src/share/vm/opto/memnode.cpp

Mon, 25 Feb 2008 15:05:44 -0800

author
kvn
date
Mon, 25 Feb 2008 15:05:44 -0800
changeset 464
d5fc211aea19
parent 452
ff5961f4c095
child 471
f34d9da7acb2
permissions
-rw-r--r--

6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 //=============================================================================
    33 uint MemNode::size_of() const { return sizeof(*this); }
    35 const TypePtr *MemNode::adr_type() const {
    36   Node* adr = in(Address);
    37   const TypePtr* cross_check = NULL;
    38   DEBUG_ONLY(cross_check = _adr_type);
    39   return calculate_adr_type(adr->bottom_type(), cross_check);
    40 }
    42 #ifndef PRODUCT
    43 void MemNode::dump_spec(outputStream *st) const {
    44   if (in(Address) == NULL)  return; // node is dead
    45 #ifndef ASSERT
    46   // fake the missing field
    47   const TypePtr* _adr_type = NULL;
    48   if (in(Address) != NULL)
    49     _adr_type = in(Address)->bottom_type()->isa_ptr();
    50 #endif
    51   dump_adr_type(this, _adr_type, st);
    53   Compile* C = Compile::current();
    54   if( C->alias_type(_adr_type)->is_volatile() )
    55     st->print(" Volatile!");
    56 }
    58 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    59   st->print(" @");
    60   if (adr_type == NULL) {
    61     st->print("NULL");
    62   } else {
    63     adr_type->dump_on(st);
    64     Compile* C = Compile::current();
    65     Compile::AliasType* atp = NULL;
    66     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    67     if (atp == NULL)
    68       st->print(", idx=?\?;");
    69     else if (atp->index() == Compile::AliasIdxBot)
    70       st->print(", idx=Bot;");
    71     else if (atp->index() == Compile::AliasIdxTop)
    72       st->print(", idx=Top;");
    73     else if (atp->index() == Compile::AliasIdxRaw)
    74       st->print(", idx=Raw;");
    75     else {
    76       ciField* field = atp->field();
    77       if (field) {
    78         st->print(", name=");
    79         field->print_name_on(st);
    80       }
    81       st->print(", idx=%d;", atp->index());
    82     }
    83   }
    84 }
    86 extern void print_alias_types();
    88 #endif
    90 //--------------------------Ideal_common---------------------------------------
    91 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
    92 // Unhook non-raw memories from complete (macro-expanded) initializations.
    93 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
    94   // If our control input is a dead region, kill all below the region
    95   Node *ctl = in(MemNode::Control);
    96   if (ctl && remove_dead_region(phase, can_reshape))
    97     return this;
    99   // Ignore if memory is dead, or self-loop
   100   Node *mem = in(MemNode::Memory);
   101   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   102   assert( mem != this, "dead loop in MemNode::Ideal" );
   104   Node *address = in(MemNode::Address);
   105   const Type *t_adr = phase->type( address );
   106   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   108   // Avoid independent memory operations
   109   Node* old_mem = mem;
   111   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   112     InitializeNode* init = mem->in(0)->as_Initialize();
   113     if (init->is_complete()) {  // i.e., after macro expansion
   114       const TypePtr* tp = t_adr->is_ptr();
   115       uint alias_idx = phase->C->get_alias_index(tp);
   116       // Free this slice from the init.  It was hooked, temporarily,
   117       // by GraphKit::set_output_for_allocation.
   118       if (alias_idx > Compile::AliasIdxRaw) {
   119         mem = init->memory(alias_idx);
   120         // ...but not with the raw-pointer slice.
   121       }
   122     }
   123   }
   125   if (mem->is_MergeMem()) {
   126     MergeMemNode* mmem = mem->as_MergeMem();
   127     const TypePtr *tp = t_adr->is_ptr();
   128     uint alias_idx = phase->C->get_alias_index(tp);
   129 #ifdef ASSERT
   130     {
   131       // Check that current type is consistent with the alias index used during graph construction
   132       assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   133       const TypePtr *adr_t =  adr_type();
   134       bool consistent =  adr_t == NULL || adr_t->empty() || phase->C->must_alias(adr_t, alias_idx );
   135       // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   136       if( !consistent && adr_t != NULL && !adr_t->empty() &&
   137              tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
   138           adr_t->isa_aryptr() && adr_t->offset() != Type::OffsetBot &&
   139           ( adr_t->offset() == arrayOopDesc::length_offset_in_bytes() ||
   140             adr_t->offset() == oopDesc::klass_offset_in_bytes() ||
   141             adr_t->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   142         // don't assert if it is dead code.
   143         consistent = true;
   144       }
   145       if( !consistent ) {
   146         tty->print("alias_idx==%d, adr_type()==", alias_idx); if( adr_t == NULL ) { tty->print("NULL"); } else { adr_t->dump(); }
   147         tty->cr();
   148         print_alias_types();
   149         assert(consistent, "adr_type must match alias idx");
   150       }
   151     }
   152 #endif
   153     // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   154     // means an array I have not precisely typed yet.  Do not do any
   155     // alias stuff with it any time soon.
   156     const TypeInstPtr *tinst = tp->isa_instptr();
   157     if( tp->base() != Type::AnyPtr &&
   158         !(tinst &&
   159           tinst->klass()->is_java_lang_Object() &&
   160           tinst->offset() == Type::OffsetBot) ) {
   161       // compress paths and change unreachable cycles to TOP
   162       // If not, we can update the input infinitely along a MergeMem cycle
   163       // Equivalent code in PhiNode::Ideal
   164       Node* m  = phase->transform(mmem);
   165       // If tranformed to a MergeMem, get the desired slice
   166       // Otherwise the returned node represents memory for every slice
   167       mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   168       // Update input if it is progress over what we have now
   169     }
   170   }
   172   if (mem != old_mem) {
   173     set_req(MemNode::Memory, mem);
   174     return this;
   175   }
   177   // let the subclass continue analyzing...
   178   return NULL;
   179 }
   181 // Helper function for proving some simple control dominations.
   182 // Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
   183 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   184 // is not a constant (dominated by the method's StartNode).
   185 // Used by MemNode::find_previous_store to prove that the
   186 // control input of a memory operation predates (dominates)
   187 // an allocation it wants to look past.
   188 bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
   189   if (dom == NULL)      return false;
   190   if (dom->is_Proj())   dom = dom->in(0);
   191   if (dom->is_Start())  return true; // anything inside the method
   192   if (dom->is_Root())   return true; // dom 'controls' a constant
   193   int cnt = 20;                      // detect cycle or too much effort
   194   while (sub != NULL) {              // walk 'sub' up the chain to 'dom'
   195     if (--cnt < 0)   return false;   // in a cycle or too complex
   196     if (sub == dom)  return true;
   197     if (sub->is_Start())  return false;
   198     if (sub->is_Root())   return false;
   199     Node* up = sub->in(0);
   200     if (sub == up && sub->is_Region()) {
   201       for (uint i = 1; i < sub->req(); i++) {
   202         Node* in = sub->in(i);
   203         if (in != NULL && !in->is_top() && in != sub) {
   204           up = in; break;            // take any path on the way up to 'dom'
   205         }
   206       }
   207     }
   208     if (sub == up)  return false;    // some kind of tight cycle
   209     sub = up;
   210   }
   211   return false;
   212 }
   214 //---------------------detect_ptr_independence---------------------------------
   215 // Used by MemNode::find_previous_store to prove that two base
   216 // pointers are never equal.
   217 // The pointers are accompanied by their associated allocations,
   218 // if any, which have been previously discovered by the caller.
   219 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   220                                       Node* p2, AllocateNode* a2,
   221                                       PhaseTransform* phase) {
   222   // Attempt to prove that these two pointers cannot be aliased.
   223   // They may both manifestly be allocations, and they should differ.
   224   // Or, if they are not both allocations, they can be distinct constants.
   225   // Otherwise, one is an allocation and the other a pre-existing value.
   226   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   227     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   228   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   229     return (a1 != a2);
   230   } else if (a1 != NULL) {                  // one allocation a1
   231     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   232     return detect_dominating_control(p2->in(0), a1->in(0));
   233   } else { //(a2 != NULL)                   // one allocation a2
   234     return detect_dominating_control(p1->in(0), a2->in(0));
   235   }
   236   return false;
   237 }
   240 // The logic for reordering loads and stores uses four steps:
   241 // (a) Walk carefully past stores and initializations which we
   242 //     can prove are independent of this load.
   243 // (b) Observe that the next memory state makes an exact match
   244 //     with self (load or store), and locate the relevant store.
   245 // (c) Ensure that, if we were to wire self directly to the store,
   246 //     the optimizer would fold it up somehow.
   247 // (d) Do the rewiring, and return, depending on some other part of
   248 //     the optimizer to fold up the load.
   249 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   250 // specific to loads and stores, so they are handled by the callers.
   251 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   252 //
   253 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   254   Node*         ctrl   = in(MemNode::Control);
   255   Node*         adr    = in(MemNode::Address);
   256   intptr_t      offset = 0;
   257   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   258   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   260   if (offset == Type::OffsetBot)
   261     return NULL;            // cannot unalias unless there are precise offsets
   263   intptr_t size_in_bytes = memory_size();
   265   Node* mem = in(MemNode::Memory);   // start searching here...
   267   int cnt = 50;             // Cycle limiter
   268   for (;;) {                // While we can dance past unrelated stores...
   269     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   271     if (mem->is_Store()) {
   272       Node* st_adr = mem->in(MemNode::Address);
   273       intptr_t st_offset = 0;
   274       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   275       if (st_base == NULL)
   276         break;              // inscrutable pointer
   277       if (st_offset != offset && st_offset != Type::OffsetBot) {
   278         const int MAX_STORE = BytesPerLong;
   279         if (st_offset >= offset + size_in_bytes ||
   280             st_offset <= offset - MAX_STORE ||
   281             st_offset <= offset - mem->as_Store()->memory_size()) {
   282           // Success:  The offsets are provably independent.
   283           // (You may ask, why not just test st_offset != offset and be done?
   284           // The answer is that stores of different sizes can co-exist
   285           // in the same sequence of RawMem effects.  We sometimes initialize
   286           // a whole 'tile' of array elements with a single jint or jlong.)
   287           mem = mem->in(MemNode::Memory);
   288           continue;           // (a) advance through independent store memory
   289         }
   290       }
   291       if (st_base != base &&
   292           detect_ptr_independence(base, alloc,
   293                                   st_base,
   294                                   AllocateNode::Ideal_allocation(st_base, phase),
   295                                   phase)) {
   296         // Success:  The bases are provably independent.
   297         mem = mem->in(MemNode::Memory);
   298         continue;           // (a) advance through independent store memory
   299       }
   301       // (b) At this point, if the bases or offsets do not agree, we lose,
   302       // since we have not managed to prove 'this' and 'mem' independent.
   303       if (st_base == base && st_offset == offset) {
   304         return mem;         // let caller handle steps (c), (d)
   305       }
   307     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   308       InitializeNode* st_init = mem->in(0)->as_Initialize();
   309       AllocateNode*  st_alloc = st_init->allocation();
   310       if (st_alloc == NULL)
   311         break;              // something degenerated
   312       bool known_identical = false;
   313       bool known_independent = false;
   314       if (alloc == st_alloc)
   315         known_identical = true;
   316       else if (alloc != NULL)
   317         known_independent = true;
   318       else if (ctrl != NULL &&
   319                detect_dominating_control(ctrl, st_alloc->in(0)))
   320         known_independent = true;
   322       if (known_independent) {
   323         // The bases are provably independent: Either they are
   324         // manifestly distinct allocations, or else the control
   325         // of this load dominates the store's allocation.
   326         int alias_idx = phase->C->get_alias_index(adr_type());
   327         if (alias_idx == Compile::AliasIdxRaw) {
   328           mem = st_alloc->in(TypeFunc::Memory);
   329         } else {
   330           mem = st_init->memory(alias_idx);
   331         }
   332         continue;           // (a) advance through independent store memory
   333       }
   335       // (b) at this point, if we are not looking at a store initializing
   336       // the same allocation we are loading from, we lose.
   337       if (known_identical) {
   338         // From caller, can_see_stored_value will consult find_captured_store.
   339         return mem;         // let caller handle steps (c), (d)
   340       }
   342     }
   344     // Unless there is an explicit 'continue', we must bail out here,
   345     // because 'mem' is an inscrutable memory state (e.g., a call).
   346     break;
   347   }
   349   return NULL;              // bail out
   350 }
   352 //----------------------calculate_adr_type-------------------------------------
   353 // Helper function.  Notices when the given type of address hits top or bottom.
   354 // Also, asserts a cross-check of the type against the expected address type.
   355 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   356   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   357   #ifdef PRODUCT
   358   cross_check = NULL;
   359   #else
   360   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   361   #endif
   362   const TypePtr* tp = t->isa_ptr();
   363   if (tp == NULL) {
   364     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   365     return TypePtr::BOTTOM;           // touches lots of memory
   366   } else {
   367     #ifdef ASSERT
   368     // %%%% [phh] We don't check the alias index if cross_check is
   369     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   370     if (cross_check != NULL &&
   371         cross_check != TypePtr::BOTTOM &&
   372         cross_check != TypeRawPtr::BOTTOM) {
   373       // Recheck the alias index, to see if it has changed (due to a bug).
   374       Compile* C = Compile::current();
   375       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   376              "must stay in the original alias category");
   377       // The type of the address must be contained in the adr_type,
   378       // disregarding "null"-ness.
   379       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   380       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   381       assert(cross_check->meet(tp_notnull) == cross_check,
   382              "real address must not escape from expected memory type");
   383     }
   384     #endif
   385     return tp;
   386   }
   387 }
   389 //------------------------adr_phi_is_loop_invariant----------------------------
   390 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   391 // loop is loop invariant. Make a quick traversal of Phi and associated
   392 // CastPP nodes, looking to see if they are a closed group within the loop.
   393 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   394   // The idea is that the phi-nest must boil down to only CastPP nodes
   395   // with the same data. This implies that any path into the loop already
   396   // includes such a CastPP, and so the original cast, whatever its input,
   397   // must be covered by an equivalent cast, with an earlier control input.
   398   ResourceMark rm;
   400   // The loop entry input of the phi should be the unique dominating
   401   // node for every Phi/CastPP in the loop.
   402   Unique_Node_List closure;
   403   closure.push(adr_phi->in(LoopNode::EntryControl));
   405   // Add the phi node and the cast to the worklist.
   406   Unique_Node_List worklist;
   407   worklist.push(adr_phi);
   408   if( cast != NULL ){
   409     if( !cast->is_ConstraintCast() ) return false;
   410     worklist.push(cast);
   411   }
   413   // Begin recursive walk of phi nodes.
   414   while( worklist.size() ){
   415     // Take a node off the worklist
   416     Node *n = worklist.pop();
   417     if( !closure.member(n) ){
   418       // Add it to the closure.
   419       closure.push(n);
   420       // Make a sanity check to ensure we don't waste too much time here.
   421       if( closure.size() > 20) return false;
   422       // This node is OK if:
   423       //  - it is a cast of an identical value
   424       //  - or it is a phi node (then we add its inputs to the worklist)
   425       // Otherwise, the node is not OK, and we presume the cast is not invariant
   426       if( n->is_ConstraintCast() ){
   427         worklist.push(n->in(1));
   428       } else if( n->is_Phi() ) {
   429         for( uint i = 1; i < n->req(); i++ ) {
   430           worklist.push(n->in(i));
   431         }
   432       } else {
   433         return false;
   434       }
   435     }
   436   }
   438   // Quit when the worklist is empty, and we've found no offending nodes.
   439   return true;
   440 }
   442 //------------------------------Ideal_DU_postCCP-------------------------------
   443 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   444 // going away in this pass and we need to make this memory op depend on the
   445 // gating null check.
   447 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   448 // some sense; we get to keep around the knowledge that an oop is not-null
   449 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   450 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   451 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   452 // some of the more trivial cases in the optimizer.  Removing more useless
   453 // Phi's started allowing Loads to illegally float above null checks.  I gave
   454 // up on this approach.  CNC 10/20/2000
   455 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   456   Node *ctr = in(MemNode::Control);
   457   Node *mem = in(MemNode::Memory);
   458   Node *adr = in(MemNode::Address);
   459   Node *skipped_cast = NULL;
   460   // Need a null check?  Regular static accesses do not because they are
   461   // from constant addresses.  Array ops are gated by the range check (which
   462   // always includes a NULL check).  Just check field ops.
   463   if( !ctr ) {
   464     // Scan upwards for the highest location we can place this memory op.
   465     while( true ) {
   466       switch( adr->Opcode() ) {
   468       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   469         adr = adr->in(AddPNode::Base);
   470         continue;
   472       case Op_CastPP:
   473         // If the CastPP is useless, just peek on through it.
   474         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   475           // Remember the cast that we've peeked though. If we peek
   476           // through more than one, then we end up remembering the highest
   477           // one, that is, if in a loop, the one closest to the top.
   478           skipped_cast = adr;
   479           adr = adr->in(1);
   480           continue;
   481         }
   482         // CastPP is going away in this pass!  We need this memory op to be
   483         // control-dependent on the test that is guarding the CastPP.
   484         ccp->hash_delete(this);
   485         set_req(MemNode::Control, adr->in(0));
   486         ccp->hash_insert(this);
   487         return this;
   489       case Op_Phi:
   490         // Attempt to float above a Phi to some dominating point.
   491         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   492           // If we've already peeked through a Cast (which could have set the
   493           // control), we can't float above a Phi, because the skipped Cast
   494           // may not be loop invariant.
   495           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   496             adr = adr->in(1);
   497             continue;
   498           }
   499         }
   501         // Intentional fallthrough!
   503         // No obvious dominating point.  The mem op is pinned below the Phi
   504         // by the Phi itself.  If the Phi goes away (no true value is merged)
   505         // then the mem op can float, but not indefinitely.  It must be pinned
   506         // behind the controls leading to the Phi.
   507       case Op_CheckCastPP:
   508         // These usually stick around to change address type, however a
   509         // useless one can be elided and we still need to pick up a control edge
   510         if (adr->in(0) == NULL) {
   511           // This CheckCastPP node has NO control and is likely useless. But we
   512           // need check further up the ancestor chain for a control input to keep
   513           // the node in place. 4959717.
   514           skipped_cast = adr;
   515           adr = adr->in(1);
   516           continue;
   517         }
   518         ccp->hash_delete(this);
   519         set_req(MemNode::Control, adr->in(0));
   520         ccp->hash_insert(this);
   521         return this;
   523         // List of "safe" opcodes; those that implicitly block the memory
   524         // op below any null check.
   525       case Op_CastX2P:          // no null checks on native pointers
   526       case Op_Parm:             // 'this' pointer is not null
   527       case Op_LoadP:            // Loading from within a klass
   528       case Op_LoadKlass:        // Loading from within a klass
   529       case Op_ConP:             // Loading from a klass
   530       case Op_CreateEx:         // Sucking up the guts of an exception oop
   531       case Op_Con:              // Reading from TLS
   532       case Op_CMoveP:           // CMoveP is pinned
   533         break;                  // No progress
   535       case Op_Proj:             // Direct call to an allocation routine
   536       case Op_SCMemProj:        // Memory state from store conditional ops
   537 #ifdef ASSERT
   538         {
   539           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   540           const Node* call = adr->in(0);
   541           if (call->is_CallStaticJava()) {
   542             const CallStaticJavaNode* call_java = call->as_CallStaticJava();
   543             assert(call_java && call_java->method() == NULL, "must be runtime call");
   544             // We further presume that this is one of
   545             // new_instance_Java, new_array_Java, or
   546             // the like, but do not assert for this.
   547           } else if (call->is_Allocate()) {
   548             // similar case to new_instance_Java, etc.
   549           } else if (!call->is_CallLeaf()) {
   550             // Projections from fetch_oop (OSR) are allowed as well.
   551             ShouldNotReachHere();
   552           }
   553         }
   554 #endif
   555         break;
   556       default:
   557         ShouldNotReachHere();
   558       }
   559       break;
   560     }
   561   }
   563   return  NULL;               // No progress
   564 }
   567 //=============================================================================
   568 uint LoadNode::size_of() const { return sizeof(*this); }
   569 uint LoadNode::cmp( const Node &n ) const
   570 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   571 const Type *LoadNode::bottom_type() const { return _type; }
   572 uint LoadNode::ideal_reg() const {
   573   return Matcher::base2reg[_type->base()];
   574 }
   576 #ifndef PRODUCT
   577 void LoadNode::dump_spec(outputStream *st) const {
   578   MemNode::dump_spec(st);
   579   if( !Verbose && !WizardMode ) {
   580     // standard dump does this in Verbose and WizardMode
   581     st->print(" #"); _type->dump_on(st);
   582   }
   583 }
   584 #endif
   587 //----------------------------LoadNode::make-----------------------------------
   588 // Polymorphic factory method:
   589 LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   590   // sanity check the alias category against the created node type
   591   assert(!(adr_type->isa_oopptr() &&
   592            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   593          "use LoadKlassNode instead");
   594   assert(!(adr_type->isa_aryptr() &&
   595            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   596          "use LoadRangeNode instead");
   597   switch (bt) {
   598   case T_BOOLEAN:
   599   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   600   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   601   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   602   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   603   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   604   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   605   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   606   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   607   case T_OBJECT:  return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   608   }
   609   ShouldNotReachHere();
   610   return (LoadNode*)NULL;
   611 }
   613 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   614   bool require_atomic = true;
   615   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   616 }
   621 //------------------------------hash-------------------------------------------
   622 uint LoadNode::hash() const {
   623   // unroll addition of interesting fields
   624   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   625 }
   627 //---------------------------can_see_stored_value------------------------------
   628 // This routine exists to make sure this set of tests is done the same
   629 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   630 // will change the graph shape in a way which makes memory alive twice at the
   631 // same time (uses the Oracle model of aliasing), then some
   632 // LoadXNode::Identity will fold things back to the equivalence-class model
   633 // of aliasing.
   634 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   635   Node* ld_adr = in(MemNode::Address);
   637   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   638   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   639   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   640       atp->field() != NULL && !atp->field()->is_volatile()) {
   641     uint alias_idx = atp->index();
   642     bool final = atp->field()->is_final();
   643     Node* result = NULL;
   644     Node* current = st;
   645     // Skip through chains of MemBarNodes checking the MergeMems for
   646     // new states for the slice of this load.  Stop once any other
   647     // kind of node is encountered.  Loads from final memory can skip
   648     // through any kind of MemBar but normal loads shouldn't skip
   649     // through MemBarAcquire since the could allow them to move out of
   650     // a synchronized region.
   651     while (current->is_Proj()) {
   652       int opc = current->in(0)->Opcode();
   653       if ((final && opc == Op_MemBarAcquire) ||
   654           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   655         Node* mem = current->in(0)->in(TypeFunc::Memory);
   656         if (mem->is_MergeMem()) {
   657           MergeMemNode* merge = mem->as_MergeMem();
   658           Node* new_st = merge->memory_at(alias_idx);
   659           if (new_st == merge->base_memory()) {
   660             // Keep searching
   661             current = merge->base_memory();
   662             continue;
   663           }
   664           // Save the new memory state for the slice and fall through
   665           // to exit.
   666           result = new_st;
   667         }
   668       }
   669       break;
   670     }
   671     if (result != NULL) {
   672       st = result;
   673     }
   674   }
   677   // Loop around twice in the case Load -> Initialize -> Store.
   678   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   679   for (int trip = 0; trip <= 1; trip++) {
   681     if (st->is_Store()) {
   682       Node* st_adr = st->in(MemNode::Address);
   683       if (!phase->eqv(st_adr, ld_adr)) {
   684         // Try harder before giving up...  Match raw and non-raw pointers.
   685         intptr_t st_off = 0;
   686         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   687         if (alloc == NULL)       return NULL;
   688         intptr_t ld_off = 0;
   689         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   690         if (alloc != allo2)      return NULL;
   691         if (ld_off != st_off)    return NULL;
   692         // At this point we have proven something like this setup:
   693         //  A = Allocate(...)
   694         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   695         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   696         // (Actually, we haven't yet proven the Q's are the same.)
   697         // In other words, we are loading from a casted version of
   698         // the same pointer-and-offset that we stored to.
   699         // Thus, we are able to replace L by V.
   700       }
   701       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   702       if (store_Opcode() != st->Opcode())
   703         return NULL;
   704       return st->in(MemNode::ValueIn);
   705     }
   707     intptr_t offset = 0;  // scratch
   709     // A load from a freshly-created object always returns zero.
   710     // (This can happen after LoadNode::Ideal resets the load's memory input
   711     // to find_captured_store, which returned InitializeNode::zero_memory.)
   712     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   713         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   714         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   715       // return a zero value for the load's basic type
   716       // (This is one of the few places where a generic PhaseTransform
   717       // can create new nodes.  Think of it as lazily manifesting
   718       // virtually pre-existing constants.)
   719       return phase->zerocon(memory_type());
   720     }
   722     // A load from an initialization barrier can match a captured store.
   723     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   724       InitializeNode* init = st->in(0)->as_Initialize();
   725       AllocateNode* alloc = init->allocation();
   726       if (alloc != NULL &&
   727           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   728         // examine a captured store value
   729         st = init->find_captured_store(offset, memory_size(), phase);
   730         if (st != NULL)
   731           continue;             // take one more trip around
   732       }
   733     }
   735     break;
   736   }
   738   return NULL;
   739 }
   741 //------------------------------Identity---------------------------------------
   742 // Loads are identity if previous store is to same address
   743 Node *LoadNode::Identity( PhaseTransform *phase ) {
   744   // If the previous store-maker is the right kind of Store, and the store is
   745   // to the same address, then we are equal to the value stored.
   746   Node* mem = in(MemNode::Memory);
   747   Node* value = can_see_stored_value(mem, phase);
   748   if( value ) {
   749     // byte, short & char stores truncate naturally.
   750     // A load has to load the truncated value which requires
   751     // some sort of masking operation and that requires an
   752     // Ideal call instead of an Identity call.
   753     if (memory_size() < BytesPerInt) {
   754       // If the input to the store does not fit with the load's result type,
   755       // it must be truncated via an Ideal call.
   756       if (!phase->type(value)->higher_equal(phase->type(this)))
   757         return this;
   758     }
   759     // (This works even when value is a Con, but LoadNode::Value
   760     // usually runs first, producing the singleton type of the Con.)
   761     return value;
   762   }
   763   return this;
   764 }
   767 // Returns true if the AliasType refers to the field that holds the
   768 // cached box array.  Currently only handles the IntegerCache case.
   769 static bool is_autobox_cache(Compile::AliasType* atp) {
   770   if (atp != NULL && atp->field() != NULL) {
   771     ciField* field = atp->field();
   772     ciSymbol* klass = field->holder()->name();
   773     if (field->name() == ciSymbol::cache_field_name() &&
   774         field->holder()->uses_default_loader() &&
   775         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   776       return true;
   777     }
   778   }
   779   return false;
   780 }
   782 // Fetch the base value in the autobox array
   783 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   784   if (atp != NULL && atp->field() != NULL) {
   785     ciField* field = atp->field();
   786     ciSymbol* klass = field->holder()->name();
   787     if (field->name() == ciSymbol::cache_field_name() &&
   788         field->holder()->uses_default_loader() &&
   789         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   790       assert(field->is_constant(), "what?");
   791       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
   792       // Fetch the box object at the base of the array and get its value
   793       ciInstance* box = array->obj_at(0)->as_instance();
   794       ciInstanceKlass* ik = box->klass()->as_instance_klass();
   795       if (ik->nof_nonstatic_fields() == 1) {
   796         // This should be true nonstatic_field_at requires calling
   797         // nof_nonstatic_fields so check it anyway
   798         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
   799         cache_offset = c.as_int();
   800       }
   801       return true;
   802     }
   803   }
   804   return false;
   805 }
   807 // Returns true if the AliasType refers to the value field of an
   808 // autobox object.  Currently only handles Integer.
   809 static bool is_autobox_object(Compile::AliasType* atp) {
   810   if (atp != NULL && atp->field() != NULL) {
   811     ciField* field = atp->field();
   812     ciSymbol* klass = field->holder()->name();
   813     if (field->name() == ciSymbol::value_name() &&
   814         field->holder()->uses_default_loader() &&
   815         klass == ciSymbol::java_lang_Integer()) {
   816       return true;
   817     }
   818   }
   819   return false;
   820 }
   823 // We're loading from an object which has autobox behaviour.
   824 // If this object is result of a valueOf call we'll have a phi
   825 // merging a newly allocated object and a load from the cache.
   826 // We want to replace this load with the original incoming
   827 // argument to the valueOf call.
   828 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
   829   Node* base = in(Address)->in(AddPNode::Base);
   830   if (base->is_Phi() && base->req() == 3) {
   831     AllocateNode* allocation = NULL;
   832     int allocation_index = -1;
   833     int load_index = -1;
   834     for (uint i = 1; i < base->req(); i++) {
   835       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
   836       if (allocation != NULL) {
   837         allocation_index = i;
   838         load_index = 3 - allocation_index;
   839         break;
   840       }
   841     }
   842     LoadNode* load = NULL;
   843     if (allocation != NULL && base->in(load_index)->is_Load()) {
   844       load = base->in(load_index)->as_Load();
   845     }
   846     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
   847       // Push the loads from the phi that comes from valueOf up
   848       // through it to allow elimination of the loads and the recovery
   849       // of the original value.
   850       Node* mem_phi = in(Memory);
   851       Node* offset = in(Address)->in(AddPNode::Offset);
   853       Node* in1 = clone();
   854       Node* in1_addr = in1->in(Address)->clone();
   855       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
   856       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
   857       in1_addr->set_req(AddPNode::Offset, offset);
   858       in1->set_req(0, base->in(allocation_index));
   859       in1->set_req(Address, in1_addr);
   860       in1->set_req(Memory, mem_phi->in(allocation_index));
   862       Node* in2 = clone();
   863       Node* in2_addr = in2->in(Address)->clone();
   864       in2_addr->set_req(AddPNode::Base, base->in(load_index));
   865       in2_addr->set_req(AddPNode::Address, base->in(load_index));
   866       in2_addr->set_req(AddPNode::Offset, offset);
   867       in2->set_req(0, base->in(load_index));
   868       in2->set_req(Address, in2_addr);
   869       in2->set_req(Memory, mem_phi->in(load_index));
   871       in1_addr = phase->transform(in1_addr);
   872       in1 =      phase->transform(in1);
   873       in2_addr = phase->transform(in2_addr);
   874       in2 =      phase->transform(in2);
   876       PhiNode* result = PhiNode::make_blank(base->in(0), this);
   877       result->set_req(allocation_index, in1);
   878       result->set_req(load_index, in2);
   879       return result;
   880     }
   881   } else if (base->is_Load()) {
   882     // Eliminate the load of Integer.value for integers from the cache
   883     // array by deriving the value from the index into the array.
   884     // Capture the offset of the load and then reverse the computation.
   885     Node* load_base = base->in(Address)->in(AddPNode::Base);
   886     if (load_base != NULL) {
   887       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
   888       intptr_t cache_offset;
   889       int shift = -1;
   890       Node* cache = NULL;
   891       if (is_autobox_cache(atp)) {
   892         shift  = exact_log2(type2aelembytes(T_OBJECT));
   893         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
   894       }
   895       if (cache != NULL && base->in(Address)->is_AddP()) {
   896         Node* elements[4];
   897         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
   898         int cache_low;
   899         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
   900           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
   901           // Add up all the offsets making of the address of the load
   902           Node* result = elements[0];
   903           for (int i = 1; i < count; i++) {
   904             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
   905           }
   906           // Remove the constant offset from the address and then
   907           // remove the scaling of the offset to recover the original index.
   908           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
   909           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
   910             // Peel the shift off directly but wrap it in a dummy node
   911             // since Ideal can't return existing nodes
   912             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
   913           } else {
   914             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
   915           }
   916 #ifdef _LP64
   917           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
   918 #endif
   919           return result;
   920         }
   921       }
   922     }
   923   }
   924   return NULL;
   925 }
   928 //------------------------------Ideal------------------------------------------
   929 // If the load is from Field memory and the pointer is non-null, we can
   930 // zero out the control input.
   931 // If the offset is constant and the base is an object allocation,
   932 // try to hook me up to the exact initializing store.
   933 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   934   Node* p = MemNode::Ideal_common(phase, can_reshape);
   935   if (p)  return (p == NodeSentinel) ? NULL : p;
   937   Node* ctrl    = in(MemNode::Control);
   938   Node* address = in(MemNode::Address);
   940   // Skip up past a SafePoint control.  Cannot do this for Stores because
   941   // pointer stores & cardmarks must stay on the same side of a SafePoint.
   942   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
   943       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
   944     ctrl = ctrl->in(0);
   945     set_req(MemNode::Control,ctrl);
   946   }
   948   // Check for useless control edge in some common special cases
   949   if (in(MemNode::Control) != NULL) {
   950     intptr_t ignore = 0;
   951     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
   952     if (base != NULL
   953         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
   954         && detect_dominating_control(base->in(0), phase->C->start())) {
   955       // A method-invariant, non-null address (constant or 'this' argument).
   956       set_req(MemNode::Control, NULL);
   957     }
   958   }
   960   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
   961     Node* base = in(Address)->in(AddPNode::Base);
   962     if (base != NULL) {
   963       Compile::AliasType* atp = phase->C->alias_type(adr_type());
   964       if (is_autobox_object(atp)) {
   965         Node* result = eliminate_autobox(phase);
   966         if (result != NULL) return result;
   967       }
   968     }
   969   }
   971   // Check for prior store with a different base or offset; make Load
   972   // independent.  Skip through any number of them.  Bail out if the stores
   973   // are in an endless dead cycle and report no progress.  This is a key
   974   // transform for Reflection.  However, if after skipping through the Stores
   975   // we can't then fold up against a prior store do NOT do the transform as
   976   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
   977   // array memory alive twice: once for the hoisted Load and again after the
   978   // bypassed Store.  This situation only works if EVERYBODY who does
   979   // anti-dependence work knows how to bypass.  I.e. we need all
   980   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
   981   // the alias index stuff.  So instead, peek through Stores and IFF we can
   982   // fold up, do so.
   983   Node* prev_mem = find_previous_store(phase);
   984   // Steps (a), (b):  Walk past independent stores to find an exact match.
   985   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
   986     // (c) See if we can fold up on the spot, but don't fold up here.
   987     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
   988     // just return a prior value, which is done by Identity calls.
   989     if (can_see_stored_value(prev_mem, phase)) {
   990       // Make ready for step (d):
   991       set_req(MemNode::Memory, prev_mem);
   992       return this;
   993     }
   994   }
   996   return NULL;                  // No further progress
   997 }
   999 // Helper to recognize certain Klass fields which are invariant across
  1000 // some group of array types (e.g., int[] or all T[] where T < Object).
  1001 const Type*
  1002 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1003                                  ciKlass* klass) const {
  1004   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1005     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1006     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1007     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1008     return TypeInt::make(klass->modifier_flags());
  1010   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1011     // The field is Klass::_access_flags.  Return its (constant) value.
  1012     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1013     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1014     return TypeInt::make(klass->access_flags());
  1016   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1017     // The field is Klass::_layout_helper.  Return its constant value if known.
  1018     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1019     return TypeInt::make(klass->layout_helper());
  1022   // No match.
  1023   return NULL;
  1026 //------------------------------Value-----------------------------------------
  1027 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1028   // Either input is TOP ==> the result is TOP
  1029   Node* mem = in(MemNode::Memory);
  1030   const Type *t1 = phase->type(mem);
  1031   if (t1 == Type::TOP)  return Type::TOP;
  1032   Node* adr = in(MemNode::Address);
  1033   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1034   if (tp == NULL || tp->empty())  return Type::TOP;
  1035   int off = tp->offset();
  1036   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1038   // Try to guess loaded type from pointer type
  1039   if (tp->base() == Type::AryPtr) {
  1040     const Type *t = tp->is_aryptr()->elem();
  1041     // Don't do this for integer types. There is only potential profit if
  1042     // the element type t is lower than _type; that is, for int types, if _type is
  1043     // more restrictive than t.  This only happens here if one is short and the other
  1044     // char (both 16 bits), and in those cases we've made an intentional decision
  1045     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1046     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1047     //
  1048     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1049     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1050     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1051     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1052     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1053     // In fact, that could have been the original type of p1, and p1 could have
  1054     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1055     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1056     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1057         && Opcode() != Op_LoadKlass) {
  1058       // t might actually be lower than _type, if _type is a unique
  1059       // concrete subclass of abstract class t.
  1060       // Make sure the reference is not into the header, by comparing
  1061       // the offset against the offset of the start of the array's data.
  1062       // Different array types begin at slightly different offsets (12 vs. 16).
  1063       // We choose T_BYTE as an example base type that is least restrictive
  1064       // as to alignment, which will therefore produce the smallest
  1065       // possible base offset.
  1066       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1067       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1068         const Type* jt = t->join(_type);
  1069         // In any case, do not allow the join, per se, to empty out the type.
  1070         if (jt->empty() && !t->empty()) {
  1071           // This can happen if a interface-typed array narrows to a class type.
  1072           jt = _type;
  1075         if (EliminateAutoBox) {
  1076           // The pointers in the autobox arrays are always non-null
  1077           Node* base = in(Address)->in(AddPNode::Base);
  1078           if (base != NULL) {
  1079             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1080             if (is_autobox_cache(atp)) {
  1081               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1085         return jt;
  1088   } else if (tp->base() == Type::InstPtr) {
  1089     assert( off != Type::OffsetBot ||
  1090             // arrays can be cast to Objects
  1091             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1092             // unsafe field access may not have a constant offset
  1093             phase->C->has_unsafe_access(),
  1094             "Field accesses must be precise" );
  1095     // For oop loads, we expect the _type to be precise
  1096   } else if (tp->base() == Type::KlassPtr) {
  1097     assert( off != Type::OffsetBot ||
  1098             // arrays can be cast to Objects
  1099             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1100             // also allow array-loading from the primary supertype
  1101             // array during subtype checks
  1102             Opcode() == Op_LoadKlass,
  1103             "Field accesses must be precise" );
  1104     // For klass/static loads, we expect the _type to be precise
  1107   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1108   if (tkls != NULL && !StressReflectiveCode) {
  1109     ciKlass* klass = tkls->klass();
  1110     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1111       // We are loading a field from a Klass metaobject whose identity
  1112       // is known at compile time (the type is "exact" or "precise").
  1113       // Check for fields we know are maintained as constants by the VM.
  1114       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1115         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1116         // (Folds up type checking code.)
  1117         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1118         return TypeInt::make(klass->super_check_offset());
  1120       // Compute index into primary_supers array
  1121       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1122       // Check for overflowing; use unsigned compare to handle the negative case.
  1123       if( depth < ciKlass::primary_super_limit() ) {
  1124         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1125         // (Folds up type checking code.)
  1126         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1127         ciKlass *ss = klass->super_of_depth(depth);
  1128         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1130       const Type* aift = load_array_final_field(tkls, klass);
  1131       if (aift != NULL)  return aift;
  1132       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1133           && klass->is_array_klass()) {
  1134         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1135         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1136         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1137         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1139       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1140         // The field is Klass::_java_mirror.  Return its (constant) value.
  1141         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1142         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1143         return TypeInstPtr::make(klass->java_mirror());
  1147     // We can still check if we are loading from the primary_supers array at a
  1148     // shallow enough depth.  Even though the klass is not exact, entries less
  1149     // than or equal to its super depth are correct.
  1150     if (klass->is_loaded() ) {
  1151       ciType *inner = klass->klass();
  1152       while( inner->is_obj_array_klass() )
  1153         inner = inner->as_obj_array_klass()->base_element_type();
  1154       if( inner->is_instance_klass() &&
  1155           !inner->as_instance_klass()->flags().is_interface() ) {
  1156         // Compute index into primary_supers array
  1157         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1158         // Check for overflowing; use unsigned compare to handle the negative case.
  1159         if( depth < ciKlass::primary_super_limit() &&
  1160             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1161           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1162           // (Folds up type checking code.)
  1163           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1164           ciKlass *ss = klass->super_of_depth(depth);
  1165           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1170     // If the type is enough to determine that the thing is not an array,
  1171     // we can give the layout_helper a positive interval type.
  1172     // This will help short-circuit some reflective code.
  1173     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1174         && !klass->is_array_klass() // not directly typed as an array
  1175         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1176         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1177         ) {
  1178       // Note:  When interfaces are reliable, we can narrow the interface
  1179       // test to (klass != Serializable && klass != Cloneable).
  1180       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1181       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1182       // The key property of this type is that it folds up tests
  1183       // for array-ness, since it proves that the layout_helper is positive.
  1184       // Thus, a generic value like the basic object layout helper works fine.
  1185       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1189   // If we are loading from a freshly-allocated object, produce a zero,
  1190   // if the load is provably beyond the header of the object.
  1191   // (Also allow a variable load from a fresh array to produce zero.)
  1192   if (ReduceFieldZeroing) {
  1193     Node* value = can_see_stored_value(mem,phase);
  1194     if (value != NULL && value->is_Con())
  1195       return value->bottom_type();
  1198   return _type;
  1201 //------------------------------match_edge-------------------------------------
  1202 // Do we Match on this edge index or not?  Match only the address.
  1203 uint LoadNode::match_edge(uint idx) const {
  1204   return idx == MemNode::Address;
  1207 //--------------------------LoadBNode::Ideal--------------------------------------
  1208 //
  1209 //  If the previous store is to the same address as this load,
  1210 //  and the value stored was larger than a byte, replace this load
  1211 //  with the value stored truncated to a byte.  If no truncation is
  1212 //  needed, the replacement is done in LoadNode::Identity().
  1213 //
  1214 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1215   Node* mem = in(MemNode::Memory);
  1216   Node* value = can_see_stored_value(mem,phase);
  1217   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1218     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1219     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1221   // Identity call will handle the case where truncation is not needed.
  1222   return LoadNode::Ideal(phase, can_reshape);
  1225 //--------------------------LoadCNode::Ideal--------------------------------------
  1226 //
  1227 //  If the previous store is to the same address as this load,
  1228 //  and the value stored was larger than a char, replace this load
  1229 //  with the value stored truncated to a char.  If no truncation is
  1230 //  needed, the replacement is done in LoadNode::Identity().
  1231 //
  1232 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1233   Node* mem = in(MemNode::Memory);
  1234   Node* value = can_see_stored_value(mem,phase);
  1235   if( value && !phase->type(value)->higher_equal( _type ) )
  1236     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1237   // Identity call will handle the case where truncation is not needed.
  1238   return LoadNode::Ideal(phase, can_reshape);
  1241 //--------------------------LoadSNode::Ideal--------------------------------------
  1242 //
  1243 //  If the previous store is to the same address as this load,
  1244 //  and the value stored was larger than a short, replace this load
  1245 //  with the value stored truncated to a short.  If no truncation is
  1246 //  needed, the replacement is done in LoadNode::Identity().
  1247 //
  1248 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1249   Node* mem = in(MemNode::Memory);
  1250   Node* value = can_see_stored_value(mem,phase);
  1251   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1252     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1253     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1255   // Identity call will handle the case where truncation is not needed.
  1256   return LoadNode::Ideal(phase, can_reshape);
  1259 //=============================================================================
  1260 //------------------------------Value------------------------------------------
  1261 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1262   // Either input is TOP ==> the result is TOP
  1263   const Type *t1 = phase->type( in(MemNode::Memory) );
  1264   if (t1 == Type::TOP)  return Type::TOP;
  1265   Node *adr = in(MemNode::Address);
  1266   const Type *t2 = phase->type( adr );
  1267   if (t2 == Type::TOP)  return Type::TOP;
  1268   const TypePtr *tp = t2->is_ptr();
  1269   if (TypePtr::above_centerline(tp->ptr()) ||
  1270       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1272   // Return a more precise klass, if possible
  1273   const TypeInstPtr *tinst = tp->isa_instptr();
  1274   if (tinst != NULL) {
  1275     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1276     int offset = tinst->offset();
  1277     if (ik == phase->C->env()->Class_klass()
  1278         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1279             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1280       // We are loading a special hidden field from a Class mirror object,
  1281       // the field which points to the VM's Klass metaobject.
  1282       ciType* t = tinst->java_mirror_type();
  1283       // java_mirror_type returns non-null for compile-time Class constants.
  1284       if (t != NULL) {
  1285         // constant oop => constant klass
  1286         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1287           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1289         if (!t->is_klass()) {
  1290           // a primitive Class (e.g., int.class) has NULL for a klass field
  1291           return TypePtr::NULL_PTR;
  1293         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1294         return TypeKlassPtr::make(t->as_klass());
  1296       // non-constant mirror, so we can't tell what's going on
  1298     if( !ik->is_loaded() )
  1299       return _type;             // Bail out if not loaded
  1300     if (offset == oopDesc::klass_offset_in_bytes()) {
  1301       if (tinst->klass_is_exact()) {
  1302         return TypeKlassPtr::make(ik);
  1304       // See if we can become precise: no subklasses and no interface
  1305       // (Note:  We need to support verified interfaces.)
  1306       if (!ik->is_interface() && !ik->has_subklass()) {
  1307         //assert(!UseExactTypes, "this code should be useless with exact types");
  1308         // Add a dependence; if any subclass added we need to recompile
  1309         if (!ik->is_final()) {
  1310           // %%% should use stronger assert_unique_concrete_subtype instead
  1311           phase->C->dependencies()->assert_leaf_type(ik);
  1313         // Return precise klass
  1314         return TypeKlassPtr::make(ik);
  1317       // Return root of possible klass
  1318       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1322   // Check for loading klass from an array
  1323   const TypeAryPtr *tary = tp->isa_aryptr();
  1324   if( tary != NULL ) {
  1325     ciKlass *tary_klass = tary->klass();
  1326     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1327         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1328       if (tary->klass_is_exact()) {
  1329         return TypeKlassPtr::make(tary_klass);
  1331       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1332       // If the klass is an object array, we defer the question to the
  1333       // array component klass.
  1334       if( ak->is_obj_array_klass() ) {
  1335         assert( ak->is_loaded(), "" );
  1336         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1337         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1338           ciInstanceKlass* ik = base_k->as_instance_klass();
  1339           // See if we can become precise: no subklasses and no interface
  1340           if (!ik->is_interface() && !ik->has_subklass()) {
  1341             //assert(!UseExactTypes, "this code should be useless with exact types");
  1342             // Add a dependence; if any subclass added we need to recompile
  1343             if (!ik->is_final()) {
  1344               phase->C->dependencies()->assert_leaf_type(ik);
  1346             // Return precise array klass
  1347             return TypeKlassPtr::make(ak);
  1350         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1351       } else {                  // Found a type-array?
  1352         //assert(!UseExactTypes, "this code should be useless with exact types");
  1353         assert( ak->is_type_array_klass(), "" );
  1354         return TypeKlassPtr::make(ak); // These are always precise
  1359   // Check for loading klass from an array klass
  1360   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1361   if (tkls != NULL && !StressReflectiveCode) {
  1362     ciKlass* klass = tkls->klass();
  1363     if( !klass->is_loaded() )
  1364       return _type;             // Bail out if not loaded
  1365     if( klass->is_obj_array_klass() &&
  1366         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1367       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1368       // // Always returning precise element type is incorrect,
  1369       // // e.g., element type could be object and array may contain strings
  1370       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1372       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1373       // according to the element type's subclassing.
  1374       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1376     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1377         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1378       ciKlass* sup = klass->as_instance_klass()->super();
  1379       // The field is Klass::_super.  Return its (constant) value.
  1380       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1381       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1385   // Bailout case
  1386   return LoadNode::Value(phase);
  1389 //------------------------------Identity---------------------------------------
  1390 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1391 // Also feed through the klass in Allocate(...klass...)._klass.
  1392 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1393   Node* x = LoadNode::Identity(phase);
  1394   if (x != this)  return x;
  1396   // Take apart the address into an oop and and offset.
  1397   // Return 'this' if we cannot.
  1398   Node*    adr    = in(MemNode::Address);
  1399   intptr_t offset = 0;
  1400   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1401   if (base == NULL)     return this;
  1402   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1403   if (toop == NULL)     return this;
  1405   // We can fetch the klass directly through an AllocateNode.
  1406   // This works even if the klass is not constant (clone or newArray).
  1407   if (offset == oopDesc::klass_offset_in_bytes()) {
  1408     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1409     if (allocated_klass != NULL) {
  1410       return allocated_klass;
  1414   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1415   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1416   // See inline_native_Class_query for occurrences of these patterns.
  1417   // Java Example:  x.getClass().isAssignableFrom(y)
  1418   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1419   //
  1420   // This improves reflective code, often making the Class
  1421   // mirror go completely dead.  (Current exception:  Class
  1422   // mirrors may appear in debug info, but we could clean them out by
  1423   // introducing a new debug info operator for klassOop.java_mirror).
  1424   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1425       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1426           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1427     // We are loading a special hidden field from a Class mirror,
  1428     // the field which points to its Klass or arrayKlass metaobject.
  1429     if (base->is_Load()) {
  1430       Node* adr2 = base->in(MemNode::Address);
  1431       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1432       if (tkls != NULL && !tkls->empty()
  1433           && (tkls->klass()->is_instance_klass() ||
  1434               tkls->klass()->is_array_klass())
  1435           && adr2->is_AddP()
  1436           ) {
  1437         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1438         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1439           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1441         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1442           return adr2->in(AddPNode::Base);
  1448   return this;
  1451 //------------------------------Value-----------------------------------------
  1452 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1453   // Either input is TOP ==> the result is TOP
  1454   const Type *t1 = phase->type( in(MemNode::Memory) );
  1455   if( t1 == Type::TOP ) return Type::TOP;
  1456   Node *adr = in(MemNode::Address);
  1457   const Type *t2 = phase->type( adr );
  1458   if( t2 == Type::TOP ) return Type::TOP;
  1459   const TypePtr *tp = t2->is_ptr();
  1460   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1461   const TypeAryPtr *tap = tp->isa_aryptr();
  1462   if( !tap ) return _type;
  1463   return tap->size();
  1466 //------------------------------Identity---------------------------------------
  1467 // Feed through the length in AllocateArray(...length...)._length.
  1468 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1469   Node* x = LoadINode::Identity(phase);
  1470   if (x != this)  return x;
  1472   // Take apart the address into an oop and and offset.
  1473   // Return 'this' if we cannot.
  1474   Node*    adr    = in(MemNode::Address);
  1475   intptr_t offset = 0;
  1476   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1477   if (base == NULL)     return this;
  1478   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1479   if (tary == NULL)     return this;
  1481   // We can fetch the length directly through an AllocateArrayNode.
  1482   // This works even if the length is not constant (clone or newArray).
  1483   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1484     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1485     if (allocated_length != NULL) {
  1486       return allocated_length;
  1490   return this;
  1493 //=============================================================================
  1494 //---------------------------StoreNode::make-----------------------------------
  1495 // Polymorphic factory method:
  1496 StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1497   switch (bt) {
  1498   case T_BOOLEAN:
  1499   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1500   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1501   case T_CHAR:
  1502   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1503   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1504   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1505   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1506   case T_ADDRESS:
  1507   case T_OBJECT:  return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1509   ShouldNotReachHere();
  1510   return (StoreNode*)NULL;
  1513 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1514   bool require_atomic = true;
  1515   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1519 //--------------------------bottom_type----------------------------------------
  1520 const Type *StoreNode::bottom_type() const {
  1521   return Type::MEMORY;
  1524 //------------------------------hash-------------------------------------------
  1525 uint StoreNode::hash() const {
  1526   // unroll addition of interesting fields
  1527   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1529   // Since they are not commoned, do not hash them:
  1530   return NO_HASH;
  1533 //------------------------------Ideal------------------------------------------
  1534 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1535 // When a store immediately follows a relevant allocation/initialization,
  1536 // try to capture it into the initialization, or hoist it above.
  1537 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1538   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1539   if (p)  return (p == NodeSentinel) ? NULL : p;
  1541   Node* mem     = in(MemNode::Memory);
  1542   Node* address = in(MemNode::Address);
  1544   // Back-to-back stores to same address?  Fold em up.
  1545   // Generally unsafe if I have intervening uses...
  1546   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1547     // Looking at a dead closed cycle of memory?
  1548     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1550     assert(Opcode() == mem->Opcode() ||
  1551            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1552            "no mismatched stores, except on raw memory");
  1554     if (mem->outcnt() == 1 &&           // check for intervening uses
  1555         mem->as_Store()->memory_size() <= this->memory_size()) {
  1556       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1557       // For example, 'mem' might be the final state at a conditional return.
  1558       // Or, 'mem' might be used by some node which is live at the same time
  1559       // 'this' is live, which might be unschedulable.  So, require exactly
  1560       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1561       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1562       if (can_reshape) {  // (%%% is this an anachronism?)
  1563         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1564                   phase->is_IterGVN());
  1565       } else {
  1566         // It's OK to do this in the parser, since DU info is always accurate,
  1567         // and the parser always refers to nodes via SafePointNode maps.
  1568         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1570       return this;
  1574   // Capture an unaliased, unconditional, simple store into an initializer.
  1575   // Or, if it is independent of the allocation, hoist it above the allocation.
  1576   if (ReduceFieldZeroing && /*can_reshape &&*/
  1577       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1578     InitializeNode* init = mem->in(0)->as_Initialize();
  1579     intptr_t offset = init->can_capture_store(this, phase);
  1580     if (offset > 0) {
  1581       Node* moved = init->capture_store(this, offset, phase);
  1582       // If the InitializeNode captured me, it made a raw copy of me,
  1583       // and I need to disappear.
  1584       if (moved != NULL) {
  1585         // %%% hack to ensure that Ideal returns a new node:
  1586         mem = MergeMemNode::make(phase->C, mem);
  1587         return mem;             // fold me away
  1592   return NULL;                  // No further progress
  1595 //------------------------------Value-----------------------------------------
  1596 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1597   // Either input is TOP ==> the result is TOP
  1598   const Type *t1 = phase->type( in(MemNode::Memory) );
  1599   if( t1 == Type::TOP ) return Type::TOP;
  1600   const Type *t2 = phase->type( in(MemNode::Address) );
  1601   if( t2 == Type::TOP ) return Type::TOP;
  1602   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1603   if( t3 == Type::TOP ) return Type::TOP;
  1604   return Type::MEMORY;
  1607 //------------------------------Identity---------------------------------------
  1608 // Remove redundant stores:
  1609 //   Store(m, p, Load(m, p)) changes to m.
  1610 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1611 Node *StoreNode::Identity( PhaseTransform *phase ) {
  1612   Node* mem = in(MemNode::Memory);
  1613   Node* adr = in(MemNode::Address);
  1614   Node* val = in(MemNode::ValueIn);
  1616   // Load then Store?  Then the Store is useless
  1617   if (val->is_Load() &&
  1618       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  1619       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  1620       val->as_Load()->store_Opcode() == Opcode()) {
  1621     return mem;
  1624   // Two stores in a row of the same value?
  1625   if (mem->is_Store() &&
  1626       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  1627       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  1628       mem->Opcode() == Opcode()) {
  1629     return mem;
  1632   // Store of zero anywhere into a freshly-allocated object?
  1633   // Then the store is useless.
  1634   // (It must already have been captured by the InitializeNode.)
  1635   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1636     // a newly allocated object is already all-zeroes everywhere
  1637     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1638       return mem;
  1641     // the store may also apply to zero-bits in an earlier object
  1642     Node* prev_mem = find_previous_store(phase);
  1643     // Steps (a), (b):  Walk past independent stores to find an exact match.
  1644     if (prev_mem != NULL) {
  1645       Node* prev_val = can_see_stored_value(prev_mem, phase);
  1646       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1647         // prev_val and val might differ by a cast; it would be good
  1648         // to keep the more informative of the two.
  1649         return mem;
  1654   return this;
  1657 //------------------------------match_edge-------------------------------------
  1658 // Do we Match on this edge index or not?  Match only memory & value
  1659 uint StoreNode::match_edge(uint idx) const {
  1660   return idx == MemNode::Address || idx == MemNode::ValueIn;
  1663 //------------------------------cmp--------------------------------------------
  1664 // Do not common stores up together.  They generally have to be split
  1665 // back up anyways, so do not bother.
  1666 uint StoreNode::cmp( const Node &n ) const {
  1667   return (&n == this);          // Always fail except on self
  1670 //------------------------------Ideal_masked_input-----------------------------
  1671 // Check for a useless mask before a partial-word store
  1672 // (StoreB ... (AndI valIn conIa) )
  1673 // If (conIa & mask == mask) this simplifies to
  1674 // (StoreB ... (valIn) )
  1675 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  1676   Node *val = in(MemNode::ValueIn);
  1677   if( val->Opcode() == Op_AndI ) {
  1678     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1679     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  1680       set_req(MemNode::ValueIn, val->in(1));
  1681       return this;
  1684   return NULL;
  1688 //------------------------------Ideal_sign_extended_input----------------------
  1689 // Check for useless sign-extension before a partial-word store
  1690 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  1691 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  1692 // (StoreB ... (valIn) )
  1693 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  1694   Node *val = in(MemNode::ValueIn);
  1695   if( val->Opcode() == Op_RShiftI ) {
  1696     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1697     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  1698       Node *shl = val->in(1);
  1699       if( shl->Opcode() == Op_LShiftI ) {
  1700         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  1701         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  1702           set_req(MemNode::ValueIn, shl->in(1));
  1703           return this;
  1708   return NULL;
  1711 //------------------------------value_never_loaded-----------------------------------
  1712 // Determine whether there are any possible loads of the value stored.
  1713 // For simplicity, we actually check if there are any loads from the
  1714 // address stored to, not just for loads of the value stored by this node.
  1715 //
  1716 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  1717   Node *adr = in(Address);
  1718   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  1719   if (adr_oop == NULL)
  1720     return false;
  1721   if (!adr_oop->is_instance())
  1722     return false; // if not a distinct instance, there may be aliases of the address
  1723   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  1724     Node *use = adr->fast_out(i);
  1725     int opc = use->Opcode();
  1726     if (use->is_Load() || use->is_LoadStore()) {
  1727       return false;
  1730   return true;
  1733 //=============================================================================
  1734 //------------------------------Ideal------------------------------------------
  1735 // If the store is from an AND mask that leaves the low bits untouched, then
  1736 // we can skip the AND operation.  If the store is from a sign-extension
  1737 // (a left shift, then right shift) we can skip both.
  1738 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1739   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  1740   if( progress != NULL ) return progress;
  1742   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  1743   if( progress != NULL ) return progress;
  1745   // Finally check the default case
  1746   return StoreNode::Ideal(phase, can_reshape);
  1749 //=============================================================================
  1750 //------------------------------Ideal------------------------------------------
  1751 // If the store is from an AND mask that leaves the low bits untouched, then
  1752 // we can skip the AND operation
  1753 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1754   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  1755   if( progress != NULL ) return progress;
  1757   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  1758   if( progress != NULL ) return progress;
  1760   // Finally check the default case
  1761   return StoreNode::Ideal(phase, can_reshape);
  1764 //=============================================================================
  1765 //------------------------------Identity---------------------------------------
  1766 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  1767   // No need to card mark when storing a null ptr
  1768   Node* my_store = in(MemNode::OopStore);
  1769   if (my_store->is_Store()) {
  1770     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  1771     if( t1 == TypePtr::NULL_PTR ) {
  1772       return in(MemNode::Memory);
  1775   return this;
  1778 //------------------------------Value-----------------------------------------
  1779 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  1780   // If extra input is TOP ==> the result is TOP
  1781   const Type *t1 = phase->type( in(MemNode::OopStore) );
  1782   if( t1 == Type::TOP ) return Type::TOP;
  1784   return StoreNode::Value( phase );
  1788 //=============================================================================
  1789 //----------------------------------SCMemProjNode------------------------------
  1790 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  1792   return bottom_type();
  1795 //=============================================================================
  1796 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  1797   init_req(MemNode::Control, c  );
  1798   init_req(MemNode::Memory , mem);
  1799   init_req(MemNode::Address, adr);
  1800   init_req(MemNode::ValueIn, val);
  1801   init_req(         ExpectedIn, ex );
  1802   init_class_id(Class_LoadStore);
  1806 //=============================================================================
  1807 //-------------------------------adr_type--------------------------------------
  1808 // Do we Match on this edge index or not?  Do not match memory
  1809 const TypePtr* ClearArrayNode::adr_type() const {
  1810   Node *adr = in(3);
  1811   return MemNode::calculate_adr_type(adr->bottom_type());
  1814 //------------------------------match_edge-------------------------------------
  1815 // Do we Match on this edge index or not?  Do not match memory
  1816 uint ClearArrayNode::match_edge(uint idx) const {
  1817   return idx > 1;
  1820 //------------------------------Identity---------------------------------------
  1821 // Clearing a zero length array does nothing
  1822 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  1823   return phase->type(in(2))->higher_equal(TypeInt::ZERO)  ? in(1) : this;
  1826 //------------------------------Idealize---------------------------------------
  1827 // Clearing a short array is faster with stores
  1828 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1829   const int unit = BytesPerLong;
  1830   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  1831   if (!t)  return NULL;
  1832   if (!t->is_con())  return NULL;
  1833   intptr_t raw_count = t->get_con();
  1834   intptr_t size = raw_count;
  1835   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  1836   // Clearing nothing uses the Identity call.
  1837   // Negative clears are possible on dead ClearArrays
  1838   // (see jck test stmt114.stmt11402.val).
  1839   if (size <= 0 || size % unit != 0)  return NULL;
  1840   intptr_t count = size / unit;
  1841   // Length too long; use fast hardware clear
  1842   if (size > Matcher::init_array_short_size)  return NULL;
  1843   Node *mem = in(1);
  1844   if( phase->type(mem)==Type::TOP ) return NULL;
  1845   Node *adr = in(3);
  1846   const Type* at = phase->type(adr);
  1847   if( at==Type::TOP ) return NULL;
  1848   const TypePtr* atp = at->isa_ptr();
  1849   // adjust atp to be the correct array element address type
  1850   if (atp == NULL)  atp = TypePtr::BOTTOM;
  1851   else              atp = atp->add_offset(Type::OffsetBot);
  1852   // Get base for derived pointer purposes
  1853   if( adr->Opcode() != Op_AddP ) Unimplemented();
  1854   Node *base = adr->in(1);
  1856   Node *zero = phase->makecon(TypeLong::ZERO);
  1857   Node *off  = phase->MakeConX(BytesPerLong);
  1858   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1859   count--;
  1860   while( count-- ) {
  1861     mem = phase->transform(mem);
  1862     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  1863     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1865   return mem;
  1868 //----------------------------clear_memory-------------------------------------
  1869 // Generate code to initialize object storage to zero.
  1870 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1871                                    intptr_t start_offset,
  1872                                    Node* end_offset,
  1873                                    PhaseGVN* phase) {
  1874   Compile* C = phase->C;
  1875   intptr_t offset = start_offset;
  1877   int unit = BytesPerLong;
  1878   if ((offset % unit) != 0) {
  1879     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  1880     adr = phase->transform(adr);
  1881     const TypePtr* atp = TypeRawPtr::BOTTOM;
  1882     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  1883     mem = phase->transform(mem);
  1884     offset += BytesPerInt;
  1886   assert((offset % unit) == 0, "");
  1888   // Initialize the remaining stuff, if any, with a ClearArray.
  1889   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  1892 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1893                                    Node* start_offset,
  1894                                    Node* end_offset,
  1895                                    PhaseGVN* phase) {
  1896   Compile* C = phase->C;
  1897   int unit = BytesPerLong;
  1898   Node* zbase = start_offset;
  1899   Node* zend  = end_offset;
  1901   // Scale to the unit required by the CPU:
  1902   if (!Matcher::init_array_count_is_in_bytes) {
  1903     Node* shift = phase->intcon(exact_log2(unit));
  1904     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  1905     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  1908   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  1909   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  1911   // Bulk clear double-words
  1912   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  1913   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  1914   return phase->transform(mem);
  1917 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1918                                    intptr_t start_offset,
  1919                                    intptr_t end_offset,
  1920                                    PhaseGVN* phase) {
  1921   Compile* C = phase->C;
  1922   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  1923   intptr_t done_offset = end_offset;
  1924   if ((done_offset % BytesPerLong) != 0) {
  1925     done_offset -= BytesPerInt;
  1927   if (done_offset > start_offset) {
  1928     mem = clear_memory(ctl, mem, dest,
  1929                        start_offset, phase->MakeConX(done_offset), phase);
  1931   if (done_offset < end_offset) { // emit the final 32-bit store
  1932     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  1933     adr = phase->transform(adr);
  1934     const TypePtr* atp = TypeRawPtr::BOTTOM;
  1935     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  1936     mem = phase->transform(mem);
  1937     done_offset += BytesPerInt;
  1939   assert(done_offset == end_offset, "");
  1940   return mem;
  1943 //=============================================================================
  1944 // Do we match on this edge? No memory edges
  1945 uint StrCompNode::match_edge(uint idx) const {
  1946   return idx == 5 || idx == 6;
  1949 //------------------------------Ideal------------------------------------------
  1950 // Return a node which is more "ideal" than the current node.  Strip out
  1951 // control copies
  1952 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1953   return remove_dead_region(phase, can_reshape) ? this : NULL;
  1957 //=============================================================================
  1958 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  1959   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  1960     _adr_type(C->get_adr_type(alias_idx))
  1962   init_class_id(Class_MemBar);
  1963   Node* top = C->top();
  1964   init_req(TypeFunc::I_O,top);
  1965   init_req(TypeFunc::FramePtr,top);
  1966   init_req(TypeFunc::ReturnAdr,top);
  1967   if (precedent != NULL)
  1968     init_req(TypeFunc::Parms, precedent);
  1971 //------------------------------cmp--------------------------------------------
  1972 uint MemBarNode::hash() const { return NO_HASH; }
  1973 uint MemBarNode::cmp( const Node &n ) const {
  1974   return (&n == this);          // Always fail except on self
  1977 //------------------------------make-------------------------------------------
  1978 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  1979   int len = Precedent + (pn == NULL? 0: 1);
  1980   switch (opcode) {
  1981   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  1982   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  1983   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  1984   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  1985   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  1986   default:                 ShouldNotReachHere(); return NULL;
  1990 //------------------------------Ideal------------------------------------------
  1991 // Return a node which is more "ideal" than the current node.  Strip out
  1992 // control copies
  1993 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1994   if (remove_dead_region(phase, can_reshape))  return this;
  1995   return NULL;
  1998 //------------------------------Value------------------------------------------
  1999 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2000   if( !in(0) ) return Type::TOP;
  2001   if( phase->type(in(0)) == Type::TOP )
  2002     return Type::TOP;
  2003   return TypeTuple::MEMBAR;
  2006 //------------------------------match------------------------------------------
  2007 // Construct projections for memory.
  2008 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2009   switch (proj->_con) {
  2010   case TypeFunc::Control:
  2011   case TypeFunc::Memory:
  2012     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2014   ShouldNotReachHere();
  2015   return NULL;
  2018 //===========================InitializeNode====================================
  2019 // SUMMARY:
  2020 // This node acts as a memory barrier on raw memory, after some raw stores.
  2021 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2022 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2023 // It can coalesce related raw stores into larger units (called 'tiles').
  2024 // It can avoid zeroing new storage for memory units which have raw inits.
  2025 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2026 //
  2027 // EXAMPLE:
  2028 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2029 //   ctl = incoming control; mem* = incoming memory
  2030 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2031 // First allocate uninitialized memory and fill in the header:
  2032 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2033 //   ctl := alloc.Control; mem* := alloc.Memory*
  2034 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2035 // Then initialize to zero the non-header parts of the raw memory block:
  2036 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2037 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2038 // After the initialize node executes, the object is ready for service:
  2039 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2040 // Suppose its body is immediately initialized as {1,2}:
  2041 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2042 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2043 //   mem.SLICE(#short[*]) := store2
  2044 //
  2045 // DETAILS:
  2046 // An InitializeNode collects and isolates object initialization after
  2047 // an AllocateNode and before the next possible safepoint.  As a
  2048 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2049 // down past any safepoint or any publication of the allocation.
  2050 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2051 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2052 //
  2053 // The semantics of the InitializeNode include an implicit zeroing of
  2054 // the new object from object header to the end of the object.
  2055 // (The object header and end are determined by the AllocateNode.)
  2056 //
  2057 // Certain stores may be added as direct inputs to the InitializeNode.
  2058 // These stores must update raw memory, and they must be to addresses
  2059 // derived from the raw address produced by AllocateNode, and with
  2060 // a constant offset.  They must be ordered by increasing offset.
  2061 // The first one is at in(RawStores), the last at in(req()-1).
  2062 // Unlike most memory operations, they are not linked in a chain,
  2063 // but are displayed in parallel as users of the rawmem output of
  2064 // the allocation.
  2065 //
  2066 // (See comments in InitializeNode::capture_store, which continue
  2067 // the example given above.)
  2068 //
  2069 // When the associated Allocate is macro-expanded, the InitializeNode
  2070 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2071 // may also be created at that point to represent any required zeroing.
  2072 // The InitializeNode is then marked 'complete', prohibiting further
  2073 // capturing of nearby memory operations.
  2074 //
  2075 // During macro-expansion, all captured initializations which store
  2076 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2077 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2078 // initialized in fewer memory operations.  Memory words which are
  2079 // covered by neither tiles nor non-constant stores are pre-zeroed
  2080 // by explicit stores of zero.  (The code shape happens to do all
  2081 // zeroing first, then all other stores, with both sequences occurring
  2082 // in order of ascending offsets.)
  2083 //
  2084 // Alternatively, code may be inserted between an AllocateNode and its
  2085 // InitializeNode, to perform arbitrary initialization of the new object.
  2086 // E.g., the object copying intrinsics insert complex data transfers here.
  2087 // The initialization must then be marked as 'complete' disable the
  2088 // built-in zeroing semantics and the collection of initializing stores.
  2089 //
  2090 // While an InitializeNode is incomplete, reads from the memory state
  2091 // produced by it are optimizable if they match the control edge and
  2092 // new oop address associated with the allocation/initialization.
  2093 // They return a stored value (if the offset matches) or else zero.
  2094 // A write to the memory state, if it matches control and address,
  2095 // and if it is to a constant offset, may be 'captured' by the
  2096 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2097 // inside the initialization, to the raw oop produced by the allocation.
  2098 // Operations on addresses which are provably distinct (e.g., to
  2099 // other AllocateNodes) are allowed to bypass the initialization.
  2100 //
  2101 // The effect of all this is to consolidate object initialization
  2102 // (both arrays and non-arrays, both piecewise and bulk) into a
  2103 // single location, where it can be optimized as a unit.
  2104 //
  2105 // Only stores with an offset less than TrackedInitializationLimit words
  2106 // will be considered for capture by an InitializeNode.  This puts a
  2107 // reasonable limit on the complexity of optimized initializations.
  2109 //---------------------------InitializeNode------------------------------------
  2110 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2111   : _is_complete(false),
  2112     MemBarNode(C, adr_type, rawoop)
  2114   init_class_id(Class_Initialize);
  2116   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2117   assert(in(RawAddress) == rawoop, "proper init");
  2118   // Note:  allocation() can be NULL, for secondary initialization barriers
  2121 // Since this node is not matched, it will be processed by the
  2122 // register allocator.  Declare that there are no constraints
  2123 // on the allocation of the RawAddress edge.
  2124 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2125   // This edge should be set to top, by the set_complete.  But be conservative.
  2126   if (idx == InitializeNode::RawAddress)
  2127     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2128   return RegMask::Empty;
  2131 Node* InitializeNode::memory(uint alias_idx) {
  2132   Node* mem = in(Memory);
  2133   if (mem->is_MergeMem()) {
  2134     return mem->as_MergeMem()->memory_at(alias_idx);
  2135   } else {
  2136     // incoming raw memory is not split
  2137     return mem;
  2141 bool InitializeNode::is_non_zero() {
  2142   if (is_complete())  return false;
  2143   remove_extra_zeroes();
  2144   return (req() > RawStores);
  2147 void InitializeNode::set_complete(PhaseGVN* phase) {
  2148   assert(!is_complete(), "caller responsibility");
  2149   _is_complete = true;
  2151   // After this node is complete, it contains a bunch of
  2152   // raw-memory initializations.  There is no need for
  2153   // it to have anything to do with non-raw memory effects.
  2154   // Therefore, tell all non-raw users to re-optimize themselves,
  2155   // after skipping the memory effects of this initialization.
  2156   PhaseIterGVN* igvn = phase->is_IterGVN();
  2157   if (igvn)  igvn->add_users_to_worklist(this);
  2160 // convenience function
  2161 // return false if the init contains any stores already
  2162 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2163   InitializeNode* init = initialization();
  2164   if (init == NULL || init->is_complete())  return false;
  2165   init->remove_extra_zeroes();
  2166   // for now, if this allocation has already collected any inits, bail:
  2167   if (init->is_non_zero())  return false;
  2168   init->set_complete(phase);
  2169   return true;
  2172 void InitializeNode::remove_extra_zeroes() {
  2173   if (req() == RawStores)  return;
  2174   Node* zmem = zero_memory();
  2175   uint fill = RawStores;
  2176   for (uint i = fill; i < req(); i++) {
  2177     Node* n = in(i);
  2178     if (n->is_top() || n == zmem)  continue;  // skip
  2179     if (fill < i)  set_req(fill, n);          // compact
  2180     ++fill;
  2182   // delete any empty spaces created:
  2183   while (fill < req()) {
  2184     del_req(fill);
  2188 // Helper for remembering which stores go with which offsets.
  2189 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2190   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2191   intptr_t offset = -1;
  2192   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2193                                                phase, offset);
  2194   if (base == NULL)     return -1;  // something is dead,
  2195   if (offset < 0)       return -1;  //        dead, dead
  2196   return offset;
  2199 // Helper for proving that an initialization expression is
  2200 // "simple enough" to be folded into an object initialization.
  2201 // Attempts to prove that a store's initial value 'n' can be captured
  2202 // within the initialization without creating a vicious cycle, such as:
  2203 //     { Foo p = new Foo(); p.next = p; }
  2204 // True for constants and parameters and small combinations thereof.
  2205 bool InitializeNode::detect_init_independence(Node* n,
  2206                                               bool st_is_pinned,
  2207                                               int& count) {
  2208   if (n == NULL)      return true;   // (can this really happen?)
  2209   if (n->is_Proj())   n = n->in(0);
  2210   if (n == this)      return false;  // found a cycle
  2211   if (n->is_Con())    return true;
  2212   if (n->is_Start())  return true;   // params, etc., are OK
  2213   if (n->is_Root())   return true;   // even better
  2215   Node* ctl = n->in(0);
  2216   if (ctl != NULL && !ctl->is_top()) {
  2217     if (ctl->is_Proj())  ctl = ctl->in(0);
  2218     if (ctl == this)  return false;
  2220     // If we already know that the enclosing memory op is pinned right after
  2221     // the init, then any control flow that the store has picked up
  2222     // must have preceded the init, or else be equal to the init.
  2223     // Even after loop optimizations (which might change control edges)
  2224     // a store is never pinned *before* the availability of its inputs.
  2225     if (!MemNode::detect_dominating_control(ctl, this->in(0)))
  2226       return false;                  // failed to prove a good control
  2230   // Check data edges for possible dependencies on 'this'.
  2231   if ((count += 1) > 20)  return false;  // complexity limit
  2232   for (uint i = 1; i < n->req(); i++) {
  2233     Node* m = n->in(i);
  2234     if (m == NULL || m == n || m->is_top())  continue;
  2235     uint first_i = n->find_edge(m);
  2236     if (i != first_i)  continue;  // process duplicate edge just once
  2237     if (!detect_init_independence(m, st_is_pinned, count)) {
  2238       return false;
  2242   return true;
  2245 // Here are all the checks a Store must pass before it can be moved into
  2246 // an initialization.  Returns zero if a check fails.
  2247 // On success, returns the (constant) offset to which the store applies,
  2248 // within the initialized memory.
  2249 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2250   const int FAIL = 0;
  2251   if (st->req() != MemNode::ValueIn + 1)
  2252     return FAIL;                // an inscrutable StoreNode (card mark?)
  2253   Node* ctl = st->in(MemNode::Control);
  2254   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2255     return FAIL;                // must be unconditional after the initialization
  2256   Node* mem = st->in(MemNode::Memory);
  2257   if (!(mem->is_Proj() && mem->in(0) == this))
  2258     return FAIL;                // must not be preceded by other stores
  2259   Node* adr = st->in(MemNode::Address);
  2260   intptr_t offset;
  2261   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2262   if (alloc == NULL)
  2263     return FAIL;                // inscrutable address
  2264   if (alloc != allocation())
  2265     return FAIL;                // wrong allocation!  (store needs to float up)
  2266   Node* val = st->in(MemNode::ValueIn);
  2267   int complexity_count = 0;
  2268   if (!detect_init_independence(val, true, complexity_count))
  2269     return FAIL;                // stored value must be 'simple enough'
  2271   return offset;                // success
  2274 // Find the captured store in(i) which corresponds to the range
  2275 // [start..start+size) in the initialized object.
  2276 // If there is one, return its index i.  If there isn't, return the
  2277 // negative of the index where it should be inserted.
  2278 // Return 0 if the queried range overlaps an initialization boundary
  2279 // or if dead code is encountered.
  2280 // If size_in_bytes is zero, do not bother with overlap checks.
  2281 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2282                                                    int size_in_bytes,
  2283                                                    PhaseTransform* phase) {
  2284   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2286   if (is_complete())
  2287     return FAIL;                // arraycopy got here first; punt
  2289   assert(allocation() != NULL, "must be present");
  2291   // no negatives, no header fields:
  2292   if (start < (intptr_t) sizeof(oopDesc))  return FAIL;
  2293   if (start < (intptr_t) sizeof(arrayOopDesc) &&
  2294       start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2296   // after a certain size, we bail out on tracking all the stores:
  2297   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2298   if (start >= ti_limit)  return FAIL;
  2300   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2301     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2303     Node*    st     = in(i);
  2304     intptr_t st_off = get_store_offset(st, phase);
  2305     if (st_off < 0) {
  2306       if (st != zero_memory()) {
  2307         return FAIL;            // bail out if there is dead garbage
  2309     } else if (st_off > start) {
  2310       // ...we are done, since stores are ordered
  2311       if (st_off < start + size_in_bytes) {
  2312         return FAIL;            // the next store overlaps
  2314       return -(int)i;           // not found; here is where to put it
  2315     } else if (st_off < start) {
  2316       if (size_in_bytes != 0 &&
  2317           start < st_off + MAX_STORE &&
  2318           start < st_off + st->as_Store()->memory_size()) {
  2319         return FAIL;            // the previous store overlaps
  2321     } else {
  2322       if (size_in_bytes != 0 &&
  2323           st->as_Store()->memory_size() != size_in_bytes) {
  2324         return FAIL;            // mismatched store size
  2326       return i;
  2329     ++i;
  2333 // Look for a captured store which initializes at the offset 'start'
  2334 // with the given size.  If there is no such store, and no other
  2335 // initialization interferes, then return zero_memory (the memory
  2336 // projection of the AllocateNode).
  2337 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2338                                           PhaseTransform* phase) {
  2339   assert(stores_are_sane(phase), "");
  2340   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2341   if (i == 0) {
  2342     return NULL;                // something is dead
  2343   } else if (i < 0) {
  2344     return zero_memory();       // just primordial zero bits here
  2345   } else {
  2346     Node* st = in(i);           // here is the store at this position
  2347     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2348     return st;
  2352 // Create, as a raw pointer, an address within my new object at 'offset'.
  2353 Node* InitializeNode::make_raw_address(intptr_t offset,
  2354                                        PhaseTransform* phase) {
  2355   Node* addr = in(RawAddress);
  2356   if (offset != 0) {
  2357     Compile* C = phase->C;
  2358     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2359                                                  phase->MakeConX(offset)) );
  2361   return addr;
  2364 // Clone the given store, converting it into a raw store
  2365 // initializing a field or element of my new object.
  2366 // Caller is responsible for retiring the original store,
  2367 // with subsume_node or the like.
  2368 //
  2369 // From the example above InitializeNode::InitializeNode,
  2370 // here are the old stores to be captured:
  2371 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2372 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2373 //
  2374 // Here is the changed code; note the extra edges on init:
  2375 //   alloc = (Allocate ...)
  2376 //   rawoop = alloc.RawAddress
  2377 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2378 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2379 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2380 //                      rawstore1 rawstore2)
  2381 //
  2382 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2383                                     PhaseTransform* phase) {
  2384   assert(stores_are_sane(phase), "");
  2386   if (start < 0)  return NULL;
  2387   assert(can_capture_store(st, phase) == start, "sanity");
  2389   Compile* C = phase->C;
  2390   int size_in_bytes = st->memory_size();
  2391   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2392   if (i == 0)  return NULL;     // bail out
  2393   Node* prev_mem = NULL;        // raw memory for the captured store
  2394   if (i > 0) {
  2395     prev_mem = in(i);           // there is a pre-existing store under this one
  2396     set_req(i, C->top());       // temporarily disconnect it
  2397     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2398   } else {
  2399     i = -i;                     // no pre-existing store
  2400     prev_mem = zero_memory();   // a slice of the newly allocated object
  2401     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2402       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2403     else
  2404       ins_req(i, C->top());     // build a new edge
  2406   Node* new_st = st->clone();
  2407   new_st->set_req(MemNode::Control, in(Control));
  2408   new_st->set_req(MemNode::Memory,  prev_mem);
  2409   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2410   new_st = phase->transform(new_st);
  2412   // At this point, new_st might have swallowed a pre-existing store
  2413   // at the same offset, or perhaps new_st might have disappeared,
  2414   // if it redundantly stored the same value (or zero to fresh memory).
  2416   // In any case, wire it in:
  2417   set_req(i, new_st);
  2419   // The caller may now kill the old guy.
  2420   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2421   assert(check_st == new_st || check_st == NULL, "must be findable");
  2422   assert(!is_complete(), "");
  2423   return new_st;
  2426 static bool store_constant(jlong* tiles, int num_tiles,
  2427                            intptr_t st_off, int st_size,
  2428                            jlong con) {
  2429   if ((st_off & (st_size-1)) != 0)
  2430     return false;               // strange store offset (assume size==2**N)
  2431   address addr = (address)tiles + st_off;
  2432   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2433   switch (st_size) {
  2434   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2435   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2436   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2437   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2438   default: return false;        // strange store size (detect size!=2**N here)
  2440   return true;                  // return success to caller
  2443 // Coalesce subword constants into int constants and possibly
  2444 // into long constants.  The goal, if the CPU permits,
  2445 // is to initialize the object with a small number of 64-bit tiles.
  2446 // Also, convert floating-point constants to bit patterns.
  2447 // Non-constants are not relevant to this pass.
  2448 //
  2449 // In terms of the running example on InitializeNode::InitializeNode
  2450 // and InitializeNode::capture_store, here is the transformation
  2451 // of rawstore1 and rawstore2 into rawstore12:
  2452 //   alloc = (Allocate ...)
  2453 //   rawoop = alloc.RawAddress
  2454 //   tile12 = 0x00010002
  2455 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2456 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2457 //
  2458 void
  2459 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2460                                         Node* size_in_bytes,
  2461                                         PhaseGVN* phase) {
  2462   Compile* C = phase->C;
  2464   assert(stores_are_sane(phase), "");
  2465   // Note:  After this pass, they are not completely sane,
  2466   // since there may be some overlaps.
  2468   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2470   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2471   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2472   size_limit = MIN2(size_limit, ti_limit);
  2473   size_limit = align_size_up(size_limit, BytesPerLong);
  2474   int num_tiles = size_limit / BytesPerLong;
  2476   // allocate space for the tile map:
  2477   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2478   jlong  tiles_buf[small_len];
  2479   Node*  nodes_buf[small_len];
  2480   jlong  inits_buf[small_len];
  2481   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2482                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2483   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2484                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2485   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2486                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2487   // tiles: exact bitwise model of all primitive constants
  2488   // nodes: last constant-storing node subsumed into the tiles model
  2489   // inits: which bytes (in each tile) are touched by any initializations
  2491   //// Pass A: Fill in the tile model with any relevant stores.
  2493   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2494   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2495   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2496   Node* zmem = zero_memory(); // initially zero memory state
  2497   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2498     Node* st = in(i);
  2499     intptr_t st_off = get_store_offset(st, phase);
  2501     // Figure out the store's offset and constant value:
  2502     if (st_off < header_size)             continue; //skip (ignore header)
  2503     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2504     int st_size = st->as_Store()->memory_size();
  2505     if (st_off + st_size > size_limit)    break;
  2507     // Record which bytes are touched, whether by constant or not.
  2508     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2509       continue;                 // skip (strange store size)
  2511     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2512     if (!val->singleton())                continue; //skip (non-con store)
  2513     BasicType type = val->basic_type();
  2515     jlong con = 0;
  2516     switch (type) {
  2517     case T_INT:    con = val->is_int()->get_con();  break;
  2518     case T_LONG:   con = val->is_long()->get_con(); break;
  2519     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2520     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2521     default:                              continue; //skip (odd store type)
  2524     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2525         st->Opcode() == Op_StoreL) {
  2526       continue;                 // This StoreL is already optimal.
  2529     // Store down the constant.
  2530     store_constant(tiles, num_tiles, st_off, st_size, con);
  2532     intptr_t j = st_off >> LogBytesPerLong;
  2534     if (type == T_INT && st_size == BytesPerInt
  2535         && (st_off & BytesPerInt) == BytesPerInt) {
  2536       jlong lcon = tiles[j];
  2537       if (!Matcher::isSimpleConstant64(lcon) &&
  2538           st->Opcode() == Op_StoreI) {
  2539         // This StoreI is already optimal by itself.
  2540         jint* intcon = (jint*) &tiles[j];
  2541         intcon[1] = 0;  // undo the store_constant()
  2543         // If the previous store is also optimal by itself, back up and
  2544         // undo the action of the previous loop iteration... if we can.
  2545         // But if we can't, just let the previous half take care of itself.
  2546         st = nodes[j];
  2547         st_off -= BytesPerInt;
  2548         con = intcon[0];
  2549         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2550           assert(st_off >= header_size, "still ignoring header");
  2551           assert(get_store_offset(st, phase) == st_off, "must be");
  2552           assert(in(i-1) == zmem, "must be");
  2553           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  2554           assert(con == tcon->is_int()->get_con(), "must be");
  2555           // Undo the effects of the previous loop trip, which swallowed st:
  2556           intcon[0] = 0;        // undo store_constant()
  2557           set_req(i-1, st);     // undo set_req(i, zmem)
  2558           nodes[j] = NULL;      // undo nodes[j] = st
  2559           --old_subword;        // undo ++old_subword
  2561         continue;               // This StoreI is already optimal.
  2565     // This store is not needed.
  2566     set_req(i, zmem);
  2567     nodes[j] = st;              // record for the moment
  2568     if (st_size < BytesPerLong) // something has changed
  2569           ++old_subword;        // includes int/float, but who's counting...
  2570     else  ++old_long;
  2573   if ((old_subword + old_long) == 0)
  2574     return;                     // nothing more to do
  2576   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  2577   // Be sure to insert them before overlapping non-constant stores.
  2578   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  2579   for (int j = 0; j < num_tiles; j++) {
  2580     jlong con  = tiles[j];
  2581     jlong init = inits[j];
  2582     if (con == 0)  continue;
  2583     jint con0,  con1;           // split the constant, address-wise
  2584     jint init0, init1;          // split the init map, address-wise
  2585     { union { jlong con; jint intcon[2]; } u;
  2586       u.con = con;
  2587       con0  = u.intcon[0];
  2588       con1  = u.intcon[1];
  2589       u.con = init;
  2590       init0 = u.intcon[0];
  2591       init1 = u.intcon[1];
  2594     Node* old = nodes[j];
  2595     assert(old != NULL, "need the prior store");
  2596     intptr_t offset = (j * BytesPerLong);
  2598     bool split = !Matcher::isSimpleConstant64(con);
  2600     if (offset < header_size) {
  2601       assert(offset + BytesPerInt >= header_size, "second int counts");
  2602       assert(*(jint*)&tiles[j] == 0, "junk in header");
  2603       split = true;             // only the second word counts
  2604       // Example:  int a[] = { 42 ... }
  2605     } else if (con0 == 0 && init0 == -1) {
  2606       split = true;             // first word is covered by full inits
  2607       // Example:  int a[] = { ... foo(), 42 ... }
  2608     } else if (con1 == 0 && init1 == -1) {
  2609       split = true;             // second word is covered by full inits
  2610       // Example:  int a[] = { ... 42, foo() ... }
  2613     // Here's a case where init0 is neither 0 nor -1:
  2614     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  2615     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  2616     // In this case the tile is not split; it is (jlong)42.
  2617     // The big tile is stored down, and then the foo() value is inserted.
  2618     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  2620     Node* ctl = old->in(MemNode::Control);
  2621     Node* adr = make_raw_address(offset, phase);
  2622     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2624     // One or two coalesced stores to plop down.
  2625     Node*    st[2];
  2626     intptr_t off[2];
  2627     int  nst = 0;
  2628     if (!split) {
  2629       ++new_long;
  2630       off[nst] = offset;
  2631       st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2632                                   phase->longcon(con), T_LONG);
  2633     } else {
  2634       // Omit either if it is a zero.
  2635       if (con0 != 0) {
  2636         ++new_int;
  2637         off[nst]  = offset;
  2638         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2639                                     phase->intcon(con0), T_INT);
  2641       if (con1 != 0) {
  2642         ++new_int;
  2643         offset += BytesPerInt;
  2644         adr = make_raw_address(offset, phase);
  2645         off[nst]  = offset;
  2646         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2647                                     phase->intcon(con1), T_INT);
  2651     // Insert second store first, then the first before the second.
  2652     // Insert each one just before any overlapping non-constant stores.
  2653     while (nst > 0) {
  2654       Node* st1 = st[--nst];
  2655       C->copy_node_notes_to(st1, old);
  2656       st1 = phase->transform(st1);
  2657       offset = off[nst];
  2658       assert(offset >= header_size, "do not smash header");
  2659       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  2660       guarantee(ins_idx != 0, "must re-insert constant store");
  2661       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  2662       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  2663         set_req(--ins_idx, st1);
  2664       else
  2665         ins_req(ins_idx, st1);
  2669   if (PrintCompilation && WizardMode)
  2670     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  2671                   old_subword, old_long, new_int, new_long);
  2672   if (C->log() != NULL)
  2673     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  2674                    old_subword, old_long, new_int, new_long);
  2676   // Clean up any remaining occurrences of zmem:
  2677   remove_extra_zeroes();
  2680 // Explore forward from in(start) to find the first fully initialized
  2681 // word, and return its offset.  Skip groups of subword stores which
  2682 // together initialize full words.  If in(start) is itself part of a
  2683 // fully initialized word, return the offset of in(start).  If there
  2684 // are no following full-word stores, or if something is fishy, return
  2685 // a negative value.
  2686 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  2687   int       int_map = 0;
  2688   intptr_t  int_map_off = 0;
  2689   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  2691   for (uint i = start, limit = req(); i < limit; i++) {
  2692     Node* st = in(i);
  2694     intptr_t st_off = get_store_offset(st, phase);
  2695     if (st_off < 0)  break;  // return conservative answer
  2697     int st_size = st->as_Store()->memory_size();
  2698     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  2699       return st_off;            // we found a complete word init
  2702     // update the map:
  2704     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  2705     if (this_int_off != int_map_off) {
  2706       // reset the map:
  2707       int_map = 0;
  2708       int_map_off = this_int_off;
  2711     int subword_off = st_off - this_int_off;
  2712     int_map |= right_n_bits(st_size) << subword_off;
  2713     if ((int_map & FULL_MAP) == FULL_MAP) {
  2714       return this_int_off;      // we found a complete word init
  2717     // Did this store hit or cross the word boundary?
  2718     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  2719     if (next_int_off == this_int_off + BytesPerInt) {
  2720       // We passed the current int, without fully initializing it.
  2721       int_map_off = next_int_off;
  2722       int_map >>= BytesPerInt;
  2723     } else if (next_int_off > this_int_off + BytesPerInt) {
  2724       // We passed the current and next int.
  2725       return this_int_off + BytesPerInt;
  2729   return -1;
  2733 // Called when the associated AllocateNode is expanded into CFG.
  2734 // At this point, we may perform additional optimizations.
  2735 // Linearize the stores by ascending offset, to make memory
  2736 // activity as coherent as possible.
  2737 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  2738                                       intptr_t header_size,
  2739                                       Node* size_in_bytes,
  2740                                       PhaseGVN* phase) {
  2741   assert(!is_complete(), "not already complete");
  2742   assert(stores_are_sane(phase), "");
  2743   assert(allocation() != NULL, "must be present");
  2745   remove_extra_zeroes();
  2747   if (ReduceFieldZeroing || ReduceBulkZeroing)
  2748     // reduce instruction count for common initialization patterns
  2749     coalesce_subword_stores(header_size, size_in_bytes, phase);
  2751   Node* zmem = zero_memory();   // initially zero memory state
  2752   Node* inits = zmem;           // accumulating a linearized chain of inits
  2753   #ifdef ASSERT
  2754   intptr_t last_init_off = sizeof(oopDesc);  // previous init offset
  2755   intptr_t last_init_end = sizeof(oopDesc);  // previous init offset+size
  2756   intptr_t last_tile_end = sizeof(oopDesc);  // previous tile offset+size
  2757   #endif
  2758   intptr_t zeroes_done = header_size;
  2760   bool do_zeroing = true;       // we might give up if inits are very sparse
  2761   int  big_init_gaps = 0;       // how many large gaps have we seen?
  2763   if (ZeroTLAB)  do_zeroing = false;
  2764   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  2766   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2767     Node* st = in(i);
  2768     intptr_t st_off = get_store_offset(st, phase);
  2769     if (st_off < 0)
  2770       break;                    // unknown junk in the inits
  2771     if (st->in(MemNode::Memory) != zmem)
  2772       break;                    // complicated store chains somehow in list
  2774     int st_size = st->as_Store()->memory_size();
  2775     intptr_t next_init_off = st_off + st_size;
  2777     if (do_zeroing && zeroes_done < next_init_off) {
  2778       // See if this store needs a zero before it or under it.
  2779       intptr_t zeroes_needed = st_off;
  2781       if (st_size < BytesPerInt) {
  2782         // Look for subword stores which only partially initialize words.
  2783         // If we find some, we must lay down some word-level zeroes first,
  2784         // underneath the subword stores.
  2785         //
  2786         // Examples:
  2787         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  2788         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  2789         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  2790         //
  2791         // Note:  coalesce_subword_stores may have already done this,
  2792         // if it was prompted by constant non-zero subword initializers.
  2793         // But this case can still arise with non-constant stores.
  2795         intptr_t next_full_store = find_next_fullword_store(i, phase);
  2797         // In the examples above:
  2798         //   in(i)          p   q   r   s     x   y     z
  2799         //   st_off        12  13  14  15    12  13    14
  2800         //   st_size        1   1   1   1     1   1     1
  2801         //   next_full_s.  12  16  16  16    16  16    16
  2802         //   z's_done      12  16  16  16    12  16    12
  2803         //   z's_needed    12  16  16  16    16  16    16
  2804         //   zsize          0   0   0   0     4   0     4
  2805         if (next_full_store < 0) {
  2806           // Conservative tack:  Zero to end of current word.
  2807           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  2808         } else {
  2809           // Zero to beginning of next fully initialized word.
  2810           // Or, don't zero at all, if we are already in that word.
  2811           assert(next_full_store >= zeroes_needed, "must go forward");
  2812           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  2813           zeroes_needed = next_full_store;
  2817       if (zeroes_needed > zeroes_done) {
  2818         intptr_t zsize = zeroes_needed - zeroes_done;
  2819         // Do some incremental zeroing on rawmem, in parallel with inits.
  2820         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2821         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2822                                               zeroes_done, zeroes_needed,
  2823                                               phase);
  2824         zeroes_done = zeroes_needed;
  2825         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  2826           do_zeroing = false;   // leave the hole, next time
  2830     // Collect the store and move on:
  2831     st->set_req(MemNode::Memory, inits);
  2832     inits = st;                 // put it on the linearized chain
  2833     set_req(i, zmem);           // unhook from previous position
  2835     if (zeroes_done == st_off)
  2836       zeroes_done = next_init_off;
  2838     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  2840     #ifdef ASSERT
  2841     // Various order invariants.  Weaker than stores_are_sane because
  2842     // a large constant tile can be filled in by smaller non-constant stores.
  2843     assert(st_off >= last_init_off, "inits do not reverse");
  2844     last_init_off = st_off;
  2845     const Type* val = NULL;
  2846     if (st_size >= BytesPerInt &&
  2847         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  2848         (int)val->basic_type() < (int)T_OBJECT) {
  2849       assert(st_off >= last_tile_end, "tiles do not overlap");
  2850       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  2851       last_tile_end = MAX2(last_tile_end, next_init_off);
  2852     } else {
  2853       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  2854       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  2855       assert(st_off      >= last_init_end, "inits do not overlap");
  2856       last_init_end = next_init_off;  // it's a non-tile
  2858     #endif //ASSERT
  2861   remove_extra_zeroes();        // clear out all the zmems left over
  2862   add_req(inits);
  2864   if (!ZeroTLAB) {
  2865     // If anything remains to be zeroed, zero it all now.
  2866     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2867     // if it is the last unused 4 bytes of an instance, forget about it
  2868     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  2869     if (zeroes_done + BytesPerLong >= size_limit) {
  2870       assert(allocation() != NULL, "");
  2871       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  2872       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  2873       if (zeroes_done == k->layout_helper())
  2874         zeroes_done = size_limit;
  2876     if (zeroes_done < size_limit) {
  2877       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2878                                             zeroes_done, size_in_bytes, phase);
  2882   set_complete(phase);
  2883   return rawmem;
  2887 #ifdef ASSERT
  2888 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  2889   if (is_complete())
  2890     return true;                // stores could be anything at this point
  2891   intptr_t last_off = sizeof(oopDesc);
  2892   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  2893     Node* st = in(i);
  2894     intptr_t st_off = get_store_offset(st, phase);
  2895     if (st_off < 0)  continue;  // ignore dead garbage
  2896     if (last_off > st_off) {
  2897       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  2898       this->dump(2);
  2899       assert(false, "ascending store offsets");
  2900       return false;
  2902     last_off = st_off + st->as_Store()->memory_size();
  2904   return true;
  2906 #endif //ASSERT
  2911 //============================MergeMemNode=====================================
  2912 //
  2913 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  2914 // contributing store or call operations.  Each contributor provides the memory
  2915 // state for a particular "alias type" (see Compile::alias_type).  For example,
  2916 // if a MergeMem has an input X for alias category #6, then any memory reference
  2917 // to alias category #6 may use X as its memory state input, as an exact equivalent
  2918 // to using the MergeMem as a whole.
  2919 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  2920 //
  2921 // (Here, the <N> notation gives the index of the relevant adr_type.)
  2922 //
  2923 // In one special case (and more cases in the future), alias categories overlap.
  2924 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  2925 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  2926 // it is exactly equivalent to that state W:
  2927 //   MergeMem(<Bot>: W) <==> W
  2928 //
  2929 // Usually, the merge has more than one input.  In that case, where inputs
  2930 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  2931 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  2932 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  2933 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  2934 //
  2935 // A merge can take a "wide" memory state as one of its narrow inputs.
  2936 // This simply means that the merge observes out only the relevant parts of
  2937 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  2938 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  2939 //
  2940 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  2941 // and that memory slices "leak through":
  2942 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  2943 //
  2944 // But, in such a cascade, repeated memory slices can "block the leak":
  2945 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  2946 //
  2947 // In the last example, Y is not part of the combined memory state of the
  2948 // outermost MergeMem.  The system must, of course, prevent unschedulable
  2949 // memory states from arising, so you can be sure that the state Y is somehow
  2950 // a precursor to state Y'.
  2951 //
  2952 //
  2953 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  2954 // of each MergeMemNode array are exactly the numerical alias indexes, including
  2955 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  2956 // Compile::alias_type (and kin) produce and manage these indexes.
  2957 //
  2958 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  2959 // (Note that this provides quick access to the top node inside MergeMem methods,
  2960 // without the need to reach out via TLS to Compile::current.)
  2961 //
  2962 // As a consequence of what was just described, a MergeMem that represents a full
  2963 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  2964 // containing all alias categories.
  2965 //
  2966 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  2967 //
  2968 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  2969 // a memory state for the alias type <N>, or else the top node, meaning that
  2970 // there is no particular input for that alias type.  Note that the length of
  2971 // a MergeMem is variable, and may be extended at any time to accommodate new
  2972 // memory states at larger alias indexes.  When merges grow, they are of course
  2973 // filled with "top" in the unused in() positions.
  2974 //
  2975 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  2976 // (Top was chosen because it works smoothly with passes like GCM.)
  2977 //
  2978 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  2979 // the type of random VM bits like TLS references.)  Since it is always the
  2980 // first non-Bot memory slice, some low-level loops use it to initialize an
  2981 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  2982 //
  2983 //
  2984 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  2985 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  2986 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  2987 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  2988 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  2989 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  2990 //
  2991 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  2992 // really that different from the other memory inputs.  An abbreviation called
  2993 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  2994 //
  2995 //
  2996 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  2997 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  2998 // that "emerges though" the base memory will be marked as excluding the alias types
  2999 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3000 //
  3001 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3002 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3003 //
  3004 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3005 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3006 // actually a disjoint union of memory states, rather than an overlay.
  3007 //
  3009 //------------------------------MergeMemNode-----------------------------------
  3010 Node* MergeMemNode::make_empty_memory() {
  3011   Node* empty_memory = (Node*) Compile::current()->top();
  3012   assert(empty_memory->is_top(), "correct sentinel identity");
  3013   return empty_memory;
  3016 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3017   init_class_id(Class_MergeMem);
  3018   // all inputs are nullified in Node::Node(int)
  3019   // set_input(0, NULL);  // no control input
  3021   // Initialize the edges uniformly to top, for starters.
  3022   Node* empty_mem = make_empty_memory();
  3023   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3024     init_req(i,empty_mem);
  3026   assert(empty_memory() == empty_mem, "");
  3028   if( new_base != NULL && new_base->is_MergeMem() ) {
  3029     MergeMemNode* mdef = new_base->as_MergeMem();
  3030     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3031     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3032       mms.set_memory(mms.memory2());
  3034     assert(base_memory() == mdef->base_memory(), "");
  3035   } else {
  3036     set_base_memory(new_base);
  3040 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3041 // If mem is itself a MergeMem, populate the result with the same edges.
  3042 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3043   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3046 //------------------------------cmp--------------------------------------------
  3047 uint MergeMemNode::hash() const { return NO_HASH; }
  3048 uint MergeMemNode::cmp( const Node &n ) const {
  3049   return (&n == this);          // Always fail except on self
  3052 //------------------------------Identity---------------------------------------
  3053 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3054   // Identity if this merge point does not record any interesting memory
  3055   // disambiguations.
  3056   Node* base_mem = base_memory();
  3057   Node* empty_mem = empty_memory();
  3058   if (base_mem != empty_mem) {  // Memory path is not dead?
  3059     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3060       Node* mem = in(i);
  3061       if (mem != empty_mem && mem != base_mem) {
  3062         return this;            // Many memory splits; no change
  3066   return base_mem;              // No memory splits; ID on the one true input
  3069 //------------------------------Ideal------------------------------------------
  3070 // This method is invoked recursively on chains of MergeMem nodes
  3071 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3072   // Remove chain'd MergeMems
  3073   //
  3074   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3075   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3076   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3077   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3078   Node *progress = NULL;
  3081   Node* old_base = base_memory();
  3082   Node* empty_mem = empty_memory();
  3083   if (old_base == empty_mem)
  3084     return NULL; // Dead memory path.
  3086   MergeMemNode* old_mbase;
  3087   if (old_base != NULL && old_base->is_MergeMem())
  3088     old_mbase = old_base->as_MergeMem();
  3089   else
  3090     old_mbase = NULL;
  3091   Node* new_base = old_base;
  3093   // simplify stacked MergeMems in base memory
  3094   if (old_mbase)  new_base = old_mbase->base_memory();
  3096   // the base memory might contribute new slices beyond my req()
  3097   if (old_mbase)  grow_to_match(old_mbase);
  3099   // Look carefully at the base node if it is a phi.
  3100   PhiNode* phi_base;
  3101   if (new_base != NULL && new_base->is_Phi())
  3102     phi_base = new_base->as_Phi();
  3103   else
  3104     phi_base = NULL;
  3106   Node*    phi_reg = NULL;
  3107   uint     phi_len = (uint)-1;
  3108   if (phi_base != NULL && !phi_base->is_copy()) {
  3109     // do not examine phi if degraded to a copy
  3110     phi_reg = phi_base->region();
  3111     phi_len = phi_base->req();
  3112     // see if the phi is unfinished
  3113     for (uint i = 1; i < phi_len; i++) {
  3114       if (phi_base->in(i) == NULL) {
  3115         // incomplete phi; do not look at it yet!
  3116         phi_reg = NULL;
  3117         phi_len = (uint)-1;
  3118         break;
  3123   // Note:  We do not call verify_sparse on entry, because inputs
  3124   // can normalize to the base_memory via subsume_node or similar
  3125   // mechanisms.  This method repairs that damage.
  3127   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3129   // Look at each slice.
  3130   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3131     Node* old_in = in(i);
  3132     // calculate the old memory value
  3133     Node* old_mem = old_in;
  3134     if (old_mem == empty_mem)  old_mem = old_base;
  3135     assert(old_mem == memory_at(i), "");
  3137     // maybe update (reslice) the old memory value
  3139     // simplify stacked MergeMems
  3140     Node* new_mem = old_mem;
  3141     MergeMemNode* old_mmem;
  3142     if (old_mem != NULL && old_mem->is_MergeMem())
  3143       old_mmem = old_mem->as_MergeMem();
  3144     else
  3145       old_mmem = NULL;
  3146     if (old_mmem == this) {
  3147       // This can happen if loops break up and safepoints disappear.
  3148       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3149       // safepoint can be rewritten to a merge of the same BotPtr with
  3150       // the BotPtr phi coming into the loop.  If that phi disappears
  3151       // also, we can end up with a self-loop of the mergemem.
  3152       // In general, if loops degenerate and memory effects disappear,
  3153       // a mergemem can be left looking at itself.  This simply means
  3154       // that the mergemem's default should be used, since there is
  3155       // no longer any apparent effect on this slice.
  3156       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3157       //       from start.  Update the input to TOP.
  3158       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3160     else if (old_mmem != NULL) {
  3161       new_mem = old_mmem->memory_at(i);
  3163     // else preceeding memory was not a MergeMem
  3165     // replace equivalent phis (unfortunately, they do not GVN together)
  3166     if (new_mem != NULL && new_mem != new_base &&
  3167         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3168       if (new_mem->is_Phi()) {
  3169         PhiNode* phi_mem = new_mem->as_Phi();
  3170         for (uint i = 1; i < phi_len; i++) {
  3171           if (phi_base->in(i) != phi_mem->in(i)) {
  3172             phi_mem = NULL;
  3173             break;
  3176         if (phi_mem != NULL) {
  3177           // equivalent phi nodes; revert to the def
  3178           new_mem = new_base;
  3183     // maybe store down a new value
  3184     Node* new_in = new_mem;
  3185     if (new_in == new_base)  new_in = empty_mem;
  3187     if (new_in != old_in) {
  3188       // Warning:  Do not combine this "if" with the previous "if"
  3189       // A memory slice might have be be rewritten even if it is semantically
  3190       // unchanged, if the base_memory value has changed.
  3191       set_req(i, new_in);
  3192       progress = this;          // Report progress
  3196   if (new_base != old_base) {
  3197     set_req(Compile::AliasIdxBot, new_base);
  3198     // Don't use set_base_memory(new_base), because we need to update du.
  3199     assert(base_memory() == new_base, "");
  3200     progress = this;
  3203   if( base_memory() == this ) {
  3204     // a self cycle indicates this memory path is dead
  3205     set_req(Compile::AliasIdxBot, empty_mem);
  3208   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3209   // Recursion must occur after the self cycle check above
  3210   if( base_memory()->is_MergeMem() ) {
  3211     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3212     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3213     if( m != NULL && (m->is_top() ||
  3214         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3215       // propagate rollup of dead cycle to self
  3216       set_req(Compile::AliasIdxBot, empty_mem);
  3220   if( base_memory() == empty_mem ) {
  3221     progress = this;
  3222     // Cut inputs during Parse phase only.
  3223     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3224     if( !can_reshape ) {
  3225       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3226         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3231   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3232     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3233     // transform should be attempted. Look for this->phi->this cycle.
  3234     uint merge_width = req();
  3235     if (merge_width > Compile::AliasIdxRaw) {
  3236       PhiNode* phi = base_memory()->as_Phi();
  3237       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3238         if (phi->in(i) == this) {
  3239           phase->is_IterGVN()->_worklist.push(phi);
  3240           break;
  3246   assert(verify_sparse(), "please, no dups of base");
  3247   return progress;
  3250 //-------------------------set_base_memory-------------------------------------
  3251 void MergeMemNode::set_base_memory(Node *new_base) {
  3252   Node* empty_mem = empty_memory();
  3253   set_req(Compile::AliasIdxBot, new_base);
  3254   assert(memory_at(req()) == new_base, "must set default memory");
  3255   // Clear out other occurrences of new_base:
  3256   if (new_base != empty_mem) {
  3257     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3258       if (in(i) == new_base)  set_req(i, empty_mem);
  3263 //------------------------------out_RegMask------------------------------------
  3264 const RegMask &MergeMemNode::out_RegMask() const {
  3265   return RegMask::Empty;
  3268 //------------------------------dump_spec--------------------------------------
  3269 #ifndef PRODUCT
  3270 void MergeMemNode::dump_spec(outputStream *st) const {
  3271   st->print(" {");
  3272   Node* base_mem = base_memory();
  3273   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3274     Node* mem = memory_at(i);
  3275     if (mem == base_mem) { st->print(" -"); continue; }
  3276     st->print( " N%d:", mem->_idx );
  3277     Compile::current()->get_adr_type(i)->dump_on(st);
  3279   st->print(" }");
  3281 #endif // !PRODUCT
  3284 #ifdef ASSERT
  3285 static bool might_be_same(Node* a, Node* b) {
  3286   if (a == b)  return true;
  3287   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3288   // phis shift around during optimization
  3289   return true;  // pretty stupid...
  3292 // verify a narrow slice (either incoming or outgoing)
  3293 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3294   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3295   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3296   if (Node::in_dump())      return;  // muzzle asserts when printing
  3297   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3298   assert(n != NULL, "");
  3299   // Elide intervening MergeMem's
  3300   while (n->is_MergeMem()) {
  3301     n = n->as_MergeMem()->memory_at(alias_idx);
  3303   Compile* C = Compile::current();
  3304   const TypePtr* n_adr_type = n->adr_type();
  3305   if (n == m->empty_memory()) {
  3306     // Implicit copy of base_memory()
  3307   } else if (n_adr_type != TypePtr::BOTTOM) {
  3308     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3309     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3310   } else {
  3311     // A few places like make_runtime_call "know" that VM calls are narrow,
  3312     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3313     bool expected_wide_mem = false;
  3314     if (n == m->base_memory()) {
  3315       expected_wide_mem = true;
  3316     } else if (alias_idx == Compile::AliasIdxRaw ||
  3317                n == m->memory_at(Compile::AliasIdxRaw)) {
  3318       expected_wide_mem = true;
  3319     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3320       // memory can "leak through" calls on channels that
  3321       // are write-once.  Allow this also.
  3322       expected_wide_mem = true;
  3324     assert(expected_wide_mem, "expected narrow slice replacement");
  3327 #else // !ASSERT
  3328 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3329 #endif
  3332 //-----------------------------memory_at---------------------------------------
  3333 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3334   assert(alias_idx >= Compile::AliasIdxRaw ||
  3335          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3336          "must avoid base_memory and AliasIdxTop");
  3338   // Otherwise, it is a narrow slice.
  3339   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3340   Compile *C = Compile::current();
  3341   if (is_empty_memory(n)) {
  3342     // the array is sparse; empty slots are the "top" node
  3343     n = base_memory();
  3344     assert(Node::in_dump()
  3345            || n == NULL || n->bottom_type() == Type::TOP
  3346            || n->adr_type() == TypePtr::BOTTOM
  3347            || n->adr_type() == TypeRawPtr::BOTTOM
  3348            || Compile::current()->AliasLevel() == 0,
  3349            "must be a wide memory");
  3350     // AliasLevel == 0 if we are organizing the memory states manually.
  3351     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3352   } else {
  3353     // make sure the stored slice is sane
  3354     #ifdef ASSERT
  3355     if (is_error_reported() || Node::in_dump()) {
  3356     } else if (might_be_same(n, base_memory())) {
  3357       // Give it a pass:  It is a mostly harmless repetition of the base.
  3358       // This can arise normally from node subsumption during optimization.
  3359     } else {
  3360       verify_memory_slice(this, alias_idx, n);
  3362     #endif
  3364   return n;
  3367 //---------------------------set_memory_at-------------------------------------
  3368 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3369   verify_memory_slice(this, alias_idx, n);
  3370   Node* empty_mem = empty_memory();
  3371   if (n == base_memory())  n = empty_mem;  // collapse default
  3372   uint need_req = alias_idx+1;
  3373   if (req() < need_req) {
  3374     if (n == empty_mem)  return;  // already the default, so do not grow me
  3375     // grow the sparse array
  3376     do {
  3377       add_req(empty_mem);
  3378     } while (req() < need_req);
  3380   set_req( alias_idx, n );
  3385 //--------------------------iteration_setup------------------------------------
  3386 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3387   if (other != NULL) {
  3388     grow_to_match(other);
  3389     // invariant:  the finite support of mm2 is within mm->req()
  3390     #ifdef ASSERT
  3391     for (uint i = req(); i < other->req(); i++) {
  3392       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3394     #endif
  3396   // Replace spurious copies of base_memory by top.
  3397   Node* base_mem = base_memory();
  3398   if (base_mem != NULL && !base_mem->is_top()) {
  3399     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3400       if (in(i) == base_mem)
  3401         set_req(i, empty_memory());
  3406 //---------------------------grow_to_match-------------------------------------
  3407 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3408   Node* empty_mem = empty_memory();
  3409   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3410   // look for the finite support of the other memory
  3411   for (uint i = other->req(); --i >= req(); ) {
  3412     if (other->in(i) != empty_mem) {
  3413       uint new_len = i+1;
  3414       while (req() < new_len)  add_req(empty_mem);
  3415       break;
  3420 //---------------------------verify_sparse-------------------------------------
  3421 #ifndef PRODUCT
  3422 bool MergeMemNode::verify_sparse() const {
  3423   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3424   Node* base_mem = base_memory();
  3425   // The following can happen in degenerate cases, since empty==top.
  3426   if (is_empty_memory(base_mem))  return true;
  3427   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3428     assert(in(i) != NULL, "sane slice");
  3429     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3431   return true;
  3434 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3435   Node* n;
  3436   n = mm->in(idx);
  3437   if (mem == n)  return true;  // might be empty_memory()
  3438   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3439   if (mem == n)  return true;
  3440   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3441     if (mem == n)  return true;
  3442     if (n == NULL)  break;
  3444   return false;
  3446 #endif // !PRODUCT

mercurial