src/share/vm/c1/c1_Runtime1.cpp

Tue, 29 Dec 2009 19:08:54 +0100

author
roland
date
Tue, 29 Dec 2009 19:08:54 +0100
changeset 2174
f02a8bbe6ed4
parent 2138
d5d065957597
child 2260
ce6848d0666d
permissions
-rw-r--r--

6986046: C1 valuestack cleanup
Summary: fixes an historical oddity in C1 with inlining where all of the expression stacks are kept in the topmost ValueStack instead of being in their respective ValueStacks.
Reviewed-by: never
Contributed-by: Christian Wimmer <cwimmer@uci.edu>

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Runtime1.cpp.incl"
    29 // Implementation of StubAssembler
    31 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    32   _name = name;
    33   _must_gc_arguments = false;
    34   _frame_size = no_frame_size;
    35   _num_rt_args = 0;
    36   _stub_id = stub_id;
    37 }
    40 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    41   _name = name;
    42   _must_gc_arguments = must_gc_arguments;
    43 }
    46 void StubAssembler::set_frame_size(int size) {
    47   if (_frame_size == no_frame_size) {
    48     _frame_size = size;
    49   }
    50   assert(_frame_size == size, "can't change the frame size");
    51 }
    54 void StubAssembler::set_num_rt_args(int args) {
    55   if (_num_rt_args == 0) {
    56     _num_rt_args = args;
    57   }
    58   assert(_num_rt_args == args, "can't change the number of args");
    59 }
    61 // Implementation of Runtime1
    63 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    64 const char *Runtime1::_blob_names[] = {
    65   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    66 };
    68 #ifndef PRODUCT
    69 // statistics
    70 int Runtime1::_generic_arraycopy_cnt = 0;
    71 int Runtime1::_primitive_arraycopy_cnt = 0;
    72 int Runtime1::_oop_arraycopy_cnt = 0;
    73 int Runtime1::_arraycopy_slowcase_cnt = 0;
    74 int Runtime1::_new_type_array_slowcase_cnt = 0;
    75 int Runtime1::_new_object_array_slowcase_cnt = 0;
    76 int Runtime1::_new_instance_slowcase_cnt = 0;
    77 int Runtime1::_new_multi_array_slowcase_cnt = 0;
    78 int Runtime1::_monitorenter_slowcase_cnt = 0;
    79 int Runtime1::_monitorexit_slowcase_cnt = 0;
    80 int Runtime1::_patch_code_slowcase_cnt = 0;
    81 int Runtime1::_throw_range_check_exception_count = 0;
    82 int Runtime1::_throw_index_exception_count = 0;
    83 int Runtime1::_throw_div0_exception_count = 0;
    84 int Runtime1::_throw_null_pointer_exception_count = 0;
    85 int Runtime1::_throw_class_cast_exception_count = 0;
    86 int Runtime1::_throw_incompatible_class_change_error_count = 0;
    87 int Runtime1::_throw_array_store_exception_count = 0;
    88 int Runtime1::_throw_count = 0;
    89 #endif
    91 // Simple helper to see if the caller of a runtime stub which
    92 // entered the VM has been deoptimized
    94 static bool caller_is_deopted() {
    95   JavaThread* thread = JavaThread::current();
    96   RegisterMap reg_map(thread, false);
    97   frame runtime_frame = thread->last_frame();
    98   frame caller_frame = runtime_frame.sender(&reg_map);
    99   assert(caller_frame.is_compiled_frame(), "must be compiled");
   100   return caller_frame.is_deoptimized_frame();
   101 }
   103 // Stress deoptimization
   104 static void deopt_caller() {
   105   if ( !caller_is_deopted()) {
   106     JavaThread* thread = JavaThread::current();
   107     RegisterMap reg_map(thread, false);
   108     frame runtime_frame = thread->last_frame();
   109     frame caller_frame = runtime_frame.sender(&reg_map);
   110     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
   111     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   112     assert(caller_is_deopted(), "Must be deoptimized");
   113   }
   114 }
   117 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   118   assert(0 <= id && id < number_of_ids, "illegal stub id");
   119   ResourceMark rm;
   120   // create code buffer for code storage
   121   CodeBuffer code(buffer_blob);
   123   Compilation::setup_code_buffer(&code, 0);
   125   // create assembler for code generation
   126   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   127   // generate code for runtime stub
   128   OopMapSet* oop_maps;
   129   oop_maps = generate_code_for(id, sasm);
   130   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   131          "if stub has an oop map it must have a valid frame size");
   133 #ifdef ASSERT
   134   // Make sure that stubs that need oopmaps have them
   135   switch (id) {
   136     // These stubs don't need to have an oopmap
   137     case dtrace_object_alloc_id:
   138     case g1_pre_barrier_slow_id:
   139     case g1_post_barrier_slow_id:
   140     case slow_subtype_check_id:
   141     case fpu2long_stub_id:
   142     case unwind_exception_id:
   143     case counter_overflow_id:
   144 #if defined(SPARC) || defined(PPC)
   145     case handle_exception_nofpu_id:  // Unused on sparc
   146 #endif
   147       break;
   149     // All other stubs should have oopmaps
   150     default:
   151       assert(oop_maps != NULL, "must have an oopmap");
   152   }
   153 #endif
   155   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   156   sasm->align(BytesPerWord);
   157   // make sure all code is in code buffer
   158   sasm->flush();
   159   // create blob - distinguish a few special cases
   160   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   161                                                  &code,
   162                                                  CodeOffsets::frame_never_safe,
   163                                                  sasm->frame_size(),
   164                                                  oop_maps,
   165                                                  sasm->must_gc_arguments());
   166   // install blob
   167   assert(blob != NULL, "blob must exist");
   168   _blobs[id] = blob;
   169 }
   172 void Runtime1::initialize(BufferBlob* blob) {
   173   // platform-dependent initialization
   174   initialize_pd();
   175   // generate stubs
   176   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   177   // printing
   178 #ifndef PRODUCT
   179   if (PrintSimpleStubs) {
   180     ResourceMark rm;
   181     for (int id = 0; id < number_of_ids; id++) {
   182       _blobs[id]->print();
   183       if (_blobs[id]->oop_maps() != NULL) {
   184         _blobs[id]->oop_maps()->print();
   185       }
   186     }
   187   }
   188 #endif
   189 }
   192 CodeBlob* Runtime1::blob_for(StubID id) {
   193   assert(0 <= id && id < number_of_ids, "illegal stub id");
   194   return _blobs[id];
   195 }
   198 const char* Runtime1::name_for(StubID id) {
   199   assert(0 <= id && id < number_of_ids, "illegal stub id");
   200   return _blob_names[id];
   201 }
   203 const char* Runtime1::name_for_address(address entry) {
   204   for (int id = 0; id < number_of_ids; id++) {
   205     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   206   }
   208 #define FUNCTION_CASE(a, f) \
   209   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   211   FUNCTION_CASE(entry, os::javaTimeMillis);
   212   FUNCTION_CASE(entry, os::javaTimeNanos);
   213   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   214   FUNCTION_CASE(entry, SharedRuntime::d2f);
   215   FUNCTION_CASE(entry, SharedRuntime::d2i);
   216   FUNCTION_CASE(entry, SharedRuntime::d2l);
   217   FUNCTION_CASE(entry, SharedRuntime::dcos);
   218   FUNCTION_CASE(entry, SharedRuntime::dexp);
   219   FUNCTION_CASE(entry, SharedRuntime::dlog);
   220   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   221   FUNCTION_CASE(entry, SharedRuntime::dpow);
   222   FUNCTION_CASE(entry, SharedRuntime::drem);
   223   FUNCTION_CASE(entry, SharedRuntime::dsin);
   224   FUNCTION_CASE(entry, SharedRuntime::dtan);
   225   FUNCTION_CASE(entry, SharedRuntime::f2i);
   226   FUNCTION_CASE(entry, SharedRuntime::f2l);
   227   FUNCTION_CASE(entry, SharedRuntime::frem);
   228   FUNCTION_CASE(entry, SharedRuntime::l2d);
   229   FUNCTION_CASE(entry, SharedRuntime::l2f);
   230   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   231   FUNCTION_CASE(entry, SharedRuntime::lmul);
   232   FUNCTION_CASE(entry, SharedRuntime::lrem);
   233   FUNCTION_CASE(entry, SharedRuntime::lrem);
   234   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   235   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   236   FUNCTION_CASE(entry, trace_block_entry);
   238 #undef FUNCTION_CASE
   240   // Soft float adds more runtime names.
   241   return pd_name_for_address(entry);
   242 }
   245 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   246   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   248   assert(oop(klass)->is_klass(), "not a class");
   249   instanceKlassHandle h(thread, klass);
   250   h->check_valid_for_instantiation(true, CHECK);
   251   // make sure klass is initialized
   252   h->initialize(CHECK);
   253   // allocate instance and return via TLS
   254   oop obj = h->allocate_instance(CHECK);
   255   thread->set_vm_result(obj);
   256 JRT_END
   259 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   260   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   261   // Note: no handle for klass needed since they are not used
   262   //       anymore after new_typeArray() and no GC can happen before.
   263   //       (This may have to change if this code changes!)
   264   assert(oop(klass)->is_klass(), "not a class");
   265   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   266   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   267   thread->set_vm_result(obj);
   268   // This is pretty rare but this runtime patch is stressful to deoptimization
   269   // if we deoptimize here so force a deopt to stress the path.
   270   if (DeoptimizeALot) {
   271     deopt_caller();
   272   }
   274 JRT_END
   277 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   278   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   280   // Note: no handle for klass needed since they are not used
   281   //       anymore after new_objArray() and no GC can happen before.
   282   //       (This may have to change if this code changes!)
   283   assert(oop(array_klass)->is_klass(), "not a class");
   284   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   285   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   286   thread->set_vm_result(obj);
   287   // This is pretty rare but this runtime patch is stressful to deoptimization
   288   // if we deoptimize here so force a deopt to stress the path.
   289   if (DeoptimizeALot) {
   290     deopt_caller();
   291   }
   292 JRT_END
   295 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   296   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   298   assert(oop(klass)->is_klass(), "not a class");
   299   assert(rank >= 1, "rank must be nonzero");
   300   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   301   thread->set_vm_result(obj);
   302 JRT_END
   305 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   306   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   307 JRT_END
   310 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
   311   THROW(vmSymbolHandles::java_lang_ArrayStoreException());
   312 JRT_END
   315 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   316   if (JvmtiExport::can_post_on_exceptions()) {
   317     vframeStream vfst(thread, true);
   318     address bcp = vfst.method()->bcp_from(vfst.bci());
   319     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   320   }
   321 JRT_END
   323 // This is a helper to allow us to safepoint but allow the outer entry
   324 // to be safepoint free if we need to do an osr
   325 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
   326   nmethod* osr_nm = NULL;
   327   methodHandle method(THREAD, m);
   329   RegisterMap map(THREAD, false);
   330   frame fr =  THREAD->last_frame().sender(&map);
   331   nmethod* nm = (nmethod*) fr.cb();
   332   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   333   methodHandle enclosing_method(THREAD, nm->method());
   335   CompLevel level = (CompLevel)nm->comp_level();
   336   int bci = InvocationEntryBci;
   337   if (branch_bci != InvocationEntryBci) {
   338     // Compute desination bci
   339     address pc = method()->code_base() + branch_bci;
   340     Bytecodes::Code branch = Bytecodes::code_at(pc, method());
   341     int offset = 0;
   342     switch (branch) {
   343       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   344       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   345       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   346       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   347       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   348       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   349       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   350         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   351         break;
   352       case Bytecodes::_goto_w:
   353         offset = Bytes::get_Java_u4(pc + 1);
   354         break;
   355       default: ;
   356     }
   357     bci = branch_bci + offset;
   358   }
   360   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
   361   return osr_nm;
   362 }
   364 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
   365   nmethod* osr_nm;
   366   JRT_BLOCK
   367     osr_nm = counter_overflow_helper(thread, bci, method);
   368     if (osr_nm != NULL) {
   369       RegisterMap map(thread, false);
   370       frame fr =  thread->last_frame().sender(&map);
   371       VM_DeoptimizeFrame deopt(thread, fr.id());
   372       VMThread::execute(&deopt);
   373     }
   374   JRT_BLOCK_END
   375   return NULL;
   376 JRT_END
   378 extern void vm_exit(int code);
   380 // Enter this method from compiled code handler below. This is where we transition
   381 // to VM mode. This is done as a helper routine so that the method called directly
   382 // from compiled code does not have to transition to VM. This allows the entry
   383 // method to see if the nmethod that we have just looked up a handler for has
   384 // been deoptimized while we were in the vm. This simplifies the assembly code
   385 // cpu directories.
   386 //
   387 // We are entering here from exception stub (via the entry method below)
   388 // If there is a compiled exception handler in this method, we will continue there;
   389 // otherwise we will unwind the stack and continue at the caller of top frame method
   390 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   391 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   392 // check to see if the handler we are going to return is now in a nmethod that has
   393 // been deoptimized. If that is the case we return the deopt blob
   394 // unpack_with_exception entry instead. This makes life for the exception blob easier
   395 // because making that same check and diverting is painful from assembly language.
   396 //
   399 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   401   Handle exception(thread, ex);
   402   nm = CodeCache::find_nmethod(pc);
   403   assert(nm != NULL, "this is not an nmethod");
   404   // Adjust the pc as needed/
   405   if (nm->is_deopt_pc(pc)) {
   406     RegisterMap map(thread, false);
   407     frame exception_frame = thread->last_frame().sender(&map);
   408     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   409     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   410     pc = exception_frame.pc();
   411   }
   412 #ifdef ASSERT
   413   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   414   assert(exception->is_oop(), "just checking");
   415   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   416   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   417     if (ExitVMOnVerifyError) vm_exit(-1);
   418     ShouldNotReachHere();
   419   }
   420 #endif
   422   // Check the stack guard pages and reenable them if necessary and there is
   423   // enough space on the stack to do so.  Use fast exceptions only if the guard
   424   // pages are enabled.
   425   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   426   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   428   if (JvmtiExport::can_post_on_exceptions()) {
   429     // To ensure correct notification of exception catches and throws
   430     // we have to deoptimize here.  If we attempted to notify the
   431     // catches and throws during this exception lookup it's possible
   432     // we could deoptimize on the way out of the VM and end back in
   433     // the interpreter at the throw site.  This would result in double
   434     // notifications since the interpreter would also notify about
   435     // these same catches and throws as it unwound the frame.
   437     RegisterMap reg_map(thread);
   438     frame stub_frame = thread->last_frame();
   439     frame caller_frame = stub_frame.sender(&reg_map);
   441     // We don't really want to deoptimize the nmethod itself since we
   442     // can actually continue in the exception handler ourselves but I
   443     // don't see an easy way to have the desired effect.
   444     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   445     VMThread::execute(&deopt);
   447     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   448   }
   450   // ExceptionCache is used only for exceptions at call and not for implicit exceptions
   451   if (guard_pages_enabled) {
   452     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   453     if (fast_continuation != NULL) {
   454       if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
   455       return fast_continuation;
   456     }
   457   }
   459   // If the stack guard pages are enabled, check whether there is a handler in
   460   // the current method.  Otherwise (guard pages disabled), force an unwind and
   461   // skip the exception cache update (i.e., just leave continuation==NULL).
   462   address continuation = NULL;
   463   if (guard_pages_enabled) {
   465     // New exception handling mechanism can support inlined methods
   466     // with exception handlers since the mappings are from PC to PC
   468     // debugging support
   469     // tracing
   470     if (TraceExceptions) {
   471       ttyLocker ttyl;
   472       ResourceMark rm;
   473       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   474                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   475     }
   476     // for AbortVMOnException flag
   477     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   479     // Clear out the exception oop and pc since looking up an
   480     // exception handler can cause class loading, which might throw an
   481     // exception and those fields are expected to be clear during
   482     // normal bytecode execution.
   483     thread->set_exception_oop(NULL);
   484     thread->set_exception_pc(NULL);
   486     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   487     // If an exception was thrown during exception dispatch, the exception oop may have changed
   488     thread->set_exception_oop(exception());
   489     thread->set_exception_pc(pc);
   491     // the exception cache is used only by non-implicit exceptions
   492     if (continuation == NULL) {
   493       nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
   494     } else {
   495       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   496     }
   497   }
   499   thread->set_vm_result(exception());
   501   if (TraceExceptions) {
   502     ttyLocker ttyl;
   503     ResourceMark rm;
   504     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   505                   thread, continuation, pc);
   506   }
   508   return continuation;
   509 JRT_END
   511 // Enter this method from compiled code only if there is a Java exception handler
   512 // in the method handling the exception
   513 // We are entering here from exception stub. We don't do a normal VM transition here.
   514 // We do it in a helper. This is so we can check to see if the nmethod we have just
   515 // searched for an exception handler has been deoptimized in the meantime.
   516 address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
   517   oop exception = thread->exception_oop();
   518   address pc = thread->exception_pc();
   519   // Still in Java mode
   520   debug_only(ResetNoHandleMark rnhm);
   521   nmethod* nm = NULL;
   522   address continuation = NULL;
   523   {
   524     // Enter VM mode by calling the helper
   526     ResetNoHandleMark rnhm;
   527     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   528   }
   529   // Back in JAVA, use no oops DON'T safepoint
   531   // Now check to see if the nmethod we were called from is now deoptimized.
   532   // If so we must return to the deopt blob and deoptimize the nmethod
   534   if (nm != NULL && caller_is_deopted()) {
   535     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   536   }
   538   return continuation;
   539 }
   542 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   543   NOT_PRODUCT(_throw_range_check_exception_count++;)
   544   Events::log("throw_range_check");
   545   char message[jintAsStringSize];
   546   sprintf(message, "%d", index);
   547   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   548 JRT_END
   551 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   552   NOT_PRODUCT(_throw_index_exception_count++;)
   553   Events::log("throw_index");
   554   char message[16];
   555   sprintf(message, "%d", index);
   556   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   557 JRT_END
   560 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   561   NOT_PRODUCT(_throw_div0_exception_count++;)
   562   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   563 JRT_END
   566 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   567   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   568   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   569 JRT_END
   572 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   573   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   574   ResourceMark rm(thread);
   575   char* message = SharedRuntime::generate_class_cast_message(
   576     thread, Klass::cast(object->klass())->external_name());
   577   SharedRuntime::throw_and_post_jvmti_exception(
   578     thread, vmSymbols::java_lang_ClassCastException(), message);
   579 JRT_END
   582 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   583   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   584   ResourceMark rm(thread);
   585   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   586 JRT_END
   589 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   590   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   591   if (PrintBiasedLockingStatistics) {
   592     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   593   }
   594   Handle h_obj(thread, obj);
   595   assert(h_obj()->is_oop(), "must be NULL or an object");
   596   if (UseBiasedLocking) {
   597     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   598     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   599   } else {
   600     if (UseFastLocking) {
   601       // When using fast locking, the compiled code has already tried the fast case
   602       assert(obj == lock->obj(), "must match");
   603       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   604     } else {
   605       lock->set_obj(obj);
   606       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   607     }
   608   }
   609 JRT_END
   612 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   613   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   614   assert(thread == JavaThread::current(), "threads must correspond");
   615   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   616   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   617   EXCEPTION_MARK;
   619   oop obj = lock->obj();
   620   assert(obj->is_oop(), "must be NULL or an object");
   621   if (UseFastLocking) {
   622     // When using fast locking, the compiled code has already tried the fast case
   623     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   624   } else {
   625     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   626   }
   627 JRT_END
   630 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   631   Bytecode_field* field_access = Bytecode_field_at(caller, bci);
   632   // This can be static or non-static field access
   633   Bytecodes::Code code       = field_access->code();
   635   // We must load class, initialize class and resolvethe field
   636   FieldAccessInfo result; // initialize class if needed
   637   constantPoolHandle constants(THREAD, caller->constants());
   638   LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
   639   return result.klass()();
   640 }
   643 //
   644 // This routine patches sites where a class wasn't loaded or
   645 // initialized at the time the code was generated.  It handles
   646 // references to classes, fields and forcing of initialization.  Most
   647 // of the cases are straightforward and involving simply forcing
   648 // resolution of a class, rewriting the instruction stream with the
   649 // needed constant and replacing the call in this function with the
   650 // patched code.  The case for static field is more complicated since
   651 // the thread which is in the process of initializing a class can
   652 // access it's static fields but other threads can't so the code
   653 // either has to deoptimize when this case is detected or execute a
   654 // check that the current thread is the initializing thread.  The
   655 // current
   656 //
   657 // Patches basically look like this:
   658 //
   659 //
   660 // patch_site: jmp patch stub     ;; will be patched
   661 // continue:   ...
   662 //             ...
   663 //             ...
   664 //             ...
   665 //
   666 // They have a stub which looks like this:
   667 //
   668 //             ;; patch body
   669 //             movl <const>, reg           (for class constants)
   670 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   671 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   672 //             <being_init offset> <bytes to copy> <bytes to skip>
   673 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   674 //             jmp patch_site
   675 //
   676 //
   677 // A normal patch is done by rewriting the patch body, usually a move,
   678 // and then copying it into place over top of the jmp instruction
   679 // being careful to flush caches and doing it in an MP-safe way.  The
   680 // constants following the patch body are used to find various pieces
   681 // of the patch relative to the call site for Runtime1::patch_code.
   682 // The case for getstatic and putstatic is more complicated because
   683 // getstatic and putstatic have special semantics when executing while
   684 // the class is being initialized.  getstatic/putstatic on a class
   685 // which is being_initialized may be executed by the initializing
   686 // thread but other threads have to block when they execute it.  This
   687 // is accomplished in compiled code by executing a test of the current
   688 // thread against the initializing thread of the class.  It's emitted
   689 // as boilerplate in their stub which allows the patched code to be
   690 // executed before it's copied back into the main body of the nmethod.
   691 //
   692 // being_init: get_thread(<tmp reg>
   693 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   694 //             jne patch_stub
   695 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   696 //             movl reg, [reg1 + <const>]  (for field offsets)
   697 //             jmp continue
   698 //             <being_init offset> <bytes to copy> <bytes to skip>
   699 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   700 //             jmp patch_site
   701 //
   702 // If the class is being initialized the patch body is rewritten and
   703 // the patch site is rewritten to jump to being_init, instead of
   704 // patch_stub.  Whenever this code is executed it checks the current
   705 // thread against the intializing thread so other threads will enter
   706 // the runtime and end up blocked waiting the class to finish
   707 // initializing inside the calls to resolve_field below.  The
   708 // initializing class will continue on it's way.  Once the class is
   709 // fully_initialized, the intializing_thread of the class becomes
   710 // NULL, so the next thread to execute this code will fail the test,
   711 // call into patch_code and complete the patching process by copying
   712 // the patch body back into the main part of the nmethod and resume
   713 // executing.
   714 //
   715 //
   717 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   718   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   720   ResourceMark rm(thread);
   721   RegisterMap reg_map(thread, false);
   722   frame runtime_frame = thread->last_frame();
   723   frame caller_frame = runtime_frame.sender(&reg_map);
   725   // last java frame on stack
   726   vframeStream vfst(thread, true);
   727   assert(!vfst.at_end(), "Java frame must exist");
   729   methodHandle caller_method(THREAD, vfst.method());
   730   // Note that caller_method->code() may not be same as caller_code because of OSR's
   731   // Note also that in the presence of inlining it is not guaranteed
   732   // that caller_method() == caller_code->method()
   735   int bci = vfst.bci();
   737   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   739   Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
   741 #ifndef PRODUCT
   742   // this is used by assertions in the access_field_patching_id
   743   BasicType patch_field_type = T_ILLEGAL;
   744 #endif // PRODUCT
   745   bool deoptimize_for_volatile = false;
   746   int patch_field_offset = -1;
   747   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   748   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   749   if (stub_id == Runtime1::access_field_patching_id) {
   751     Bytecode_field* field_access = Bytecode_field_at(caller_method, bci);
   752     FieldAccessInfo result; // initialize class if needed
   753     Bytecodes::Code code = field_access->code();
   754     constantPoolHandle constants(THREAD, caller_method->constants());
   755     LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
   756     patch_field_offset = result.field_offset();
   758     // If we're patching a field which is volatile then at compile it
   759     // must not have been know to be volatile, so the generated code
   760     // isn't correct for a volatile reference.  The nmethod has to be
   761     // deoptimized so that the code can be regenerated correctly.
   762     // This check is only needed for access_field_patching since this
   763     // is the path for patching field offsets.  load_klass is only
   764     // used for patching references to oops which don't need special
   765     // handling in the volatile case.
   766     deoptimize_for_volatile = result.access_flags().is_volatile();
   768 #ifndef PRODUCT
   769     patch_field_type = result.field_type();
   770 #endif
   771   } else if (stub_id == Runtime1::load_klass_patching_id) {
   772     oop k;
   773     switch (code) {
   774       case Bytecodes::_putstatic:
   775       case Bytecodes::_getstatic:
   776         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   777           // Save a reference to the class that has to be checked for initialization
   778           init_klass = KlassHandle(THREAD, klass);
   779           k = klass;
   780         }
   781         break;
   782       case Bytecodes::_new:
   783         { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
   784           k = caller_method->constants()->klass_at(bnew->index(), CHECK);
   785         }
   786         break;
   787       case Bytecodes::_multianewarray:
   788         { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
   789           k = caller_method->constants()->klass_at(mna->index(), CHECK);
   790         }
   791         break;
   792       case Bytecodes::_instanceof:
   793         { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
   794           k = caller_method->constants()->klass_at(io->index(), CHECK);
   795         }
   796         break;
   797       case Bytecodes::_checkcast:
   798         { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
   799           k = caller_method->constants()->klass_at(cc->index(), CHECK);
   800         }
   801         break;
   802       case Bytecodes::_anewarray:
   803         { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
   804           klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
   805           k = Klass::cast(ek)->array_klass(CHECK);
   806         }
   807         break;
   808       case Bytecodes::_ldc:
   809       case Bytecodes::_ldc_w:
   810         {
   811           Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method, bci);
   812           k = cc->resolve_constant(CHECK);
   813           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
   814         }
   815         break;
   816       default: Unimplemented();
   817     }
   818     // convert to handle
   819     load_klass = Handle(THREAD, k);
   820   } else {
   821     ShouldNotReachHere();
   822   }
   824   if (deoptimize_for_volatile) {
   825     // At compile time we assumed the field wasn't volatile but after
   826     // loading it turns out it was volatile so we have to throw the
   827     // compiled code out and let it be regenerated.
   828     if (TracePatching) {
   829       tty->print_cr("Deoptimizing for patching volatile field reference");
   830     }
   831     // It's possible the nmethod was invalidated in the last
   832     // safepoint, but if it's still alive then make it not_entrant.
   833     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   834     if (nm != NULL) {
   835       nm->make_not_entrant();
   836     }
   838     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   839     VMThread::execute(&deopt);
   841     // Return to the now deoptimized frame.
   842   }
   844   // If we are patching in a non-perm oop, make sure the nmethod
   845   // is on the right list.
   846   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
   847     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
   848     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   849     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
   850     if (!nm->on_scavenge_root_list())
   851       CodeCache::add_scavenge_root_nmethod(nm);
   852   }
   854   // Now copy code back
   856   {
   857     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   858     //
   859     // Deoptimization may have happened while we waited for the lock.
   860     // In that case we don't bother to do any patching we just return
   861     // and let the deopt happen
   862     if (!caller_is_deopted()) {
   863       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   864       address instr_pc = jump->jump_destination();
   865       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   866       if (ni->is_jump() ) {
   867         // the jump has not been patched yet
   868         // The jump destination is slow case and therefore not part of the stubs
   869         // (stubs are only for StaticCalls)
   871         // format of buffer
   872         //    ....
   873         //    instr byte 0     <-- copy_buff
   874         //    instr byte 1
   875         //    ..
   876         //    instr byte n-1
   877         //      n
   878         //    ....             <-- call destination
   880         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   881         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   882         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   883         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   884         address copy_buff = stub_location - *byte_skip - *byte_count;
   885         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   886         if (TracePatching) {
   887           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   888                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   889           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   890           assert(caller_code != NULL, "nmethod not found");
   892           // NOTE we use pc() not original_pc() because we already know they are
   893           // identical otherwise we'd have never entered this block of code
   895           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   896           assert(map != NULL, "null check");
   897           map->print();
   898           tty->cr();
   900           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   901         }
   902         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   903         bool do_patch = true;
   904         if (stub_id == Runtime1::access_field_patching_id) {
   905           // The offset may not be correct if the class was not loaded at code generation time.
   906           // Set it now.
   907           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   908           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   909           assert(patch_field_offset >= 0, "illegal offset");
   910           n_move->add_offset_in_bytes(patch_field_offset);
   911         } else if (stub_id == Runtime1::load_klass_patching_id) {
   912           // If a getstatic or putstatic is referencing a klass which
   913           // isn't fully initialized, the patch body isn't copied into
   914           // place until initialization is complete.  In this case the
   915           // patch site is setup so that any threads besides the
   916           // initializing thread are forced to come into the VM and
   917           // block.
   918           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   919                      instanceKlass::cast(init_klass())->is_initialized();
   920           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   921           if (jump->jump_destination() == being_initialized_entry) {
   922             assert(do_patch == true, "initialization must be complete at this point");
   923           } else {
   924             // patch the instruction <move reg, klass>
   925             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   927             assert(n_copy->data() == 0 ||
   928                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
   929                    "illegal init value");
   930             assert(load_klass() != NULL, "klass not set");
   931             n_copy->set_data((intx) (load_klass()));
   933             if (TracePatching) {
   934               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   935             }
   937 #if defined(SPARC) || defined(PPC)
   938             // Update the oop location in the nmethod with the proper
   939             // oop.  When the code was generated, a NULL was stuffed
   940             // in the oop table and that table needs to be update to
   941             // have the right value.  On intel the value is kept
   942             // directly in the instruction instead of in the oop
   943             // table, so set_data above effectively updated the value.
   944             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   945             assert(nm != NULL, "invalid nmethod_pc");
   946             RelocIterator oops(nm, copy_buff, copy_buff + 1);
   947             bool found = false;
   948             while (oops.next() && !found) {
   949               if (oops.type() == relocInfo::oop_type) {
   950                 oop_Relocation* r = oops.oop_reloc();
   951                 oop* oop_adr = r->oop_addr();
   952                 *oop_adr = load_klass();
   953                 r->fix_oop_relocation();
   954                 found = true;
   955               }
   956             }
   957             assert(found, "the oop must exist!");
   958 #endif
   960           }
   961         } else {
   962           ShouldNotReachHere();
   963         }
   964         if (do_patch) {
   965           // replace instructions
   966           // first replace the tail, then the call
   967 #ifdef ARM
   968           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
   969             copy_buff -= *byte_count;
   970             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
   971             n_copy2->set_data((intx) (load_klass()), instr_pc);
   972           }
   973 #endif
   975           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
   976             address ptr = copy_buff + i;
   977             int a_byte = (*ptr) & 0xFF;
   978             address dst = instr_pc + i;
   979             *(unsigned char*)dst = (unsigned char) a_byte;
   980           }
   981           ICache::invalidate_range(instr_pc, *byte_count);
   982           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
   984           if (stub_id == Runtime1::load_klass_patching_id) {
   985             // update relocInfo to oop
   986             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   987             assert(nm != NULL, "invalid nmethod_pc");
   989             // The old patch site is now a move instruction so update
   990             // the reloc info so that it will get updated during
   991             // future GCs.
   992             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
   993             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
   994                                                      relocInfo::none, relocInfo::oop_type);
   995 #ifdef SPARC
   996             // Sparc takes two relocations for an oop so update the second one.
   997             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
   998             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
   999             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1000                                                      relocInfo::none, relocInfo::oop_type);
  1001 #endif
  1002 #ifdef PPC
  1003           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1004             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1005             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
  1007 #endif
  1010         } else {
  1011           ICache::invalidate_range(copy_buff, *byte_count);
  1012           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1017 JRT_END
  1019 //
  1020 // Entry point for compiled code. We want to patch a nmethod.
  1021 // We don't do a normal VM transition here because we want to
  1022 // know after the patching is complete and any safepoint(s) are taken
  1023 // if the calling nmethod was deoptimized. We do this by calling a
  1024 // helper method which does the normal VM transition and when it
  1025 // completes we can check for deoptimization. This simplifies the
  1026 // assembly code in the cpu directories.
  1027 //
  1028 int Runtime1::move_klass_patching(JavaThread* thread) {
  1029 //
  1030 // NOTE: we are still in Java
  1031 //
  1032   Thread* THREAD = thread;
  1033   debug_only(NoHandleMark nhm;)
  1035     // Enter VM mode
  1037     ResetNoHandleMark rnhm;
  1038     patch_code(thread, load_klass_patching_id);
  1040   // Back in JAVA, use no oops DON'T safepoint
  1042   // Return true if calling code is deoptimized
  1044   return caller_is_deopted();
  1047 //
  1048 // Entry point for compiled code. We want to patch a nmethod.
  1049 // We don't do a normal VM transition here because we want to
  1050 // know after the patching is complete and any safepoint(s) are taken
  1051 // if the calling nmethod was deoptimized. We do this by calling a
  1052 // helper method which does the normal VM transition and when it
  1053 // completes we can check for deoptimization. This simplifies the
  1054 // assembly code in the cpu directories.
  1055 //
  1057 int Runtime1::access_field_patching(JavaThread* thread) {
  1058 //
  1059 // NOTE: we are still in Java
  1060 //
  1061   Thread* THREAD = thread;
  1062   debug_only(NoHandleMark nhm;)
  1064     // Enter VM mode
  1066     ResetNoHandleMark rnhm;
  1067     patch_code(thread, access_field_patching_id);
  1069   // Back in JAVA, use no oops DON'T safepoint
  1071   // Return true if calling code is deoptimized
  1073   return caller_is_deopted();
  1074 JRT_END
  1077 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1078   // for now we just print out the block id
  1079   tty->print("%d ", block_id);
  1080 JRT_END
  1083 // Array copy return codes.
  1084 enum {
  1085   ac_failed = -1, // arraycopy failed
  1086   ac_ok = 0       // arraycopy succeeded
  1087 };
  1090 // Below length is the # elements copied.
  1091 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1092                                           oopDesc* dst, T* dst_addr,
  1093                                           int length) {
  1095   // For performance reasons, we assume we are using a card marking write
  1096   // barrier. The assert will fail if this is not the case.
  1097   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1098   BarrierSet* bs = Universe::heap()->barrier_set();
  1099   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1100   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1101   if (src == dst) {
  1102     // same object, no check
  1103     bs->write_ref_array_pre(dst_addr, length);
  1104     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1105     bs->write_ref_array((HeapWord*)dst_addr, length);
  1106     return ac_ok;
  1107   } else {
  1108     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1109     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1110     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1111       // Elements are guaranteed to be subtypes, so no check necessary
  1112       bs->write_ref_array_pre(dst_addr, length);
  1113       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1114       bs->write_ref_array((HeapWord*)dst_addr, length);
  1115       return ac_ok;
  1118   return ac_failed;
  1121 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1122 // and we did not copy anything
  1123 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1124 #ifndef PRODUCT
  1125   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1126 #endif
  1128   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1129   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1130   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1131   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1133   if (length == 0) return ac_ok;
  1134   if (src->is_typeArray()) {
  1135     const klassOop klass_oop = src->klass();
  1136     if (klass_oop != dst->klass()) return ac_failed;
  1137     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1138     const int l2es = klass->log2_element_size();
  1139     const int ihs = klass->array_header_in_bytes() / wordSize;
  1140     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1141     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1142     // Potential problem: memmove is not guaranteed to be word atomic
  1143     // Revisit in Merlin
  1144     memmove(dst_addr, src_addr, length << l2es);
  1145     return ac_ok;
  1146   } else if (src->is_objArray() && dst->is_objArray()) {
  1147     if (UseCompressedOops) {  // will need for tiered
  1148       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1149       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1150       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1151     } else {
  1152       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1153       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1154       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1157   return ac_failed;
  1158 JRT_END
  1161 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1162 #ifndef PRODUCT
  1163   _primitive_arraycopy_cnt++;
  1164 #endif
  1166   if (length == 0) return;
  1167   // Not guaranteed to be word atomic, but that doesn't matter
  1168   // for anything but an oop array, which is covered by oop_arraycopy.
  1169   Copy::conjoint_jbytes(src, dst, length);
  1170 JRT_END
  1172 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1173 #ifndef PRODUCT
  1174   _oop_arraycopy_cnt++;
  1175 #endif
  1177   if (num == 0) return;
  1178   BarrierSet* bs = Universe::heap()->barrier_set();
  1179   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1180   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1181   if (UseCompressedOops) {
  1182     bs->write_ref_array_pre((narrowOop*)dst, num);
  1183   } else {
  1184     bs->write_ref_array_pre((oop*)dst, num);
  1186   Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1187   bs->write_ref_array(dst, num);
  1188 JRT_END
  1191 #ifndef PRODUCT
  1192 void Runtime1::print_statistics() {
  1193   tty->print_cr("C1 Runtime statistics:");
  1194   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1195   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1196   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1197   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1198   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1199   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1200   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1201   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  1202   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1204   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1205   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1206   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1207   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1208   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1209   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1210   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1212   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1213   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1214   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1215   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1216   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1217   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1218   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1219   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1221   SharedRuntime::print_ic_miss_histogram();
  1222   tty->cr();
  1224 #endif // PRODUCT

mercurial