src/share/vm/c1/c1_Runtime1.cpp

Tue, 19 Oct 2010 16:14:34 -0700

author
never
date
Tue, 19 Oct 2010 16:14:34 -0700
changeset 2260
ce6848d0666d
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6968367: can_post_on_exceptions is still using VM_DeoptimizeFrame in some places
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Runtime1.cpp.incl"
    29 // Implementation of StubAssembler
    31 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    32   _name = name;
    33   _must_gc_arguments = false;
    34   _frame_size = no_frame_size;
    35   _num_rt_args = 0;
    36   _stub_id = stub_id;
    37 }
    40 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    41   _name = name;
    42   _must_gc_arguments = must_gc_arguments;
    43 }
    46 void StubAssembler::set_frame_size(int size) {
    47   if (_frame_size == no_frame_size) {
    48     _frame_size = size;
    49   }
    50   assert(_frame_size == size, "can't change the frame size");
    51 }
    54 void StubAssembler::set_num_rt_args(int args) {
    55   if (_num_rt_args == 0) {
    56     _num_rt_args = args;
    57   }
    58   assert(_num_rt_args == args, "can't change the number of args");
    59 }
    61 // Implementation of Runtime1
    63 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    64 const char *Runtime1::_blob_names[] = {
    65   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    66 };
    68 #ifndef PRODUCT
    69 // statistics
    70 int Runtime1::_generic_arraycopy_cnt = 0;
    71 int Runtime1::_primitive_arraycopy_cnt = 0;
    72 int Runtime1::_oop_arraycopy_cnt = 0;
    73 int Runtime1::_arraycopy_slowcase_cnt = 0;
    74 int Runtime1::_new_type_array_slowcase_cnt = 0;
    75 int Runtime1::_new_object_array_slowcase_cnt = 0;
    76 int Runtime1::_new_instance_slowcase_cnt = 0;
    77 int Runtime1::_new_multi_array_slowcase_cnt = 0;
    78 int Runtime1::_monitorenter_slowcase_cnt = 0;
    79 int Runtime1::_monitorexit_slowcase_cnt = 0;
    80 int Runtime1::_patch_code_slowcase_cnt = 0;
    81 int Runtime1::_throw_range_check_exception_count = 0;
    82 int Runtime1::_throw_index_exception_count = 0;
    83 int Runtime1::_throw_div0_exception_count = 0;
    84 int Runtime1::_throw_null_pointer_exception_count = 0;
    85 int Runtime1::_throw_class_cast_exception_count = 0;
    86 int Runtime1::_throw_incompatible_class_change_error_count = 0;
    87 int Runtime1::_throw_array_store_exception_count = 0;
    88 int Runtime1::_throw_count = 0;
    89 #endif
    91 // Simple helper to see if the caller of a runtime stub which
    92 // entered the VM has been deoptimized
    94 static bool caller_is_deopted() {
    95   JavaThread* thread = JavaThread::current();
    96   RegisterMap reg_map(thread, false);
    97   frame runtime_frame = thread->last_frame();
    98   frame caller_frame = runtime_frame.sender(&reg_map);
    99   assert(caller_frame.is_compiled_frame(), "must be compiled");
   100   return caller_frame.is_deoptimized_frame();
   101 }
   103 // Stress deoptimization
   104 static void deopt_caller() {
   105   if ( !caller_is_deopted()) {
   106     JavaThread* thread = JavaThread::current();
   107     RegisterMap reg_map(thread, false);
   108     frame runtime_frame = thread->last_frame();
   109     frame caller_frame = runtime_frame.sender(&reg_map);
   110     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   111     assert(caller_is_deopted(), "Must be deoptimized");
   112   }
   113 }
   116 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   117   assert(0 <= id && id < number_of_ids, "illegal stub id");
   118   ResourceMark rm;
   119   // create code buffer for code storage
   120   CodeBuffer code(buffer_blob);
   122   Compilation::setup_code_buffer(&code, 0);
   124   // create assembler for code generation
   125   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   126   // generate code for runtime stub
   127   OopMapSet* oop_maps;
   128   oop_maps = generate_code_for(id, sasm);
   129   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   130          "if stub has an oop map it must have a valid frame size");
   132 #ifdef ASSERT
   133   // Make sure that stubs that need oopmaps have them
   134   switch (id) {
   135     // These stubs don't need to have an oopmap
   136     case dtrace_object_alloc_id:
   137     case g1_pre_barrier_slow_id:
   138     case g1_post_barrier_slow_id:
   139     case slow_subtype_check_id:
   140     case fpu2long_stub_id:
   141     case unwind_exception_id:
   142     case counter_overflow_id:
   143 #if defined(SPARC) || defined(PPC)
   144     case handle_exception_nofpu_id:  // Unused on sparc
   145 #endif
   146       break;
   148     // All other stubs should have oopmaps
   149     default:
   150       assert(oop_maps != NULL, "must have an oopmap");
   151   }
   152 #endif
   154   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   155   sasm->align(BytesPerWord);
   156   // make sure all code is in code buffer
   157   sasm->flush();
   158   // create blob - distinguish a few special cases
   159   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   160                                                  &code,
   161                                                  CodeOffsets::frame_never_safe,
   162                                                  sasm->frame_size(),
   163                                                  oop_maps,
   164                                                  sasm->must_gc_arguments());
   165   // install blob
   166   assert(blob != NULL, "blob must exist");
   167   _blobs[id] = blob;
   168 }
   171 void Runtime1::initialize(BufferBlob* blob) {
   172   // platform-dependent initialization
   173   initialize_pd();
   174   // generate stubs
   175   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   176   // printing
   177 #ifndef PRODUCT
   178   if (PrintSimpleStubs) {
   179     ResourceMark rm;
   180     for (int id = 0; id < number_of_ids; id++) {
   181       _blobs[id]->print();
   182       if (_blobs[id]->oop_maps() != NULL) {
   183         _blobs[id]->oop_maps()->print();
   184       }
   185     }
   186   }
   187 #endif
   188 }
   191 CodeBlob* Runtime1::blob_for(StubID id) {
   192   assert(0 <= id && id < number_of_ids, "illegal stub id");
   193   return _blobs[id];
   194 }
   197 const char* Runtime1::name_for(StubID id) {
   198   assert(0 <= id && id < number_of_ids, "illegal stub id");
   199   return _blob_names[id];
   200 }
   202 const char* Runtime1::name_for_address(address entry) {
   203   for (int id = 0; id < number_of_ids; id++) {
   204     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   205   }
   207 #define FUNCTION_CASE(a, f) \
   208   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   210   FUNCTION_CASE(entry, os::javaTimeMillis);
   211   FUNCTION_CASE(entry, os::javaTimeNanos);
   212   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   213   FUNCTION_CASE(entry, SharedRuntime::d2f);
   214   FUNCTION_CASE(entry, SharedRuntime::d2i);
   215   FUNCTION_CASE(entry, SharedRuntime::d2l);
   216   FUNCTION_CASE(entry, SharedRuntime::dcos);
   217   FUNCTION_CASE(entry, SharedRuntime::dexp);
   218   FUNCTION_CASE(entry, SharedRuntime::dlog);
   219   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   220   FUNCTION_CASE(entry, SharedRuntime::dpow);
   221   FUNCTION_CASE(entry, SharedRuntime::drem);
   222   FUNCTION_CASE(entry, SharedRuntime::dsin);
   223   FUNCTION_CASE(entry, SharedRuntime::dtan);
   224   FUNCTION_CASE(entry, SharedRuntime::f2i);
   225   FUNCTION_CASE(entry, SharedRuntime::f2l);
   226   FUNCTION_CASE(entry, SharedRuntime::frem);
   227   FUNCTION_CASE(entry, SharedRuntime::l2d);
   228   FUNCTION_CASE(entry, SharedRuntime::l2f);
   229   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   230   FUNCTION_CASE(entry, SharedRuntime::lmul);
   231   FUNCTION_CASE(entry, SharedRuntime::lrem);
   232   FUNCTION_CASE(entry, SharedRuntime::lrem);
   233   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   234   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   235   FUNCTION_CASE(entry, trace_block_entry);
   237 #undef FUNCTION_CASE
   239   // Soft float adds more runtime names.
   240   return pd_name_for_address(entry);
   241 }
   244 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   245   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   247   assert(oop(klass)->is_klass(), "not a class");
   248   instanceKlassHandle h(thread, klass);
   249   h->check_valid_for_instantiation(true, CHECK);
   250   // make sure klass is initialized
   251   h->initialize(CHECK);
   252   // allocate instance and return via TLS
   253   oop obj = h->allocate_instance(CHECK);
   254   thread->set_vm_result(obj);
   255 JRT_END
   258 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   259   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   260   // Note: no handle for klass needed since they are not used
   261   //       anymore after new_typeArray() and no GC can happen before.
   262   //       (This may have to change if this code changes!)
   263   assert(oop(klass)->is_klass(), "not a class");
   264   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   265   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   266   thread->set_vm_result(obj);
   267   // This is pretty rare but this runtime patch is stressful to deoptimization
   268   // if we deoptimize here so force a deopt to stress the path.
   269   if (DeoptimizeALot) {
   270     deopt_caller();
   271   }
   273 JRT_END
   276 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   277   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   279   // Note: no handle for klass needed since they are not used
   280   //       anymore after new_objArray() and no GC can happen before.
   281   //       (This may have to change if this code changes!)
   282   assert(oop(array_klass)->is_klass(), "not a class");
   283   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   284   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   285   thread->set_vm_result(obj);
   286   // This is pretty rare but this runtime patch is stressful to deoptimization
   287   // if we deoptimize here so force a deopt to stress the path.
   288   if (DeoptimizeALot) {
   289     deopt_caller();
   290   }
   291 JRT_END
   294 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   295   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   297   assert(oop(klass)->is_klass(), "not a class");
   298   assert(rank >= 1, "rank must be nonzero");
   299   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   300   thread->set_vm_result(obj);
   301 JRT_END
   304 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   305   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   306 JRT_END
   309 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
   310   THROW(vmSymbolHandles::java_lang_ArrayStoreException());
   311 JRT_END
   314 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   315   if (JvmtiExport::can_post_on_exceptions()) {
   316     vframeStream vfst(thread, true);
   317     address bcp = vfst.method()->bcp_from(vfst.bci());
   318     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   319   }
   320 JRT_END
   322 // This is a helper to allow us to safepoint but allow the outer entry
   323 // to be safepoint free if we need to do an osr
   324 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
   325   nmethod* osr_nm = NULL;
   326   methodHandle method(THREAD, m);
   328   RegisterMap map(THREAD, false);
   329   frame fr =  THREAD->last_frame().sender(&map);
   330   nmethod* nm = (nmethod*) fr.cb();
   331   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   332   methodHandle enclosing_method(THREAD, nm->method());
   334   CompLevel level = (CompLevel)nm->comp_level();
   335   int bci = InvocationEntryBci;
   336   if (branch_bci != InvocationEntryBci) {
   337     // Compute desination bci
   338     address pc = method()->code_base() + branch_bci;
   339     Bytecodes::Code branch = Bytecodes::code_at(pc, method());
   340     int offset = 0;
   341     switch (branch) {
   342       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   343       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   344       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   345       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   346       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   347       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   348       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   349         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   350         break;
   351       case Bytecodes::_goto_w:
   352         offset = Bytes::get_Java_u4(pc + 1);
   353         break;
   354       default: ;
   355     }
   356     bci = branch_bci + offset;
   357   }
   359   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
   360   return osr_nm;
   361 }
   363 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
   364   nmethod* osr_nm;
   365   JRT_BLOCK
   366     osr_nm = counter_overflow_helper(thread, bci, method);
   367     if (osr_nm != NULL) {
   368       RegisterMap map(thread, false);
   369       frame fr =  thread->last_frame().sender(&map);
   370       Deoptimization::deoptimize_frame(thread, fr.id());
   371     }
   372   JRT_BLOCK_END
   373   return NULL;
   374 JRT_END
   376 extern void vm_exit(int code);
   378 // Enter this method from compiled code handler below. This is where we transition
   379 // to VM mode. This is done as a helper routine so that the method called directly
   380 // from compiled code does not have to transition to VM. This allows the entry
   381 // method to see if the nmethod that we have just looked up a handler for has
   382 // been deoptimized while we were in the vm. This simplifies the assembly code
   383 // cpu directories.
   384 //
   385 // We are entering here from exception stub (via the entry method below)
   386 // If there is a compiled exception handler in this method, we will continue there;
   387 // otherwise we will unwind the stack and continue at the caller of top frame method
   388 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   389 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   390 // check to see if the handler we are going to return is now in a nmethod that has
   391 // been deoptimized. If that is the case we return the deopt blob
   392 // unpack_with_exception entry instead. This makes life for the exception blob easier
   393 // because making that same check and diverting is painful from assembly language.
   394 //
   397 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   399   Handle exception(thread, ex);
   400   nm = CodeCache::find_nmethod(pc);
   401   assert(nm != NULL, "this is not an nmethod");
   402   // Adjust the pc as needed/
   403   if (nm->is_deopt_pc(pc)) {
   404     RegisterMap map(thread, false);
   405     frame exception_frame = thread->last_frame().sender(&map);
   406     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   407     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   408     pc = exception_frame.pc();
   409   }
   410 #ifdef ASSERT
   411   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   412   assert(exception->is_oop(), "just checking");
   413   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   414   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   415     if (ExitVMOnVerifyError) vm_exit(-1);
   416     ShouldNotReachHere();
   417   }
   418 #endif
   420   // Check the stack guard pages and reenable them if necessary and there is
   421   // enough space on the stack to do so.  Use fast exceptions only if the guard
   422   // pages are enabled.
   423   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   424   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   426   if (JvmtiExport::can_post_on_exceptions()) {
   427     // To ensure correct notification of exception catches and throws
   428     // we have to deoptimize here.  If we attempted to notify the
   429     // catches and throws during this exception lookup it's possible
   430     // we could deoptimize on the way out of the VM and end back in
   431     // the interpreter at the throw site.  This would result in double
   432     // notifications since the interpreter would also notify about
   433     // these same catches and throws as it unwound the frame.
   435     RegisterMap reg_map(thread);
   436     frame stub_frame = thread->last_frame();
   437     frame caller_frame = stub_frame.sender(&reg_map);
   439     // We don't really want to deoptimize the nmethod itself since we
   440     // can actually continue in the exception handler ourselves but I
   441     // don't see an easy way to have the desired effect.
   442     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   443     assert(caller_is_deopted(), "Must be deoptimized");
   445     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   446   }
   448   // ExceptionCache is used only for exceptions at call and not for implicit exceptions
   449   if (guard_pages_enabled) {
   450     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   451     if (fast_continuation != NULL) {
   452       if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
   453       return fast_continuation;
   454     }
   455   }
   457   // If the stack guard pages are enabled, check whether there is a handler in
   458   // the current method.  Otherwise (guard pages disabled), force an unwind and
   459   // skip the exception cache update (i.e., just leave continuation==NULL).
   460   address continuation = NULL;
   461   if (guard_pages_enabled) {
   463     // New exception handling mechanism can support inlined methods
   464     // with exception handlers since the mappings are from PC to PC
   466     // debugging support
   467     // tracing
   468     if (TraceExceptions) {
   469       ttyLocker ttyl;
   470       ResourceMark rm;
   471       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   472                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   473     }
   474     // for AbortVMOnException flag
   475     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   477     // Clear out the exception oop and pc since looking up an
   478     // exception handler can cause class loading, which might throw an
   479     // exception and those fields are expected to be clear during
   480     // normal bytecode execution.
   481     thread->set_exception_oop(NULL);
   482     thread->set_exception_pc(NULL);
   484     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   485     // If an exception was thrown during exception dispatch, the exception oop may have changed
   486     thread->set_exception_oop(exception());
   487     thread->set_exception_pc(pc);
   489     // the exception cache is used only by non-implicit exceptions
   490     if (continuation == NULL) {
   491       nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
   492     } else {
   493       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   494     }
   495   }
   497   thread->set_vm_result(exception());
   499   if (TraceExceptions) {
   500     ttyLocker ttyl;
   501     ResourceMark rm;
   502     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   503                   thread, continuation, pc);
   504   }
   506   return continuation;
   507 JRT_END
   509 // Enter this method from compiled code only if there is a Java exception handler
   510 // in the method handling the exception
   511 // We are entering here from exception stub. We don't do a normal VM transition here.
   512 // We do it in a helper. This is so we can check to see if the nmethod we have just
   513 // searched for an exception handler has been deoptimized in the meantime.
   514 address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
   515   oop exception = thread->exception_oop();
   516   address pc = thread->exception_pc();
   517   // Still in Java mode
   518   debug_only(ResetNoHandleMark rnhm);
   519   nmethod* nm = NULL;
   520   address continuation = NULL;
   521   {
   522     // Enter VM mode by calling the helper
   524     ResetNoHandleMark rnhm;
   525     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   526   }
   527   // Back in JAVA, use no oops DON'T safepoint
   529   // Now check to see if the nmethod we were called from is now deoptimized.
   530   // If so we must return to the deopt blob and deoptimize the nmethod
   532   if (nm != NULL && caller_is_deopted()) {
   533     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   534   }
   536   return continuation;
   537 }
   540 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   541   NOT_PRODUCT(_throw_range_check_exception_count++;)
   542   Events::log("throw_range_check");
   543   char message[jintAsStringSize];
   544   sprintf(message, "%d", index);
   545   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   546 JRT_END
   549 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   550   NOT_PRODUCT(_throw_index_exception_count++;)
   551   Events::log("throw_index");
   552   char message[16];
   553   sprintf(message, "%d", index);
   554   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   555 JRT_END
   558 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   559   NOT_PRODUCT(_throw_div0_exception_count++;)
   560   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   561 JRT_END
   564 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   565   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   566   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   567 JRT_END
   570 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   571   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   572   ResourceMark rm(thread);
   573   char* message = SharedRuntime::generate_class_cast_message(
   574     thread, Klass::cast(object->klass())->external_name());
   575   SharedRuntime::throw_and_post_jvmti_exception(
   576     thread, vmSymbols::java_lang_ClassCastException(), message);
   577 JRT_END
   580 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   581   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   582   ResourceMark rm(thread);
   583   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   584 JRT_END
   587 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   588   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   589   if (PrintBiasedLockingStatistics) {
   590     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   591   }
   592   Handle h_obj(thread, obj);
   593   assert(h_obj()->is_oop(), "must be NULL or an object");
   594   if (UseBiasedLocking) {
   595     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   596     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   597   } else {
   598     if (UseFastLocking) {
   599       // When using fast locking, the compiled code has already tried the fast case
   600       assert(obj == lock->obj(), "must match");
   601       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   602     } else {
   603       lock->set_obj(obj);
   604       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   605     }
   606   }
   607 JRT_END
   610 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   611   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   612   assert(thread == JavaThread::current(), "threads must correspond");
   613   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   614   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   615   EXCEPTION_MARK;
   617   oop obj = lock->obj();
   618   assert(obj->is_oop(), "must be NULL or an object");
   619   if (UseFastLocking) {
   620     // When using fast locking, the compiled code has already tried the fast case
   621     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   622   } else {
   623     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   624   }
   625 JRT_END
   628 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   629   Bytecode_field* field_access = Bytecode_field_at(caller, bci);
   630   // This can be static or non-static field access
   631   Bytecodes::Code code       = field_access->code();
   633   // We must load class, initialize class and resolvethe field
   634   FieldAccessInfo result; // initialize class if needed
   635   constantPoolHandle constants(THREAD, caller->constants());
   636   LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
   637   return result.klass()();
   638 }
   641 //
   642 // This routine patches sites where a class wasn't loaded or
   643 // initialized at the time the code was generated.  It handles
   644 // references to classes, fields and forcing of initialization.  Most
   645 // of the cases are straightforward and involving simply forcing
   646 // resolution of a class, rewriting the instruction stream with the
   647 // needed constant and replacing the call in this function with the
   648 // patched code.  The case for static field is more complicated since
   649 // the thread which is in the process of initializing a class can
   650 // access it's static fields but other threads can't so the code
   651 // either has to deoptimize when this case is detected or execute a
   652 // check that the current thread is the initializing thread.  The
   653 // current
   654 //
   655 // Patches basically look like this:
   656 //
   657 //
   658 // patch_site: jmp patch stub     ;; will be patched
   659 // continue:   ...
   660 //             ...
   661 //             ...
   662 //             ...
   663 //
   664 // They have a stub which looks like this:
   665 //
   666 //             ;; patch body
   667 //             movl <const>, reg           (for class constants)
   668 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   669 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   670 //             <being_init offset> <bytes to copy> <bytes to skip>
   671 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   672 //             jmp patch_site
   673 //
   674 //
   675 // A normal patch is done by rewriting the patch body, usually a move,
   676 // and then copying it into place over top of the jmp instruction
   677 // being careful to flush caches and doing it in an MP-safe way.  The
   678 // constants following the patch body are used to find various pieces
   679 // of the patch relative to the call site for Runtime1::patch_code.
   680 // The case for getstatic and putstatic is more complicated because
   681 // getstatic and putstatic have special semantics when executing while
   682 // the class is being initialized.  getstatic/putstatic on a class
   683 // which is being_initialized may be executed by the initializing
   684 // thread but other threads have to block when they execute it.  This
   685 // is accomplished in compiled code by executing a test of the current
   686 // thread against the initializing thread of the class.  It's emitted
   687 // as boilerplate in their stub which allows the patched code to be
   688 // executed before it's copied back into the main body of the nmethod.
   689 //
   690 // being_init: get_thread(<tmp reg>
   691 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   692 //             jne patch_stub
   693 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   694 //             movl reg, [reg1 + <const>]  (for field offsets)
   695 //             jmp continue
   696 //             <being_init offset> <bytes to copy> <bytes to skip>
   697 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   698 //             jmp patch_site
   699 //
   700 // If the class is being initialized the patch body is rewritten and
   701 // the patch site is rewritten to jump to being_init, instead of
   702 // patch_stub.  Whenever this code is executed it checks the current
   703 // thread against the intializing thread so other threads will enter
   704 // the runtime and end up blocked waiting the class to finish
   705 // initializing inside the calls to resolve_field below.  The
   706 // initializing class will continue on it's way.  Once the class is
   707 // fully_initialized, the intializing_thread of the class becomes
   708 // NULL, so the next thread to execute this code will fail the test,
   709 // call into patch_code and complete the patching process by copying
   710 // the patch body back into the main part of the nmethod and resume
   711 // executing.
   712 //
   713 //
   715 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   716   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   718   ResourceMark rm(thread);
   719   RegisterMap reg_map(thread, false);
   720   frame runtime_frame = thread->last_frame();
   721   frame caller_frame = runtime_frame.sender(&reg_map);
   723   // last java frame on stack
   724   vframeStream vfst(thread, true);
   725   assert(!vfst.at_end(), "Java frame must exist");
   727   methodHandle caller_method(THREAD, vfst.method());
   728   // Note that caller_method->code() may not be same as caller_code because of OSR's
   729   // Note also that in the presence of inlining it is not guaranteed
   730   // that caller_method() == caller_code->method()
   733   int bci = vfst.bci();
   735   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   737   Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
   739 #ifndef PRODUCT
   740   // this is used by assertions in the access_field_patching_id
   741   BasicType patch_field_type = T_ILLEGAL;
   742 #endif // PRODUCT
   743   bool deoptimize_for_volatile = false;
   744   int patch_field_offset = -1;
   745   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   746   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   747   if (stub_id == Runtime1::access_field_patching_id) {
   749     Bytecode_field* field_access = Bytecode_field_at(caller_method, bci);
   750     FieldAccessInfo result; // initialize class if needed
   751     Bytecodes::Code code = field_access->code();
   752     constantPoolHandle constants(THREAD, caller_method->constants());
   753     LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
   754     patch_field_offset = result.field_offset();
   756     // If we're patching a field which is volatile then at compile it
   757     // must not have been know to be volatile, so the generated code
   758     // isn't correct for a volatile reference.  The nmethod has to be
   759     // deoptimized so that the code can be regenerated correctly.
   760     // This check is only needed for access_field_patching since this
   761     // is the path for patching field offsets.  load_klass is only
   762     // used for patching references to oops which don't need special
   763     // handling in the volatile case.
   764     deoptimize_for_volatile = result.access_flags().is_volatile();
   766 #ifndef PRODUCT
   767     patch_field_type = result.field_type();
   768 #endif
   769   } else if (stub_id == Runtime1::load_klass_patching_id) {
   770     oop k;
   771     switch (code) {
   772       case Bytecodes::_putstatic:
   773       case Bytecodes::_getstatic:
   774         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   775           // Save a reference to the class that has to be checked for initialization
   776           init_klass = KlassHandle(THREAD, klass);
   777           k = klass;
   778         }
   779         break;
   780       case Bytecodes::_new:
   781         { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
   782           k = caller_method->constants()->klass_at(bnew->index(), CHECK);
   783         }
   784         break;
   785       case Bytecodes::_multianewarray:
   786         { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
   787           k = caller_method->constants()->klass_at(mna->index(), CHECK);
   788         }
   789         break;
   790       case Bytecodes::_instanceof:
   791         { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
   792           k = caller_method->constants()->klass_at(io->index(), CHECK);
   793         }
   794         break;
   795       case Bytecodes::_checkcast:
   796         { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
   797           k = caller_method->constants()->klass_at(cc->index(), CHECK);
   798         }
   799         break;
   800       case Bytecodes::_anewarray:
   801         { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
   802           klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
   803           k = Klass::cast(ek)->array_klass(CHECK);
   804         }
   805         break;
   806       case Bytecodes::_ldc:
   807       case Bytecodes::_ldc_w:
   808         {
   809           Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method, bci);
   810           k = cc->resolve_constant(CHECK);
   811           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
   812         }
   813         break;
   814       default: Unimplemented();
   815     }
   816     // convert to handle
   817     load_klass = Handle(THREAD, k);
   818   } else {
   819     ShouldNotReachHere();
   820   }
   822   if (deoptimize_for_volatile) {
   823     // At compile time we assumed the field wasn't volatile but after
   824     // loading it turns out it was volatile so we have to throw the
   825     // compiled code out and let it be regenerated.
   826     if (TracePatching) {
   827       tty->print_cr("Deoptimizing for patching volatile field reference");
   828     }
   829     // It's possible the nmethod was invalidated in the last
   830     // safepoint, but if it's still alive then make it not_entrant.
   831     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   832     if (nm != NULL) {
   833       nm->make_not_entrant();
   834     }
   836     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   838     // Return to the now deoptimized frame.
   839   }
   841   // If we are patching in a non-perm oop, make sure the nmethod
   842   // is on the right list.
   843   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
   844     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
   845     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   846     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
   847     if (!nm->on_scavenge_root_list())
   848       CodeCache::add_scavenge_root_nmethod(nm);
   849   }
   851   // Now copy code back
   853   {
   854     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   855     //
   856     // Deoptimization may have happened while we waited for the lock.
   857     // In that case we don't bother to do any patching we just return
   858     // and let the deopt happen
   859     if (!caller_is_deopted()) {
   860       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   861       address instr_pc = jump->jump_destination();
   862       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   863       if (ni->is_jump() ) {
   864         // the jump has not been patched yet
   865         // The jump destination is slow case and therefore not part of the stubs
   866         // (stubs are only for StaticCalls)
   868         // format of buffer
   869         //    ....
   870         //    instr byte 0     <-- copy_buff
   871         //    instr byte 1
   872         //    ..
   873         //    instr byte n-1
   874         //      n
   875         //    ....             <-- call destination
   877         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   878         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   879         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   880         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   881         address copy_buff = stub_location - *byte_skip - *byte_count;
   882         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   883         if (TracePatching) {
   884           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   885                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   886           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   887           assert(caller_code != NULL, "nmethod not found");
   889           // NOTE we use pc() not original_pc() because we already know they are
   890           // identical otherwise we'd have never entered this block of code
   892           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   893           assert(map != NULL, "null check");
   894           map->print();
   895           tty->cr();
   897           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   898         }
   899         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   900         bool do_patch = true;
   901         if (stub_id == Runtime1::access_field_patching_id) {
   902           // The offset may not be correct if the class was not loaded at code generation time.
   903           // Set it now.
   904           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   905           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   906           assert(patch_field_offset >= 0, "illegal offset");
   907           n_move->add_offset_in_bytes(patch_field_offset);
   908         } else if (stub_id == Runtime1::load_klass_patching_id) {
   909           // If a getstatic or putstatic is referencing a klass which
   910           // isn't fully initialized, the patch body isn't copied into
   911           // place until initialization is complete.  In this case the
   912           // patch site is setup so that any threads besides the
   913           // initializing thread are forced to come into the VM and
   914           // block.
   915           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   916                      instanceKlass::cast(init_klass())->is_initialized();
   917           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   918           if (jump->jump_destination() == being_initialized_entry) {
   919             assert(do_patch == true, "initialization must be complete at this point");
   920           } else {
   921             // patch the instruction <move reg, klass>
   922             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   924             assert(n_copy->data() == 0 ||
   925                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
   926                    "illegal init value");
   927             assert(load_klass() != NULL, "klass not set");
   928             n_copy->set_data((intx) (load_klass()));
   930             if (TracePatching) {
   931               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   932             }
   934 #if defined(SPARC) || defined(PPC)
   935             // Update the oop location in the nmethod with the proper
   936             // oop.  When the code was generated, a NULL was stuffed
   937             // in the oop table and that table needs to be update to
   938             // have the right value.  On intel the value is kept
   939             // directly in the instruction instead of in the oop
   940             // table, so set_data above effectively updated the value.
   941             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   942             assert(nm != NULL, "invalid nmethod_pc");
   943             RelocIterator oops(nm, copy_buff, copy_buff + 1);
   944             bool found = false;
   945             while (oops.next() && !found) {
   946               if (oops.type() == relocInfo::oop_type) {
   947                 oop_Relocation* r = oops.oop_reloc();
   948                 oop* oop_adr = r->oop_addr();
   949                 *oop_adr = load_klass();
   950                 r->fix_oop_relocation();
   951                 found = true;
   952               }
   953             }
   954             assert(found, "the oop must exist!");
   955 #endif
   957           }
   958         } else {
   959           ShouldNotReachHere();
   960         }
   961         if (do_patch) {
   962           // replace instructions
   963           // first replace the tail, then the call
   964 #ifdef ARM
   965           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
   966             copy_buff -= *byte_count;
   967             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
   968             n_copy2->set_data((intx) (load_klass()), instr_pc);
   969           }
   970 #endif
   972           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
   973             address ptr = copy_buff + i;
   974             int a_byte = (*ptr) & 0xFF;
   975             address dst = instr_pc + i;
   976             *(unsigned char*)dst = (unsigned char) a_byte;
   977           }
   978           ICache::invalidate_range(instr_pc, *byte_count);
   979           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
   981           if (stub_id == Runtime1::load_klass_patching_id) {
   982             // update relocInfo to oop
   983             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   984             assert(nm != NULL, "invalid nmethod_pc");
   986             // The old patch site is now a move instruction so update
   987             // the reloc info so that it will get updated during
   988             // future GCs.
   989             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
   990             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
   991                                                      relocInfo::none, relocInfo::oop_type);
   992 #ifdef SPARC
   993             // Sparc takes two relocations for an oop so update the second one.
   994             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
   995             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
   996             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
   997                                                      relocInfo::none, relocInfo::oop_type);
   998 #endif
   999 #ifdef PPC
  1000           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1001             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1002             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
  1004 #endif
  1007         } else {
  1008           ICache::invalidate_range(copy_buff, *byte_count);
  1009           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1014 JRT_END
  1016 //
  1017 // Entry point for compiled code. We want to patch a nmethod.
  1018 // We don't do a normal VM transition here because we want to
  1019 // know after the patching is complete and any safepoint(s) are taken
  1020 // if the calling nmethod was deoptimized. We do this by calling a
  1021 // helper method which does the normal VM transition and when it
  1022 // completes we can check for deoptimization. This simplifies the
  1023 // assembly code in the cpu directories.
  1024 //
  1025 int Runtime1::move_klass_patching(JavaThread* thread) {
  1026 //
  1027 // NOTE: we are still in Java
  1028 //
  1029   Thread* THREAD = thread;
  1030   debug_only(NoHandleMark nhm;)
  1032     // Enter VM mode
  1034     ResetNoHandleMark rnhm;
  1035     patch_code(thread, load_klass_patching_id);
  1037   // Back in JAVA, use no oops DON'T safepoint
  1039   // Return true if calling code is deoptimized
  1041   return caller_is_deopted();
  1044 //
  1045 // Entry point for compiled code. We want to patch a nmethod.
  1046 // We don't do a normal VM transition here because we want to
  1047 // know after the patching is complete and any safepoint(s) are taken
  1048 // if the calling nmethod was deoptimized. We do this by calling a
  1049 // helper method which does the normal VM transition and when it
  1050 // completes we can check for deoptimization. This simplifies the
  1051 // assembly code in the cpu directories.
  1052 //
  1054 int Runtime1::access_field_patching(JavaThread* thread) {
  1055 //
  1056 // NOTE: we are still in Java
  1057 //
  1058   Thread* THREAD = thread;
  1059   debug_only(NoHandleMark nhm;)
  1061     // Enter VM mode
  1063     ResetNoHandleMark rnhm;
  1064     patch_code(thread, access_field_patching_id);
  1066   // Back in JAVA, use no oops DON'T safepoint
  1068   // Return true if calling code is deoptimized
  1070   return caller_is_deopted();
  1071 JRT_END
  1074 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1075   // for now we just print out the block id
  1076   tty->print("%d ", block_id);
  1077 JRT_END
  1080 // Array copy return codes.
  1081 enum {
  1082   ac_failed = -1, // arraycopy failed
  1083   ac_ok = 0       // arraycopy succeeded
  1084 };
  1087 // Below length is the # elements copied.
  1088 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1089                                           oopDesc* dst, T* dst_addr,
  1090                                           int length) {
  1092   // For performance reasons, we assume we are using a card marking write
  1093   // barrier. The assert will fail if this is not the case.
  1094   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1095   BarrierSet* bs = Universe::heap()->barrier_set();
  1096   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1097   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1098   if (src == dst) {
  1099     // same object, no check
  1100     bs->write_ref_array_pre(dst_addr, length);
  1101     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1102     bs->write_ref_array((HeapWord*)dst_addr, length);
  1103     return ac_ok;
  1104   } else {
  1105     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1106     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1107     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1108       // Elements are guaranteed to be subtypes, so no check necessary
  1109       bs->write_ref_array_pre(dst_addr, length);
  1110       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1111       bs->write_ref_array((HeapWord*)dst_addr, length);
  1112       return ac_ok;
  1115   return ac_failed;
  1118 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1119 // and we did not copy anything
  1120 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1121 #ifndef PRODUCT
  1122   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1123 #endif
  1125   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1126   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1127   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1128   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1130   if (length == 0) return ac_ok;
  1131   if (src->is_typeArray()) {
  1132     const klassOop klass_oop = src->klass();
  1133     if (klass_oop != dst->klass()) return ac_failed;
  1134     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1135     const int l2es = klass->log2_element_size();
  1136     const int ihs = klass->array_header_in_bytes() / wordSize;
  1137     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1138     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1139     // Potential problem: memmove is not guaranteed to be word atomic
  1140     // Revisit in Merlin
  1141     memmove(dst_addr, src_addr, length << l2es);
  1142     return ac_ok;
  1143   } else if (src->is_objArray() && dst->is_objArray()) {
  1144     if (UseCompressedOops) {  // will need for tiered
  1145       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1146       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1147       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1148     } else {
  1149       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1150       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1151       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1154   return ac_failed;
  1155 JRT_END
  1158 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1159 #ifndef PRODUCT
  1160   _primitive_arraycopy_cnt++;
  1161 #endif
  1163   if (length == 0) return;
  1164   // Not guaranteed to be word atomic, but that doesn't matter
  1165   // for anything but an oop array, which is covered by oop_arraycopy.
  1166   Copy::conjoint_jbytes(src, dst, length);
  1167 JRT_END
  1169 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1170 #ifndef PRODUCT
  1171   _oop_arraycopy_cnt++;
  1172 #endif
  1174   if (num == 0) return;
  1175   BarrierSet* bs = Universe::heap()->barrier_set();
  1176   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1177   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1178   if (UseCompressedOops) {
  1179     bs->write_ref_array_pre((narrowOop*)dst, num);
  1180   } else {
  1181     bs->write_ref_array_pre((oop*)dst, num);
  1183   Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1184   bs->write_ref_array(dst, num);
  1185 JRT_END
  1188 #ifndef PRODUCT
  1189 void Runtime1::print_statistics() {
  1190   tty->print_cr("C1 Runtime statistics:");
  1191   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1192   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1193   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1194   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1195   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1196   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1197   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1198   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  1199   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1201   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1202   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1203   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1204   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1205   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1206   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1207   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1209   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1210   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1211   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1212   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1213   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1214   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1215   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1216   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1218   SharedRuntime::print_ic_miss_histogram();
  1219   tty->cr();
  1221 #endif // PRODUCT

mercurial