src/share/vm/utilities/taskqueue.hpp

Tue, 05 Apr 2011 14:12:31 -0700

author
trims
date
Tue, 05 Apr 2011 14:12:31 -0700
changeset 2708
1d1603768966
parent 2508
b92c45f2bc75
child 3156
f08d439fab8c
permissions
-rw-r--r--

7010070: Update all 2010 Oracle-changed OpenJDK files to have the proper copyright dates - second pass
Summary: Update the copyright to be 2010 on all changed files in OpenJDK
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "utilities/stack.hpp"
    32 #ifdef TARGET_OS_ARCH_linux_x86
    33 # include "orderAccess_linux_x86.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_ARCH_linux_sparc
    36 # include "orderAccess_linux_sparc.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_ARCH_linux_zero
    39 # include "orderAccess_linux_zero.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_ARCH_solaris_x86
    42 # include "orderAccess_solaris_x86.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_ARCH_solaris_sparc
    45 # include "orderAccess_solaris_sparc.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_windows_x86
    48 # include "orderAccess_windows_x86.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_arm
    51 # include "orderAccess_linux_arm.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_linux_ppc
    54 # include "orderAccess_linux_ppc.inline.hpp"
    55 #endif
    57 // Simple TaskQueue stats that are collected by default in debug builds.
    59 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    60 #define TASKQUEUE_STATS 1
    61 #elif !defined(TASKQUEUE_STATS)
    62 #define TASKQUEUE_STATS 0
    63 #endif
    65 #if TASKQUEUE_STATS
    66 #define TASKQUEUE_STATS_ONLY(code) code
    67 #else
    68 #define TASKQUEUE_STATS_ONLY(code)
    69 #endif // TASKQUEUE_STATS
    71 #if TASKQUEUE_STATS
    72 class TaskQueueStats {
    73 public:
    74   enum StatId {
    75     push,             // number of taskqueue pushes
    76     pop,              // number of taskqueue pops
    77     pop_slow,         // subset of taskqueue pops that were done slow-path
    78     steal_attempt,    // number of taskqueue steal attempts
    79     steal,            // number of taskqueue steals
    80     overflow,         // number of overflow pushes
    81     overflow_max_len, // max length of overflow stack
    82     last_stat_id
    83   };
    85 public:
    86   inline TaskQueueStats()       { reset(); }
    88   inline void record_push()     { ++_stats[push]; }
    89   inline void record_pop()      { ++_stats[pop]; }
    90   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    91   inline void record_steal(bool success);
    92   inline void record_overflow(size_t new_length);
    94   TaskQueueStats & operator +=(const TaskQueueStats & addend);
    96   inline size_t get(StatId id) const { return _stats[id]; }
    97   inline const size_t* get() const   { return _stats; }
    99   inline void reset();
   101   // Print the specified line of the header (does not include a line separator).
   102   static void print_header(unsigned int line, outputStream* const stream = tty,
   103                            unsigned int width = 10);
   104   // Print the statistics (does not include a line separator).
   105   void print(outputStream* const stream = tty, unsigned int width = 10) const;
   107   DEBUG_ONLY(void verify() const;)
   109 private:
   110   size_t                    _stats[last_stat_id];
   111   static const char * const _names[last_stat_id];
   112 };
   114 void TaskQueueStats::record_steal(bool success) {
   115   ++_stats[steal_attempt];
   116   if (success) ++_stats[steal];
   117 }
   119 void TaskQueueStats::record_overflow(size_t new_len) {
   120   ++_stats[overflow];
   121   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
   122 }
   124 void TaskQueueStats::reset() {
   125   memset(_stats, 0, sizeof(_stats));
   126 }
   127 #endif // TASKQUEUE_STATS
   129 template <unsigned int N>
   130 class TaskQueueSuper: public CHeapObj {
   131 protected:
   132   // Internal type for indexing the queue; also used for the tag.
   133   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   135   // The first free element after the last one pushed (mod N).
   136   volatile uint _bottom;
   138   enum { MOD_N_MASK = N - 1 };
   140   class Age {
   141   public:
   142     Age(size_t data = 0)         { _data = data; }
   143     Age(const Age& age)          { _data = age._data; }
   144     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   146     Age   get()        const volatile { return _data; }
   147     void  set(Age age) volatile       { _data = age._data; }
   149     idx_t top()        const volatile { return _fields._top; }
   150     idx_t tag()        const volatile { return _fields._tag; }
   152     // Increment top; if it wraps, increment tag also.
   153     void increment() {
   154       _fields._top = increment_index(_fields._top);
   155       if (_fields._top == 0) ++_fields._tag;
   156     }
   158     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   159       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   160                                           (volatile intptr_t *)&_data,
   161                                           (intptr_t)old_age._data);
   162     }
   164     bool operator ==(const Age& other) const { return _data == other._data; }
   166   private:
   167     struct fields {
   168       idx_t _top;
   169       idx_t _tag;
   170     };
   171     union {
   172       size_t _data;
   173       fields _fields;
   174     };
   175   };
   177   volatile Age _age;
   179   // These both operate mod N.
   180   static uint increment_index(uint ind) {
   181     return (ind + 1) & MOD_N_MASK;
   182   }
   183   static uint decrement_index(uint ind) {
   184     return (ind - 1) & MOD_N_MASK;
   185   }
   187   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   188   // interpreted as 0.
   189   uint dirty_size(uint bot, uint top) const {
   190     return (bot - top) & MOD_N_MASK;
   191   }
   193   // Returns the size corresponding to the given "bot" and "top".
   194   uint size(uint bot, uint top) const {
   195     uint sz = dirty_size(bot, top);
   196     // Has the queue "wrapped", so that bottom is less than top?  There's a
   197     // complicated special case here.  A pair of threads could perform pop_local
   198     // and pop_global operations concurrently, starting from a state in which
   199     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   200     // and the pop_global in incrementing _top (in which case the pop_global
   201     // will be awarded the contested queue element.)  The resulting state must
   202     // be interpreted as an empty queue.  (We only need to worry about one such
   203     // event: only the queue owner performs pop_local's, and several concurrent
   204     // threads attempting to perform the pop_global will all perform the same
   205     // CAS, and only one can succeed.)  Any stealing thread that reads after
   206     // either the increment or decrement will see an empty queue, and will not
   207     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   208     // modified by concurrent queues, so the owner thread can reset the state to
   209     // _bottom == top so subsequent pushes will be performed normally.
   210     return (sz == N - 1) ? 0 : sz;
   211   }
   213 public:
   214   TaskQueueSuper() : _bottom(0), _age() {}
   216   // Return true if the TaskQueue contains/does not contain any tasks.
   217   bool peek()     const { return _bottom != _age.top(); }
   218   bool is_empty() const { return size() == 0; }
   220   // Return an estimate of the number of elements in the queue.
   221   // The "careful" version admits the possibility of pop_local/pop_global
   222   // races.
   223   uint size() const {
   224     return size(_bottom, _age.top());
   225   }
   227   uint dirty_size() const {
   228     return dirty_size(_bottom, _age.top());
   229   }
   231   void set_empty() {
   232     _bottom = 0;
   233     _age.set(0);
   234   }
   236   // Maximum number of elements allowed in the queue.  This is two less
   237   // than the actual queue size, for somewhat complicated reasons.
   238   uint max_elems() const { return N - 2; }
   240   // Total size of queue.
   241   static const uint total_size() { return N; }
   243   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   244 };
   246 template<class E, unsigned int N = TASKQUEUE_SIZE>
   247 class GenericTaskQueue: public TaskQueueSuper<N> {
   248 protected:
   249   typedef typename TaskQueueSuper<N>::Age Age;
   250   typedef typename TaskQueueSuper<N>::idx_t idx_t;
   252   using TaskQueueSuper<N>::_bottom;
   253   using TaskQueueSuper<N>::_age;
   254   using TaskQueueSuper<N>::increment_index;
   255   using TaskQueueSuper<N>::decrement_index;
   256   using TaskQueueSuper<N>::dirty_size;
   258 public:
   259   using TaskQueueSuper<N>::max_elems;
   260   using TaskQueueSuper<N>::size;
   261   TASKQUEUE_STATS_ONLY(using TaskQueueSuper<N>::stats;)
   263 private:
   264   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   265   bool push_slow(E t, uint dirty_n_elems);
   266   bool pop_local_slow(uint localBot, Age oldAge);
   268 public:
   269   typedef E element_type;
   271   // Initializes the queue to empty.
   272   GenericTaskQueue();
   274   void initialize();
   276   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   277   inline bool push(E t);
   279   // Attempts to claim a task from the "local" end of the queue (the most
   280   // recently pushed).  If successful, returns true and sets t to the task;
   281   // otherwise, returns false (the queue is empty).
   282   inline bool pop_local(E& t);
   284   // Like pop_local(), but uses the "global" end of the queue (the least
   285   // recently pushed).
   286   bool pop_global(E& t);
   288   // Delete any resource associated with the queue.
   289   ~GenericTaskQueue();
   291   // apply the closure to all elements in the task queue
   292   void oops_do(OopClosure* f);
   294 private:
   295   // Element array.
   296   volatile E* _elems;
   297 };
   299 template<class E, unsigned int N>
   300 GenericTaskQueue<E, N>::GenericTaskQueue() {
   301   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   302 }
   304 template<class E, unsigned int N>
   305 void GenericTaskQueue<E, N>::initialize() {
   306   _elems = NEW_C_HEAP_ARRAY(E, N);
   307 }
   309 template<class E, unsigned int N>
   310 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
   311   // tty->print_cr("START OopTaskQueue::oops_do");
   312   uint iters = size();
   313   uint index = _bottom;
   314   for (uint i = 0; i < iters; ++i) {
   315     index = decrement_index(index);
   316     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   317     //            index, &_elems[index], _elems[index]);
   318     E* t = (E*)&_elems[index];      // cast away volatility
   319     oop* p = (oop*)t;
   320     assert((*t)->is_oop_or_null(), "Not an oop or null");
   321     f->do_oop(p);
   322   }
   323   // tty->print_cr("END OopTaskQueue::oops_do");
   324 }
   326 template<class E, unsigned int N>
   327 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
   328   if (dirty_n_elems == N - 1) {
   329     // Actually means 0, so do the push.
   330     uint localBot = _bottom;
   331     // g++ complains if the volatile result of the assignment is unused.
   332     const_cast<E&>(_elems[localBot] = t);
   333     OrderAccess::release_store(&_bottom, increment_index(localBot));
   334     TASKQUEUE_STATS_ONLY(stats.record_push());
   335     return true;
   336   }
   337   return false;
   338 }
   340 // pop_local_slow() is done by the owning thread and is trying to
   341 // get the last task in the queue.  It will compete with pop_global()
   342 // that will be used by other threads.  The tag age is incremented
   343 // whenever the queue goes empty which it will do here if this thread
   344 // gets the last task or in pop_global() if the queue wraps (top == 0
   345 // and pop_global() succeeds, see pop_global()).
   346 template<class E, unsigned int N>
   347 bool GenericTaskQueue<E, N>::pop_local_slow(uint localBot, Age oldAge) {
   348   // This queue was observed to contain exactly one element; either this
   349   // thread will claim it, or a competing "pop_global".  In either case,
   350   // the queue will be logically empty afterwards.  Create a new Age value
   351   // that represents the empty queue for the given value of "_bottom".  (We
   352   // must also increment "tag" because of the case where "bottom == 1",
   353   // "top == 0".  A pop_global could read the queue element in that case,
   354   // then have the owner thread do a pop followed by another push.  Without
   355   // the incrementing of "tag", the pop_global's CAS could succeed,
   356   // allowing it to believe it has claimed the stale element.)
   357   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   358   // Perhaps a competing pop_global has already incremented "top", in which
   359   // case it wins the element.
   360   if (localBot == oldAge.top()) {
   361     // No competing pop_global has yet incremented "top"; we'll try to
   362     // install new_age, thus claiming the element.
   363     Age tempAge = _age.cmpxchg(newAge, oldAge);
   364     if (tempAge == oldAge) {
   365       // We win.
   366       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   367       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   368       return true;
   369     }
   370   }
   371   // We lose; a completing pop_global gets the element.  But the queue is empty
   372   // and top is greater than bottom.  Fix this representation of the empty queue
   373   // to become the canonical one.
   374   _age.set(newAge);
   375   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   376   return false;
   377 }
   379 template<class E, unsigned int N>
   380 bool GenericTaskQueue<E, N>::pop_global(E& t) {
   381   Age oldAge = _age.get();
   382   uint localBot = _bottom;
   383   uint n_elems = size(localBot, oldAge.top());
   384   if (n_elems == 0) {
   385     return false;
   386   }
   388   const_cast<E&>(t = _elems[oldAge.top()]);
   389   Age newAge(oldAge);
   390   newAge.increment();
   391   Age resAge = _age.cmpxchg(newAge, oldAge);
   393   // Note that using "_bottom" here might fail, since a pop_local might
   394   // have decremented it.
   395   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   396   return resAge == oldAge;
   397 }
   399 template<class E, unsigned int N>
   400 GenericTaskQueue<E, N>::~GenericTaskQueue() {
   401   FREE_C_HEAP_ARRAY(E, _elems);
   402 }
   404 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   405 // elements that do not fit in the TaskQueue.
   406 //
   407 // This class hides two methods from super classes:
   408 //
   409 // push() - push onto the task queue or, if that fails, onto the overflow stack
   410 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   411 //
   412 // Note that size() is not hidden--it returns the number of elements in the
   413 // TaskQueue, and does not include the size of the overflow stack.  This
   414 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   415 template<class E, unsigned int N = TASKQUEUE_SIZE>
   416 class OverflowTaskQueue: public GenericTaskQueue<E, N>
   417 {
   418 public:
   419   typedef Stack<E>               overflow_t;
   420   typedef GenericTaskQueue<E, N> taskqueue_t;
   422   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   424   // Push task t onto the queue or onto the overflow stack.  Return true.
   425   inline bool push(E t);
   427   // Attempt to pop from the overflow stack; return true if anything was popped.
   428   inline bool pop_overflow(E& t);
   430   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   432   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   433   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   434   inline bool is_empty()        const {
   435     return taskqueue_empty() && overflow_empty();
   436   }
   438 private:
   439   overflow_t _overflow_stack;
   440 };
   442 template <class E, unsigned int N>
   443 bool OverflowTaskQueue<E, N>::push(E t)
   444 {
   445   if (!taskqueue_t::push(t)) {
   446     overflow_stack()->push(t);
   447     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   448   }
   449   return true;
   450 }
   452 template <class E, unsigned int N>
   453 bool OverflowTaskQueue<E, N>::pop_overflow(E& t)
   454 {
   455   if (overflow_empty()) return false;
   456   t = overflow_stack()->pop();
   457   return true;
   458 }
   460 class TaskQueueSetSuper: public CHeapObj {
   461 protected:
   462   static int randomParkAndMiller(int* seed0);
   463 public:
   464   // Returns "true" if some TaskQueue in the set contains a task.
   465   virtual bool peek() = 0;
   466 };
   468 template<class T>
   469 class GenericTaskQueueSet: public TaskQueueSetSuper {
   470 private:
   471   uint _n;
   472   T** _queues;
   474 public:
   475   typedef typename T::element_type E;
   477   GenericTaskQueueSet(int n) : _n(n) {
   478     typedef T* GenericTaskQueuePtr;
   479     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   480     for (int i = 0; i < n; i++) {
   481       _queues[i] = NULL;
   482     }
   483   }
   485   bool steal_1_random(uint queue_num, int* seed, E& t);
   486   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   487   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   489   void register_queue(uint i, T* q);
   491   T* queue(uint n);
   493   // The thread with queue number "queue_num" (and whose random number seed is
   494   // at "seed") is trying to steal a task from some other queue.  (It may try
   495   // several queues, according to some configuration parameter.)  If some steal
   496   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   497   // false.
   498   bool steal(uint queue_num, int* seed, E& t);
   500   bool peek();
   501 };
   503 template<class T> void
   504 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
   505   assert(i < _n, "index out of range.");
   506   _queues[i] = q;
   507 }
   509 template<class T> T*
   510 GenericTaskQueueSet<T>::queue(uint i) {
   511   return _queues[i];
   512 }
   514 template<class T> bool
   515 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
   516   for (uint i = 0; i < 2 * _n; i++) {
   517     if (steal_best_of_2(queue_num, seed, t)) {
   518       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   519       return true;
   520     }
   521   }
   522   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   523   return false;
   524 }
   526 template<class T> bool
   527 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   528   if (_n > 2) {
   529     int best_k;
   530     uint best_sz = 0;
   531     for (uint k = 0; k < _n; k++) {
   532       if (k == queue_num) continue;
   533       uint sz = _queues[k]->size();
   534       if (sz > best_sz) {
   535         best_sz = sz;
   536         best_k = k;
   537       }
   538     }
   539     return best_sz > 0 && _queues[best_k]->pop_global(t);
   540   } else if (_n == 2) {
   541     // Just try the other one.
   542     int k = (queue_num + 1) % 2;
   543     return _queues[k]->pop_global(t);
   544   } else {
   545     assert(_n == 1, "can't be zero.");
   546     return false;
   547   }
   548 }
   550 template<class T> bool
   551 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
   552   if (_n > 2) {
   553     uint k = queue_num;
   554     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   555     return _queues[2]->pop_global(t);
   556   } else if (_n == 2) {
   557     // Just try the other one.
   558     int k = (queue_num + 1) % 2;
   559     return _queues[k]->pop_global(t);
   560   } else {
   561     assert(_n == 1, "can't be zero.");
   562     return false;
   563   }
   564 }
   566 template<class T> bool
   567 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   568   if (_n > 2) {
   569     uint k1 = queue_num;
   570     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   571     uint k2 = queue_num;
   572     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   573     // Sample both and try the larger.
   574     uint sz1 = _queues[k1]->size();
   575     uint sz2 = _queues[k2]->size();
   576     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   577     else return _queues[k1]->pop_global(t);
   578   } else if (_n == 2) {
   579     // Just try the other one.
   580     uint k = (queue_num + 1) % 2;
   581     return _queues[k]->pop_global(t);
   582   } else {
   583     assert(_n == 1, "can't be zero.");
   584     return false;
   585   }
   586 }
   588 template<class T>
   589 bool GenericTaskQueueSet<T>::peek() {
   590   // Try all the queues.
   591   for (uint j = 0; j < _n; j++) {
   592     if (_queues[j]->peek())
   593       return true;
   594   }
   595   return false;
   596 }
   598 // When to terminate from the termination protocol.
   599 class TerminatorTerminator: public CHeapObj {
   600 public:
   601   virtual bool should_exit_termination() = 0;
   602 };
   604 // A class to aid in the termination of a set of parallel tasks using
   605 // TaskQueueSet's for work stealing.
   607 #undef TRACESPINNING
   609 class ParallelTaskTerminator: public StackObj {
   610 private:
   611   int _n_threads;
   612   TaskQueueSetSuper* _queue_set;
   613   int _offered_termination;
   615 #ifdef TRACESPINNING
   616   static uint _total_yields;
   617   static uint _total_spins;
   618   static uint _total_peeks;
   619 #endif
   621   bool peek_in_queue_set();
   622 protected:
   623   virtual void yield();
   624   void sleep(uint millis);
   626 public:
   628   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   629   // queue sets of work queues of other threads.
   630   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   632   // The current thread has no work, and is ready to terminate if everyone
   633   // else is.  If returns "true", all threads are terminated.  If returns
   634   // "false", available work has been observed in one of the task queues,
   635   // so the global task is not complete.
   636   bool offer_termination() {
   637     return offer_termination(NULL);
   638   }
   640   // As above, but it also terminates if the should_exit_termination()
   641   // method of the terminator parameter returns true. If terminator is
   642   // NULL, then it is ignored.
   643   bool offer_termination(TerminatorTerminator* terminator);
   645   // Reset the terminator, so that it may be reused again.
   646   // The caller is responsible for ensuring that this is done
   647   // in an MT-safe manner, once the previous round of use of
   648   // the terminator is finished.
   649   void reset_for_reuse();
   650   // Same as above but the number of parallel threads is set to the
   651   // given number.
   652   void reset_for_reuse(int n_threads);
   654 #ifdef TRACESPINNING
   655   static uint total_yields() { return _total_yields; }
   656   static uint total_spins() { return _total_spins; }
   657   static uint total_peeks() { return _total_peeks; }
   658   static void print_termination_counts();
   659 #endif
   660 };
   662 template<class E, unsigned int N> inline bool
   663 GenericTaskQueue<E, N>::push(E t) {
   664   uint localBot = _bottom;
   665   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   666   idx_t top = _age.top();
   667   uint dirty_n_elems = dirty_size(localBot, top);
   668   assert(dirty_n_elems < N, "n_elems out of range.");
   669   if (dirty_n_elems < max_elems()) {
   670     // g++ complains if the volatile result of the assignment is unused.
   671     const_cast<E&>(_elems[localBot] = t);
   672     OrderAccess::release_store(&_bottom, increment_index(localBot));
   673     TASKQUEUE_STATS_ONLY(stats.record_push());
   674     return true;
   675   } else {
   676     return push_slow(t, dirty_n_elems);
   677   }
   678 }
   680 template<class E, unsigned int N> inline bool
   681 GenericTaskQueue<E, N>::pop_local(E& t) {
   682   uint localBot = _bottom;
   683   // This value cannot be N-1.  That can only occur as a result of
   684   // the assignment to bottom in this method.  If it does, this method
   685   // resets the size to 0 before the next call (which is sequential,
   686   // since this is pop_local.)
   687   uint dirty_n_elems = dirty_size(localBot, _age.top());
   688   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   689   if (dirty_n_elems == 0) return false;
   690   localBot = decrement_index(localBot);
   691   _bottom = localBot;
   692   // This is necessary to prevent any read below from being reordered
   693   // before the store just above.
   694   OrderAccess::fence();
   695   const_cast<E&>(t = _elems[localBot]);
   696   // This is a second read of "age"; the "size()" above is the first.
   697   // If there's still at least one element in the queue, based on the
   698   // "_bottom" and "age" we've read, then there can be no interference with
   699   // a "pop_global" operation, and we're done.
   700   idx_t tp = _age.top();    // XXX
   701   if (size(localBot, tp) > 0) {
   702     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   703     TASKQUEUE_STATS_ONLY(stats.record_pop());
   704     return true;
   705   } else {
   706     // Otherwise, the queue contained exactly one element; we take the slow
   707     // path.
   708     return pop_local_slow(localBot, _age.get());
   709   }
   710 }
   712 typedef GenericTaskQueue<oop>             OopTaskQueue;
   713 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
   715 #ifdef _MSC_VER
   716 #pragma warning(push)
   717 // warning C4522: multiple assignment operators specified
   718 #pragma warning(disable:4522)
   719 #endif
   721 // This is a container class for either an oop* or a narrowOop*.
   722 // Both are pushed onto a task queue and the consumer will test is_narrow()
   723 // to determine which should be processed.
   724 class StarTask {
   725   void*  _holder;        // either union oop* or narrowOop*
   727   enum { COMPRESSED_OOP_MASK = 1 };
   729  public:
   730   StarTask(narrowOop* p) {
   731     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   732     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   733   }
   734   StarTask(oop* p)       {
   735     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   736     _holder = (void*)p;
   737   }
   738   StarTask()             { _holder = NULL; }
   739   operator oop*()        { return (oop*)_holder; }
   740   operator narrowOop*()  {
   741     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   742   }
   744   StarTask& operator=(const StarTask& t) {
   745     _holder = t._holder;
   746     return *this;
   747   }
   748   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   749     _holder = t._holder;
   750     return *this;
   751   }
   753   bool is_narrow() const {
   754     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   755   }
   756 };
   758 class ObjArrayTask
   759 {
   760 public:
   761   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   762   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   763     assert(idx <= size_t(max_jint), "too big");
   764   }
   765   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   767   ObjArrayTask& operator =(const ObjArrayTask& t) {
   768     _obj = t._obj;
   769     _index = t._index;
   770     return *this;
   771   }
   772   volatile ObjArrayTask&
   773   operator =(const volatile ObjArrayTask& t) volatile {
   774     _obj = t._obj;
   775     _index = t._index;
   776     return *this;
   777   }
   779   inline oop obj()   const { return _obj; }
   780   inline int index() const { return _index; }
   782   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   784 private:
   785   oop _obj;
   786   int _index;
   787 };
   789 #ifdef _MSC_VER
   790 #pragma warning(pop)
   791 #endif
   793 typedef OverflowTaskQueue<StarTask>           OopStarTaskQueue;
   794 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
   796 typedef OverflowTaskQueue<size_t>             RegionTaskQueue;
   797 typedef GenericTaskQueueSet<RegionTaskQueue>  RegionTaskQueueSet;
   800 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial