src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Fri, 07 Dec 2012 01:09:03 -0800

author
roland
date
Fri, 07 Dec 2012 01:09:03 -0800
changeset 4325
d2f8c38e543d
parent 4299
f34d701e952e
parent 4318
cd3d6a6b95d9
child 4528
12285410684f
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "asm/macroAssembler.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_linux.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_linux.inline.hpp"
    36 #include "os_share_linux.hpp"
    37 #include "prims/jniFastGetField.hpp"
    38 #include "prims/jvm.h"
    39 #include "prims/jvm_misc.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/extendedPC.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/javaCalls.hpp"
    46 #include "runtime/mutexLocker.hpp"
    47 #include "runtime/osThread.hpp"
    48 #include "runtime/sharedRuntime.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "runtime/timer.hpp"
    52 #include "utilities/events.hpp"
    53 #include "utilities/vmError.hpp"
    55 // put OS-includes here
    56 # include <sys/types.h>
    57 # include <sys/mman.h>
    58 # include <pthread.h>
    59 # include <signal.h>
    60 # include <errno.h>
    61 # include <dlfcn.h>
    62 # include <stdlib.h>
    63 # include <stdio.h>
    64 # include <unistd.h>
    65 # include <sys/resource.h>
    66 # include <pthread.h>
    67 # include <sys/stat.h>
    68 # include <sys/time.h>
    69 # include <sys/utsname.h>
    70 # include <sys/socket.h>
    71 # include <sys/wait.h>
    72 # include <pwd.h>
    73 # include <poll.h>
    74 # include <ucontext.h>
    75 # include <fpu_control.h>
    77 #ifdef AMD64
    78 #define REG_SP REG_RSP
    79 #define REG_PC REG_RIP
    80 #define REG_FP REG_RBP
    81 #define SPELL_REG_SP "rsp"
    82 #define SPELL_REG_FP "rbp"
    83 #else
    84 #define REG_SP REG_UESP
    85 #define REG_PC REG_EIP
    86 #define REG_FP REG_EBP
    87 #define SPELL_REG_SP "esp"
    88 #define SPELL_REG_FP "ebp"
    89 #endif // AMD64
    91 address os::current_stack_pointer() {
    92 #ifdef SPARC_WORKS
    93   register void *esp;
    94   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
    95   return (address) ((char*)esp + sizeof(long)*2);
    96 #else
    97   register void *esp __asm__ (SPELL_REG_SP);
    98   return (address) esp;
    99 #endif
   100 }
   102 char* os::non_memory_address_word() {
   103   // Must never look like an address returned by reserve_memory,
   104   // even in its subfields (as defined by the CPU immediate fields,
   105   // if the CPU splits constants across multiple instructions).
   107   return (char*) -1;
   108 }
   110 void os::initialize_thread(Thread* thr) {
   111 // Nothing to do.
   112 }
   114 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
   115   return (address)uc->uc_mcontext.gregs[REG_PC];
   116 }
   118 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
   119   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   120 }
   122 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
   123   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   124 }
   126 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   127 // is currently interrupted by SIGPROF.
   128 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
   129 // frames. Currently we don't do that on Linux, so it's the same as
   130 // os::fetch_frame_from_context().
   131 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
   132   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   134   assert(thread != NULL, "just checking");
   135   assert(ret_sp != NULL, "just checking");
   136   assert(ret_fp != NULL, "just checking");
   138   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   139 }
   141 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   142                     intptr_t** ret_sp, intptr_t** ret_fp) {
   144   ExtendedPC  epc;
   145   ucontext_t* uc = (ucontext_t*)ucVoid;
   147   if (uc != NULL) {
   148     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
   149     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   150     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   151   } else {
   152     // construct empty ExtendedPC for return value checking
   153     epc = ExtendedPC(NULL);
   154     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   155     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   156   }
   158   return epc;
   159 }
   161 frame os::fetch_frame_from_context(void* ucVoid) {
   162   intptr_t* sp;
   163   intptr_t* fp;
   164   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   165   return frame(sp, fp, epc.pc());
   166 }
   168 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   169 // turned off by -fomit-frame-pointer,
   170 frame os::get_sender_for_C_frame(frame* fr) {
   171   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   172 }
   174 intptr_t* _get_previous_fp() {
   175 #ifdef SPARC_WORKS
   176   register intptr_t **ebp;
   177   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
   178 #else
   179   register intptr_t **ebp __asm__ (SPELL_REG_FP);
   180 #endif
   181   return (intptr_t*) *ebp;   // we want what it points to.
   182 }
   185 frame os::current_frame() {
   186   intptr_t* fp = _get_previous_fp();
   187   frame myframe((intptr_t*)os::current_stack_pointer(),
   188                 (intptr_t*)fp,
   189                 CAST_FROM_FN_PTR(address, os::current_frame));
   190   if (os::is_first_C_frame(&myframe)) {
   191     // stack is not walkable
   192     return frame(NULL, NULL, NULL);
   193   } else {
   194     return os::get_sender_for_C_frame(&myframe);
   195   }
   196 }
   198 // Utility functions
   200 // From IA32 System Programming Guide
   201 enum {
   202   trap_page_fault = 0xE
   203 };
   205 extern "C" void Fetch32PFI () ;
   206 extern "C" void Fetch32Resume () ;
   207 #ifdef AMD64
   208 extern "C" void FetchNPFI () ;
   209 extern "C" void FetchNResume () ;
   210 #endif // AMD64
   212 extern "C" JNIEXPORT int
   213 JVM_handle_linux_signal(int sig,
   214                         siginfo_t* info,
   215                         void* ucVoid,
   216                         int abort_if_unrecognized) {
   217   ucontext_t* uc = (ucontext_t*) ucVoid;
   219   Thread* t = ThreadLocalStorage::get_thread_slow();
   221   SignalHandlerMark shm(t);
   223   // Note: it's not uncommon that JNI code uses signal/sigset to install
   224   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   225   // or have a SIGILL handler when detecting CPU type). When that happens,
   226   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   227   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   228   // that do not require siginfo/ucontext first.
   230   if (sig == SIGPIPE || sig == SIGXFSZ) {
   231     // allow chained handler to go first
   232     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   233       return true;
   234     } else {
   235       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   236         char buf[64];
   237         warning("Ignoring %s - see bugs 4229104 or 646499219",
   238                 os::exception_name(sig, buf, sizeof(buf)));
   239       }
   240       return true;
   241     }
   242   }
   244   JavaThread* thread = NULL;
   245   VMThread* vmthread = NULL;
   246   if (os::Linux::signal_handlers_are_installed) {
   247     if (t != NULL ){
   248       if(t->is_Java_thread()) {
   249         thread = (JavaThread*)t;
   250       }
   251       else if(t->is_VM_thread()){
   252         vmthread = (VMThread *)t;
   253       }
   254     }
   255   }
   256 /*
   257   NOTE: does not seem to work on linux.
   258   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   259     // can't decode this kind of signal
   260     info = NULL;
   261   } else {
   262     assert(sig == info->si_signo, "bad siginfo");
   263   }
   264 */
   265   // decide if this trap can be handled by a stub
   266   address stub = NULL;
   268   address pc          = NULL;
   270   //%note os_trap_1
   271   if (info != NULL && uc != NULL && thread != NULL) {
   272     pc = (address) os::Linux::ucontext_get_pc(uc);
   274     if (pc == (address) Fetch32PFI) {
   275        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   276        return 1 ;
   277     }
   278 #ifdef AMD64
   279     if (pc == (address) FetchNPFI) {
   280        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
   281        return 1 ;
   282     }
   283 #endif // AMD64
   285     // Handle ALL stack overflow variations here
   286     if (sig == SIGSEGV) {
   287       address addr = (address) info->si_addr;
   289       // check if fault address is within thread stack
   290       if (addr < thread->stack_base() &&
   291           addr >= thread->stack_base() - thread->stack_size()) {
   292         // stack overflow
   293         if (thread->in_stack_yellow_zone(addr)) {
   294           thread->disable_stack_yellow_zone();
   295           if (thread->thread_state() == _thread_in_Java) {
   296             // Throw a stack overflow exception.  Guard pages will be reenabled
   297             // while unwinding the stack.
   298             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   299           } else {
   300             // Thread was in the vm or native code.  Return and try to finish.
   301             return 1;
   302           }
   303         } else if (thread->in_stack_red_zone(addr)) {
   304           // Fatal red zone violation.  Disable the guard pages and fall through
   305           // to handle_unexpected_exception way down below.
   306           thread->disable_stack_red_zone();
   307           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   308         } else {
   309           // Accessing stack address below sp may cause SEGV if current
   310           // thread has MAP_GROWSDOWN stack. This should only happen when
   311           // current thread was created by user code with MAP_GROWSDOWN flag
   312           // and then attached to VM. See notes in os_linux.cpp.
   313           if (thread->osthread()->expanding_stack() == 0) {
   314              thread->osthread()->set_expanding_stack();
   315              if (os::Linux::manually_expand_stack(thread, addr)) {
   316                thread->osthread()->clear_expanding_stack();
   317                return 1;
   318              }
   319              thread->osthread()->clear_expanding_stack();
   320           } else {
   321              fatal("recursive segv. expanding stack.");
   322           }
   323         }
   324       }
   325     }
   327     if (thread->thread_state() == _thread_in_Java) {
   328       // Java thread running in Java code => find exception handler if any
   329       // a fault inside compiled code, the interpreter, or a stub
   331       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   332         stub = SharedRuntime::get_poll_stub(pc);
   333       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   334         // BugId 4454115: A read from a MappedByteBuffer can fault
   335         // here if the underlying file has been truncated.
   336         // Do not crash the VM in such a case.
   337         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   338         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   339         if (nm != NULL && nm->has_unsafe_access()) {
   340           stub = StubRoutines::handler_for_unsafe_access();
   341         }
   342       }
   343       else
   345 #ifdef AMD64
   346       if (sig == SIGFPE  &&
   347           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
   348         stub =
   349           SharedRuntime::
   350           continuation_for_implicit_exception(thread,
   351                                               pc,
   352                                               SharedRuntime::
   353                                               IMPLICIT_DIVIDE_BY_ZERO);
   354 #else
   355       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   356         // HACK: si_code does not work on linux 2.2.12-20!!!
   357         int op = pc[0];
   358         if (op == 0xDB) {
   359           // FIST
   360           // TODO: The encoding of D2I in i486.ad can cause an exception
   361           // prior to the fist instruction if there was an invalid operation
   362           // pending. We want to dismiss that exception. From the win_32
   363           // side it also seems that if it really was the fist causing
   364           // the exception that we do the d2i by hand with different
   365           // rounding. Seems kind of weird.
   366           // NOTE: that we take the exception at the NEXT floating point instruction.
   367           assert(pc[0] == 0xDB, "not a FIST opcode");
   368           assert(pc[1] == 0x14, "not a FIST opcode");
   369           assert(pc[2] == 0x24, "not a FIST opcode");
   370           return true;
   371         } else if (op == 0xF7) {
   372           // IDIV
   373           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   374         } else {
   375           // TODO: handle more cases if we are using other x86 instructions
   376           //   that can generate SIGFPE signal on linux.
   377           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
   378           fatal("please update this code.");
   379         }
   380 #endif // AMD64
   381       } else if (sig == SIGSEGV &&
   382                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   383           // Determination of interpreter/vtable stub/compiled code null exception
   384           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   385       }
   386     } else if (thread->thread_state() == _thread_in_vm &&
   387                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   388                thread->doing_unsafe_access()) {
   389         stub = StubRoutines::handler_for_unsafe_access();
   390     }
   392     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   393     // and the heap gets shrunk before the field access.
   394     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   395       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   396       if (addr != (address)-1) {
   397         stub = addr;
   398       }
   399     }
   401     // Check to see if we caught the safepoint code in the
   402     // process of write protecting the memory serialization page.
   403     // It write enables the page immediately after protecting it
   404     // so we can just return to retry the write.
   405     if ((sig == SIGSEGV) &&
   406         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   407       // Block current thread until the memory serialize page permission restored.
   408       os::block_on_serialize_page_trap();
   409       return true;
   410     }
   411   }
   413 #ifndef AMD64
   414   // Execution protection violation
   415   //
   416   // This should be kept as the last step in the triage.  We don't
   417   // have a dedicated trap number for a no-execute fault, so be
   418   // conservative and allow other handlers the first shot.
   419   //
   420   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   421   // this si_code is so generic that it is almost meaningless; and
   422   // the si_code for this condition may change in the future.
   423   // Furthermore, a false-positive should be harmless.
   424   if (UnguardOnExecutionViolation > 0 &&
   425       (sig == SIGSEGV || sig == SIGBUS) &&
   426       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   427     int page_size = os::vm_page_size();
   428     address addr = (address) info->si_addr;
   429     address pc = os::Linux::ucontext_get_pc(uc);
   430     // Make sure the pc and the faulting address are sane.
   431     //
   432     // If an instruction spans a page boundary, and the page containing
   433     // the beginning of the instruction is executable but the following
   434     // page is not, the pc and the faulting address might be slightly
   435     // different - we still want to unguard the 2nd page in this case.
   436     //
   437     // 15 bytes seems to be a (very) safe value for max instruction size.
   438     bool pc_is_near_addr =
   439       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   440     bool instr_spans_page_boundary =
   441       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   442                        (intptr_t) page_size) > 0);
   444     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   445       static volatile address last_addr =
   446         (address) os::non_memory_address_word();
   448       // In conservative mode, don't unguard unless the address is in the VM
   449       if (addr != last_addr &&
   450           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   452         // Set memory to RWX and retry
   453         address page_start =
   454           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   455         bool res = os::protect_memory((char*) page_start, page_size,
   456                                       os::MEM_PROT_RWX);
   458         if (PrintMiscellaneous && Verbose) {
   459           char buf[256];
   460           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   461                        "at " INTPTR_FORMAT
   462                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   463                        page_start, (res ? "success" : "failed"), errno);
   464           tty->print_raw_cr(buf);
   465         }
   466         stub = pc;
   468         // Set last_addr so if we fault again at the same address, we don't end
   469         // up in an endless loop.
   470         //
   471         // There are two potential complications here.  Two threads trapping at
   472         // the same address at the same time could cause one of the threads to
   473         // think it already unguarded, and abort the VM.  Likely very rare.
   474         //
   475         // The other race involves two threads alternately trapping at
   476         // different addresses and failing to unguard the page, resulting in
   477         // an endless loop.  This condition is probably even more unlikely than
   478         // the first.
   479         //
   480         // Although both cases could be avoided by using locks or thread local
   481         // last_addr, these solutions are unnecessary complication: this
   482         // handler is a best-effort safety net, not a complete solution.  It is
   483         // disabled by default and should only be used as a workaround in case
   484         // we missed any no-execute-unsafe VM code.
   486         last_addr = addr;
   487       }
   488     }
   489   }
   490 #endif // !AMD64
   492   if (stub != NULL) {
   493     // save all thread context in case we need to restore it
   494     if (thread != NULL) thread->set_saved_exception_pc(pc);
   496     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   497     return true;
   498   }
   500   // signal-chaining
   501   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   502      return true;
   503   }
   505   if (!abort_if_unrecognized) {
   506     // caller wants another chance, so give it to him
   507     return false;
   508   }
   510   if (pc == NULL && uc != NULL) {
   511     pc = os::Linux::ucontext_get_pc(uc);
   512   }
   514   // unmask current signal
   515   sigset_t newset;
   516   sigemptyset(&newset);
   517   sigaddset(&newset, sig);
   518   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   520   VMError err(t, sig, pc, info, ucVoid);
   521   err.report_and_die();
   523   ShouldNotReachHere();
   524 }
   526 void os::Linux::init_thread_fpu_state(void) {
   527 #ifndef AMD64
   528   // set fpu to 53 bit precision
   529   set_fpu_control_word(0x27f);
   530 #endif // !AMD64
   531 }
   533 int os::Linux::get_fpu_control_word(void) {
   534 #ifdef AMD64
   535   return 0;
   536 #else
   537   int fpu_control;
   538   _FPU_GETCW(fpu_control);
   539   return fpu_control & 0xffff;
   540 #endif // AMD64
   541 }
   543 void os::Linux::set_fpu_control_word(int fpu_control) {
   544 #ifndef AMD64
   545   _FPU_SETCW(fpu_control);
   546 #endif // !AMD64
   547 }
   549 // Check that the linux kernel version is 2.4 or higher since earlier
   550 // versions do not support SSE without patches.
   551 bool os::supports_sse() {
   552 #ifdef AMD64
   553   return true;
   554 #else
   555   struct utsname uts;
   556   if( uname(&uts) != 0 ) return false; // uname fails?
   557   char *minor_string;
   558   int major = strtol(uts.release,&minor_string,10);
   559   int minor = strtol(minor_string+1,NULL,10);
   560   bool result = (major > 2 || (major==2 && minor >= 4));
   561 #ifndef PRODUCT
   562   if (PrintMiscellaneous && Verbose) {
   563     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
   564                major,minor, result ? "DOES" : "does NOT");
   565   }
   566 #endif
   567   return result;
   568 #endif // AMD64
   569 }
   571 bool os::is_allocatable(size_t bytes) {
   572 #ifdef AMD64
   573   // unused on amd64?
   574   return true;
   575 #else
   577   if (bytes < 2 * G) {
   578     return true;
   579   }
   581   char* addr = reserve_memory(bytes, NULL);
   583   if (addr != NULL) {
   584     release_memory(addr, bytes);
   585   }
   587   return addr != NULL;
   588 #endif // AMD64
   589 }
   591 ////////////////////////////////////////////////////////////////////////////////
   592 // thread stack
   594 #ifdef AMD64
   595 size_t os::Linux::min_stack_allowed  = 64 * K;
   597 // amd64: pthread on amd64 is always in floating stack mode
   598 bool os::Linux::supports_variable_stack_size() {  return true; }
   599 #else
   600 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
   602 #ifdef __GNUC__
   603 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
   604 #endif
   606 // Test if pthread library can support variable thread stack size. LinuxThreads
   607 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   608 // in floating stack mode and NPTL support variable stack size.
   609 bool os::Linux::supports_variable_stack_size() {
   610   if (os::Linux::is_NPTL()) {
   611      // NPTL, yes
   612      return true;
   614   } else {
   615     // Note: We can't control default stack size when creating a thread.
   616     // If we use non-default stack size (pthread_attr_setstacksize), both
   617     // floating stack and non-floating stack LinuxThreads will return the
   618     // same value. This makes it impossible to implement this function by
   619     // detecting thread stack size directly.
   620     //
   621     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   622     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   623     // %gs (either as LDT selector or GDT selector, depending on kernel)
   624     // to access thread specific data.
   625     //
   626     // Note that %gs is a reserved glibc register since early 2001, so
   627     // applications are not allowed to change its value (Ulrich Drepper from
   628     // Redhat confirmed that all known offenders have been modified to use
   629     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   630     // a native application that plays with %gs, we might see non-zero %gs
   631     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   632     // return true and skip _thread_safety_check(), so we may not be able to
   633     // detect stack-heap collisions. But otherwise it's harmless.
   634     //
   635 #ifdef __GNUC__
   636     return (GET_GS() != 0);
   637 #else
   638     return false;
   639 #endif
   640   }
   641 }
   642 #endif // AMD64
   644 // return default stack size for thr_type
   645 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   646   // default stack size (compiler thread needs larger stack)
   647 #ifdef AMD64
   648   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
   649 #else
   650   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   651 #endif // AMD64
   652   return s;
   653 }
   655 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   656   // Creating guard page is very expensive. Java thread has HotSpot
   657   // guard page, only enable glibc guard page for non-Java threads.
   658   return (thr_type == java_thread ? 0 : page_size());
   659 }
   661 // Java thread:
   662 //
   663 //   Low memory addresses
   664 //    +------------------------+
   665 //    |                        |\  JavaThread created by VM does not have glibc
   666 //    |    glibc guard page    | - guard, attached Java thread usually has
   667 //    |                        |/  1 page glibc guard.
   668 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   669 //    |                        |\
   670 //    |  HotSpot Guard Pages   | - red and yellow pages
   671 //    |                        |/
   672 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   673 //    |                        |\
   674 //    |      Normal Stack      | -
   675 //    |                        |/
   676 // P2 +------------------------+ Thread::stack_base()
   677 //
   678 // Non-Java thread:
   679 //
   680 //   Low memory addresses
   681 //    +------------------------+
   682 //    |                        |\
   683 //    |  glibc guard page      | - usually 1 page
   684 //    |                        |/
   685 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   686 //    |                        |\
   687 //    |      Normal Stack      | -
   688 //    |                        |/
   689 // P2 +------------------------+ Thread::stack_base()
   690 //
   691 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   692 //    pthread_attr_getstack()
   694 static void current_stack_region(address * bottom, size_t * size) {
   695   if (os::Linux::is_initial_thread()) {
   696      // initial thread needs special handling because pthread_getattr_np()
   697      // may return bogus value.
   698      *bottom = os::Linux::initial_thread_stack_bottom();
   699      *size   = os::Linux::initial_thread_stack_size();
   700   } else {
   701      pthread_attr_t attr;
   703      int rslt = pthread_getattr_np(pthread_self(), &attr);
   705      // JVM needs to know exact stack location, abort if it fails
   706      if (rslt != 0) {
   707        if (rslt == ENOMEM) {
   708          vm_exit_out_of_memory(0, "pthread_getattr_np");
   709        } else {
   710          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
   711        }
   712      }
   714      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
   715          fatal("Can not locate current stack attributes!");
   716      }
   718      pthread_attr_destroy(&attr);
   720   }
   721   assert(os::current_stack_pointer() >= *bottom &&
   722          os::current_stack_pointer() < *bottom + *size, "just checking");
   723 }
   725 address os::current_stack_base() {
   726   address bottom;
   727   size_t size;
   728   current_stack_region(&bottom, &size);
   729   return (bottom + size);
   730 }
   732 size_t os::current_stack_size() {
   733   // stack size includes normal stack and HotSpot guard pages
   734   address bottom;
   735   size_t size;
   736   current_stack_region(&bottom, &size);
   737   return size;
   738 }
   740 /////////////////////////////////////////////////////////////////////////////
   741 // helper functions for fatal error handler
   743 void os::print_context(outputStream *st, void *context) {
   744   if (context == NULL) return;
   746   ucontext_t *uc = (ucontext_t*)context;
   747   st->print_cr("Registers:");
   748 #ifdef AMD64
   749   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   750   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   751   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   752   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   753   st->cr();
   754   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   755   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   756   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   757   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   758   st->cr();
   759   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   760   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   761   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   762   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   763   st->cr();
   764   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   765   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   766   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   767   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   768   st->cr();
   769   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   770   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   771   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
   772   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
   773   st->cr();
   774   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
   775 #else
   776   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
   777   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
   778   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
   779   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
   780   st->cr();
   781   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
   782   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
   783   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
   784   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
   785   st->cr();
   786   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
   787   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   788   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
   789 #endif // AMD64
   790   st->cr();
   791   st->cr();
   793   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   794   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   795   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   796   st->cr();
   798   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   799   // point to garbage if entry point in an nmethod is corrupted. Leave
   800   // this at the end, and hope for the best.
   801   address pc = os::Linux::ucontext_get_pc(uc);
   802   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   803   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   804 }
   806 void os::print_register_info(outputStream *st, void *context) {
   807   if (context == NULL) return;
   809   ucontext_t *uc = (ucontext_t*)context;
   811   st->print_cr("Register to memory mapping:");
   812   st->cr();
   814   // this is horrendously verbose but the layout of the registers in the
   815   // context does not match how we defined our abstract Register set, so
   816   // we can't just iterate through the gregs area
   818   // this is only for the "general purpose" registers
   820 #ifdef AMD64
   821   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   822   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   823   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   824   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   825   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   826   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   827   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   828   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   829   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   830   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   831   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   832   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   833   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   834   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   835   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   836   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   837 #else
   838   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
   839   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
   840   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
   841   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
   842   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
   843   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
   844   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
   845   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
   846 #endif // AMD64
   848   st->cr();
   849 }
   851 void os::setup_fpu() {
   852 #ifndef AMD64
   853   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   854   __asm__ volatile (  "fldcw (%0)" :
   855                       : "r" (fpu_cntrl) : "memory");
   856 #endif // !AMD64
   857 }
   859 #ifndef PRODUCT
   860 void os::verify_stack_alignment() {
   861 #ifdef AMD64
   862   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   863 #endif
   864 }
   865 #endif

mercurial