src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Tue, 27 Nov 2012 14:20:21 +0100

author
stefank
date
Tue, 27 Nov 2012 14:20:21 +0100
changeset 4299
f34d701e952e
parent 4153
b9a9ed0f8eeb
child 4325
d2f8c38e543d
permissions
-rw-r--r--

8003935: Simplify the needed includes for using Thread::current()
Reviewed-by: dholmes, rbackman, coleenp

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "assembler_x86.inline.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_linux.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_linux.inline.hpp"
    36 #include "nativeInst_x86.hpp"
    37 #include "os_share_linux.hpp"
    38 #include "prims/jniFastGetField.hpp"
    39 #include "prims/jvm.h"
    40 #include "prims/jvm_misc.hpp"
    41 #include "runtime/arguments.hpp"
    42 #include "runtime/extendedPC.hpp"
    43 #include "runtime/frame.inline.hpp"
    44 #include "runtime/interfaceSupport.hpp"
    45 #include "runtime/java.hpp"
    46 #include "runtime/javaCalls.hpp"
    47 #include "runtime/mutexLocker.hpp"
    48 #include "runtime/osThread.hpp"
    49 #include "runtime/sharedRuntime.hpp"
    50 #include "runtime/stubRoutines.hpp"
    51 #include "runtime/thread.inline.hpp"
    52 #include "runtime/timer.hpp"
    53 #include "utilities/events.hpp"
    54 #include "utilities/vmError.hpp"
    56 // put OS-includes here
    57 # include <sys/types.h>
    58 # include <sys/mman.h>
    59 # include <pthread.h>
    60 # include <signal.h>
    61 # include <errno.h>
    62 # include <dlfcn.h>
    63 # include <stdlib.h>
    64 # include <stdio.h>
    65 # include <unistd.h>
    66 # include <sys/resource.h>
    67 # include <pthread.h>
    68 # include <sys/stat.h>
    69 # include <sys/time.h>
    70 # include <sys/utsname.h>
    71 # include <sys/socket.h>
    72 # include <sys/wait.h>
    73 # include <pwd.h>
    74 # include <poll.h>
    75 # include <ucontext.h>
    76 # include <fpu_control.h>
    78 #ifdef AMD64
    79 #define REG_SP REG_RSP
    80 #define REG_PC REG_RIP
    81 #define REG_FP REG_RBP
    82 #define SPELL_REG_SP "rsp"
    83 #define SPELL_REG_FP "rbp"
    84 #else
    85 #define REG_SP REG_UESP
    86 #define REG_PC REG_EIP
    87 #define REG_FP REG_EBP
    88 #define SPELL_REG_SP "esp"
    89 #define SPELL_REG_FP "ebp"
    90 #endif // AMD64
    92 address os::current_stack_pointer() {
    93 #ifdef SPARC_WORKS
    94   register void *esp;
    95   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
    96   return (address) ((char*)esp + sizeof(long)*2);
    97 #else
    98   register void *esp __asm__ (SPELL_REG_SP);
    99   return (address) esp;
   100 #endif
   101 }
   103 char* os::non_memory_address_word() {
   104   // Must never look like an address returned by reserve_memory,
   105   // even in its subfields (as defined by the CPU immediate fields,
   106   // if the CPU splits constants across multiple instructions).
   108   return (char*) -1;
   109 }
   111 void os::initialize_thread(Thread* thr) {
   112 // Nothing to do.
   113 }
   115 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
   116   return (address)uc->uc_mcontext.gregs[REG_PC];
   117 }
   119 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
   120   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   121 }
   123 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
   124   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   125 }
   127 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   128 // is currently interrupted by SIGPROF.
   129 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
   130 // frames. Currently we don't do that on Linux, so it's the same as
   131 // os::fetch_frame_from_context().
   132 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
   133   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   135   assert(thread != NULL, "just checking");
   136   assert(ret_sp != NULL, "just checking");
   137   assert(ret_fp != NULL, "just checking");
   139   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   140 }
   142 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   143                     intptr_t** ret_sp, intptr_t** ret_fp) {
   145   ExtendedPC  epc;
   146   ucontext_t* uc = (ucontext_t*)ucVoid;
   148   if (uc != NULL) {
   149     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
   150     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   151     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   152   } else {
   153     // construct empty ExtendedPC for return value checking
   154     epc = ExtendedPC(NULL);
   155     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   156     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   157   }
   159   return epc;
   160 }
   162 frame os::fetch_frame_from_context(void* ucVoid) {
   163   intptr_t* sp;
   164   intptr_t* fp;
   165   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   166   return frame(sp, fp, epc.pc());
   167 }
   169 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   170 // turned off by -fomit-frame-pointer,
   171 frame os::get_sender_for_C_frame(frame* fr) {
   172   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   173 }
   175 intptr_t* _get_previous_fp() {
   176 #ifdef SPARC_WORKS
   177   register intptr_t **ebp;
   178   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
   179 #else
   180   register intptr_t **ebp __asm__ (SPELL_REG_FP);
   181 #endif
   182   return (intptr_t*) *ebp;   // we want what it points to.
   183 }
   186 frame os::current_frame() {
   187   intptr_t* fp = _get_previous_fp();
   188   frame myframe((intptr_t*)os::current_stack_pointer(),
   189                 (intptr_t*)fp,
   190                 CAST_FROM_FN_PTR(address, os::current_frame));
   191   if (os::is_first_C_frame(&myframe)) {
   192     // stack is not walkable
   193     return frame(NULL, NULL, NULL);
   194   } else {
   195     return os::get_sender_for_C_frame(&myframe);
   196   }
   197 }
   199 // Utility functions
   201 // From IA32 System Programming Guide
   202 enum {
   203   trap_page_fault = 0xE
   204 };
   206 extern "C" void Fetch32PFI () ;
   207 extern "C" void Fetch32Resume () ;
   208 #ifdef AMD64
   209 extern "C" void FetchNPFI () ;
   210 extern "C" void FetchNResume () ;
   211 #endif // AMD64
   213 extern "C" JNIEXPORT int
   214 JVM_handle_linux_signal(int sig,
   215                         siginfo_t* info,
   216                         void* ucVoid,
   217                         int abort_if_unrecognized) {
   218   ucontext_t* uc = (ucontext_t*) ucVoid;
   220   Thread* t = ThreadLocalStorage::get_thread_slow();
   222   SignalHandlerMark shm(t);
   224   // Note: it's not uncommon that JNI code uses signal/sigset to install
   225   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   226   // or have a SIGILL handler when detecting CPU type). When that happens,
   227   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   228   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   229   // that do not require siginfo/ucontext first.
   231   if (sig == SIGPIPE || sig == SIGXFSZ) {
   232     // allow chained handler to go first
   233     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   234       return true;
   235     } else {
   236       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   237         char buf[64];
   238         warning("Ignoring %s - see bugs 4229104 or 646499219",
   239                 os::exception_name(sig, buf, sizeof(buf)));
   240       }
   241       return true;
   242     }
   243   }
   245   JavaThread* thread = NULL;
   246   VMThread* vmthread = NULL;
   247   if (os::Linux::signal_handlers_are_installed) {
   248     if (t != NULL ){
   249       if(t->is_Java_thread()) {
   250         thread = (JavaThread*)t;
   251       }
   252       else if(t->is_VM_thread()){
   253         vmthread = (VMThread *)t;
   254       }
   255     }
   256   }
   257 /*
   258   NOTE: does not seem to work on linux.
   259   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   260     // can't decode this kind of signal
   261     info = NULL;
   262   } else {
   263     assert(sig == info->si_signo, "bad siginfo");
   264   }
   265 */
   266   // decide if this trap can be handled by a stub
   267   address stub = NULL;
   269   address pc          = NULL;
   271   //%note os_trap_1
   272   if (info != NULL && uc != NULL && thread != NULL) {
   273     pc = (address) os::Linux::ucontext_get_pc(uc);
   275     if (pc == (address) Fetch32PFI) {
   276        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   277        return 1 ;
   278     }
   279 #ifdef AMD64
   280     if (pc == (address) FetchNPFI) {
   281        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
   282        return 1 ;
   283     }
   284 #endif // AMD64
   286     // Handle ALL stack overflow variations here
   287     if (sig == SIGSEGV) {
   288       address addr = (address) info->si_addr;
   290       // check if fault address is within thread stack
   291       if (addr < thread->stack_base() &&
   292           addr >= thread->stack_base() - thread->stack_size()) {
   293         // stack overflow
   294         if (thread->in_stack_yellow_zone(addr)) {
   295           thread->disable_stack_yellow_zone();
   296           if (thread->thread_state() == _thread_in_Java) {
   297             // Throw a stack overflow exception.  Guard pages will be reenabled
   298             // while unwinding the stack.
   299             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   300           } else {
   301             // Thread was in the vm or native code.  Return and try to finish.
   302             return 1;
   303           }
   304         } else if (thread->in_stack_red_zone(addr)) {
   305           // Fatal red zone violation.  Disable the guard pages and fall through
   306           // to handle_unexpected_exception way down below.
   307           thread->disable_stack_red_zone();
   308           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   309         } else {
   310           // Accessing stack address below sp may cause SEGV if current
   311           // thread has MAP_GROWSDOWN stack. This should only happen when
   312           // current thread was created by user code with MAP_GROWSDOWN flag
   313           // and then attached to VM. See notes in os_linux.cpp.
   314           if (thread->osthread()->expanding_stack() == 0) {
   315              thread->osthread()->set_expanding_stack();
   316              if (os::Linux::manually_expand_stack(thread, addr)) {
   317                thread->osthread()->clear_expanding_stack();
   318                return 1;
   319              }
   320              thread->osthread()->clear_expanding_stack();
   321           } else {
   322              fatal("recursive segv. expanding stack.");
   323           }
   324         }
   325       }
   326     }
   328     if (thread->thread_state() == _thread_in_Java) {
   329       // Java thread running in Java code => find exception handler if any
   330       // a fault inside compiled code, the interpreter, or a stub
   332       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   333         stub = SharedRuntime::get_poll_stub(pc);
   334       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   335         // BugId 4454115: A read from a MappedByteBuffer can fault
   336         // here if the underlying file has been truncated.
   337         // Do not crash the VM in such a case.
   338         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   339         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   340         if (nm != NULL && nm->has_unsafe_access()) {
   341           stub = StubRoutines::handler_for_unsafe_access();
   342         }
   343       }
   344       else
   346 #ifdef AMD64
   347       if (sig == SIGFPE  &&
   348           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
   349         stub =
   350           SharedRuntime::
   351           continuation_for_implicit_exception(thread,
   352                                               pc,
   353                                               SharedRuntime::
   354                                               IMPLICIT_DIVIDE_BY_ZERO);
   355 #else
   356       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   357         // HACK: si_code does not work on linux 2.2.12-20!!!
   358         int op = pc[0];
   359         if (op == 0xDB) {
   360           // FIST
   361           // TODO: The encoding of D2I in i486.ad can cause an exception
   362           // prior to the fist instruction if there was an invalid operation
   363           // pending. We want to dismiss that exception. From the win_32
   364           // side it also seems that if it really was the fist causing
   365           // the exception that we do the d2i by hand with different
   366           // rounding. Seems kind of weird.
   367           // NOTE: that we take the exception at the NEXT floating point instruction.
   368           assert(pc[0] == 0xDB, "not a FIST opcode");
   369           assert(pc[1] == 0x14, "not a FIST opcode");
   370           assert(pc[2] == 0x24, "not a FIST opcode");
   371           return true;
   372         } else if (op == 0xF7) {
   373           // IDIV
   374           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   375         } else {
   376           // TODO: handle more cases if we are using other x86 instructions
   377           //   that can generate SIGFPE signal on linux.
   378           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
   379           fatal("please update this code.");
   380         }
   381 #endif // AMD64
   382       } else if (sig == SIGSEGV &&
   383                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   384           // Determination of interpreter/vtable stub/compiled code null exception
   385           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   386       }
   387     } else if (thread->thread_state() == _thread_in_vm &&
   388                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   389                thread->doing_unsafe_access()) {
   390         stub = StubRoutines::handler_for_unsafe_access();
   391     }
   393     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   394     // and the heap gets shrunk before the field access.
   395     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   396       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   397       if (addr != (address)-1) {
   398         stub = addr;
   399       }
   400     }
   402     // Check to see if we caught the safepoint code in the
   403     // process of write protecting the memory serialization page.
   404     // It write enables the page immediately after protecting it
   405     // so we can just return to retry the write.
   406     if ((sig == SIGSEGV) &&
   407         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   408       // Block current thread until the memory serialize page permission restored.
   409       os::block_on_serialize_page_trap();
   410       return true;
   411     }
   412   }
   414 #ifndef AMD64
   415   // Execution protection violation
   416   //
   417   // This should be kept as the last step in the triage.  We don't
   418   // have a dedicated trap number for a no-execute fault, so be
   419   // conservative and allow other handlers the first shot.
   420   //
   421   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   422   // this si_code is so generic that it is almost meaningless; and
   423   // the si_code for this condition may change in the future.
   424   // Furthermore, a false-positive should be harmless.
   425   if (UnguardOnExecutionViolation > 0 &&
   426       (sig == SIGSEGV || sig == SIGBUS) &&
   427       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   428     int page_size = os::vm_page_size();
   429     address addr = (address) info->si_addr;
   430     address pc = os::Linux::ucontext_get_pc(uc);
   431     // Make sure the pc and the faulting address are sane.
   432     //
   433     // If an instruction spans a page boundary, and the page containing
   434     // the beginning of the instruction is executable but the following
   435     // page is not, the pc and the faulting address might be slightly
   436     // different - we still want to unguard the 2nd page in this case.
   437     //
   438     // 15 bytes seems to be a (very) safe value for max instruction size.
   439     bool pc_is_near_addr =
   440       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   441     bool instr_spans_page_boundary =
   442       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   443                        (intptr_t) page_size) > 0);
   445     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   446       static volatile address last_addr =
   447         (address) os::non_memory_address_word();
   449       // In conservative mode, don't unguard unless the address is in the VM
   450       if (addr != last_addr &&
   451           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   453         // Set memory to RWX and retry
   454         address page_start =
   455           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   456         bool res = os::protect_memory((char*) page_start, page_size,
   457                                       os::MEM_PROT_RWX);
   459         if (PrintMiscellaneous && Verbose) {
   460           char buf[256];
   461           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   462                        "at " INTPTR_FORMAT
   463                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   464                        page_start, (res ? "success" : "failed"), errno);
   465           tty->print_raw_cr(buf);
   466         }
   467         stub = pc;
   469         // Set last_addr so if we fault again at the same address, we don't end
   470         // up in an endless loop.
   471         //
   472         // There are two potential complications here.  Two threads trapping at
   473         // the same address at the same time could cause one of the threads to
   474         // think it already unguarded, and abort the VM.  Likely very rare.
   475         //
   476         // The other race involves two threads alternately trapping at
   477         // different addresses and failing to unguard the page, resulting in
   478         // an endless loop.  This condition is probably even more unlikely than
   479         // the first.
   480         //
   481         // Although both cases could be avoided by using locks or thread local
   482         // last_addr, these solutions are unnecessary complication: this
   483         // handler is a best-effort safety net, not a complete solution.  It is
   484         // disabled by default and should only be used as a workaround in case
   485         // we missed any no-execute-unsafe VM code.
   487         last_addr = addr;
   488       }
   489     }
   490   }
   491 #endif // !AMD64
   493   if (stub != NULL) {
   494     // save all thread context in case we need to restore it
   495     if (thread != NULL) thread->set_saved_exception_pc(pc);
   497     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   498     return true;
   499   }
   501   // signal-chaining
   502   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   503      return true;
   504   }
   506   if (!abort_if_unrecognized) {
   507     // caller wants another chance, so give it to him
   508     return false;
   509   }
   511   if (pc == NULL && uc != NULL) {
   512     pc = os::Linux::ucontext_get_pc(uc);
   513   }
   515   // unmask current signal
   516   sigset_t newset;
   517   sigemptyset(&newset);
   518   sigaddset(&newset, sig);
   519   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   521   VMError err(t, sig, pc, info, ucVoid);
   522   err.report_and_die();
   524   ShouldNotReachHere();
   525 }
   527 void os::Linux::init_thread_fpu_state(void) {
   528 #ifndef AMD64
   529   // set fpu to 53 bit precision
   530   set_fpu_control_word(0x27f);
   531 #endif // !AMD64
   532 }
   534 int os::Linux::get_fpu_control_word(void) {
   535 #ifdef AMD64
   536   return 0;
   537 #else
   538   int fpu_control;
   539   _FPU_GETCW(fpu_control);
   540   return fpu_control & 0xffff;
   541 #endif // AMD64
   542 }
   544 void os::Linux::set_fpu_control_word(int fpu_control) {
   545 #ifndef AMD64
   546   _FPU_SETCW(fpu_control);
   547 #endif // !AMD64
   548 }
   550 // Check that the linux kernel version is 2.4 or higher since earlier
   551 // versions do not support SSE without patches.
   552 bool os::supports_sse() {
   553 #ifdef AMD64
   554   return true;
   555 #else
   556   struct utsname uts;
   557   if( uname(&uts) != 0 ) return false; // uname fails?
   558   char *minor_string;
   559   int major = strtol(uts.release,&minor_string,10);
   560   int minor = strtol(minor_string+1,NULL,10);
   561   bool result = (major > 2 || (major==2 && minor >= 4));
   562 #ifndef PRODUCT
   563   if (PrintMiscellaneous && Verbose) {
   564     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
   565                major,minor, result ? "DOES" : "does NOT");
   566   }
   567 #endif
   568   return result;
   569 #endif // AMD64
   570 }
   572 bool os::is_allocatable(size_t bytes) {
   573 #ifdef AMD64
   574   // unused on amd64?
   575   return true;
   576 #else
   578   if (bytes < 2 * G) {
   579     return true;
   580   }
   582   char* addr = reserve_memory(bytes, NULL);
   584   if (addr != NULL) {
   585     release_memory(addr, bytes);
   586   }
   588   return addr != NULL;
   589 #endif // AMD64
   590 }
   592 ////////////////////////////////////////////////////////////////////////////////
   593 // thread stack
   595 #ifdef AMD64
   596 size_t os::Linux::min_stack_allowed  = 64 * K;
   598 // amd64: pthread on amd64 is always in floating stack mode
   599 bool os::Linux::supports_variable_stack_size() {  return true; }
   600 #else
   601 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
   603 #ifdef __GNUC__
   604 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
   605 #endif
   607 // Test if pthread library can support variable thread stack size. LinuxThreads
   608 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   609 // in floating stack mode and NPTL support variable stack size.
   610 bool os::Linux::supports_variable_stack_size() {
   611   if (os::Linux::is_NPTL()) {
   612      // NPTL, yes
   613      return true;
   615   } else {
   616     // Note: We can't control default stack size when creating a thread.
   617     // If we use non-default stack size (pthread_attr_setstacksize), both
   618     // floating stack and non-floating stack LinuxThreads will return the
   619     // same value. This makes it impossible to implement this function by
   620     // detecting thread stack size directly.
   621     //
   622     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   623     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   624     // %gs (either as LDT selector or GDT selector, depending on kernel)
   625     // to access thread specific data.
   626     //
   627     // Note that %gs is a reserved glibc register since early 2001, so
   628     // applications are not allowed to change its value (Ulrich Drepper from
   629     // Redhat confirmed that all known offenders have been modified to use
   630     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   631     // a native application that plays with %gs, we might see non-zero %gs
   632     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   633     // return true and skip _thread_safety_check(), so we may not be able to
   634     // detect stack-heap collisions. But otherwise it's harmless.
   635     //
   636 #ifdef __GNUC__
   637     return (GET_GS() != 0);
   638 #else
   639     return false;
   640 #endif
   641   }
   642 }
   643 #endif // AMD64
   645 // return default stack size for thr_type
   646 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   647   // default stack size (compiler thread needs larger stack)
   648 #ifdef AMD64
   649   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
   650 #else
   651   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   652 #endif // AMD64
   653   return s;
   654 }
   656 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   657   // Creating guard page is very expensive. Java thread has HotSpot
   658   // guard page, only enable glibc guard page for non-Java threads.
   659   return (thr_type == java_thread ? 0 : page_size());
   660 }
   662 // Java thread:
   663 //
   664 //   Low memory addresses
   665 //    +------------------------+
   666 //    |                        |\  JavaThread created by VM does not have glibc
   667 //    |    glibc guard page    | - guard, attached Java thread usually has
   668 //    |                        |/  1 page glibc guard.
   669 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   670 //    |                        |\
   671 //    |  HotSpot Guard Pages   | - red and yellow pages
   672 //    |                        |/
   673 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   674 //    |                        |\
   675 //    |      Normal Stack      | -
   676 //    |                        |/
   677 // P2 +------------------------+ Thread::stack_base()
   678 //
   679 // Non-Java thread:
   680 //
   681 //   Low memory addresses
   682 //    +------------------------+
   683 //    |                        |\
   684 //    |  glibc guard page      | - usually 1 page
   685 //    |                        |/
   686 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   687 //    |                        |\
   688 //    |      Normal Stack      | -
   689 //    |                        |/
   690 // P2 +------------------------+ Thread::stack_base()
   691 //
   692 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   693 //    pthread_attr_getstack()
   695 static void current_stack_region(address * bottom, size_t * size) {
   696   if (os::Linux::is_initial_thread()) {
   697      // initial thread needs special handling because pthread_getattr_np()
   698      // may return bogus value.
   699      *bottom = os::Linux::initial_thread_stack_bottom();
   700      *size   = os::Linux::initial_thread_stack_size();
   701   } else {
   702      pthread_attr_t attr;
   704      int rslt = pthread_getattr_np(pthread_self(), &attr);
   706      // JVM needs to know exact stack location, abort if it fails
   707      if (rslt != 0) {
   708        if (rslt == ENOMEM) {
   709          vm_exit_out_of_memory(0, "pthread_getattr_np");
   710        } else {
   711          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
   712        }
   713      }
   715      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
   716          fatal("Can not locate current stack attributes!");
   717      }
   719      pthread_attr_destroy(&attr);
   721   }
   722   assert(os::current_stack_pointer() >= *bottom &&
   723          os::current_stack_pointer() < *bottom + *size, "just checking");
   724 }
   726 address os::current_stack_base() {
   727   address bottom;
   728   size_t size;
   729   current_stack_region(&bottom, &size);
   730   return (bottom + size);
   731 }
   733 size_t os::current_stack_size() {
   734   // stack size includes normal stack and HotSpot guard pages
   735   address bottom;
   736   size_t size;
   737   current_stack_region(&bottom, &size);
   738   return size;
   739 }
   741 /////////////////////////////////////////////////////////////////////////////
   742 // helper functions for fatal error handler
   744 void os::print_context(outputStream *st, void *context) {
   745   if (context == NULL) return;
   747   ucontext_t *uc = (ucontext_t*)context;
   748   st->print_cr("Registers:");
   749 #ifdef AMD64
   750   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   751   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   752   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   753   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   754   st->cr();
   755   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   756   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   757   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   758   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   759   st->cr();
   760   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   761   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   762   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   763   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   764   st->cr();
   765   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   766   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   767   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   768   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   769   st->cr();
   770   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   771   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   772   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
   773   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
   774   st->cr();
   775   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
   776 #else
   777   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
   778   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
   779   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
   780   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
   781   st->cr();
   782   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
   783   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
   784   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
   785   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
   786   st->cr();
   787   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
   788   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   789   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
   790 #endif // AMD64
   791   st->cr();
   792   st->cr();
   794   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   795   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   796   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   797   st->cr();
   799   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   800   // point to garbage if entry point in an nmethod is corrupted. Leave
   801   // this at the end, and hope for the best.
   802   address pc = os::Linux::ucontext_get_pc(uc);
   803   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   804   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   805 }
   807 void os::print_register_info(outputStream *st, void *context) {
   808   if (context == NULL) return;
   810   ucontext_t *uc = (ucontext_t*)context;
   812   st->print_cr("Register to memory mapping:");
   813   st->cr();
   815   // this is horrendously verbose but the layout of the registers in the
   816   // context does not match how we defined our abstract Register set, so
   817   // we can't just iterate through the gregs area
   819   // this is only for the "general purpose" registers
   821 #ifdef AMD64
   822   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   823   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   824   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   825   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   826   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   827   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   828   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   829   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   830   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   831   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   832   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   833   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   834   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   835   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   836   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   837   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   838 #else
   839   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
   840   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
   841   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
   842   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
   843   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
   844   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
   845   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
   846   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
   847 #endif // AMD64
   849   st->cr();
   850 }
   852 void os::setup_fpu() {
   853 #ifndef AMD64
   854   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   855   __asm__ volatile (  "fldcw (%0)" :
   856                       : "r" (fpu_cntrl) : "memory");
   857 #endif // !AMD64
   858 }
   860 #ifndef PRODUCT
   861 void os::verify_stack_alignment() {
   862 #ifdef AMD64
   863   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   864 #endif
   865 }
   866 #endif

mercurial