src/share/vm/opto/memnode.cpp

Fri, 29 Feb 2008 19:57:41 -0800

author
kvn
date
Fri, 29 Feb 2008 19:57:41 -0800
changeset 471
f34d9da7acb2
parent 464
d5fc211aea19
child 478
d821d920b465
permissions
-rw-r--r--

6667618: disable LoadL->ConvL2I ==> LoadI optimization
Summary: this optimization causes problems (sizes of Load and Store nodes do not match) for objects initialization code and Escape Analysis
Reviewed-by: jrose, never

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 //=============================================================================
    33 uint MemNode::size_of() const { return sizeof(*this); }
    35 const TypePtr *MemNode::adr_type() const {
    36   Node* adr = in(Address);
    37   const TypePtr* cross_check = NULL;
    38   DEBUG_ONLY(cross_check = _adr_type);
    39   return calculate_adr_type(adr->bottom_type(), cross_check);
    40 }
    42 #ifndef PRODUCT
    43 void MemNode::dump_spec(outputStream *st) const {
    44   if (in(Address) == NULL)  return; // node is dead
    45 #ifndef ASSERT
    46   // fake the missing field
    47   const TypePtr* _adr_type = NULL;
    48   if (in(Address) != NULL)
    49     _adr_type = in(Address)->bottom_type()->isa_ptr();
    50 #endif
    51   dump_adr_type(this, _adr_type, st);
    53   Compile* C = Compile::current();
    54   if( C->alias_type(_adr_type)->is_volatile() )
    55     st->print(" Volatile!");
    56 }
    58 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    59   st->print(" @");
    60   if (adr_type == NULL) {
    61     st->print("NULL");
    62   } else {
    63     adr_type->dump_on(st);
    64     Compile* C = Compile::current();
    65     Compile::AliasType* atp = NULL;
    66     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    67     if (atp == NULL)
    68       st->print(", idx=?\?;");
    69     else if (atp->index() == Compile::AliasIdxBot)
    70       st->print(", idx=Bot;");
    71     else if (atp->index() == Compile::AliasIdxTop)
    72       st->print(", idx=Top;");
    73     else if (atp->index() == Compile::AliasIdxRaw)
    74       st->print(", idx=Raw;");
    75     else {
    76       ciField* field = atp->field();
    77       if (field) {
    78         st->print(", name=");
    79         field->print_name_on(st);
    80       }
    81       st->print(", idx=%d;", atp->index());
    82     }
    83   }
    84 }
    86 extern void print_alias_types();
    88 #endif
    90 //--------------------------Ideal_common---------------------------------------
    91 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
    92 // Unhook non-raw memories from complete (macro-expanded) initializations.
    93 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
    94   // If our control input is a dead region, kill all below the region
    95   Node *ctl = in(MemNode::Control);
    96   if (ctl && remove_dead_region(phase, can_reshape))
    97     return this;
    99   // Ignore if memory is dead, or self-loop
   100   Node *mem = in(MemNode::Memory);
   101   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   102   assert( mem != this, "dead loop in MemNode::Ideal" );
   104   Node *address = in(MemNode::Address);
   105   const Type *t_adr = phase->type( address );
   106   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   108   // Avoid independent memory operations
   109   Node* old_mem = mem;
   111   // The code which unhooks non-raw memories from complete (macro-expanded)
   112   // initializations was removed. After macro-expansion all stores catched
   113   // by Initialize node became raw stores and there is no information
   114   // which memory slices they modify. So it is unsafe to move any memory
   115   // operation above these stores. Also in most cases hooked non-raw memories
   116   // were already unhooked by using information from detect_ptr_independence()
   117   // and find_previous_store().
   119   if (mem->is_MergeMem()) {
   120     MergeMemNode* mmem = mem->as_MergeMem();
   121     const TypePtr *tp = t_adr->is_ptr();
   122     uint alias_idx = phase->C->get_alias_index(tp);
   123 #ifdef ASSERT
   124     {
   125       // Check that current type is consistent with the alias index used during graph construction
   126       assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   127       const TypePtr *adr_t =  adr_type();
   128       bool consistent =  adr_t == NULL || adr_t->empty() || phase->C->must_alias(adr_t, alias_idx );
   129       // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   130       if( !consistent && adr_t != NULL && !adr_t->empty() &&
   131              tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
   132           adr_t->isa_aryptr() && adr_t->offset() != Type::OffsetBot &&
   133           ( adr_t->offset() == arrayOopDesc::length_offset_in_bytes() ||
   134             adr_t->offset() == oopDesc::klass_offset_in_bytes() ||
   135             adr_t->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   136         // don't assert if it is dead code.
   137         consistent = true;
   138       }
   139       if( !consistent ) {
   140         tty->print("alias_idx==%d, adr_type()==", alias_idx); if( adr_t == NULL ) { tty->print("NULL"); } else { adr_t->dump(); }
   141         tty->cr();
   142         print_alias_types();
   143         assert(consistent, "adr_type must match alias idx");
   144       }
   145     }
   146 #endif
   147     // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   148     // means an array I have not precisely typed yet.  Do not do any
   149     // alias stuff with it any time soon.
   150     const TypeInstPtr *tinst = tp->isa_instptr();
   151     if( tp->base() != Type::AnyPtr &&
   152         !(tinst &&
   153           tinst->klass()->is_java_lang_Object() &&
   154           tinst->offset() == Type::OffsetBot) ) {
   155       // compress paths and change unreachable cycles to TOP
   156       // If not, we can update the input infinitely along a MergeMem cycle
   157       // Equivalent code in PhiNode::Ideal
   158       Node* m  = phase->transform(mmem);
   159       // If tranformed to a MergeMem, get the desired slice
   160       // Otherwise the returned node represents memory for every slice
   161       mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   162       // Update input if it is progress over what we have now
   163     }
   164   }
   166   if (mem != old_mem) {
   167     set_req(MemNode::Memory, mem);
   168     return this;
   169   }
   171   // let the subclass continue analyzing...
   172   return NULL;
   173 }
   175 // Helper function for proving some simple control dominations.
   176 // Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
   177 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   178 // is not a constant (dominated by the method's StartNode).
   179 // Used by MemNode::find_previous_store to prove that the
   180 // control input of a memory operation predates (dominates)
   181 // an allocation it wants to look past.
   182 bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
   183   if (dom == NULL)      return false;
   184   if (dom->is_Proj())   dom = dom->in(0);
   185   if (dom->is_Start())  return true; // anything inside the method
   186   if (dom->is_Root())   return true; // dom 'controls' a constant
   187   int cnt = 20;                      // detect cycle or too much effort
   188   while (sub != NULL) {              // walk 'sub' up the chain to 'dom'
   189     if (--cnt < 0)   return false;   // in a cycle or too complex
   190     if (sub == dom)  return true;
   191     if (sub->is_Start())  return false;
   192     if (sub->is_Root())   return false;
   193     Node* up = sub->in(0);
   194     if (sub == up && sub->is_Region()) {
   195       for (uint i = 1; i < sub->req(); i++) {
   196         Node* in = sub->in(i);
   197         if (in != NULL && !in->is_top() && in != sub) {
   198           up = in; break;            // take any path on the way up to 'dom'
   199         }
   200       }
   201     }
   202     if (sub == up)  return false;    // some kind of tight cycle
   203     sub = up;
   204   }
   205   return false;
   206 }
   208 //---------------------detect_ptr_independence---------------------------------
   209 // Used by MemNode::find_previous_store to prove that two base
   210 // pointers are never equal.
   211 // The pointers are accompanied by their associated allocations,
   212 // if any, which have been previously discovered by the caller.
   213 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   214                                       Node* p2, AllocateNode* a2,
   215                                       PhaseTransform* phase) {
   216   // Attempt to prove that these two pointers cannot be aliased.
   217   // They may both manifestly be allocations, and they should differ.
   218   // Or, if they are not both allocations, they can be distinct constants.
   219   // Otherwise, one is an allocation and the other a pre-existing value.
   220   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   221     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   222   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   223     return (a1 != a2);
   224   } else if (a1 != NULL) {                  // one allocation a1
   225     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   226     return detect_dominating_control(p2->in(0), a1->in(0));
   227   } else { //(a2 != NULL)                   // one allocation a2
   228     return detect_dominating_control(p1->in(0), a2->in(0));
   229   }
   230   return false;
   231 }
   234 // The logic for reordering loads and stores uses four steps:
   235 // (a) Walk carefully past stores and initializations which we
   236 //     can prove are independent of this load.
   237 // (b) Observe that the next memory state makes an exact match
   238 //     with self (load or store), and locate the relevant store.
   239 // (c) Ensure that, if we were to wire self directly to the store,
   240 //     the optimizer would fold it up somehow.
   241 // (d) Do the rewiring, and return, depending on some other part of
   242 //     the optimizer to fold up the load.
   243 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   244 // specific to loads and stores, so they are handled by the callers.
   245 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   246 //
   247 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   248   Node*         ctrl   = in(MemNode::Control);
   249   Node*         adr    = in(MemNode::Address);
   250   intptr_t      offset = 0;
   251   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   252   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   254   if (offset == Type::OffsetBot)
   255     return NULL;            // cannot unalias unless there are precise offsets
   257   intptr_t size_in_bytes = memory_size();
   259   Node* mem = in(MemNode::Memory);   // start searching here...
   261   int cnt = 50;             // Cycle limiter
   262   for (;;) {                // While we can dance past unrelated stores...
   263     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   265     if (mem->is_Store()) {
   266       Node* st_adr = mem->in(MemNode::Address);
   267       intptr_t st_offset = 0;
   268       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   269       if (st_base == NULL)
   270         break;              // inscrutable pointer
   271       if (st_offset != offset && st_offset != Type::OffsetBot) {
   272         const int MAX_STORE = BytesPerLong;
   273         if (st_offset >= offset + size_in_bytes ||
   274             st_offset <= offset - MAX_STORE ||
   275             st_offset <= offset - mem->as_Store()->memory_size()) {
   276           // Success:  The offsets are provably independent.
   277           // (You may ask, why not just test st_offset != offset and be done?
   278           // The answer is that stores of different sizes can co-exist
   279           // in the same sequence of RawMem effects.  We sometimes initialize
   280           // a whole 'tile' of array elements with a single jint or jlong.)
   281           mem = mem->in(MemNode::Memory);
   282           continue;           // (a) advance through independent store memory
   283         }
   284       }
   285       if (st_base != base &&
   286           detect_ptr_independence(base, alloc,
   287                                   st_base,
   288                                   AllocateNode::Ideal_allocation(st_base, phase),
   289                                   phase)) {
   290         // Success:  The bases are provably independent.
   291         mem = mem->in(MemNode::Memory);
   292         continue;           // (a) advance through independent store memory
   293       }
   295       // (b) At this point, if the bases or offsets do not agree, we lose,
   296       // since we have not managed to prove 'this' and 'mem' independent.
   297       if (st_base == base && st_offset == offset) {
   298         return mem;         // let caller handle steps (c), (d)
   299       }
   301     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   302       InitializeNode* st_init = mem->in(0)->as_Initialize();
   303       AllocateNode*  st_alloc = st_init->allocation();
   304       if (st_alloc == NULL)
   305         break;              // something degenerated
   306       bool known_identical = false;
   307       bool known_independent = false;
   308       if (alloc == st_alloc)
   309         known_identical = true;
   310       else if (alloc != NULL)
   311         known_independent = true;
   312       else if (ctrl != NULL &&
   313                detect_dominating_control(ctrl, st_alloc->in(0)))
   314         known_independent = true;
   316       if (known_independent) {
   317         // The bases are provably independent: Either they are
   318         // manifestly distinct allocations, or else the control
   319         // of this load dominates the store's allocation.
   320         int alias_idx = phase->C->get_alias_index(adr_type());
   321         if (alias_idx == Compile::AliasIdxRaw) {
   322           mem = st_alloc->in(TypeFunc::Memory);
   323         } else {
   324           mem = st_init->memory(alias_idx);
   325         }
   326         continue;           // (a) advance through independent store memory
   327       }
   329       // (b) at this point, if we are not looking at a store initializing
   330       // the same allocation we are loading from, we lose.
   331       if (known_identical) {
   332         // From caller, can_see_stored_value will consult find_captured_store.
   333         return mem;         // let caller handle steps (c), (d)
   334       }
   336     }
   338     // Unless there is an explicit 'continue', we must bail out here,
   339     // because 'mem' is an inscrutable memory state (e.g., a call).
   340     break;
   341   }
   343   return NULL;              // bail out
   344 }
   346 //----------------------calculate_adr_type-------------------------------------
   347 // Helper function.  Notices when the given type of address hits top or bottom.
   348 // Also, asserts a cross-check of the type against the expected address type.
   349 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   350   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   351   #ifdef PRODUCT
   352   cross_check = NULL;
   353   #else
   354   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   355   #endif
   356   const TypePtr* tp = t->isa_ptr();
   357   if (tp == NULL) {
   358     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   359     return TypePtr::BOTTOM;           // touches lots of memory
   360   } else {
   361     #ifdef ASSERT
   362     // %%%% [phh] We don't check the alias index if cross_check is
   363     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   364     if (cross_check != NULL &&
   365         cross_check != TypePtr::BOTTOM &&
   366         cross_check != TypeRawPtr::BOTTOM) {
   367       // Recheck the alias index, to see if it has changed (due to a bug).
   368       Compile* C = Compile::current();
   369       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   370              "must stay in the original alias category");
   371       // The type of the address must be contained in the adr_type,
   372       // disregarding "null"-ness.
   373       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   374       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   375       assert(cross_check->meet(tp_notnull) == cross_check,
   376              "real address must not escape from expected memory type");
   377     }
   378     #endif
   379     return tp;
   380   }
   381 }
   383 //------------------------adr_phi_is_loop_invariant----------------------------
   384 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   385 // loop is loop invariant. Make a quick traversal of Phi and associated
   386 // CastPP nodes, looking to see if they are a closed group within the loop.
   387 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   388   // The idea is that the phi-nest must boil down to only CastPP nodes
   389   // with the same data. This implies that any path into the loop already
   390   // includes such a CastPP, and so the original cast, whatever its input,
   391   // must be covered by an equivalent cast, with an earlier control input.
   392   ResourceMark rm;
   394   // The loop entry input of the phi should be the unique dominating
   395   // node for every Phi/CastPP in the loop.
   396   Unique_Node_List closure;
   397   closure.push(adr_phi->in(LoopNode::EntryControl));
   399   // Add the phi node and the cast to the worklist.
   400   Unique_Node_List worklist;
   401   worklist.push(adr_phi);
   402   if( cast != NULL ){
   403     if( !cast->is_ConstraintCast() ) return false;
   404     worklist.push(cast);
   405   }
   407   // Begin recursive walk of phi nodes.
   408   while( worklist.size() ){
   409     // Take a node off the worklist
   410     Node *n = worklist.pop();
   411     if( !closure.member(n) ){
   412       // Add it to the closure.
   413       closure.push(n);
   414       // Make a sanity check to ensure we don't waste too much time here.
   415       if( closure.size() > 20) return false;
   416       // This node is OK if:
   417       //  - it is a cast of an identical value
   418       //  - or it is a phi node (then we add its inputs to the worklist)
   419       // Otherwise, the node is not OK, and we presume the cast is not invariant
   420       if( n->is_ConstraintCast() ){
   421         worklist.push(n->in(1));
   422       } else if( n->is_Phi() ) {
   423         for( uint i = 1; i < n->req(); i++ ) {
   424           worklist.push(n->in(i));
   425         }
   426       } else {
   427         return false;
   428       }
   429     }
   430   }
   432   // Quit when the worklist is empty, and we've found no offending nodes.
   433   return true;
   434 }
   436 //------------------------------Ideal_DU_postCCP-------------------------------
   437 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   438 // going away in this pass and we need to make this memory op depend on the
   439 // gating null check.
   441 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   442 // some sense; we get to keep around the knowledge that an oop is not-null
   443 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   444 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   445 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   446 // some of the more trivial cases in the optimizer.  Removing more useless
   447 // Phi's started allowing Loads to illegally float above null checks.  I gave
   448 // up on this approach.  CNC 10/20/2000
   449 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   450   Node *ctr = in(MemNode::Control);
   451   Node *mem = in(MemNode::Memory);
   452   Node *adr = in(MemNode::Address);
   453   Node *skipped_cast = NULL;
   454   // Need a null check?  Regular static accesses do not because they are
   455   // from constant addresses.  Array ops are gated by the range check (which
   456   // always includes a NULL check).  Just check field ops.
   457   if( !ctr ) {
   458     // Scan upwards for the highest location we can place this memory op.
   459     while( true ) {
   460       switch( adr->Opcode() ) {
   462       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   463         adr = adr->in(AddPNode::Base);
   464         continue;
   466       case Op_CastPP:
   467         // If the CastPP is useless, just peek on through it.
   468         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   469           // Remember the cast that we've peeked though. If we peek
   470           // through more than one, then we end up remembering the highest
   471           // one, that is, if in a loop, the one closest to the top.
   472           skipped_cast = adr;
   473           adr = adr->in(1);
   474           continue;
   475         }
   476         // CastPP is going away in this pass!  We need this memory op to be
   477         // control-dependent on the test that is guarding the CastPP.
   478         ccp->hash_delete(this);
   479         set_req(MemNode::Control, adr->in(0));
   480         ccp->hash_insert(this);
   481         return this;
   483       case Op_Phi:
   484         // Attempt to float above a Phi to some dominating point.
   485         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   486           // If we've already peeked through a Cast (which could have set the
   487           // control), we can't float above a Phi, because the skipped Cast
   488           // may not be loop invariant.
   489           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   490             adr = adr->in(1);
   491             continue;
   492           }
   493         }
   495         // Intentional fallthrough!
   497         // No obvious dominating point.  The mem op is pinned below the Phi
   498         // by the Phi itself.  If the Phi goes away (no true value is merged)
   499         // then the mem op can float, but not indefinitely.  It must be pinned
   500         // behind the controls leading to the Phi.
   501       case Op_CheckCastPP:
   502         // These usually stick around to change address type, however a
   503         // useless one can be elided and we still need to pick up a control edge
   504         if (adr->in(0) == NULL) {
   505           // This CheckCastPP node has NO control and is likely useless. But we
   506           // need check further up the ancestor chain for a control input to keep
   507           // the node in place. 4959717.
   508           skipped_cast = adr;
   509           adr = adr->in(1);
   510           continue;
   511         }
   512         ccp->hash_delete(this);
   513         set_req(MemNode::Control, adr->in(0));
   514         ccp->hash_insert(this);
   515         return this;
   517         // List of "safe" opcodes; those that implicitly block the memory
   518         // op below any null check.
   519       case Op_CastX2P:          // no null checks on native pointers
   520       case Op_Parm:             // 'this' pointer is not null
   521       case Op_LoadP:            // Loading from within a klass
   522       case Op_LoadKlass:        // Loading from within a klass
   523       case Op_ConP:             // Loading from a klass
   524       case Op_CreateEx:         // Sucking up the guts of an exception oop
   525       case Op_Con:              // Reading from TLS
   526       case Op_CMoveP:           // CMoveP is pinned
   527         break;                  // No progress
   529       case Op_Proj:             // Direct call to an allocation routine
   530       case Op_SCMemProj:        // Memory state from store conditional ops
   531 #ifdef ASSERT
   532         {
   533           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   534           const Node* call = adr->in(0);
   535           if (call->is_CallStaticJava()) {
   536             const CallStaticJavaNode* call_java = call->as_CallStaticJava();
   537             assert(call_java && call_java->method() == NULL, "must be runtime call");
   538             // We further presume that this is one of
   539             // new_instance_Java, new_array_Java, or
   540             // the like, but do not assert for this.
   541           } else if (call->is_Allocate()) {
   542             // similar case to new_instance_Java, etc.
   543           } else if (!call->is_CallLeaf()) {
   544             // Projections from fetch_oop (OSR) are allowed as well.
   545             ShouldNotReachHere();
   546           }
   547         }
   548 #endif
   549         break;
   550       default:
   551         ShouldNotReachHere();
   552       }
   553       break;
   554     }
   555   }
   557   return  NULL;               // No progress
   558 }
   561 //=============================================================================
   562 uint LoadNode::size_of() const { return sizeof(*this); }
   563 uint LoadNode::cmp( const Node &n ) const
   564 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   565 const Type *LoadNode::bottom_type() const { return _type; }
   566 uint LoadNode::ideal_reg() const {
   567   return Matcher::base2reg[_type->base()];
   568 }
   570 #ifndef PRODUCT
   571 void LoadNode::dump_spec(outputStream *st) const {
   572   MemNode::dump_spec(st);
   573   if( !Verbose && !WizardMode ) {
   574     // standard dump does this in Verbose and WizardMode
   575     st->print(" #"); _type->dump_on(st);
   576   }
   577 }
   578 #endif
   581 //----------------------------LoadNode::make-----------------------------------
   582 // Polymorphic factory method:
   583 LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   584   // sanity check the alias category against the created node type
   585   assert(!(adr_type->isa_oopptr() &&
   586            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   587          "use LoadKlassNode instead");
   588   assert(!(adr_type->isa_aryptr() &&
   589            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   590          "use LoadRangeNode instead");
   591   switch (bt) {
   592   case T_BOOLEAN:
   593   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   594   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   595   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   596   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   597   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   598   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   599   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   600   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   601   case T_OBJECT:  return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   602   }
   603   ShouldNotReachHere();
   604   return (LoadNode*)NULL;
   605 }
   607 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   608   bool require_atomic = true;
   609   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   610 }
   615 //------------------------------hash-------------------------------------------
   616 uint LoadNode::hash() const {
   617   // unroll addition of interesting fields
   618   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   619 }
   621 //---------------------------can_see_stored_value------------------------------
   622 // This routine exists to make sure this set of tests is done the same
   623 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   624 // will change the graph shape in a way which makes memory alive twice at the
   625 // same time (uses the Oracle model of aliasing), then some
   626 // LoadXNode::Identity will fold things back to the equivalence-class model
   627 // of aliasing.
   628 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   629   Node* ld_adr = in(MemNode::Address);
   631   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   632   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   633   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   634       atp->field() != NULL && !atp->field()->is_volatile()) {
   635     uint alias_idx = atp->index();
   636     bool final = atp->field()->is_final();
   637     Node* result = NULL;
   638     Node* current = st;
   639     // Skip through chains of MemBarNodes checking the MergeMems for
   640     // new states for the slice of this load.  Stop once any other
   641     // kind of node is encountered.  Loads from final memory can skip
   642     // through any kind of MemBar but normal loads shouldn't skip
   643     // through MemBarAcquire since the could allow them to move out of
   644     // a synchronized region.
   645     while (current->is_Proj()) {
   646       int opc = current->in(0)->Opcode();
   647       if ((final && opc == Op_MemBarAcquire) ||
   648           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   649         Node* mem = current->in(0)->in(TypeFunc::Memory);
   650         if (mem->is_MergeMem()) {
   651           MergeMemNode* merge = mem->as_MergeMem();
   652           Node* new_st = merge->memory_at(alias_idx);
   653           if (new_st == merge->base_memory()) {
   654             // Keep searching
   655             current = merge->base_memory();
   656             continue;
   657           }
   658           // Save the new memory state for the slice and fall through
   659           // to exit.
   660           result = new_st;
   661         }
   662       }
   663       break;
   664     }
   665     if (result != NULL) {
   666       st = result;
   667     }
   668   }
   671   // Loop around twice in the case Load -> Initialize -> Store.
   672   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   673   for (int trip = 0; trip <= 1; trip++) {
   675     if (st->is_Store()) {
   676       Node* st_adr = st->in(MemNode::Address);
   677       if (!phase->eqv(st_adr, ld_adr)) {
   678         // Try harder before giving up...  Match raw and non-raw pointers.
   679         intptr_t st_off = 0;
   680         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   681         if (alloc == NULL)       return NULL;
   682         intptr_t ld_off = 0;
   683         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   684         if (alloc != allo2)      return NULL;
   685         if (ld_off != st_off)    return NULL;
   686         // At this point we have proven something like this setup:
   687         //  A = Allocate(...)
   688         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   689         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   690         // (Actually, we haven't yet proven the Q's are the same.)
   691         // In other words, we are loading from a casted version of
   692         // the same pointer-and-offset that we stored to.
   693         // Thus, we are able to replace L by V.
   694       }
   695       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   696       if (store_Opcode() != st->Opcode())
   697         return NULL;
   698       return st->in(MemNode::ValueIn);
   699     }
   701     intptr_t offset = 0;  // scratch
   703     // A load from a freshly-created object always returns zero.
   704     // (This can happen after LoadNode::Ideal resets the load's memory input
   705     // to find_captured_store, which returned InitializeNode::zero_memory.)
   706     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   707         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   708         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   709       // return a zero value for the load's basic type
   710       // (This is one of the few places where a generic PhaseTransform
   711       // can create new nodes.  Think of it as lazily manifesting
   712       // virtually pre-existing constants.)
   713       return phase->zerocon(memory_type());
   714     }
   716     // A load from an initialization barrier can match a captured store.
   717     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   718       InitializeNode* init = st->in(0)->as_Initialize();
   719       AllocateNode* alloc = init->allocation();
   720       if (alloc != NULL &&
   721           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   722         // examine a captured store value
   723         st = init->find_captured_store(offset, memory_size(), phase);
   724         if (st != NULL)
   725           continue;             // take one more trip around
   726       }
   727     }
   729     break;
   730   }
   732   return NULL;
   733 }
   735 //------------------------------Identity---------------------------------------
   736 // Loads are identity if previous store is to same address
   737 Node *LoadNode::Identity( PhaseTransform *phase ) {
   738   // If the previous store-maker is the right kind of Store, and the store is
   739   // to the same address, then we are equal to the value stored.
   740   Node* mem = in(MemNode::Memory);
   741   Node* value = can_see_stored_value(mem, phase);
   742   if( value ) {
   743     // byte, short & char stores truncate naturally.
   744     // A load has to load the truncated value which requires
   745     // some sort of masking operation and that requires an
   746     // Ideal call instead of an Identity call.
   747     if (memory_size() < BytesPerInt) {
   748       // If the input to the store does not fit with the load's result type,
   749       // it must be truncated via an Ideal call.
   750       if (!phase->type(value)->higher_equal(phase->type(this)))
   751         return this;
   752     }
   753     // (This works even when value is a Con, but LoadNode::Value
   754     // usually runs first, producing the singleton type of the Con.)
   755     return value;
   756   }
   757   return this;
   758 }
   761 // Returns true if the AliasType refers to the field that holds the
   762 // cached box array.  Currently only handles the IntegerCache case.
   763 static bool is_autobox_cache(Compile::AliasType* atp) {
   764   if (atp != NULL && atp->field() != NULL) {
   765     ciField* field = atp->field();
   766     ciSymbol* klass = field->holder()->name();
   767     if (field->name() == ciSymbol::cache_field_name() &&
   768         field->holder()->uses_default_loader() &&
   769         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   770       return true;
   771     }
   772   }
   773   return false;
   774 }
   776 // Fetch the base value in the autobox array
   777 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   778   if (atp != NULL && atp->field() != NULL) {
   779     ciField* field = atp->field();
   780     ciSymbol* klass = field->holder()->name();
   781     if (field->name() == ciSymbol::cache_field_name() &&
   782         field->holder()->uses_default_loader() &&
   783         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   784       assert(field->is_constant(), "what?");
   785       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
   786       // Fetch the box object at the base of the array and get its value
   787       ciInstance* box = array->obj_at(0)->as_instance();
   788       ciInstanceKlass* ik = box->klass()->as_instance_klass();
   789       if (ik->nof_nonstatic_fields() == 1) {
   790         // This should be true nonstatic_field_at requires calling
   791         // nof_nonstatic_fields so check it anyway
   792         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
   793         cache_offset = c.as_int();
   794       }
   795       return true;
   796     }
   797   }
   798   return false;
   799 }
   801 // Returns true if the AliasType refers to the value field of an
   802 // autobox object.  Currently only handles Integer.
   803 static bool is_autobox_object(Compile::AliasType* atp) {
   804   if (atp != NULL && atp->field() != NULL) {
   805     ciField* field = atp->field();
   806     ciSymbol* klass = field->holder()->name();
   807     if (field->name() == ciSymbol::value_name() &&
   808         field->holder()->uses_default_loader() &&
   809         klass == ciSymbol::java_lang_Integer()) {
   810       return true;
   811     }
   812   }
   813   return false;
   814 }
   817 // We're loading from an object which has autobox behaviour.
   818 // If this object is result of a valueOf call we'll have a phi
   819 // merging a newly allocated object and a load from the cache.
   820 // We want to replace this load with the original incoming
   821 // argument to the valueOf call.
   822 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
   823   Node* base = in(Address)->in(AddPNode::Base);
   824   if (base->is_Phi() && base->req() == 3) {
   825     AllocateNode* allocation = NULL;
   826     int allocation_index = -1;
   827     int load_index = -1;
   828     for (uint i = 1; i < base->req(); i++) {
   829       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
   830       if (allocation != NULL) {
   831         allocation_index = i;
   832         load_index = 3 - allocation_index;
   833         break;
   834       }
   835     }
   836     LoadNode* load = NULL;
   837     if (allocation != NULL && base->in(load_index)->is_Load()) {
   838       load = base->in(load_index)->as_Load();
   839     }
   840     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
   841       // Push the loads from the phi that comes from valueOf up
   842       // through it to allow elimination of the loads and the recovery
   843       // of the original value.
   844       Node* mem_phi = in(Memory);
   845       Node* offset = in(Address)->in(AddPNode::Offset);
   847       Node* in1 = clone();
   848       Node* in1_addr = in1->in(Address)->clone();
   849       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
   850       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
   851       in1_addr->set_req(AddPNode::Offset, offset);
   852       in1->set_req(0, base->in(allocation_index));
   853       in1->set_req(Address, in1_addr);
   854       in1->set_req(Memory, mem_phi->in(allocation_index));
   856       Node* in2 = clone();
   857       Node* in2_addr = in2->in(Address)->clone();
   858       in2_addr->set_req(AddPNode::Base, base->in(load_index));
   859       in2_addr->set_req(AddPNode::Address, base->in(load_index));
   860       in2_addr->set_req(AddPNode::Offset, offset);
   861       in2->set_req(0, base->in(load_index));
   862       in2->set_req(Address, in2_addr);
   863       in2->set_req(Memory, mem_phi->in(load_index));
   865       in1_addr = phase->transform(in1_addr);
   866       in1 =      phase->transform(in1);
   867       in2_addr = phase->transform(in2_addr);
   868       in2 =      phase->transform(in2);
   870       PhiNode* result = PhiNode::make_blank(base->in(0), this);
   871       result->set_req(allocation_index, in1);
   872       result->set_req(load_index, in2);
   873       return result;
   874     }
   875   } else if (base->is_Load()) {
   876     // Eliminate the load of Integer.value for integers from the cache
   877     // array by deriving the value from the index into the array.
   878     // Capture the offset of the load and then reverse the computation.
   879     Node* load_base = base->in(Address)->in(AddPNode::Base);
   880     if (load_base != NULL) {
   881       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
   882       intptr_t cache_offset;
   883       int shift = -1;
   884       Node* cache = NULL;
   885       if (is_autobox_cache(atp)) {
   886         shift  = exact_log2(type2aelembytes(T_OBJECT));
   887         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
   888       }
   889       if (cache != NULL && base->in(Address)->is_AddP()) {
   890         Node* elements[4];
   891         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
   892         int cache_low;
   893         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
   894           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
   895           // Add up all the offsets making of the address of the load
   896           Node* result = elements[0];
   897           for (int i = 1; i < count; i++) {
   898             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
   899           }
   900           // Remove the constant offset from the address and then
   901           // remove the scaling of the offset to recover the original index.
   902           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
   903           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
   904             // Peel the shift off directly but wrap it in a dummy node
   905             // since Ideal can't return existing nodes
   906             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
   907           } else {
   908             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
   909           }
   910 #ifdef _LP64
   911           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
   912 #endif
   913           return result;
   914         }
   915       }
   916     }
   917   }
   918   return NULL;
   919 }
   922 //------------------------------Ideal------------------------------------------
   923 // If the load is from Field memory and the pointer is non-null, we can
   924 // zero out the control input.
   925 // If the offset is constant and the base is an object allocation,
   926 // try to hook me up to the exact initializing store.
   927 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   928   Node* p = MemNode::Ideal_common(phase, can_reshape);
   929   if (p)  return (p == NodeSentinel) ? NULL : p;
   931   Node* ctrl    = in(MemNode::Control);
   932   Node* address = in(MemNode::Address);
   934   // Skip up past a SafePoint control.  Cannot do this for Stores because
   935   // pointer stores & cardmarks must stay on the same side of a SafePoint.
   936   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
   937       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
   938     ctrl = ctrl->in(0);
   939     set_req(MemNode::Control,ctrl);
   940   }
   942   // Check for useless control edge in some common special cases
   943   if (in(MemNode::Control) != NULL) {
   944     intptr_t ignore = 0;
   945     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
   946     if (base != NULL
   947         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
   948         && detect_dominating_control(base->in(0), phase->C->start())) {
   949       // A method-invariant, non-null address (constant or 'this' argument).
   950       set_req(MemNode::Control, NULL);
   951     }
   952   }
   954   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
   955     Node* base = in(Address)->in(AddPNode::Base);
   956     if (base != NULL) {
   957       Compile::AliasType* atp = phase->C->alias_type(adr_type());
   958       if (is_autobox_object(atp)) {
   959         Node* result = eliminate_autobox(phase);
   960         if (result != NULL) return result;
   961       }
   962     }
   963   }
   965   // Check for prior store with a different base or offset; make Load
   966   // independent.  Skip through any number of them.  Bail out if the stores
   967   // are in an endless dead cycle and report no progress.  This is a key
   968   // transform for Reflection.  However, if after skipping through the Stores
   969   // we can't then fold up against a prior store do NOT do the transform as
   970   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
   971   // array memory alive twice: once for the hoisted Load and again after the
   972   // bypassed Store.  This situation only works if EVERYBODY who does
   973   // anti-dependence work knows how to bypass.  I.e. we need all
   974   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
   975   // the alias index stuff.  So instead, peek through Stores and IFF we can
   976   // fold up, do so.
   977   Node* prev_mem = find_previous_store(phase);
   978   // Steps (a), (b):  Walk past independent stores to find an exact match.
   979   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
   980     // (c) See if we can fold up on the spot, but don't fold up here.
   981     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
   982     // just return a prior value, which is done by Identity calls.
   983     if (can_see_stored_value(prev_mem, phase)) {
   984       // Make ready for step (d):
   985       set_req(MemNode::Memory, prev_mem);
   986       return this;
   987     }
   988   }
   990   return NULL;                  // No further progress
   991 }
   993 // Helper to recognize certain Klass fields which are invariant across
   994 // some group of array types (e.g., int[] or all T[] where T < Object).
   995 const Type*
   996 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
   997                                  ciKlass* klass) const {
   998   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
   999     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1000     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1001     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1002     return TypeInt::make(klass->modifier_flags());
  1004   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1005     // The field is Klass::_access_flags.  Return its (constant) value.
  1006     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1007     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1008     return TypeInt::make(klass->access_flags());
  1010   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1011     // The field is Klass::_layout_helper.  Return its constant value if known.
  1012     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1013     return TypeInt::make(klass->layout_helper());
  1016   // No match.
  1017   return NULL;
  1020 //------------------------------Value-----------------------------------------
  1021 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1022   // Either input is TOP ==> the result is TOP
  1023   Node* mem = in(MemNode::Memory);
  1024   const Type *t1 = phase->type(mem);
  1025   if (t1 == Type::TOP)  return Type::TOP;
  1026   Node* adr = in(MemNode::Address);
  1027   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1028   if (tp == NULL || tp->empty())  return Type::TOP;
  1029   int off = tp->offset();
  1030   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1032   // Try to guess loaded type from pointer type
  1033   if (tp->base() == Type::AryPtr) {
  1034     const Type *t = tp->is_aryptr()->elem();
  1035     // Don't do this for integer types. There is only potential profit if
  1036     // the element type t is lower than _type; that is, for int types, if _type is
  1037     // more restrictive than t.  This only happens here if one is short and the other
  1038     // char (both 16 bits), and in those cases we've made an intentional decision
  1039     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1040     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1041     //
  1042     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1043     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1044     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1045     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1046     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1047     // In fact, that could have been the original type of p1, and p1 could have
  1048     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1049     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1050     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1051         && Opcode() != Op_LoadKlass) {
  1052       // t might actually be lower than _type, if _type is a unique
  1053       // concrete subclass of abstract class t.
  1054       // Make sure the reference is not into the header, by comparing
  1055       // the offset against the offset of the start of the array's data.
  1056       // Different array types begin at slightly different offsets (12 vs. 16).
  1057       // We choose T_BYTE as an example base type that is least restrictive
  1058       // as to alignment, which will therefore produce the smallest
  1059       // possible base offset.
  1060       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1061       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1062         const Type* jt = t->join(_type);
  1063         // In any case, do not allow the join, per se, to empty out the type.
  1064         if (jt->empty() && !t->empty()) {
  1065           // This can happen if a interface-typed array narrows to a class type.
  1066           jt = _type;
  1069         if (EliminateAutoBox) {
  1070           // The pointers in the autobox arrays are always non-null
  1071           Node* base = in(Address)->in(AddPNode::Base);
  1072           if (base != NULL) {
  1073             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1074             if (is_autobox_cache(atp)) {
  1075               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1079         return jt;
  1082   } else if (tp->base() == Type::InstPtr) {
  1083     assert( off != Type::OffsetBot ||
  1084             // arrays can be cast to Objects
  1085             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1086             // unsafe field access may not have a constant offset
  1087             phase->C->has_unsafe_access(),
  1088             "Field accesses must be precise" );
  1089     // For oop loads, we expect the _type to be precise
  1090   } else if (tp->base() == Type::KlassPtr) {
  1091     assert( off != Type::OffsetBot ||
  1092             // arrays can be cast to Objects
  1093             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1094             // also allow array-loading from the primary supertype
  1095             // array during subtype checks
  1096             Opcode() == Op_LoadKlass,
  1097             "Field accesses must be precise" );
  1098     // For klass/static loads, we expect the _type to be precise
  1101   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1102   if (tkls != NULL && !StressReflectiveCode) {
  1103     ciKlass* klass = tkls->klass();
  1104     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1105       // We are loading a field from a Klass metaobject whose identity
  1106       // is known at compile time (the type is "exact" or "precise").
  1107       // Check for fields we know are maintained as constants by the VM.
  1108       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1109         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1110         // (Folds up type checking code.)
  1111         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1112         return TypeInt::make(klass->super_check_offset());
  1114       // Compute index into primary_supers array
  1115       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1116       // Check for overflowing; use unsigned compare to handle the negative case.
  1117       if( depth < ciKlass::primary_super_limit() ) {
  1118         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1119         // (Folds up type checking code.)
  1120         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1121         ciKlass *ss = klass->super_of_depth(depth);
  1122         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1124       const Type* aift = load_array_final_field(tkls, klass);
  1125       if (aift != NULL)  return aift;
  1126       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1127           && klass->is_array_klass()) {
  1128         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1129         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1130         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1131         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1133       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1134         // The field is Klass::_java_mirror.  Return its (constant) value.
  1135         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1136         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1137         return TypeInstPtr::make(klass->java_mirror());
  1141     // We can still check if we are loading from the primary_supers array at a
  1142     // shallow enough depth.  Even though the klass is not exact, entries less
  1143     // than or equal to its super depth are correct.
  1144     if (klass->is_loaded() ) {
  1145       ciType *inner = klass->klass();
  1146       while( inner->is_obj_array_klass() )
  1147         inner = inner->as_obj_array_klass()->base_element_type();
  1148       if( inner->is_instance_klass() &&
  1149           !inner->as_instance_klass()->flags().is_interface() ) {
  1150         // Compute index into primary_supers array
  1151         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1152         // Check for overflowing; use unsigned compare to handle the negative case.
  1153         if( depth < ciKlass::primary_super_limit() &&
  1154             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1155           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1156           // (Folds up type checking code.)
  1157           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1158           ciKlass *ss = klass->super_of_depth(depth);
  1159           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1164     // If the type is enough to determine that the thing is not an array,
  1165     // we can give the layout_helper a positive interval type.
  1166     // This will help short-circuit some reflective code.
  1167     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1168         && !klass->is_array_klass() // not directly typed as an array
  1169         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1170         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1171         ) {
  1172       // Note:  When interfaces are reliable, we can narrow the interface
  1173       // test to (klass != Serializable && klass != Cloneable).
  1174       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1175       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1176       // The key property of this type is that it folds up tests
  1177       // for array-ness, since it proves that the layout_helper is positive.
  1178       // Thus, a generic value like the basic object layout helper works fine.
  1179       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1183   // If we are loading from a freshly-allocated object, produce a zero,
  1184   // if the load is provably beyond the header of the object.
  1185   // (Also allow a variable load from a fresh array to produce zero.)
  1186   if (ReduceFieldZeroing) {
  1187     Node* value = can_see_stored_value(mem,phase);
  1188     if (value != NULL && value->is_Con())
  1189       return value->bottom_type();
  1192   return _type;
  1195 //------------------------------match_edge-------------------------------------
  1196 // Do we Match on this edge index or not?  Match only the address.
  1197 uint LoadNode::match_edge(uint idx) const {
  1198   return idx == MemNode::Address;
  1201 //--------------------------LoadBNode::Ideal--------------------------------------
  1202 //
  1203 //  If the previous store is to the same address as this load,
  1204 //  and the value stored was larger than a byte, replace this load
  1205 //  with the value stored truncated to a byte.  If no truncation is
  1206 //  needed, the replacement is done in LoadNode::Identity().
  1207 //
  1208 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1209   Node* mem = in(MemNode::Memory);
  1210   Node* value = can_see_stored_value(mem,phase);
  1211   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1212     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1213     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1215   // Identity call will handle the case where truncation is not needed.
  1216   return LoadNode::Ideal(phase, can_reshape);
  1219 //--------------------------LoadCNode::Ideal--------------------------------------
  1220 //
  1221 //  If the previous store is to the same address as this load,
  1222 //  and the value stored was larger than a char, replace this load
  1223 //  with the value stored truncated to a char.  If no truncation is
  1224 //  needed, the replacement is done in LoadNode::Identity().
  1225 //
  1226 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1227   Node* mem = in(MemNode::Memory);
  1228   Node* value = can_see_stored_value(mem,phase);
  1229   if( value && !phase->type(value)->higher_equal( _type ) )
  1230     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1231   // Identity call will handle the case where truncation is not needed.
  1232   return LoadNode::Ideal(phase, can_reshape);
  1235 //--------------------------LoadSNode::Ideal--------------------------------------
  1236 //
  1237 //  If the previous store is to the same address as this load,
  1238 //  and the value stored was larger than a short, replace this load
  1239 //  with the value stored truncated to a short.  If no truncation is
  1240 //  needed, the replacement is done in LoadNode::Identity().
  1241 //
  1242 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1243   Node* mem = in(MemNode::Memory);
  1244   Node* value = can_see_stored_value(mem,phase);
  1245   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1246     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1247     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1249   // Identity call will handle the case where truncation is not needed.
  1250   return LoadNode::Ideal(phase, can_reshape);
  1253 //=============================================================================
  1254 //------------------------------Value------------------------------------------
  1255 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1256   // Either input is TOP ==> the result is TOP
  1257   const Type *t1 = phase->type( in(MemNode::Memory) );
  1258   if (t1 == Type::TOP)  return Type::TOP;
  1259   Node *adr = in(MemNode::Address);
  1260   const Type *t2 = phase->type( adr );
  1261   if (t2 == Type::TOP)  return Type::TOP;
  1262   const TypePtr *tp = t2->is_ptr();
  1263   if (TypePtr::above_centerline(tp->ptr()) ||
  1264       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1266   // Return a more precise klass, if possible
  1267   const TypeInstPtr *tinst = tp->isa_instptr();
  1268   if (tinst != NULL) {
  1269     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1270     int offset = tinst->offset();
  1271     if (ik == phase->C->env()->Class_klass()
  1272         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1273             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1274       // We are loading a special hidden field from a Class mirror object,
  1275       // the field which points to the VM's Klass metaobject.
  1276       ciType* t = tinst->java_mirror_type();
  1277       // java_mirror_type returns non-null for compile-time Class constants.
  1278       if (t != NULL) {
  1279         // constant oop => constant klass
  1280         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1281           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1283         if (!t->is_klass()) {
  1284           // a primitive Class (e.g., int.class) has NULL for a klass field
  1285           return TypePtr::NULL_PTR;
  1287         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1288         return TypeKlassPtr::make(t->as_klass());
  1290       // non-constant mirror, so we can't tell what's going on
  1292     if( !ik->is_loaded() )
  1293       return _type;             // Bail out if not loaded
  1294     if (offset == oopDesc::klass_offset_in_bytes()) {
  1295       if (tinst->klass_is_exact()) {
  1296         return TypeKlassPtr::make(ik);
  1298       // See if we can become precise: no subklasses and no interface
  1299       // (Note:  We need to support verified interfaces.)
  1300       if (!ik->is_interface() && !ik->has_subklass()) {
  1301         //assert(!UseExactTypes, "this code should be useless with exact types");
  1302         // Add a dependence; if any subclass added we need to recompile
  1303         if (!ik->is_final()) {
  1304           // %%% should use stronger assert_unique_concrete_subtype instead
  1305           phase->C->dependencies()->assert_leaf_type(ik);
  1307         // Return precise klass
  1308         return TypeKlassPtr::make(ik);
  1311       // Return root of possible klass
  1312       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1316   // Check for loading klass from an array
  1317   const TypeAryPtr *tary = tp->isa_aryptr();
  1318   if( tary != NULL ) {
  1319     ciKlass *tary_klass = tary->klass();
  1320     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1321         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1322       if (tary->klass_is_exact()) {
  1323         return TypeKlassPtr::make(tary_klass);
  1325       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1326       // If the klass is an object array, we defer the question to the
  1327       // array component klass.
  1328       if( ak->is_obj_array_klass() ) {
  1329         assert( ak->is_loaded(), "" );
  1330         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1331         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1332           ciInstanceKlass* ik = base_k->as_instance_klass();
  1333           // See if we can become precise: no subklasses and no interface
  1334           if (!ik->is_interface() && !ik->has_subklass()) {
  1335             //assert(!UseExactTypes, "this code should be useless with exact types");
  1336             // Add a dependence; if any subclass added we need to recompile
  1337             if (!ik->is_final()) {
  1338               phase->C->dependencies()->assert_leaf_type(ik);
  1340             // Return precise array klass
  1341             return TypeKlassPtr::make(ak);
  1344         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1345       } else {                  // Found a type-array?
  1346         //assert(!UseExactTypes, "this code should be useless with exact types");
  1347         assert( ak->is_type_array_klass(), "" );
  1348         return TypeKlassPtr::make(ak); // These are always precise
  1353   // Check for loading klass from an array klass
  1354   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1355   if (tkls != NULL && !StressReflectiveCode) {
  1356     ciKlass* klass = tkls->klass();
  1357     if( !klass->is_loaded() )
  1358       return _type;             // Bail out if not loaded
  1359     if( klass->is_obj_array_klass() &&
  1360         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1361       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1362       // // Always returning precise element type is incorrect,
  1363       // // e.g., element type could be object and array may contain strings
  1364       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1366       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1367       // according to the element type's subclassing.
  1368       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1370     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1371         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1372       ciKlass* sup = klass->as_instance_klass()->super();
  1373       // The field is Klass::_super.  Return its (constant) value.
  1374       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1375       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1379   // Bailout case
  1380   return LoadNode::Value(phase);
  1383 //------------------------------Identity---------------------------------------
  1384 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1385 // Also feed through the klass in Allocate(...klass...)._klass.
  1386 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1387   Node* x = LoadNode::Identity(phase);
  1388   if (x != this)  return x;
  1390   // Take apart the address into an oop and and offset.
  1391   // Return 'this' if we cannot.
  1392   Node*    adr    = in(MemNode::Address);
  1393   intptr_t offset = 0;
  1394   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1395   if (base == NULL)     return this;
  1396   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1397   if (toop == NULL)     return this;
  1399   // We can fetch the klass directly through an AllocateNode.
  1400   // This works even if the klass is not constant (clone or newArray).
  1401   if (offset == oopDesc::klass_offset_in_bytes()) {
  1402     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1403     if (allocated_klass != NULL) {
  1404       return allocated_klass;
  1408   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1409   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1410   // See inline_native_Class_query for occurrences of these patterns.
  1411   // Java Example:  x.getClass().isAssignableFrom(y)
  1412   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1413   //
  1414   // This improves reflective code, often making the Class
  1415   // mirror go completely dead.  (Current exception:  Class
  1416   // mirrors may appear in debug info, but we could clean them out by
  1417   // introducing a new debug info operator for klassOop.java_mirror).
  1418   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1419       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1420           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1421     // We are loading a special hidden field from a Class mirror,
  1422     // the field which points to its Klass or arrayKlass metaobject.
  1423     if (base->is_Load()) {
  1424       Node* adr2 = base->in(MemNode::Address);
  1425       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1426       if (tkls != NULL && !tkls->empty()
  1427           && (tkls->klass()->is_instance_klass() ||
  1428               tkls->klass()->is_array_klass())
  1429           && adr2->is_AddP()
  1430           ) {
  1431         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1432         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1433           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1435         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1436           return adr2->in(AddPNode::Base);
  1442   return this;
  1445 //------------------------------Value-----------------------------------------
  1446 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1447   // Either input is TOP ==> the result is TOP
  1448   const Type *t1 = phase->type( in(MemNode::Memory) );
  1449   if( t1 == Type::TOP ) return Type::TOP;
  1450   Node *adr = in(MemNode::Address);
  1451   const Type *t2 = phase->type( adr );
  1452   if( t2 == Type::TOP ) return Type::TOP;
  1453   const TypePtr *tp = t2->is_ptr();
  1454   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1455   const TypeAryPtr *tap = tp->isa_aryptr();
  1456   if( !tap ) return _type;
  1457   return tap->size();
  1460 //------------------------------Identity---------------------------------------
  1461 // Feed through the length in AllocateArray(...length...)._length.
  1462 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1463   Node* x = LoadINode::Identity(phase);
  1464   if (x != this)  return x;
  1466   // Take apart the address into an oop and and offset.
  1467   // Return 'this' if we cannot.
  1468   Node*    adr    = in(MemNode::Address);
  1469   intptr_t offset = 0;
  1470   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1471   if (base == NULL)     return this;
  1472   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1473   if (tary == NULL)     return this;
  1475   // We can fetch the length directly through an AllocateArrayNode.
  1476   // This works even if the length is not constant (clone or newArray).
  1477   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1478     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1479     if (allocated_length != NULL) {
  1480       return allocated_length;
  1484   return this;
  1487 //=============================================================================
  1488 //---------------------------StoreNode::make-----------------------------------
  1489 // Polymorphic factory method:
  1490 StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1491   switch (bt) {
  1492   case T_BOOLEAN:
  1493   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1494   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1495   case T_CHAR:
  1496   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1497   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1498   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1499   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1500   case T_ADDRESS:
  1501   case T_OBJECT:  return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1503   ShouldNotReachHere();
  1504   return (StoreNode*)NULL;
  1507 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1508   bool require_atomic = true;
  1509   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1513 //--------------------------bottom_type----------------------------------------
  1514 const Type *StoreNode::bottom_type() const {
  1515   return Type::MEMORY;
  1518 //------------------------------hash-------------------------------------------
  1519 uint StoreNode::hash() const {
  1520   // unroll addition of interesting fields
  1521   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1523   // Since they are not commoned, do not hash them:
  1524   return NO_HASH;
  1527 //------------------------------Ideal------------------------------------------
  1528 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1529 // When a store immediately follows a relevant allocation/initialization,
  1530 // try to capture it into the initialization, or hoist it above.
  1531 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1532   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1533   if (p)  return (p == NodeSentinel) ? NULL : p;
  1535   Node* mem     = in(MemNode::Memory);
  1536   Node* address = in(MemNode::Address);
  1538   // Back-to-back stores to same address?  Fold em up.
  1539   // Generally unsafe if I have intervening uses...
  1540   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1541     // Looking at a dead closed cycle of memory?
  1542     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1544     assert(Opcode() == mem->Opcode() ||
  1545            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1546            "no mismatched stores, except on raw memory");
  1548     if (mem->outcnt() == 1 &&           // check for intervening uses
  1549         mem->as_Store()->memory_size() <= this->memory_size()) {
  1550       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1551       // For example, 'mem' might be the final state at a conditional return.
  1552       // Or, 'mem' might be used by some node which is live at the same time
  1553       // 'this' is live, which might be unschedulable.  So, require exactly
  1554       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1555       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1556       if (can_reshape) {  // (%%% is this an anachronism?)
  1557         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1558                   phase->is_IterGVN());
  1559       } else {
  1560         // It's OK to do this in the parser, since DU info is always accurate,
  1561         // and the parser always refers to nodes via SafePointNode maps.
  1562         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1564       return this;
  1568   // Capture an unaliased, unconditional, simple store into an initializer.
  1569   // Or, if it is independent of the allocation, hoist it above the allocation.
  1570   if (ReduceFieldZeroing && /*can_reshape &&*/
  1571       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1572     InitializeNode* init = mem->in(0)->as_Initialize();
  1573     intptr_t offset = init->can_capture_store(this, phase);
  1574     if (offset > 0) {
  1575       Node* moved = init->capture_store(this, offset, phase);
  1576       // If the InitializeNode captured me, it made a raw copy of me,
  1577       // and I need to disappear.
  1578       if (moved != NULL) {
  1579         // %%% hack to ensure that Ideal returns a new node:
  1580         mem = MergeMemNode::make(phase->C, mem);
  1581         return mem;             // fold me away
  1586   return NULL;                  // No further progress
  1589 //------------------------------Value-----------------------------------------
  1590 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1591   // Either input is TOP ==> the result is TOP
  1592   const Type *t1 = phase->type( in(MemNode::Memory) );
  1593   if( t1 == Type::TOP ) return Type::TOP;
  1594   const Type *t2 = phase->type( in(MemNode::Address) );
  1595   if( t2 == Type::TOP ) return Type::TOP;
  1596   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1597   if( t3 == Type::TOP ) return Type::TOP;
  1598   return Type::MEMORY;
  1601 //------------------------------Identity---------------------------------------
  1602 // Remove redundant stores:
  1603 //   Store(m, p, Load(m, p)) changes to m.
  1604 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1605 Node *StoreNode::Identity( PhaseTransform *phase ) {
  1606   Node* mem = in(MemNode::Memory);
  1607   Node* adr = in(MemNode::Address);
  1608   Node* val = in(MemNode::ValueIn);
  1610   // Load then Store?  Then the Store is useless
  1611   if (val->is_Load() &&
  1612       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  1613       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  1614       val->as_Load()->store_Opcode() == Opcode()) {
  1615     return mem;
  1618   // Two stores in a row of the same value?
  1619   if (mem->is_Store() &&
  1620       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  1621       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  1622       mem->Opcode() == Opcode()) {
  1623     return mem;
  1626   // Store of zero anywhere into a freshly-allocated object?
  1627   // Then the store is useless.
  1628   // (It must already have been captured by the InitializeNode.)
  1629   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1630     // a newly allocated object is already all-zeroes everywhere
  1631     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1632       return mem;
  1635     // the store may also apply to zero-bits in an earlier object
  1636     Node* prev_mem = find_previous_store(phase);
  1637     // Steps (a), (b):  Walk past independent stores to find an exact match.
  1638     if (prev_mem != NULL) {
  1639       Node* prev_val = can_see_stored_value(prev_mem, phase);
  1640       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1641         // prev_val and val might differ by a cast; it would be good
  1642         // to keep the more informative of the two.
  1643         return mem;
  1648   return this;
  1651 //------------------------------match_edge-------------------------------------
  1652 // Do we Match on this edge index or not?  Match only memory & value
  1653 uint StoreNode::match_edge(uint idx) const {
  1654   return idx == MemNode::Address || idx == MemNode::ValueIn;
  1657 //------------------------------cmp--------------------------------------------
  1658 // Do not common stores up together.  They generally have to be split
  1659 // back up anyways, so do not bother.
  1660 uint StoreNode::cmp( const Node &n ) const {
  1661   return (&n == this);          // Always fail except on self
  1664 //------------------------------Ideal_masked_input-----------------------------
  1665 // Check for a useless mask before a partial-word store
  1666 // (StoreB ... (AndI valIn conIa) )
  1667 // If (conIa & mask == mask) this simplifies to
  1668 // (StoreB ... (valIn) )
  1669 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  1670   Node *val = in(MemNode::ValueIn);
  1671   if( val->Opcode() == Op_AndI ) {
  1672     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1673     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  1674       set_req(MemNode::ValueIn, val->in(1));
  1675       return this;
  1678   return NULL;
  1682 //------------------------------Ideal_sign_extended_input----------------------
  1683 // Check for useless sign-extension before a partial-word store
  1684 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  1685 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  1686 // (StoreB ... (valIn) )
  1687 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  1688   Node *val = in(MemNode::ValueIn);
  1689   if( val->Opcode() == Op_RShiftI ) {
  1690     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1691     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  1692       Node *shl = val->in(1);
  1693       if( shl->Opcode() == Op_LShiftI ) {
  1694         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  1695         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  1696           set_req(MemNode::ValueIn, shl->in(1));
  1697           return this;
  1702   return NULL;
  1705 //------------------------------value_never_loaded-----------------------------------
  1706 // Determine whether there are any possible loads of the value stored.
  1707 // For simplicity, we actually check if there are any loads from the
  1708 // address stored to, not just for loads of the value stored by this node.
  1709 //
  1710 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  1711   Node *adr = in(Address);
  1712   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  1713   if (adr_oop == NULL)
  1714     return false;
  1715   if (!adr_oop->is_instance())
  1716     return false; // if not a distinct instance, there may be aliases of the address
  1717   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  1718     Node *use = adr->fast_out(i);
  1719     int opc = use->Opcode();
  1720     if (use->is_Load() || use->is_LoadStore()) {
  1721       return false;
  1724   return true;
  1727 //=============================================================================
  1728 //------------------------------Ideal------------------------------------------
  1729 // If the store is from an AND mask that leaves the low bits untouched, then
  1730 // we can skip the AND operation.  If the store is from a sign-extension
  1731 // (a left shift, then right shift) we can skip both.
  1732 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1733   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  1734   if( progress != NULL ) return progress;
  1736   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  1737   if( progress != NULL ) return progress;
  1739   // Finally check the default case
  1740   return StoreNode::Ideal(phase, can_reshape);
  1743 //=============================================================================
  1744 //------------------------------Ideal------------------------------------------
  1745 // If the store is from an AND mask that leaves the low bits untouched, then
  1746 // we can skip the AND operation
  1747 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1748   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  1749   if( progress != NULL ) return progress;
  1751   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  1752   if( progress != NULL ) return progress;
  1754   // Finally check the default case
  1755   return StoreNode::Ideal(phase, can_reshape);
  1758 //=============================================================================
  1759 //------------------------------Identity---------------------------------------
  1760 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  1761   // No need to card mark when storing a null ptr
  1762   Node* my_store = in(MemNode::OopStore);
  1763   if (my_store->is_Store()) {
  1764     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  1765     if( t1 == TypePtr::NULL_PTR ) {
  1766       return in(MemNode::Memory);
  1769   return this;
  1772 //------------------------------Value-----------------------------------------
  1773 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  1774   // If extra input is TOP ==> the result is TOP
  1775   const Type *t1 = phase->type( in(MemNode::OopStore) );
  1776   if( t1 == Type::TOP ) return Type::TOP;
  1778   return StoreNode::Value( phase );
  1782 //=============================================================================
  1783 //----------------------------------SCMemProjNode------------------------------
  1784 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  1786   return bottom_type();
  1789 //=============================================================================
  1790 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  1791   init_req(MemNode::Control, c  );
  1792   init_req(MemNode::Memory , mem);
  1793   init_req(MemNode::Address, adr);
  1794   init_req(MemNode::ValueIn, val);
  1795   init_req(         ExpectedIn, ex );
  1796   init_class_id(Class_LoadStore);
  1800 //=============================================================================
  1801 //-------------------------------adr_type--------------------------------------
  1802 // Do we Match on this edge index or not?  Do not match memory
  1803 const TypePtr* ClearArrayNode::adr_type() const {
  1804   Node *adr = in(3);
  1805   return MemNode::calculate_adr_type(adr->bottom_type());
  1808 //------------------------------match_edge-------------------------------------
  1809 // Do we Match on this edge index or not?  Do not match memory
  1810 uint ClearArrayNode::match_edge(uint idx) const {
  1811   return idx > 1;
  1814 //------------------------------Identity---------------------------------------
  1815 // Clearing a zero length array does nothing
  1816 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  1817   return phase->type(in(2))->higher_equal(TypeInt::ZERO)  ? in(1) : this;
  1820 //------------------------------Idealize---------------------------------------
  1821 // Clearing a short array is faster with stores
  1822 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1823   const int unit = BytesPerLong;
  1824   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  1825   if (!t)  return NULL;
  1826   if (!t->is_con())  return NULL;
  1827   intptr_t raw_count = t->get_con();
  1828   intptr_t size = raw_count;
  1829   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  1830   // Clearing nothing uses the Identity call.
  1831   // Negative clears are possible on dead ClearArrays
  1832   // (see jck test stmt114.stmt11402.val).
  1833   if (size <= 0 || size % unit != 0)  return NULL;
  1834   intptr_t count = size / unit;
  1835   // Length too long; use fast hardware clear
  1836   if (size > Matcher::init_array_short_size)  return NULL;
  1837   Node *mem = in(1);
  1838   if( phase->type(mem)==Type::TOP ) return NULL;
  1839   Node *adr = in(3);
  1840   const Type* at = phase->type(adr);
  1841   if( at==Type::TOP ) return NULL;
  1842   const TypePtr* atp = at->isa_ptr();
  1843   // adjust atp to be the correct array element address type
  1844   if (atp == NULL)  atp = TypePtr::BOTTOM;
  1845   else              atp = atp->add_offset(Type::OffsetBot);
  1846   // Get base for derived pointer purposes
  1847   if( adr->Opcode() != Op_AddP ) Unimplemented();
  1848   Node *base = adr->in(1);
  1850   Node *zero = phase->makecon(TypeLong::ZERO);
  1851   Node *off  = phase->MakeConX(BytesPerLong);
  1852   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1853   count--;
  1854   while( count-- ) {
  1855     mem = phase->transform(mem);
  1856     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  1857     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1859   return mem;
  1862 //----------------------------clear_memory-------------------------------------
  1863 // Generate code to initialize object storage to zero.
  1864 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1865                                    intptr_t start_offset,
  1866                                    Node* end_offset,
  1867                                    PhaseGVN* phase) {
  1868   Compile* C = phase->C;
  1869   intptr_t offset = start_offset;
  1871   int unit = BytesPerLong;
  1872   if ((offset % unit) != 0) {
  1873     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  1874     adr = phase->transform(adr);
  1875     const TypePtr* atp = TypeRawPtr::BOTTOM;
  1876     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  1877     mem = phase->transform(mem);
  1878     offset += BytesPerInt;
  1880   assert((offset % unit) == 0, "");
  1882   // Initialize the remaining stuff, if any, with a ClearArray.
  1883   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  1886 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1887                                    Node* start_offset,
  1888                                    Node* end_offset,
  1889                                    PhaseGVN* phase) {
  1890   Compile* C = phase->C;
  1891   int unit = BytesPerLong;
  1892   Node* zbase = start_offset;
  1893   Node* zend  = end_offset;
  1895   // Scale to the unit required by the CPU:
  1896   if (!Matcher::init_array_count_is_in_bytes) {
  1897     Node* shift = phase->intcon(exact_log2(unit));
  1898     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  1899     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  1902   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  1903   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  1905   // Bulk clear double-words
  1906   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  1907   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  1908   return phase->transform(mem);
  1911 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1912                                    intptr_t start_offset,
  1913                                    intptr_t end_offset,
  1914                                    PhaseGVN* phase) {
  1915   Compile* C = phase->C;
  1916   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  1917   intptr_t done_offset = end_offset;
  1918   if ((done_offset % BytesPerLong) != 0) {
  1919     done_offset -= BytesPerInt;
  1921   if (done_offset > start_offset) {
  1922     mem = clear_memory(ctl, mem, dest,
  1923                        start_offset, phase->MakeConX(done_offset), phase);
  1925   if (done_offset < end_offset) { // emit the final 32-bit store
  1926     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  1927     adr = phase->transform(adr);
  1928     const TypePtr* atp = TypeRawPtr::BOTTOM;
  1929     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  1930     mem = phase->transform(mem);
  1931     done_offset += BytesPerInt;
  1933   assert(done_offset == end_offset, "");
  1934   return mem;
  1937 //=============================================================================
  1938 // Do we match on this edge? No memory edges
  1939 uint StrCompNode::match_edge(uint idx) const {
  1940   return idx == 5 || idx == 6;
  1943 //------------------------------Ideal------------------------------------------
  1944 // Return a node which is more "ideal" than the current node.  Strip out
  1945 // control copies
  1946 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1947   return remove_dead_region(phase, can_reshape) ? this : NULL;
  1951 //=============================================================================
  1952 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  1953   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  1954     _adr_type(C->get_adr_type(alias_idx))
  1956   init_class_id(Class_MemBar);
  1957   Node* top = C->top();
  1958   init_req(TypeFunc::I_O,top);
  1959   init_req(TypeFunc::FramePtr,top);
  1960   init_req(TypeFunc::ReturnAdr,top);
  1961   if (precedent != NULL)
  1962     init_req(TypeFunc::Parms, precedent);
  1965 //------------------------------cmp--------------------------------------------
  1966 uint MemBarNode::hash() const { return NO_HASH; }
  1967 uint MemBarNode::cmp( const Node &n ) const {
  1968   return (&n == this);          // Always fail except on self
  1971 //------------------------------make-------------------------------------------
  1972 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  1973   int len = Precedent + (pn == NULL? 0: 1);
  1974   switch (opcode) {
  1975   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  1976   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  1977   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  1978   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  1979   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  1980   default:                 ShouldNotReachHere(); return NULL;
  1984 //------------------------------Ideal------------------------------------------
  1985 // Return a node which is more "ideal" than the current node.  Strip out
  1986 // control copies
  1987 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1988   if (remove_dead_region(phase, can_reshape))  return this;
  1989   return NULL;
  1992 //------------------------------Value------------------------------------------
  1993 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  1994   if( !in(0) ) return Type::TOP;
  1995   if( phase->type(in(0)) == Type::TOP )
  1996     return Type::TOP;
  1997   return TypeTuple::MEMBAR;
  2000 //------------------------------match------------------------------------------
  2001 // Construct projections for memory.
  2002 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2003   switch (proj->_con) {
  2004   case TypeFunc::Control:
  2005   case TypeFunc::Memory:
  2006     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2008   ShouldNotReachHere();
  2009   return NULL;
  2012 //===========================InitializeNode====================================
  2013 // SUMMARY:
  2014 // This node acts as a memory barrier on raw memory, after some raw stores.
  2015 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2016 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2017 // It can coalesce related raw stores into larger units (called 'tiles').
  2018 // It can avoid zeroing new storage for memory units which have raw inits.
  2019 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2020 //
  2021 // EXAMPLE:
  2022 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2023 //   ctl = incoming control; mem* = incoming memory
  2024 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2025 // First allocate uninitialized memory and fill in the header:
  2026 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2027 //   ctl := alloc.Control; mem* := alloc.Memory*
  2028 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2029 // Then initialize to zero the non-header parts of the raw memory block:
  2030 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2031 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2032 // After the initialize node executes, the object is ready for service:
  2033 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2034 // Suppose its body is immediately initialized as {1,2}:
  2035 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2036 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2037 //   mem.SLICE(#short[*]) := store2
  2038 //
  2039 // DETAILS:
  2040 // An InitializeNode collects and isolates object initialization after
  2041 // an AllocateNode and before the next possible safepoint.  As a
  2042 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2043 // down past any safepoint or any publication of the allocation.
  2044 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2045 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2046 //
  2047 // The semantics of the InitializeNode include an implicit zeroing of
  2048 // the new object from object header to the end of the object.
  2049 // (The object header and end are determined by the AllocateNode.)
  2050 //
  2051 // Certain stores may be added as direct inputs to the InitializeNode.
  2052 // These stores must update raw memory, and they must be to addresses
  2053 // derived from the raw address produced by AllocateNode, and with
  2054 // a constant offset.  They must be ordered by increasing offset.
  2055 // The first one is at in(RawStores), the last at in(req()-1).
  2056 // Unlike most memory operations, they are not linked in a chain,
  2057 // but are displayed in parallel as users of the rawmem output of
  2058 // the allocation.
  2059 //
  2060 // (See comments in InitializeNode::capture_store, which continue
  2061 // the example given above.)
  2062 //
  2063 // When the associated Allocate is macro-expanded, the InitializeNode
  2064 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2065 // may also be created at that point to represent any required zeroing.
  2066 // The InitializeNode is then marked 'complete', prohibiting further
  2067 // capturing of nearby memory operations.
  2068 //
  2069 // During macro-expansion, all captured initializations which store
  2070 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2071 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2072 // initialized in fewer memory operations.  Memory words which are
  2073 // covered by neither tiles nor non-constant stores are pre-zeroed
  2074 // by explicit stores of zero.  (The code shape happens to do all
  2075 // zeroing first, then all other stores, with both sequences occurring
  2076 // in order of ascending offsets.)
  2077 //
  2078 // Alternatively, code may be inserted between an AllocateNode and its
  2079 // InitializeNode, to perform arbitrary initialization of the new object.
  2080 // E.g., the object copying intrinsics insert complex data transfers here.
  2081 // The initialization must then be marked as 'complete' disable the
  2082 // built-in zeroing semantics and the collection of initializing stores.
  2083 //
  2084 // While an InitializeNode is incomplete, reads from the memory state
  2085 // produced by it are optimizable if they match the control edge and
  2086 // new oop address associated with the allocation/initialization.
  2087 // They return a stored value (if the offset matches) or else zero.
  2088 // A write to the memory state, if it matches control and address,
  2089 // and if it is to a constant offset, may be 'captured' by the
  2090 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2091 // inside the initialization, to the raw oop produced by the allocation.
  2092 // Operations on addresses which are provably distinct (e.g., to
  2093 // other AllocateNodes) are allowed to bypass the initialization.
  2094 //
  2095 // The effect of all this is to consolidate object initialization
  2096 // (both arrays and non-arrays, both piecewise and bulk) into a
  2097 // single location, where it can be optimized as a unit.
  2098 //
  2099 // Only stores with an offset less than TrackedInitializationLimit words
  2100 // will be considered for capture by an InitializeNode.  This puts a
  2101 // reasonable limit on the complexity of optimized initializations.
  2103 //---------------------------InitializeNode------------------------------------
  2104 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2105   : _is_complete(false),
  2106     MemBarNode(C, adr_type, rawoop)
  2108   init_class_id(Class_Initialize);
  2110   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2111   assert(in(RawAddress) == rawoop, "proper init");
  2112   // Note:  allocation() can be NULL, for secondary initialization barriers
  2115 // Since this node is not matched, it will be processed by the
  2116 // register allocator.  Declare that there are no constraints
  2117 // on the allocation of the RawAddress edge.
  2118 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2119   // This edge should be set to top, by the set_complete.  But be conservative.
  2120   if (idx == InitializeNode::RawAddress)
  2121     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2122   return RegMask::Empty;
  2125 Node* InitializeNode::memory(uint alias_idx) {
  2126   Node* mem = in(Memory);
  2127   if (mem->is_MergeMem()) {
  2128     return mem->as_MergeMem()->memory_at(alias_idx);
  2129   } else {
  2130     // incoming raw memory is not split
  2131     return mem;
  2135 bool InitializeNode::is_non_zero() {
  2136   if (is_complete())  return false;
  2137   remove_extra_zeroes();
  2138   return (req() > RawStores);
  2141 void InitializeNode::set_complete(PhaseGVN* phase) {
  2142   assert(!is_complete(), "caller responsibility");
  2143   _is_complete = true;
  2145   // After this node is complete, it contains a bunch of
  2146   // raw-memory initializations.  There is no need for
  2147   // it to have anything to do with non-raw memory effects.
  2148   // Therefore, tell all non-raw users to re-optimize themselves,
  2149   // after skipping the memory effects of this initialization.
  2150   PhaseIterGVN* igvn = phase->is_IterGVN();
  2151   if (igvn)  igvn->add_users_to_worklist(this);
  2154 // convenience function
  2155 // return false if the init contains any stores already
  2156 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2157   InitializeNode* init = initialization();
  2158   if (init == NULL || init->is_complete())  return false;
  2159   init->remove_extra_zeroes();
  2160   // for now, if this allocation has already collected any inits, bail:
  2161   if (init->is_non_zero())  return false;
  2162   init->set_complete(phase);
  2163   return true;
  2166 void InitializeNode::remove_extra_zeroes() {
  2167   if (req() == RawStores)  return;
  2168   Node* zmem = zero_memory();
  2169   uint fill = RawStores;
  2170   for (uint i = fill; i < req(); i++) {
  2171     Node* n = in(i);
  2172     if (n->is_top() || n == zmem)  continue;  // skip
  2173     if (fill < i)  set_req(fill, n);          // compact
  2174     ++fill;
  2176   // delete any empty spaces created:
  2177   while (fill < req()) {
  2178     del_req(fill);
  2182 // Helper for remembering which stores go with which offsets.
  2183 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2184   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2185   intptr_t offset = -1;
  2186   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2187                                                phase, offset);
  2188   if (base == NULL)     return -1;  // something is dead,
  2189   if (offset < 0)       return -1;  //        dead, dead
  2190   return offset;
  2193 // Helper for proving that an initialization expression is
  2194 // "simple enough" to be folded into an object initialization.
  2195 // Attempts to prove that a store's initial value 'n' can be captured
  2196 // within the initialization without creating a vicious cycle, such as:
  2197 //     { Foo p = new Foo(); p.next = p; }
  2198 // True for constants and parameters and small combinations thereof.
  2199 bool InitializeNode::detect_init_independence(Node* n,
  2200                                               bool st_is_pinned,
  2201                                               int& count) {
  2202   if (n == NULL)      return true;   // (can this really happen?)
  2203   if (n->is_Proj())   n = n->in(0);
  2204   if (n == this)      return false;  // found a cycle
  2205   if (n->is_Con())    return true;
  2206   if (n->is_Start())  return true;   // params, etc., are OK
  2207   if (n->is_Root())   return true;   // even better
  2209   Node* ctl = n->in(0);
  2210   if (ctl != NULL && !ctl->is_top()) {
  2211     if (ctl->is_Proj())  ctl = ctl->in(0);
  2212     if (ctl == this)  return false;
  2214     // If we already know that the enclosing memory op is pinned right after
  2215     // the init, then any control flow that the store has picked up
  2216     // must have preceded the init, or else be equal to the init.
  2217     // Even after loop optimizations (which might change control edges)
  2218     // a store is never pinned *before* the availability of its inputs.
  2219     if (!MemNode::detect_dominating_control(ctl, this->in(0)))
  2220       return false;                  // failed to prove a good control
  2224   // Check data edges for possible dependencies on 'this'.
  2225   if ((count += 1) > 20)  return false;  // complexity limit
  2226   for (uint i = 1; i < n->req(); i++) {
  2227     Node* m = n->in(i);
  2228     if (m == NULL || m == n || m->is_top())  continue;
  2229     uint first_i = n->find_edge(m);
  2230     if (i != first_i)  continue;  // process duplicate edge just once
  2231     if (!detect_init_independence(m, st_is_pinned, count)) {
  2232       return false;
  2236   return true;
  2239 // Here are all the checks a Store must pass before it can be moved into
  2240 // an initialization.  Returns zero if a check fails.
  2241 // On success, returns the (constant) offset to which the store applies,
  2242 // within the initialized memory.
  2243 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2244   const int FAIL = 0;
  2245   if (st->req() != MemNode::ValueIn + 1)
  2246     return FAIL;                // an inscrutable StoreNode (card mark?)
  2247   Node* ctl = st->in(MemNode::Control);
  2248   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2249     return FAIL;                // must be unconditional after the initialization
  2250   Node* mem = st->in(MemNode::Memory);
  2251   if (!(mem->is_Proj() && mem->in(0) == this))
  2252     return FAIL;                // must not be preceded by other stores
  2253   Node* adr = st->in(MemNode::Address);
  2254   intptr_t offset;
  2255   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2256   if (alloc == NULL)
  2257     return FAIL;                // inscrutable address
  2258   if (alloc != allocation())
  2259     return FAIL;                // wrong allocation!  (store needs to float up)
  2260   Node* val = st->in(MemNode::ValueIn);
  2261   int complexity_count = 0;
  2262   if (!detect_init_independence(val, true, complexity_count))
  2263     return FAIL;                // stored value must be 'simple enough'
  2265   return offset;                // success
  2268 // Find the captured store in(i) which corresponds to the range
  2269 // [start..start+size) in the initialized object.
  2270 // If there is one, return its index i.  If there isn't, return the
  2271 // negative of the index where it should be inserted.
  2272 // Return 0 if the queried range overlaps an initialization boundary
  2273 // or if dead code is encountered.
  2274 // If size_in_bytes is zero, do not bother with overlap checks.
  2275 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2276                                                    int size_in_bytes,
  2277                                                    PhaseTransform* phase) {
  2278   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2280   if (is_complete())
  2281     return FAIL;                // arraycopy got here first; punt
  2283   assert(allocation() != NULL, "must be present");
  2285   // no negatives, no header fields:
  2286   if (start < (intptr_t) sizeof(oopDesc))  return FAIL;
  2287   if (start < (intptr_t) sizeof(arrayOopDesc) &&
  2288       start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2290   // after a certain size, we bail out on tracking all the stores:
  2291   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2292   if (start >= ti_limit)  return FAIL;
  2294   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2295     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2297     Node*    st     = in(i);
  2298     intptr_t st_off = get_store_offset(st, phase);
  2299     if (st_off < 0) {
  2300       if (st != zero_memory()) {
  2301         return FAIL;            // bail out if there is dead garbage
  2303     } else if (st_off > start) {
  2304       // ...we are done, since stores are ordered
  2305       if (st_off < start + size_in_bytes) {
  2306         return FAIL;            // the next store overlaps
  2308       return -(int)i;           // not found; here is where to put it
  2309     } else if (st_off < start) {
  2310       if (size_in_bytes != 0 &&
  2311           start < st_off + MAX_STORE &&
  2312           start < st_off + st->as_Store()->memory_size()) {
  2313         return FAIL;            // the previous store overlaps
  2315     } else {
  2316       if (size_in_bytes != 0 &&
  2317           st->as_Store()->memory_size() != size_in_bytes) {
  2318         return FAIL;            // mismatched store size
  2320       return i;
  2323     ++i;
  2327 // Look for a captured store which initializes at the offset 'start'
  2328 // with the given size.  If there is no such store, and no other
  2329 // initialization interferes, then return zero_memory (the memory
  2330 // projection of the AllocateNode).
  2331 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2332                                           PhaseTransform* phase) {
  2333   assert(stores_are_sane(phase), "");
  2334   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2335   if (i == 0) {
  2336     return NULL;                // something is dead
  2337   } else if (i < 0) {
  2338     return zero_memory();       // just primordial zero bits here
  2339   } else {
  2340     Node* st = in(i);           // here is the store at this position
  2341     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2342     return st;
  2346 // Create, as a raw pointer, an address within my new object at 'offset'.
  2347 Node* InitializeNode::make_raw_address(intptr_t offset,
  2348                                        PhaseTransform* phase) {
  2349   Node* addr = in(RawAddress);
  2350   if (offset != 0) {
  2351     Compile* C = phase->C;
  2352     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2353                                                  phase->MakeConX(offset)) );
  2355   return addr;
  2358 // Clone the given store, converting it into a raw store
  2359 // initializing a field or element of my new object.
  2360 // Caller is responsible for retiring the original store,
  2361 // with subsume_node or the like.
  2362 //
  2363 // From the example above InitializeNode::InitializeNode,
  2364 // here are the old stores to be captured:
  2365 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2366 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2367 //
  2368 // Here is the changed code; note the extra edges on init:
  2369 //   alloc = (Allocate ...)
  2370 //   rawoop = alloc.RawAddress
  2371 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2372 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2373 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2374 //                      rawstore1 rawstore2)
  2375 //
  2376 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2377                                     PhaseTransform* phase) {
  2378   assert(stores_are_sane(phase), "");
  2380   if (start < 0)  return NULL;
  2381   assert(can_capture_store(st, phase) == start, "sanity");
  2383   Compile* C = phase->C;
  2384   int size_in_bytes = st->memory_size();
  2385   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2386   if (i == 0)  return NULL;     // bail out
  2387   Node* prev_mem = NULL;        // raw memory for the captured store
  2388   if (i > 0) {
  2389     prev_mem = in(i);           // there is a pre-existing store under this one
  2390     set_req(i, C->top());       // temporarily disconnect it
  2391     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2392   } else {
  2393     i = -i;                     // no pre-existing store
  2394     prev_mem = zero_memory();   // a slice of the newly allocated object
  2395     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2396       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2397     else
  2398       ins_req(i, C->top());     // build a new edge
  2400   Node* new_st = st->clone();
  2401   new_st->set_req(MemNode::Control, in(Control));
  2402   new_st->set_req(MemNode::Memory,  prev_mem);
  2403   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2404   new_st = phase->transform(new_st);
  2406   // At this point, new_st might have swallowed a pre-existing store
  2407   // at the same offset, or perhaps new_st might have disappeared,
  2408   // if it redundantly stored the same value (or zero to fresh memory).
  2410   // In any case, wire it in:
  2411   set_req(i, new_st);
  2413   // The caller may now kill the old guy.
  2414   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2415   assert(check_st == new_st || check_st == NULL, "must be findable");
  2416   assert(!is_complete(), "");
  2417   return new_st;
  2420 static bool store_constant(jlong* tiles, int num_tiles,
  2421                            intptr_t st_off, int st_size,
  2422                            jlong con) {
  2423   if ((st_off & (st_size-1)) != 0)
  2424     return false;               // strange store offset (assume size==2**N)
  2425   address addr = (address)tiles + st_off;
  2426   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2427   switch (st_size) {
  2428   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2429   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2430   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2431   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2432   default: return false;        // strange store size (detect size!=2**N here)
  2434   return true;                  // return success to caller
  2437 // Coalesce subword constants into int constants and possibly
  2438 // into long constants.  The goal, if the CPU permits,
  2439 // is to initialize the object with a small number of 64-bit tiles.
  2440 // Also, convert floating-point constants to bit patterns.
  2441 // Non-constants are not relevant to this pass.
  2442 //
  2443 // In terms of the running example on InitializeNode::InitializeNode
  2444 // and InitializeNode::capture_store, here is the transformation
  2445 // of rawstore1 and rawstore2 into rawstore12:
  2446 //   alloc = (Allocate ...)
  2447 //   rawoop = alloc.RawAddress
  2448 //   tile12 = 0x00010002
  2449 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2450 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2451 //
  2452 void
  2453 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2454                                         Node* size_in_bytes,
  2455                                         PhaseGVN* phase) {
  2456   Compile* C = phase->C;
  2458   assert(stores_are_sane(phase), "");
  2459   // Note:  After this pass, they are not completely sane,
  2460   // since there may be some overlaps.
  2462   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2464   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2465   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2466   size_limit = MIN2(size_limit, ti_limit);
  2467   size_limit = align_size_up(size_limit, BytesPerLong);
  2468   int num_tiles = size_limit / BytesPerLong;
  2470   // allocate space for the tile map:
  2471   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2472   jlong  tiles_buf[small_len];
  2473   Node*  nodes_buf[small_len];
  2474   jlong  inits_buf[small_len];
  2475   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2476                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2477   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2478                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2479   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2480                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2481   // tiles: exact bitwise model of all primitive constants
  2482   // nodes: last constant-storing node subsumed into the tiles model
  2483   // inits: which bytes (in each tile) are touched by any initializations
  2485   //// Pass A: Fill in the tile model with any relevant stores.
  2487   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2488   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2489   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2490   Node* zmem = zero_memory(); // initially zero memory state
  2491   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2492     Node* st = in(i);
  2493     intptr_t st_off = get_store_offset(st, phase);
  2495     // Figure out the store's offset and constant value:
  2496     if (st_off < header_size)             continue; //skip (ignore header)
  2497     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2498     int st_size = st->as_Store()->memory_size();
  2499     if (st_off + st_size > size_limit)    break;
  2501     // Record which bytes are touched, whether by constant or not.
  2502     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2503       continue;                 // skip (strange store size)
  2505     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2506     if (!val->singleton())                continue; //skip (non-con store)
  2507     BasicType type = val->basic_type();
  2509     jlong con = 0;
  2510     switch (type) {
  2511     case T_INT:    con = val->is_int()->get_con();  break;
  2512     case T_LONG:   con = val->is_long()->get_con(); break;
  2513     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2514     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2515     default:                              continue; //skip (odd store type)
  2518     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2519         st->Opcode() == Op_StoreL) {
  2520       continue;                 // This StoreL is already optimal.
  2523     // Store down the constant.
  2524     store_constant(tiles, num_tiles, st_off, st_size, con);
  2526     intptr_t j = st_off >> LogBytesPerLong;
  2528     if (type == T_INT && st_size == BytesPerInt
  2529         && (st_off & BytesPerInt) == BytesPerInt) {
  2530       jlong lcon = tiles[j];
  2531       if (!Matcher::isSimpleConstant64(lcon) &&
  2532           st->Opcode() == Op_StoreI) {
  2533         // This StoreI is already optimal by itself.
  2534         jint* intcon = (jint*) &tiles[j];
  2535         intcon[1] = 0;  // undo the store_constant()
  2537         // If the previous store is also optimal by itself, back up and
  2538         // undo the action of the previous loop iteration... if we can.
  2539         // But if we can't, just let the previous half take care of itself.
  2540         st = nodes[j];
  2541         st_off -= BytesPerInt;
  2542         con = intcon[0];
  2543         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2544           assert(st_off >= header_size, "still ignoring header");
  2545           assert(get_store_offset(st, phase) == st_off, "must be");
  2546           assert(in(i-1) == zmem, "must be");
  2547           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  2548           assert(con == tcon->is_int()->get_con(), "must be");
  2549           // Undo the effects of the previous loop trip, which swallowed st:
  2550           intcon[0] = 0;        // undo store_constant()
  2551           set_req(i-1, st);     // undo set_req(i, zmem)
  2552           nodes[j] = NULL;      // undo nodes[j] = st
  2553           --old_subword;        // undo ++old_subword
  2555         continue;               // This StoreI is already optimal.
  2559     // This store is not needed.
  2560     set_req(i, zmem);
  2561     nodes[j] = st;              // record for the moment
  2562     if (st_size < BytesPerLong) // something has changed
  2563           ++old_subword;        // includes int/float, but who's counting...
  2564     else  ++old_long;
  2567   if ((old_subword + old_long) == 0)
  2568     return;                     // nothing more to do
  2570   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  2571   // Be sure to insert them before overlapping non-constant stores.
  2572   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  2573   for (int j = 0; j < num_tiles; j++) {
  2574     jlong con  = tiles[j];
  2575     jlong init = inits[j];
  2576     if (con == 0)  continue;
  2577     jint con0,  con1;           // split the constant, address-wise
  2578     jint init0, init1;          // split the init map, address-wise
  2579     { union { jlong con; jint intcon[2]; } u;
  2580       u.con = con;
  2581       con0  = u.intcon[0];
  2582       con1  = u.intcon[1];
  2583       u.con = init;
  2584       init0 = u.intcon[0];
  2585       init1 = u.intcon[1];
  2588     Node* old = nodes[j];
  2589     assert(old != NULL, "need the prior store");
  2590     intptr_t offset = (j * BytesPerLong);
  2592     bool split = !Matcher::isSimpleConstant64(con);
  2594     if (offset < header_size) {
  2595       assert(offset + BytesPerInt >= header_size, "second int counts");
  2596       assert(*(jint*)&tiles[j] == 0, "junk in header");
  2597       split = true;             // only the second word counts
  2598       // Example:  int a[] = { 42 ... }
  2599     } else if (con0 == 0 && init0 == -1) {
  2600       split = true;             // first word is covered by full inits
  2601       // Example:  int a[] = { ... foo(), 42 ... }
  2602     } else if (con1 == 0 && init1 == -1) {
  2603       split = true;             // second word is covered by full inits
  2604       // Example:  int a[] = { ... 42, foo() ... }
  2607     // Here's a case where init0 is neither 0 nor -1:
  2608     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  2609     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  2610     // In this case the tile is not split; it is (jlong)42.
  2611     // The big tile is stored down, and then the foo() value is inserted.
  2612     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  2614     Node* ctl = old->in(MemNode::Control);
  2615     Node* adr = make_raw_address(offset, phase);
  2616     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2618     // One or two coalesced stores to plop down.
  2619     Node*    st[2];
  2620     intptr_t off[2];
  2621     int  nst = 0;
  2622     if (!split) {
  2623       ++new_long;
  2624       off[nst] = offset;
  2625       st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2626                                   phase->longcon(con), T_LONG);
  2627     } else {
  2628       // Omit either if it is a zero.
  2629       if (con0 != 0) {
  2630         ++new_int;
  2631         off[nst]  = offset;
  2632         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2633                                     phase->intcon(con0), T_INT);
  2635       if (con1 != 0) {
  2636         ++new_int;
  2637         offset += BytesPerInt;
  2638         adr = make_raw_address(offset, phase);
  2639         off[nst]  = offset;
  2640         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2641                                     phase->intcon(con1), T_INT);
  2645     // Insert second store first, then the first before the second.
  2646     // Insert each one just before any overlapping non-constant stores.
  2647     while (nst > 0) {
  2648       Node* st1 = st[--nst];
  2649       C->copy_node_notes_to(st1, old);
  2650       st1 = phase->transform(st1);
  2651       offset = off[nst];
  2652       assert(offset >= header_size, "do not smash header");
  2653       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  2654       guarantee(ins_idx != 0, "must re-insert constant store");
  2655       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  2656       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  2657         set_req(--ins_idx, st1);
  2658       else
  2659         ins_req(ins_idx, st1);
  2663   if (PrintCompilation && WizardMode)
  2664     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  2665                   old_subword, old_long, new_int, new_long);
  2666   if (C->log() != NULL)
  2667     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  2668                    old_subword, old_long, new_int, new_long);
  2670   // Clean up any remaining occurrences of zmem:
  2671   remove_extra_zeroes();
  2674 // Explore forward from in(start) to find the first fully initialized
  2675 // word, and return its offset.  Skip groups of subword stores which
  2676 // together initialize full words.  If in(start) is itself part of a
  2677 // fully initialized word, return the offset of in(start).  If there
  2678 // are no following full-word stores, or if something is fishy, return
  2679 // a negative value.
  2680 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  2681   int       int_map = 0;
  2682   intptr_t  int_map_off = 0;
  2683   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  2685   for (uint i = start, limit = req(); i < limit; i++) {
  2686     Node* st = in(i);
  2688     intptr_t st_off = get_store_offset(st, phase);
  2689     if (st_off < 0)  break;  // return conservative answer
  2691     int st_size = st->as_Store()->memory_size();
  2692     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  2693       return st_off;            // we found a complete word init
  2696     // update the map:
  2698     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  2699     if (this_int_off != int_map_off) {
  2700       // reset the map:
  2701       int_map = 0;
  2702       int_map_off = this_int_off;
  2705     int subword_off = st_off - this_int_off;
  2706     int_map |= right_n_bits(st_size) << subword_off;
  2707     if ((int_map & FULL_MAP) == FULL_MAP) {
  2708       return this_int_off;      // we found a complete word init
  2711     // Did this store hit or cross the word boundary?
  2712     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  2713     if (next_int_off == this_int_off + BytesPerInt) {
  2714       // We passed the current int, without fully initializing it.
  2715       int_map_off = next_int_off;
  2716       int_map >>= BytesPerInt;
  2717     } else if (next_int_off > this_int_off + BytesPerInt) {
  2718       // We passed the current and next int.
  2719       return this_int_off + BytesPerInt;
  2723   return -1;
  2727 // Called when the associated AllocateNode is expanded into CFG.
  2728 // At this point, we may perform additional optimizations.
  2729 // Linearize the stores by ascending offset, to make memory
  2730 // activity as coherent as possible.
  2731 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  2732                                       intptr_t header_size,
  2733                                       Node* size_in_bytes,
  2734                                       PhaseGVN* phase) {
  2735   assert(!is_complete(), "not already complete");
  2736   assert(stores_are_sane(phase), "");
  2737   assert(allocation() != NULL, "must be present");
  2739   remove_extra_zeroes();
  2741   if (ReduceFieldZeroing || ReduceBulkZeroing)
  2742     // reduce instruction count for common initialization patterns
  2743     coalesce_subword_stores(header_size, size_in_bytes, phase);
  2745   Node* zmem = zero_memory();   // initially zero memory state
  2746   Node* inits = zmem;           // accumulating a linearized chain of inits
  2747   #ifdef ASSERT
  2748   intptr_t last_init_off = sizeof(oopDesc);  // previous init offset
  2749   intptr_t last_init_end = sizeof(oopDesc);  // previous init offset+size
  2750   intptr_t last_tile_end = sizeof(oopDesc);  // previous tile offset+size
  2751   #endif
  2752   intptr_t zeroes_done = header_size;
  2754   bool do_zeroing = true;       // we might give up if inits are very sparse
  2755   int  big_init_gaps = 0;       // how many large gaps have we seen?
  2757   if (ZeroTLAB)  do_zeroing = false;
  2758   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  2760   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2761     Node* st = in(i);
  2762     intptr_t st_off = get_store_offset(st, phase);
  2763     if (st_off < 0)
  2764       break;                    // unknown junk in the inits
  2765     if (st->in(MemNode::Memory) != zmem)
  2766       break;                    // complicated store chains somehow in list
  2768     int st_size = st->as_Store()->memory_size();
  2769     intptr_t next_init_off = st_off + st_size;
  2771     if (do_zeroing && zeroes_done < next_init_off) {
  2772       // See if this store needs a zero before it or under it.
  2773       intptr_t zeroes_needed = st_off;
  2775       if (st_size < BytesPerInt) {
  2776         // Look for subword stores which only partially initialize words.
  2777         // If we find some, we must lay down some word-level zeroes first,
  2778         // underneath the subword stores.
  2779         //
  2780         // Examples:
  2781         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  2782         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  2783         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  2784         //
  2785         // Note:  coalesce_subword_stores may have already done this,
  2786         // if it was prompted by constant non-zero subword initializers.
  2787         // But this case can still arise with non-constant stores.
  2789         intptr_t next_full_store = find_next_fullword_store(i, phase);
  2791         // In the examples above:
  2792         //   in(i)          p   q   r   s     x   y     z
  2793         //   st_off        12  13  14  15    12  13    14
  2794         //   st_size        1   1   1   1     1   1     1
  2795         //   next_full_s.  12  16  16  16    16  16    16
  2796         //   z's_done      12  16  16  16    12  16    12
  2797         //   z's_needed    12  16  16  16    16  16    16
  2798         //   zsize          0   0   0   0     4   0     4
  2799         if (next_full_store < 0) {
  2800           // Conservative tack:  Zero to end of current word.
  2801           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  2802         } else {
  2803           // Zero to beginning of next fully initialized word.
  2804           // Or, don't zero at all, if we are already in that word.
  2805           assert(next_full_store >= zeroes_needed, "must go forward");
  2806           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  2807           zeroes_needed = next_full_store;
  2811       if (zeroes_needed > zeroes_done) {
  2812         intptr_t zsize = zeroes_needed - zeroes_done;
  2813         // Do some incremental zeroing on rawmem, in parallel with inits.
  2814         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2815         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2816                                               zeroes_done, zeroes_needed,
  2817                                               phase);
  2818         zeroes_done = zeroes_needed;
  2819         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  2820           do_zeroing = false;   // leave the hole, next time
  2824     // Collect the store and move on:
  2825     st->set_req(MemNode::Memory, inits);
  2826     inits = st;                 // put it on the linearized chain
  2827     set_req(i, zmem);           // unhook from previous position
  2829     if (zeroes_done == st_off)
  2830       zeroes_done = next_init_off;
  2832     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  2834     #ifdef ASSERT
  2835     // Various order invariants.  Weaker than stores_are_sane because
  2836     // a large constant tile can be filled in by smaller non-constant stores.
  2837     assert(st_off >= last_init_off, "inits do not reverse");
  2838     last_init_off = st_off;
  2839     const Type* val = NULL;
  2840     if (st_size >= BytesPerInt &&
  2841         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  2842         (int)val->basic_type() < (int)T_OBJECT) {
  2843       assert(st_off >= last_tile_end, "tiles do not overlap");
  2844       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  2845       last_tile_end = MAX2(last_tile_end, next_init_off);
  2846     } else {
  2847       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  2848       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  2849       assert(st_off      >= last_init_end, "inits do not overlap");
  2850       last_init_end = next_init_off;  // it's a non-tile
  2852     #endif //ASSERT
  2855   remove_extra_zeroes();        // clear out all the zmems left over
  2856   add_req(inits);
  2858   if (!ZeroTLAB) {
  2859     // If anything remains to be zeroed, zero it all now.
  2860     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2861     // if it is the last unused 4 bytes of an instance, forget about it
  2862     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  2863     if (zeroes_done + BytesPerLong >= size_limit) {
  2864       assert(allocation() != NULL, "");
  2865       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  2866       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  2867       if (zeroes_done == k->layout_helper())
  2868         zeroes_done = size_limit;
  2870     if (zeroes_done < size_limit) {
  2871       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2872                                             zeroes_done, size_in_bytes, phase);
  2876   set_complete(phase);
  2877   return rawmem;
  2881 #ifdef ASSERT
  2882 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  2883   if (is_complete())
  2884     return true;                // stores could be anything at this point
  2885   intptr_t last_off = sizeof(oopDesc);
  2886   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  2887     Node* st = in(i);
  2888     intptr_t st_off = get_store_offset(st, phase);
  2889     if (st_off < 0)  continue;  // ignore dead garbage
  2890     if (last_off > st_off) {
  2891       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  2892       this->dump(2);
  2893       assert(false, "ascending store offsets");
  2894       return false;
  2896     last_off = st_off + st->as_Store()->memory_size();
  2898   return true;
  2900 #endif //ASSERT
  2905 //============================MergeMemNode=====================================
  2906 //
  2907 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  2908 // contributing store or call operations.  Each contributor provides the memory
  2909 // state for a particular "alias type" (see Compile::alias_type).  For example,
  2910 // if a MergeMem has an input X for alias category #6, then any memory reference
  2911 // to alias category #6 may use X as its memory state input, as an exact equivalent
  2912 // to using the MergeMem as a whole.
  2913 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  2914 //
  2915 // (Here, the <N> notation gives the index of the relevant adr_type.)
  2916 //
  2917 // In one special case (and more cases in the future), alias categories overlap.
  2918 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  2919 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  2920 // it is exactly equivalent to that state W:
  2921 //   MergeMem(<Bot>: W) <==> W
  2922 //
  2923 // Usually, the merge has more than one input.  In that case, where inputs
  2924 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  2925 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  2926 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  2927 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  2928 //
  2929 // A merge can take a "wide" memory state as one of its narrow inputs.
  2930 // This simply means that the merge observes out only the relevant parts of
  2931 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  2932 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  2933 //
  2934 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  2935 // and that memory slices "leak through":
  2936 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  2937 //
  2938 // But, in such a cascade, repeated memory slices can "block the leak":
  2939 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  2940 //
  2941 // In the last example, Y is not part of the combined memory state of the
  2942 // outermost MergeMem.  The system must, of course, prevent unschedulable
  2943 // memory states from arising, so you can be sure that the state Y is somehow
  2944 // a precursor to state Y'.
  2945 //
  2946 //
  2947 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  2948 // of each MergeMemNode array are exactly the numerical alias indexes, including
  2949 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  2950 // Compile::alias_type (and kin) produce and manage these indexes.
  2951 //
  2952 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  2953 // (Note that this provides quick access to the top node inside MergeMem methods,
  2954 // without the need to reach out via TLS to Compile::current.)
  2955 //
  2956 // As a consequence of what was just described, a MergeMem that represents a full
  2957 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  2958 // containing all alias categories.
  2959 //
  2960 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  2961 //
  2962 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  2963 // a memory state for the alias type <N>, or else the top node, meaning that
  2964 // there is no particular input for that alias type.  Note that the length of
  2965 // a MergeMem is variable, and may be extended at any time to accommodate new
  2966 // memory states at larger alias indexes.  When merges grow, they are of course
  2967 // filled with "top" in the unused in() positions.
  2968 //
  2969 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  2970 // (Top was chosen because it works smoothly with passes like GCM.)
  2971 //
  2972 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  2973 // the type of random VM bits like TLS references.)  Since it is always the
  2974 // first non-Bot memory slice, some low-level loops use it to initialize an
  2975 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  2976 //
  2977 //
  2978 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  2979 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  2980 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  2981 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  2982 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  2983 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  2984 //
  2985 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  2986 // really that different from the other memory inputs.  An abbreviation called
  2987 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  2988 //
  2989 //
  2990 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  2991 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  2992 // that "emerges though" the base memory will be marked as excluding the alias types
  2993 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  2994 //
  2995 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  2996 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  2997 //
  2998 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  2999 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3000 // actually a disjoint union of memory states, rather than an overlay.
  3001 //
  3003 //------------------------------MergeMemNode-----------------------------------
  3004 Node* MergeMemNode::make_empty_memory() {
  3005   Node* empty_memory = (Node*) Compile::current()->top();
  3006   assert(empty_memory->is_top(), "correct sentinel identity");
  3007   return empty_memory;
  3010 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3011   init_class_id(Class_MergeMem);
  3012   // all inputs are nullified in Node::Node(int)
  3013   // set_input(0, NULL);  // no control input
  3015   // Initialize the edges uniformly to top, for starters.
  3016   Node* empty_mem = make_empty_memory();
  3017   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3018     init_req(i,empty_mem);
  3020   assert(empty_memory() == empty_mem, "");
  3022   if( new_base != NULL && new_base->is_MergeMem() ) {
  3023     MergeMemNode* mdef = new_base->as_MergeMem();
  3024     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3025     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3026       mms.set_memory(mms.memory2());
  3028     assert(base_memory() == mdef->base_memory(), "");
  3029   } else {
  3030     set_base_memory(new_base);
  3034 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3035 // If mem is itself a MergeMem, populate the result with the same edges.
  3036 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3037   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3040 //------------------------------cmp--------------------------------------------
  3041 uint MergeMemNode::hash() const { return NO_HASH; }
  3042 uint MergeMemNode::cmp( const Node &n ) const {
  3043   return (&n == this);          // Always fail except on self
  3046 //------------------------------Identity---------------------------------------
  3047 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3048   // Identity if this merge point does not record any interesting memory
  3049   // disambiguations.
  3050   Node* base_mem = base_memory();
  3051   Node* empty_mem = empty_memory();
  3052   if (base_mem != empty_mem) {  // Memory path is not dead?
  3053     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3054       Node* mem = in(i);
  3055       if (mem != empty_mem && mem != base_mem) {
  3056         return this;            // Many memory splits; no change
  3060   return base_mem;              // No memory splits; ID on the one true input
  3063 //------------------------------Ideal------------------------------------------
  3064 // This method is invoked recursively on chains of MergeMem nodes
  3065 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3066   // Remove chain'd MergeMems
  3067   //
  3068   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3069   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3070   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3071   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3072   Node *progress = NULL;
  3075   Node* old_base = base_memory();
  3076   Node* empty_mem = empty_memory();
  3077   if (old_base == empty_mem)
  3078     return NULL; // Dead memory path.
  3080   MergeMemNode* old_mbase;
  3081   if (old_base != NULL && old_base->is_MergeMem())
  3082     old_mbase = old_base->as_MergeMem();
  3083   else
  3084     old_mbase = NULL;
  3085   Node* new_base = old_base;
  3087   // simplify stacked MergeMems in base memory
  3088   if (old_mbase)  new_base = old_mbase->base_memory();
  3090   // the base memory might contribute new slices beyond my req()
  3091   if (old_mbase)  grow_to_match(old_mbase);
  3093   // Look carefully at the base node if it is a phi.
  3094   PhiNode* phi_base;
  3095   if (new_base != NULL && new_base->is_Phi())
  3096     phi_base = new_base->as_Phi();
  3097   else
  3098     phi_base = NULL;
  3100   Node*    phi_reg = NULL;
  3101   uint     phi_len = (uint)-1;
  3102   if (phi_base != NULL && !phi_base->is_copy()) {
  3103     // do not examine phi if degraded to a copy
  3104     phi_reg = phi_base->region();
  3105     phi_len = phi_base->req();
  3106     // see if the phi is unfinished
  3107     for (uint i = 1; i < phi_len; i++) {
  3108       if (phi_base->in(i) == NULL) {
  3109         // incomplete phi; do not look at it yet!
  3110         phi_reg = NULL;
  3111         phi_len = (uint)-1;
  3112         break;
  3117   // Note:  We do not call verify_sparse on entry, because inputs
  3118   // can normalize to the base_memory via subsume_node or similar
  3119   // mechanisms.  This method repairs that damage.
  3121   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3123   // Look at each slice.
  3124   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3125     Node* old_in = in(i);
  3126     // calculate the old memory value
  3127     Node* old_mem = old_in;
  3128     if (old_mem == empty_mem)  old_mem = old_base;
  3129     assert(old_mem == memory_at(i), "");
  3131     // maybe update (reslice) the old memory value
  3133     // simplify stacked MergeMems
  3134     Node* new_mem = old_mem;
  3135     MergeMemNode* old_mmem;
  3136     if (old_mem != NULL && old_mem->is_MergeMem())
  3137       old_mmem = old_mem->as_MergeMem();
  3138     else
  3139       old_mmem = NULL;
  3140     if (old_mmem == this) {
  3141       // This can happen if loops break up and safepoints disappear.
  3142       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3143       // safepoint can be rewritten to a merge of the same BotPtr with
  3144       // the BotPtr phi coming into the loop.  If that phi disappears
  3145       // also, we can end up with a self-loop of the mergemem.
  3146       // In general, if loops degenerate and memory effects disappear,
  3147       // a mergemem can be left looking at itself.  This simply means
  3148       // that the mergemem's default should be used, since there is
  3149       // no longer any apparent effect on this slice.
  3150       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3151       //       from start.  Update the input to TOP.
  3152       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3154     else if (old_mmem != NULL) {
  3155       new_mem = old_mmem->memory_at(i);
  3157     // else preceeding memory was not a MergeMem
  3159     // replace equivalent phis (unfortunately, they do not GVN together)
  3160     if (new_mem != NULL && new_mem != new_base &&
  3161         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3162       if (new_mem->is_Phi()) {
  3163         PhiNode* phi_mem = new_mem->as_Phi();
  3164         for (uint i = 1; i < phi_len; i++) {
  3165           if (phi_base->in(i) != phi_mem->in(i)) {
  3166             phi_mem = NULL;
  3167             break;
  3170         if (phi_mem != NULL) {
  3171           // equivalent phi nodes; revert to the def
  3172           new_mem = new_base;
  3177     // maybe store down a new value
  3178     Node* new_in = new_mem;
  3179     if (new_in == new_base)  new_in = empty_mem;
  3181     if (new_in != old_in) {
  3182       // Warning:  Do not combine this "if" with the previous "if"
  3183       // A memory slice might have be be rewritten even if it is semantically
  3184       // unchanged, if the base_memory value has changed.
  3185       set_req(i, new_in);
  3186       progress = this;          // Report progress
  3190   if (new_base != old_base) {
  3191     set_req(Compile::AliasIdxBot, new_base);
  3192     // Don't use set_base_memory(new_base), because we need to update du.
  3193     assert(base_memory() == new_base, "");
  3194     progress = this;
  3197   if( base_memory() == this ) {
  3198     // a self cycle indicates this memory path is dead
  3199     set_req(Compile::AliasIdxBot, empty_mem);
  3202   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3203   // Recursion must occur after the self cycle check above
  3204   if( base_memory()->is_MergeMem() ) {
  3205     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3206     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3207     if( m != NULL && (m->is_top() ||
  3208         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3209       // propagate rollup of dead cycle to self
  3210       set_req(Compile::AliasIdxBot, empty_mem);
  3214   if( base_memory() == empty_mem ) {
  3215     progress = this;
  3216     // Cut inputs during Parse phase only.
  3217     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3218     if( !can_reshape ) {
  3219       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3220         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3225   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3226     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3227     // transform should be attempted. Look for this->phi->this cycle.
  3228     uint merge_width = req();
  3229     if (merge_width > Compile::AliasIdxRaw) {
  3230       PhiNode* phi = base_memory()->as_Phi();
  3231       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3232         if (phi->in(i) == this) {
  3233           phase->is_IterGVN()->_worklist.push(phi);
  3234           break;
  3240   assert(verify_sparse(), "please, no dups of base");
  3241   return progress;
  3244 //-------------------------set_base_memory-------------------------------------
  3245 void MergeMemNode::set_base_memory(Node *new_base) {
  3246   Node* empty_mem = empty_memory();
  3247   set_req(Compile::AliasIdxBot, new_base);
  3248   assert(memory_at(req()) == new_base, "must set default memory");
  3249   // Clear out other occurrences of new_base:
  3250   if (new_base != empty_mem) {
  3251     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3252       if (in(i) == new_base)  set_req(i, empty_mem);
  3257 //------------------------------out_RegMask------------------------------------
  3258 const RegMask &MergeMemNode::out_RegMask() const {
  3259   return RegMask::Empty;
  3262 //------------------------------dump_spec--------------------------------------
  3263 #ifndef PRODUCT
  3264 void MergeMemNode::dump_spec(outputStream *st) const {
  3265   st->print(" {");
  3266   Node* base_mem = base_memory();
  3267   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3268     Node* mem = memory_at(i);
  3269     if (mem == base_mem) { st->print(" -"); continue; }
  3270     st->print( " N%d:", mem->_idx );
  3271     Compile::current()->get_adr_type(i)->dump_on(st);
  3273   st->print(" }");
  3275 #endif // !PRODUCT
  3278 #ifdef ASSERT
  3279 static bool might_be_same(Node* a, Node* b) {
  3280   if (a == b)  return true;
  3281   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3282   // phis shift around during optimization
  3283   return true;  // pretty stupid...
  3286 // verify a narrow slice (either incoming or outgoing)
  3287 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3288   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3289   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3290   if (Node::in_dump())      return;  // muzzle asserts when printing
  3291   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3292   assert(n != NULL, "");
  3293   // Elide intervening MergeMem's
  3294   while (n->is_MergeMem()) {
  3295     n = n->as_MergeMem()->memory_at(alias_idx);
  3297   Compile* C = Compile::current();
  3298   const TypePtr* n_adr_type = n->adr_type();
  3299   if (n == m->empty_memory()) {
  3300     // Implicit copy of base_memory()
  3301   } else if (n_adr_type != TypePtr::BOTTOM) {
  3302     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3303     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3304   } else {
  3305     // A few places like make_runtime_call "know" that VM calls are narrow,
  3306     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3307     bool expected_wide_mem = false;
  3308     if (n == m->base_memory()) {
  3309       expected_wide_mem = true;
  3310     } else if (alias_idx == Compile::AliasIdxRaw ||
  3311                n == m->memory_at(Compile::AliasIdxRaw)) {
  3312       expected_wide_mem = true;
  3313     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3314       // memory can "leak through" calls on channels that
  3315       // are write-once.  Allow this also.
  3316       expected_wide_mem = true;
  3318     assert(expected_wide_mem, "expected narrow slice replacement");
  3321 #else // !ASSERT
  3322 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3323 #endif
  3326 //-----------------------------memory_at---------------------------------------
  3327 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3328   assert(alias_idx >= Compile::AliasIdxRaw ||
  3329          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3330          "must avoid base_memory and AliasIdxTop");
  3332   // Otherwise, it is a narrow slice.
  3333   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3334   Compile *C = Compile::current();
  3335   if (is_empty_memory(n)) {
  3336     // the array is sparse; empty slots are the "top" node
  3337     n = base_memory();
  3338     assert(Node::in_dump()
  3339            || n == NULL || n->bottom_type() == Type::TOP
  3340            || n->adr_type() == TypePtr::BOTTOM
  3341            || n->adr_type() == TypeRawPtr::BOTTOM
  3342            || Compile::current()->AliasLevel() == 0,
  3343            "must be a wide memory");
  3344     // AliasLevel == 0 if we are organizing the memory states manually.
  3345     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3346   } else {
  3347     // make sure the stored slice is sane
  3348     #ifdef ASSERT
  3349     if (is_error_reported() || Node::in_dump()) {
  3350     } else if (might_be_same(n, base_memory())) {
  3351       // Give it a pass:  It is a mostly harmless repetition of the base.
  3352       // This can arise normally from node subsumption during optimization.
  3353     } else {
  3354       verify_memory_slice(this, alias_idx, n);
  3356     #endif
  3358   return n;
  3361 //---------------------------set_memory_at-------------------------------------
  3362 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3363   verify_memory_slice(this, alias_idx, n);
  3364   Node* empty_mem = empty_memory();
  3365   if (n == base_memory())  n = empty_mem;  // collapse default
  3366   uint need_req = alias_idx+1;
  3367   if (req() < need_req) {
  3368     if (n == empty_mem)  return;  // already the default, so do not grow me
  3369     // grow the sparse array
  3370     do {
  3371       add_req(empty_mem);
  3372     } while (req() < need_req);
  3374   set_req( alias_idx, n );
  3379 //--------------------------iteration_setup------------------------------------
  3380 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3381   if (other != NULL) {
  3382     grow_to_match(other);
  3383     // invariant:  the finite support of mm2 is within mm->req()
  3384     #ifdef ASSERT
  3385     for (uint i = req(); i < other->req(); i++) {
  3386       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3388     #endif
  3390   // Replace spurious copies of base_memory by top.
  3391   Node* base_mem = base_memory();
  3392   if (base_mem != NULL && !base_mem->is_top()) {
  3393     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3394       if (in(i) == base_mem)
  3395         set_req(i, empty_memory());
  3400 //---------------------------grow_to_match-------------------------------------
  3401 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3402   Node* empty_mem = empty_memory();
  3403   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3404   // look for the finite support of the other memory
  3405   for (uint i = other->req(); --i >= req(); ) {
  3406     if (other->in(i) != empty_mem) {
  3407       uint new_len = i+1;
  3408       while (req() < new_len)  add_req(empty_mem);
  3409       break;
  3414 //---------------------------verify_sparse-------------------------------------
  3415 #ifndef PRODUCT
  3416 bool MergeMemNode::verify_sparse() const {
  3417   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3418   Node* base_mem = base_memory();
  3419   // The following can happen in degenerate cases, since empty==top.
  3420   if (is_empty_memory(base_mem))  return true;
  3421   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3422     assert(in(i) != NULL, "sane slice");
  3423     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3425   return true;
  3428 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3429   Node* n;
  3430   n = mm->in(idx);
  3431   if (mem == n)  return true;  // might be empty_memory()
  3432   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3433   if (mem == n)  return true;
  3434   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3435     if (mem == n)  return true;
  3436     if (n == NULL)  break;
  3438   return false;
  3440 #endif // !PRODUCT

mercurial