  8775     Register op1 = $tmp1$$Register;
  8776     Register op2 = $tmp2$$Register;
  8777     Register dst = $dst$$Register;
  8778     Register src = $src$$Register;
  8779     int     flag = $cop$$cmpcode;
  8781     switch(flag)
  8783       case 0x01: //equal
  8784         __ subu32(AT, op1, op2);
  8785         __ movz(dst, src, AT);
  8786         break;
  8788       case 0x02: //not_equal
  8789         __ subu32(AT, op1, op2);
  8790         __ movn(dst, src, AT);
  8791         break;
  8793       case 0x03: //above
  8794         __ slt(AT, op2, op1);
  8795         __ movn(dst, src, AT);
  8796         break;
  8798       case 0x04: //above_equal
  8799         __ slt(AT, op1, op2);
  8800         __ movz(dst, src, AT);
  8801         break;
  8803       case 0x05: //below
  8804         __ slt(AT, op1, op2);
  8805         __ movn(dst, src, AT);
  8806         break;
  8808       case 0x06: //below_equal
  8809         __ slt(AT, op2, op1);
  8810         __ movz(dst, src, AT);
  8811        break;
  8813       default:
  8814           Unimplemented();
  8816   %}
  8818   ins_pipe( pipe_slow );
  8819 %}
  8821 instruct cmovN_cmpI_reg_reg(mRegN dst, mRegN src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8822   match(Set dst (CMoveN (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8823   ins_cost(80);
  8824   format %{
  8825              "CMP$cop $tmp1,$tmp2\t @cmovN_cmpI_reg_reg\n\t"
  8826              "CMOV $dst,$src\t @cmovN_cmpI_reg_reg"
  8827          %}
  8828   ins_encode %{
  8829     Register op1 = $tmp1$$Register;
  8830     Register op2 = $tmp2$$Register;
  8831     Register dst = $dst$$Register;
  8832     Register src = $src$$Register;
  8833     int     flag = $cop$$cmpcode;
  8835     switch(flag)
  8837       case 0x01: //equal
  8838         __ subu32(AT, op1, op2);
  8839         __ movz(dst, src, AT);
  8840         break;
  8842       case 0x02: //not_equal
  8843         __ subu32(AT, op1, op2);
  8844         __ movn(dst, src, AT);
  8845         break;
  8847       case 0x03: //above
  8848         __ slt(AT, op2, op1);
  8849         __ movn(dst, src, AT);
  8850         break;
  8852       case 0x04: //above_equal
  8853         __ slt(AT, op1, op2);
  8854         __ movz(dst, src, AT);
  8855         break;
  8857       case 0x05: //below
  8858         __ slt(AT, op1, op2);
  8859         __ movn(dst, src, AT);
  8860         break;
  8862       case 0x06: //below_equal
  8863         __ slt(AT, op2, op1);
  8864         __ movz(dst, src, AT);
  8865        break;
  8867       default:
  8868           Unimplemented();
  8870   %}
  8872   ins_pipe( pipe_slow );
  8873 %}
  8876 instruct cmovL_cmpI_reg_reg(mRegL dst, mRegL src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8877   match(Set dst (CMoveL (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8878   ins_cost(80);
  8879   format %{
  8880              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpI_reg_reg\n"
  8881              "\tCMOV  $dst,$src \t @cmovL_cmpI_reg_reg"
  8882          %}
  8884   ins_encode %{
  8885     Register op1 = $tmp1$$Register;
  8886     Register op2 = $tmp2$$Register;
  8887     Register dst = as_Register($dst$$reg);
  8888     Register src = as_Register($src$$reg);
  8889     int     flag = $cop$$cmpcode;
  8891     switch(flag)
  8893       case 0x01: //equal
  8894         __ subu32(AT, op1, op2);
  8895         __ movz(dst, src, AT);
  8896         break;
  8898       case 0x02: //not_equal
  8899         __ subu32(AT, op1, op2);
  8900         __ movn(dst, src, AT);
  8901         break;
  8903       case 0x03: //great
  8904         __ slt(AT, op2, op1);
  8905         __ movn(dst, src, AT);
  8906         break;
  8908       case 0x04: //great_equal
  8909         __ slt(AT, op1, op2);
  8910         __ movz(dst, src, AT);
  8911         break;
  8913       case 0x05: //less
  8914         __ slt(AT, op1, op2);
  8915         __ movn(dst, src, AT);
  8916         break;
  8918       case 0x06: //less_equal
  8919         __ slt(AT, op2, op1);
  8920         __ movz(dst, src, AT);
  8921        break;
  8923       default:
  8924           Unimplemented();
  8926   %}
  8928   ins_pipe( pipe_slow );
  8929 %}
  8931 instruct cmovL_cmpL_reg_reg(mRegL dst, mRegL src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8932   match(Set dst (CMoveL (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8933   ins_cost(80);
  8934   format %{
  8935              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpL_reg_reg\n"
  8936              "\tCMOV  $dst,$src \t @cmovL_cmpL_reg_reg"
  8937          %}
  8938   ins_encode %{
  8939     Register opr1 = as_Register($tmp1$$reg);
  8940     Register opr2 = as_Register($tmp2$$reg);
  8941     Register dst  = as_Register($dst$$reg);
  8942     Register src  = as_Register($src$$reg);
  8943     int     flag = $cop$$cmpcode;
  8945     switch(flag)
  8947       case 0x01: //equal
  8948         __ subu(AT, opr1, opr2);
  8949         __ movz(dst, src, AT);
  8950         break;
  8952       case 0x02: //not_equal
  8953         __ subu(AT, opr1, opr2);
  8954         __ movn(dst, src, AT);
  8955         break;
  8957       case 0x03: //greater
  8958         __ slt(AT, opr2, opr1);
  8959         __ movn(dst, src, AT);
  8960         break;
  8962       case 0x04: //greater_equal
  8963         __ slt(AT, opr1, opr2);
  8964         __ movz(dst, src, AT);
  8965         break;
  8967       case 0x05: //less
  8968         __ slt(AT, opr1, opr2);
  8969         __ movn(dst, src, AT);
  8970         break;
  8972       case 0x06: //less_equal
  8973        __ slt(AT, opr2, opr1);
  8974        __ movz(dst, src, AT);
  8975        break;
  8977       default:
  8978           Unimplemented();
  8980   %}
  8982   ins_pipe( pipe_slow );
  8983 %}
  8985 instruct cmovL_cmpN_reg_reg(mRegL dst, mRegL src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8986   match(Set dst (CMoveL (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8987   ins_cost(80);
  8988   format %{
  8989              "CMPU$cop $tmp1,$tmp2\t @cmovL_cmpN_reg_reg\n\t"
  8990              "CMOV $dst,$src\t @cmovL_cmpN_reg_reg"
  8991          %}
  8992   ins_encode %{
  8993     Register op1 = $tmp1$$Register;
  8994     Register op2 = $tmp2$$Register;
  8995     Register dst = $dst$$Register;
  8996     Register src = $src$$Register;
  8997     int     flag = $cop$$cmpcode;
  8999     switch(flag)
  9001       case 0x01: //equal
  9002         __ subu32(AT, op1, op2);
  9003         __ movz(dst, src, AT);
  9004         break;
  9006       case 0x02: //not_equal
  9007         __ subu32(AT, op1, op2);
  9008         __ movn(dst, src, AT);
  9009         break;
  9011       case 0x03: //above
  9012         __ sltu(AT, op2, op1);
  9013         __ movn(dst, src, AT);
  9014         break;
  9016       case 0x04: //above_equal
  9017         __ sltu(AT, op1, op2);
  9018         __ movz(dst, src, AT);
  9019         break;
  9021       case 0x05: //below
  9022         __ sltu(AT, op1, op2);
  9023         __ movn(dst, src, AT);
  9024         break;
  9026       case 0x06: //below_equal
  9027         __ sltu(AT, op2, op1);
  9028         __ movz(dst, src, AT);
  9029         break;
  9031       default:
  9032           Unimplemented();
  9034   %}
  9036   ins_pipe( pipe_slow );
  9037 %}
  9040 instruct cmovL_cmpD_reg_reg(mRegL dst, mRegL src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9041   match(Set dst (CMoveL (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9042   ins_cost(80);
  9043   format %{
  9044              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpD_reg_reg\n"
  9045              "\tCMOV  $dst,$src \t @cmovL_cmpD_reg_reg"
  9046          %}
  9047   ins_encode %{
  9048     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9049     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9050     Register dst = as_Register($dst$$reg);
  9051     Register src = as_Register($src$$reg);
  9053     int     flag = $cop$$cmpcode;
  9055     switch(flag)
  9057       case 0x01: //equal
  9058         __ c_eq_d(reg_op1, reg_op2);
  9059         __ movt(dst, src);
  9060         break;
  9061       case 0x02: //not_equal
  9062         __ c_eq_d(reg_op1, reg_op2);
  9063         __ movf(dst, src);
  9064         break;
  9065       case 0x03: //greater
  9066         __ c_ole_d(reg_op1, reg_op2);
  9067         __ movf(dst, src);
  9068         break;
  9069       case 0x04: //greater_equal
  9070         __ c_olt_d(reg_op1, reg_op2);
  9071         __ movf(dst, src);
  9072         break;
  9073       case 0x05: //less
  9074         __ c_ult_d(reg_op1, reg_op2);
  9075         __ movt(dst, src);
  9076         break;
  9077       case 0x06: //less_equal
  9078         __ c_ule_d(reg_op1, reg_op2);
  9079         __ movt(dst, src);
  9080         break;
  9081       default:
  9082           Unimplemented();
  9084   %}
  9086   ins_pipe( pipe_slow );
  9087 %}
  9089 instruct cmovD_cmpD_reg_reg(regD dst, regD src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9090   match(Set dst (CMoveD (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9091   ins_cost(200);
  9092   format %{
  9093              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpD_reg_reg\n"
  9094              "\tCMOV  $dst,$src \t @cmovD_cmpD_reg_reg"
  9095          %}
  9096   ins_encode %{
  9097     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9098     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9099     FloatRegister dst = as_FloatRegister($dst$$reg);
  9100     FloatRegister src = as_FloatRegister($src$$reg);
  9102     int     flag = $cop$$cmpcode;
  9104     Label L;
  9106     switch(flag)
  9108       case 0x01: //equal
  9109         __ c_eq_d(reg_op1, reg_op2);
  9110         __ bc1f(L);
  9111         __ nop();
  9112         __ mov_d(dst, src);
  9113         __ bind(L); 
  9114         break;
  9115       case 0x02: //not_equal
  9116 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  9117         __ c_eq_d(reg_op1, reg_op2);
  9118         __ bc1t(L);
  9119         __ nop();
  9120         __ mov_d(dst, src);
  9121         __ bind(L); 
  9122         break;
  9123       case 0x03: //greater
  9124         __ c_ole_d(reg_op1, reg_op2);
  9125         __ bc1t(L);
  9126         __ nop();
  9127         __ mov_d(dst, src);
  9128         __ bind(L); 
  9129         break;
  9130       case 0x04: //greater_equal
  9131         __ c_olt_d(reg_op1, reg_op2);
  9132         __ bc1t(L);
  9133         __ nop();
  9134         __ mov_d(dst, src);
  9135         __ bind(L); 
  9136         break;
  9137       case 0x05: //less
  9138         __ c_ult_d(reg_op1, reg_op2);
  9139         __ bc1f(L);
  9140         __ nop();
  9141         __ mov_d(dst, src);
  9142         __ bind(L); 
  9143         break;
  9144       case 0x06: //less_equal
  9145         __ c_ule_d(reg_op1, reg_op2);
  9146         __ bc1f(L);
  9147         __ nop();
  9148         __ mov_d(dst, src);
  9149         __ bind(L); 
  9150         break;
  9151       default:
  9152           Unimplemented();
  9154   %}
  9156   ins_pipe( pipe_slow );
  9157 %}
  9159 instruct cmovF_cmpI_reg_reg(regF dst, regF src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9160   match(Set dst (CMoveF (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9161   ins_cost(200);
  9162   format %{
  9163              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpI_reg_reg\n"
  9164              "\tCMOV  $dst, $src \t @cmovF_cmpI_reg_reg"
  9165          %}
  9167   ins_encode %{
  9168     Register op1 = $tmp1$$Register;
  9169     Register op2 = $tmp2$$Register;
  9170     FloatRegister dst = as_FloatRegister($dst$$reg);
  9171     FloatRegister src = as_FloatRegister($src$$reg);
  9172     int     flag = $cop$$cmpcode;
  9173     Label      L; 
  9175     switch(flag)
  9177       case 0x01: //equal
  9178        	__ bne(op1, op2, L); 
  9179         __ nop();
  9180         __ mov_s(dst, src);
  9181         __ bind(L);
  9182         break;
  9183       case 0x02: //not_equal
  9184        	__ beq(op1, op2, L); 
  9185         __ nop();
  9186         __ mov_s(dst, src);
  9187         __ bind(L);
  9188         break;
  9189       case 0x03: //great
  9190         __ slt(AT, op2, op1);
  9191        	__ beq(AT, R0, L);
  9192         __ nop();
  9193         __ mov_s(dst, src);
  9194         __ bind(L);
  9195         break;
  9196       case 0x04: //great_equal
  9197         __ slt(AT, op1, op2);
  9198         __ bne(AT, R0, L); 
  9199         __ nop();
  9200         __ mov_s(dst, src);
  9201         __ bind(L);
  9202         break;
  9203       case 0x05: //less
  9204         __ slt(AT, op1, op2);
  9205        	__ beq(AT, R0, L);
  9206         __ nop();
  9207         __ mov_s(dst, src);
  9208         __ bind(L);
  9209         break;
  9210       case 0x06: //less_equal
  9211         __ slt(AT, op2, op1);
  9212        	__ bne(AT, R0, L); 
  9213         __ nop();
  9214         __ mov_s(dst, src);
  9215         __ bind(L);
  9216        break;
  9217       default:
  9218           Unimplemented();
  9220   %}
  9222   ins_pipe( pipe_slow );
  9223 %}
  9225 instruct cmovD_cmpI_reg_reg(regD dst, regD src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9226   match(Set dst (CMoveD (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9227   ins_cost(200);
  9228   format %{
  9229              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpI_reg_reg\n"
  9230              "\tCMOV  $dst, $src \t @cmovD_cmpI_reg_reg"
  9231          %}
  9233   ins_encode %{
  9234     Register op1 = $tmp1$$Register;
  9235     Register op2 = $tmp2$$Register;
  9236     FloatRegister dst = as_FloatRegister($dst$$reg);
  9237     FloatRegister src = as_FloatRegister($src$$reg);
  9238     int     flag = $cop$$cmpcode;
  9239     Label      L; 
  9241     switch(flag)
  9243       case 0x01: //equal
  9244        	__ bne(op1, op2, L); 
  9245         __ nop();
  9246         __ mov_d(dst, src);
  9247         __ bind(L);
  9248         break;
  9249       case 0x02: //not_equal
  9250        	__ beq(op1, op2, L); 
  9251         __ nop();
  9252         __ mov_d(dst, src);
  9253         __ bind(L);
  9254         break;
  9255       case 0x03: //great
  9256         __ slt(AT, op2, op1);
  9257        	__ beq(AT, R0, L);
  9258         __ nop();
  9259         __ mov_d(dst, src);
  9260         __ bind(L);
  9261         break;
  9262       case 0x04: //great_equal
  9263         __ slt(AT, op1, op2);
  9264         __ bne(AT, R0, L); 
  9265         __ nop();
  9266         __ mov_d(dst, src);
  9267         __ bind(L);
  9268         break;
  9269       case 0x05: //less
  9270         __ slt(AT, op1, op2);
  9271        	__ beq(AT, R0, L);
  9272         __ nop();
  9273         __ mov_d(dst, src);
  9274         __ bind(L);
  9275         break;
  9276       case 0x06: //less_equal
  9277         __ slt(AT, op2, op1);
  9278        	__ bne(AT, R0, L); 
  9279         __ nop();
  9280         __ mov_d(dst, src);
  9281         __ bind(L);
  9282        break;
  9283       default:
  9284           Unimplemented();
  9286   %}
  9288   ins_pipe( pipe_slow );
  9289 %}
  9291 instruct cmovD_cmpP_reg_reg(regD dst, regD src, mRegP tmp1, mRegP tmp2, cmpOp cop ) %{
  9292   match(Set dst (CMoveD (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  9293   ins_cost(200);
  9294   format %{
  9295              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpP_reg_reg\n"
  9296              "\tCMOV  $dst, $src \t @cmovD_cmpP_reg_reg"
  9297          %}
  9299   ins_encode %{
  9300     Register op1 = $tmp1$$Register;
  9301     Register op2 = $tmp2$$Register;
  9302     FloatRegister dst = as_FloatRegister($dst$$reg);
  9303     FloatRegister src = as_FloatRegister($src$$reg);
  9304     int     flag = $cop$$cmpcode;
  9305     Label      L; 
  9307     switch(flag)
  9309       case 0x01: //equal
  9310        	__ bne(op1, op2, L); 
  9311         __ nop();
  9312         __ mov_d(dst, src);
  9313         __ bind(L);
  9314         break;
  9315       case 0x02: //not_equal
  9316        	__ beq(op1, op2, L); 
  9317         __ nop();
  9318         __ mov_d(dst, src);
  9319         __ bind(L);
  9320         break;
  9321       case 0x03: //great
  9322         __ slt(AT, op2, op1);
  9323        	__ beq(AT, R0, L);
  9324         __ nop();
  9325         __ mov_d(dst, src);
  9326         __ bind(L);
  9327         break;
  9328       case 0x04: //great_equal
  9329         __ slt(AT, op1, op2);
  9330         __ bne(AT, R0, L); 
  9331         __ nop();
  9332         __ mov_d(dst, src);
  9333         __ bind(L);
  9334         break;
  9335       case 0x05: //less
  9336         __ slt(AT, op1, op2);
  9337        	__ beq(AT, R0, L);
  9338         __ nop();
  9339         __ mov_d(dst, src);
  9340         __ bind(L);
  9341         break;
  9342       case 0x06: //less_equal
  9343         __ slt(AT, op2, op1);
  9344        	__ bne(AT, R0, L); 
  9345         __ nop();
  9346         __ mov_d(dst, src);
  9347         __ bind(L);
  9348        break;
  9349       default:
  9350           Unimplemented();
  9352   %}
  9354   ins_pipe( pipe_slow );
  9355 %}
  9357 //FIXME
  9358 instruct cmovI_cmpF_reg_reg(mRegI dst, mRegI src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9359   match(Set dst (CMoveI (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9360   ins_cost(80);
  9361   format %{
  9362              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpF_reg_reg\n"
  9363              "\tCMOV  $dst,$src \t @cmovI_cmpF_reg_reg"
  9364          %}
  9366   ins_encode %{
  9367     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9368     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9369     Register dst = $dst$$Register;
  9370     Register src = $src$$Register;
  9371     int     flag = $cop$$cmpcode;
  9373     switch(flag)
  9375       case 0x01: //equal
  9376         __ c_eq_s(reg_op1, reg_op2);
  9377         __ movt(dst, src);
  9378         break;
  9379       case 0x02: //not_equal
  9380         __ c_eq_s(reg_op1, reg_op2);
  9381         __ movf(dst, src);
  9382         break;
  9383       case 0x03: //greater
  9384         __ c_ole_s(reg_op1, reg_op2);
  9385         __ movf(dst, src);
  9386         break;
  9387       case 0x04: //greater_equal
  9388         __ c_olt_s(reg_op1, reg_op2);
  9389         __ movf(dst, src);
  9390         break;
  9391       case 0x05: //less
  9392         __ c_ult_s(reg_op1, reg_op2);
  9393         __ movt(dst, src);
  9394         break;
  9395       case 0x06: //less_equal
  9396         __ c_ule_s(reg_op1, reg_op2);
  9397         __ movt(dst, src);
  9398        break;
  9399       default:
  9400           Unimplemented();
  9402   %}
  9403   ins_pipe( pipe_slow );
  9404 %}
  9406 instruct cmovF_cmpF_reg_reg(regF dst, regF src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9407   match(Set dst (CMoveF (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9408   ins_cost(200);
  9409   format %{
  9410              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpF_reg_reg\n"
  9411              "\tCMOV  $dst,$src \t @cmovF_cmpF_reg_reg"
  9412          %}
  9414   ins_encode %{
  9415     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9416     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9417     FloatRegister dst = $dst$$FloatRegister;
  9418     FloatRegister src = $src$$FloatRegister;
  9419     Label  L;
  9420     int    flag = $cop$$cmpcode;
  9422     switch(flag)
  9424       case 0x01: //equal
  9425         __ c_eq_s(reg_op1, reg_op2);
  9426         __ bc1f(L);
  9427         __ nop();
  9428         __ mov_s(dst, src);
  9429         __ bind(L);
  9430         break;
  9431       case 0x02: //not_equal
  9432         __ c_eq_s(reg_op1, reg_op2);
  9433         __ bc1t(L);
  9434         __ nop();
  9435         __ mov_s(dst, src);
  9436         __ bind(L);
  9437         break;
  9438       case 0x03: //greater
  9439         __ c_ole_s(reg_op1, reg_op2);
  9440         __ bc1t(L);
  9441         __ nop();
  9442         __ mov_s(dst, src);
  9443         __ bind(L);
  9444         break;
  9445       case 0x04: //greater_equal
  9446         __ c_olt_s(reg_op1, reg_op2);
  9447         __ bc1t(L);
  9448         __ nop();
  9449         __ mov_s(dst, src);
  9450         __ bind(L);
  9451         break;
  9452       case 0x05: //less
  9453         __ c_ult_s(reg_op1, reg_op2);
  9454         __ bc1f(L);
  9455         __ nop();
  9456         __ mov_s(dst, src);
  9457         __ bind(L);
  9458         break;
  9459       case 0x06: //less_equal
  9460         __ c_ule_s(reg_op1, reg_op2);
  9461         __ bc1f(L);
  9462         __ nop();
  9463         __ mov_s(dst, src);
  9464         __ bind(L);
  9465        break;
  9466       default:
  9467           Unimplemented();
  9469   %}
  9470   ins_pipe( pipe_slow );
  9471 %}
  9473 // Manifest a CmpL result in an integer register.  Very painful.
  9474 // This is the test to avoid.
  9475 instruct cmpL3_reg_reg(mRegI dst, mRegL src1, mRegL src2) %{
  9476   match(Set dst (CmpL3 src1 src2));
  9477   ins_cost(1000);
  9478   format %{ "cmpL3  $dst, $src1, $src2 @ cmpL3_reg_reg" %}
  9479   ins_encode %{
  9480     Register opr1 = as_Register($src1$$reg);
  9481     Register opr2 = as_Register($src2$$reg);
  9482     Register dst  = as_Register($dst$$reg);
  9484     Label p_one,  done;
  9486     __ subu(dst, opr1, opr2);
  9488     __ beq(dst, R0, done);
  9489     __ nop();
  9491     __ bgtz(dst, done);
  9492     __ delayed()->addiu32(dst, R0, 1);
  9494     __ addiu32(dst, R0, -1);
  9496     __ bind(done);
  9497   %}
  9498   ins_pipe( pipe_slow );
  9499 %}
  9501 //
  9502 // less_rsult     = -1 
  9503 // greater_result =  1
  9504 // equal_result   =  0 
  9505 // nan_result     = -1
  9506 //
  9507 instruct cmpF3_reg_reg(mRegI dst, regF src1, regF src2) %{
  9508   match(Set dst (CmpF3 src1 src2));
  9509   ins_cost(1000);
  9510   format %{ "cmpF3  $dst, $src1, $src2 @ cmpF3_reg_reg" %}
  9511   ins_encode %{
  9512     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9513     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9514     Register dst = as_Register($dst$$reg);
  9516     Label EQU, LESS, DONE;
  9518     __ move(dst, 1);
  9519     __ c_eq_s(src1, src2);
  9520     __ bc1t(EQU);
  9521     __ nop();
  9522     __ c_ult_s(src1, src2);
  9523     __ bc1t(LESS);
  9524     __ nop();
  9525     __ beq(R0, R0, DONE);
  9526     __ nop();
  9527     __ bind(EQU);
  9528     __ move(dst, 0);
  9529     __ beq(R0, R0, DONE);
  9530     __ nop();
  9531     __ bind(LESS);
  9532     __ move(dst, -1);
  9533     __ bind(DONE);
  9534   %}
  9535   ins_pipe( pipe_slow );
  9536 %}
  9538 instruct cmpD3_reg_reg(mRegI dst, regD src1, regD src2) %{
  9539   match(Set dst (CmpD3 src1 src2));
  9540   ins_cost(1000);
  9541   format %{ "cmpD3  $dst, $src1, $src2 @ cmpD3_reg_reg" %}
  9542   ins_encode %{
  9543     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9544     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9545     Register dst = as_Register($dst$$reg);
  9547     Label EQU, LESS, DONE;
  9549     __ move(dst, 1);
  9550     __ c_eq_d(src1, src2);
  9551     __ bc1t(EQU);
  9552     __ nop();
  9553     __ c_ult_d(src1, src2);
  9554     __ bc1t(LESS);
  9555     __ nop();
  9556     __ beq(R0, R0, DONE);
  9557     __ nop();
  9558     __ bind(EQU);
  9559     __ move(dst, 0);
  9560     __ beq(R0, R0, DONE);
  9561     __ nop();
  9562     __ bind(LESS);
  9563     __ move(dst, -1);
  9564     __ bind(DONE);
  9565   %}
  9566   ins_pipe( pipe_slow );
  9567 %}
  9569 instruct clear_array(mRegL cnt, mRegP base, Universe dummy) %{
  9570   match(Set dummy (ClearArray cnt base));
  9571   format %{ "CLEAR_ARRAY base = $base, cnt = $cnt # Clear doublewords" %}
  9572   ins_encode %{
  9573     //Assume cnt is the number of bytes in an array to be cleared,
  9574     //and base points to the starting address of the array.
  9575     Register base = $base$$Register;
  9576     Register num  = $cnt$$Register;
  9577     Label Loop, done;
  9579     /* 2012/9/21 Jin: according to X86, $cnt is caculated by doublewords(8 bytes) */
  9580     __ move(T9, num);	/* T9 = words */
  9581     __ beq(T9, R0, done);
  9582     __ nop();
  9583     __ move(AT, base);
  9585     __ bind(Loop);
  9586     __ sd(R0, Address(AT, 0));
  9587     __ daddi(AT, AT, wordSize);
  9588     __ daddi(T9, T9, -1);
  9589     __ bne(T9, R0, Loop);
  9590     __ delayed()->nop();
  9591     __ bind(done);
  9592   %}
  9593   ins_pipe( pipe_slow );
  9594 %}
  9596 instruct string_compare(a4_RegP str1, mA5RegI cnt1, a6_RegP str2,  mA7RegI cnt2, no_Ax_mRegI result) %{
  9597   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9598   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2);
  9600   format %{ "String Compare $str1[len: $cnt1], $str2[len: $cnt2] -> $result @ string_compare" %}
  9601   ins_encode %{
  9602     // Get the first character position in both strings
  9603     //         [8] char array, [12] offset, [16] count 
  9604     Register str1   = $str1$$Register;
  9605     Register str2   = $str2$$Register;
  9606     Register cnt1   = $cnt1$$Register;
  9607     Register cnt2   = $cnt2$$Register;
  9608     Register result = $result$$Register;
  9610     Label L, Loop, haveResult, done;
  9612    // compute the and difference of lengths (in result)
  9613    __ subu(result, cnt1, cnt2); // result holds the difference of two lengths
  9615    // compute the shorter length (in cnt1)
  9616    __ slt(AT, cnt2, cnt1);
  9617    __ movn(cnt1, cnt2, AT);
  9619    // Now the shorter length is in cnt1 and cnt2 can be used as a tmp register 
  9620    __ bind(Loop);                        // Loop begin
  9621    __ beq(cnt1, R0, done);
  9622    __ delayed()->lhu(AT, str1, 0);;
  9624    // compare current character
  9625    __ lhu(cnt2, str2, 0);
  9626    __ bne(AT, cnt2, haveResult);
  9627    __ delayed()->addi(str1, str1, 2);
  9628    __ addi(str2, str2, 2);
  9629    __ b(Loop);
  9630    __ delayed()->addi(cnt1, cnt1, -1);   // Loop end
  9632    __ bind(haveResult);
  9633    __ subu(result, AT, cnt2);
  9635    __ bind(done);
  9636   %}
  9638   ins_pipe( pipe_slow );
  9639 %}
  9641 // intrinsic optimization
  9642 instruct string_equals(a4_RegP str1, a5_RegP str2, mA6RegI cnt, mA7RegI temp, no_Ax_mRegI result) %{
  9643   match(Set result (StrEquals (Binary str1 str2) cnt));
  9644   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL temp);
  9646   format %{ "String Equal $str1, $str2, len:$cnt  tmp:$temp -> $result @ string_equals" %}
  9647   ins_encode %{
  9648     // Get the first character position in both strings
  9649     //         [8] char array, [12] offset, [16] count 
  9650     Register str1   = $str1$$Register;
  9651     Register str2   = $str2$$Register;
  9652     Register cnt    = $cnt$$Register;
  9653     Register tmp    = $temp$$Register;
  9654     Register result = $result$$Register;
  9656     Label    Loop, done;
  9659    __ beq(str1, str2, done);  // same char[] ?
  9660    __ daddiu(result, R0, 1);
  9662    __ bind(Loop);             // Loop begin
  9663    __ beq(cnt, R0, done);
  9664    __ daddiu(result, R0, 1); // count == 0
  9666    // compare current character
  9667    __ lhu(AT, str1, 0);;
  9668    __ lhu(tmp, str2, 0);
  9669    __ bne(AT, tmp, done);
  9670    __ delayed()->daddi(result, R0, 0);
  9671    __ addi(str1, str1, 2);
  9672    __ addi(str2, str2, 2);
  9673    __ b(Loop);
  9674    __ delayed()->addi(cnt, cnt, -1);  // Loop end
  9676    __ bind(done);
  9677   %}
  9679   ins_pipe( pipe_slow );
  9680 %}
  9682 //----------Arithmetic Instructions-------------------------------------------
  9683 //----------Addition Instructions---------------------------------------------
  9684 instruct addI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9685   match(Set dst (AddI src1 src2));
  9687   format %{ "add   $dst, $src1, $src2 #@addI_Reg_Reg" %}
  9688   ins_encode %{
  9689     Register  dst = $dst$$Register;
  9690     Register src1 = $src1$$Register;
  9691     Register src2 = $src2$$Register;
  9692     __ addu32(dst, src1, src2);
  9693   %}
  9694   ins_pipe( ialu_regI_regI );
  9695 %}
  9697 instruct addI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
  9698   match(Set dst (AddI src1 src2));
  9700   format %{ "add    $dst, $src1, $src2 #@addI_Reg_imm" %}
  9701   ins_encode %{
  9702     Register  dst = $dst$$Register;
  9703     Register src1 = $src1$$Register;
  9704     int       imm = $src2$$constant;
  9706     if(Assembler::is_simm16(imm)) {
  9707        __ addiu32(dst, src1, imm);
  9708     } else {
  9709        __ move(AT, imm);
  9710        __ addu32(dst, src1, AT);
  9712   %}
  9713   ins_pipe( ialu_regI_regI );
  9714 %}
  9716 instruct addP_reg_reg(mRegP dst, mRegP src1, mRegL src2) %{
  9717   match(Set dst (AddP src1 src2));
  9719   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg" %}
  9721   ins_encode %{
  9722     Register  dst = $dst$$Register;
  9723     Register src1 = $src1$$Register;
  9724     Register src2 = $src2$$Register;
  9725     __ daddu(dst, src1, src2);  
  9726   %}
  9728   ins_pipe( ialu_regI_regI );
  9729 %}
  9731 instruct addP_reg_reg_convI2L(mRegP dst, mRegP src1, mRegI src2) %{
  9732   match(Set dst (AddP src1 (ConvI2L src2)));
  9734   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg_convI2L" %}
  9736   ins_encode %{
  9737     Register  dst = $dst$$Register;
  9738     Register src1 = $src1$$Register;
  9739     Register src2 = $src2$$Register;
  9740     __ daddu(dst, src1, src2);  
  9741   %}
  9743   ins_pipe( ialu_regI_regI );
  9744 %}
  9746 instruct addP_reg_imm(mRegP dst, mRegP src1,  immL32 src2) %{
  9747   match(Set dst (AddP src1 src2));
  9748 //  effect(KILL cr);
  9750   format %{ "daddi   $dst, $src1, $src2 #@addP_reg_imm" %}
  9751   ins_encode %{
  9752     Register src1 = $src1$$Register;
  9753     long      src2 = $src2$$constant;
  9754     Register  dst = $dst$$Register;
  9756     if(Assembler::is_simm16(src2)) {
  9757        __ daddiu(dst, src1, src2);
  9758     } else {
  9759        __ li(AT, src2);
  9760        __ daddu(dst, src1, AT);
  9762   %}
  9763   ins_pipe( ialu_regI_imm16 );
  9764 %}
  9766 // Add Long Register with Register
  9767 instruct addL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9768   match(Set dst (AddL src1 src2));
  9769   ins_cost(200);
  9770   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_Reg\t" %}
  9772   ins_encode %{
  9773     Register dst_reg = as_Register($dst$$reg);
  9774     Register src1_reg = as_Register($src1$$reg);
  9775     Register src2_reg = as_Register($src2$$reg);
  9777     __ daddu(dst_reg, src1_reg, src2_reg);
  9778   %}
  9780   ins_pipe( ialu_regL_regL );
  9781 %}
  9783 instruct addL_Reg_imm(mRegL dst, mRegL src1, immL16 src2)
  9784 %{
  9785   match(Set dst (AddL src1 src2));
  9787   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_imm " %}
  9788   ins_encode %{
  9789     Register dst_reg  = as_Register($dst$$reg);
  9790     Register src1_reg = as_Register($src1$$reg);
  9791     int      src2_imm = $src2$$constant;
  9793     __ daddiu(dst_reg, src1_reg, src2_imm);
  9794   %}
  9796   ins_pipe( ialu_regL_regL );
  9797 %}
  9799 instruct addL_RegI2L_imm(mRegL dst, mRegI src1, immL16 src2)
  9800 %{
  9801   match(Set dst (AddL (ConvI2L src1) src2));
  9803   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_imm " %}
  9804   ins_encode %{
  9805     Register dst_reg  = as_Register($dst$$reg);
  9806     Register src1_reg = as_Register($src1$$reg);
  9807     int      src2_imm = $src2$$constant;
  9809     __ daddiu(dst_reg, src1_reg, src2_imm);
  9810   %}
  9812   ins_pipe( ialu_regL_regL );
  9813 %}
  9815 instruct addL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9816   match(Set dst (AddL (ConvI2L src1) src2));
  9817   ins_cost(200);
  9818   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_Reg\t" %}
  9820   ins_encode %{
  9821     Register dst_reg = as_Register($dst$$reg);
  9822     Register src1_reg = as_Register($src1$$reg);
  9823     Register src2_reg = as_Register($src2$$reg);
  9825     __ daddu(dst_reg, src1_reg, src2_reg);
  9826   %}
  9828   ins_pipe( ialu_regL_regL );
  9829 %}
  9831 instruct addL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9832   match(Set dst (AddL (ConvI2L src1) (ConvI2L src2)));
  9833   ins_cost(200);
  9834   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_RegI2L\t" %}
  9836   ins_encode %{
  9837     Register dst_reg = as_Register($dst$$reg);
  9838     Register src1_reg = as_Register($src1$$reg);
  9839     Register src2_reg = as_Register($src2$$reg);
  9841     __ daddu(dst_reg, src1_reg, src2_reg);
  9842   %}
  9844   ins_pipe( ialu_regL_regL );
  9845 %}
  9847 instruct addL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9848   match(Set dst (AddL src1 (ConvI2L src2)));
  9849   ins_cost(200);
  9850   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_RegI2L\t" %}
  9852   ins_encode %{
  9853     Register dst_reg = as_Register($dst$$reg);
  9854     Register src1_reg = as_Register($src1$$reg);
  9855     Register src2_reg = as_Register($src2$$reg);
  9857     __ daddu(dst_reg, src1_reg, src2_reg);
  9858   %}
  9860   ins_pipe( ialu_regL_regL );
  9861 %}
  9863 //----------Subtraction Instructions-------------------------------------------
  9864 // Integer Subtraction Instructions
  9865 instruct subI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9866   match(Set dst (SubI src1 src2));
  9867   ins_cost(100);
  9869   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_Reg" %}
  9870   ins_encode %{
  9871     Register  dst = $dst$$Register;
  9872     Register src1 = $src1$$Register;
  9873     Register src2 = $src2$$Register;
  9874     __ subu32(dst, src1, src2);
  9875   %}
  9876   ins_pipe( ialu_regI_regI );
  9877 %}
  9879 instruct subI_Reg_immI16_sub(mRegI dst, mRegI src1,  immI16_sub src2) %{
  9880   match(Set dst (SubI src1 src2));
  9881   ins_cost(80);
  9883   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_immI16_sub" %}
  9884   ins_encode %{
  9885     Register  dst = $dst$$Register;
  9886     Register src1 = $src1$$Register;
  9887     __ addiu32(dst, src1, -1 * $src2$$constant);
  9888   %}
  9889   ins_pipe( ialu_regI_regI );
  9890 %}
  9892 instruct negI_Reg(mRegI dst, immI0 zero,  mRegI src) %{
  9893   match(Set dst (SubI zero src));
  9894   ins_cost(80);
  9896   format %{ "neg    $dst, $src #@negI_Reg" %}
  9897   ins_encode %{
  9898     Register  dst = $dst$$Register;
  9899     Register  src = $src$$Register;
  9900     __ subu32(dst, R0, src);
  9901   %}
  9902   ins_pipe( ialu_regI_regI );
  9903 %}
  9905 instruct negL_Reg(mRegL dst, immL0 zero,  mRegL src) %{
  9906   match(Set dst (SubL zero src));
  9907   ins_cost(80);
  9909   format %{ "neg    $dst, $src #@negL_Reg" %}
  9910   ins_encode %{
  9911     Register  dst = $dst$$Register;
  9912     Register  src = $src$$Register;
  9913     __ subu(dst, R0, src);
  9914   %}
  9915   ins_pipe( ialu_regI_regI );
  9916 %}
  9918 instruct subL_Reg_immL16_sub(mRegL dst, mRegL src1,  immL16_sub src2) %{
  9919   match(Set dst (SubL src1 src2));
  9920   ins_cost(80);
  9922   format %{ "sub    $dst, $src1, $src2 #@subL_Reg_immL16_sub" %}
  9923   ins_encode %{
  9924     Register  dst = $dst$$Register;
  9925     Register src1 = $src1$$Register;
  9926     __ daddiu(dst, src1, -1 * $src2$$constant);
  9927   %}
  9928   ins_pipe( ialu_regI_regI );
  9929 %}
  9931 // Subtract Long Register with Register.
  9932 instruct subL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9933   match(Set dst (SubL src1 src2));
  9934   ins_cost(100);
  9935   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_Reg" %}
  9936   ins_encode %{
  9937     Register dst  = as_Register($dst$$reg);
  9938     Register src1 = as_Register($src1$$reg);
  9939     Register src2 = as_Register($src2$$reg);
  9941     __ subu(dst, src1, src2);
  9942   %}
  9943   ins_pipe( ialu_regL_regL );
  9944 %}
  9946 instruct subL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9947   match(Set dst (SubL src1 (ConvI2L src2)));
  9948   ins_cost(100);
  9949   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_RegI2L" %}
  9950   ins_encode %{
  9951     Register dst  = as_Register($dst$$reg);
  9952     Register src1 = as_Register($src1$$reg);
  9953     Register src2 = as_Register($src2$$reg);
  9955     __ subu(dst, src1, src2);
  9956   %}
  9957   ins_pipe( ialu_regL_regL );
  9958 %}
  9960 instruct subL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9961   match(Set dst (SubL (ConvI2L src1) src2));
  9962   ins_cost(200);
  9963   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_Reg" %}
  9964   ins_encode %{
  9965     Register dst  = as_Register($dst$$reg);
  9966     Register src1 = as_Register($src1$$reg);
  9967     Register src2 = as_Register($src2$$reg);
  9969     __ subu(dst, src1, src2);
  9970   %}
  9971   ins_pipe( ialu_regL_regL );
  9972 %}
  9974 instruct subL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9975   match(Set dst (SubL (ConvI2L src1) (ConvI2L src2)));
  9976   ins_cost(200);
  9977   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_RegI2L" %}
  9978   ins_encode %{
  9979     Register dst  = as_Register($dst$$reg);
  9980     Register src1 = as_Register($src1$$reg);
  9981     Register src2 = as_Register($src2$$reg);
  9983     __ subu(dst, src1, src2);
  9984   %}
  9985   ins_pipe( ialu_regL_regL );
  9986 %}
  9988 // Integer MOD with Register
  9989 instruct modI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9990   match(Set dst (ModI src1 src2));
  9991   ins_cost(300);
  9992   format %{ "modi   $dst, $src1, $src2 @ modI_Reg_Reg" %}
  9993   ins_encode %{
  9994     Register  dst = $dst$$Register;
  9995     Register src1 = $src1$$Register;
  9996     Register src2 = $src2$$Register;
  9998     //if (UseLoongsonISA) {
  9999     if (0) {
 10000       // 2016.08.10 
 10001       // Experiments show that gsmod is slower that div+mfhi.
 10002       // So I just disable it here.
 10003       __ gsmod(dst, src1, src2);
 10004     } else {
 10005       __ div(src1, src2); 
 10006       __ mfhi(dst);  
 10008   %}
 10010   //ins_pipe( ialu_mod );
 10011   ins_pipe( ialu_regI_regI );
 10012 %}
 10014 instruct modL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10015   match(Set dst (ModL src1 src2));
 10016   format %{ "modL  $dst, $src1, $src2 @modL_reg_reg" %}
 10018   ins_encode %{
 10019     Register dst = as_Register($dst$$reg);
 10020     Register op1 = as_Register($src1$$reg);
 10021     Register op2 = as_Register($src2$$reg);
 10023     if (UseLoongsonISA) {
 10024       __ gsdmod(dst, op1, op2);
 10025     } else {
 10026       __ ddiv(op1, op2);
 10027       __ mfhi(dst);
 10029   %}
 10030   ins_pipe( pipe_slow );
 10031 %}
 10033 instruct mulI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10034   match(Set dst (MulI src1 src2));
 10036   ins_cost(300);
 10037   format %{ "mul   $dst, $src1, $src2 @ mulI_Reg_Reg" %}
 10038   ins_encode %{
 10039      Register src1 = $src1$$Register;
 10040      Register src2 = $src2$$Register;
 10041      Register dst  = $dst$$Register;
 10043      __ mul(dst, src1, src2);
 10044   %}
 10045   ins_pipe( ialu_mult );
 10046 %}
 10048 instruct maddI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2, mRegI src3) %{
 10049   match(Set dst (AddI (MulI src1 src2) src3));
 10051   ins_cost(999);
 10052   format %{ "madd   $dst, $src1 * $src2 + $src3 #@maddI_Reg_Reg" %}
 10053   ins_encode %{
 10054      Register src1 = $src1$$Register;
 10055      Register src2 = $src2$$Register;
 10056      Register src3 = $src3$$Register;
 10057      Register dst  = $dst$$Register;
 10059      __ mtlo(src3);
 10060      __ madd(src1, src2);
 10061      __ mflo(dst);
 10062   %}
 10063   ins_pipe( ialu_mult );
 10064 %}
 10066 instruct divI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10067   match(Set dst (DivI src1 src2));
 10069   ins_cost(300);
 10070   format %{ "div   $dst, $src1, $src2 @ divI_Reg_Reg" %}
 10071   ins_encode %{
 10072      Register src1 = $src1$$Register;
 10073      Register src2 = $src2$$Register;
 10074      Register dst  = $dst$$Register;
 10076     /* 2012/4/21 Jin: In MIPS, div does not cause exception.
 10077        We must trap an exception manually. */   
 10078     __ teq(R0, src2, 0x7);
 10080     if (UseLoongsonISA) {
 10081       __ gsdiv(dst, src1, src2);
 10082     } else {
 10083       __ div(src1, src2);
 10085       __ nop();
 10086       __ nop();
 10087       __ mflo(dst);
 10089   %}
 10090   ins_pipe( ialu_mod );
 10091 %}
 10093 instruct divF_Reg_Reg(regF dst, regF src1, regF src2) %{
 10094   match(Set dst (DivF src1 src2));
 10096   ins_cost(300);
 10097   format %{ "divF   $dst, $src1, $src2 @ divF_Reg_Reg" %}
 10098   ins_encode %{
 10099      FloatRegister src1 = $src1$$FloatRegister;
 10100      FloatRegister src2 = $src2$$FloatRegister;
 10101      FloatRegister dst  = $dst$$FloatRegister;
 10103     /* Here do we need to trap an exception manually ? */   
 10104     __ div_s(dst, src1, src2);
 10105   %}
 10106   ins_pipe( pipe_slow );
 10107 %}
 10109 instruct divD_Reg_Reg(regD dst, regD src1, regD src2) %{
 10110   match(Set dst (DivD src1 src2));
 10112   ins_cost(300);
 10113   format %{ "divD   $dst, $src1, $src2 @ divD_Reg_Reg" %}
 10114   ins_encode %{
 10115      FloatRegister src1 = $src1$$FloatRegister;
 10116      FloatRegister src2 = $src2$$FloatRegister;
 10117      FloatRegister dst  = $dst$$FloatRegister;
 10119     /* Here do we need to trap an exception manually ? */   
 10120     __ div_d(dst, src1, src2);
 10121   %}
 10122   ins_pipe( pipe_slow );
 10123 %}
 10125 instruct mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10126   match(Set dst (MulL src1 src2));
 10127   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_reg" %}
 10128   ins_encode %{
 10129     Register dst = as_Register($dst$$reg);
 10130     Register op1 = as_Register($src1$$reg);
 10131     Register op2 = as_Register($src2$$reg);
 10133     if (UseLoongsonISA) {
 10134       __ gsdmult(dst, op1, op2);
 10135     } else {
 10136       __ dmult(op1, op2);
 10137       __ mflo(dst);
 10139   %}
 10140   ins_pipe( pipe_slow );
 10141 %}
 10143 instruct divL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10144   match(Set dst (DivL src1 src2));
 10145   format %{ "divL  $dst, $src1, $src2 @divL_reg_reg" %}
 10147   ins_encode %{
 10148     Register dst = as_Register($dst$$reg);
 10149     Register op1 = as_Register($src1$$reg);
 10150     Register op2 = as_Register($src2$$reg);
 10152     if (UseLoongsonISA) {
 10153       __ gsddiv(dst, op1, op2);
 10154     } else {
 10155       __ ddiv(op1, op2);
 10156       __ mflo(dst);
 10158   %}
 10159   ins_pipe( pipe_slow );
 10160 %}
 10162 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
 10163   match(Set dst (AddF src1 src2));
 10164   format %{ "AddF  $dst, $src1, $src2 @addF_reg_reg" %}
 10165   ins_encode %{
 10166     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10167     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10168     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10170     __ add_s(dst, src1, src2);  
 10171   %}
 10172   ins_pipe( fpu_regF_regF );
 10173 %}
 10175 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
 10176   match(Set dst (SubF src1 src2));
 10177   format %{ "SubF  $dst, $src1, $src2 @subF_reg_reg" %}
 10178   ins_encode %{
 10179     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10180     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10181     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10183     __ sub_s(dst, src1, src2);  
 10184   %}
 10185   ins_pipe( fpu_regF_regF );
 10186 %}
 10187 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
 10188   match(Set dst (AddD src1 src2));
 10189   format %{ "AddD  $dst, $src1, $src2 @addD_reg_reg" %}
 10190   ins_encode %{
 10191     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10192     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10193     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10195     __ add_d(dst, src1, src2);  
 10196   %}
 10197   ins_pipe( fpu_regF_regF );
 10198 %}
 10200 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
 10201   match(Set dst (SubD src1 src2));
 10202   format %{ "SubD  $dst, $src1, $src2 @subD_reg_reg" %}
 10203   ins_encode %{
 10204     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10205     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10206     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10208     __ sub_d(dst, src1, src2);  
 10209   %}
 10210   ins_pipe( fpu_regF_regF );
 10211 %}
 10213 instruct negF_reg(regF dst, regF src) %{
 10214   match(Set dst (NegF src));
 10215   format %{ "negF  $dst, $src @negF_reg" %}
 10216   ins_encode %{
 10217     FloatRegister src = as_FloatRegister($src$$reg);
 10218     FloatRegister dst = as_FloatRegister($dst$$reg);
 10220     __ neg_s(dst, src);
 10221   %}
 10222   ins_pipe( fpu_regF_regF );
 10223 %}
 10225 instruct negD_reg(regD dst, regD src) %{
 10226   match(Set dst (NegD src));
 10227   format %{ "negD  $dst, $src @negD_reg" %}
 10228   ins_encode %{
 10229     FloatRegister src = as_FloatRegister($src$$reg);
 10230     FloatRegister dst = as_FloatRegister($dst$$reg);
 10232     __ neg_d(dst, src);  
 10233   %}
 10234   ins_pipe( fpu_regF_regF );
 10235 %}
 10238 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
 10239   match(Set dst (MulF src1 src2));
 10240   format %{ "MULF  $dst, $src1, $src2 @mulF_reg_reg" %}
 10241   ins_encode %{
 10242     FloatRegister src1 = $src1$$FloatRegister;
 10243     FloatRegister src2 = $src2$$FloatRegister;
 10244     FloatRegister dst  = $dst$$FloatRegister;
 10246     __ mul_s(dst, src1, src2);  
 10247   %}
 10248   ins_pipe( fpu_regF_regF );
 10249 %}
 10251 instruct maddF_reg_reg(regF dst, regF src1, regF src2, regF src3) %{
 10252   match(Set dst (AddF (MulF src1 src2) src3));
 10253   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10254   ins_cost(44444);
 10255   format %{ "maddF  $dst, $src1, $src2, $src3 @maddF_reg_reg" %}
 10256   ins_encode %{
 10257     FloatRegister src1 = $src1$$FloatRegister;
 10258     FloatRegister src2 = $src2$$FloatRegister;
 10259     FloatRegister src3 = $src3$$FloatRegister;
 10260     FloatRegister dst  = $dst$$FloatRegister;
 10262     __ madd_s(dst, src1, src2, src3);  
 10263   %}
 10264   ins_pipe( fpu_regF_regF );
 10265 %}
 10267 // Mul two double precision floating piont number
 10268 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
 10269   match(Set dst (MulD src1 src2));
 10270   format %{ "MULD  $dst, $src1, $src2 @mulD_reg_reg" %}
 10271   ins_encode %{
 10272     FloatRegister src1 = $src1$$FloatRegister;
 10273     FloatRegister src2 = $src2$$FloatRegister;
 10274     FloatRegister dst  = $dst$$FloatRegister;
 10276     __ mul_d(dst, src1, src2);  
 10277   %}
 10278   ins_pipe( fpu_regF_regF );
 10279 %}
 10281 instruct maddD_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
 10282   match(Set dst (AddD (MulD src1 src2) src3));
 10283   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10284   ins_cost(44444);
 10285   format %{ "maddD  $dst, $src1, $src2, $src3 @maddD_reg_reg" %}
 10286   ins_encode %{
 10287     FloatRegister src1 = $src1$$FloatRegister;
 10288     FloatRegister src2 = $src2$$FloatRegister;
 10289     FloatRegister src3 = $src3$$FloatRegister;
 10290     FloatRegister dst  = $dst$$FloatRegister;
 10292     __ madd_d(dst, src1, src2, src3);  
 10293   %}
 10294   ins_pipe( fpu_regF_regF );
 10295 %}
 10297 instruct absF_reg(regF dst, regF src) %{
 10298   match(Set dst (AbsF src));
 10299   ins_cost(100);
 10300   format %{ "absF  $dst, $src @absF_reg" %}
 10301   ins_encode %{
 10302     FloatRegister src = as_FloatRegister($src$$reg);
 10303     FloatRegister dst = as_FloatRegister($dst$$reg);
 10305     __ abs_s(dst, src);  
 10306   %}
 10307   ins_pipe( fpu_regF_regF );
 10308 %}
 10311 // intrinsics for math_native.
 10312 // AbsD  SqrtD  CosD  SinD  TanD  LogD  Log10D
 10314 instruct absD_reg(regD dst, regD src) %{
 10315   match(Set dst (AbsD src));
 10316   ins_cost(100);
 10317   format %{ "absD  $dst, $src @absD_reg" %}
 10318   ins_encode %{
 10319     FloatRegister src = as_FloatRegister($src$$reg);
 10320     FloatRegister dst = as_FloatRegister($dst$$reg);
 10322     __ abs_d(dst, src);  
 10323   %}
 10324   ins_pipe( fpu_regF_regF );
 10325 %}
 10327 instruct sqrtD_reg(regD dst, regD src) %{
 10328   match(Set dst (SqrtD src));
 10329   ins_cost(100);
 10330   format %{ "SqrtD  $dst, $src @sqrtD_reg" %}
 10331   ins_encode %{
 10332     FloatRegister src = as_FloatRegister($src$$reg);
 10333     FloatRegister dst = as_FloatRegister($dst$$reg);
 10335     __ sqrt_d(dst, src);  
 10336   %}
 10337   ins_pipe( fpu_regF_regF );
 10338 %}
 10340 instruct sqrtF_reg(regF dst, regF src) %{
 10341   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10342   ins_cost(100);
 10343   format %{ "SqrtF  $dst, $src @sqrtF_reg" %}
 10344   ins_encode %{
 10345     FloatRegister src = as_FloatRegister($src$$reg);
 10346     FloatRegister dst = as_FloatRegister($dst$$reg);
 10348     __ sqrt_s(dst, src);
 10349   %}
 10350   ins_pipe( fpu_regF_regF );
 10351 %}
 10352 //----------------------------------Logical Instructions----------------------
 10353 //__________________________________Integer Logical Instructions-------------
 10355 //And Instuctions
 10356 // And Register with Immediate
 10357 instruct andI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
 10358   match(Set dst (AndI src1 src2));
 10360   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm" %}
 10361   ins_encode %{
 10362     Register dst = $dst$$Register;
 10363     Register src = $src1$$Register;
 10364     int      val = $src2$$constant;
 10366        __ move(AT, val);
 10367        __ andr(dst, src, AT);
 10368   %}
 10369   ins_pipe( ialu_regI_regI );
 10370 %}
 10372 instruct andI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10373   match(Set dst (AndI src1 src2));
 10374   ins_cost(60);
 10376   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm_0_65535" %}
 10377   ins_encode %{
 10378     Register dst = $dst$$Register;
 10379     Register src = $src1$$Register;
 10380     int      val = $src2$$constant;
 10382        __ andi(dst, src, val);
 10383   %}
 10384   ins_pipe( ialu_regI_regI );
 10385 %}
 10387 instruct andI_Reg_immI_nonneg_mask(mRegI dst, mRegI src1,  immI_nonneg_mask mask) %{
 10388   match(Set dst (AndI src1 mask));
 10389   ins_cost(60);
 10391   format %{ "and  $dst, $src1, $mask #@andI_Reg_immI_nonneg_mask" %}
 10392   ins_encode %{
 10393     Register dst = $dst$$Register;
 10394     Register src = $src1$$Register;
 10395     int     size = Assembler::is_int_mask($mask$$constant);
 10397     __ ext(dst, src, 0, size);
 10398   %}
 10399   ins_pipe( ialu_regI_regI );
 10400 %}
 10402 instruct andL_Reg_immL_nonneg_mask(mRegL dst, mRegL src1,  immL_nonneg_mask mask) %{
 10403   match(Set dst (AndL src1 mask));
 10404   ins_cost(60);
 10406   format %{ "and  $dst, $src1, $mask #@andL_Reg_immL_nonneg_mask" %}
 10407   ins_encode %{
 10408     Register dst = $dst$$Register;
 10409     Register src = $src1$$Register;
 10410     int     size = Assembler::is_jlong_mask($mask$$constant);
 10412     __ dext(dst, src, 0, size);
 10413   %}
 10414   ins_pipe( ialu_regI_regI );
 10415 %}
 10417 instruct xorI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10418   match(Set dst (XorI src1 src2));
 10419   ins_cost(60);
 10421   format %{ "xori  $dst, $src1, $src2 #@xorI_Reg_imm_0_65535" %}
 10422   ins_encode %{
 10423     Register dst = $dst$$Register;
 10424     Register src = $src1$$Register;
 10425     int      val = $src2$$constant;
 10427        __ xori(dst, src, val);
 10428   %}
 10429   ins_pipe( ialu_regI_regI );
 10430 %}
 10432 instruct xorI_Reg_immI_M1(mRegI dst, mRegI src1,  immI_M1 M1) %{
 10433   match(Set dst (XorI src1 M1));
 10434   predicate(UseLoongsonISA);
 10435   ins_cost(60);
 10437   format %{ "xor  $dst, $src1, $M1 #@xorI_Reg_immI_M1" %}
 10438   ins_encode %{
 10439     Register dst = $dst$$Register;
 10440     Register src = $src1$$Register;
 10442        __ gsorn(dst, R0, src);
 10443   %}
 10444   ins_pipe( ialu_regI_regI );
 10445 %}
 10447 instruct xorL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10448   match(Set dst (XorL src1 src2));
 10449   ins_cost(60);
 10451   format %{ "xori  $dst, $src1, $src2 #@xorL_Reg_imm_0_65535" %}
 10452   ins_encode %{
 10453     Register dst = $dst$$Register;
 10454     Register src = $src1$$Register;
 10455     int      val = $src2$$constant;
 10457        __ xori(dst, src, val);
 10458   %}
 10459   ins_pipe( ialu_regI_regI );
 10460 %}
 10462 /*
 10463 instruct xorL_Reg_immL_M1(mRegL dst, mRegL src1,  immL_M1 M1) %{
 10464   match(Set dst (XorL src1 M1));
 10465   predicate(UseLoongsonISA);
 10466   ins_cost(60);
 10468   format %{ "xor  $dst, $src1, $M1 #@xorL_Reg_immL_M1" %}
 10469   ins_encode %{
 10470     Register dst = $dst$$Register;
 10471     Register src = $src1$$Register;
 10473        __ gsorn(dst, R0, src);
 10474   %}
 10475   ins_pipe( ialu_regI_regI );
 10476 %}
 10477 */
 10479 instruct lbu_and_lmask(mRegI dst, memory mem,  immI_255 mask) %{
 10480   match(Set dst (AndI mask (LoadB mem)));
 10481   ins_cost(60);
 10483   format %{ "lhu  $dst, $mem #@lbu_and_lmask" %}
 10484   ins_encode(load_UB_enc(dst, mem));
 10485   ins_pipe( ialu_loadI );
 10486 %}
 10488 instruct lbu_and_rmask(mRegI dst, memory mem,  immI_255 mask) %{
 10489   match(Set dst (AndI (LoadB mem) mask));
 10490   ins_cost(60);
 10492   format %{ "lhu  $dst, $mem #@lbu_and_rmask" %}
 10493   ins_encode(load_UB_enc(dst, mem));
 10494   ins_pipe( ialu_loadI );
 10495 %}
 10497 instruct andI_Reg_Reg(mRegI dst, mRegI src1,  mRegI src2) %{
 10498   match(Set dst (AndI src1 src2));
 10500   format %{ "and    $dst, $src1, $src2 #@andI_Reg_Reg" %}
 10501   ins_encode %{
 10502     Register dst = $dst$$Register;
 10503     Register src1 = $src1$$Register;
 10504     Register src2 = $src2$$Register;
 10505     __ andr(dst, src1, src2);
 10506   %}
 10507   ins_pipe( ialu_regI_regI );
 10508 %}
 10510 instruct andnI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10511   match(Set dst (AndI src1 (XorI src2 M1)));
 10512   predicate(UseLoongsonISA);
 10514   format %{ "andn   $dst, $src1, $src2 #@andnI_Reg_nReg" %}
 10515   ins_encode %{
 10516     Register dst = $dst$$Register;
 10517     Register src1 = $src1$$Register;
 10518     Register src2 = $src2$$Register;
 10520     __ gsandn(dst, src1, src2);
 10521   %}
 10522   ins_pipe( ialu_regI_regI );
 10523 %}
 10525 instruct ornI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10526   match(Set dst (OrI src1 (XorI src2 M1)));
 10527   predicate(UseLoongsonISA);
 10529   format %{ "orn    $dst, $src1, $src2 #@ornI_Reg_nReg" %}
 10530   ins_encode %{
 10531     Register dst = $dst$$Register;
 10532     Register src1 = $src1$$Register;
 10533     Register src2 = $src2$$Register;
 10535     __ gsorn(dst, src1, src2);
 10536   %}
 10537   ins_pipe( ialu_regI_regI );
 10538 %}
 10540 instruct andnI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10541   match(Set dst (AndI (XorI src1 M1) src2));
 10542   predicate(UseLoongsonISA);
 10544   format %{ "andn   $dst, $src2, $src1 #@andnI_nReg_Reg" %}
 10545   ins_encode %{
 10546     Register dst = $dst$$Register;
 10547     Register src1 = $src1$$Register;
 10548     Register src2 = $src2$$Register;
 10550     __ gsandn(dst, src2, src1);
 10551   %}
 10552   ins_pipe( ialu_regI_regI );
 10553 %}
 10555 instruct ornI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10556   match(Set dst (OrI (XorI src1 M1) src2));
 10557   predicate(UseLoongsonISA);
 10559   format %{ "orn    $dst, $src2, $src1 #@ornI_nReg_Reg" %}
 10560   ins_encode %{
 10561     Register dst = $dst$$Register;
 10562     Register src1 = $src1$$Register;
 10563     Register src2 = $src2$$Register;
 10565     __ gsorn(dst, src2, src1);
 10566   %}
 10567   ins_pipe( ialu_regI_regI );
 10568 %}
 10570 // And Long Register with Register
 10571 instruct andL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10572   match(Set dst (AndL src1 src2));
 10573   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg\n\t" %}
 10574   ins_encode %{
 10575     Register dst_reg = as_Register($dst$$reg);
 10576     Register src1_reg = as_Register($src1$$reg);
 10577     Register src2_reg = as_Register($src2$$reg);
 10579     __ andr(dst_reg, src1_reg, src2_reg);
 10580   %}
 10581   ins_pipe( ialu_regL_regL );
 10582 %}
 10584 instruct andL_Reg_Reg_convI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10585   match(Set dst (AndL src1 (ConvI2L src2)));
 10586   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg_convI2L\n\t" %}
 10587   ins_encode %{
 10588     Register dst_reg = as_Register($dst$$reg);
 10589     Register src1_reg = as_Register($src1$$reg);
 10590     Register src2_reg = as_Register($src2$$reg);
 10592     __ andr(dst_reg, src1_reg, src2_reg);
 10593   %}
 10594   ins_pipe( ialu_regL_regL );
 10595 %}
 10597 instruct andL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10598   match(Set dst (AndL src1 src2));
 10599   ins_cost(60);
 10601   format %{ "and  $dst, $src1, $src2 #@andL_Reg_imm_0_65535" %}
 10602   ins_encode %{
 10603     Register dst = $dst$$Register;
 10604     Register src = $src1$$Register;
 10605     long     val = $src2$$constant;
 10607        __ andi(dst, src, val);
 10608   %}
 10609   ins_pipe( ialu_regI_regI );
 10610 %}
 10612 /*
 10613 instruct andnL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10614   match(Set dst (AndL src1 (XorL src2 M1)));
 10615   predicate(UseLoongsonISA);
 10617   format %{ "andn   $dst, $src1, $src2 #@andnL_Reg_nReg" %}
 10618   ins_encode %{
 10619     Register dst = $dst$$Register;
 10620     Register src1 = $src1$$Register;
 10621     Register src2 = $src2$$Register;
 10623     __ gsandn(dst, src1, src2);
 10624   %}
 10625   ins_pipe( ialu_regI_regI );
 10626 %}
 10627 */
 10629 /*
 10630 instruct ornL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10631   match(Set dst (OrL src1 (XorL src2 M1)));
 10632   predicate(UseLoongsonISA);
 10634   format %{ "orn    $dst, $src1, $src2 #@ornL_Reg_nReg" %}
 10635   ins_encode %{
 10636     Register dst = $dst$$Register;
 10637     Register src1 = $src1$$Register;
 10638     Register src2 = $src2$$Register;
 10640     __ gsorn(dst, src1, src2);
 10641   %}
 10642   ins_pipe( ialu_regI_regI );
 10643 %}
 10644 */
 10646 /*
 10647 instruct andnL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10648   match(Set dst (AndL (XorL src1 M1) src2));
 10649   predicate(UseLoongsonISA);
 10651   format %{ "andn   $dst, $src2, $src1 #@andnL_nReg_Reg" %}
 10652   ins_encode %{
 10653     Register dst = $dst$$Register;
 10654     Register src1 = $src1$$Register;
 10655     Register src2 = $src2$$Register;
 10657     __ gsandn(dst, src2, src1);
 10658   %}
 10659   ins_pipe( ialu_regI_regI );
 10660 %}
 10661 */
 10663 /*
 10664 instruct ornL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10665   match(Set dst (OrL (XorL src1 M1) src2));
 10666   predicate(UseLoongsonISA);
 10668   format %{ "orn    $dst, $src2, $src1 #@ornL_nReg_Reg" %}
 10669   ins_encode %{
 10670     Register dst = $dst$$Register;
 10671     Register src1 = $src1$$Register;
 10672     Register src2 = $src2$$Register;
 10674     __ gsorn(dst, src2, src1);
 10675   %}
 10676   ins_pipe( ialu_regI_regI );
 10677 %}
 10678 */
 10680 instruct andL_Reg_immL_M8(mRegL dst,  immL_M8 M8) %{
 10681   match(Set dst (AndL dst M8));
 10682   ins_cost(60);
 10684   format %{ "and  $dst, $dst, $M8 #@andL_Reg_immL_M8" %}
 10685   ins_encode %{
 10686     Register dst = $dst$$Register;
 10688     __ dins(dst, R0, 0, 3);
 10689   %}
 10690   ins_pipe( ialu_regI_regI );
 10691 %}
 10693 instruct andL_Reg_immL_M5(mRegL dst,  immL_M5 M5) %{
 10694   match(Set dst (AndL dst M5));
 10695   ins_cost(60);
 10697   format %{ "and  $dst, $dst, $M5 #@andL_Reg_immL_M5" %}
 10698   ins_encode %{
 10699     Register dst = $dst$$Register;
 10701     __ dins(dst, R0, 2, 1);
 10702   %}
 10703   ins_pipe( ialu_regI_regI );
 10704 %}
 10706 instruct andL_Reg_immL_M7(mRegL dst,  immL_M7 M7) %{
 10707   match(Set dst (AndL dst M7));
 10708   ins_cost(60);
 10710   format %{ "and  $dst, $dst, $M7 #@andL_Reg_immL_M7" %}
 10711   ins_encode %{
 10712     Register dst = $dst$$Register;
 10714     __ dins(dst, R0, 1, 2);
 10715   %}
 10716   ins_pipe( ialu_regI_regI );
 10717 %}
 10719 instruct andL_Reg_immL_M4(mRegL dst,  immL_M4 M4) %{
 10720   match(Set dst (AndL dst M4));
 10721   ins_cost(60);
 10723   format %{ "and  $dst, $dst, $M4 #@andL_Reg_immL_M4" %}
 10724   ins_encode %{
 10725     Register dst = $dst$$Register;
 10727     __ dins(dst, R0, 0, 2);
 10728   %}
 10729   ins_pipe( ialu_regI_regI );
 10730 %}
 10732 instruct andL_Reg_immL_M121(mRegL dst,  immL_M121 M121) %{
 10733   match(Set dst (AndL dst M121));
 10734   ins_cost(60);
 10736   format %{ "and  $dst, $dst, $M121 #@andL_Reg_immL_M121" %}
 10737   ins_encode %{
 10738     Register dst = $dst$$Register;
 10740     __ dins(dst, R0, 3, 4);
 10741   %}
 10742   ins_pipe( ialu_regI_regI );
 10743 %}
 10745 // Or Long Register with Register
 10746 instruct orL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10747   match(Set dst (OrL src1 src2));
 10748   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_Reg\t" %}
 10749   ins_encode %{
 10750     Register dst_reg  = $dst$$Register;
 10751     Register src1_reg = $src1$$Register;
 10752     Register src2_reg = $src2$$Register;
 10754     __ orr(dst_reg, src1_reg, src2_reg);
 10755   %}
 10756   ins_pipe( ialu_regL_regL );
 10757 %}
 10759 instruct orL_Reg_P2XReg(mRegL dst, mRegP src1, mRegL src2) %{
 10760   match(Set dst (OrL (CastP2X src1) src2));
 10761   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_P2XReg\t" %}
 10762   ins_encode %{
 10763     Register dst_reg  = $dst$$Register;
 10764     Register src1_reg = $src1$$Register;
 10765     Register src2_reg = $src2$$Register;
 10767     __ orr(dst_reg, src1_reg, src2_reg);
 10768   %}
 10769   ins_pipe( ialu_regL_regL );
 10770 %}
 10772 // Xor Long Register with Register
 10773 instruct xorL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10774   match(Set dst (XorL src1 src2));
 10775   format %{ "XOR    $dst, $src1, $src2 @ xorL_Reg_Reg\t" %}
 10776   ins_encode %{
 10777     Register dst_reg = as_Register($dst$$reg);
 10778     Register src1_reg = as_Register($src1$$reg);
 10779     Register src2_reg = as_Register($src2$$reg);
 10781     __ xorr(dst_reg, src1_reg, src2_reg);
 10782   %}
 10783   ins_pipe( ialu_regL_regL );
 10784 %}
 10786 // Shift Left by 8-bit immediate
 10787 instruct salI_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 10788   match(Set dst (LShiftI src shift));
 10790   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm" %}
 10791   ins_encode %{
 10792     Register src = $src$$Register;
 10793     Register dst = $dst$$Register;
 10794     int    shamt = $shift$$constant;
 10796 /*
 10797      094     SHL    S0, S0, #-7 #@salI_Reg_imm    
 10798      static int insn_RRSO(int rt, int rd, int sa,   int op) { return (rt<<16) | (rd<<11) | (sa<<6)   | op; }
 10799      void sll  (Register rd, Register rt ,  int sa) { 
 10800          emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, sll_op));
 10802 */
 10804     if(0 <= shamt && shamt < 32) __ sll(dst, src, shamt);
 10805     else {
 10806        __ move(AT, shamt);
 10807        __ sllv(dst, src, AT);
 10809   %}
 10810   ins_pipe( ialu_regI_regI );
 10811 %}
 10813 instruct land7_2_s(mRegI dst, mRegL src, immL7 seven, immI_16 sixteen)
 10814 %{
 10815   match(Set dst (RShiftI (LShiftI (ConvL2I (AndL src seven)) sixteen) sixteen));
 10817   format %{ "andi  $dst, $src, 7\t# @land7_2_s" %}
 10818   ins_encode %{
 10819     Register src = $src$$Register;
 10820     Register dst = $dst$$Register;
 10822     __ andi(dst, src, 7);
 10823   %}
 10824   ins_pipe(ialu_regI_regI);
 10825 %}
 10827 instruct ori2s(mRegI dst, mRegI src1, immI_0_32767 src2, immI_16 sixteen)
 10828 %{
 10829   match(Set dst (RShiftI (LShiftI (OrI src1 src2) sixteen) sixteen));
 10831   format %{ "ori  $dst, $src1, $src2\t# @ori2s" %}
 10832   ins_encode %{
 10833     Register src = $src1$$Register;
 10834     int      val = $src2$$constant;
 10835     Register dst = $dst$$Register;
 10837     __ ori(dst, src, val);
 10838   %}
 10839   ins_pipe(ialu_regI_regI);
 10840 %}
 10842 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
 10843 // This idiom is used by the compiler the i2s bytecode.
 10844 instruct i2s(mRegI dst, mRegI src, immI_16 sixteen)
 10845 %{
 10846   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
 10848   format %{ "i2s  $dst, $src\t# @i2s" %}
 10849   ins_encode %{
 10850     Register src = $src$$Register;
 10851     Register dst = $dst$$Register;
 10853     __ seh(dst, src);
 10854   %}
 10855   ins_pipe(ialu_regI_regI);
 10856 %}
 10858 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
 10859 // This idiom is used by the compiler for the i2b bytecode.
 10860 instruct i2b(mRegI dst, mRegI src, immI_24 twentyfour)
 10861 %{
 10862   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
 10864   format %{ "i2b  $dst, $src\t# @i2b" %}
 10865   ins_encode %{
 10866     Register src = $src$$Register;
 10867     Register dst = $dst$$Register;
 10869     __ seb(dst, src);
 10870   %}
 10871   ins_pipe(ialu_regI_regI);
 10872 %}
 10875 instruct salI_RegL2I_imm(mRegI dst, mRegL src, immI8 shift) %{
 10876   match(Set dst (LShiftI (ConvL2I src) shift));
 10878   format %{ "SHL    $dst, $src, $shift #@salI_RegL2I_imm" %}
 10879   ins_encode %{
 10880     Register src = $src$$Register;
 10881     Register dst = $dst$$Register;
 10882     int    shamt = $shift$$constant;
 10884     if(0 <= shamt && shamt < 32) __ sll(dst, src, shamt);
 10885     else {
 10886        __ move(AT, shamt);
 10887        __ sllv(dst, src, AT);
 10889   %}
 10890   ins_pipe( ialu_regI_regI );
 10891 %}
 10893 // Shift Left by 8-bit immediate
 10894 instruct salI_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 10895   match(Set dst (LShiftI src shift));
 10897   format %{ "SHL    $dst, $src, $shift #@salI_Reg_Reg" %}
 10898   ins_encode %{
 10899     Register src = $src$$Register;
 10900     Register dst = $dst$$Register;
 10901     Register shamt = $shift$$Register;
 10902     __ sllv(dst, src, shamt);
 10903   %}
 10904   ins_pipe( ialu_regI_regI );
 10905 %}
 10908 // Shift Left Long 
 10909 instruct salL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10910   //predicate(UseNewLongLShift);
 10911   match(Set dst (LShiftL src shift));
 10912   ins_cost(100);
 10913   format %{ "salL    $dst, $src, $shift @ salL_Reg_imm" %}
 10914   ins_encode %{
 10915     Register src_reg = as_Register($src$$reg);
 10916     Register dst_reg = as_Register($dst$$reg);
 10917     int      shamt = $shift$$constant;
 10919     if (__ is_simm(shamt, 5))
 10920         __ dsll(dst_reg, src_reg, shamt);
 10921     else
 10923        __ move(AT, shamt);
 10924        __ dsllv(dst_reg, src_reg, AT);
 10926   %}
 10927   ins_pipe( ialu_regL_regL );
 10928 %}
 10930 instruct salL_RegI2L_imm(mRegL dst, mRegI src, immI8 shift) %{
 10931   //predicate(UseNewLongLShift);
 10932   match(Set dst (LShiftL (ConvI2L src) shift));
 10933   ins_cost(100);
 10934   format %{ "salL    $dst, $src, $shift @ salL_RegI2L_imm" %}
 10935   ins_encode %{
 10936     Register src_reg = as_Register($src$$reg);
 10937     Register dst_reg = as_Register($dst$$reg);
 10938     int      shamt = $shift$$constant;
 10940     if (__ is_simm(shamt, 5))
 10941         __ dsll(dst_reg, src_reg, shamt);
 10942     else
 10944        __ move(AT, shamt);
 10945        __ dsllv(dst_reg, src_reg, AT);
 10947   %}
 10948   ins_pipe( ialu_regL_regL );
 10949 %}
 10951 // Shift Left Long 
 10952 instruct salL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10953   //predicate(UseNewLongLShift);
 10954   match(Set dst (LShiftL src shift));
 10955   ins_cost(100);
 10956   format %{ "salL    $dst, $src, $shift @ salL_Reg_Reg" %}
 10957   ins_encode %{
 10958     Register creg = T9;
 10959     Register src_reg = as_Register($src$$reg);
 10960     Register dst_reg = as_Register($dst$$reg);
 10962     __ move(creg, $shift$$Register);
 10963     __ andi(creg, creg, 0x3f);
 10964 	__ dsllv(dst_reg, src_reg, creg);
 10965   %}
 10966   ins_pipe( ialu_regL_regL );
 10967 %}
 10969 instruct salL_convI2L_Reg_imm(mRegL dst, mRegI src, immI8 shift) %{
 10970   match(Set dst (LShiftL (ConvI2L src) shift));
 10971   ins_cost(100);
 10972   format %{ "salL    $dst, $src, $shift @ salL_convI2L_Reg_imm" %}
 10973   ins_encode %{
 10974     Register src_reg = as_Register($src$$reg);
 10975     Register dst_reg = as_Register($dst$$reg);
 10976     int      shamt = $shift$$constant;
 10978     if (__ is_simm(shamt, 5)) {
 10979         __ dsll(dst_reg, src_reg, shamt);
 10980     } else {
 10981        __ move(AT, shamt);
 10982        __ dsllv(dst_reg, src_reg, AT);
 10984   %}
 10985   ins_pipe( ialu_regL_regL );
 10986 %}
 10988 // Shift Right Long 
 10989 instruct sarL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10990   //predicate(UseNewLongLShift);
 10991   match(Set dst (RShiftL src shift));
 10992   ins_cost(100);
 10993   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_imm" %}
 10994   ins_encode %{
 10995     Register src_reg = as_Register($src$$reg);
 10996     Register dst_reg = as_Register($dst$$reg);
 10997     int      shamt = ($shift$$constant & 0x3f);
 10998     if (__  is_simm(shamt, 5))
 10999 	__ dsra(dst_reg, src_reg, shamt);
 11000     else
 11002 	__ move(AT, shamt);
 11003 	__ dsrav(dst_reg, src_reg, AT);
 11005   %}
 11006   ins_pipe( ialu_regL_regL );
 11007 %}
 11009 // Shift Right Long arithmetically
 11010 instruct sarL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11011   //predicate(UseNewLongLShift);
 11012   match(Set dst (RShiftL src shift));
 11013   ins_cost(100);
 11014   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_Reg" %}
 11015   ins_encode %{
 11016     Register creg = T9;
 11017     Register src_reg = as_Register($src$$reg);
 11018     Register dst_reg = as_Register($dst$$reg);
 11020     __ move(creg, $shift$$Register);
 11021     __ andi(creg, creg, 0x3f);
 11022 	__ dsrav(dst_reg, src_reg, creg);
 11023   %}
 11024   ins_pipe( ialu_regL_regL );
 11025 %}
 11027 // Shift Right Long logically
 11028 instruct slrL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11029   match(Set dst (URShiftL src shift));
 11030   ins_cost(100);
 11031   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_Reg" %}
 11032   ins_encode %{
 11033     Register creg = T9;
 11034     Register src_reg = as_Register($src$$reg);
 11035     Register dst_reg = as_Register($dst$$reg);
 11037     __ move(creg, $shift$$Register);
 11038     __ andi(creg, creg, 0x3f); 
 11039     __ dsrlv(dst_reg, src_reg, creg);
 11040   %}
 11041   ins_pipe( ialu_regL_regL );
 11042 %}
 11044 instruct slrL_Reg_immI_0_31(mRegL dst, mRegL src, immI_0_31 shift) %{
 11045   match(Set dst (URShiftL src shift));
 11046   ins_cost(80);
 11047   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_0_31" %}
 11048   ins_encode %{
 11049     Register src_reg = as_Register($src$$reg);
 11050     Register dst_reg = as_Register($dst$$reg);
 11051     int        shamt = $shift$$constant;
 11053     __ dsrl(dst_reg, src_reg, shamt);
 11054   %}
 11055   ins_pipe( ialu_regL_regL );
 11056 %}
 11058 instruct slrL_P2XReg_immI_0_31(mRegL dst, mRegP src, immI_0_31 shift) %{
 11059   match(Set dst (URShiftL (CastP2X src) shift));
 11060   ins_cost(80);
 11061   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_0_31" %}
 11062   ins_encode %{
 11063     Register src_reg = as_Register($src$$reg);
 11064     Register dst_reg = as_Register($dst$$reg);
 11065     int        shamt = $shift$$constant;
 11067     __ dsrl(dst_reg, src_reg, shamt);
 11068   %}
 11069   ins_pipe( ialu_regL_regL );
 11070 %}
 11072 instruct slrL_Reg_immI_32_63(mRegL dst, mRegL src, immI_32_63 shift) %{
 11073   match(Set dst (URShiftL src shift));
 11074   ins_cost(80);
 11075   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_32_63" %}
 11076   ins_encode %{
 11077     Register src_reg = as_Register($src$$reg);
 11078     Register dst_reg = as_Register($dst$$reg);
 11079     int        shamt = $shift$$constant;
 11081     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11082   %}
 11083   ins_pipe( ialu_regL_regL );
 11084 %}
 11086 instruct slrL_P2XReg_immI_32_63(mRegL dst, mRegP src, immI_32_63 shift) %{
 11087   match(Set dst (URShiftL (CastP2X src) shift));
 11088   ins_cost(80);
 11089   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_32_63" %}
 11090   ins_encode %{
 11091     Register src_reg = as_Register($src$$reg);
 11092     Register dst_reg = as_Register($dst$$reg);
 11093     int        shamt = $shift$$constant;
 11095     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11096   %}
 11097   ins_pipe( ialu_regL_regL );
 11098 %}
 11100 // Xor Instructions
 11101 // Xor Register with Register
 11102 instruct xorI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11103   match(Set dst (XorI src1 src2));
 11105   format %{ "XOR    $dst, $src1, $src2 #@xorI_Reg_Reg" %}
 11107   ins_encode %{
 11108     Register  dst = $dst$$Register;
 11109     Register src1 = $src1$$Register;
 11110     Register src2 = $src2$$Register;
 11111     __ xorr(dst, src1, src2);
 11112     __ sll(dst, dst, 0); /* long -> int */
 11113   %}
 11115   ins_pipe( ialu_regI_regI );
 11116 %}
 11118 // Or Instructions
 11119 // Or Register with Register
 11120 instruct orI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11121   match(Set dst (OrI src1 src2));
 11123   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_Reg" %}
 11124   ins_encode %{
 11125     Register  dst = $dst$$Register;
 11126     Register src1 = $src1$$Register;
 11127     Register src2 = $src2$$Register;
 11128     __ orr(dst, src1, src2);
 11129   %}
 11131   ins_pipe( ialu_regI_regI );
 11132 %}
 11134 instruct orI_Reg_castP2X(mRegL dst, mRegL src1, mRegP src2) %{
 11135   match(Set dst (OrI src1 (CastP2X src2)));
 11137   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_castP2X" %}
 11138   ins_encode %{
 11139     Register  dst = $dst$$Register;
 11140     Register src1 = $src1$$Register;
 11141     Register src2 = $src2$$Register;
 11142     __ orr(dst, src1, src2);
 11143   %}
 11145   ins_pipe( ialu_regI_regI );
 11146 %}
 11148 // Logical Shift Right by 8-bit immediate
 11149 instruct shr_logical_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11150   match(Set dst (URShiftI src shift));
 11151  // effect(KILL cr);
 11153   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_imm" %}
 11154   ins_encode %{
 11155     Register src = $src$$Register;
 11156     Register dst = $dst$$Register;
 11157     int    shift = $shift$$constant;
 11158     if (shift > 0)
 11159       __ srl(dst, src, shift);
 11160     else
 11162       __ move(AT, shift);
 11163       __ srlv(dst, src, AT);
 11165   %}
 11166   ins_pipe( ialu_regI_regI );
 11167 %}
 11169 instruct shr_logical_Reg_imm_nonneg_mask(mRegI dst, mRegI src, immI_0_31 shift, immI_nonneg_mask mask) %{
 11170   match(Set dst (AndI (URShiftI src shift) mask));
 11172   format %{ "ext    $dst, $src, $shift, one-bits($mask) #@shr_logical_Reg_imm_nonneg_mask" %}
 11173   ins_encode %{
 11174     Register src = $src$$Register;
 11175     Register dst = $dst$$Register;
 11176     int      pos = $shift$$constant;
 11177     int     size = Assembler::is_int_mask($mask$$constant);
 11179     __ ext(dst, src, pos, size);
 11180   %}
 11181   ins_pipe( ialu_regI_regI );
 11182 %}
 11184 // Logical Shift Right 
 11185 instruct shr_logical_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11186   match(Set dst (URShiftI src shift));
 11188   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_Reg" %}
 11189   ins_encode %{
 11190     Register src = $src$$Register;
 11191     Register dst = $dst$$Register;
 11192     Register shift = $shift$$Register;
 11193     __ srlv(dst, src, shift);
 11194   %}
 11195   ins_pipe( ialu_regI_regI );
 11196 %}
 11199 instruct shr_arith_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11200   match(Set dst (RShiftI src shift));
 11201  // effect(KILL cr);
 11203   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_imm" %}
 11204   ins_encode %{
 11205     Register src = $src$$Register;
 11206     Register dst = $dst$$Register;
 11207     int    shift = $shift$$constant;
 11208     __ sra(dst, src, shift);
 11209   %}
 11210   ins_pipe( ialu_regI_regI );
 11211 %}
 11213 instruct shr_arith_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11214   match(Set dst (RShiftI src shift));
 11215  // effect(KILL cr);
 11217   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_Reg" %}
 11218   ins_encode %{
 11219     Register src = $src$$Register;
 11220     Register dst = $dst$$Register;
 11221     Register shift = $shift$$Register;
 11222     __ srav(dst, src, shift);
 11223   %}
 11224   ins_pipe( ialu_regI_regI );
 11225 %}
 11227 //----------Convert Int to Boolean---------------------------------------------
 11229 instruct convI2B(mRegI dst, mRegI src) %{
 11230   match(Set dst (Conv2B src));
 11232   ins_cost(100);
 11233   format %{ "convI2B    $dst, $src @ convI2B"  %}
 11234   ins_encode %{
 11235     Register dst = as_Register($dst$$reg);
 11236     Register src = as_Register($src$$reg);
 11238     if (dst != src) {
 11239       __ daddiu(dst, R0, 1);
 11240       __ movz(dst, R0, src);
 11241     } else {
 11242       __ move(AT, src);
 11243       __ daddiu(dst, R0, 1);
 11244       __ movz(dst, R0, AT);
 11246   %}
 11248   ins_pipe( ialu_regL_regL );
 11249 %}
 11251 instruct convI2L_reg( mRegL dst, mRegI src) %{
 11252   match(Set dst (ConvI2L src));
 11254   ins_cost(100);
 11255   format %{ "SLL    $dst, $src @ convI2L_reg\t"  %}
 11256   ins_encode %{
 11257     Register dst = as_Register($dst$$reg);
 11258     Register src = as_Register($src$$reg);
 11260     if(dst != src) __ sll(dst, src, 0);
 11261   %}
 11262   ins_pipe( ialu_regL_regL );
 11263 %}
 11266 instruct convL2I_reg( mRegI dst, mRegL src ) %{
 11267   match(Set dst (ConvL2I src));
 11269   format %{ "MOV    $dst, $src @ convL2I_reg" %}
 11270   ins_encode %{
 11271     Register dst = as_Register($dst$$reg);
 11272     Register src = as_Register($src$$reg);
 11274     __ sll(dst, src, 0);
 11275   %}
 11277   ins_pipe( ialu_regI_regI );
 11278 %}
 11280 instruct convL2I2L_reg( mRegL dst, mRegL src ) %{
 11281   match(Set dst (ConvI2L (ConvL2I src)));
 11283   format %{ "sll    $dst, $src, 0 @ convL2I2L_reg" %}
 11284   ins_encode %{
 11285     Register dst = as_Register($dst$$reg);
 11286     Register src = as_Register($src$$reg);
 11288     __ sll(dst, src, 0);
 11289   %}
 11291   ins_pipe( ialu_regI_regI );
 11292 %}
 11294 instruct convL2D_reg( regD dst, mRegL src ) %{
 11295   match(Set dst (ConvL2D src));
 11296   format %{ "convL2D    $dst, $src @ convL2D_reg" %}
 11297   ins_encode %{
 11298     Register src = as_Register($src$$reg);
 11299     FloatRegister dst = as_FloatRegister($dst$$reg);
 11301     __ dmtc1(src, dst);
 11302     __ cvt_d_l(dst, dst);
 11303   %}
 11305   ins_pipe( pipe_slow );
 11306 %}
 11308 instruct convD2L_reg( mRegL dst, regD src ) %{
 11309   match(Set dst (ConvD2L src));
 11310   format %{ "convD2L    $dst, $src @ convD2L_reg" %}
 11311   ins_encode %{
 11312     Register dst = as_Register($dst$$reg);
 11313     FloatRegister src = as_FloatRegister($src$$reg);
 11315     Label L;
 11317     __ c_un_d(src, src);    //NaN?
 11318     __ bc1t(L);
 11319     __ delayed();
 11320     __ move(dst, R0);
 11322     __ trunc_l_d(F30, src);
 11323     __ cfc1(AT, 31);
 11324     __ li(T9, 0x10000);
 11325     __ andr(AT, AT, T9);
 11326     __ beq(AT, R0, L);
 11327     __ delayed()->dmfc1(dst, F30);
 11329     __ mov_d(F12, src);
 11330     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
 11331     __ move(dst, V0);
 11332     __ bind(L);
 11333   %}
 11335   ins_pipe( pipe_slow );
 11336 %}
 11338 instruct convF2I_reg( mRegI dst, regF src ) %{
 11339   match(Set dst (ConvF2I src));
 11340   format %{ "convf2i    $dst, $src @ convF2I_reg" %}
 11341   ins_encode %{
 11342     Register      dreg = $dst$$Register;
 11343     FloatRegister fval = $src$$FloatRegister;
 11344     Label L;
 11346     __ c_un_s(fval, fval);    //NaN?
 11347     __ bc1t(L);
 11348     __ delayed();
 11349     __ move(dreg, R0);
 11351     __ trunc_w_s(F30, fval);
 11353     /* Call SharedRuntime:f2i() to do valid convention */
 11354     __ cfc1(AT, 31);
 11355     __ li(T9, 0x10000);
 11356     __ andr(AT, AT, T9);
 11357     __ beq(AT, R0, L);
 11358     __ delayed()->mfc1(dreg, F30);
 11360     __ mov_s(F12, fval);
 11362     /* 2014/01/08 Fu : This bug was found when running ezDS's control-panel.
 11363      *    J 982 C2 javax.swing.text.BoxView.layoutMajorAxis(II[I[I)V (283 bytes) @ 0x000000555c46aa74
 11365      * An interger array index has been assigned to V0, and then changed from 1 to Integer.MAX_VALUE. 
 11366      * V0 is corrupted during call_VM_leaf(), and should be preserved.
 11367      */
 11368     if(dreg != V0) {
 11369       __ push(V0); 
 11371     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
 11372     if(dreg != V0) {
 11373       __ move(dreg, V0);
 11374       __ pop(V0);
 11376     __ bind(L);
 11377   %}
 11379   ins_pipe( pipe_slow );
 11380 %}
 11382 instruct convF2L_reg( mRegL dst, regF src ) %{
 11383   match(Set dst (ConvF2L src));
 11384   format %{ "convf2l    $dst, $src @ convF2L_reg" %}
 11385   ins_encode %{
 11386     Register dst = as_Register($dst$$reg);
 11387     FloatRegister fval = $src$$FloatRegister;
 11388     Label L;
 11390     __ c_un_s(fval, fval);    //NaN?
 11391     __ bc1t(L);
 11392     __ delayed();
 11393     __ move(dst, R0);
 11395     __ trunc_l_s(F30, fval);
 11396     __ cfc1(AT, 31);
 11397     __ li(T9, 0x10000);
 11398     __ andr(AT, AT, T9);
 11399     __ beq(AT, R0, L);
 11400     __ delayed()->dmfc1(dst, F30);
 11402     __ mov_s(F12, fval);
 11403     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
 11404     __ move(dst, V0);
 11405     __ bind(L);
 11406   %}
 11408   ins_pipe( pipe_slow );
 11409 %}
 11411 instruct convL2F_reg( regF dst, mRegL src ) %{
 11412   match(Set dst (ConvL2F src));
 11413   format %{ "convl2f    $dst, $src @ convL2F_reg" %}
 11414   ins_encode %{
 11415     FloatRegister dst = $dst$$FloatRegister;
 11416     Register src = as_Register($src$$reg);
 11417     Label L;
 11419     __ dmtc1(src, dst);
 11420     __ cvt_s_l(dst, dst);
 11421   %}
 11423   ins_pipe( pipe_slow );
 11424 %}
 11426 instruct convI2F_reg( regF dst, mRegI src ) %{
 11427   match(Set dst (ConvI2F src));
 11428   format %{ "convi2f    $dst, $src @ convI2F_reg" %}
 11429   ins_encode %{
 11430     Register      src = $src$$Register;
 11431     FloatRegister dst = $dst$$FloatRegister;
 11433     __ mtc1(src, dst);
 11434     __ cvt_s_w(dst, dst);
 11435   %}
 11437   ins_pipe( fpu_regF_regF );
 11438 %}
 11440 instruct cmpLTMask_immI0( mRegI dst, mRegI p, immI0 zero ) %{
 11441   match(Set dst (CmpLTMask p zero));
 11442   ins_cost(100);
 11444   format %{ "sra    $dst, $p, 31 @ cmpLTMask_immI0" %}
 11445     ins_encode %{
 11446        Register src = $p$$Register;
 11447        Register dst = $dst$$Register;
 11449        __ sra(dst, src, 31);
 11450     %}
 11451     ins_pipe( pipe_slow );
 11452 %}
 11455 instruct cmpLTMask( mRegI dst, mRegI p, mRegI q ) %{
 11456   match(Set dst (CmpLTMask p q));
 11457   ins_cost(400);
 11459   format %{ "cmpLTMask    $dst, $p, $q @ cmpLTMask" %}
 11460     ins_encode %{
 11461        Register p   = $p$$Register;
 11462        Register q   = $q$$Register;
 11463        Register dst = $dst$$Register;
 11465        __ slt(dst, p, q);
 11466        __ subu(dst, R0, dst);
 11467     %}
 11468     ins_pipe( pipe_slow );
 11469 %}
 11471 instruct convP2B(mRegI dst, mRegP src) %{
 11472   match(Set dst (Conv2B src));
 11474   ins_cost(100);
 11475   format %{ "convP2B    $dst, $src @ convP2B"  %}
 11476   ins_encode %{
 11477     Register dst = as_Register($dst$$reg);
 11478     Register src = as_Register($src$$reg);
 11480     if (dst != src) {
 11481       __ daddiu(dst, R0, 1);
 11482       __ movz(dst, R0, src);
 11483     } else {
 11484       __ move(AT, src);
 11485       __ daddiu(dst, R0, 1);
 11486       __ movz(dst, R0, AT);
 11488   %}
 11490   ins_pipe( ialu_regL_regL );
 11491 %}
 11494 instruct convI2D_reg_reg(regD dst, mRegI src) %{
 11495   match(Set dst (ConvI2D src));
 11496   format %{ "conI2D $dst, $src @convI2D_reg" %}
 11497   ins_encode %{
 11498      Register      src = $src$$Register;
 11499      FloatRegister dst = $dst$$FloatRegister;
 11500      __ mtc1(src, dst);
 11501      __ cvt_d_w(dst, dst);
 11502   %}
 11503   ins_pipe( fpu_regF_regF );
 11504 %}
 11506 instruct convF2I_reg_reg(mRegI dst, regF src) %{
 11507   match(Set dst (ConvF2I src));
 11508   format %{ "convF2I  $dst, $src\t# @convF2D_reg_reg" %}
 11509   ins_encode %{
 11510     FloatRegister dst = $dst$$FloatRegister;
 11511     FloatRegister src = $src$$FloatRegister;
 11513     __ cvt_d_s(dst, src);
 11514   %}
 11515   ins_pipe( fpu_regF_regF );
 11516 %}
 11518 instruct convF2D_reg_reg(regD dst, regF src) %{
 11519   match(Set dst (ConvF2D src));
 11520   format %{ "convF2D  $dst, $src\t# @convF2D_reg_reg" %}
 11521   ins_encode %{
 11522     FloatRegister dst = $dst$$FloatRegister;
 11523     FloatRegister src = $src$$FloatRegister;
 11525     __ cvt_d_s(dst, src);
 11526   %}
 11527   ins_pipe( fpu_regF_regF );
 11528 %}
 11530 instruct convD2F_reg_reg(regF dst, regD src) %{
 11531   match(Set dst (ConvD2F src));
 11532   format %{ "convD2F  $dst, $src\t# @convD2F_reg_reg" %}
 11533   ins_encode %{
 11534     FloatRegister dst = $dst$$FloatRegister;
 11535     FloatRegister src = $src$$FloatRegister;
 11537     __ cvt_s_d(dst, src);
 11538   %}
 11539   ins_pipe( fpu_regF_regF );
 11540 %}
 11542 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11543 instruct convD2I_reg_reg( mRegI dst, regD src ) %{
 11544   match(Set dst (ConvD2I src));
 11545 //  effect( KILL tmp, KILL cr );//after this instruction, it will release register tmp and cr
 11547   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg \n\t" %}
 11549   ins_encode %{
 11550       FloatRegister src = $src$$FloatRegister;
 11551       Register      dst = $dst$$Register;
 11552       Label L;
 11554       __ trunc_w_d(F30, src);
 11555       __ cfc1(AT, 31);
 11556       __ li(T9, 0x10000);
 11557       __ andr(AT, AT, T9);
 11558       __ beq(AT, R0, L);
 11559       __ delayed()->mfc1(dst, F30);
 11561       __ mov_d(F12, src);
 11562       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
 11563       __ move(dst, V0);
 11564       __ bind(L);
 11566   %}
 11567   ins_pipe( pipe_slow );
 11568 %}
 11570 // Convert oop pointer into compressed form
 11571 instruct encodeHeapOop(mRegN dst, mRegP src) %{
 11572   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 11573   match(Set dst (EncodeP src));
 11574   format %{ "encode_heap_oop $dst,$src" %}
 11575   ins_encode %{
 11576     Register src = $src$$Register;
 11577     Register dst = $dst$$Register;
 11578     if (src != dst) {
 11579       __ move(dst, src);
 11581     __ encode_heap_oop(dst);
 11582   %}
 11583   ins_pipe( ialu_regL_regL );
 11584 %}
 11586 instruct encodeHeapOop_not_null(mRegN dst, mRegP src) %{
 11587   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 11588   match(Set dst (EncodeP src));
 11589   format %{ "encode_heap_oop_not_null $dst,$src @ encodeHeapOop_not_null" %}
 11590   ins_encode %{
 11591     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 11592   %}
 11593   ins_pipe( ialu_regL_regL );
 11594 %}
 11596 instruct decodeHeapOop(mRegP dst, mRegN src) %{
 11597   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 11598             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 11599   match(Set dst (DecodeN src));
 11600   format %{ "decode_heap_oop $dst,$src @ decodeHeapOop" %}
 11601   ins_encode %{
 11602     Register s = $src$$Register;
 11603     Register d = $dst$$Register;
 11604     if (s != d) {
 11605       __ move(d, s);
 11607     __ decode_heap_oop(d);
 11608   %}
 11609   ins_pipe( ialu_regL_regL );
 11610 %}
 11612 instruct decodeHeapOop_not_null(mRegP dst, mRegN src) %{
 11613   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 11614             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 11615   match(Set dst (DecodeN src));
 11616   format %{ "decode_heap_oop_not_null $dst,$src @ decodeHeapOop_not_null" %}
 11617   ins_encode %{
 11618     Register s = $src$$Register;
 11619     Register d = $dst$$Register;
 11620     if (s != d) {
 11621       __ decode_heap_oop_not_null(d, s);
 11622     } else {
 11623       __ decode_heap_oop_not_null(d);
 11625   %}
 11626   ins_pipe( ialu_regL_regL );
 11627 %}
 11629 instruct encodeKlass_not_null(mRegN dst, mRegP src) %{
 11630   match(Set dst (EncodePKlass src));
 11631   format %{ "encode_heap_oop_not_null $dst,$src @ encodeKlass_not_null" %}
 11632   ins_encode %{
 11633     __ encode_klass_not_null($dst$$Register, $src$$Register);
 11634   %}
 11635   ins_pipe( ialu_regL_regL );
 11636 %}
 11638 instruct decodeKlass_not_null(mRegP dst, mRegN src) %{
 11639   match(Set dst (DecodeNKlass src));
 11640   format %{ "decode_heap_klass_not_null $dst,$src" %}
 11641   ins_encode %{
 11642     Register s = $src$$Register;
 11643     Register d = $dst$$Register;
 11644     if (s != d) {
 11645       __ decode_klass_not_null(d, s);
 11646     } else {
 11647       __ decode_klass_not_null(d);
 11649   %}
 11650   ins_pipe( ialu_regL_regL );
 11651 %}
 11653 //FIXME
 11654 instruct tlsLoadP(mRegP dst) %{
 11655   match(Set dst (ThreadLocal));
 11657   ins_cost(0);
 11658   format %{ " get_thread in $dst #@tlsLoadP" %}
 11659   ins_encode %{
 11660     Register dst = $dst$$Register;
 11661 #ifdef OPT_THREAD
 11662     __ move(dst, TREG);
 11663 #else
 11664     __ get_thread(dst);
 11665 #endif
 11666   %}
 11668   ins_pipe( ialu_loadI );
 11669 %}
 11672 instruct checkCastPP( mRegP dst ) %{
 11673   match(Set dst (CheckCastPP dst));
 11675   format %{ "#checkcastPP of $dst (empty encoding) #@chekCastPP" %}
 11676   ins_encode( /*empty encoding*/ );
 11677   ins_pipe( empty );
 11678 %}
 11680 instruct castPP(mRegP dst)
 11681 %{
 11682   match(Set dst (CastPP dst));
 11684   size(0);
 11685   format %{ "# castPP of $dst" %}
 11686   ins_encode(/* empty encoding */);
 11687   ins_pipe(empty);
 11688 %}
 11690 instruct castII( mRegI dst ) %{
 11691   match(Set dst (CastII dst));
 11692   format %{ "#castII of $dst  empty encoding" %}
 11693   ins_encode( /*empty encoding*/ );
 11694   ins_cost(0);
 11695   ins_pipe( empty );
 11696 %}
 11698 // Return Instruction
 11699 // Remove the return address & jump to it.
 11700 instruct Ret() %{
 11701   match(Return);
 11702   format %{ "RET #@Ret" %}
 11704   ins_encode %{
 11705    __ jr(RA); 
 11706    __ nop();
 11707   %}
 11709   ins_pipe( pipe_jump );
 11710 %}
 11712 /*
 11713 // For Loongson CPUs, jr seems too slow, so this rule shouldn't be imported.
 11714 instruct jumpXtnd(mRegL switch_val) %{
 11715   match(Jump switch_val);
 11717   ins_cost(350);
 11719   format %{  "load   T9 <-- [$constanttablebase, $switch_val, $constantoffset] @ jumpXtnd\n\t"
 11720              "jr     T9\n\t"
 11721              "nop" %}
 11722   ins_encode %{
 11723     Register table_base = $constanttablebase;
 11724     int      con_offset = $constantoffset;
 11725     Register switch_reg = $switch_val$$Register;
 11727     if (UseLoongsonISA) {
 11728        if (Assembler::is_simm(con_offset, 8)) {
 11729          __ gsldx(T9, table_base, switch_reg, con_offset);
 11730        } else if (Assembler::is_simm16(con_offset)) {
 11731          __ daddu(T9, table_base, switch_reg);
 11732          __ ld(T9, T9, con_offset);
 11733        } else {
 11734          __ move(T9, con_offset);
 11735          __ daddu(AT, table_base, switch_reg);
 11736          __ gsldx(T9, AT, T9, 0);
 11738     } else {
 11739        if (Assembler::is_simm16(con_offset)) {
 11740          __ daddu(T9, table_base, switch_reg);
 11741          __ ld(T9, T9, con_offset);
 11742        } else {
 11743          __ move(T9, con_offset);
 11744          __ daddu(AT, table_base, switch_reg);
 11745          __ daddu(AT, T9, AT);
 11746          __ ld(T9, AT, 0);
 11750     __ jr(T9);
 11751     __ nop();
 11753   %}
 11754   ins_pipe(pipe_jump);
 11755 %}
 11756 */
 11758 // Jump Direct - Label defines a relative address from JMP
 11759 instruct jmpDir(label labl) %{
 11760   match(Goto);
 11761   effect(USE labl);
 11763   ins_cost(300);
 11764   format %{ "JMP    $labl #@jmpDir" %}
 11766   ins_encode %{
 11767     Label &L = *($labl$$label);
 11768     if(&L)
 11769     	 __ b(L);
 11770     else
 11771          __ b(int(0));
 11772     __ nop();
 11773   %}
 11775     ins_pipe( pipe_jump );
 11776     ins_pc_relative(1);
 11777 %}
 11781 // Tail Jump; remove the return address; jump to target.
 11782 // TailCall above leaves the return address around.
 11783 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11784 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11785 // "restore" before this instruction (in Epilogue), we need to materialize it
 11786 // in %i0.
 11787 //FIXME
 11788 instruct tailjmpInd(mRegP jump_target,mRegP ex_oop) %{
 11789   match( TailJump jump_target ex_oop );
 11790   ins_cost(200);
 11791   format %{ "Jmp     $jump_target  ; ex_oop = $ex_oop #@tailjmpInd" %}
 11792   ins_encode %{
 11793     Register target = $jump_target$$Register;
 11795     /* 2012/9/14 Jin: V0, V1 are indicated in:
 11796      *      [stubGenerator_mips.cpp] generate_forward_exception()
 11797      *      [runtime_mips.cpp] OptoRuntime::generate_exception_blob()
 11798      */
 11799     Register oop  = $ex_oop$$Register;
 11800     Register exception_oop = V0;
 11801     Register exception_pc = V1;
 11803     __ move(exception_pc, RA);
 11804     __ move(exception_oop, oop);
 11806     __ jr(target);  
 11807     __ nop();
 11808   %}
 11809   ins_pipe( pipe_jump ); 
 11810 %}
 11812 // ============================================================================
 11813 // Procedure Call/Return Instructions
 11814 // Call Java Static Instruction
 11815 // Note: If this code changes, the corresponding ret_addr_offset() and
 11816 //       compute_padding() functions will have to be adjusted.
 11817 instruct CallStaticJavaDirect(method meth) %{
 11818   match(CallStaticJava);
 11819   effect(USE meth);
 11821   ins_cost(300);
 11822   format %{ "CALL,static #@CallStaticJavaDirect " %}
 11823   ins_encode( Java_Static_Call( meth ) );
 11824   ins_pipe( pipe_slow );
 11825   ins_pc_relative(1);
 11826   ins_alignment(16);
 11827 %}
 11829 // Call Java Dynamic Instruction
 11830 // Note: If this code changes, the corresponding ret_addr_offset() and
 11831 //       compute_padding() functions will have to be adjusted.
 11832 instruct CallDynamicJavaDirect(method meth) %{
 11833   match(CallDynamicJava);
 11834   effect(USE meth);
 11836   ins_cost(300);
 11837   format %{"MOV IC_Klass, (oop)-1 @ CallDynamicJavaDirect\n\t"
 11838            "CallDynamic @ CallDynamicJavaDirect" %}
 11839   ins_encode( Java_Dynamic_Call( meth ) );
 11840   ins_pipe( pipe_slow );
 11841   ins_pc_relative(1);
 11842   ins_alignment(16);
 11843 %}
 11845 instruct CallLeafNoFPDirect(method meth) %{
 11846   match(CallLeafNoFP);
 11847   effect(USE meth);
 11849   ins_cost(300);
 11850   format %{ "CALL_LEAF_NOFP,runtime " %}
 11851   ins_encode(Java_To_Runtime(meth));
 11852   ins_pipe( pipe_slow );
 11853   ins_pc_relative(1);
 11854   ins_alignment(16);
 11855 %}
 11857 // Prefetch instructions.
 11859 instruct prefetchrNTA( memory mem ) %{
 11860   match(PrefetchRead mem);
 11861   ins_cost(125);
 11863   format %{ "pref $mem\t# Prefetch into non-temporal cache for read @ prefetchrNTA" %}
 11864   ins_encode %{
 11865     int  base = $mem$$base;
 11866     int  index = $mem$$index;
 11867     int  scale = $mem$$scale;
 11868     int  disp = $mem$$disp;
 11870     if( index != 0 ) {
 11871       if (scale == 0) {
 11872         __ daddu(AT, as_Register(base), as_Register(index));
 11873       } else {
 11874         __ dsll(AT, as_Register(index), scale);
 11875         __ daddu(AT, as_Register(base), AT);
 11877     } else {
 11878       __ move(AT, as_Register(base));
 11880     if( Assembler::is_simm16(disp) ) {
 11881       __ daddiu(AT, as_Register(base), disp);
 11882       __ daddiu(AT, AT, disp);
 11883     } else {
 11884       __ move(T9, disp);
 11885       __ daddu(AT, as_Register(base), T9);
 11887     __ pref(0, AT, 0); //hint: 0:load
 11888   %}
 11889   ins_pipe(pipe_slow);
 11890 %}
 11892 instruct prefetchwNTA( memory mem ) %{
 11893   match(PrefetchWrite mem);
 11894   ins_cost(125);
 11895   format %{ "pref $mem\t# Prefetch to non-temporal cache for write @ prefetchwNTA" %}
 11896   ins_encode %{
 11897     int  base = $mem$$base;
 11898     int  index = $mem$$index;
 11899     int  scale = $mem$$scale;
 11900     int  disp = $mem$$disp;
 11902     if( index != 0 ) {
 11903       if (scale == 0) {
 11904         __ daddu(AT, as_Register(base), as_Register(index));
 11905       } else {
 11906         __ dsll(AT, as_Register(index), scale);
 11907         __ daddu(AT, as_Register(base), AT);
 11909     } else {
 11910       __ move(AT, as_Register(base));
 11912     if( Assembler::is_simm16(disp) ) {
 11913       __ daddiu(AT, as_Register(base), disp);
 11914       __ daddiu(AT, AT, disp);
 11915     } else {
 11916       __ move(T9, disp);
 11917       __ daddu(AT, as_Register(base), T9);
 11919      __ pref(1, AT, 0); //hint: 1:store
 11920   %}
 11921   ins_pipe(pipe_slow);
 11922 %}
 11924 // Prefetch instructions for allocation.
 11926 instruct prefetchAllocNTA( memory mem ) %{
 11927   match(PrefetchAllocation mem);
 11928   ins_cost(125);
 11929   format %{ "pref $mem\t# Prefetch allocation @ prefetchAllocNTA" %}
 11930   ins_encode %{
 11931      int  base = $mem$$base;
 11932      int  index = $mem$$index;
 11933      int  scale = $mem$$scale;
 11934      int  disp = $mem$$disp;
 11936      Register dst = R0;
 11938      if( index != 0 ) {
 11939         if( Assembler::is_simm16(disp) ) { 
 11940            if( UseLoongsonISA ) {
 11941               if (scale == 0) {
 11942                  __ gslbx(dst, as_Register(base), as_Register(index), disp);
 11943               } else {
 11944                  __ dsll(AT, as_Register(index), scale);
 11945                  __ gslbx(dst, as_Register(base), AT, disp);
 11947            } else {
 11948               if (scale == 0) {
 11949                  __ addu(AT, as_Register(base), as_Register(index));
 11950               } else {
 11951                  __ dsll(AT, as_Register(index), scale);
 11952                  __ addu(AT, as_Register(base), AT);
 11954               __ lb(dst, AT, disp);
 11956         } else {
 11957            if (scale == 0) {
 11958               __ addu(AT, as_Register(base), as_Register(index));
 11959            } else {
 11960               __ dsll(AT, as_Register(index), scale);
 11961               __ addu(AT, as_Register(base), AT);
 11963            __ move(T9, disp);
 11964            if( UseLoongsonISA ) {
 11965               __ gslbx(dst, AT, T9, 0);
 11966            } else {
 11967               __ addu(AT, AT, T9); 
 11968               __ lb(dst, AT, 0);
 11971      } else {
 11972         if( Assembler::is_simm16(disp) ) { 
 11973            __ lb(dst, as_Register(base), disp);
 11974         } else {
 11975            __ move(T9, disp);   
 11976            if( UseLoongsonISA ) {
 11977               __ gslbx(dst, as_Register(base), T9, 0);
 11978            } else {
 11979               __ addu(AT, as_Register(base), T9); 
 11980               __ lb(dst, AT, 0);
 11984   %}
 11985   ins_pipe(pipe_slow);
 11986 %}
 11989 // Call runtime without safepoint
 11990 instruct CallLeafDirect(method meth) %{
 11991   match(CallLeaf);
 11992   effect(USE meth);
 11994   ins_cost(300);
 11995   format %{ "CALL_LEAF,runtime #@CallLeafDirect " %}
 11996   ins_encode(Java_To_Runtime(meth));
 11997   ins_pipe( pipe_slow );
 11998   ins_pc_relative(1);
 11999   ins_alignment(16);
 12000 %}
 12002 // Load Char (16bit unsigned)
 12003 instruct loadUS(mRegI dst, memory mem) %{
 12004   match(Set dst (LoadUS mem));
 12006   ins_cost(125);
 12007   format %{ "loadUS  $dst,$mem @ loadC" %}
 12008   ins_encode(load_C_enc(dst, mem));
 12009   ins_pipe( ialu_loadI );
 12010 %}
 12012 instruct loadUS_convI2L(mRegL dst, memory mem) %{
 12013   match(Set dst (ConvI2L (LoadUS mem)));
 12015   ins_cost(125);
 12016   format %{ "loadUS  $dst,$mem @ loadUS_convI2L" %}
 12017   ins_encode(load_C_enc(dst, mem));
 12018   ins_pipe( ialu_loadI );
 12019 %}
 12021 // Store Char (16bit unsigned)
 12022 instruct storeC(memory mem, mRegI src) %{
 12023   match(Set mem (StoreC mem src));
 12025   ins_cost(125);
 12026   format %{ "storeC  $src,$mem @ storeC" %}
 12027   ins_encode(store_C_reg_enc(mem, src));
 12028   ins_pipe( ialu_loadI );
 12029 %}
 12032 instruct loadConF0(regF dst, immF0 zero) %{
 12033   match(Set dst zero);
 12034   ins_cost(100);
 12036   format %{ "mov  $dst, zero @ loadConF0\n"%}
 12037   ins_encode %{
 12038     FloatRegister dst = $dst$$FloatRegister;
 12040     __ mtc1(R0, dst);
 12041   %}
 12042   ins_pipe( fpu_loadF );
 12043 %}
 12046 instruct loadConF(regF dst, immF src) %{
 12047   match(Set dst src);
 12048   ins_cost(125);
 12050   format %{ "lwc1  $dst, $constantoffset[$constanttablebase] # load FLOAT $src from table @ loadConF" %}
 12051   ins_encode %{
 12052     int con_offset = $constantoffset($src);
 12054     if (Assembler::is_simm16(con_offset)) {
 12055        __ lwc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12056     } else {
 12057        __ set64(AT, con_offset);
 12058        if (UseLoongsonISA) {
 12059           __ gslwxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12060        } else {
 12061           __ daddu(AT, $constanttablebase, AT);
 12062           __ lwc1($dst$$FloatRegister, AT, 0);
 12065   %}
 12066   ins_pipe( fpu_loadF );
 12067 %}
 12070 instruct loadConD0(regD dst, immD0 zero) %{
 12071   match(Set dst zero);
 12072   ins_cost(100);
 12074   format %{ "mov  $dst, zero @ loadConD0"%}
 12075   ins_encode %{
 12076     FloatRegister dst = as_FloatRegister($dst$$reg);
 12078       __ dmtc1(R0, dst);
 12079   %}
 12080   ins_pipe( fpu_loadF );
 12081 %}
 12083 instruct loadConD(regD dst, immD src) %{
 12084   match(Set dst src);
 12085   ins_cost(125);
 12087   format %{ "ldc1  $dst, $constantoffset[$constanttablebase] # load DOUBLE $src from table @ loadConD" %}
 12088   ins_encode %{
 12089     int con_offset = $constantoffset($src);
 12091     if (Assembler::is_simm16(con_offset)) {
 12092        __ ldc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12093     } else {
 12094        __ set64(AT, con_offset);
 12095        if (UseLoongsonISA) {
 12096           __ gsldxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12097        } else {
 12098           __ daddu(AT, $constanttablebase, AT);
 12099           __ ldc1($dst$$FloatRegister, AT, 0);
 12102   %}
 12103   ins_pipe( fpu_loadF );
 12104 %}
 12106 // Store register Float value (it is faster than store from FPU register)
 12107 instruct storeF_reg( memory mem, regF src) %{
 12108   match(Set mem (StoreF mem src));
 12110   ins_cost(50);
 12111   format %{ "store   $mem, $src\t# store float @ storeF_reg" %}
 12112   ins_encode(store_F_reg_enc(mem, src));
 12113   ins_pipe( fpu_storeF );
 12114 %}
 12116 instruct storeF_imm0( memory mem, immF0 zero) %{
 12117   match(Set mem (StoreF mem zero));
 12119   ins_cost(40);
 12120   format %{ "store   $mem, zero\t# store float @ storeF_imm0" %}
 12121   ins_encode %{
 12122     int      base = $mem$$base;
 12123     int     index = $mem$$index;
 12124     int     scale = $mem$$scale;
 12125     int      disp = $mem$$disp;
 12127     if( index != 0 ) {
 12128         if(scale != 0) {
 12129            __ dsll(T9, as_Register(index), scale);
 12130            __ addu(AT, as_Register(base), T9);
 12131         } else {
 12132            __ daddu(AT, as_Register(base), as_Register(index));
 12134        if( Assembler::is_simm16(disp) ) { 
 12135           __ sw(R0, AT, disp);
 12136        } else {
 12137           __ move(T9, disp);
 12138           __ addu(AT, AT, T9);
 12139           __ sw(R0, AT, 0);
 12142     } else {
 12143        if( Assembler::is_simm16(disp) ) { 
 12144           __ sw(R0, as_Register(base), disp);
 12145        } else {
 12146           __ move(T9, disp);
 12147           __ addu(AT, as_Register(base), T9);
 12148           __ sw(R0, AT, 0);
 12151   %}
 12152   ins_pipe( ialu_storeI );
 12153 %}
 12155 // Load Double
 12156 instruct loadD(regD dst, memory mem) %{
 12157   match(Set dst (LoadD mem));
 12159   ins_cost(150);
 12160   format %{ "loadD   $dst, $mem #@loadD" %}
 12161   ins_encode(load_D_enc(dst, mem));
 12162   ins_pipe( ialu_loadI );
 12163 %}
 12165 // Load Double - UNaligned
 12166 instruct loadD_unaligned(regD dst, memory mem ) %{
 12167   match(Set dst (LoadD_unaligned mem));
 12168   ins_cost(250);
 12169   // FIXME: Jin: Need more effective ldl/ldr
 12170   format %{ "loadD_unaligned   $dst, $mem #@loadD_unaligned" %}
 12171   ins_encode(load_D_enc(dst, mem));
 12172   ins_pipe( ialu_loadI );
 12173 %}
 12175 instruct storeD_reg( memory mem, regD src) %{
 12176   match(Set mem (StoreD mem src));
 12178   ins_cost(50);
 12179   format %{ "store   $mem, $src\t# store float @ storeD_reg" %}
 12180   ins_encode(store_D_reg_enc(mem, src));
 12181   ins_pipe( fpu_storeF );
 12182 %}
 12184 instruct storeD_imm0( memory mem, immD0 zero) %{
 12185   match(Set mem (StoreD mem zero));
 12187   ins_cost(40);
 12188   format %{ "store   $mem, zero\t# store float @ storeD_imm0" %}
 12189   ins_encode %{
 12190     int      base = $mem$$base;
 12191     int     index = $mem$$index;
 12192     int     scale = $mem$$scale;
 12193     int      disp = $mem$$disp;
 12195     __ mtc1(R0, F30);
 12196     __ cvt_d_w(F30, F30);
 12198     if( index != 0 ) {
 12199         if(scale != 0) {
 12200            __ dsll(T9, as_Register(index), scale);
 12201            __ addu(AT, as_Register(base), T9);
 12202         } else {
 12203            __ daddu(AT, as_Register(base), as_Register(index));
 12205        if( Assembler::is_simm16(disp) ) { 
 12206           __ sdc1(F30, AT, disp);
 12207        } else {
 12208           __ move(T9, disp);
 12209           __ addu(AT, AT, T9);
 12210           __ sdc1(F30, AT, 0);
 12213     } else {
 12214        if( Assembler::is_simm16(disp) ) { 
 12215           __ sdc1(F30, as_Register(base), disp);
 12216        } else {
 12217           __ move(T9, disp);
 12218           __ addu(AT, as_Register(base), T9);
 12219           __ sdc1(F30, AT, 0);
 12222   %}
 12223   ins_pipe( ialu_storeI );
 12224 %}
 12226 instruct loadSSI(mRegI dst, stackSlotI src)
 12227 %{
 12228   match(Set dst src);
 12230   ins_cost(125);
 12231   format %{ "lw    $dst, $src\t# int stk @ loadSSI" %}
 12232   ins_encode %{
 12233     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSI) !");
 12234     __ lw($dst$$Register, SP, $src$$disp);
 12235   %}
 12236   ins_pipe(ialu_loadI);
 12237 %}
 12239 instruct storeSSI(stackSlotI dst, mRegI src)
 12240 %{
 12241   match(Set dst src);
 12243   ins_cost(100);
 12244   format %{ "sw    $dst, $src\t# int stk @ storeSSI" %}
 12245   ins_encode %{
 12246     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSI) !");
 12247     __ sw($src$$Register, SP, $dst$$disp);
 12248   %}
 12249   ins_pipe(ialu_storeI);
 12250 %}
 12252 instruct loadSSL(mRegL dst, stackSlotL src)
 12253 %{
 12254   match(Set dst src);
 12256   ins_cost(125);
 12257   format %{ "ld    $dst, $src\t# long stk @ loadSSL" %}
 12258   ins_encode %{
 12259     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSL) !");
 12260     __ ld($dst$$Register, SP, $src$$disp);
 12261   %}
 12262   ins_pipe(ialu_loadI);
 12263 %}
 12265 instruct storeSSL(stackSlotL dst, mRegL src)
 12266 %{
 12267   match(Set dst src);
 12269   ins_cost(100);
 12270   format %{ "sd    $dst, $src\t# long stk @ storeSSL" %}
 12271   ins_encode %{
 12272     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSL) !");
 12273     __ sd($src$$Register, SP, $dst$$disp);
 12274   %}
 12275   ins_pipe(ialu_storeI);
 12276 %}
 12278 instruct loadSSP(mRegP dst, stackSlotP src)
 12279 %{
 12280   match(Set dst src);
 12282   ins_cost(125);
 12283   format %{ "ld    $dst, $src\t# ptr stk @ loadSSP" %}
 12284   ins_encode %{
 12285     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSP) !");
 12286     __ ld($dst$$Register, SP, $src$$disp);
 12287   %}
 12288   ins_pipe(ialu_loadI);
 12289 %}
 12291 instruct storeSSP(stackSlotP dst, mRegP src)
 12292 %{
 12293   match(Set dst src);
 12295   ins_cost(100);
 12296   format %{ "sd    $dst, $src\t# ptr stk @ storeSSP" %}
 12297   ins_encode %{
 12298     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSP) !");
 12299     __ sd($src$$Register, SP, $dst$$disp);
 12300   %}
 12301   ins_pipe(ialu_storeI);
 12302 %}
 12304 instruct loadSSF(regF dst, stackSlotF src)
 12305 %{
 12306   match(Set dst src);
 12308   ins_cost(125);
 12309   format %{ "lwc1   $dst, $src\t# float stk @ loadSSF" %}
 12310   ins_encode %{
 12311     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSF) !");
 12312     __ lwc1($dst$$FloatRegister, SP, $src$$disp);
 12313   %}
 12314   ins_pipe(ialu_loadI);
 12315 %}
 12317 instruct storeSSF(stackSlotF dst, regF src)
 12318 %{
 12319   match(Set dst src);
 12321   ins_cost(100);
 12322   format %{ "swc1    $dst, $src\t# float stk @ storeSSF" %}
 12323   ins_encode %{
 12324     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSF) !");
 12325     __ swc1($src$$FloatRegister, SP, $dst$$disp);
 12326   %}
 12327   ins_pipe(fpu_storeF);
 12328 %}
 12330 // Use the same format since predicate() can not be used here.
 12331 instruct loadSSD(regD dst, stackSlotD src)
 12332 %{
 12333   match(Set dst src);
 12335   ins_cost(125);
 12336   format %{ "ldc1   $dst, $src\t# double stk @ loadSSD" %}
 12337   ins_encode %{
 12338     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSD) !");
 12339     __ ldc1($dst$$FloatRegister, SP, $src$$disp);
 12340   %}
 12341   ins_pipe(ialu_loadI);
 12342 %}
 12344 instruct storeSSD(stackSlotD dst, regD src)
 12345 %{
 12346   match(Set dst src);
 12348   ins_cost(100);
 12349   format %{ "sdc1    $dst, $src\t# double stk @ storeSSD" %}
 12350   ins_encode %{
 12351     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSD) !");
 12352     __ sdc1($src$$FloatRegister, SP, $dst$$disp);
 12353   %}
 12354   ins_pipe(fpu_storeF);
 12355 %}
 12357 instruct cmpFastLock( FlagsReg cr, mRegP object, s0_RegP box, mRegI tmp, mRegP scr) %{
 12358   match( Set cr (FastLock object box) );
 12359   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12360   ins_cost(300);
 12361   format %{ "FASTLOCK $cr $object, $box, $tmp #@ cmpFastLock" %}
 12362   ins_encode %{
 12363     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register);
 12364   %}
 12366   ins_pipe( pipe_slow );
 12367   ins_pc_relative(1);
 12368 %}
 12370 instruct cmpFastUnlock( FlagsReg cr, mRegP object, s0_RegP box, mRegP tmp ) %{
 12371   match( Set cr (FastUnlock object box) );
 12372   effect( TEMP tmp, USE_KILL box );
 12373   ins_cost(300);
 12374   format %{ "FASTUNLOCK $object, $box, $tmp #@cmpFastUnlock" %}
 12375   ins_encode %{
 12376     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
 12377   %}
 12379   ins_pipe( pipe_slow );
 12380   ins_pc_relative(1);
 12381 %}
 12383 // Store CMS card-mark Immediate
 12384 instruct storeImmCM(memory mem, immI8 src) %{
 12385   match(Set mem (StoreCM mem src));
 12387   ins_cost(150);
 12388   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
 12389 //  opcode(0xC6);
 12390   ins_encode(store_B_immI_enc_sync(mem, src));
 12391   ins_pipe( ialu_storeI );
 12392 %}
 12394 // Die now
 12395 instruct ShouldNotReachHere( )
 12396 %{
 12397   match(Halt);
 12398   ins_cost(300);
 12400   // Use the following format syntax
 12401   format %{ "ILLTRAP   ;#@ShouldNotReachHere" %}
 12402   ins_encode %{
 12403     // Here we should emit illtrap !
 12405     __ stop("in ShoudNotReachHere");
 12407   %}
 12408   ins_pipe( pipe_jump );
 12409 %}
 12411 instruct leaP8Narrow(mRegP dst, indOffset8Narrow mem)
 12412 %{
 12413   predicate(Universe::narrow_oop_shift() == 0);
 12414   match(Set dst mem);
 12416   ins_cost(110); 
 12417   format %{ "leaq    $dst, $mem\t# ptr off8narrow @ leaP8Narrow" %}
 12418   ins_encode %{
 12419     Register  dst  = $dst$$Register;
 12420     Register  base = as_Register($mem$$base);
 12421     int       disp = $mem$$disp;
 12423     __ daddiu(dst, base, disp);
 12424   %}
 12425   ins_pipe( ialu_regI_imm16 );
 12426 %}
 12428 instruct leaPPosIdxScaleOff8(mRegP dst, basePosIndexScaleOffset8 mem)
 12429 %{
 12430   match(Set dst mem);
 12432   ins_cost(110);
 12433   format %{ "leaq    $dst, $mem\t# @ PosIdxScaleOff8" %}
 12434   ins_encode %{
 12435     Register  dst   = $dst$$Register;
 12436     Register  base  = as_Register($mem$$base);
 12437     Register  index = as_Register($mem$$index);
 12438     int       scale = $mem$$scale;
 12439     int       disp  = $mem$$disp;
 12441     if (scale == 0) {
 12442        __ daddu(AT, base, index);
 12443        __ daddiu(dst, AT, disp);
 12444     } else {
 12445        __ dsll(AT, index, scale);
 12446        __ daddu(AT, base, AT);
 12447        __ daddiu(dst, AT, disp);
 12449  %}
 12451   ins_pipe( ialu_regI_imm16 );
 12452 %}
 12454 instruct leaPIdxScale(mRegP dst, indIndexScale mem)
 12455 %{
 12456   match(Set dst mem);
 12458   ins_cost(110);
 12459   format %{ "leaq    $dst, $mem\t# @ leaPIdxScale" %}
 12460   ins_encode %{
 12461     Register  dst   = $dst$$Register;
 12462     Register  base  = as_Register($mem$$base);
 12463     Register  index = as_Register($mem$$index);
 12464     int       scale = $mem$$scale;
 12466     if (scale == 0) {
 12467        __ daddu(dst, base, index);
 12468     } else {
 12469        __ dsll(AT, index, scale);
 12470        __ daddu(dst, base, AT);
 12472  %}
 12474   ins_pipe( ialu_regI_imm16 );
 12475 %}
 12477 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12478 instruct  jmpLoopEnd(cmpOp cop, mRegI src1, mRegI src2, label labl) %{
 12479   match(CountedLoopEnd cop (CmpI src1 src2));
 12480   effect(USE labl);
 12482   ins_cost(300);
 12483   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd" %}
 12484   ins_encode %{
 12485     Register op1 = $src1$$Register;
 12486     Register op2 = $src2$$Register;
 12487     Label     &L = *($labl$$label);
 12488     int     flag = $cop$$cmpcode;
 12490     switch(flag)
 12492       case 0x01: //equal
 12493 	if (&L)
 12494         	__ beq(op1, op2, L); 
 12495 	else 
 12496         	__ beq(op1, op2, (int)0); 
 12497         break;
 12498       case 0x02: //not_equal
 12499 	if (&L)
 12500         	__ bne(op1, op2, L); 
 12501 	else
 12502         	__ bne(op1, op2, (int)0); 
 12503         break;
 12504       case 0x03: //above
 12505         __ slt(AT, op2, op1);
 12506         if(&L)
 12507         	__ bne(AT, R0, L); 
 12508         else
 12509                 __ bne(AT, R0, (int)0);
 12510         break;
 12511       case 0x04: //above_equal
 12512         __ slt(AT, op1, op2);
 12513         if(&L)
 12514         	__ beq(AT, R0, L);
 12515         else
 12516                 __ beq(AT, R0, (int)0);
 12517         break;
 12518       case 0x05: //below
 12519         __ slt(AT, op1, op2);
 12520         if(&L)
 12521       		 __ bne(AT, R0, L); 
 12522         else
 12523         	 __ bne(AT, R0, (int)0);
 12524         break;
 12525       case 0x06: //below_equal
 12526         __ slt(AT, op2, op1);
 12527         if(&L)
 12528         	__ beq(AT, R0, L);
 12529         else
 12530         	__ beq(AT, R0, (int)0);
 12531        break;
 12532       default:
 12533           Unimplemented();
 12535     __ nop();
 12536   %}
 12537   ins_pipe( pipe_jump );
 12538   ins_pc_relative(1);
 12539 %}
 12542  instruct  jmpLoopEnd_reg_imm16_sub(cmpOp cop, mRegI src1, immI16_sub src2, label labl) %{
 12543   match(CountedLoopEnd cop (CmpI src1 src2));
 12544   effect(USE labl);
 12546   ins_cost(250);
 12547   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd_reg_imm16_sub" %}
 12548   ins_encode %{
 12549     Register op1 = $src1$$Register;
 12550     int      op2 = $src2$$constant;
 12551     Label     &L = *($labl$$label);
 12552     int     flag = $cop$$cmpcode;
 12554     __ addiu32(AT, op1, -1 * op2);
 12556     switch(flag)
 12558       case 0x01: //equal
 12559        if (&L)
 12560                __ beq(AT, R0, L); 
 12561        else 
 12562                __ beq(AT, R0, (int)0); 
 12563         break;
 12564       case 0x02: //not_equal
 12565        if (&L)
 12566                __ bne(AT, R0, L); 
 12567        else
 12568                __ bne(AT, R0, (int)0); 
 12569         break;
 12570       case 0x03: //above
 12571         if(&L)
 12572                __ bgtz(AT, L); 
 12573         else
 12574                 __ bgtz(AT, (int)0);
 12575         break;
 12576       case 0x04: //above_equal
 12577         if(&L)
 12578                __ bgez(AT, L);
 12579         else
 12580                 __ bgez(AT,(int)0);
 12581         break;
 12582       case 0x05: //below
 12583         if(&L)
 12584                 __ bltz(AT, L); 
 12585         else
 12586                 __ bltz(AT, (int)0);
 12587         break;
 12588       case 0x06: //below_equal
 12589         if(&L)
 12590                __ blez(AT, L);
 12591         else
 12592                __ blez(AT, (int)0);
 12593        break;
 12594       default:
 12595           Unimplemented();
 12597     __ nop();
 12598   %}
 12599   ins_pipe( pipe_jump );
 12600   ins_pc_relative(1);
 12601 %}
 12604 /*  
 12605 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12606 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12607   match(CountedLoopEnd cop cmp);
 12608   effect(USE labl);
 12610   ins_cost(300);
 12611   format %{ "J$cop,u  $labl\t# Loop end" %}
 12612   size(6);
 12613   opcode(0x0F, 0x80);
 12614   ins_encode( Jcc( cop, labl) );
 12615   ins_pipe( pipe_jump );
 12616   ins_pc_relative(1);
 12617 %}
 12619 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12620   match(CountedLoopEnd cop cmp);
 12621   effect(USE labl);
 12623   ins_cost(200);
 12624   format %{ "J$cop,u  $labl\t# Loop end" %}
 12625   opcode(0x0F, 0x80);
 12626   ins_encode( Jcc( cop, labl) );
 12627   ins_pipe( pipe_jump );
 12628   ins_pc_relative(1);
 12629 %}
 12630 */
 12632 // This match pattern is created for StoreIConditional since I cannot match IfNode without a RegFlags! fujie 2012/07/17
 12633 instruct jmpCon_flags(cmpOp cop, FlagsReg cr, label labl) %{
 12634   match(If cop cr);
 12635   effect(USE labl);
 12637   ins_cost(300);
 12638   format %{ "J$cop    $labl  #mips uses AT as eflag @jmpCon_flags" %}
 12640   ins_encode %{
 12641     Label    &L =  *($labl$$label);
 12642     switch($cop$$cmpcode)
 12644       case 0x01: //equal
 12645 	if (&L)
 12646         	__ bne(AT, R0, L); 
 12647 	else 
 12648         	__ bne(AT, R0, (int)0); 
 12649         break;
 12650       case 0x02: //not equal
 12651 	if (&L)
 12652         	__ beq(AT, R0, L); 
 12653 	else 
 12654         	__ beq(AT, R0, (int)0); 
 12655         break;
 12656       default:
 12657          Unimplemented(); 
 12659     __ nop();
 12660   %}
 12662   ins_pipe( pipe_jump );
 12663   ins_pc_relative(1);
 12664 %}
 12667 // ============================================================================
 12668 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12669 // array for an instance of the superklass.  Set a hidden internal cache on a
 12670 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12671 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12672 instruct partialSubtypeCheck( mRegP result, no_T8_mRegP sub, no_T8_mRegP super, mT8RegI tmp ) %{
 12673   match(Set result (PartialSubtypeCheck sub super));
 12674   effect(KILL tmp);
 12675   ins_cost(1100);  // slightly larger than the next version
 12676   format %{ "partialSubtypeCheck result=$result, sub=$sub, super=$super, tmp=$tmp " %}
 12678   ins_encode( enc_PartialSubtypeCheck(result, sub, super, tmp) );
 12679   ins_pipe( pipe_slow );
 12680 %}
 12683 // Conditional-store of an int value.
 12684 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
 12685 instruct storeIConditional( memory mem, mRegI oldval, mRegI newval, FlagsReg cr ) %{
 12686   match(Set cr (StoreIConditional mem (Binary oldval newval)));
 12687 //  effect(KILL oldval);
 12688   format %{ "CMPXCHG  $newval, $mem, $oldval \t# @storeIConditional" %}
 12690   ins_encode %{
 12691     Register oldval = $oldval$$Register;
 12692     Register newval = $newval$$Register;
 12693     Address  addr(as_Register($mem$$base), $mem$$disp);
 12694     Label    again, failure;
 12696 //    int      base = $mem$$base;
 12697     int     index = $mem$$index;
 12698     int     scale = $mem$$scale;
 12699     int      disp = $mem$$disp;
 12701     guarantee(Assembler::is_simm16(disp), ""); 
 12703     if( index != 0 ) {
 12704        __ stop("in storeIConditional: index != 0");
 12705     } else {
 12706        __ bind(again);
 12707        __ sync();
 12708        __ ll(AT, addr);
 12709        __ bne(AT, oldval, failure);
 12710        __ delayed()->addu(AT, R0, R0);
 12712        __ addu(AT, newval, R0);
 12713        __ sc(AT, addr);
 12714        __ beq(AT, R0, again);
 12715        __ delayed()->addiu(AT, R0, 0xFF);
 12716        __ bind(failure);
 12717        __ sync();
 12719 %}
 12721   ins_pipe( long_memory_op );
 12722 %}
 12724 // Conditional-store of a long value.
 12725 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
 12726 instruct storeLConditional(memory mem, t2RegL oldval, mRegL newval, FlagsReg cr )
 12727 %{
 12728   match(Set cr (StoreLConditional mem (Binary oldval newval)));
 12729   effect(KILL oldval);
 12731   format %{ "cmpxchg $mem, $newval\t# If $oldval == $mem then store $newval into $mem" %}
 12732   ins_encode%{
 12733 		Register oldval = $oldval$$Register;
 12734 		Register newval = $newval$$Register;
 12735 		Address addr((Register)$mem$$base, $mem$$disp);  
 12737 		int     index = $mem$$index;
 12738 		int     scale = $mem$$scale;
 12739 		int      disp = $mem$$disp;
 12741 		guarantee(Assembler::is_simm16(disp), ""); 
 12743 		if( index != 0 ) {
 12744 			__ stop("in storeIConditional: index != 0");
 12745 		} else {
 12746 			__ cmpxchg(newval, addr, oldval);
 12748   %}
 12749   ins_pipe( long_memory_op );
 12750 %}
 12753 instruct compareAndSwapI( mRegI res, mRegP mem_ptr, mS2RegI oldval, mRegI newval) %{
 12754   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
 12755   effect(KILL oldval);
 12756 //  match(CompareAndSwapI mem_ptr (Binary oldval newval));
 12757   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapI\n\t"
 12758             "MOV    $res, 1 @ compareAndSwapI\n\t"
 12759             "BNE    AT, R0 @ compareAndSwapI\n\t"
 12760             "MOV    $res, 0 @ compareAndSwapI\n"
 12761           "L:" %}
 12762   ins_encode %{
 12763     Register newval = $newval$$Register;
 12764     Register oldval = $oldval$$Register;
 12765     Register res    = $res$$Register;
 12766     Address  addr($mem_ptr$$Register, 0);    
 12767     Label L;
 12769     __ cmpxchg32(newval, addr, oldval);
 12770     __ move(res, AT);
 12771   %}
 12772   ins_pipe( long_memory_op );
 12773 %}
 12775 //FIXME:
 12776 instruct compareAndSwapP( mRegI res, mRegP mem_ptr, s2_RegP oldval, mRegP newval) %{
 12777   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
 12778   effect(KILL oldval);
 12779   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapP\n\t"
 12780             "MOV    $res, AT @ compareAndSwapP\n\t"
 12781           "L:" %}
 12782   ins_encode %{
 12783     Register newval = $newval$$Register;
 12784     Register oldval = $oldval$$Register;
 12785     Register res    = $res$$Register;
 12786     Address  addr($mem_ptr$$Register, 0);    
 12787     Label L;
 12789     __ cmpxchg(newval, addr, oldval);
 12790     __ move(res, AT);
 12791   %}
 12792   ins_pipe( long_memory_op );
 12793 %}
 12795 instruct compareAndSwapN( mRegI res, mRegP mem_ptr, t2_RegN oldval, mRegN newval) %{
 12796   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
 12797   effect(KILL oldval);
 12798   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapN\n\t"
 12799             "MOV    $res, AT @ compareAndSwapN\n\t"
 12800           "L:" %}
 12801   ins_encode %{
 12802     Register newval = $newval$$Register;
 12803     Register oldval = $oldval$$Register;
 12804     Register res    = $res$$Register;
 12805     Address  addr($mem_ptr$$Register, 0);    
 12806     Label L;
 12808     /* 2013/7/19 Jin: cmpxchg32 is implemented with ll/sc, which will do sign extension.
 12809      *      Thus, we should extend oldval's sign for correct comparision.
 12810      */
 12811     __ sll(oldval, oldval, 0);
 12813     __ cmpxchg32(newval, addr, oldval);
 12814     __ move(res, AT);
 12815   %}
 12816   ins_pipe( long_memory_op );
 12817 %}
 12819 //----------Max and Min--------------------------------------------------------
 12820 // Min Instructions
 12821 ////
 12822 //   *** Min and Max using the conditional move are slower than the
 12823 //   *** branch version on a Pentium III.
 12824 // // Conditional move for min
 12825 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12826 //  effect( USE_DEF op2, USE op1, USE cr );
 12827 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12828 //  opcode(0x4C,0x0F);
 12829 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12830 //  ins_pipe( pipe_cmov_reg );
 12831 //%}
 12832 //
 12833 //// Min Register with Register (P6 version)
 12834 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12835 //  predicate(VM_Version::supports_cmov() );
 12836 //  match(Set op2 (MinI op1 op2));
 12837 //  ins_cost(200);
 12838 //  expand %{
 12839 //    eFlagsReg cr;
 12840 //    compI_eReg(cr,op1,op2);
 12841 //    cmovI_reg_lt(op2,op1,cr);
 12842 //  %}
 12843 //%}
 12845 // Min Register with Register (generic version)
 12846 instruct minI_Reg_Reg(mRegI dst, mRegI src) %{
 12847   match(Set dst (MinI dst src));
 12848   //effect(KILL flags);
 12849   ins_cost(80);
 12851   format %{ "MIN    $dst, $src @minI_Reg_Reg" %}
 12852   ins_encode %{
 12853     Register dst   = $dst$$Register;
 12854     Register src   = $src$$Register;
 12856     __ slt(AT, src, dst);
 12857     __ movn(dst, src, AT);
 12859   %}
 12861   ins_pipe( pipe_slow );
 12862 %}
 12864 // Max Register with Register
 12865 //   *** Min and Max using the conditional move are slower than the
 12866 //   *** branch version on a Pentium III.
 12867 // // Conditional move for max
 12868 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12869 //  effect( USE_DEF op2, USE op1, USE cr );
 12870 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12871 //  opcode(0x4F,0x0F);
 12872 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12873 //  ins_pipe( pipe_cmov_reg );
 12874 //%}
 12875 //
 12876 // // Max Register with Register (P6 version)
 12877 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12878 //  predicate(VM_Version::supports_cmov() );
 12879 //  match(Set op2 (MaxI op1 op2));
 12880 //  ins_cost(200);
 12881 //  expand %{
 12882 //    eFlagsReg cr;
 12883 //    compI_eReg(cr,op1,op2);
 12884 //    cmovI_reg_gt(op2,op1,cr);
 12885 //  %}
 12886 //%}
 12888 // Max Register with Register (generic version)
 12889 instruct maxI_Reg_Reg(mRegI dst, mRegI src) %{
 12890   match(Set dst (MaxI dst src));
 12891   ins_cost(80);
 12893   format %{ "MAX    $dst, $src @maxI_Reg_Reg" %}
 12895   ins_encode %{
 12896     Register dst   = $dst$$Register;
 12897     Register src   = $src$$Register;
 12899     __ slt(AT, dst, src);
 12900     __ movn(dst, src, AT);
 12902   %}
 12904   ins_pipe( pipe_slow );
 12905 %}
 12907 instruct maxI_Reg_zero(mRegI dst, immI0 zero) %{
 12908   match(Set dst (MaxI dst zero));
 12909   ins_cost(50);
 12911   format %{ "MAX    $dst, 0 @maxI_Reg_zero" %}
 12913   ins_encode %{
 12914     Register dst   = $dst$$Register;
 12916     __ slt(AT, dst, R0);
 12917     __ movn(dst, R0, AT);
 12919   %}
 12921   ins_pipe( pipe_slow );
 12922 %}
 12924 instruct zerox_long_reg_reg(mRegL dst, mRegL src, immL_32bits mask)
 12925 %{
 12926   match(Set dst (AndL src mask));
 12928   format %{ "movl    $dst, $src\t# zero-extend long @ zerox_long_reg_reg" %}
 12929   ins_encode %{
 12930     Register dst = $dst$$Register;
 12931     Register src = $src$$Register;
 12933     __ dsll32(dst, src, 0);
 12934     __ dsrl32(dst, dst, 0);
 12935   %}
 12936   ins_pipe(ialu_regI_regI);
 12937 %}
 12939 // Zero-extend convert int to long
 12940 instruct convI2L_reg_reg_zex(mRegL dst, mRegI src, immL_32bits mask)
 12941 %{
 12942   match(Set dst (AndL (ConvI2L src) mask));
 12944   format %{ "movl    $dst, $src\t# i2l zero-extend @ convI2L_reg_reg_zex" %}
 12945   ins_encode %{
 12946     Register dst = $dst$$Register;
 12947     Register src = $src$$Register;
 12949     __ dsll32(dst, src, 0);
 12950     __ dsrl32(dst, dst, 0);
 12951   %}
 12952   ins_pipe(ialu_regI_regI);
 12953 %}
 12956 // Match loading integer and casting it to unsigned int in long register.
 12957 // LoadI + ConvI2L + AndL 0xffffffff.
 12958 instruct loadUI2L_rmask(mRegL dst, memory mem, immL_32bits mask) %{
 12959   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 12961   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_rmask" %}
 12962   ins_encode (load_N_enc(dst, mem));
 12963   ins_pipe(ialu_loadI);
 12964 %}
 12966 instruct loadUI2L_lmask(mRegL dst, memory mem, immL_32bits mask) %{
 12967   match(Set dst (AndL mask (ConvI2L (LoadI mem))));
 12969   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_lmask" %}
 12970   ins_encode (load_N_enc(dst, mem));
 12971   ins_pipe(ialu_loadI);
 12972 %}
 12975 // ============================================================================
 12976 // Safepoint Instruction
 12977 instruct safePoint_poll(mRegP poll) %{
 12978   match(SafePoint poll);
 12979   effect(USE poll);
 12981   ins_cost(125);
 12982   format %{ "Safepoint @ [$poll] : poll for GC @ safePoint_poll" %}
 12984   ins_encode %{
 12985     Register poll_reg = $poll$$Register;
 12987     __ block_comment("Safepoint:");
 12988     __ relocate(relocInfo::poll_type);
 12989     __ lw(AT, poll_reg, 0);
 12990   %}
 12992   ins_pipe( ialu_storeI );
 12993 %}
 12995 //----------Arithmetic Conversion Instructions---------------------------------
 12997 instruct roundFloat_nop(regF dst)
 12998 %{
 12999   match(Set dst (RoundFloat dst));
 13001   ins_cost(0);
 13002   ins_encode();
 13003   ins_pipe(empty);
 13004 %}
 13006 instruct roundDouble_nop(regD dst)
 13007 %{
 13008   match(Set dst (RoundDouble dst));
 13010   ins_cost(0);
 13011   ins_encode();
 13012   ins_pipe(empty);
 13013 %}
 13015 //---------- Zeros Count Instructions ------------------------------------------
 13016 // CountLeadingZerosINode CountTrailingZerosINode 
 13017 instruct countLeadingZerosI(mRegI dst, mRegI src) %{
 13018   predicate(UseCountLeadingZerosInstruction);
 13019   match(Set dst (CountLeadingZerosI src));
 13021   format %{ "clz  $dst, $src\t# count leading zeros (int)" %}
 13022   ins_encode %{
 13023     __ clz($dst$$Register, $src$$Register);
 13024   %}
 13025   ins_pipe( ialu_regL_regL );
 13026 %}
 13028 instruct countLeadingZerosL(mRegI dst, mRegL src) %{
 13029   predicate(UseCountLeadingZerosInstruction);
 13030   match(Set dst (CountLeadingZerosL src));
 13032   format %{ "dclz  $dst, $src\t# count leading zeros (long)" %}
 13033   ins_encode %{
 13034     __ dclz($dst$$Register, $src$$Register);
 13035   %}
 13036   ins_pipe( ialu_regL_regL );
 13037 %}
 13039 instruct countTrailingZerosI(mRegI dst, mRegI src) %{
 13040   predicate(UseCountTrailingZerosInstruction);
 13041   match(Set dst (CountTrailingZerosI src));
 13043   format %{ "ctz    $dst, $src\t# count trailing zeros (int)" %}
 13044   ins_encode %{
 13045     // ctz and dctz is gs instructions.
 13046     __ ctz($dst$$Register, $src$$Register);
 13047   %}
 13048   ins_pipe( ialu_regL_regL );
 13049 %}
 13051 instruct countTrailingZerosL(mRegI dst, mRegL src) %{
 13052   predicate(UseCountTrailingZerosInstruction);
 13053   match(Set dst (CountTrailingZerosL src));
 13055   format %{ "dcto    $dst, $src\t# count trailing zeros (long)" %}
 13056   ins_encode %{
 13057     __ dctz($dst$$Register, $src$$Register);
 13058   %}
 13059   ins_pipe( ialu_regL_regL );
 13060 %}
 13062 // ====================VECTOR INSTRUCTIONS=====================================
 13064 // Load vectors (8 bytes long)
 13065 instruct loadV8(vecD dst, memory mem) %{
 13066   predicate(n->as_LoadVector()->memory_size() == 8);
 13067   match(Set dst (LoadVector mem));
 13068   ins_cost(125);
 13069   format %{ "load    $dst, $mem\t! load vector (8 bytes)" %}
 13070   ins_encode(load_D_enc(dst, mem));
 13071   ins_pipe( fpu_loadF );
 13072 %}
 13074 // Store vectors (8 bytes long)
 13075 instruct storeV8(memory mem, vecD src) %{
 13076   predicate(n->as_StoreVector()->memory_size() == 8);
 13077   match(Set mem (StoreVector mem src));
 13078   ins_cost(145);
 13079   format %{ "store    $mem, $src\t! store vector (8 bytes)" %}
 13080   ins_encode(store_D_reg_enc(mem, src));
 13081   ins_pipe( fpu_storeF );
 13082 %}
 13084 instruct Repl8B(vecD dst, mRegI src) %{
 13085   predicate(n->as_Vector()->length() == 8);
 13086   match(Set dst (ReplicateB src));
 13087   format %{ "replv_ob    AT, $src\n\t"
 13088             "dmtc1 AT, $dst\t! replicate8B" %}
 13089   ins_encode %{
 13090     __ replv_ob(AT, $src$$Register);
 13091     __ dmtc1(AT, $dst$$FloatRegister);
 13092   %}
 13093   ins_pipe( pipe_mtc1 );
 13094 %}
 13096 instruct Repl8B_imm(vecD dst, immI con) %{
 13097   predicate(n->as_Vector()->length() == 8);
 13098   match(Set dst (ReplicateB con));
 13099   format %{ "repl_ob    AT, [$con]\n\t"
 13100             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13101   ins_encode %{
 13102     int      val = $con$$constant;
 13103     __ repl_ob(AT, val);
 13104     __ dmtc1(AT, $dst$$FloatRegister);
 13105   %}
 13106   ins_pipe( pipe_mtc1 );
 13107 %}
 13109 instruct Repl8B_zero(vecD dst, immI0 zero) %{
 13110   predicate(n->as_Vector()->length() == 8);
 13111   match(Set dst (ReplicateB zero));
 13112   format %{ "dmtc1    R0, $dst\t! replicate8B zero" %}
 13113   ins_encode %{
 13114     __ dmtc1(R0, $dst$$FloatRegister);
 13115   %}
 13116   ins_pipe( pipe_mtc1 );
 13117 %}
 13119 instruct Repl8B_M1(vecD dst, immI_M1 M1) %{
 13120   predicate(n->as_Vector()->length() == 8);
 13121   match(Set dst (ReplicateB M1));
 13122   format %{ "dmtc1    -1, $dst\t! replicate8B -1" %}
 13123   ins_encode %{
 13124     __ nor(AT, R0, R0);
 13125     __ dmtc1(AT, $dst$$FloatRegister);
 13126   %}
 13127   ins_pipe( pipe_mtc1 );
 13128 %}
 13130 instruct Repl4S(vecD dst, mRegI src) %{
 13131   predicate(n->as_Vector()->length() == 4);
 13132   match(Set dst (ReplicateS src));
 13133   format %{ "replv_qh    AT, $src\n\t"
 13134             "dmtc1 AT, $dst\t! replicate4S" %}
 13135   ins_encode %{
 13136     __ replv_qh(AT, $src$$Register);
 13137     __ dmtc1(AT, $dst$$FloatRegister);
 13138   %}
 13139   ins_pipe( pipe_mtc1 );
 13140 %}
 13142 instruct Repl4S_imm(vecD dst, immI con) %{
 13143   predicate(n->as_Vector()->length() == 4);
 13144   match(Set dst (ReplicateS con));
 13145   format %{ "replv_qh    AT, [$con]\n\t"
 13146             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13147   ins_encode %{
 13148     int      val = $con$$constant;
 13149     if ( Assembler::is_simm(val, 10)) {
 13150       //repl_qh supports 10 bits immediate
 13151       __ repl_qh(AT, val);
 13152     } else {
 13153       __ li32(AT, val);
 13154       __ replv_qh(AT, AT);
 13156     __ dmtc1(R0, $dst$$FloatRegister);
 13157   %}
 13158   ins_pipe( pipe_mtc1 );
 13159 %}
 13161 instruct Repl4S_zero(vecD dst, immI0 zero) %{
 13162   predicate(n->as_Vector()->length() == 4);
 13163   match(Set dst (ReplicateS zero));
 13164   format %{ "dmtc1    R0, $dst\t! replicate4S zero" %}
 13165   ins_encode %{
 13166     __ dmtc1(R0, $dst$$FloatRegister);
 13167   %}
 13168   ins_pipe( pipe_mtc1 );
 13169 %}
 13171 instruct Repl4S_M1(vecD dst, immI_M1 M1) %{
 13172   predicate(n->as_Vector()->length() == 4);
 13173   match(Set dst (ReplicateS M1));
 13174   format %{ "dmtc1    -1, $dst\t! replicate4S -1" %}
 13175   ins_encode %{
 13176     __ nor(AT, R0, R0);
 13177     __ dmtc1(AT, $dst$$FloatRegister);
 13178   %}
 13179   ins_pipe( pipe_mtc1 );
 13180 %}
 13182 // Replicate integer (4 byte) scalar to be vector
 13183 instruct Repl2I(vecD dst, mRegI src) %{
 13184   predicate(n->as_Vector()->length() == 2);
 13185   match(Set dst (ReplicateI src));
 13186   format %{ "dins    AT, $src, 0, 32\n\t"
 13187             "dinsu   AT, $src, 32, 32\n\t"
 13188             "dmtc1   AT, $dst\t! replicate2I" %}
 13189   ins_encode %{
 13190     __ dins(AT, $src$$Register, 0, 32);
 13191     __ dinsu(AT, $src$$Register, 32, 32);
 13192     __ dmtc1(AT, $dst$$FloatRegister);
 13193   %}
 13194   ins_pipe( pipe_mtc1 );
 13195 %}
 13197 // Replicate integer (4 byte) scalar immediate to be vector by loading from const table.
 13198 instruct Repl2I_imm(vecD dst, immI con, mA7RegI tmp) %{
 13199   predicate(n->as_Vector()->length() == 2);
 13200   match(Set dst (ReplicateI con));
 13201   effect(KILL tmp);
 13202   format %{ "li32    AT, [$con], 32\n\t"
 13203             "replv_pw   AT, AT\n\t"
 13204             "dmtc1   AT, $dst\t! replicate2I($con)" %}
 13205   ins_encode %{
 13206     int      val = $con$$constant;
 13207     __ li32(AT, val);
 13208     __ replv_pw(AT, AT);
 13209     __ dmtc1(AT, $dst$$FloatRegister);
 13210   %}
 13211   ins_pipe( pipe_mtc1 );
 13212 %}
 13214 // Replicate integer (4 byte) scalar zero to be vector
 13215 instruct Repl2I_zero(vecD dst, immI0 zero) %{
 13216   predicate(n->as_Vector()->length() == 2);
 13217   match(Set dst (ReplicateI zero));
 13218   format %{ "dmtc1    R0, $dst\t! replicate2I zero" %}
 13219   ins_encode %{
 13220     __ dmtc1(R0, $dst$$FloatRegister);
 13221   %}
 13222   ins_pipe( pipe_mtc1 );
 13223 %}
 13225 // Replicate integer (4 byte) scalar -1 to be vector
 13226 instruct Repl2I_M1(vecD dst, immI_M1 M1) %{
 13227   predicate(n->as_Vector()->length() == 2);
 13228   match(Set dst (ReplicateI M1));
 13229   format %{ "dmtc1    -1, $dst\t! replicate2I -1, use AT" %}
 13230   ins_encode %{
 13231     __ nor(AT, R0, R0);
 13232     __ dmtc1(AT, $dst$$FloatRegister);
 13233   %}
 13234   ins_pipe( pipe_mtc1 );
 13235 %}
 13237 // Replicate float (4 byte) scalar to be vector
 13238 instruct Repl2F(vecD dst, regF src) %{
 13239   predicate(n->as_Vector()->length() == 2);
 13240   match(Set dst (ReplicateF src));
 13241   format %{ "cvt.ps  $dst, $src, $src\t! replicate2F" %}
 13242   ins_encode %{
 13243     __ cvt_ps_s($dst$$FloatRegister, $src$$FloatRegister, $src$$FloatRegister);
 13244   %}
 13245   ins_pipe( pipe_slow );
 13246 %}
 13248 // Replicate float (4 byte) scalar zero to be vector
 13249 instruct Repl2F_zero(vecD dst, immF0 zero) %{
 13250   predicate(n->as_Vector()->length() == 2);
 13251   match(Set dst (ReplicateF zero));
 13252   format %{ "dmtc1   R0, $dst\t! replicate2F zero" %}
 13253   ins_encode %{
 13254     __ dmtc1(R0, $dst$$FloatRegister);
 13255   %}
 13256   ins_pipe( pipe_mtc1 );
 13257 %}
 13260 // ====================VECTOR ARITHMETIC=======================================
 13262 // --------------------------------- ADD --------------------------------------
 13264 // Floats vector add
 13265 instruct vadd2F(vecD dst, vecD src) %{
 13266   predicate(n->as_Vector()->length() == 2);
 13267   match(Set dst (AddVF dst src));
 13268   format %{ "add.ps   $dst,$src\t! add packed2F" %}
 13269   ins_encode %{
 13270     __ add_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13271   %}
 13272   ins_pipe( pipe_slow );
 13273 %}
 13275 instruct vadd2F3(vecD dst, vecD src1, vecD src2) %{
 13276   predicate(n->as_Vector()->length() == 2);
 13277   match(Set dst (AddVF src1 src2));
 13278   format %{ "add.ps   $dst,$src1,$src2\t! add packed2F" %}
 13279   ins_encode %{
 13280     __ add_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13281   %}
 13282   ins_pipe( fpu_regF_regF );
 13283 %}
 13285 // --------------------------------- SUB --------------------------------------
 13287 // Floats vector sub
 13288 instruct vsub2F(vecD dst, vecD src) %{
 13289   predicate(n->as_Vector()->length() == 2);
 13290   match(Set dst (SubVF dst src));
 13291   format %{ "sub.ps   $dst,$src\t! sub packed2F" %}
 13292   ins_encode %{
 13293     __ sub_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13294   %}
 13295   ins_pipe( fpu_regF_regF );
 13296 %}
 13298 // --------------------------------- MUL --------------------------------------
 13300 // Floats vector mul
 13301 instruct vmul2F(vecD dst, vecD src) %{
 13302   predicate(n->as_Vector()->length() == 2);
 13303   match(Set dst (MulVF dst src));
 13304   format %{ "mul.ps   $dst, $src\t! mul packed2F" %}
 13305   ins_encode %{
 13306     __ mul_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13307   %}
 13308   ins_pipe( fpu_regF_regF );
 13309 %}
 13311 instruct vmul2F3(vecD dst, vecD src1, vecD src2) %{
 13312   predicate(n->as_Vector()->length() == 2);
 13313   match(Set dst (MulVF src1 src2));
 13314   format %{ "mul.ps   $dst, $src1, $src2\t! mul packed2F" %}
 13315   ins_encode %{
 13316     __ mul_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13317   %}
 13318   ins_pipe( fpu_regF_regF );
 13319 %}
 13321 // --------------------------------- DIV --------------------------------------
 13322 // MIPS do not have div.ps
 13325 //----------PEEPHOLE RULES-----------------------------------------------------
 13326 // These must follow all instruction definitions as they use the names
 13327 // defined in the instructions definitions.
 13328 // 
 13329 // peepmatch ( root_instr_name [preceeding_instruction]* );
 13330 //
 13331 // peepconstraint %{
 13332 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13333 //  [, ...] );
 13334 // // instruction numbers are zero-based using left to right order in peepmatch
 13335 //
 13336 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13337 // // provide an instruction_number.operand_name for each operand that appears
 13338 // // in the replacement instruction's match rule
 13339 //
 13340 // ---------VM FLAGS---------------------------------------------------------
 13341 // 
 13342 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13343 // 
 13344 // Each peephole rule is given an identifying number starting with zero and
 13345 // increasing by one in the order seen by the parser.  An individual peephole
 13346 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13347 // on the command-line.
 13348 // 
 13349 // ---------CURRENT LIMITATIONS----------------------------------------------
 13350 // 
 13351 // Only match adjacent instructions in same basic block
 13352 // Only equality constraints
 13353 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13354 // Only one replacement instruction
 13355 //
 13356 // ---------EXAMPLE----------------------------------------------------------
 13357 //
 13358 // // pertinent parts of existing instructions in architecture description
 13359 // instruct movI(eRegI dst, eRegI src) %{
 13360 //   match(Set dst (CopyI src));
 13361 // %}
 13362 // 
 13363 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13364 //   match(Set dst (AddI dst src));
 13365 //   effect(KILL cr);
 13366 // %}
 13367 // 
 13368 // // Change (inc mov) to lea
 13369 // peephole %{
 13370 //   // increment preceeded by register-register move
 13371 //   peepmatch ( incI_eReg movI );
 13372 //   // require that the destination register of the increment 
 13373 //   // match the destination register of the move
 13374 //   peepconstraint ( 0.dst == 1.dst );
 13375 //   // construct a replacement instruction that sets
 13376 //   // the destination to ( move's source register + one )
 13377 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13378 // %}
 13379 // 
 13380 // Implementation no longer uses movX instructions since 
 13381 // machine-independent system no longer uses CopyX nodes.
 13382 // 
 13383 // peephole %{
 13384 //   peepmatch ( incI_eReg movI );
 13385 //   peepconstraint ( 0.dst == 1.dst );
 13386 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13387 // %}
 13388 // 
 13389 // peephole %{
 13390 //   peepmatch ( decI_eReg movI );
 13391 //   peepconstraint ( 0.dst == 1.dst );
 13392 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13393 // %}
 13394 // 
 13395 // peephole %{
 13396 //   peepmatch ( addI_eReg_imm movI );
 13397 //   peepconstraint ( 0.dst == 1.dst );
 13398 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13399 // %}
 13400 // 
 13401 // peephole %{
 13402 //   peepmatch ( addP_eReg_imm movP );
 13403 //   peepconstraint ( 0.dst == 1.dst );
 13404 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13405 // %}
 13407 // // Change load of spilled value to only a spill
 13408 // instruct storeI(memory mem, eRegI src) %{
 13409 //   match(Set mem (StoreI mem src));
 13410 // %}
 13411 // 
 13412 // instruct loadI(eRegI dst, memory mem) %{
 13413 //   match(Set dst (LoadI mem));
 13414 // %}
 13415 // 
 13416 //peephole %{
 13417 //  peepmatch ( loadI storeI );
 13418 //  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13419 //  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13420 //%}
 13422 //----------SMARTSPILL RULES---------------------------------------------------
 13423 // These must follow all instruction definitions as they use the names
 13424 // defined in the instructions definitions.

mercurial