src/share/vm/utilities/taskqueue.hpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 2708
1d1603768966
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "utilities/stack.hpp"
    32 #ifdef TARGET_OS_ARCH_linux_x86
    33 # include "orderAccess_linux_x86.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_ARCH_linux_sparc
    36 # include "orderAccess_linux_sparc.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_ARCH_linux_zero
    39 # include "orderAccess_linux_zero.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_ARCH_solaris_x86
    42 # include "orderAccess_solaris_x86.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_ARCH_solaris_sparc
    45 # include "orderAccess_solaris_sparc.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_windows_x86
    48 # include "orderAccess_windows_x86.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_arm
    51 # include "orderAccess_linux_arm.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_linux_ppc
    54 # include "orderAccess_linux_ppc.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_bsd_x86
    57 # include "orderAccess_bsd_x86.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_bsd_zero
    60 # include "orderAccess_bsd_zero.inline.hpp"
    61 #endif
    63 // Simple TaskQueue stats that are collected by default in debug builds.
    65 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    66 #define TASKQUEUE_STATS 1
    67 #elif !defined(TASKQUEUE_STATS)
    68 #define TASKQUEUE_STATS 0
    69 #endif
    71 #if TASKQUEUE_STATS
    72 #define TASKQUEUE_STATS_ONLY(code) code
    73 #else
    74 #define TASKQUEUE_STATS_ONLY(code)
    75 #endif // TASKQUEUE_STATS
    77 #if TASKQUEUE_STATS
    78 class TaskQueueStats {
    79 public:
    80   enum StatId {
    81     push,             // number of taskqueue pushes
    82     pop,              // number of taskqueue pops
    83     pop_slow,         // subset of taskqueue pops that were done slow-path
    84     steal_attempt,    // number of taskqueue steal attempts
    85     steal,            // number of taskqueue steals
    86     overflow,         // number of overflow pushes
    87     overflow_max_len, // max length of overflow stack
    88     last_stat_id
    89   };
    91 public:
    92   inline TaskQueueStats()       { reset(); }
    94   inline void record_push()     { ++_stats[push]; }
    95   inline void record_pop()      { ++_stats[pop]; }
    96   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    97   inline void record_steal(bool success);
    98   inline void record_overflow(size_t new_length);
   100   TaskQueueStats & operator +=(const TaskQueueStats & addend);
   102   inline size_t get(StatId id) const { return _stats[id]; }
   103   inline const size_t* get() const   { return _stats; }
   105   inline void reset();
   107   // Print the specified line of the header (does not include a line separator).
   108   static void print_header(unsigned int line, outputStream* const stream = tty,
   109                            unsigned int width = 10);
   110   // Print the statistics (does not include a line separator).
   111   void print(outputStream* const stream = tty, unsigned int width = 10) const;
   113   DEBUG_ONLY(void verify() const;)
   115 private:
   116   size_t                    _stats[last_stat_id];
   117   static const char * const _names[last_stat_id];
   118 };
   120 void TaskQueueStats::record_steal(bool success) {
   121   ++_stats[steal_attempt];
   122   if (success) ++_stats[steal];
   123 }
   125 void TaskQueueStats::record_overflow(size_t new_len) {
   126   ++_stats[overflow];
   127   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
   128 }
   130 void TaskQueueStats::reset() {
   131   memset(_stats, 0, sizeof(_stats));
   132 }
   133 #endif // TASKQUEUE_STATS
   135 template <unsigned int N>
   136 class TaskQueueSuper: public CHeapObj {
   137 protected:
   138   // Internal type for indexing the queue; also used for the tag.
   139   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   141   // The first free element after the last one pushed (mod N).
   142   volatile uint _bottom;
   144   enum { MOD_N_MASK = N - 1 };
   146   class Age {
   147   public:
   148     Age(size_t data = 0)         { _data = data; }
   149     Age(const Age& age)          { _data = age._data; }
   150     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   152     Age   get()        const volatile { return _data; }
   153     void  set(Age age) volatile       { _data = age._data; }
   155     idx_t top()        const volatile { return _fields._top; }
   156     idx_t tag()        const volatile { return _fields._tag; }
   158     // Increment top; if it wraps, increment tag also.
   159     void increment() {
   160       _fields._top = increment_index(_fields._top);
   161       if (_fields._top == 0) ++_fields._tag;
   162     }
   164     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   165       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   166                                           (volatile intptr_t *)&_data,
   167                                           (intptr_t)old_age._data);
   168     }
   170     bool operator ==(const Age& other) const { return _data == other._data; }
   172   private:
   173     struct fields {
   174       idx_t _top;
   175       idx_t _tag;
   176     };
   177     union {
   178       size_t _data;
   179       fields _fields;
   180     };
   181   };
   183   volatile Age _age;
   185   // These both operate mod N.
   186   static uint increment_index(uint ind) {
   187     return (ind + 1) & MOD_N_MASK;
   188   }
   189   static uint decrement_index(uint ind) {
   190     return (ind - 1) & MOD_N_MASK;
   191   }
   193   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   194   // interpreted as 0.
   195   uint dirty_size(uint bot, uint top) const {
   196     return (bot - top) & MOD_N_MASK;
   197   }
   199   // Returns the size corresponding to the given "bot" and "top".
   200   uint size(uint bot, uint top) const {
   201     uint sz = dirty_size(bot, top);
   202     // Has the queue "wrapped", so that bottom is less than top?  There's a
   203     // complicated special case here.  A pair of threads could perform pop_local
   204     // and pop_global operations concurrently, starting from a state in which
   205     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   206     // and the pop_global in incrementing _top (in which case the pop_global
   207     // will be awarded the contested queue element.)  The resulting state must
   208     // be interpreted as an empty queue.  (We only need to worry about one such
   209     // event: only the queue owner performs pop_local's, and several concurrent
   210     // threads attempting to perform the pop_global will all perform the same
   211     // CAS, and only one can succeed.)  Any stealing thread that reads after
   212     // either the increment or decrement will see an empty queue, and will not
   213     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   214     // modified by concurrent queues, so the owner thread can reset the state to
   215     // _bottom == top so subsequent pushes will be performed normally.
   216     return (sz == N - 1) ? 0 : sz;
   217   }
   219 public:
   220   TaskQueueSuper() : _bottom(0), _age() {}
   222   // Return true if the TaskQueue contains/does not contain any tasks.
   223   bool peek()     const { return _bottom != _age.top(); }
   224   bool is_empty() const { return size() == 0; }
   226   // Return an estimate of the number of elements in the queue.
   227   // The "careful" version admits the possibility of pop_local/pop_global
   228   // races.
   229   uint size() const {
   230     return size(_bottom, _age.top());
   231   }
   233   uint dirty_size() const {
   234     return dirty_size(_bottom, _age.top());
   235   }
   237   void set_empty() {
   238     _bottom = 0;
   239     _age.set(0);
   240   }
   242   // Maximum number of elements allowed in the queue.  This is two less
   243   // than the actual queue size, for somewhat complicated reasons.
   244   uint max_elems() const { return N - 2; }
   246   // Total size of queue.
   247   static const uint total_size() { return N; }
   249   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   250 };
   252 template<class E, unsigned int N = TASKQUEUE_SIZE>
   253 class GenericTaskQueue: public TaskQueueSuper<N> {
   254 protected:
   255   typedef typename TaskQueueSuper<N>::Age Age;
   256   typedef typename TaskQueueSuper<N>::idx_t idx_t;
   258   using TaskQueueSuper<N>::_bottom;
   259   using TaskQueueSuper<N>::_age;
   260   using TaskQueueSuper<N>::increment_index;
   261   using TaskQueueSuper<N>::decrement_index;
   262   using TaskQueueSuper<N>::dirty_size;
   264 public:
   265   using TaskQueueSuper<N>::max_elems;
   266   using TaskQueueSuper<N>::size;
   267   TASKQUEUE_STATS_ONLY(using TaskQueueSuper<N>::stats;)
   269 private:
   270   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   271   bool push_slow(E t, uint dirty_n_elems);
   272   bool pop_local_slow(uint localBot, Age oldAge);
   274 public:
   275   typedef E element_type;
   277   // Initializes the queue to empty.
   278   GenericTaskQueue();
   280   void initialize();
   282   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   283   inline bool push(E t);
   285   // Attempts to claim a task from the "local" end of the queue (the most
   286   // recently pushed).  If successful, returns true and sets t to the task;
   287   // otherwise, returns false (the queue is empty).
   288   inline bool pop_local(E& t);
   290   // Like pop_local(), but uses the "global" end of the queue (the least
   291   // recently pushed).
   292   bool pop_global(E& t);
   294   // Delete any resource associated with the queue.
   295   ~GenericTaskQueue();
   297   // apply the closure to all elements in the task queue
   298   void oops_do(OopClosure* f);
   300 private:
   301   // Element array.
   302   volatile E* _elems;
   303 };
   305 template<class E, unsigned int N>
   306 GenericTaskQueue<E, N>::GenericTaskQueue() {
   307   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   308 }
   310 template<class E, unsigned int N>
   311 void GenericTaskQueue<E, N>::initialize() {
   312   _elems = NEW_C_HEAP_ARRAY(E, N);
   313 }
   315 template<class E, unsigned int N>
   316 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
   317   // tty->print_cr("START OopTaskQueue::oops_do");
   318   uint iters = size();
   319   uint index = _bottom;
   320   for (uint i = 0; i < iters; ++i) {
   321     index = decrement_index(index);
   322     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   323     //            index, &_elems[index], _elems[index]);
   324     E* t = (E*)&_elems[index];      // cast away volatility
   325     oop* p = (oop*)t;
   326     assert((*t)->is_oop_or_null(), "Not an oop or null");
   327     f->do_oop(p);
   328   }
   329   // tty->print_cr("END OopTaskQueue::oops_do");
   330 }
   332 template<class E, unsigned int N>
   333 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
   334   if (dirty_n_elems == N - 1) {
   335     // Actually means 0, so do the push.
   336     uint localBot = _bottom;
   337     // g++ complains if the volatile result of the assignment is unused.
   338     const_cast<E&>(_elems[localBot] = t);
   339     OrderAccess::release_store(&_bottom, increment_index(localBot));
   340     TASKQUEUE_STATS_ONLY(stats.record_push());
   341     return true;
   342   }
   343   return false;
   344 }
   346 // pop_local_slow() is done by the owning thread and is trying to
   347 // get the last task in the queue.  It will compete with pop_global()
   348 // that will be used by other threads.  The tag age is incremented
   349 // whenever the queue goes empty which it will do here if this thread
   350 // gets the last task or in pop_global() if the queue wraps (top == 0
   351 // and pop_global() succeeds, see pop_global()).
   352 template<class E, unsigned int N>
   353 bool GenericTaskQueue<E, N>::pop_local_slow(uint localBot, Age oldAge) {
   354   // This queue was observed to contain exactly one element; either this
   355   // thread will claim it, or a competing "pop_global".  In either case,
   356   // the queue will be logically empty afterwards.  Create a new Age value
   357   // that represents the empty queue for the given value of "_bottom".  (We
   358   // must also increment "tag" because of the case where "bottom == 1",
   359   // "top == 0".  A pop_global could read the queue element in that case,
   360   // then have the owner thread do a pop followed by another push.  Without
   361   // the incrementing of "tag", the pop_global's CAS could succeed,
   362   // allowing it to believe it has claimed the stale element.)
   363   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   364   // Perhaps a competing pop_global has already incremented "top", in which
   365   // case it wins the element.
   366   if (localBot == oldAge.top()) {
   367     // No competing pop_global has yet incremented "top"; we'll try to
   368     // install new_age, thus claiming the element.
   369     Age tempAge = _age.cmpxchg(newAge, oldAge);
   370     if (tempAge == oldAge) {
   371       // We win.
   372       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   373       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   374       return true;
   375     }
   376   }
   377   // We lose; a completing pop_global gets the element.  But the queue is empty
   378   // and top is greater than bottom.  Fix this representation of the empty queue
   379   // to become the canonical one.
   380   _age.set(newAge);
   381   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   382   return false;
   383 }
   385 template<class E, unsigned int N>
   386 bool GenericTaskQueue<E, N>::pop_global(E& t) {
   387   Age oldAge = _age.get();
   388   uint localBot = _bottom;
   389   uint n_elems = size(localBot, oldAge.top());
   390   if (n_elems == 0) {
   391     return false;
   392   }
   394   const_cast<E&>(t = _elems[oldAge.top()]);
   395   Age newAge(oldAge);
   396   newAge.increment();
   397   Age resAge = _age.cmpxchg(newAge, oldAge);
   399   // Note that using "_bottom" here might fail, since a pop_local might
   400   // have decremented it.
   401   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   402   return resAge == oldAge;
   403 }
   405 template<class E, unsigned int N>
   406 GenericTaskQueue<E, N>::~GenericTaskQueue() {
   407   FREE_C_HEAP_ARRAY(E, _elems);
   408 }
   410 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   411 // elements that do not fit in the TaskQueue.
   412 //
   413 // This class hides two methods from super classes:
   414 //
   415 // push() - push onto the task queue or, if that fails, onto the overflow stack
   416 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   417 //
   418 // Note that size() is not hidden--it returns the number of elements in the
   419 // TaskQueue, and does not include the size of the overflow stack.  This
   420 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   421 template<class E, unsigned int N = TASKQUEUE_SIZE>
   422 class OverflowTaskQueue: public GenericTaskQueue<E, N>
   423 {
   424 public:
   425   typedef Stack<E>               overflow_t;
   426   typedef GenericTaskQueue<E, N> taskqueue_t;
   428   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   430   // Push task t onto the queue or onto the overflow stack.  Return true.
   431   inline bool push(E t);
   433   // Attempt to pop from the overflow stack; return true if anything was popped.
   434   inline bool pop_overflow(E& t);
   436   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   438   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   439   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   440   inline bool is_empty()        const {
   441     return taskqueue_empty() && overflow_empty();
   442   }
   444 private:
   445   overflow_t _overflow_stack;
   446 };
   448 template <class E, unsigned int N>
   449 bool OverflowTaskQueue<E, N>::push(E t)
   450 {
   451   if (!taskqueue_t::push(t)) {
   452     overflow_stack()->push(t);
   453     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   454   }
   455   return true;
   456 }
   458 template <class E, unsigned int N>
   459 bool OverflowTaskQueue<E, N>::pop_overflow(E& t)
   460 {
   461   if (overflow_empty()) return false;
   462   t = overflow_stack()->pop();
   463   return true;
   464 }
   466 class TaskQueueSetSuper: public CHeapObj {
   467 protected:
   468   static int randomParkAndMiller(int* seed0);
   469 public:
   470   // Returns "true" if some TaskQueue in the set contains a task.
   471   virtual bool peek() = 0;
   472 };
   474 template<class T>
   475 class GenericTaskQueueSet: public TaskQueueSetSuper {
   476 private:
   477   uint _n;
   478   T** _queues;
   480 public:
   481   typedef typename T::element_type E;
   483   GenericTaskQueueSet(int n) : _n(n) {
   484     typedef T* GenericTaskQueuePtr;
   485     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   486     for (int i = 0; i < n; i++) {
   487       _queues[i] = NULL;
   488     }
   489   }
   491   bool steal_1_random(uint queue_num, int* seed, E& t);
   492   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   493   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   495   void register_queue(uint i, T* q);
   497   T* queue(uint n);
   499   // The thread with queue number "queue_num" (and whose random number seed is
   500   // at "seed") is trying to steal a task from some other queue.  (It may try
   501   // several queues, according to some configuration parameter.)  If some steal
   502   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   503   // false.
   504   bool steal(uint queue_num, int* seed, E& t);
   506   bool peek();
   507 };
   509 template<class T> void
   510 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
   511   assert(i < _n, "index out of range.");
   512   _queues[i] = q;
   513 }
   515 template<class T> T*
   516 GenericTaskQueueSet<T>::queue(uint i) {
   517   return _queues[i];
   518 }
   520 template<class T> bool
   521 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
   522   for (uint i = 0; i < 2 * _n; i++) {
   523     if (steal_best_of_2(queue_num, seed, t)) {
   524       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   525       return true;
   526     }
   527   }
   528   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   529   return false;
   530 }
   532 template<class T> bool
   533 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   534   if (_n > 2) {
   535     int best_k;
   536     uint best_sz = 0;
   537     for (uint k = 0; k < _n; k++) {
   538       if (k == queue_num) continue;
   539       uint sz = _queues[k]->size();
   540       if (sz > best_sz) {
   541         best_sz = sz;
   542         best_k = k;
   543       }
   544     }
   545     return best_sz > 0 && _queues[best_k]->pop_global(t);
   546   } else if (_n == 2) {
   547     // Just try the other one.
   548     int k = (queue_num + 1) % 2;
   549     return _queues[k]->pop_global(t);
   550   } else {
   551     assert(_n == 1, "can't be zero.");
   552     return false;
   553   }
   554 }
   556 template<class T> bool
   557 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
   558   if (_n > 2) {
   559     uint k = queue_num;
   560     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   561     return _queues[2]->pop_global(t);
   562   } else if (_n == 2) {
   563     // Just try the other one.
   564     int k = (queue_num + 1) % 2;
   565     return _queues[k]->pop_global(t);
   566   } else {
   567     assert(_n == 1, "can't be zero.");
   568     return false;
   569   }
   570 }
   572 template<class T> bool
   573 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   574   if (_n > 2) {
   575     uint k1 = queue_num;
   576     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   577     uint k2 = queue_num;
   578     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   579     // Sample both and try the larger.
   580     uint sz1 = _queues[k1]->size();
   581     uint sz2 = _queues[k2]->size();
   582     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   583     else return _queues[k1]->pop_global(t);
   584   } else if (_n == 2) {
   585     // Just try the other one.
   586     uint k = (queue_num + 1) % 2;
   587     return _queues[k]->pop_global(t);
   588   } else {
   589     assert(_n == 1, "can't be zero.");
   590     return false;
   591   }
   592 }
   594 template<class T>
   595 bool GenericTaskQueueSet<T>::peek() {
   596   // Try all the queues.
   597   for (uint j = 0; j < _n; j++) {
   598     if (_queues[j]->peek())
   599       return true;
   600   }
   601   return false;
   602 }
   604 // When to terminate from the termination protocol.
   605 class TerminatorTerminator: public CHeapObj {
   606 public:
   607   virtual bool should_exit_termination() = 0;
   608 };
   610 // A class to aid in the termination of a set of parallel tasks using
   611 // TaskQueueSet's for work stealing.
   613 #undef TRACESPINNING
   615 class ParallelTaskTerminator: public StackObj {
   616 private:
   617   int _n_threads;
   618   TaskQueueSetSuper* _queue_set;
   619   int _offered_termination;
   621 #ifdef TRACESPINNING
   622   static uint _total_yields;
   623   static uint _total_spins;
   624   static uint _total_peeks;
   625 #endif
   627   bool peek_in_queue_set();
   628 protected:
   629   virtual void yield();
   630   void sleep(uint millis);
   632 public:
   634   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   635   // queue sets of work queues of other threads.
   636   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   638   // The current thread has no work, and is ready to terminate if everyone
   639   // else is.  If returns "true", all threads are terminated.  If returns
   640   // "false", available work has been observed in one of the task queues,
   641   // so the global task is not complete.
   642   bool offer_termination() {
   643     return offer_termination(NULL);
   644   }
   646   // As above, but it also terminates if the should_exit_termination()
   647   // method of the terminator parameter returns true. If terminator is
   648   // NULL, then it is ignored.
   649   bool offer_termination(TerminatorTerminator* terminator);
   651   // Reset the terminator, so that it may be reused again.
   652   // The caller is responsible for ensuring that this is done
   653   // in an MT-safe manner, once the previous round of use of
   654   // the terminator is finished.
   655   void reset_for_reuse();
   656   // Same as above but the number of parallel threads is set to the
   657   // given number.
   658   void reset_for_reuse(int n_threads);
   660 #ifdef TRACESPINNING
   661   static uint total_yields() { return _total_yields; }
   662   static uint total_spins() { return _total_spins; }
   663   static uint total_peeks() { return _total_peeks; }
   664   static void print_termination_counts();
   665 #endif
   666 };
   668 template<class E, unsigned int N> inline bool
   669 GenericTaskQueue<E, N>::push(E t) {
   670   uint localBot = _bottom;
   671   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   672   idx_t top = _age.top();
   673   uint dirty_n_elems = dirty_size(localBot, top);
   674   assert(dirty_n_elems < N, "n_elems out of range.");
   675   if (dirty_n_elems < max_elems()) {
   676     // g++ complains if the volatile result of the assignment is unused.
   677     const_cast<E&>(_elems[localBot] = t);
   678     OrderAccess::release_store(&_bottom, increment_index(localBot));
   679     TASKQUEUE_STATS_ONLY(stats.record_push());
   680     return true;
   681   } else {
   682     return push_slow(t, dirty_n_elems);
   683   }
   684 }
   686 template<class E, unsigned int N> inline bool
   687 GenericTaskQueue<E, N>::pop_local(E& t) {
   688   uint localBot = _bottom;
   689   // This value cannot be N-1.  That can only occur as a result of
   690   // the assignment to bottom in this method.  If it does, this method
   691   // resets the size to 0 before the next call (which is sequential,
   692   // since this is pop_local.)
   693   uint dirty_n_elems = dirty_size(localBot, _age.top());
   694   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   695   if (dirty_n_elems == 0) return false;
   696   localBot = decrement_index(localBot);
   697   _bottom = localBot;
   698   // This is necessary to prevent any read below from being reordered
   699   // before the store just above.
   700   OrderAccess::fence();
   701   const_cast<E&>(t = _elems[localBot]);
   702   // This is a second read of "age"; the "size()" above is the first.
   703   // If there's still at least one element in the queue, based on the
   704   // "_bottom" and "age" we've read, then there can be no interference with
   705   // a "pop_global" operation, and we're done.
   706   idx_t tp = _age.top();    // XXX
   707   if (size(localBot, tp) > 0) {
   708     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   709     TASKQUEUE_STATS_ONLY(stats.record_pop());
   710     return true;
   711   } else {
   712     // Otherwise, the queue contained exactly one element; we take the slow
   713     // path.
   714     return pop_local_slow(localBot, _age.get());
   715   }
   716 }
   718 typedef GenericTaskQueue<oop>             OopTaskQueue;
   719 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
   721 #ifdef _MSC_VER
   722 #pragma warning(push)
   723 // warning C4522: multiple assignment operators specified
   724 #pragma warning(disable:4522)
   725 #endif
   727 // This is a container class for either an oop* or a narrowOop*.
   728 // Both are pushed onto a task queue and the consumer will test is_narrow()
   729 // to determine which should be processed.
   730 class StarTask {
   731   void*  _holder;        // either union oop* or narrowOop*
   733   enum { COMPRESSED_OOP_MASK = 1 };
   735  public:
   736   StarTask(narrowOop* p) {
   737     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   738     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   739   }
   740   StarTask(oop* p)       {
   741     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   742     _holder = (void*)p;
   743   }
   744   StarTask()             { _holder = NULL; }
   745   operator oop*()        { return (oop*)_holder; }
   746   operator narrowOop*()  {
   747     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   748   }
   750   StarTask& operator=(const StarTask& t) {
   751     _holder = t._holder;
   752     return *this;
   753   }
   754   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   755     _holder = t._holder;
   756     return *this;
   757   }
   759   bool is_narrow() const {
   760     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   761   }
   762 };
   764 class ObjArrayTask
   765 {
   766 public:
   767   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   768   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   769     assert(idx <= size_t(max_jint), "too big");
   770   }
   771   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   773   ObjArrayTask& operator =(const ObjArrayTask& t) {
   774     _obj = t._obj;
   775     _index = t._index;
   776     return *this;
   777   }
   778   volatile ObjArrayTask&
   779   operator =(const volatile ObjArrayTask& t) volatile {
   780     _obj = t._obj;
   781     _index = t._index;
   782     return *this;
   783   }
   785   inline oop obj()   const { return _obj; }
   786   inline int index() const { return _index; }
   788   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   790 private:
   791   oop _obj;
   792   int _index;
   793 };
   795 #ifdef _MSC_VER
   796 #pragma warning(pop)
   797 #endif
   799 typedef OverflowTaskQueue<StarTask>           OopStarTaskQueue;
   800 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
   802 typedef OverflowTaskQueue<size_t>             RegionTaskQueue;
   803 typedef GenericTaskQueueSet<RegionTaskQueue>  RegionTaskQueueSet;
   806 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial