src/os/linux/vm/os_linux.cpp

Wed, 03 Jul 2019 20:42:37 +0800

author
aoqi
date
Wed, 03 Jul 2019 20:42:37 +0800
changeset 9637
eef07cd490d4
parent 9572
624a0741915c
parent 9620
97d605522fcb
child 9703
2fdf635bcf28
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "osContainer_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/interfaceSupport.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/orderAccess.inline.hpp"
    54 #include "runtime/osThread.hpp"
    55 #include "runtime/perfMemory.hpp"
    56 #include "runtime/sharedRuntime.hpp"
    57 #include "runtime/statSampler.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/memTracker.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/elfFile.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 // put OS-includes here
    73 # include <sys/types.h>
    74 # include <sys/mman.h>
    75 # include <sys/stat.h>
    76 # include <sys/select.h>
    77 # include <pthread.h>
    78 # include <signal.h>
    79 # include <errno.h>
    80 # include <dlfcn.h>
    81 # include <stdio.h>
    82 # include <unistd.h>
    83 # include <sys/resource.h>
    84 # include <pthread.h>
    85 # include <sys/stat.h>
    86 # include <sys/time.h>
    87 # include <sys/times.h>
    88 # include <sys/utsname.h>
    89 # include <sys/socket.h>
    90 # include <sys/wait.h>
    91 # include <pwd.h>
    92 # include <poll.h>
    93 # include <semaphore.h>
    94 # include <fcntl.h>
    95 # include <string.h>
    96 # include <syscall.h>
    97 # include <sys/sysinfo.h>
    98 # include <gnu/libc-version.h>
    99 # include <sys/ipc.h>
   100 # include <sys/shm.h>
   101 # include <link.h>
   102 # include <stdint.h>
   103 # include <inttypes.h>
   104 # include <sys/ioctl.h>
   106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   108 #ifndef _GNU_SOURCE
   109   #define _GNU_SOURCE
   110   #include <sched.h>
   111   #undef _GNU_SOURCE
   112 #else
   113   #include <sched.h>
   114 #endif
   116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   117 // getrusage() is prepared to handle the associated failure.
   118 #ifndef RUSAGE_THREAD
   119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   120 #endif
   122 #define MAX_PATH    (2 * K)
   124 #define MAX_SECS 100000000
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #define LARGEPAGES_BIT (1 << 6)
   130 ////////////////////////////////////////////////////////////////////////////////
   131 // global variables
   132 julong os::Linux::_physical_memory = 0;
   134 address   os::Linux::_initial_thread_stack_bottom = NULL;
   135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   139 Mutex* os::Linux::_createThread_lock = NULL;
   140 pthread_t os::Linux::_main_thread;
   141 int os::Linux::_page_size = -1;
   142 const int os::Linux::_vm_default_page_size = (8 * K);
   143 bool os::Linux::_is_floating_stack = false;
   144 bool os::Linux::_is_NPTL = false;
   145 bool os::Linux::_supports_fast_thread_cpu_time = false;
   146 const char * os::Linux::_glibc_version = NULL;
   147 const char * os::Linux::_libpthread_version = NULL;
   148 pthread_condattr_t os::Linux::_condattr[1];
   150 static jlong initial_time_count=0;
   152 static int clock_tics_per_sec = 100;
   154 // For diagnostics to print a message once. see run_periodic_checks
   155 static sigset_t check_signal_done;
   156 static bool check_signals = true;
   158 static pid_t _initial_pid = 0;
   160 /* Signal number used to suspend/resume a thread */
   162 /* do not use any signal number less than SIGSEGV, see 4355769 */
   163 static int SR_signum = SIGUSR2;
   164 sigset_t SR_sigset;
   166 /* Used to protect dlsym() calls */
   167 static pthread_mutex_t dl_mutex;
   169 // Declarations
   170 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   172 // utility functions
   174 static int SR_initialize();
   176 julong os::available_memory() {
   177   return Linux::available_memory();
   178 }
   180 julong os::Linux::available_memory() {
   181   // values in struct sysinfo are "unsigned long"
   182   struct sysinfo si;
   183   julong avail_mem;
   185   if (OSContainer::is_containerized()) {
   186     jlong mem_limit, mem_usage;
   187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
   188       if (PrintContainerInfo) {
   189         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   190                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   191       }
   192     }
   194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
   195       if (PrintContainerInfo) {
   196         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
   197       }
   198     }
   200     if (mem_limit > 0 && mem_usage > 0 ) {
   201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
   202       if (PrintContainerInfo) {
   203         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
   204       }
   205       return avail_mem;
   206     }
   207   }
   209   sysinfo(&si);
   210   avail_mem = (julong)si.freeram * si.mem_unit;
   211   if (Verbose) {
   212     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
   213   }
   214   return avail_mem;
   215 }
   217 julong os::physical_memory() {
   218   jlong phys_mem = 0;
   219   if (OSContainer::is_containerized()) {
   220     jlong mem_limit;
   221     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
   222       if (PrintContainerInfo) {
   223         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
   224       }
   225       return mem_limit;
   226     }
   228     if (PrintContainerInfo) {
   229       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   230                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   231     }
   232   }
   234   phys_mem = Linux::physical_memory();
   235   if (Verbose) {
   236     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
   237   }
   238   return phys_mem;
   239 }
   241 ////////////////////////////////////////////////////////////////////////////////
   242 // environment support
   244 bool os::getenv(const char* name, char* buf, int len) {
   245   const char* val = ::getenv(name);
   246   if (val != NULL && strlen(val) < (size_t)len) {
   247     strcpy(buf, val);
   248     return true;
   249   }
   250   if (len > 0) buf[0] = 0;  // return a null string
   251   return false;
   252 }
   255 // Return true if user is running as root.
   257 bool os::have_special_privileges() {
   258   static bool init = false;
   259   static bool privileges = false;
   260   if (!init) {
   261     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   262     init = true;
   263   }
   264   return privileges;
   265 }
   268 #ifndef SYS_gettid
   269 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   270   #ifdef __ia64__
   271     #define SYS_gettid 1105
   272   #else
   273     #ifdef __i386__
   274       #define SYS_gettid 224
   275     #else
   276       #ifdef __amd64__
   277         #define SYS_gettid 186
   278       #else
   279         #ifdef __sparc__
   280           #define SYS_gettid 143
   281         #else
   282           #error define gettid for the arch
   283         #endif
   284       #endif
   285     #endif
   286   #endif
   287 #endif
   289 // Cpu architecture string
   290 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   292 // pid_t gettid()
   293 //
   294 // Returns the kernel thread id of the currently running thread. Kernel
   295 // thread id is used to access /proc.
   296 //
   297 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   298 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   299 //
   300 pid_t os::Linux::gettid() {
   301   int rslt = syscall(SYS_gettid);
   302   if (rslt == -1) {
   303      // old kernel, no NPTL support
   304      return getpid();
   305   } else {
   306      return (pid_t)rslt;
   307   }
   308 }
   310 // Most versions of linux have a bug where the number of processors are
   311 // determined by looking at the /proc file system.  In a chroot environment,
   312 // the system call returns 1.  This causes the VM to act as if it is
   313 // a single processor and elide locking (see is_MP() call).
   314 static bool unsafe_chroot_detected = false;
   315 static const char *unstable_chroot_error = "/proc file system not found.\n"
   316                      "Java may be unstable running multithreaded in a chroot "
   317                      "environment on Linux when /proc filesystem is not mounted.";
   319 void os::Linux::initialize_system_info() {
   320   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   321   if (processor_count() == 1) {
   322     pid_t pid = os::Linux::gettid();
   323     char fname[32];
   324     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   325     FILE *fp = fopen(fname, "r");
   326     if (fp == NULL) {
   327       unsafe_chroot_detected = true;
   328     } else {
   329       fclose(fp);
   330     }
   331   }
   332   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   333   assert(processor_count() > 0, "linux error");
   334 }
   336 void os::init_system_properties_values() {
   337   // The next steps are taken in the product version:
   338   //
   339   // Obtain the JAVA_HOME value from the location of libjvm.so.
   340   // This library should be located at:
   341   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   342   //
   343   // If "/jre/lib/" appears at the right place in the path, then we
   344   // assume libjvm.so is installed in a JDK and we use this path.
   345   //
   346   // Otherwise exit with message: "Could not create the Java virtual machine."
   347   //
   348   // The following extra steps are taken in the debugging version:
   349   //
   350   // If "/jre/lib/" does NOT appear at the right place in the path
   351   // instead of exit check for $JAVA_HOME environment variable.
   352   //
   353   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   354   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   355   // it looks like libjvm.so is installed there
   356   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   357   //
   358   // Otherwise exit.
   359   //
   360   // Important note: if the location of libjvm.so changes this
   361   // code needs to be changed accordingly.
   363 // See ld(1):
   364 //      The linker uses the following search paths to locate required
   365 //      shared libraries:
   366 //        1: ...
   367 //        ...
   368 //        7: The default directories, normally /lib and /usr/lib.
   369 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   370 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   371 #else
   372 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   373 #endif
   375 // Base path of extensions installed on the system.
   376 #define SYS_EXT_DIR     "/usr/java/packages"
   377 #define EXTENSIONS_DIR  "/lib/ext"
   378 #define ENDORSED_DIR    "/lib/endorsed"
   380   // Buffer that fits several sprintfs.
   381   // Note that the space for the colon and the trailing null are provided
   382   // by the nulls included by the sizeof operator.
   383   const size_t bufsize =
   384     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   385          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   386          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   387   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   389   // sysclasspath, java_home, dll_dir
   390   {
   391     char *pslash;
   392     os::jvm_path(buf, bufsize);
   394     // Found the full path to libjvm.so.
   395     // Now cut the path to <java_home>/jre if we can.
   396     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   397     pslash = strrchr(buf, '/');
   398     if (pslash != NULL) {
   399       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   400     }
   401     Arguments::set_dll_dir(buf);
   403     if (pslash != NULL) {
   404       pslash = strrchr(buf, '/');
   405       if (pslash != NULL) {
   406         *pslash = '\0';          // Get rid of /<arch>.
   407         pslash = strrchr(buf, '/');
   408         if (pslash != NULL) {
   409           *pslash = '\0';        // Get rid of /lib.
   410         }
   411       }
   412     }
   413     Arguments::set_java_home(buf);
   414     set_boot_path('/', ':');
   415   }
   417   // Where to look for native libraries.
   418   //
   419   // Note: Due to a legacy implementation, most of the library path
   420   // is set in the launcher. This was to accomodate linking restrictions
   421   // on legacy Linux implementations (which are no longer supported).
   422   // Eventually, all the library path setting will be done here.
   423   //
   424   // However, to prevent the proliferation of improperly built native
   425   // libraries, the new path component /usr/java/packages is added here.
   426   // Eventually, all the library path setting will be done here.
   427   {
   428     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   429     // should always exist (until the legacy problem cited above is
   430     // addressed).
   431     const char *v = ::getenv("LD_LIBRARY_PATH");
   432     const char *v_colon = ":";
   433     if (v == NULL) { v = ""; v_colon = ""; }
   434     // That's +1 for the colon and +1 for the trailing '\0'.
   435     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   436                                                      strlen(v) + 1 +
   437                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   438                                                      mtInternal);
   439     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   440     Arguments::set_library_path(ld_library_path);
   441     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   442   }
   444   // Extensions directories.
   445   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   446   Arguments::set_ext_dirs(buf);
   448   // Endorsed standards default directory.
   449   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   450   Arguments::set_endorsed_dirs(buf);
   452   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   454 #undef DEFAULT_LIBPATH
   455 #undef SYS_EXT_DIR
   456 #undef EXTENSIONS_DIR
   457 #undef ENDORSED_DIR
   458 }
   460 ////////////////////////////////////////////////////////////////////////////////
   461 // breakpoint support
   463 void os::breakpoint() {
   464   BREAKPOINT;
   465 }
   467 extern "C" void breakpoint() {
   468   // use debugger to set breakpoint here
   469 }
   471 ////////////////////////////////////////////////////////////////////////////////
   472 // signal support
   474 debug_only(static bool signal_sets_initialized = false);
   475 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   477 bool os::Linux::is_sig_ignored(int sig) {
   478       struct sigaction oact;
   479       sigaction(sig, (struct sigaction*)NULL, &oact);
   480       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   481                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   482       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   483            return true;
   484       else
   485            return false;
   486 }
   488 void os::Linux::signal_sets_init() {
   489   // Should also have an assertion stating we are still single-threaded.
   490   assert(!signal_sets_initialized, "Already initialized");
   491   // Fill in signals that are necessarily unblocked for all threads in
   492   // the VM. Currently, we unblock the following signals:
   493   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   494   //                         by -Xrs (=ReduceSignalUsage));
   495   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   496   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   497   // the dispositions or masks wrt these signals.
   498   // Programs embedding the VM that want to use the above signals for their
   499   // own purposes must, at this time, use the "-Xrs" option to prevent
   500   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   501   // (See bug 4345157, and other related bugs).
   502   // In reality, though, unblocking these signals is really a nop, since
   503   // these signals are not blocked by default.
   504   sigemptyset(&unblocked_sigs);
   505   sigemptyset(&allowdebug_blocked_sigs);
   506   sigaddset(&unblocked_sigs, SIGILL);
   507   sigaddset(&unblocked_sigs, SIGSEGV);
   508   sigaddset(&unblocked_sigs, SIGBUS);
   509   sigaddset(&unblocked_sigs, SIGFPE);
   510 #if defined(PPC64)
   511   sigaddset(&unblocked_sigs, SIGTRAP);
   512 #endif
   513   sigaddset(&unblocked_sigs, SR_signum);
   515   if (!ReduceSignalUsage) {
   516    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   517       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   518       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   519    }
   520    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   521       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   522       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   523    }
   524    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   525       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   526       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   527    }
   528   }
   529   // Fill in signals that are blocked by all but the VM thread.
   530   sigemptyset(&vm_sigs);
   531   if (!ReduceSignalUsage)
   532     sigaddset(&vm_sigs, BREAK_SIGNAL);
   533   debug_only(signal_sets_initialized = true);
   535 }
   537 // These are signals that are unblocked while a thread is running Java.
   538 // (For some reason, they get blocked by default.)
   539 sigset_t* os::Linux::unblocked_signals() {
   540   assert(signal_sets_initialized, "Not initialized");
   541   return &unblocked_sigs;
   542 }
   544 // These are the signals that are blocked while a (non-VM) thread is
   545 // running Java. Only the VM thread handles these signals.
   546 sigset_t* os::Linux::vm_signals() {
   547   assert(signal_sets_initialized, "Not initialized");
   548   return &vm_sigs;
   549 }
   551 // These are signals that are blocked during cond_wait to allow debugger in
   552 sigset_t* os::Linux::allowdebug_blocked_signals() {
   553   assert(signal_sets_initialized, "Not initialized");
   554   return &allowdebug_blocked_sigs;
   555 }
   557 void os::Linux::hotspot_sigmask(Thread* thread) {
   559   //Save caller's signal mask before setting VM signal mask
   560   sigset_t caller_sigmask;
   561   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   563   OSThread* osthread = thread->osthread();
   564   osthread->set_caller_sigmask(caller_sigmask);
   566   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   568   if (!ReduceSignalUsage) {
   569     if (thread->is_VM_thread()) {
   570       // Only the VM thread handles BREAK_SIGNAL ...
   571       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   572     } else {
   573       // ... all other threads block BREAK_SIGNAL
   574       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   575     }
   576   }
   577 }
   579 //////////////////////////////////////////////////////////////////////////////
   580 // detecting pthread library
   582 void os::Linux::libpthread_init() {
   583   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   584   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   585   // generic name for earlier versions.
   586   // Define macros here so we can build HotSpot on old systems.
   587 # ifndef _CS_GNU_LIBC_VERSION
   588 # define _CS_GNU_LIBC_VERSION 2
   589 # endif
   590 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   591 # define _CS_GNU_LIBPTHREAD_VERSION 3
   592 # endif
   594   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   595   if (n > 0) {
   596      char *str = (char *)malloc(n, mtInternal);
   597      confstr(_CS_GNU_LIBC_VERSION, str, n);
   598      os::Linux::set_glibc_version(str);
   599   } else {
   600      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   601      static char _gnu_libc_version[32];
   602      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   603               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   604      os::Linux::set_glibc_version(_gnu_libc_version);
   605   }
   607   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   608   if (n > 0) {
   609      char *str = (char *)malloc(n, mtInternal);
   610      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   611      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   612      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   613      // is the case. LinuxThreads has a hard limit on max number of threads.
   614      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   615      // On the other hand, NPTL does not have such a limit, sysconf()
   616      // will return -1 and errno is not changed. Check if it is really NPTL.
   617      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   618          strstr(str, "NPTL") &&
   619          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   620        free(str);
   621        os::Linux::set_libpthread_version("linuxthreads");
   622      } else {
   623        os::Linux::set_libpthread_version(str);
   624      }
   625   } else {
   626     // glibc before 2.3.2 only has LinuxThreads.
   627     os::Linux::set_libpthread_version("linuxthreads");
   628   }
   630   if (strstr(libpthread_version(), "NPTL")) {
   631      os::Linux::set_is_NPTL();
   632   } else {
   633      os::Linux::set_is_LinuxThreads();
   634   }
   636   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   637   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   638   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   639      os::Linux::set_is_floating_stack();
   640   }
   641 }
   643 /////////////////////////////////////////////////////////////////////////////
   644 // thread stack
   646 // Force Linux kernel to expand current thread stack. If "bottom" is close
   647 // to the stack guard, caller should block all signals.
   648 //
   649 // MAP_GROWSDOWN:
   650 //   A special mmap() flag that is used to implement thread stacks. It tells
   651 //   kernel that the memory region should extend downwards when needed. This
   652 //   allows early versions of LinuxThreads to only mmap the first few pages
   653 //   when creating a new thread. Linux kernel will automatically expand thread
   654 //   stack as needed (on page faults).
   655 //
   656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   658 //   region, it's hard to tell if the fault is due to a legitimate stack
   659 //   access or because of reading/writing non-exist memory (e.g. buffer
   660 //   overrun). As a rule, if the fault happens below current stack pointer,
   661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   662 //   application (see Linux kernel fault.c).
   663 //
   664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   665 //   stack overflow detection.
   666 //
   667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   668 //   not use this flag. However, the stack of initial thread is not created
   669 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   670 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   671 //   and then attach the thread to JVM.
   672 //
   673 // To get around the problem and allow stack banging on Linux, we need to
   674 // manually expand thread stack after receiving the SIGSEGV.
   675 //
   676 // There are two ways to expand thread stack to address "bottom", we used
   677 // both of them in JVM before 1.5:
   678 //   1. adjust stack pointer first so that it is below "bottom", and then
   679 //      touch "bottom"
   680 //   2. mmap() the page in question
   681 //
   682 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   683 // if current sp is already near the lower end of page 101, and we need to
   684 // call mmap() to map page 100, it is possible that part of the mmap() frame
   685 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   686 // That will destroy the mmap() frame and cause VM to crash.
   687 //
   688 // The following code works by adjusting sp first, then accessing the "bottom"
   689 // page to force a page fault. Linux kernel will then automatically expand the
   690 // stack mapping.
   691 //
   692 // _expand_stack_to() assumes its frame size is less than page size, which
   693 // should always be true if the function is not inlined.
   695 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   696 #define NOINLINE
   697 #else
   698 #define NOINLINE __attribute__ ((noinline))
   699 #endif
   701 static void _expand_stack_to(address bottom) NOINLINE;
   703 static void _expand_stack_to(address bottom) {
   704   address sp;
   705   size_t size;
   706   volatile char *p;
   708   // Adjust bottom to point to the largest address within the same page, it
   709   // gives us a one-page buffer if alloca() allocates slightly more memory.
   710   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   711   bottom += os::Linux::page_size() - 1;
   713   // sp might be slightly above current stack pointer; if that's the case, we
   714   // will alloca() a little more space than necessary, which is OK. Don't use
   715   // os::current_stack_pointer(), as its result can be slightly below current
   716   // stack pointer, causing us to not alloca enough to reach "bottom".
   717   sp = (address)&sp;
   719   if (sp > bottom) {
   720     size = sp - bottom;
   721     p = (volatile char *)alloca(size);
   722     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   723     p[0] = '\0';
   724   }
   725 }
   727 void os::Linux::expand_stack_to(address bottom) {
   728   _expand_stack_to(bottom);
   729 }
   731 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   732   assert(t!=NULL, "just checking");
   733   assert(t->osthread()->expanding_stack(), "expand should be set");
   734   assert(t->stack_base() != NULL, "stack_base was not initialized");
   736   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   737     sigset_t mask_all, old_sigset;
   738     sigfillset(&mask_all);
   739     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   740     _expand_stack_to(addr);
   741     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   742     return true;
   743   }
   744   return false;
   745 }
   747 //////////////////////////////////////////////////////////////////////////////
   748 // create new thread
   750 static address highest_vm_reserved_address();
   752 // check if it's safe to start a new thread
   753 static bool _thread_safety_check(Thread* thread) {
   754   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   755     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   756     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   757     //   allocated (MAP_FIXED) from high address space. Every thread stack
   758     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   759     //   it to other values if they rebuild LinuxThreads).
   760     //
   761     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   762     // the memory region has already been mmap'ed. That means if we have too
   763     // many threads and/or very large heap, eventually thread stack will
   764     // collide with heap.
   765     //
   766     // Here we try to prevent heap/stack collision by comparing current
   767     // stack bottom with the highest address that has been mmap'ed by JVM
   768     // plus a safety margin for memory maps created by native code.
   769     //
   770     // This feature can be disabled by setting ThreadSafetyMargin to 0
   771     //
   772     if (ThreadSafetyMargin > 0) {
   773       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   775       // not safe if our stack extends below the safety margin
   776       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   777     } else {
   778       return true;
   779     }
   780   } else {
   781     // Floating stack LinuxThreads or NPTL:
   782     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   783     //   there's not enough space left, pthread_create() will fail. If we come
   784     //   here, that means enough space has been reserved for stack.
   785     return true;
   786   }
   787 }
   789 // Thread start routine for all newly created threads
   790 static void *java_start(Thread *thread) {
   791   // Try to randomize the cache line index of hot stack frames.
   792   // This helps when threads of the same stack traces evict each other's
   793   // cache lines. The threads can be either from the same JVM instance, or
   794   // from different JVM instances. The benefit is especially true for
   795   // processors with hyperthreading technology.
   796   static int counter = 0;
   797   int pid = os::current_process_id();
   798   alloca(((pid ^ counter++) & 7) * 128);
   800   ThreadLocalStorage::set_thread(thread);
   802   OSThread* osthread = thread->osthread();
   803   Monitor* sync = osthread->startThread_lock();
   805   // non floating stack LinuxThreads needs extra check, see above
   806   if (!_thread_safety_check(thread)) {
   807     // notify parent thread
   808     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   809     osthread->set_state(ZOMBIE);
   810     sync->notify_all();
   811     return NULL;
   812   }
   814   // thread_id is kernel thread id (similar to Solaris LWP id)
   815   osthread->set_thread_id(os::Linux::gettid());
   817   if (UseNUMA) {
   818     int lgrp_id = os::numa_get_group_id();
   819     if (lgrp_id != -1) {
   820       thread->set_lgrp_id(lgrp_id);
   821     }
   822   }
   823   // initialize signal mask for this thread
   824   os::Linux::hotspot_sigmask(thread);
   826   // initialize floating point control register
   827   os::Linux::init_thread_fpu_state();
   829   // handshaking with parent thread
   830   {
   831     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   833     // notify parent thread
   834     osthread->set_state(INITIALIZED);
   835     sync->notify_all();
   837     // wait until os::start_thread()
   838     while (osthread->get_state() == INITIALIZED) {
   839       sync->wait(Mutex::_no_safepoint_check_flag);
   840     }
   841   }
   843   // call one more level start routine
   844   thread->run();
   846   return 0;
   847 }
   849 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   850   assert(thread->osthread() == NULL, "caller responsible");
   852   // Allocate the OSThread object
   853   OSThread* osthread = new OSThread(NULL, NULL);
   854   if (osthread == NULL) {
   855     return false;
   856   }
   858   // set the correct thread state
   859   osthread->set_thread_type(thr_type);
   861   // Initial state is ALLOCATED but not INITIALIZED
   862   osthread->set_state(ALLOCATED);
   864   thread->set_osthread(osthread);
   866   // init thread attributes
   867   pthread_attr_t attr;
   868   pthread_attr_init(&attr);
   869   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   871   // stack size
   872   if (os::Linux::supports_variable_stack_size()) {
   873     // calculate stack size if it's not specified by caller
   874     if (stack_size == 0) {
   875       stack_size = os::Linux::default_stack_size(thr_type);
   877       switch (thr_type) {
   878       case os::java_thread:
   879         // Java threads use ThreadStackSize which default value can be
   880         // changed with the flag -Xss
   881         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   882         stack_size = JavaThread::stack_size_at_create();
   883         break;
   884       case os::compiler_thread:
   885         if (CompilerThreadStackSize > 0) {
   886           stack_size = (size_t)(CompilerThreadStackSize * K);
   887           break;
   888         } // else fall through:
   889           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   890       case os::vm_thread:
   891       case os::pgc_thread:
   892       case os::cgc_thread:
   893       case os::watcher_thread:
   894         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   895         break;
   896       }
   897     }
   899     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   900     pthread_attr_setstacksize(&attr, stack_size);
   901   } else {
   902     // let pthread_create() pick the default value.
   903   }
   905   // glibc guard page
   906   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   908   ThreadState state;
   910   {
   911     // Serialize thread creation if we are running with fixed stack LinuxThreads
   912     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   913     if (lock) {
   914       os::Linux::createThread_lock()->lock_without_safepoint_check();
   915     }
   917     pthread_t tid;
   918     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   920     pthread_attr_destroy(&attr);
   922     if (ret != 0) {
   923       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   924         perror("pthread_create()");
   925       }
   926       // Need to clean up stuff we've allocated so far
   927       thread->set_osthread(NULL);
   928       delete osthread;
   929       if (lock) os::Linux::createThread_lock()->unlock();
   930       return false;
   931     }
   933     // Store pthread info into the OSThread
   934     osthread->set_pthread_id(tid);
   936     // Wait until child thread is either initialized or aborted
   937     {
   938       Monitor* sync_with_child = osthread->startThread_lock();
   939       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   940       while ((state = osthread->get_state()) == ALLOCATED) {
   941         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   942       }
   943     }
   945     if (lock) {
   946       os::Linux::createThread_lock()->unlock();
   947     }
   948   }
   950   // Aborted due to thread limit being reached
   951   if (state == ZOMBIE) {
   952       thread->set_osthread(NULL);
   953       delete osthread;
   954       return false;
   955   }
   957   // The thread is returned suspended (in state INITIALIZED),
   958   // and is started higher up in the call chain
   959   assert(state == INITIALIZED, "race condition");
   960   return true;
   961 }
   963 /////////////////////////////////////////////////////////////////////////////
   964 // attach existing thread
   966 // bootstrap the main thread
   967 bool os::create_main_thread(JavaThread* thread) {
   968   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   969   return create_attached_thread(thread);
   970 }
   972 bool os::create_attached_thread(JavaThread* thread) {
   973 #ifdef ASSERT
   974     thread->verify_not_published();
   975 #endif
   977   // Allocate the OSThread object
   978   OSThread* osthread = new OSThread(NULL, NULL);
   980   if (osthread == NULL) {
   981     return false;
   982   }
   984   // Store pthread info into the OSThread
   985   osthread->set_thread_id(os::Linux::gettid());
   986   osthread->set_pthread_id(::pthread_self());
   988   // initialize floating point control register
   989   os::Linux::init_thread_fpu_state();
   991   // Initial thread state is RUNNABLE
   992   osthread->set_state(RUNNABLE);
   994   thread->set_osthread(osthread);
   996   if (UseNUMA) {
   997     int lgrp_id = os::numa_get_group_id();
   998     if (lgrp_id != -1) {
   999       thread->set_lgrp_id(lgrp_id);
  1003   if (os::is_primordial_thread()) {
  1004     // If current thread is primordial thread, its stack is mapped on demand,
  1005     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1006     // the entire stack region to avoid SEGV in stack banging.
  1007     // It is also useful to get around the heap-stack-gap problem on SuSE
  1008     // kernel (see 4821821 for details). We first expand stack to the top
  1009     // of yellow zone, then enable stack yellow zone (order is significant,
  1010     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1011     // is no gap between the last two virtual memory regions.
  1013     JavaThread *jt = (JavaThread *)thread;
  1014     address addr = jt->stack_yellow_zone_base();
  1015     assert(addr != NULL, "initialization problem?");
  1016     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1018     osthread->set_expanding_stack();
  1019     os::Linux::manually_expand_stack(jt, addr);
  1020     osthread->clear_expanding_stack();
  1023   // initialize signal mask for this thread
  1024   // and save the caller's signal mask
  1025   os::Linux::hotspot_sigmask(thread);
  1027   return true;
  1030 void os::pd_start_thread(Thread* thread) {
  1031   OSThread * osthread = thread->osthread();
  1032   assert(osthread->get_state() != INITIALIZED, "just checking");
  1033   Monitor* sync_with_child = osthread->startThread_lock();
  1034   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1035   sync_with_child->notify();
  1037 #if defined MIPS && !defined ZERO
  1038   //To be accessed in NativeGeneralJump::patch_verified_entry()
  1039   if (thread->is_Java_thread())
  1041     ((JavaThread*)thread)->set_handle_wrong_method_stub(SharedRuntime::get_handle_wrong_method_stub());
  1043 #endif
  1046 // Free Linux resources related to the OSThread
  1047 void os::free_thread(OSThread* osthread) {
  1048   assert(osthread != NULL, "osthread not set");
  1050   if (Thread::current()->osthread() == osthread) {
  1051     // Restore caller's signal mask
  1052     sigset_t sigmask = osthread->caller_sigmask();
  1053     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1056   delete osthread;
  1059 //////////////////////////////////////////////////////////////////////////////
  1060 // thread local storage
  1062 // Restore the thread pointer if the destructor is called. This is in case
  1063 // someone from JNI code sets up a destructor with pthread_key_create to run
  1064 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1065 // will hang or crash. When detachCurrentThread is called the key will be set
  1066 // to null and we will not be called again. If detachCurrentThread is never
  1067 // called we could loop forever depending on the pthread implementation.
  1068 static void restore_thread_pointer(void* p) {
  1069   Thread* thread = (Thread*) p;
  1070   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1073 int os::allocate_thread_local_storage() {
  1074   pthread_key_t key;
  1075   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1076   assert(rslt == 0, "cannot allocate thread local storage");
  1077   return (int)key;
  1080 // Note: This is currently not used by VM, as we don't destroy TLS key
  1081 // on VM exit.
  1082 void os::free_thread_local_storage(int index) {
  1083   int rslt = pthread_key_delete((pthread_key_t)index);
  1084   assert(rslt == 0, "invalid index");
  1087 void os::thread_local_storage_at_put(int index, void* value) {
  1088   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1089   assert(rslt == 0, "pthread_setspecific failed");
  1092 extern "C" Thread* get_thread() {
  1093   return ThreadLocalStorage::thread();
  1096 //////////////////////////////////////////////////////////////////////////////
  1097 // primordial thread
  1099 // Check if current thread is the primordial thread, similar to Solaris thr_main.
  1100 bool os::is_primordial_thread(void) {
  1101   char dummy;
  1102   // If called before init complete, thread stack bottom will be null.
  1103   // Can be called if fatal error occurs before initialization.
  1104   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
  1105   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
  1106          os::Linux::initial_thread_stack_size()   != 0,
  1107          "os::init did not locate primordial thread's stack region");
  1108   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
  1109       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
  1110                         os::Linux::initial_thread_stack_size()) {
  1111        return true;
  1112   } else {
  1113        return false;
  1117 // Find the virtual memory area that contains addr
  1118 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1119   FILE *fp = fopen("/proc/self/maps", "r");
  1120   if (fp) {
  1121     address low, high;
  1122     while (!feof(fp)) {
  1123       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1124         if (low <= addr && addr < high) {
  1125            if (vma_low)  *vma_low  = low;
  1126            if (vma_high) *vma_high = high;
  1127            fclose (fp);
  1128            return true;
  1131       for (;;) {
  1132         int ch = fgetc(fp);
  1133         if (ch == EOF || ch == (int)'\n') break;
  1136     fclose(fp);
  1138   return false;
  1141 // Locate primordial thread stack. This special handling of primordial thread stack
  1142 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1143 // bogus value for the primordial process thread. While the launcher has created
  1144 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1145 // JNI invocation API from a primordial thread.
  1146 void os::Linux::capture_initial_stack(size_t max_size) {
  1148   // max_size is either 0 (which means accept OS default for thread stacks) or
  1149   // a user-specified value known to be at least the minimum needed. If we
  1150   // are actually on the primordial thread we can make it appear that we have a
  1151   // smaller max_size stack by inserting the guard pages at that location. But we
  1152   // cannot do anything to emulate a larger stack than what has been provided by
  1153   // the OS or threading library. In fact if we try to use a stack greater than
  1154   // what is set by rlimit then we will crash the hosting process.
  1156   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1157   // If this is "unlimited" then it will be a huge value.
  1158   struct rlimit rlim;
  1159   getrlimit(RLIMIT_STACK, &rlim);
  1160   size_t stack_size = rlim.rlim_cur;
  1162   // 6308388: a bug in ld.so will relocate its own .data section to the
  1163   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1164   //   so we won't install guard page on ld.so's data section.
  1165   //   But ensure we don't underflow the stack size - allow 1 page spare
  1166   if (stack_size >= (size_t)(3 * page_size())) {
  1167     stack_size -= 2 * page_size();
  1170   // Try to figure out where the stack base (top) is. This is harder.
  1171   //
  1172   // When an application is started, glibc saves the initial stack pointer in
  1173   // a global variable "__libc_stack_end", which is then used by system
  1174   // libraries. __libc_stack_end should be pretty close to stack top. The
  1175   // variable is available since the very early days. However, because it is
  1176   // a private interface, it could disappear in the future.
  1177   //
  1178   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1179   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1180   // stack top. Note that /proc may not exist if VM is running as a chroot
  1181   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1182   // /proc/<pid>/stat could change in the future (though unlikely).
  1183   //
  1184   // We try __libc_stack_end first. If that doesn't work, look for
  1185   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1186   // as a hint, which should work well in most cases.
  1188   uintptr_t stack_start;
  1190   // try __libc_stack_end first
  1191   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1192   if (p && *p) {
  1193     stack_start = *p;
  1194   } else {
  1195     // see if we can get the start_stack field from /proc/self/stat
  1196     FILE *fp;
  1197     int pid;
  1198     char state;
  1199     int ppid;
  1200     int pgrp;
  1201     int session;
  1202     int nr;
  1203     int tpgrp;
  1204     unsigned long flags;
  1205     unsigned long minflt;
  1206     unsigned long cminflt;
  1207     unsigned long majflt;
  1208     unsigned long cmajflt;
  1209     unsigned long utime;
  1210     unsigned long stime;
  1211     long cutime;
  1212     long cstime;
  1213     long prio;
  1214     long nice;
  1215     long junk;
  1216     long it_real;
  1217     uintptr_t start;
  1218     uintptr_t vsize;
  1219     intptr_t rss;
  1220     uintptr_t rsslim;
  1221     uintptr_t scodes;
  1222     uintptr_t ecode;
  1223     int i;
  1225     // Figure what the primordial thread stack base is. Code is inspired
  1226     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1227     // followed by command name surrounded by parentheses, state, etc.
  1228     char stat[2048];
  1229     int statlen;
  1231     fp = fopen("/proc/self/stat", "r");
  1232     if (fp) {
  1233       statlen = fread(stat, 1, 2047, fp);
  1234       stat[statlen] = '\0';
  1235       fclose(fp);
  1237       // Skip pid and the command string. Note that we could be dealing with
  1238       // weird command names, e.g. user could decide to rename java launcher
  1239       // to "java 1.4.2 :)", then the stat file would look like
  1240       //                1234 (java 1.4.2 :)) R ... ...
  1241       // We don't really need to know the command string, just find the last
  1242       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1243       char * s = strrchr(stat, ')');
  1245       i = 0;
  1246       if (s) {
  1247         // Skip blank chars
  1248         do s++; while (isspace(*s));
  1250 #define _UFM UINTX_FORMAT
  1251 #define _DFM INTX_FORMAT
  1253         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1254         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1255         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1256              &state,          /* 3  %c  */
  1257              &ppid,           /* 4  %d  */
  1258              &pgrp,           /* 5  %d  */
  1259              &session,        /* 6  %d  */
  1260              &nr,             /* 7  %d  */
  1261              &tpgrp,          /* 8  %d  */
  1262              &flags,          /* 9  %lu  */
  1263              &minflt,         /* 10 %lu  */
  1264              &cminflt,        /* 11 %lu  */
  1265              &majflt,         /* 12 %lu  */
  1266              &cmajflt,        /* 13 %lu  */
  1267              &utime,          /* 14 %lu  */
  1268              &stime,          /* 15 %lu  */
  1269              &cutime,         /* 16 %ld  */
  1270              &cstime,         /* 17 %ld  */
  1271              &prio,           /* 18 %ld  */
  1272              &nice,           /* 19 %ld  */
  1273              &junk,           /* 20 %ld  */
  1274              &it_real,        /* 21 %ld  */
  1275              &start,          /* 22 UINTX_FORMAT */
  1276              &vsize,          /* 23 UINTX_FORMAT */
  1277              &rss,            /* 24 INTX_FORMAT  */
  1278              &rsslim,         /* 25 UINTX_FORMAT */
  1279              &scodes,         /* 26 UINTX_FORMAT */
  1280              &ecode,          /* 27 UINTX_FORMAT */
  1281              &stack_start);   /* 28 UINTX_FORMAT */
  1284 #undef _UFM
  1285 #undef _DFM
  1287       if (i != 28 - 2) {
  1288          assert(false, "Bad conversion from /proc/self/stat");
  1289          // product mode - assume we are the primordial thread, good luck in the
  1290          // embedded case.
  1291          warning("Can't detect primordial thread stack location - bad conversion");
  1292          stack_start = (uintptr_t) &rlim;
  1294     } else {
  1295       // For some reason we can't open /proc/self/stat (for example, running on
  1296       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1297       // most cases, so don't abort:
  1298       warning("Can't detect primordial thread stack location - no /proc/self/stat");
  1299       stack_start = (uintptr_t) &rlim;
  1303   // Now we have a pointer (stack_start) very close to the stack top, the
  1304   // next thing to do is to figure out the exact location of stack top. We
  1305   // can find out the virtual memory area that contains stack_start by
  1306   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1307   // and its upper limit is the real stack top. (again, this would fail if
  1308   // running inside chroot, because /proc may not exist.)
  1310   uintptr_t stack_top;
  1311   address low, high;
  1312   if (find_vma((address)stack_start, &low, &high)) {
  1313     // success, "high" is the true stack top. (ignore "low", because initial
  1314     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1315     stack_top = (uintptr_t)high;
  1316   } else {
  1317     // failed, likely because /proc/self/maps does not exist
  1318     warning("Can't detect primordial thread stack location - find_vma failed");
  1319     // best effort: stack_start is normally within a few pages below the real
  1320     // stack top, use it as stack top, and reduce stack size so we won't put
  1321     // guard page outside stack.
  1322     stack_top = stack_start;
  1323     stack_size -= 16 * page_size();
  1326   // stack_top could be partially down the page so align it
  1327   stack_top = align_size_up(stack_top, page_size());
  1329   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1330   if (max_size > 0) {
  1331     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1332   } else {
  1333     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1334     // clamp it at 8MB as we do on Solaris
  1335     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1338   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1339   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1340   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1343 ////////////////////////////////////////////////////////////////////////////////
  1344 // time support
  1346 // Time since start-up in seconds to a fine granularity.
  1347 // Used by VMSelfDestructTimer and the MemProfiler.
  1348 double os::elapsedTime() {
  1350   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1353 jlong os::elapsed_counter() {
  1354   return javaTimeNanos() - initial_time_count;
  1357 jlong os::elapsed_frequency() {
  1358   return NANOSECS_PER_SEC; // nanosecond resolution
  1361 bool os::supports_vtime() { return true; }
  1362 bool os::enable_vtime()   { return false; }
  1363 bool os::vtime_enabled()  { return false; }
  1365 double os::elapsedVTime() {
  1366   struct rusage usage;
  1367   int retval = getrusage(RUSAGE_THREAD, &usage);
  1368   if (retval == 0) {
  1369     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1370   } else {
  1371     // better than nothing, but not much
  1372     return elapsedTime();
  1376 jlong os::javaTimeMillis() {
  1377   timeval time;
  1378   int status = gettimeofday(&time, NULL);
  1379   assert(status != -1, "linux error");
  1380   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1383 #ifndef CLOCK_MONOTONIC
  1384 #define CLOCK_MONOTONIC (1)
  1385 #endif
  1387 void os::Linux::clock_init() {
  1388   // we do dlopen's in this particular order due to bug in linux
  1389   // dynamical loader (see 6348968) leading to crash on exit
  1390   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1391   if (handle == NULL) {
  1392     handle = dlopen("librt.so", RTLD_LAZY);
  1395   if (handle) {
  1396     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1397            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1398     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1399            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1400     if (clock_getres_func && clock_gettime_func) {
  1401       // See if monotonic clock is supported by the kernel. Note that some
  1402       // early implementations simply return kernel jiffies (updated every
  1403       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1404       // for nano time (though the monotonic property is still nice to have).
  1405       // It's fixed in newer kernels, however clock_getres() still returns
  1406       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1407       // resolution for now. Hopefully as people move to new kernels, this
  1408       // won't be a problem.
  1409       struct timespec res;
  1410       struct timespec tp;
  1411       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1412           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1413         // yes, monotonic clock is supported
  1414         _clock_gettime = clock_gettime_func;
  1415         return;
  1416       } else {
  1417         // close librt if there is no monotonic clock
  1418         dlclose(handle);
  1422   warning("No monotonic clock was available - timed services may " \
  1423           "be adversely affected if the time-of-day clock changes");
  1426 #ifndef SYS_clock_getres
  1428 #if defined(IA32) || defined(AMD64)
  1429 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1430 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1431 #else
  1432 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1433 #define sys_clock_getres(x,y)  -1
  1434 #endif
  1436 #else
  1437 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1438 #endif
  1440 void os::Linux::fast_thread_clock_init() {
  1441   if (!UseLinuxPosixThreadCPUClocks) {
  1442     return;
  1444   clockid_t clockid;
  1445   struct timespec tp;
  1446   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1447       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1449   // Switch to using fast clocks for thread cpu time if
  1450   // the sys_clock_getres() returns 0 error code.
  1451   // Note, that some kernels may support the current thread
  1452   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1453   // returned by the pthread_getcpuclockid().
  1454   // If the fast Posix clocks are supported then the sys_clock_getres()
  1455   // must return at least tp.tv_sec == 0 which means a resolution
  1456   // better than 1 sec. This is extra check for reliability.
  1458   if(pthread_getcpuclockid_func &&
  1459      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1460      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1462     _supports_fast_thread_cpu_time = true;
  1463     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1467 jlong os::javaTimeNanos() {
  1468   if (Linux::supports_monotonic_clock()) {
  1469     struct timespec tp;
  1470     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1471     assert(status == 0, "gettime error");
  1472     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1473     return result;
  1474   } else {
  1475     timeval time;
  1476     int status = gettimeofday(&time, NULL);
  1477     assert(status != -1, "linux error");
  1478     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1479     return 1000 * usecs;
  1483 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1484   if (Linux::supports_monotonic_clock()) {
  1485     info_ptr->max_value = ALL_64_BITS;
  1487     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1488     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1489     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1490   } else {
  1491     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1492     info_ptr->max_value = ALL_64_BITS;
  1494     // gettimeofday is a real time clock so it skips
  1495     info_ptr->may_skip_backward = true;
  1496     info_ptr->may_skip_forward = true;
  1499   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1502 // Return the real, user, and system times in seconds from an
  1503 // arbitrary fixed point in the past.
  1504 bool os::getTimesSecs(double* process_real_time,
  1505                       double* process_user_time,
  1506                       double* process_system_time) {
  1507   struct tms ticks;
  1508   clock_t real_ticks = times(&ticks);
  1510   if (real_ticks == (clock_t) (-1)) {
  1511     return false;
  1512   } else {
  1513     double ticks_per_second = (double) clock_tics_per_sec;
  1514     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1515     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1516     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1518     return true;
  1523 char * os::local_time_string(char *buf, size_t buflen) {
  1524   struct tm t;
  1525   time_t long_time;
  1526   time(&long_time);
  1527   localtime_r(&long_time, &t);
  1528   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1529                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1530                t.tm_hour, t.tm_min, t.tm_sec);
  1531   return buf;
  1534 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1535   return localtime_r(clock, res);
  1538 ////////////////////////////////////////////////////////////////////////////////
  1539 // runtime exit support
  1541 // Note: os::shutdown() might be called very early during initialization, or
  1542 // called from signal handler. Before adding something to os::shutdown(), make
  1543 // sure it is async-safe and can handle partially initialized VM.
  1544 void os::shutdown() {
  1546   // allow PerfMemory to attempt cleanup of any persistent resources
  1547   perfMemory_exit();
  1549   // needs to remove object in file system
  1550   AttachListener::abort();
  1552   // flush buffered output, finish log files
  1553   ostream_abort();
  1555   // Check for abort hook
  1556   abort_hook_t abort_hook = Arguments::abort_hook();
  1557   if (abort_hook != NULL) {
  1558     abort_hook();
  1563 // Note: os::abort() might be called very early during initialization, or
  1564 // called from signal handler. Before adding something to os::abort(), make
  1565 // sure it is async-safe and can handle partially initialized VM.
  1566 void os::abort(bool dump_core) {
  1567   os::shutdown();
  1568   if (dump_core) {
  1569 #ifndef PRODUCT
  1570     fdStream out(defaultStream::output_fd());
  1571     out.print_raw("Current thread is ");
  1572     char buf[16];
  1573     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1574     out.print_raw_cr(buf);
  1575     out.print_raw_cr("Dumping core ...");
  1576 #endif
  1577     ::abort(); // dump core
  1580   ::exit(1);
  1583 // Die immediately, no exit hook, no abort hook, no cleanup.
  1584 void os::die() {
  1585   // _exit() on LinuxThreads only kills current thread
  1586   ::abort();
  1590 // This method is a copy of JDK's sysGetLastErrorString
  1591 // from src/solaris/hpi/src/system_md.c
  1593 size_t os::lasterror(char *buf, size_t len) {
  1595   if (errno == 0)  return 0;
  1597   const char *s = ::strerror(errno);
  1598   size_t n = ::strlen(s);
  1599   if (n >= len) {
  1600     n = len - 1;
  1602   ::strncpy(buf, s, n);
  1603   buf[n] = '\0';
  1604   return n;
  1607 intx os::current_thread_id() { return (intx)pthread_self(); }
  1608 int os::current_process_id() {
  1610   // Under the old linux thread library, linux gives each thread
  1611   // its own process id. Because of this each thread will return
  1612   // a different pid if this method were to return the result
  1613   // of getpid(2). Linux provides no api that returns the pid
  1614   // of the launcher thread for the vm. This implementation
  1615   // returns a unique pid, the pid of the launcher thread
  1616   // that starts the vm 'process'.
  1618   // Under the NPTL, getpid() returns the same pid as the
  1619   // launcher thread rather than a unique pid per thread.
  1620   // Use gettid() if you want the old pre NPTL behaviour.
  1622   // if you are looking for the result of a call to getpid() that
  1623   // returns a unique pid for the calling thread, then look at the
  1624   // OSThread::thread_id() method in osThread_linux.hpp file
  1626   return (int)(_initial_pid ? _initial_pid : getpid());
  1629 // DLL functions
  1631 const char* os::dll_file_extension() { return ".so"; }
  1633 // This must be hard coded because it's the system's temporary
  1634 // directory not the java application's temp directory, ala java.io.tmpdir.
  1635 const char* os::get_temp_directory() { return "/tmp"; }
  1637 static bool file_exists(const char* filename) {
  1638   struct stat statbuf;
  1639   if (filename == NULL || strlen(filename) == 0) {
  1640     return false;
  1642   return os::stat(filename, &statbuf) == 0;
  1645 bool os::dll_build_name(char* buffer, size_t buflen,
  1646                         const char* pname, const char* fname) {
  1647   bool retval = false;
  1648   // Copied from libhpi
  1649   const size_t pnamelen = pname ? strlen(pname) : 0;
  1651   // Return error on buffer overflow.
  1652   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1653     return retval;
  1656   if (pnamelen == 0) {
  1657     snprintf(buffer, buflen, "lib%s.so", fname);
  1658     retval = true;
  1659   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1660     int n;
  1661     char** pelements = split_path(pname, &n);
  1662     if (pelements == NULL) {
  1663       return false;
  1665     for (int i = 0 ; i < n ; i++) {
  1666       // Really shouldn't be NULL, but check can't hurt
  1667       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1668         continue; // skip the empty path values
  1670       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1671       if (file_exists(buffer)) {
  1672         retval = true;
  1673         break;
  1676     // release the storage
  1677     for (int i = 0 ; i < n ; i++) {
  1678       if (pelements[i] != NULL) {
  1679         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1682     if (pelements != NULL) {
  1683       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1685   } else {
  1686     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1687     retval = true;
  1689   return retval;
  1692 // check if addr is inside libjvm.so
  1693 bool os::address_is_in_vm(address addr) {
  1694   static address libjvm_base_addr;
  1695   Dl_info dlinfo;
  1697   if (libjvm_base_addr == NULL) {
  1698     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1699       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1701     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1704   if (dladdr((void *)addr, &dlinfo) != 0) {
  1705     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1708   return false;
  1711 bool os::dll_address_to_function_name(address addr, char *buf,
  1712                                       int buflen, int *offset) {
  1713   // buf is not optional, but offset is optional
  1714   assert(buf != NULL, "sanity check");
  1716   Dl_info dlinfo;
  1718   if (dladdr((void*)addr, &dlinfo) != 0) {
  1719     // see if we have a matching symbol
  1720     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1721       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1722         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1724       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1725       return true;
  1727     // no matching symbol so try for just file info
  1728     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1729       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1730                           buf, buflen, offset, dlinfo.dli_fname)) {
  1731         return true;
  1736   buf[0] = '\0';
  1737   if (offset != NULL) *offset = -1;
  1738   return false;
  1741 struct _address_to_library_name {
  1742   address addr;          // input : memory address
  1743   size_t  buflen;        //         size of fname
  1744   char*   fname;         // output: library name
  1745   address base;          //         library base addr
  1746 };
  1748 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1749                                             size_t size, void *data) {
  1750   int i;
  1751   bool found = false;
  1752   address libbase = NULL;
  1753   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1755   // iterate through all loadable segments
  1756   for (i = 0; i < info->dlpi_phnum; i++) {
  1757     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1758     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1759       // base address of a library is the lowest address of its loaded
  1760       // segments.
  1761       if (libbase == NULL || libbase > segbase) {
  1762         libbase = segbase;
  1764       // see if 'addr' is within current segment
  1765       if (segbase <= d->addr &&
  1766           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1767         found = true;
  1772   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1773   // so dll_address_to_library_name() can fall through to use dladdr() which
  1774   // can figure out executable name from argv[0].
  1775   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1776     d->base = libbase;
  1777     if (d->fname) {
  1778       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1780     return 1;
  1782   return 0;
  1785 bool os::dll_address_to_library_name(address addr, char* buf,
  1786                                      int buflen, int* offset) {
  1787   // buf is not optional, but offset is optional
  1788   assert(buf != NULL, "sanity check");
  1790   Dl_info dlinfo;
  1791   struct _address_to_library_name data;
  1793   // There is a bug in old glibc dladdr() implementation that it could resolve
  1794   // to wrong library name if the .so file has a base address != NULL. Here
  1795   // we iterate through the program headers of all loaded libraries to find
  1796   // out which library 'addr' really belongs to. This workaround can be
  1797   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1798   data.addr = addr;
  1799   data.fname = buf;
  1800   data.buflen = buflen;
  1801   data.base = NULL;
  1802   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1804   if (rslt) {
  1805      // buf already contains library name
  1806      if (offset) *offset = addr - data.base;
  1807      return true;
  1809   if (dladdr((void*)addr, &dlinfo) != 0) {
  1810     if (dlinfo.dli_fname != NULL) {
  1811       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1813     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1814       *offset = addr - (address)dlinfo.dli_fbase;
  1816     return true;
  1819   buf[0] = '\0';
  1820   if (offset) *offset = -1;
  1821   return false;
  1824   // Loads .dll/.so and
  1825   // in case of error it checks if .dll/.so was built for the
  1826   // same architecture as Hotspot is running on
  1829 // Remember the stack's state. The Linux dynamic linker will change
  1830 // the stack to 'executable' at most once, so we must safepoint only once.
  1831 bool os::Linux::_stack_is_executable = false;
  1833 // VM operation that loads a library.  This is necessary if stack protection
  1834 // of the Java stacks can be lost during loading the library.  If we
  1835 // do not stop the Java threads, they can stack overflow before the stacks
  1836 // are protected again.
  1837 class VM_LinuxDllLoad: public VM_Operation {
  1838  private:
  1839   const char *_filename;
  1840   char *_ebuf;
  1841   int _ebuflen;
  1842   void *_lib;
  1843  public:
  1844   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1845     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1846   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1847   void doit() {
  1848     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1849     os::Linux::_stack_is_executable = true;
  1851   void* loaded_library() { return _lib; }
  1852 };
  1854 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1856   void * result = NULL;
  1857   bool load_attempted = false;
  1859   // Check whether the library to load might change execution rights
  1860   // of the stack. If they are changed, the protection of the stack
  1861   // guard pages will be lost. We need a safepoint to fix this.
  1862   //
  1863   // See Linux man page execstack(8) for more info.
  1864   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1865     ElfFile ef(filename);
  1866     if (!ef.specifies_noexecstack()) {
  1867       if (!is_init_completed()) {
  1868         os::Linux::_stack_is_executable = true;
  1869         // This is OK - No Java threads have been created yet, and hence no
  1870         // stack guard pages to fix.
  1871         //
  1872         // This should happen only when you are building JDK7 using a very
  1873         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1874         //
  1875         // Dynamic loader will make all stacks executable after
  1876         // this function returns, and will not do that again.
  1877         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1878       } else {
  1879         warning("You have loaded library %s which might have disabled stack guard. "
  1880                 "The VM will try to fix the stack guard now.\n"
  1881                 "It's highly recommended that you fix the library with "
  1882                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1883                 filename);
  1885         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1886         JavaThread *jt = JavaThread::current();
  1887         if (jt->thread_state() != _thread_in_native) {
  1888           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1889           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1890           warning("Unable to fix stack guard. Giving up.");
  1891         } else {
  1892           if (!LoadExecStackDllInVMThread) {
  1893             // This is for the case where the DLL has an static
  1894             // constructor function that executes JNI code. We cannot
  1895             // load such DLLs in the VMThread.
  1896             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1899           ThreadInVMfromNative tiv(jt);
  1900           debug_only(VMNativeEntryWrapper vew;)
  1902           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1903           VMThread::execute(&op);
  1904           if (LoadExecStackDllInVMThread) {
  1905             result = op.loaded_library();
  1907           load_attempted = true;
  1913   if (!load_attempted) {
  1914     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1917   if (result != NULL) {
  1918     // Successful loading
  1919     return result;
  1922   Elf32_Ehdr elf_head;
  1923   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1924   char* diag_msg_buf=ebuf+strlen(ebuf);
  1926   if (diag_msg_max_length==0) {
  1927     // No more space in ebuf for additional diagnostics message
  1928     return NULL;
  1932   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1934   if (file_descriptor < 0) {
  1935     // Can't open library, report dlerror() message
  1936     return NULL;
  1939   bool failed_to_read_elf_head=
  1940     (sizeof(elf_head)!=
  1941         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1943   ::close(file_descriptor);
  1944   if (failed_to_read_elf_head) {
  1945     // file i/o error - report dlerror() msg
  1946     return NULL;
  1949   typedef struct {
  1950     Elf32_Half  code;         // Actual value as defined in elf.h
  1951     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1952     char        elf_class;    // 32 or 64 bit
  1953     char        endianess;    // MSB or LSB
  1954     char*       name;         // String representation
  1955   } arch_t;
  1957   #ifndef EM_486
  1958   #define EM_486          6               /* Intel 80486 */
  1959   #endif
  1961   static const arch_t arch_array[]={
  1962     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1963     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1964     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1965     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1966     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1967     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1968     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1969     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1970 #if defined(VM_LITTLE_ENDIAN)
  1971     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
  1972 #else
  1973     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1974 #endif
  1975     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1976     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1977     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1978     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1979     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1980     {EM_MIPS,        EM_MIPS,    ELFCLASS64, ELFDATA2LSB, (char*)"MIPS64 LE"},
  1981     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1982     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1983   };
  1985   #if  (defined IA32)
  1986     static  Elf32_Half running_arch_code=EM_386;
  1987   #elif   (defined AMD64)
  1988     static  Elf32_Half running_arch_code=EM_X86_64;
  1989   #elif  (defined IA64)
  1990     static  Elf32_Half running_arch_code=EM_IA_64;
  1991   #elif  (defined __sparc) && (defined _LP64)
  1992     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1993   #elif  (defined __sparc) && (!defined _LP64)
  1994     static  Elf32_Half running_arch_code=EM_SPARC;
  1995   #elif  (defined MIPS64)
  1996     static  Elf32_Half running_arch_code=EM_MIPS;
  1997   #elif  (defined __powerpc64__)
  1998     static  Elf32_Half running_arch_code=EM_PPC64;
  1999   #elif  (defined __powerpc__)
  2000     static  Elf32_Half running_arch_code=EM_PPC;
  2001   #elif  (defined ARM)
  2002     static  Elf32_Half running_arch_code=EM_ARM;
  2003   #elif  (defined S390)
  2004     static  Elf32_Half running_arch_code=EM_S390;
  2005   #elif  (defined ALPHA)
  2006     static  Elf32_Half running_arch_code=EM_ALPHA;
  2007   #elif  (defined MIPSEL)
  2008     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  2009   #elif  (defined PARISC)
  2010     static  Elf32_Half running_arch_code=EM_PARISC;
  2011   #elif  (defined MIPS)
  2012     static  Elf32_Half running_arch_code=EM_MIPS;
  2013   #elif  (defined M68K)
  2014     static  Elf32_Half running_arch_code=EM_68K;
  2015   #else
  2016     #error Method os::dll_load requires that one of following is defined:\
  2017          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, __mips64, PARISC, M68K
  2018   #endif
  2020   // Identify compatability class for VM's architecture and library's architecture
  2021   // Obtain string descriptions for architectures
  2023   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2024   int running_arch_index=-1;
  2026   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2027     if (running_arch_code == arch_array[i].code) {
  2028       running_arch_index    = i;
  2030     if (lib_arch.code == arch_array[i].code) {
  2031       lib_arch.compat_class = arch_array[i].compat_class;
  2032       lib_arch.name         = arch_array[i].name;
  2036   assert(running_arch_index != -1,
  2037     "Didn't find running architecture code (running_arch_code) in arch_array");
  2038   if (running_arch_index == -1) {
  2039     // Even though running architecture detection failed
  2040     // we may still continue with reporting dlerror() message
  2041     return NULL;
  2044   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2045     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2046     return NULL;
  2049 #ifndef S390
  2050   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2051     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2052     return NULL;
  2054 #endif // !S390
  2056   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2057     if ( lib_arch.name!=NULL ) {
  2058       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2059         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2060         lib_arch.name, arch_array[running_arch_index].name);
  2061     } else {
  2062       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2063       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2064         lib_arch.code,
  2065         arch_array[running_arch_index].name);
  2069   return NULL;
  2072 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2073   void * result = ::dlopen(filename, RTLD_LAZY);
  2074   if (result == NULL) {
  2075     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2076     ebuf[ebuflen-1] = '\0';
  2078   return result;
  2081 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2082   void * result = NULL;
  2083   if (LoadExecStackDllInVMThread) {
  2084     result = dlopen_helper(filename, ebuf, ebuflen);
  2087   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2088   // library that requires an executable stack, or which does not have this
  2089   // stack attribute set, dlopen changes the stack attribute to executable. The
  2090   // read protection of the guard pages gets lost.
  2091   //
  2092   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2093   // may have been queued at the same time.
  2095   if (!_stack_is_executable) {
  2096     JavaThread *jt = Threads::first();
  2098     while (jt) {
  2099       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2100           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2101         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2102                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2103           warning("Attempt to reguard stack yellow zone failed.");
  2106       jt = jt->next();
  2110   return result;
  2113 /*
  2114  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2115  * chances are you might want to run the generated bits against glibc-2.0
  2116  * libdl.so, so always use locking for any version of glibc.
  2117  */
  2118 void* os::dll_lookup(void* handle, const char* name) {
  2119   pthread_mutex_lock(&dl_mutex);
  2120   void* res = dlsym(handle, name);
  2121   pthread_mutex_unlock(&dl_mutex);
  2122   return res;
  2125 void* os::get_default_process_handle() {
  2126   return (void*)::dlopen(NULL, RTLD_LAZY);
  2129 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2130   int fd = ::open(filename, O_RDONLY);
  2131   if (fd == -1) {
  2132      return false;
  2135   char buf[32];
  2136   int bytes;
  2137   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2138     st->print_raw(buf, bytes);
  2141   ::close(fd);
  2143   return true;
  2146 void os::print_dll_info(outputStream *st) {
  2147    st->print_cr("Dynamic libraries:");
  2149    char fname[32];
  2150    pid_t pid = os::Linux::gettid();
  2152    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2154    if (!_print_ascii_file(fname, st)) {
  2155      st->print("Can not get library information for pid = %d\n", pid);
  2159 void os::print_os_info_brief(outputStream* st) {
  2160   os::Linux::print_distro_info(st);
  2162   os::Posix::print_uname_info(st);
  2164   os::Linux::print_libversion_info(st);
  2168 void os::print_os_info(outputStream* st) {
  2169   st->print("OS:");
  2171   os::Linux::print_distro_info(st);
  2173   os::Posix::print_uname_info(st);
  2175   // Print warning if unsafe chroot environment detected
  2176   if (unsafe_chroot_detected) {
  2177     st->print("WARNING!! ");
  2178     st->print_cr("%s", unstable_chroot_error);
  2181   os::Linux::print_libversion_info(st);
  2183   os::Posix::print_rlimit_info(st);
  2185   os::Posix::print_load_average(st);
  2187   os::Linux::print_full_memory_info(st);
  2189   os::Linux::print_container_info(st);
  2192 // Try to identify popular distros.
  2193 // Most Linux distributions have a /etc/XXX-release file, which contains
  2194 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2195 // file that also contains the OS version string. Some have more than one
  2196 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2197 // /etc/redhat-release.), so the order is important.
  2198 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2199 // their own specific XXX-release file as well as a redhat-release file.
  2200 // Because of this the XXX-release file needs to be searched for before the
  2201 // redhat-release file.
  2202 // Since Red Hat has a lsb-release file that is not very descriptive the
  2203 // search for redhat-release needs to be before lsb-release.
  2204 // Since the lsb-release file is the new standard it needs to be searched
  2205 // before the older style release files.
  2206 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2207 // next to last resort.  The os-release file is a new standard that contains
  2208 // distribution information and the system-release file seems to be an old
  2209 // standard that has been replaced by the lsb-release and os-release files.
  2210 // Searching for the debian_version file is the last resort.  It contains
  2211 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2212 // "Debian " is printed before the contents of the debian_version file.
  2213 void os::Linux::print_distro_info(outputStream* st) {
  2214    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2215        !_print_ascii_file("/etc/mandriva-release", st) &&
  2216        !_print_ascii_file("/etc/mandrake-release", st) &&
  2217        !_print_ascii_file("/etc/sun-release", st) &&
  2218        !_print_ascii_file("/etc/redhat-release", st) &&
  2219        !_print_ascii_file("/etc/lsb-release", st) &&
  2220        !_print_ascii_file("/etc/SuSE-release", st) &&
  2221        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2222        !_print_ascii_file("/etc/gentoo-release", st) &&
  2223        !_print_ascii_file("/etc/ltib-release", st) &&
  2224        !_print_ascii_file("/etc/angstrom-version", st) &&
  2225        !_print_ascii_file("/etc/system-release", st) &&
  2226        !_print_ascii_file("/etc/os-release", st)) {
  2228        if (file_exists("/etc/debian_version")) {
  2229          st->print("Debian ");
  2230          _print_ascii_file("/etc/debian_version", st);
  2231        } else {
  2232          st->print("Linux");
  2235    st->cr();
  2238 void os::Linux::print_libversion_info(outputStream* st) {
  2239   // libc, pthread
  2240   st->print("libc:");
  2241   st->print("%s ", os::Linux::glibc_version());
  2242   st->print("%s ", os::Linux::libpthread_version());
  2243   if (os::Linux::is_LinuxThreads()) {
  2244      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2246   st->cr();
  2249 void os::Linux::print_full_memory_info(outputStream* st) {
  2250    st->print("\n/proc/meminfo:\n");
  2251    _print_ascii_file("/proc/meminfo", st);
  2252    st->cr();
  2255 void os::Linux::print_container_info(outputStream* st) {
  2256 if (!OSContainer::is_containerized()) {
  2257     return;
  2260   st->print("container (cgroup) information:\n");
  2262   const char *p_ct = OSContainer::container_type();
  2263   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
  2265   char *p = OSContainer::cpu_cpuset_cpus();
  2266   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
  2267   free(p);
  2269   p = OSContainer::cpu_cpuset_memory_nodes();
  2270   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
  2271   free(p);
  2273   int i = OSContainer::active_processor_count();
  2274   if (i > 0) {
  2275     st->print("active_processor_count: %d\n", i);
  2276   } else {
  2277     st->print("active_processor_count: failed\n");
  2280   i = OSContainer::cpu_quota();
  2281   st->print("cpu_quota: %d\n", i);
  2283   i = OSContainer::cpu_period();
  2284   st->print("cpu_period: %d\n", i);
  2286   i = OSContainer::cpu_shares();
  2287   st->print("cpu_shares: %d\n", i);
  2289   jlong j = OSContainer::memory_limit_in_bytes();
  2290   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2292   j = OSContainer::memory_and_swap_limit_in_bytes();
  2293   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2295   j = OSContainer::memory_soft_limit_in_bytes();
  2296   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2298   j = OSContainer::OSContainer::memory_usage_in_bytes();
  2299   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2301   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
  2302   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2303   st->cr();
  2306 void os::print_memory_info(outputStream* st) {
  2308   st->print("Memory:");
  2309   st->print(" %dk page", os::vm_page_size()>>10);
  2311   // values in struct sysinfo are "unsigned long"
  2312   struct sysinfo si;
  2313   sysinfo(&si);
  2315   st->print(", physical " UINT64_FORMAT "k",
  2316             os::physical_memory() >> 10);
  2317   st->print("(" UINT64_FORMAT "k free)",
  2318             os::available_memory() >> 10);
  2319   st->print(", swap " UINT64_FORMAT "k",
  2320             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2321   st->print("(" UINT64_FORMAT "k free)",
  2322             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2323   st->cr();
  2326 void os::pd_print_cpu_info(outputStream* st) {
  2327   st->print("\n/proc/cpuinfo:\n");
  2328   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2329     st->print("  <Not Available>");
  2331   st->cr();
  2334 void os::print_siginfo(outputStream* st, void* siginfo) {
  2335   const siginfo_t* si = (const siginfo_t*)siginfo;
  2337   os::Posix::print_siginfo_brief(st, si);
  2338 #if INCLUDE_CDS
  2339   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2340       UseSharedSpaces) {
  2341     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2342     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2343       st->print("\n\nError accessing class data sharing archive."   \
  2344                 " Mapped file inaccessible during execution, "      \
  2345                 " possible disk/network problem.");
  2348 #endif
  2349   st->cr();
  2353 static void print_signal_handler(outputStream* st, int sig,
  2354                                  char* buf, size_t buflen);
  2356 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2357   st->print_cr("Signal Handlers:");
  2358   print_signal_handler(st, SIGSEGV, buf, buflen);
  2359   print_signal_handler(st, SIGBUS , buf, buflen);
  2360   print_signal_handler(st, SIGFPE , buf, buflen);
  2361   print_signal_handler(st, SIGPIPE, buf, buflen);
  2362   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2363   print_signal_handler(st, SIGILL , buf, buflen);
  2364   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2365   print_signal_handler(st, SR_signum, buf, buflen);
  2366   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2367   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2368   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2369   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2370 #if defined(PPC64)
  2371   print_signal_handler(st, SIGTRAP, buf, buflen);
  2372 #endif
  2375 static char saved_jvm_path[MAXPATHLEN] = {0};
  2377 // Find the full path to the current module, libjvm.so
  2378 void os::jvm_path(char *buf, jint buflen) {
  2379   // Error checking.
  2380   if (buflen < MAXPATHLEN) {
  2381     assert(false, "must use a large-enough buffer");
  2382     buf[0] = '\0';
  2383     return;
  2385   // Lazy resolve the path to current module.
  2386   if (saved_jvm_path[0] != 0) {
  2387     strcpy(buf, saved_jvm_path);
  2388     return;
  2391   char dli_fname[MAXPATHLEN];
  2392   bool ret = dll_address_to_library_name(
  2393                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2394                 dli_fname, sizeof(dli_fname), NULL);
  2395   assert(ret, "cannot locate libjvm");
  2396   char *rp = NULL;
  2397   if (ret && dli_fname[0] != '\0') {
  2398     rp = realpath(dli_fname, buf);
  2400   if (rp == NULL)
  2401     return;
  2403   if (Arguments::created_by_gamma_launcher()) {
  2404     // Support for the gamma launcher.  Typical value for buf is
  2405     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2406     // the right place in the string, then assume we are installed in a JDK and
  2407     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2408     // up the path so it looks like libjvm.so is installed there (append a
  2409     // fake suffix hotspot/libjvm.so).
  2410     const char *p = buf + strlen(buf) - 1;
  2411     for (int count = 0; p > buf && count < 5; ++count) {
  2412       for (--p; p > buf && *p != '/'; --p)
  2413         /* empty */ ;
  2416     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2417       // Look for JAVA_HOME in the environment.
  2418       char* java_home_var = ::getenv("JAVA_HOME");
  2419       if (java_home_var != NULL && java_home_var[0] != 0) {
  2420         char* jrelib_p;
  2421         int len;
  2423         // Check the current module name "libjvm.so".
  2424         p = strrchr(buf, '/');
  2425         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2427         rp = realpath(java_home_var, buf);
  2428         if (rp == NULL)
  2429           return;
  2431         // determine if this is a legacy image or modules image
  2432         // modules image doesn't have "jre" subdirectory
  2433         len = strlen(buf);
  2434         assert(len < buflen, "Ran out of buffer room");
  2435         jrelib_p = buf + len;
  2436         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2437         if (0 != access(buf, F_OK)) {
  2438           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2441         if (0 == access(buf, F_OK)) {
  2442           // Use current module name "libjvm.so"
  2443           len = strlen(buf);
  2444           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2445         } else {
  2446           // Go back to path of .so
  2447           rp = realpath(dli_fname, buf);
  2448           if (rp == NULL)
  2449             return;
  2455   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2458 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2459   // no prefix required, not even "_"
  2462 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2463   // no suffix required
  2466 ////////////////////////////////////////////////////////////////////////////////
  2467 // sun.misc.Signal support
  2469 static volatile jint sigint_count = 0;
  2471 static void
  2472 UserHandler(int sig, void *siginfo, void *context) {
  2473   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2474   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2475   // don't want to flood the manager thread with sem_post requests.
  2476   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2477       return;
  2479   // Ctrl-C is pressed during error reporting, likely because the error
  2480   // handler fails to abort. Let VM die immediately.
  2481   if (sig == SIGINT && is_error_reported()) {
  2482      os::die();
  2485   os::signal_notify(sig);
  2488 void* os::user_handler() {
  2489   return CAST_FROM_FN_PTR(void*, UserHandler);
  2492 class Semaphore : public StackObj {
  2493   public:
  2494     Semaphore();
  2495     ~Semaphore();
  2496     void signal();
  2497     void wait();
  2498     bool trywait();
  2499     bool timedwait(unsigned int sec, int nsec);
  2500   private:
  2501     sem_t _semaphore;
  2502 };
  2504 Semaphore::Semaphore() {
  2505   sem_init(&_semaphore, 0, 0);
  2508 Semaphore::~Semaphore() {
  2509   sem_destroy(&_semaphore);
  2512 void Semaphore::signal() {
  2513   sem_post(&_semaphore);
  2516 void Semaphore::wait() {
  2517   sem_wait(&_semaphore);
  2520 bool Semaphore::trywait() {
  2521   return sem_trywait(&_semaphore) == 0;
  2524 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2526   struct timespec ts;
  2527   // Semaphore's are always associated with CLOCK_REALTIME
  2528   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2529   // see unpackTime for discussion on overflow checking
  2530   if (sec >= MAX_SECS) {
  2531     ts.tv_sec += MAX_SECS;
  2532     ts.tv_nsec = 0;
  2533   } else {
  2534     ts.tv_sec += sec;
  2535     ts.tv_nsec += nsec;
  2536     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2537       ts.tv_nsec -= NANOSECS_PER_SEC;
  2538       ++ts.tv_sec; // note: this must be <= max_secs
  2542   while (1) {
  2543     int result = sem_timedwait(&_semaphore, &ts);
  2544     if (result == 0) {
  2545       return true;
  2546     } else if (errno == EINTR) {
  2547       continue;
  2548     } else if (errno == ETIMEDOUT) {
  2549       return false;
  2550     } else {
  2551       return false;
  2556 extern "C" {
  2557   typedef void (*sa_handler_t)(int);
  2558   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2561 void* os::signal(int signal_number, void* handler) {
  2562   struct sigaction sigAct, oldSigAct;
  2564   sigfillset(&(sigAct.sa_mask));
  2565   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2566   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2568   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2569     // -1 means registration failed
  2570     return (void *)-1;
  2573   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2576 void os::signal_raise(int signal_number) {
  2577   ::raise(signal_number);
  2580 /*
  2581  * The following code is moved from os.cpp for making this
  2582  * code platform specific, which it is by its very nature.
  2583  */
  2585 // Will be modified when max signal is changed to be dynamic
  2586 int os::sigexitnum_pd() {
  2587   return NSIG;
  2590 // a counter for each possible signal value
  2591 static volatile jint pending_signals[NSIG+1] = { 0 };
  2593 // Linux(POSIX) specific hand shaking semaphore.
  2594 static sem_t sig_sem;
  2595 static Semaphore sr_semaphore;
  2597 void os::signal_init_pd() {
  2598   // Initialize signal structures
  2599   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2601   // Initialize signal semaphore
  2602   ::sem_init(&sig_sem, 0, 0);
  2605 void os::signal_notify(int sig) {
  2606   Atomic::inc(&pending_signals[sig]);
  2607   ::sem_post(&sig_sem);
  2610 static int check_pending_signals(bool wait) {
  2611   Atomic::store(0, &sigint_count);
  2612   for (;;) {
  2613     for (int i = 0; i < NSIG + 1; i++) {
  2614       jint n = pending_signals[i];
  2615       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2616         return i;
  2619     if (!wait) {
  2620       return -1;
  2622     JavaThread *thread = JavaThread::current();
  2623     ThreadBlockInVM tbivm(thread);
  2625     bool threadIsSuspended;
  2626     do {
  2627       thread->set_suspend_equivalent();
  2628       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2629       ::sem_wait(&sig_sem);
  2631       // were we externally suspended while we were waiting?
  2632       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2633       if (threadIsSuspended) {
  2634         //
  2635         // The semaphore has been incremented, but while we were waiting
  2636         // another thread suspended us. We don't want to continue running
  2637         // while suspended because that would surprise the thread that
  2638         // suspended us.
  2639         //
  2640         ::sem_post(&sig_sem);
  2642         thread->java_suspend_self();
  2644     } while (threadIsSuspended);
  2648 int os::signal_lookup() {
  2649   return check_pending_signals(false);
  2652 int os::signal_wait() {
  2653   return check_pending_signals(true);
  2656 ////////////////////////////////////////////////////////////////////////////////
  2657 // Virtual Memory
  2659 int os::vm_page_size() {
  2660   // Seems redundant as all get out
  2661   assert(os::Linux::page_size() != -1, "must call os::init");
  2662   return os::Linux::page_size();
  2665 // Solaris allocates memory by pages.
  2666 int os::vm_allocation_granularity() {
  2667   assert(os::Linux::page_size() != -1, "must call os::init");
  2668   return os::Linux::page_size();
  2671 // Rationale behind this function:
  2672 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2673 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2674 //  samples for JITted code. Here we create private executable mapping over the code cache
  2675 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2676 //  info for the reporting script by storing timestamp and location of symbol
  2677 void linux_wrap_code(char* base, size_t size) {
  2678   static volatile jint cnt = 0;
  2680   if (!UseOprofile) {
  2681     return;
  2684   char buf[PATH_MAX+1];
  2685   int num = Atomic::add(1, &cnt);
  2687   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2688            os::get_temp_directory(), os::current_process_id(), num);
  2689   unlink(buf);
  2691   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2693   if (fd != -1) {
  2694     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2695     if (rv != (off_t)-1) {
  2696       if (::write(fd, "", 1) == 1) {
  2697         mmap(base, size,
  2698              PROT_READ|PROT_WRITE|PROT_EXEC,
  2699              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2702     ::close(fd);
  2703     unlink(buf);
  2707 static bool recoverable_mmap_error(int err) {
  2708   // See if the error is one we can let the caller handle. This
  2709   // list of errno values comes from JBS-6843484. I can't find a
  2710   // Linux man page that documents this specific set of errno
  2711   // values so while this list currently matches Solaris, it may
  2712   // change as we gain experience with this failure mode.
  2713   switch (err) {
  2714   case EBADF:
  2715   case EINVAL:
  2716   case ENOTSUP:
  2717     // let the caller deal with these errors
  2718     return true;
  2720   default:
  2721     // Any remaining errors on this OS can cause our reserved mapping
  2722     // to be lost. That can cause confusion where different data
  2723     // structures think they have the same memory mapped. The worst
  2724     // scenario is if both the VM and a library think they have the
  2725     // same memory mapped.
  2726     return false;
  2730 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2731                                     int err) {
  2732   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2733           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2734           strerror(err), err);
  2737 static void warn_fail_commit_memory(char* addr, size_t size,
  2738                                     size_t alignment_hint, bool exec,
  2739                                     int err) {
  2740   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2741           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2742           alignment_hint, exec, strerror(err), err);
  2745 // NOTE: Linux kernel does not really reserve the pages for us.
  2746 //       All it does is to check if there are enough free pages
  2747 //       left at the time of mmap(). This could be a potential
  2748 //       problem.
  2749 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2750   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2751   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2752                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2753   if (res != (uintptr_t) MAP_FAILED) {
  2754     if (UseNUMAInterleaving) {
  2755       numa_make_global(addr, size);
  2757     return 0;
  2760   int err = errno;  // save errno from mmap() call above
  2762   if (!recoverable_mmap_error(err)) {
  2763     warn_fail_commit_memory(addr, size, exec, err);
  2764     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2767   return err;
  2770 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2771   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2774 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2775                                   const char* mesg) {
  2776   assert(mesg != NULL, "mesg must be specified");
  2777   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2778   if (err != 0) {
  2779     // the caller wants all commit errors to exit with the specified mesg:
  2780     warn_fail_commit_memory(addr, size, exec, err);
  2781     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2785 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2786 #ifndef MAP_HUGETLB
  2787 #define MAP_HUGETLB 0x40000
  2788 #endif
  2790 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2791 #ifndef MADV_HUGEPAGE
  2792 #define MADV_HUGEPAGE 14
  2793 #endif
  2795 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2796                                   size_t alignment_hint, bool exec) {
  2797   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2798   if (err == 0) {
  2799     realign_memory(addr, size, alignment_hint);
  2801   return err;
  2804 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2805                           bool exec) {
  2806   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2809 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2810                                   size_t alignment_hint, bool exec,
  2811                                   const char* mesg) {
  2812   assert(mesg != NULL, "mesg must be specified");
  2813   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2814   if (err != 0) {
  2815     // the caller wants all commit errors to exit with the specified mesg:
  2816     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2817     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2821 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2822   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2823     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2824     // be supported or the memory may already be backed by huge pages.
  2825     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2829 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2830   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2831   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2832   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2833   // small pages on top of the SHM segment. This method always works for small pages, so we
  2834   // allow that in any case.
  2835   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2836     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2840 void os::numa_make_global(char *addr, size_t bytes) {
  2841   Linux::numa_interleave_memory(addr, bytes);
  2844 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2845 // bind policy to MPOL_PREFERRED for the current thread.
  2846 #define USE_MPOL_PREFERRED 0
  2848 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2849   // To make NUMA and large pages more robust when both enabled, we need to ease
  2850   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2851   // default policy and it will force memory to be allocated on the specified
  2852   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2853   // the specified node, but will not force it. Using this policy will prevent
  2854   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2855   // free large pages.
  2856   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2857   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2860 bool os::numa_topology_changed()   { return false; }
  2862 size_t os::numa_get_groups_num() {
  2863   // Return just the number of nodes in which it's possible to allocate memory
  2864   // (in numa terminology, configured nodes).
  2865   return Linux::numa_num_configured_nodes();
  2868 int os::numa_get_group_id() {
  2869   int cpu_id = Linux::sched_getcpu();
  2870   if (cpu_id != -1) {
  2871     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2872     if (lgrp_id != -1) {
  2873       return lgrp_id;
  2876   return 0;
  2879 int os::Linux::get_existing_num_nodes() {
  2880   size_t node;
  2881   size_t highest_node_number = Linux::numa_max_node();
  2882   int num_nodes = 0;
  2884   // Get the total number of nodes in the system including nodes without memory.
  2885   for (node = 0; node <= highest_node_number; node++) {
  2886     if (isnode_in_existing_nodes(node)) {
  2887       num_nodes++;
  2890   return num_nodes;
  2893 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2894   size_t highest_node_number = Linux::numa_max_node();
  2895   size_t i = 0;
  2897   // Map all node ids in which is possible to allocate memory. Also nodes are
  2898   // not always consecutively available, i.e. available from 0 to the highest
  2899   // node number.
  2900   for (size_t node = 0; node <= highest_node_number; node++) {
  2901     if (Linux::isnode_in_configured_nodes(node)) {
  2902       ids[i++] = node;
  2905   return i;
  2908 bool os::get_page_info(char *start, page_info* info) {
  2909   return false;
  2912 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2913   return end;
  2917 int os::Linux::sched_getcpu_syscall(void) {
  2918   unsigned int cpu = 0;
  2919   int retval = -1;
  2921 #if defined(IA32)
  2922 # ifndef SYS_getcpu
  2923 # define SYS_getcpu 318
  2924 # endif
  2925   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2926 #elif defined(AMD64)
  2927 // Unfortunately we have to bring all these macros here from vsyscall.h
  2928 // to be able to compile on old linuxes.
  2929 # define __NR_vgetcpu 2
  2930 # define VSYSCALL_START (-10UL << 20)
  2931 # define VSYSCALL_SIZE 1024
  2932 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2933   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2934   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2935   retval = vgetcpu(&cpu, NULL, NULL);
  2936 #endif
  2938   return (retval == -1) ? retval : cpu;
  2941 // Something to do with the numa-aware allocator needs these symbols
  2942 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2943 extern "C" JNIEXPORT void numa_error(char *where) { }
  2944 extern "C" JNIEXPORT int fork1() { return fork(); }
  2946 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
  2947 // load symbol from base version instead.
  2948 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2949   void *f = dlvsym(handle, name, "libnuma_1.1");
  2950   if (f == NULL) {
  2951     f = dlsym(handle, name);
  2953   return f;
  2956 // Handle request to load libnuma symbol version 1.2 (API v2) only.
  2957 // Return NULL if the symbol is not defined in this particular version.
  2958 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
  2959   return dlvsym(handle, name, "libnuma_1.2");
  2962 bool os::Linux::libnuma_init() {
  2963   // sched_getcpu() should be in libc.
  2964   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2965                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2967   // If it's not, try a direct syscall.
  2968   if (sched_getcpu() == -1)
  2969     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2971   if (sched_getcpu() != -1) { // Does it work?
  2972     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2973     if (handle != NULL) {
  2974       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2975                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2976       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2977                                        libnuma_dlsym(handle, "numa_max_node")));
  2978       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
  2979                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
  2980       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2981                                         libnuma_dlsym(handle, "numa_available")));
  2982       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2983                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2984       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2985                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
  2986       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
  2987                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
  2988       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2989                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
  2990       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
  2991                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
  2992       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
  2993                                        libnuma_dlsym(handle, "numa_distance")));
  2995       if (numa_available() != -1) {
  2996         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2997         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
  2998         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
  2999         // Create an index -> node mapping, since nodes are not always consecutive
  3000         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  3001         rebuild_nindex_to_node_map();
  3002         // Create a cpu -> node mapping
  3003         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  3004         rebuild_cpu_to_node_map();
  3005         return true;
  3009   return false;
  3012 void os::Linux::rebuild_nindex_to_node_map() {
  3013   int highest_node_number = Linux::numa_max_node();
  3015   nindex_to_node()->clear();
  3016   for (int node = 0; node <= highest_node_number; node++) {
  3017     if (Linux::isnode_in_existing_nodes(node)) {
  3018       nindex_to_node()->append(node);
  3023 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  3024 // The table is later used in get_node_by_cpu().
  3025 void os::Linux::rebuild_cpu_to_node_map() {
  3026   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  3027                               // in libnuma (possible values are starting from 16,
  3028                               // and continuing up with every other power of 2, but less
  3029                               // than the maximum number of CPUs supported by kernel), and
  3030                               // is a subject to change (in libnuma version 2 the requirements
  3031                               // are more reasonable) we'll just hardcode the number they use
  3032                               // in the library.
  3033   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  3035   size_t cpu_num = processor_count();
  3036   size_t cpu_map_size = NCPUS / BitsPerCLong;
  3037   size_t cpu_map_valid_size =
  3038     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  3040   cpu_to_node()->clear();
  3041   cpu_to_node()->at_grow(cpu_num - 1);
  3043   size_t node_num = get_existing_num_nodes();
  3045   int distance = 0;
  3046   int closest_distance = INT_MAX;
  3047   int closest_node = 0;
  3048   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  3049   for (size_t i = 0; i < node_num; i++) {
  3050     // Check if node is configured (not a memory-less node). If it is not, find
  3051     // the closest configured node.
  3052     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
  3053       closest_distance = INT_MAX;
  3054       // Check distance from all remaining nodes in the system. Ignore distance
  3055       // from itself and from another non-configured node.
  3056       for (size_t m = 0; m < node_num; m++) {
  3057         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
  3058           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
  3059           // If a closest node is found, update. There is always at least one
  3060           // configured node in the system so there is always at least one node
  3061           // close.
  3062           if (distance != 0 && distance < closest_distance) {
  3063             closest_distance = distance;
  3064             closest_node = nindex_to_node()->at(m);
  3068      } else {
  3069        // Current node is already a configured node.
  3070        closest_node = nindex_to_node()->at(i);
  3073     // Get cpus from the original node and map them to the closest node. If node
  3074     // is a configured node (not a memory-less node), then original node and
  3075     // closest node are the same.
  3076     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  3077       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  3078         if (cpu_map[j] != 0) {
  3079           for (size_t k = 0; k < BitsPerCLong; k++) {
  3080             if (cpu_map[j] & (1UL << k)) {
  3081               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
  3088   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  3091 int os::Linux::get_node_by_cpu(int cpu_id) {
  3092   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  3093     return cpu_to_node()->at(cpu_id);
  3095   return -1;
  3098 GrowableArray<int>* os::Linux::_cpu_to_node;
  3099 GrowableArray<int>* os::Linux::_nindex_to_node;
  3100 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  3101 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  3102 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  3103 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
  3104 os::Linux::numa_available_func_t os::Linux::_numa_available;
  3105 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  3106 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  3107 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
  3108 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  3109 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
  3110 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
  3111 unsigned long* os::Linux::_numa_all_nodes;
  3112 struct bitmask* os::Linux::_numa_all_nodes_ptr;
  3113 struct bitmask* os::Linux::_numa_nodes_ptr;
  3115 bool os::pd_uncommit_memory(char* addr, size_t size) {
  3116   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  3117                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  3118   return res  != (uintptr_t) MAP_FAILED;
  3121 static
  3122 address get_stack_commited_bottom(address bottom, size_t size) {
  3123   address nbot = bottom;
  3124   address ntop = bottom + size;
  3126   size_t page_sz = os::vm_page_size();
  3127   unsigned pages = size / page_sz;
  3129   unsigned char vec[1];
  3130   unsigned imin = 1, imax = pages + 1, imid;
  3131   int mincore_return_value = 0;
  3133   assert(imin <= imax, "Unexpected page size");
  3135   while (imin < imax) {
  3136     imid = (imax + imin) / 2;
  3137     nbot = ntop - (imid * page_sz);
  3139     // Use a trick with mincore to check whether the page is mapped or not.
  3140     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3141     // is swapped output but if page we are asking for is unmapped
  3142     // it returns -1,ENOMEM
  3143     mincore_return_value = mincore(nbot, page_sz, vec);
  3145     if (mincore_return_value == -1) {
  3146       // Page is not mapped go up
  3147       // to find first mapped page
  3148       if (errno != EAGAIN) {
  3149         assert(errno == ENOMEM, "Unexpected mincore errno");
  3150         imax = imid;
  3152     } else {
  3153       // Page is mapped go down
  3154       // to find first not mapped page
  3155       imin = imid + 1;
  3159   nbot = nbot + page_sz;
  3161   // Adjust stack bottom one page up if last checked page is not mapped
  3162   if (mincore_return_value == -1) {
  3163     nbot = nbot + page_sz;
  3166   return nbot;
  3170 // Linux uses a growable mapping for the stack, and if the mapping for
  3171 // the stack guard pages is not removed when we detach a thread the
  3172 // stack cannot grow beyond the pages where the stack guard was
  3173 // mapped.  If at some point later in the process the stack expands to
  3174 // that point, the Linux kernel cannot expand the stack any further
  3175 // because the guard pages are in the way, and a segfault occurs.
  3176 //
  3177 // However, it's essential not to split the stack region by unmapping
  3178 // a region (leaving a hole) that's already part of the stack mapping,
  3179 // so if the stack mapping has already grown beyond the guard pages at
  3180 // the time we create them, we have to truncate the stack mapping.
  3181 // So, we need to know the extent of the stack mapping when
  3182 // create_stack_guard_pages() is called.
  3184 // We only need this for stacks that are growable: at the time of
  3185 // writing thread stacks don't use growable mappings (i.e. those
  3186 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3187 // only applies to the main thread.
  3189 // If the (growable) stack mapping already extends beyond the point
  3190 // where we're going to put our guard pages, truncate the mapping at
  3191 // that point by munmap()ping it.  This ensures that when we later
  3192 // munmap() the guard pages we don't leave a hole in the stack
  3193 // mapping. This only affects the main/primordial thread
  3195 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3197   if (os::is_primordial_thread()) {
  3198     // As we manually grow stack up to bottom inside create_attached_thread(),
  3199     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3200     // we don't need to do anything special.
  3201     // Check it first, before calling heavy function.
  3202     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3203     unsigned char vec[1];
  3205     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3206       // Fallback to slow path on all errors, including EAGAIN
  3207       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3208                                     os::Linux::initial_thread_stack_bottom(),
  3209                                     (size_t)addr - stack_extent);
  3212     if (stack_extent < (uintptr_t)addr) {
  3213       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3217   return os::commit_memory(addr, size, !ExecMem);
  3220 // If this is a growable mapping, remove the guard pages entirely by
  3221 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3222 // affects the main/primordial thread, but guard against future OS changes.
  3223 // It's safe to always unmap guard pages for primordial thread because we
  3224 // always place it right after end of the mapped region.
  3226 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3227   uintptr_t stack_extent, stack_base;
  3229   if (os::is_primordial_thread()) {
  3230     return ::munmap(addr, size) == 0;
  3233   return os::uncommit_memory(addr, size);
  3236 static address _highest_vm_reserved_address = NULL;
  3238 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3239 // at 'requested_addr'. If there are existing memory mappings at the same
  3240 // location, however, they will be overwritten. If 'fixed' is false,
  3241 // 'requested_addr' is only treated as a hint, the return value may or
  3242 // may not start from the requested address. Unlike Linux mmap(), this
  3243 // function returns NULL to indicate failure.
  3244 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3245   char * addr;
  3246   int flags;
  3248   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3249   if (fixed) {
  3250     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3251     flags |= MAP_FIXED;
  3254   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3255   // touch an uncommitted page. Otherwise, the read/write might
  3256   // succeed if we have enough swap space to back the physical page.
  3257   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3258                        flags, -1, 0);
  3260   if (addr != MAP_FAILED) {
  3261     // anon_mmap() should only get called during VM initialization,
  3262     // don't need lock (actually we can skip locking even it can be called
  3263     // from multiple threads, because _highest_vm_reserved_address is just a
  3264     // hint about the upper limit of non-stack memory regions.)
  3265     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3266       _highest_vm_reserved_address = (address)addr + bytes;
  3270   return addr == MAP_FAILED ? NULL : addr;
  3273 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3274 //   (req_addr != NULL) or with a given alignment.
  3275 //  - bytes shall be a multiple of alignment.
  3276 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3277 //  - alignment sets the alignment at which memory shall be allocated.
  3278 //     It must be a multiple of allocation granularity.
  3279 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3280 //  req_addr or NULL.
  3281 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3283   size_t extra_size = bytes;
  3284   if (req_addr == NULL && alignment > 0) {
  3285     extra_size += alignment;
  3288   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3289     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3290     -1, 0);
  3291   if (start == MAP_FAILED) {
  3292     start = NULL;
  3293   } else {
  3294     if (req_addr != NULL) {
  3295       if (start != req_addr) {
  3296         ::munmap(start, extra_size);
  3297         start = NULL;
  3299     } else {
  3300       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3301       char* const end_aligned = start_aligned + bytes;
  3302       char* const end = start + extra_size;
  3303       if (start_aligned > start) {
  3304         ::munmap(start, start_aligned - start);
  3306       if (end_aligned < end) {
  3307         ::munmap(end_aligned, end - end_aligned);
  3309       start = start_aligned;
  3312   return start;
  3315 // Don't update _highest_vm_reserved_address, because there might be memory
  3316 // regions above addr + size. If so, releasing a memory region only creates
  3317 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3318 //
  3319 static int anon_munmap(char * addr, size_t size) {
  3320   return ::munmap(addr, size) == 0;
  3323 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3324                          size_t alignment_hint) {
  3325   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3328 bool os::pd_release_memory(char* addr, size_t size) {
  3329   return anon_munmap(addr, size);
  3332 static address highest_vm_reserved_address() {
  3333   return _highest_vm_reserved_address;
  3336 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3337   // Linux wants the mprotect address argument to be page aligned.
  3338   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3340   // According to SUSv3, mprotect() should only be used with mappings
  3341   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3342   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3343   // protection of malloc'ed or statically allocated memory). Check the
  3344   // caller if you hit this assert.
  3345   assert(addr == bottom, "sanity check");
  3347   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3348   return ::mprotect(bottom, size, prot) == 0;
  3351 // Set protections specified
  3352 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3353                         bool is_committed) {
  3354   unsigned int p = 0;
  3355   switch (prot) {
  3356   case MEM_PROT_NONE: p = PROT_NONE; break;
  3357   case MEM_PROT_READ: p = PROT_READ; break;
  3358   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3359   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3360   default:
  3361     ShouldNotReachHere();
  3363   // is_committed is unused.
  3364   return linux_mprotect(addr, bytes, p);
  3367 bool os::guard_memory(char* addr, size_t size) {
  3368   return linux_mprotect(addr, size, PROT_NONE);
  3371 bool os::unguard_memory(char* addr, size_t size) {
  3372   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3375 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3376   bool result = false;
  3377   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3378                  MAP_ANONYMOUS|MAP_PRIVATE,
  3379                  -1, 0);
  3380   if (p != MAP_FAILED) {
  3381     void *aligned_p = align_ptr_up(p, page_size);
  3383     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3385     munmap(p, page_size * 2);
  3388   if (warn && !result) {
  3389     warning("TransparentHugePages is not supported by the operating system.");
  3392   return result;
  3395 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3396   bool result = false;
  3397   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3398                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3399                  -1, 0);
  3401   if (p != MAP_FAILED) {
  3402     // We don't know if this really is a huge page or not.
  3403     FILE *fp = fopen("/proc/self/maps", "r");
  3404     if (fp) {
  3405       while (!feof(fp)) {
  3406         char chars[257];
  3407         long x = 0;
  3408         if (fgets(chars, sizeof(chars), fp)) {
  3409           if (sscanf(chars, "%lx-%*x", &x) == 1
  3410               && x == (long)p) {
  3411             if (strstr (chars, "hugepage")) {
  3412               result = true;
  3413               break;
  3418       fclose(fp);
  3420     munmap(p, page_size);
  3423   if (warn && !result) {
  3424     warning("HugeTLBFS is not supported by the operating system.");
  3427   return result;
  3430 /*
  3431 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3433 * From the coredump_filter documentation:
  3435 * - (bit 0) anonymous private memory
  3436 * - (bit 1) anonymous shared memory
  3437 * - (bit 2) file-backed private memory
  3438 * - (bit 3) file-backed shared memory
  3439 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3440 *           effective only if the bit 2 is cleared)
  3441 * - (bit 5) hugetlb private memory
  3442 * - (bit 6) hugetlb shared memory
  3443 */
  3444 static void set_coredump_filter(void) {
  3445   FILE *f;
  3446   long cdm;
  3448   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3449     return;
  3452   if (fscanf(f, "%lx", &cdm) != 1) {
  3453     fclose(f);
  3454     return;
  3457   rewind(f);
  3459   if ((cdm & LARGEPAGES_BIT) == 0) {
  3460     cdm |= LARGEPAGES_BIT;
  3461     fprintf(f, "%#lx", cdm);
  3464   fclose(f);
  3467 // Large page support
  3469 static size_t _large_page_size = 0;
  3471 size_t os::Linux::find_large_page_size() {
  3472   size_t large_page_size = 0;
  3474   // large_page_size on Linux is used to round up heap size. x86 uses either
  3475   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3476   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3477   // page as large as 256M.
  3478   //
  3479   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3480   // for a line with the following format:
  3481   //    Hugepagesize:     2048 kB
  3482   //
  3483   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3484   // format has been changed), we'll use the largest page size supported by
  3485   // the processor.
  3487 #ifndef ZERO
  3488   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3489                      ARM_ONLY(2 * M) PPC_ONLY(4 * M) MIPS64_ONLY(4 * M); //In MIPS _large_page_size is seted 4*M.
  3490 #endif // ZERO
  3492   FILE *fp = fopen("/proc/meminfo", "r");
  3493   if (fp) {
  3494     while (!feof(fp)) {
  3495       int x = 0;
  3496       char buf[16];
  3497       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3498         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3499           large_page_size = x * K;
  3500           break;
  3502       } else {
  3503         // skip to next line
  3504         for (;;) {
  3505           int ch = fgetc(fp);
  3506           if (ch == EOF || ch == (int)'\n') break;
  3510     fclose(fp);
  3513   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3514     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3515         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3516         proper_unit_for_byte_size(large_page_size));
  3519   return large_page_size;
  3522 size_t os::Linux::setup_large_page_size() {
  3523   _large_page_size = Linux::find_large_page_size();
  3524   const size_t default_page_size = (size_t)Linux::page_size();
  3525   if (_large_page_size > default_page_size) {
  3526     _page_sizes[0] = _large_page_size;
  3527     _page_sizes[1] = default_page_size;
  3528     _page_sizes[2] = 0;
  3531   return _large_page_size;
  3534 bool os::Linux::setup_large_page_type(size_t page_size) {
  3535   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3536       FLAG_IS_DEFAULT(UseSHM) &&
  3537       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3539     // The type of large pages has not been specified by the user.
  3541     // Try UseHugeTLBFS and then UseSHM.
  3542     UseHugeTLBFS = UseSHM = true;
  3544     // Don't try UseTransparentHugePages since there are known
  3545     // performance issues with it turned on. This might change in the future.
  3546     UseTransparentHugePages = false;
  3549   if (UseTransparentHugePages) {
  3550     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3551     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3552       UseHugeTLBFS = false;
  3553       UseSHM = false;
  3554       return true;
  3556     UseTransparentHugePages = false;
  3559   if (UseHugeTLBFS) {
  3560     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3561     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3562       UseSHM = false;
  3563       return true;
  3565     UseHugeTLBFS = false;
  3568   return UseSHM;
  3571 void os::large_page_init() {
  3572   if (!UseLargePages &&
  3573       !UseTransparentHugePages &&
  3574       !UseHugeTLBFS &&
  3575       !UseSHM) {
  3576     // Not using large pages.
  3577     return;
  3580   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3581     // The user explicitly turned off large pages.
  3582     // Ignore the rest of the large pages flags.
  3583     UseTransparentHugePages = false;
  3584     UseHugeTLBFS = false;
  3585     UseSHM = false;
  3586     return;
  3589   size_t large_page_size = Linux::setup_large_page_size();
  3590   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3592   set_coredump_filter();
  3595 #ifndef SHM_HUGETLB
  3596 #define SHM_HUGETLB 04000
  3597 #endif
  3599 #define shm_warning_format(format, ...)              \
  3600   do {                                               \
  3601     if (UseLargePages &&                             \
  3602         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3603          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3604          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3605       warning(format, __VA_ARGS__);                  \
  3606     }                                                \
  3607   } while (0)
  3609 #define shm_warning(str) shm_warning_format("%s", str)
  3611 #define shm_warning_with_errno(str)                \
  3612   do {                                             \
  3613     int err = errno;                               \
  3614     shm_warning_format(str " (error = %d)", err);  \
  3615   } while (0)
  3617 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3618   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3620   if (!is_size_aligned(alignment, SHMLBA)) {
  3621     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3622     return NULL;
  3625   // To ensure that we get 'alignment' aligned memory from shmat,
  3626   // we pre-reserve aligned virtual memory and then attach to that.
  3628   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3629   if (pre_reserved_addr == NULL) {
  3630     // Couldn't pre-reserve aligned memory.
  3631     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3632     return NULL;
  3635   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3636   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3638   if ((intptr_t)addr == -1) {
  3639     int err = errno;
  3640     shm_warning_with_errno("Failed to attach shared memory.");
  3642     assert(err != EACCES, "Unexpected error");
  3643     assert(err != EIDRM,  "Unexpected error");
  3644     assert(err != EINVAL, "Unexpected error");
  3646     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3647     // we can't unmap it, since that would potentially unmap memory that was
  3648     // mapped from other threads.
  3649     return NULL;
  3652   return addr;
  3655 static char* shmat_at_address(int shmid, char* req_addr) {
  3656   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3657     assert(false, "Requested address needs to be SHMLBA aligned");
  3658     return NULL;
  3661   char* addr = (char*)shmat(shmid, req_addr, 0);
  3663   if ((intptr_t)addr == -1) {
  3664     shm_warning_with_errno("Failed to attach shared memory.");
  3665     return NULL;
  3668   return addr;
  3671 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3672   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3673   if (req_addr != NULL) {
  3674     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3675     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3676     return shmat_at_address(shmid, req_addr);
  3679   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3680   // return large page size aligned memory addresses when req_addr == NULL.
  3681   // However, if the alignment is larger than the large page size, we have
  3682   // to manually ensure that the memory returned is 'alignment' aligned.
  3683   if (alignment > os::large_page_size()) {
  3684     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3685     return shmat_with_alignment(shmid, bytes, alignment);
  3686   } else {
  3687     return shmat_at_address(shmid, NULL);
  3691 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3692   // "exec" is passed in but not used.  Creating the shared image for
  3693   // the code cache doesn't have an SHM_X executable permission to check.
  3694   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3695   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3696   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3698   if (!is_size_aligned(bytes, os::large_page_size())) {
  3699     return NULL; // Fallback to small pages.
  3702   // Create a large shared memory region to attach to based on size.
  3703   // Currently, size is the total size of the heap.
  3704   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3705   if (shmid == -1) {
  3706     // Possible reasons for shmget failure:
  3707     // 1. shmmax is too small for Java heap.
  3708     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3709     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3710     // 2. not enough large page memory.
  3711     //    > check available large pages: cat /proc/meminfo
  3712     //    > increase amount of large pages:
  3713     //          echo new_value > /proc/sys/vm/nr_hugepages
  3714     //      Note 1: different Linux may use different name for this property,
  3715     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3716     //      Note 2: it's possible there's enough physical memory available but
  3717     //            they are so fragmented after a long run that they can't
  3718     //            coalesce into large pages. Try to reserve large pages when
  3719     //            the system is still "fresh".
  3720     shm_warning_with_errno("Failed to reserve shared memory.");
  3721     return NULL;
  3724   // Attach to the region.
  3725   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3727   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3728   // will be deleted when it's detached by shmdt() or when the process
  3729   // terminates. If shmat() is not successful this will remove the shared
  3730   // segment immediately.
  3731   shmctl(shmid, IPC_RMID, NULL);
  3733   return addr;
  3736 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3737   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3739   bool warn_on_failure = UseLargePages &&
  3740       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3741        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3742        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3744   if (warn_on_failure) {
  3745     char msg[128];
  3746     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3747         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3748     warning("%s", msg);
  3752 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3753   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3754   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3755   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3757   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3758   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3759                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3760                              -1, 0);
  3762   if (addr == MAP_FAILED) {
  3763     warn_on_large_pages_failure(req_addr, bytes, errno);
  3764     return NULL;
  3767   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3769   return addr;
  3772 // Reserve memory using mmap(MAP_HUGETLB).
  3773 //  - bytes shall be a multiple of alignment.
  3774 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3775 //  - alignment sets the alignment at which memory shall be allocated.
  3776 //     It must be a multiple of allocation granularity.
  3777 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3778 //  req_addr or NULL.
  3779 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3780   size_t large_page_size = os::large_page_size();
  3781   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3783   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3784   assert(is_size_aligned(bytes, alignment), "Must be");
  3786   // First reserve - but not commit - the address range in small pages.
  3787   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3789   if (start == NULL) {
  3790     return NULL;
  3793   assert(is_ptr_aligned(start, alignment), "Must be");
  3795   char* end = start + bytes;
  3797   // Find the regions of the allocated chunk that can be promoted to large pages.
  3798   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3799   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3801   size_t lp_bytes = lp_end - lp_start;
  3803   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3805   if (lp_bytes == 0) {
  3806     // The mapped region doesn't even span the start and the end of a large page.
  3807     // Fall back to allocate a non-special area.
  3808     ::munmap(start, end - start);
  3809     return NULL;
  3812   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3814   void* result;
  3816   // Commit small-paged leading area.
  3817   if (start != lp_start) {
  3818     result = ::mmap(start, lp_start - start, prot,
  3819                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3820                     -1, 0);
  3821     if (result == MAP_FAILED) {
  3822       ::munmap(lp_start, end - lp_start);
  3823       return NULL;
  3827   // Commit large-paged area.
  3828   result = ::mmap(lp_start, lp_bytes, prot,
  3829                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3830                   -1, 0);
  3831   if (result == MAP_FAILED) {
  3832     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3833     // If the mmap above fails, the large pages region will be unmapped and we
  3834     // have regions before and after with small pages. Release these regions.
  3835     //
  3836     // |  mapped  |  unmapped  |  mapped  |
  3837     // ^          ^            ^          ^
  3838     // start      lp_start     lp_end     end
  3839     //
  3840     ::munmap(start, lp_start - start);
  3841     ::munmap(lp_end, end - lp_end);
  3842     return NULL;
  3845   // Commit small-paged trailing area.
  3846   if (lp_end != end) {
  3847       result = ::mmap(lp_end, end - lp_end, prot,
  3848                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3849                       -1, 0);
  3850     if (result == MAP_FAILED) {
  3851       ::munmap(start, lp_end - start);
  3852       return NULL;
  3856   return start;
  3859 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3860   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3861   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3862   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3863   assert(is_power_of_2(os::large_page_size()), "Must be");
  3864   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3866   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3867     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3868   } else {
  3869     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3873 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3874   assert(UseLargePages, "only for large pages");
  3876   char* addr;
  3877   if (UseSHM) {
  3878     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3879   } else {
  3880     assert(UseHugeTLBFS, "must be");
  3881     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3884   if (addr != NULL) {
  3885     if (UseNUMAInterleaving) {
  3886       numa_make_global(addr, bytes);
  3889     // The memory is committed
  3890     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3893   return addr;
  3896 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3897   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3898   return shmdt(base) == 0;
  3901 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3902   return pd_release_memory(base, bytes);
  3905 bool os::release_memory_special(char* base, size_t bytes) {
  3906   bool res;
  3907   if (MemTracker::tracking_level() > NMT_minimal) {
  3908     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3909     res = os::Linux::release_memory_special_impl(base, bytes);
  3910     if (res) {
  3911       tkr.record((address)base, bytes);
  3914   } else {
  3915     res = os::Linux::release_memory_special_impl(base, bytes);
  3917   return res;
  3920 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3921   assert(UseLargePages, "only for large pages");
  3922   bool res;
  3924   if (UseSHM) {
  3925     res = os::Linux::release_memory_special_shm(base, bytes);
  3926   } else {
  3927     assert(UseHugeTLBFS, "must be");
  3928     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3930   return res;
  3933 size_t os::large_page_size() {
  3934   return _large_page_size;
  3937 // With SysV SHM the entire memory region must be allocated as shared
  3938 // memory.
  3939 // HugeTLBFS allows application to commit large page memory on demand.
  3940 // However, when committing memory with HugeTLBFS fails, the region
  3941 // that was supposed to be committed will lose the old reservation
  3942 // and allow other threads to steal that memory region. Because of this
  3943 // behavior we can't commit HugeTLBFS memory.
  3944 bool os::can_commit_large_page_memory() {
  3945   return UseTransparentHugePages;
  3948 bool os::can_execute_large_page_memory() {
  3949   return UseTransparentHugePages || UseHugeTLBFS;
  3952 // Reserve memory at an arbitrary address, only if that area is
  3953 // available (and not reserved for something else).
  3955 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3956   const int max_tries = 10;
  3957   char* base[max_tries];
  3958   size_t size[max_tries];
  3959   const size_t gap = 0x000000;
  3961   // Assert only that the size is a multiple of the page size, since
  3962   // that's all that mmap requires, and since that's all we really know
  3963   // about at this low abstraction level.  If we need higher alignment,
  3964   // we can either pass an alignment to this method or verify alignment
  3965   // in one of the methods further up the call chain.  See bug 5044738.
  3966   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3968   // Repeatedly allocate blocks until the block is allocated at the
  3969   // right spot. Give up after max_tries. Note that reserve_memory() will
  3970   // automatically update _highest_vm_reserved_address if the call is
  3971   // successful. The variable tracks the highest memory address every reserved
  3972   // by JVM. It is used to detect heap-stack collision if running with
  3973   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3974   // space than needed, it could confuse the collision detecting code. To
  3975   // solve the problem, save current _highest_vm_reserved_address and
  3976   // calculate the correct value before return.
  3977   address old_highest = _highest_vm_reserved_address;
  3979   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3980   // if kernel honors the hint then we can return immediately.
  3981   char * addr = anon_mmap(requested_addr, bytes, false);
  3982   if (addr == requested_addr) {
  3983      return requested_addr;
  3986   if (addr != NULL) {
  3987      // mmap() is successful but it fails to reserve at the requested address
  3988      anon_munmap(addr, bytes);
  3991   int i;
  3992   for (i = 0; i < max_tries; ++i) {
  3993     base[i] = reserve_memory(bytes);
  3995     if (base[i] != NULL) {
  3996       // Is this the block we wanted?
  3997       if (base[i] == requested_addr) {
  3998         size[i] = bytes;
  3999         break;
  4002       // Does this overlap the block we wanted? Give back the overlapped
  4003       // parts and try again.
  4005       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  4006       if (top_overlap >= 0 && top_overlap < bytes) {
  4007         unmap_memory(base[i], top_overlap);
  4008         base[i] += top_overlap;
  4009         size[i] = bytes - top_overlap;
  4010       } else {
  4011         size_t bottom_overlap = base[i] + bytes - requested_addr;
  4012         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  4013           unmap_memory(requested_addr, bottom_overlap);
  4014           size[i] = bytes - bottom_overlap;
  4015         } else {
  4016           size[i] = bytes;
  4022   // Give back the unused reserved pieces.
  4024   for (int j = 0; j < i; ++j) {
  4025     if (base[j] != NULL) {
  4026       unmap_memory(base[j], size[j]);
  4030   if (i < max_tries) {
  4031     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  4032     return requested_addr;
  4033   } else {
  4034     _highest_vm_reserved_address = old_highest;
  4035     return NULL;
  4039 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  4040   return ::read(fd, buf, nBytes);
  4043 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  4044 // Solaris uses poll(), linux uses park().
  4045 // Poll() is likely a better choice, assuming that Thread.interrupt()
  4046 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  4047 // SIGSEGV, see 4355769.
  4049 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  4050   assert(thread == Thread::current(),  "thread consistency check");
  4052   ParkEvent * const slp = thread->_SleepEvent ;
  4053   slp->reset() ;
  4054   OrderAccess::fence() ;
  4056   if (interruptible) {
  4057     jlong prevtime = javaTimeNanos();
  4059     for (;;) {
  4060       if (os::is_interrupted(thread, true)) {
  4061         return OS_INTRPT;
  4064       jlong newtime = javaTimeNanos();
  4066       if (newtime - prevtime < 0) {
  4067         // time moving backwards, should only happen if no monotonic clock
  4068         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4069         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4070       } else {
  4071         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4074       if(millis <= 0) {
  4075         return OS_OK;
  4078       prevtime = newtime;
  4081         assert(thread->is_Java_thread(), "sanity check");
  4082         JavaThread *jt = (JavaThread *) thread;
  4083         ThreadBlockInVM tbivm(jt);
  4084         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  4086         jt->set_suspend_equivalent();
  4087         // cleared by handle_special_suspend_equivalent_condition() or
  4088         // java_suspend_self() via check_and_wait_while_suspended()
  4090         slp->park(millis);
  4092         // were we externally suspended while we were waiting?
  4093         jt->check_and_wait_while_suspended();
  4096   } else {
  4097     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4098     jlong prevtime = javaTimeNanos();
  4100     for (;;) {
  4101       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  4102       // the 1st iteration ...
  4103       jlong newtime = javaTimeNanos();
  4105       if (newtime - prevtime < 0) {
  4106         // time moving backwards, should only happen if no monotonic clock
  4107         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4108         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4109       } else {
  4110         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4113       if(millis <= 0) break ;
  4115       prevtime = newtime;
  4116       slp->park(millis);
  4118     return OS_OK ;
  4122 //
  4123 // Short sleep, direct OS call.
  4124 //
  4125 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  4126 // sched_yield(2) will actually give up the CPU:
  4127 //
  4128 //   * Alone on this pariticular CPU, keeps running.
  4129 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  4130 //     (pre 2.6.39).
  4131 //
  4132 // So calling this with 0 is an alternative.
  4133 //
  4134 void os::naked_short_sleep(jlong ms) {
  4135   struct timespec req;
  4137   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  4138   req.tv_sec = 0;
  4139   if (ms > 0) {
  4140     req.tv_nsec = (ms % 1000) * 1000000;
  4142   else {
  4143     req.tv_nsec = 1;
  4146   nanosleep(&req, NULL);
  4148   return;
  4151 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  4152 void os::infinite_sleep() {
  4153   while (true) {    // sleep forever ...
  4154     ::sleep(100);   // ... 100 seconds at a time
  4158 // Used to convert frequent JVM_Yield() to nops
  4159 bool os::dont_yield() {
  4160   return DontYieldALot;
  4163 void os::yield() {
  4164   sched_yield();
  4167 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  4169 void os::yield_all(int attempts) {
  4170   // Yields to all threads, including threads with lower priorities
  4171   // Threads on Linux are all with same priority. The Solaris style
  4172   // os::yield_all() with nanosleep(1ms) is not necessary.
  4173   sched_yield();
  4176 // Called from the tight loops to possibly influence time-sharing heuristics
  4177 void os::loop_breaker(int attempts) {
  4178   os::yield_all(attempts);
  4181 ////////////////////////////////////////////////////////////////////////////////
  4182 // thread priority support
  4184 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  4185 // only supports dynamic priority, static priority must be zero. For real-time
  4186 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  4187 // However, for large multi-threaded applications, SCHED_RR is not only slower
  4188 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  4189 // of 5 runs - Sep 2005).
  4190 //
  4191 // The following code actually changes the niceness of kernel-thread/LWP. It
  4192 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  4193 // not the entire user process, and user level threads are 1:1 mapped to kernel
  4194 // threads. It has always been the case, but could change in the future. For
  4195 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  4196 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  4198 int os::java_to_os_priority[CriticalPriority + 1] = {
  4199   19,              // 0 Entry should never be used
  4201    4,              // 1 MinPriority
  4202    3,              // 2
  4203    2,              // 3
  4205    1,              // 4
  4206    0,              // 5 NormPriority
  4207   -1,              // 6
  4209   -2,              // 7
  4210   -3,              // 8
  4211   -4,              // 9 NearMaxPriority
  4213   -5,              // 10 MaxPriority
  4215   -5               // 11 CriticalPriority
  4216 };
  4218 static int prio_init() {
  4219   if (ThreadPriorityPolicy == 1) {
  4220     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4221     // if effective uid is not root. Perhaps, a more elegant way of doing
  4222     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4223     if (geteuid() != 0) {
  4224       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4225         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4227       ThreadPriorityPolicy = 0;
  4230   if (UseCriticalJavaThreadPriority) {
  4231     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4233   return 0;
  4236 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4237   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4239   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4240   return (ret == 0) ? OS_OK : OS_ERR;
  4243 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4244   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4245     *priority_ptr = java_to_os_priority[NormPriority];
  4246     return OS_OK;
  4249   errno = 0;
  4250   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4251   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4254 // Hint to the underlying OS that a task switch would not be good.
  4255 // Void return because it's a hint and can fail.
  4256 void os::hint_no_preempt() {}
  4258 ////////////////////////////////////////////////////////////////////////////////
  4259 // suspend/resume support
  4261 //  the low-level signal-based suspend/resume support is a remnant from the
  4262 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4263 //  within hotspot. Now there is a single use-case for this:
  4264 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4265 //      that runs in the watcher thread.
  4266 //  The remaining code is greatly simplified from the more general suspension
  4267 //  code that used to be used.
  4268 //
  4269 //  The protocol is quite simple:
  4270 //  - suspend:
  4271 //      - sends a signal to the target thread
  4272 //      - polls the suspend state of the osthread using a yield loop
  4273 //      - target thread signal handler (SR_handler) sets suspend state
  4274 //        and blocks in sigsuspend until continued
  4275 //  - resume:
  4276 //      - sets target osthread state to continue
  4277 //      - sends signal to end the sigsuspend loop in the SR_handler
  4278 //
  4279 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4280 //
  4282 static void resume_clear_context(OSThread *osthread) {
  4283   osthread->set_ucontext(NULL);
  4284   osthread->set_siginfo(NULL);
  4287 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4288   osthread->set_ucontext(context);
  4289   osthread->set_siginfo(siginfo);
  4292 //
  4293 // Handler function invoked when a thread's execution is suspended or
  4294 // resumed. We have to be careful that only async-safe functions are
  4295 // called here (Note: most pthread functions are not async safe and
  4296 // should be avoided.)
  4297 //
  4298 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4299 // interface point of view, but sigwait() prevents the signal hander
  4300 // from being run. libpthread would get very confused by not having
  4301 // its signal handlers run and prevents sigwait()'s use with the
  4302 // mutex granting granting signal.
  4303 //
  4304 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4305 //
  4306 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4307   // Save and restore errno to avoid confusing native code with EINTR
  4308   // after sigsuspend.
  4309   int old_errno = errno;
  4311   Thread* thread = Thread::current();
  4312   OSThread* osthread = thread->osthread();
  4313   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4315   os::SuspendResume::State current = osthread->sr.state();
  4316   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4317     suspend_save_context(osthread, siginfo, context);
  4319     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4320     os::SuspendResume::State state = osthread->sr.suspended();
  4321     if (state == os::SuspendResume::SR_SUSPENDED) {
  4322       sigset_t suspend_set;  // signals for sigsuspend()
  4324       // get current set of blocked signals and unblock resume signal
  4325       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4326       sigdelset(&suspend_set, SR_signum);
  4328       sr_semaphore.signal();
  4329       // wait here until we are resumed
  4330       while (1) {
  4331         sigsuspend(&suspend_set);
  4333         os::SuspendResume::State result = osthread->sr.running();
  4334         if (result == os::SuspendResume::SR_RUNNING) {
  4335           sr_semaphore.signal();
  4336           break;
  4340     } else if (state == os::SuspendResume::SR_RUNNING) {
  4341       // request was cancelled, continue
  4342     } else {
  4343       ShouldNotReachHere();
  4346     resume_clear_context(osthread);
  4347   } else if (current == os::SuspendResume::SR_RUNNING) {
  4348     // request was cancelled, continue
  4349   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4350     // ignore
  4351   } else {
  4352     // ignore
  4355   errno = old_errno;
  4359 static int SR_initialize() {
  4360   struct sigaction act;
  4361   char *s;
  4362   /* Get signal number to use for suspend/resume */
  4363   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4364     int sig = ::strtol(s, 0, 10);
  4365     if (sig > 0 || sig < _NSIG) {
  4366         SR_signum = sig;
  4370   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4371         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4373   sigemptyset(&SR_sigset);
  4374   sigaddset(&SR_sigset, SR_signum);
  4376   /* Set up signal handler for suspend/resume */
  4377   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4378   act.sa_handler = (void (*)(int)) SR_handler;
  4380   // SR_signum is blocked by default.
  4381   // 4528190 - We also need to block pthread restart signal (32 on all
  4382   // supported Linux platforms). Note that LinuxThreads need to block
  4383   // this signal for all threads to work properly. So we don't have
  4384   // to use hard-coded signal number when setting up the mask.
  4385   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4387   if (sigaction(SR_signum, &act, 0) == -1) {
  4388     return -1;
  4391   // Save signal flag
  4392   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4393   return 0;
  4396 static int sr_notify(OSThread* osthread) {
  4397   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4398   assert_status(status == 0, status, "pthread_kill");
  4399   return status;
  4402 // "Randomly" selected value for how long we want to spin
  4403 // before bailing out on suspending a thread, also how often
  4404 // we send a signal to a thread we want to resume
  4405 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4406 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4408 // returns true on success and false on error - really an error is fatal
  4409 // but this seems the normal response to library errors
  4410 static bool do_suspend(OSThread* osthread) {
  4411   assert(osthread->sr.is_running(), "thread should be running");
  4412   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4414   // mark as suspended and send signal
  4415   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4416     // failed to switch, state wasn't running?
  4417     ShouldNotReachHere();
  4418     return false;
  4421   if (sr_notify(osthread) != 0) {
  4422     ShouldNotReachHere();
  4425   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4426   while (true) {
  4427     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4428       break;
  4429     } else {
  4430       // timeout
  4431       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4432       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4433         return false;
  4434       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4435         // make sure that we consume the signal on the semaphore as well
  4436         sr_semaphore.wait();
  4437         break;
  4438       } else {
  4439         ShouldNotReachHere();
  4440         return false;
  4445   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4446   return true;
  4449 static void do_resume(OSThread* osthread) {
  4450   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4451   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4453   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4454     // failed to switch to WAKEUP_REQUEST
  4455     ShouldNotReachHere();
  4456     return;
  4459   while (true) {
  4460     if (sr_notify(osthread) == 0) {
  4461       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4462         if (osthread->sr.is_running()) {
  4463           return;
  4466     } else {
  4467       ShouldNotReachHere();
  4471   guarantee(osthread->sr.is_running(), "Must be running!");
  4474 ////////////////////////////////////////////////////////////////////////////////
  4475 // interrupt support
  4477 void os::interrupt(Thread* thread) {
  4478   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4479     "possibility of dangling Thread pointer");
  4481   OSThread* osthread = thread->osthread();
  4483   if (!osthread->interrupted()) {
  4484     osthread->set_interrupted(true);
  4485     // More than one thread can get here with the same value of osthread,
  4486     // resulting in multiple notifications.  We do, however, want the store
  4487     // to interrupted() to be visible to other threads before we execute unpark().
  4488     OrderAccess::fence();
  4489     ParkEvent * const slp = thread->_SleepEvent ;
  4490     if (slp != NULL) slp->unpark() ;
  4493   // For JSR166. Unpark even if interrupt status already was set
  4494   if (thread->is_Java_thread())
  4495     ((JavaThread*)thread)->parker()->unpark();
  4497   ParkEvent * ev = thread->_ParkEvent ;
  4498   if (ev != NULL) ev->unpark() ;
  4502 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4503   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4504     "possibility of dangling Thread pointer");
  4506   OSThread* osthread = thread->osthread();
  4508   bool interrupted = osthread->interrupted();
  4510   if (interrupted && clear_interrupted) {
  4511     osthread->set_interrupted(false);
  4512     // consider thread->_SleepEvent->reset() ... optional optimization
  4515   return interrupted;
  4518 ///////////////////////////////////////////////////////////////////////////////////
  4519 // signal handling (except suspend/resume)
  4521 // This routine may be used by user applications as a "hook" to catch signals.
  4522 // The user-defined signal handler must pass unrecognized signals to this
  4523 // routine, and if it returns true (non-zero), then the signal handler must
  4524 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4525 // routine will never retun false (zero), but instead will execute a VM panic
  4526 // routine kill the process.
  4527 //
  4528 // If this routine returns false, it is OK to call it again.  This allows
  4529 // the user-defined signal handler to perform checks either before or after
  4530 // the VM performs its own checks.  Naturally, the user code would be making
  4531 // a serious error if it tried to handle an exception (such as a null check
  4532 // or breakpoint) that the VM was generating for its own correct operation.
  4533 //
  4534 // This routine may recognize any of the following kinds of signals:
  4535 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4536 // It should be consulted by handlers for any of those signals.
  4537 //
  4538 // The caller of this routine must pass in the three arguments supplied
  4539 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4540 // field of the structure passed to sigaction().  This routine assumes that
  4541 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4542 //
  4543 // Note that the VM will print warnings if it detects conflicting signal
  4544 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4545 //
  4546 extern "C" JNIEXPORT int
  4547 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4548                         void* ucontext, int abort_if_unrecognized);
  4550 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4551   assert(info != NULL && uc != NULL, "it must be old kernel");
  4552   int orig_errno = errno;  // Preserve errno value over signal handler.
  4553   JVM_handle_linux_signal(sig, info, uc, true);
  4554   errno = orig_errno;
  4558 // This boolean allows users to forward their own non-matching signals
  4559 // to JVM_handle_linux_signal, harmlessly.
  4560 bool os::Linux::signal_handlers_are_installed = false;
  4562 // For signal-chaining
  4563 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4564 unsigned int os::Linux::sigs = 0;
  4565 bool os::Linux::libjsig_is_loaded = false;
  4566 typedef struct sigaction *(*get_signal_t)(int);
  4567 get_signal_t os::Linux::get_signal_action = NULL;
  4569 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4570   struct sigaction *actp = NULL;
  4572   if (libjsig_is_loaded) {
  4573     // Retrieve the old signal handler from libjsig
  4574     actp = (*get_signal_action)(sig);
  4576   if (actp == NULL) {
  4577     // Retrieve the preinstalled signal handler from jvm
  4578     actp = get_preinstalled_handler(sig);
  4581   return actp;
  4584 static bool call_chained_handler(struct sigaction *actp, int sig,
  4585                                  siginfo_t *siginfo, void *context) {
  4586   // Call the old signal handler
  4587   if (actp->sa_handler == SIG_DFL) {
  4588     // It's more reasonable to let jvm treat it as an unexpected exception
  4589     // instead of taking the default action.
  4590     return false;
  4591   } else if (actp->sa_handler != SIG_IGN) {
  4592     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4593       // automaticlly block the signal
  4594       sigaddset(&(actp->sa_mask), sig);
  4597     sa_handler_t hand = NULL;
  4598     sa_sigaction_t sa = NULL;
  4599     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4600     // retrieve the chained handler
  4601     if (siginfo_flag_set) {
  4602       sa = actp->sa_sigaction;
  4603     } else {
  4604       hand = actp->sa_handler;
  4607     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4608       actp->sa_handler = SIG_DFL;
  4611     // try to honor the signal mask
  4612     sigset_t oset;
  4613     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4615     // call into the chained handler
  4616     if (siginfo_flag_set) {
  4617       (*sa)(sig, siginfo, context);
  4618     } else {
  4619       (*hand)(sig);
  4622     // restore the signal mask
  4623     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4625   // Tell jvm's signal handler the signal is taken care of.
  4626   return true;
  4629 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4630   bool chained = false;
  4631   // signal-chaining
  4632   if (UseSignalChaining) {
  4633     struct sigaction *actp = get_chained_signal_action(sig);
  4634     if (actp != NULL) {
  4635       chained = call_chained_handler(actp, sig, siginfo, context);
  4638   return chained;
  4641 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4642   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4643     return &sigact[sig];
  4645   return NULL;
  4648 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4649   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4650   sigact[sig] = oldAct;
  4651   sigs |= (unsigned int)1 << sig;
  4654 // for diagnostic
  4655 int os::Linux::sigflags[MAXSIGNUM];
  4657 int os::Linux::get_our_sigflags(int sig) {
  4658   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4659   return sigflags[sig];
  4662 void os::Linux::set_our_sigflags(int sig, int flags) {
  4663   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4664   sigflags[sig] = flags;
  4667 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4668   // Check for overwrite.
  4669   struct sigaction oldAct;
  4670   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4672   void* oldhand = oldAct.sa_sigaction
  4673                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4674                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4675   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4676       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4677       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4678     if (AllowUserSignalHandlers || !set_installed) {
  4679       // Do not overwrite; user takes responsibility to forward to us.
  4680       return;
  4681     } else if (UseSignalChaining) {
  4682       // save the old handler in jvm
  4683       save_preinstalled_handler(sig, oldAct);
  4684       // libjsig also interposes the sigaction() call below and saves the
  4685       // old sigaction on it own.
  4686     } else {
  4687       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4688                     "%#lx for signal %d.", (long)oldhand, sig));
  4692   struct sigaction sigAct;
  4693   sigfillset(&(sigAct.sa_mask));
  4694   sigAct.sa_handler = SIG_DFL;
  4695   if (!set_installed) {
  4696     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4697   } else {
  4698     sigAct.sa_sigaction = signalHandler;
  4699     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4701   // Save flags, which are set by ours
  4702   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4703   sigflags[sig] = sigAct.sa_flags;
  4705   int ret = sigaction(sig, &sigAct, &oldAct);
  4706   assert(ret == 0, "check");
  4708   void* oldhand2  = oldAct.sa_sigaction
  4709                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4710                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4711   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4714 // install signal handlers for signals that HotSpot needs to
  4715 // handle in order to support Java-level exception handling.
  4717 void os::Linux::install_signal_handlers() {
  4718   if (!signal_handlers_are_installed) {
  4719     signal_handlers_are_installed = true;
  4721     // signal-chaining
  4722     typedef void (*signal_setting_t)();
  4723     signal_setting_t begin_signal_setting = NULL;
  4724     signal_setting_t end_signal_setting = NULL;
  4725     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4726                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4727     if (begin_signal_setting != NULL) {
  4728       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4729                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4730       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4731                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4732       libjsig_is_loaded = true;
  4733       assert(UseSignalChaining, "should enable signal-chaining");
  4735     if (libjsig_is_loaded) {
  4736       // Tell libjsig jvm is setting signal handlers
  4737       (*begin_signal_setting)();
  4740     set_signal_handler(SIGSEGV, true);
  4741     set_signal_handler(SIGPIPE, true);
  4742     set_signal_handler(SIGBUS, true);
  4743     set_signal_handler(SIGILL, true);
  4744     set_signal_handler(SIGFPE, true);
  4745 #if defined(PPC64)
  4746     set_signal_handler(SIGTRAP, true);
  4747 #endif
  4748     set_signal_handler(SIGXFSZ, true);
  4750     if (libjsig_is_loaded) {
  4751       // Tell libjsig jvm finishes setting signal handlers
  4752       (*end_signal_setting)();
  4755     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4756     // and if UserSignalHandler is installed all bets are off.
  4757     // Log that signal checking is off only if -verbose:jni is specified.
  4758     if (CheckJNICalls) {
  4759       if (libjsig_is_loaded) {
  4760         if (PrintJNIResolving) {
  4761           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4763         check_signals = false;
  4765       if (AllowUserSignalHandlers) {
  4766         if (PrintJNIResolving) {
  4767           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4769         check_signals = false;
  4775 // This is the fastest way to get thread cpu time on Linux.
  4776 // Returns cpu time (user+sys) for any thread, not only for current.
  4777 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4778 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4779 // For reference, please, see IEEE Std 1003.1-2004:
  4780 //   http://www.unix.org/single_unix_specification
  4782 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4783   struct timespec tp;
  4784   int rc = os::Linux::clock_gettime(clockid, &tp);
  4785   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4787   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4790 /////
  4791 // glibc on Linux platform uses non-documented flag
  4792 // to indicate, that some special sort of signal
  4793 // trampoline is used.
  4794 // We will never set this flag, and we should
  4795 // ignore this flag in our diagnostic
  4796 #ifdef SIGNIFICANT_SIGNAL_MASK
  4797 #undef SIGNIFICANT_SIGNAL_MASK
  4798 #endif
  4799 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4801 static const char* get_signal_handler_name(address handler,
  4802                                            char* buf, int buflen) {
  4803   int offset = 0;
  4804   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4805   if (found) {
  4806     // skip directory names
  4807     const char *p1, *p2;
  4808     p1 = buf;
  4809     size_t len = strlen(os::file_separator());
  4810     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4811     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4812   } else {
  4813     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4815   return buf;
  4818 static void print_signal_handler(outputStream* st, int sig,
  4819                                  char* buf, size_t buflen) {
  4820   struct sigaction sa;
  4822   sigaction(sig, NULL, &sa);
  4824   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4825   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4827   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4829   address handler = (sa.sa_flags & SA_SIGINFO)
  4830     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4831     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4833   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4834     st->print("SIG_DFL");
  4835   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4836     st->print("SIG_IGN");
  4837   } else {
  4838     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4841   st->print(", sa_mask[0]=");
  4842   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4844   address rh = VMError::get_resetted_sighandler(sig);
  4845   // May be, handler was resetted by VMError?
  4846   if(rh != NULL) {
  4847     handler = rh;
  4848     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4851   st->print(", sa_flags=");
  4852   os::Posix::print_sa_flags(st, sa.sa_flags);
  4854   // Check: is it our handler?
  4855   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4856      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4857     // It is our signal handler
  4858     // check for flags, reset system-used one!
  4859     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4860       st->print(
  4861                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4862                 os::Linux::get_our_sigflags(sig));
  4865   st->cr();
  4869 #define DO_SIGNAL_CHECK(sig) \
  4870   if (!sigismember(&check_signal_done, sig)) \
  4871     os::Linux::check_signal_handler(sig)
  4873 // This method is a periodic task to check for misbehaving JNI applications
  4874 // under CheckJNI, we can add any periodic checks here
  4876 void os::run_periodic_checks() {
  4878   if (check_signals == false) return;
  4880   // SEGV and BUS if overridden could potentially prevent
  4881   // generation of hs*.log in the event of a crash, debugging
  4882   // such a case can be very challenging, so we absolutely
  4883   // check the following for a good measure:
  4884   DO_SIGNAL_CHECK(SIGSEGV);
  4885   DO_SIGNAL_CHECK(SIGILL);
  4886   DO_SIGNAL_CHECK(SIGFPE);
  4887   DO_SIGNAL_CHECK(SIGBUS);
  4888   DO_SIGNAL_CHECK(SIGPIPE);
  4889   DO_SIGNAL_CHECK(SIGXFSZ);
  4890 #if defined(PPC64)
  4891   DO_SIGNAL_CHECK(SIGTRAP);
  4892 #endif
  4894   // ReduceSignalUsage allows the user to override these handlers
  4895   // see comments at the very top and jvm_solaris.h
  4896   if (!ReduceSignalUsage) {
  4897     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4898     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4899     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4900     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4903   DO_SIGNAL_CHECK(SR_signum);
  4904   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4907 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4909 static os_sigaction_t os_sigaction = NULL;
  4911 void os::Linux::check_signal_handler(int sig) {
  4912   char buf[O_BUFLEN];
  4913   address jvmHandler = NULL;
  4916   struct sigaction act;
  4917   if (os_sigaction == NULL) {
  4918     // only trust the default sigaction, in case it has been interposed
  4919     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4920     if (os_sigaction == NULL) return;
  4923   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4926   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4928   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4929     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4930     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4933   switch(sig) {
  4934   case SIGSEGV:
  4935   case SIGBUS:
  4936   case SIGFPE:
  4937   case SIGPIPE:
  4938   case SIGILL:
  4939   case SIGXFSZ:
  4940     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4941     break;
  4943   case SHUTDOWN1_SIGNAL:
  4944   case SHUTDOWN2_SIGNAL:
  4945   case SHUTDOWN3_SIGNAL:
  4946   case BREAK_SIGNAL:
  4947     jvmHandler = (address)user_handler();
  4948     break;
  4950   case INTERRUPT_SIGNAL:
  4951     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4952     break;
  4954   default:
  4955     if (sig == SR_signum) {
  4956       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4957     } else {
  4958       return;
  4960     break;
  4963   if (thisHandler != jvmHandler) {
  4964     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4965     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4966     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4967     // No need to check this sig any longer
  4968     sigaddset(&check_signal_done, sig);
  4969     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4970     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4971       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4972                     exception_name(sig, buf, O_BUFLEN));
  4974   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4975     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4976     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4977     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4978     // No need to check this sig any longer
  4979     sigaddset(&check_signal_done, sig);
  4982   // Dump all the signal
  4983   if (sigismember(&check_signal_done, sig)) {
  4984     print_signal_handlers(tty, buf, O_BUFLEN);
  4988 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4990 extern bool signal_name(int signo, char* buf, size_t len);
  4992 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4993   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4994     // signal
  4995     if (!signal_name(exception_code, buf, size)) {
  4996       jio_snprintf(buf, size, "SIG%d", exception_code);
  4998     return buf;
  4999   } else {
  5000     return NULL;
  5004 // this is called _before_ most of the global arguments have been parsed
  5005 void os::init(void) {
  5006   char dummy;   /* used to get a guess on initial stack address */
  5008   // With LinuxThreads the JavaMain thread pid (primordial thread)
  5009   // is different than the pid of the java launcher thread.
  5010   // So, on Linux, the launcher thread pid is passed to the VM
  5011   // via the sun.java.launcher.pid property.
  5012   // Use this property instead of getpid() if it was correctly passed.
  5013   // See bug 6351349.
  5014   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  5016   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  5018   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  5020   init_random(1234567);
  5022   ThreadCritical::initialize();
  5024   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  5025   if (Linux::page_size() == -1) {
  5026     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  5027                   strerror(errno)));
  5029   init_page_sizes((size_t) Linux::page_size());
  5031   Linux::initialize_system_info();
  5033   // _main_thread points to the thread that created/loaded the JVM.
  5034   Linux::_main_thread = pthread_self();
  5036   Linux::clock_init();
  5037   initial_time_count = javaTimeNanos();
  5039   // pthread_condattr initialization for monotonic clock
  5040   int status;
  5041   pthread_condattr_t* _condattr = os::Linux::condAttr();
  5042   if ((status = pthread_condattr_init(_condattr)) != 0) {
  5043     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  5045   // Only set the clock if CLOCK_MONOTONIC is available
  5046   if (Linux::supports_monotonic_clock()) {
  5047     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  5048       if (status == EINVAL) {
  5049         warning("Unable to use monotonic clock with relative timed-waits" \
  5050                 " - changes to the time-of-day clock may have adverse affects");
  5051       } else {
  5052         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  5056   // else it defaults to CLOCK_REALTIME
  5058   pthread_mutex_init(&dl_mutex, NULL);
  5060   // If the pagesize of the VM is greater than 8K determine the appropriate
  5061   // number of initial guard pages.  The user can change this with the
  5062   // command line arguments, if needed.
  5063   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  5064     StackYellowPages = 1;
  5065     StackRedPages = 1;
  5066     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  5070 // To install functions for atexit system call
  5071 extern "C" {
  5072   static void perfMemory_exit_helper() {
  5073     perfMemory_exit();
  5077 void os::pd_init_container_support() {
  5078   OSContainer::init();
  5081 // this is called _after_ the global arguments have been parsed
  5082 jint os::init_2(void)
  5084   Linux::fast_thread_clock_init();
  5086   // Allocate a single page and mark it as readable for safepoint polling
  5087 #ifdef OPT_SAFEPOINT
  5088   void * p = (void *)(0x10000);
  5089   address polling_page = (address) ::mmap(p, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5090 #else
  5091   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5092 #endif
  5093   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  5095   os::set_polling_page( polling_page );
  5097 #ifndef PRODUCT
  5098   if(Verbose && PrintMiscellaneous)
  5099     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5100 #endif
  5102   if (!UseMembar) {
  5103     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5104     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  5105     os::set_memory_serialize_page( mem_serialize_page );
  5107 #ifndef PRODUCT
  5108     if(Verbose && PrintMiscellaneous)
  5109       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5110 #endif
  5113   // initialize suspend/resume support - must do this before signal_sets_init()
  5114   if (SR_initialize() != 0) {
  5115     perror("SR_initialize failed");
  5116     return JNI_ERR;
  5119   Linux::signal_sets_init();
  5120   Linux::install_signal_handlers();
  5122   // Check minimum allowable stack size for thread creation and to initialize
  5123   // the java system classes, including StackOverflowError - depends on page
  5124   // size.  Add a page for compiler2 recursion in main thread.
  5125   // Add in 2*BytesPerWord times page size to account for VM stack during
  5126   // class initialization depending on 32 or 64 bit VM.
  5128   /* 2014/1/2 Liao: JDK8 requires larger -Xss option.
  5129    *   TongWeb cannot run with -Xss192K.
  5130    *   We are not sure whether this causes errors, so simply print a warning. */
  5131   size_t min_stack_allowed_jdk6 = os::Linux::min_stack_allowed;
  5132   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  5133             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  5134                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  5136   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5137   if (threadStackSizeInBytes != 0 &&
  5138       threadStackSizeInBytes < min_stack_allowed_jdk6) {
  5139         tty->print_cr("\nThe stack size specified is too small, "
  5140                       "Specify at least %dk",
  5141                       os::Linux::min_stack_allowed/ K);
  5142         return JNI_ERR;
  5145   // Make the stack size a multiple of the page size so that
  5146   // the yellow/red zones can be guarded.
  5147   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5148         vm_page_size()));
  5150   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  5152 #if defined(IA32)
  5153   workaround_expand_exec_shield_cs_limit();
  5154 #endif
  5156   Linux::libpthread_init();
  5157   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  5158      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  5159           Linux::glibc_version(), Linux::libpthread_version(),
  5160           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  5163   if (UseNUMA) {
  5164     if (!Linux::libnuma_init()) {
  5165       UseNUMA = false;
  5166     } else {
  5167       if ((Linux::numa_max_node() < 1)) {
  5168         // There's only one node(they start from 0), disable NUMA.
  5169         UseNUMA = false;
  5172     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  5173     // we can make the adaptive lgrp chunk resizing work. If the user specified
  5174     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  5175     // disable adaptive resizing.
  5176     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  5177       if (FLAG_IS_DEFAULT(UseNUMA)) {
  5178         UseNUMA = false;
  5179       } else {
  5180         if (FLAG_IS_DEFAULT(UseLargePages) &&
  5181             FLAG_IS_DEFAULT(UseSHM) &&
  5182             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  5183           UseLargePages = false;
  5184         } else {
  5185           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  5186           UseAdaptiveSizePolicy = false;
  5187           UseAdaptiveNUMAChunkSizing = false;
  5191     if (!UseNUMA && ForceNUMA) {
  5192       UseNUMA = true;
  5196   if (MaxFDLimit) {
  5197     // set the number of file descriptors to max. print out error
  5198     // if getrlimit/setrlimit fails but continue regardless.
  5199     struct rlimit nbr_files;
  5200     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5201     if (status != 0) {
  5202       if (PrintMiscellaneous && (Verbose || WizardMode))
  5203         perror("os::init_2 getrlimit failed");
  5204     } else {
  5205       nbr_files.rlim_cur = nbr_files.rlim_max;
  5206       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5207       if (status != 0) {
  5208         if (PrintMiscellaneous && (Verbose || WizardMode))
  5209           perror("os::init_2 setrlimit failed");
  5214   // Initialize lock used to serialize thread creation (see os::create_thread)
  5215   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  5217   // at-exit methods are called in the reverse order of their registration.
  5218   // atexit functions are called on return from main or as a result of a
  5219   // call to exit(3C). There can be only 32 of these functions registered
  5220   // and atexit() does not set errno.
  5222   if (PerfAllowAtExitRegistration) {
  5223     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5224     // atexit functions can be delayed until process exit time, which
  5225     // can be problematic for embedded VM situations. Embedded VMs should
  5226     // call DestroyJavaVM() to assure that VM resources are released.
  5228     // note: perfMemory_exit_helper atexit function may be removed in
  5229     // the future if the appropriate cleanup code can be added to the
  5230     // VM_Exit VMOperation's doit method.
  5231     if (atexit(perfMemory_exit_helper) != 0) {
  5232       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5236   // initialize thread priority policy
  5237   prio_init();
  5239   return JNI_OK;
  5242 // Mark the polling page as unreadable
  5243 void os::make_polling_page_unreadable(void) {
  5244   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5245     fatal("Could not disable polling page");
  5246 };
  5248 // Mark the polling page as readable
  5249 void os::make_polling_page_readable(void) {
  5250   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5251     fatal("Could not enable polling page");
  5253 };
  5255 static int os_cpu_count(const cpu_set_t* cpus) {
  5256   int count = 0;
  5257   // only look up to the number of configured processors
  5258   for (int i = 0; i < os::processor_count(); i++) {
  5259     if (CPU_ISSET(i, cpus)) {
  5260       count++;
  5263   return count;
  5266 // Get the current number of available processors for this process.
  5267 // This value can change at any time during a process's lifetime.
  5268 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5269 // If anything goes wrong we fallback to returning the number of online
  5270 // processors - which can be greater than the number available to the process.
  5271 int os::Linux::active_processor_count() {
  5272   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5273   int cpus_size = sizeof(cpu_set_t);
  5274   int cpu_count = 0;
  5276   // pid 0 means the current thread - which we have to assume represents the process
  5277   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5278     cpu_count = os_cpu_count(&cpus);
  5279     if (PrintActiveCpus) {
  5280       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5283   else {
  5284     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5285     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5286             "which may exceed available processors", strerror(errno), cpu_count);
  5289   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
  5290   return cpu_count;
  5293 // Determine the active processor count from one of
  5294 // three different sources:
  5295 //
  5296 // 1. User option -XX:ActiveProcessorCount
  5297 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
  5298 // 3. extracted from cgroup cpu subsystem (shares and quotas)
  5299 //
  5300 // Option 1, if specified, will always override.
  5301 // If the cgroup subsystem is active and configured, we
  5302 // will return the min of the cgroup and option 2 results.
  5303 // This is required since tools, such as numactl, that
  5304 // alter cpu affinity do not update cgroup subsystem
  5305 // cpuset configuration files.
  5306 int os::active_processor_count() {
  5307   // User has overridden the number of active processors
  5308   if (ActiveProcessorCount > 0) {
  5309     if (PrintActiveCpus) {
  5310       tty->print_cr("active_processor_count: "
  5311                     "active processor count set by user : %d",
  5312                     ActiveProcessorCount);
  5314     return ActiveProcessorCount;
  5317   int active_cpus;
  5318   if (OSContainer::is_containerized()) {
  5319     active_cpus = OSContainer::active_processor_count();
  5320     if (PrintActiveCpus) {
  5321       tty->print_cr("active_processor_count: determined by OSContainer: %d",
  5322                      active_cpus);
  5324   } else {
  5325     active_cpus = os::Linux::active_processor_count();
  5328   return active_cpus;
  5331 void os::set_native_thread_name(const char *name) {
  5332   // Not yet implemented.
  5333   return;
  5336 bool os::distribute_processes(uint length, uint* distribution) {
  5337   // Not yet implemented.
  5338   return false;
  5341 bool os::bind_to_processor(uint processor_id) {
  5342   // Not yet implemented.
  5343   return false;
  5346 ///
  5348 void os::SuspendedThreadTask::internal_do_task() {
  5349   if (do_suspend(_thread->osthread())) {
  5350     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5351     do_task(context);
  5352     do_resume(_thread->osthread());
  5356 class PcFetcher : public os::SuspendedThreadTask {
  5357 public:
  5358   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5359   ExtendedPC result();
  5360 protected:
  5361   void do_task(const os::SuspendedThreadTaskContext& context);
  5362 private:
  5363   ExtendedPC _epc;
  5364 };
  5366 ExtendedPC PcFetcher::result() {
  5367   guarantee(is_done(), "task is not done yet.");
  5368   return _epc;
  5371 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5372   Thread* thread = context.thread();
  5373   OSThread* osthread = thread->osthread();
  5374   if (osthread->ucontext() != NULL) {
  5375     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5376   } else {
  5377     // NULL context is unexpected, double-check this is the VMThread
  5378     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5382 // Suspends the target using the signal mechanism and then grabs the PC before
  5383 // resuming the target. Used by the flat-profiler only
  5384 ExtendedPC os::get_thread_pc(Thread* thread) {
  5385   // Make sure that it is called by the watcher for the VMThread
  5386   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5387   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5389   PcFetcher fetcher(thread);
  5390   fetcher.run();
  5391   return fetcher.result();
  5394 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5396    if (is_NPTL()) {
  5397       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5398    } else {
  5399       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5400       // word back to default 64bit precision if condvar is signaled. Java
  5401       // wants 53bit precision.  Save and restore current value.
  5402       int fpu = get_fpu_control_word();
  5403       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5404       set_fpu_control_word(fpu);
  5405       return status;
  5409 ////////////////////////////////////////////////////////////////////////////////
  5410 // debug support
  5412 bool os::find(address addr, outputStream* st) {
  5413   Dl_info dlinfo;
  5414   memset(&dlinfo, 0, sizeof(dlinfo));
  5415   if (dladdr(addr, &dlinfo) != 0) {
  5416     st->print(PTR_FORMAT ": ", addr);
  5417     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5418       st->print("%s+%#x", dlinfo.dli_sname,
  5419                  addr - (intptr_t)dlinfo.dli_saddr);
  5420     } else if (dlinfo.dli_fbase != NULL) {
  5421       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5422     } else {
  5423       st->print("<absolute address>");
  5425     if (dlinfo.dli_fname != NULL) {
  5426       st->print(" in %s", dlinfo.dli_fname);
  5428     if (dlinfo.dli_fbase != NULL) {
  5429       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5431     st->cr();
  5433     if (Verbose) {
  5434       // decode some bytes around the PC
  5435       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5436       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5437       address       lowest = (address) dlinfo.dli_sname;
  5438       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5439       if (begin < lowest)  begin = lowest;
  5440       Dl_info dlinfo2;
  5441       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5442           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5443         end = (address) dlinfo2.dli_saddr;
  5444       Disassembler::decode(begin, end, st);
  5446     return true;
  5448   return false;
  5451 ////////////////////////////////////////////////////////////////////////////////
  5452 // misc
  5454 // This does not do anything on Linux. This is basically a hook for being
  5455 // able to use structured exception handling (thread-local exception filters)
  5456 // on, e.g., Win32.
  5457 void
  5458 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5459                          JavaCallArguments* args, Thread* thread) {
  5460   f(value, method, args, thread);
  5463 void os::print_statistics() {
  5466 int os::message_box(const char* title, const char* message) {
  5467   int i;
  5468   fdStream err(defaultStream::error_fd());
  5469   for (i = 0; i < 78; i++) err.print_raw("=");
  5470   err.cr();
  5471   err.print_raw_cr(title);
  5472   for (i = 0; i < 78; i++) err.print_raw("-");
  5473   err.cr();
  5474   err.print_raw_cr(message);
  5475   for (i = 0; i < 78; i++) err.print_raw("=");
  5476   err.cr();
  5478   char buf[16];
  5479   // Prevent process from exiting upon "read error" without consuming all CPU
  5480   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5482   return buf[0] == 'y' || buf[0] == 'Y';
  5485 int os::stat(const char *path, struct stat *sbuf) {
  5486   char pathbuf[MAX_PATH];
  5487   if (strlen(path) > MAX_PATH - 1) {
  5488     errno = ENAMETOOLONG;
  5489     return -1;
  5491   os::native_path(strcpy(pathbuf, path));
  5492   return ::stat(pathbuf, sbuf);
  5495 bool os::check_heap(bool force) {
  5496   return true;
  5499 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5500   return ::vsnprintf(buf, count, format, args);
  5503 // Is a (classpath) directory empty?
  5504 bool os::dir_is_empty(const char* path) {
  5505   DIR *dir = NULL;
  5506   struct dirent *ptr;
  5508   dir = opendir(path);
  5509   if (dir == NULL) return true;
  5511   /* Scan the directory */
  5512   bool result = true;
  5513   char buf[sizeof(struct dirent) + MAX_PATH];
  5514   while (result && (ptr = ::readdir(dir)) != NULL) {
  5515     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5516       result = false;
  5519   closedir(dir);
  5520   return result;
  5523 // This code originates from JDK's sysOpen and open64_w
  5524 // from src/solaris/hpi/src/system_md.c
  5526 #ifndef O_DELETE
  5527 #define O_DELETE 0x10000
  5528 #endif
  5530 // Open a file. Unlink the file immediately after open returns
  5531 // if the specified oflag has the O_DELETE flag set.
  5532 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5534 int os::open(const char *path, int oflag, int mode) {
  5536   if (strlen(path) > MAX_PATH - 1) {
  5537     errno = ENAMETOOLONG;
  5538     return -1;
  5540   int fd;
  5541   int o_delete = (oflag & O_DELETE);
  5542   oflag = oflag & ~O_DELETE;
  5544   fd = ::open64(path, oflag, mode);
  5545   if (fd == -1) return -1;
  5547   //If the open succeeded, the file might still be a directory
  5549     struct stat64 buf64;
  5550     int ret = ::fstat64(fd, &buf64);
  5551     int st_mode = buf64.st_mode;
  5553     if (ret != -1) {
  5554       if ((st_mode & S_IFMT) == S_IFDIR) {
  5555         errno = EISDIR;
  5556         ::close(fd);
  5557         return -1;
  5559     } else {
  5560       ::close(fd);
  5561       return -1;
  5565     /*
  5566      * All file descriptors that are opened in the JVM and not
  5567      * specifically destined for a subprocess should have the
  5568      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5569      * party native code might fork and exec without closing all
  5570      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5571      * UNIXProcess.c), and this in turn might:
  5573      * - cause end-of-file to fail to be detected on some file
  5574      *   descriptors, resulting in mysterious hangs, or
  5576      * - might cause an fopen in the subprocess to fail on a system
  5577      *   suffering from bug 1085341.
  5579      * (Yes, the default setting of the close-on-exec flag is a Unix
  5580      * design flaw)
  5582      * See:
  5583      * 1085341: 32-bit stdio routines should support file descriptors >255
  5584      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5585      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5586      */
  5587 #ifdef FD_CLOEXEC
  5589         int flags = ::fcntl(fd, F_GETFD);
  5590         if (flags != -1)
  5591             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5593 #endif
  5595   if (o_delete != 0) {
  5596     ::unlink(path);
  5598   return fd;
  5602 // create binary file, rewriting existing file if required
  5603 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5604   int oflags = O_WRONLY | O_CREAT;
  5605   if (!rewrite_existing) {
  5606     oflags |= O_EXCL;
  5608   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5611 // return current position of file pointer
  5612 jlong os::current_file_offset(int fd) {
  5613   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5616 // move file pointer to the specified offset
  5617 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5618   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5621 // This code originates from JDK's sysAvailable
  5622 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5624 int os::available(int fd, jlong *bytes) {
  5625   jlong cur, end;
  5626   int mode;
  5627   struct stat64 buf64;
  5629   if (::fstat64(fd, &buf64) >= 0) {
  5630     mode = buf64.st_mode;
  5631     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5632       /*
  5633       * XXX: is the following call interruptible? If so, this might
  5634       * need to go through the INTERRUPT_IO() wrapper as for other
  5635       * blocking, interruptible calls in this file.
  5636       */
  5637       int n;
  5638       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5639         *bytes = n;
  5640         return 1;
  5644   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5645     return 0;
  5646   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5647     return 0;
  5648   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5649     return 0;
  5651   *bytes = end - cur;
  5652   return 1;
  5655 int os::socket_available(int fd, jint *pbytes) {
  5656   // Linux doc says EINTR not returned, unlike Solaris
  5657   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5659   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5660   // is expected to return 0 on failure and 1 on success to the jdk.
  5661   return (ret < 0) ? 0 : 1;
  5664 // Map a block of memory.
  5665 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5666                      char *addr, size_t bytes, bool read_only,
  5667                      bool allow_exec) {
  5668   int prot;
  5669   int flags = MAP_PRIVATE;
  5671   if (read_only) {
  5672     prot = PROT_READ;
  5673   } else {
  5674     prot = PROT_READ | PROT_WRITE;
  5677   if (allow_exec) {
  5678     prot |= PROT_EXEC;
  5681   if (addr != NULL) {
  5682     flags |= MAP_FIXED;
  5685   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5686                                      fd, file_offset);
  5687   if (mapped_address == MAP_FAILED) {
  5688     return NULL;
  5690   return mapped_address;
  5694 // Remap a block of memory.
  5695 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5696                        char *addr, size_t bytes, bool read_only,
  5697                        bool allow_exec) {
  5698   // same as map_memory() on this OS
  5699   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5700                         allow_exec);
  5704 // Unmap a block of memory.
  5705 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5706   return munmap(addr, bytes) == 0;
  5709 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5711 static clockid_t thread_cpu_clockid(Thread* thread) {
  5712   pthread_t tid = thread->osthread()->pthread_id();
  5713   clockid_t clockid;
  5715   // Get thread clockid
  5716   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5717   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5718   return clockid;
  5721 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5722 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5723 // of a thread.
  5724 //
  5725 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5726 // the fast estimate available on the platform.
  5728 jlong os::current_thread_cpu_time() {
  5729   if (os::Linux::supports_fast_thread_cpu_time()) {
  5730     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5731   } else {
  5732     // return user + sys since the cost is the same
  5733     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5737 jlong os::thread_cpu_time(Thread* thread) {
  5738   // consistent with what current_thread_cpu_time() returns
  5739   if (os::Linux::supports_fast_thread_cpu_time()) {
  5740     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5741   } else {
  5742     return slow_thread_cpu_time(thread, true /* user + sys */);
  5746 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5747   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5748     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5749   } else {
  5750     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5754 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5755   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5756     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5757   } else {
  5758     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5762 //
  5763 //  -1 on error.
  5764 //
  5766 PRAGMA_DIAG_PUSH
  5767 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5768 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5769   static bool proc_task_unchecked = true;
  5770   static const char *proc_stat_path = "/proc/%d/stat";
  5771   pid_t  tid = thread->osthread()->thread_id();
  5772   char *s;
  5773   char stat[2048];
  5774   int statlen;
  5775   char proc_name[64];
  5776   int count;
  5777   long sys_time, user_time;
  5778   char cdummy;
  5779   int idummy;
  5780   long ldummy;
  5781   FILE *fp;
  5783   // The /proc/<tid>/stat aggregates per-process usage on
  5784   // new Linux kernels 2.6+ where NPTL is supported.
  5785   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5786   // See bug 6328462.
  5787   // There possibly can be cases where there is no directory
  5788   // /proc/self/task, so we check its availability.
  5789   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5790     // This is executed only once
  5791     proc_task_unchecked = false;
  5792     fp = fopen("/proc/self/task", "r");
  5793     if (fp != NULL) {
  5794       proc_stat_path = "/proc/self/task/%d/stat";
  5795       fclose(fp);
  5799   sprintf(proc_name, proc_stat_path, tid);
  5800   fp = fopen(proc_name, "r");
  5801   if ( fp == NULL ) return -1;
  5802   statlen = fread(stat, 1, 2047, fp);
  5803   stat[statlen] = '\0';
  5804   fclose(fp);
  5806   // Skip pid and the command string. Note that we could be dealing with
  5807   // weird command names, e.g. user could decide to rename java launcher
  5808   // to "java 1.4.2 :)", then the stat file would look like
  5809   //                1234 (java 1.4.2 :)) R ... ...
  5810   // We don't really need to know the command string, just find the last
  5811   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5812   s = strrchr(stat, ')');
  5813   if (s == NULL ) return -1;
  5815   // Skip blank chars
  5816   do s++; while (isspace(*s));
  5818   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5819                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5820                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5821                  &user_time, &sys_time);
  5822   if ( count != 13 ) return -1;
  5823   if (user_sys_cpu_time) {
  5824     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5825   } else {
  5826     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5829 PRAGMA_DIAG_POP
  5831 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5832   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5833   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5834   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5835   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5838 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5839   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5840   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5841   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5842   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5845 bool os::is_thread_cpu_time_supported() {
  5846   return true;
  5849 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5850 // Linux doesn't yet have a (official) notion of processor sets,
  5851 // so just return the system wide load average.
  5852 int os::loadavg(double loadavg[], int nelem) {
  5853   return ::getloadavg(loadavg, nelem);
  5856 void os::pause() {
  5857   char filename[MAX_PATH];
  5858   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5859     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5860   } else {
  5861     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5864   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5865   if (fd != -1) {
  5866     struct stat buf;
  5867     ::close(fd);
  5868     while (::stat(filename, &buf) == 0) {
  5869       (void)::poll(NULL, 0, 100);
  5871   } else {
  5872     jio_fprintf(stderr,
  5873       "Could not open pause file '%s', continuing immediately.\n", filename);
  5878 // Refer to the comments in os_solaris.cpp park-unpark.
  5879 //
  5880 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5881 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5882 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5883 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5884 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5885 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5886 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5887 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5888 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5889 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5890 // of libpthread avoids the problem, but isn't practical.
  5891 //
  5892 // Possible remedies:
  5893 //
  5894 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5895 //      This is palliative and probabilistic, however.  If the thread is preempted
  5896 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5897 //      than the minimum period may have passed, and the abstime may be stale (in the
  5898 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5899 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5900 //
  5901 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5902 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5903 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5904 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5905 //      thread.
  5906 //
  5907 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5908 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5909 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5910 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5911 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5912 //      timers in a graceful fashion.
  5913 //
  5914 // 4.   When the abstime value is in the past it appears that control returns
  5915 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5916 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5917 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5918 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5919 //      It may be possible to avoid reinitialization by checking the return
  5920 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5921 //      condvar we must establish the invariant that cond_signal() is only called
  5922 //      within critical sections protected by the adjunct mutex.  This prevents
  5923 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5924 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5925 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5926 //
  5927 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5928 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5929 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5930 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5931 //
  5932 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5933 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5934 // and only enabling the work-around for vulnerable environments.
  5936 // utility to compute the abstime argument to timedwait:
  5937 // millis is the relative timeout time
  5938 // abstime will be the absolute timeout time
  5939 // TODO: replace compute_abstime() with unpackTime()
  5941 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5942   if (millis < 0)  millis = 0;
  5944   jlong seconds = millis / 1000;
  5945   millis %= 1000;
  5946   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5947     seconds = 50000000;
  5950   if (os::Linux::supports_monotonic_clock()) {
  5951     struct timespec now;
  5952     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5953     assert_status(status == 0, status, "clock_gettime");
  5954     abstime->tv_sec = now.tv_sec  + seconds;
  5955     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5956     if (nanos >= NANOSECS_PER_SEC) {
  5957       abstime->tv_sec += 1;
  5958       nanos -= NANOSECS_PER_SEC;
  5960     abstime->tv_nsec = nanos;
  5961   } else {
  5962     struct timeval now;
  5963     int status = gettimeofday(&now, NULL);
  5964     assert(status == 0, "gettimeofday");
  5965     abstime->tv_sec = now.tv_sec  + seconds;
  5966     long usec = now.tv_usec + millis * 1000;
  5967     if (usec >= 1000000) {
  5968       abstime->tv_sec += 1;
  5969       usec -= 1000000;
  5971     abstime->tv_nsec = usec * 1000;
  5973   return abstime;
  5977 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5978 // Conceptually TryPark() should be equivalent to park(0).
  5980 int os::PlatformEvent::TryPark() {
  5981   for (;;) {
  5982     const int v = _Event ;
  5983     guarantee ((v == 0) || (v == 1), "invariant") ;
  5984     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5988 void os::PlatformEvent::park() {       // AKA "down()"
  5989   // Invariant: Only the thread associated with the Event/PlatformEvent
  5990   // may call park().
  5991   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5992   int v ;
  5993   for (;;) {
  5994       v = _Event ;
  5995       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5997   guarantee (v >= 0, "invariant") ;
  5998   if (v == 0) {
  5999      // Do this the hard way by blocking ...
  6000      int status = pthread_mutex_lock(_mutex);
  6001      assert_status(status == 0, status, "mutex_lock");
  6002      guarantee (_nParked == 0, "invariant") ;
  6003      ++ _nParked ;
  6004      while (_Event < 0) {
  6005         status = pthread_cond_wait(_cond, _mutex);
  6006         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  6007         // Treat this the same as if the wait was interrupted
  6008         if (status == ETIME) { status = EINTR; }
  6009         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  6011      -- _nParked ;
  6013     _Event = 0 ;
  6014      status = pthread_mutex_unlock(_mutex);
  6015      assert_status(status == 0, status, "mutex_unlock");
  6016     // Paranoia to ensure our locked and lock-free paths interact
  6017     // correctly with each other.
  6018     OrderAccess::fence();
  6020   guarantee (_Event >= 0, "invariant") ;
  6023 int os::PlatformEvent::park(jlong millis) {
  6024   guarantee (_nParked == 0, "invariant") ;
  6026   int v ;
  6027   for (;;) {
  6028       v = _Event ;
  6029       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6031   guarantee (v >= 0, "invariant") ;
  6032   if (v != 0) return OS_OK ;
  6034   // We do this the hard way, by blocking the thread.
  6035   // Consider enforcing a minimum timeout value.
  6036   struct timespec abst;
  6037   compute_abstime(&abst, millis);
  6039   int ret = OS_TIMEOUT;
  6040   int status = pthread_mutex_lock(_mutex);
  6041   assert_status(status == 0, status, "mutex_lock");
  6042   guarantee (_nParked == 0, "invariant") ;
  6043   ++_nParked ;
  6045   // Object.wait(timo) will return because of
  6046   // (a) notification
  6047   // (b) timeout
  6048   // (c) thread.interrupt
  6049   //
  6050   // Thread.interrupt and object.notify{All} both call Event::set.
  6051   // That is, we treat thread.interrupt as a special case of notification.
  6052   // The underlying Solaris implementation, cond_timedwait, admits
  6053   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  6054   // JVM from making those visible to Java code.  As such, we must
  6055   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  6056   //
  6057   // TODO: properly differentiate simultaneous notify+interrupt.
  6058   // In that case, we should propagate the notify to another waiter.
  6060   while (_Event < 0) {
  6061     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  6062     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6063       pthread_cond_destroy (_cond);
  6064       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  6066     assert_status(status == 0 || status == EINTR ||
  6067                   status == ETIME || status == ETIMEDOUT,
  6068                   status, "cond_timedwait");
  6069     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  6070     if (status == ETIME || status == ETIMEDOUT) break ;
  6071     // We consume and ignore EINTR and spurious wakeups.
  6073   --_nParked ;
  6074   if (_Event >= 0) {
  6075      ret = OS_OK;
  6077   _Event = 0 ;
  6078   status = pthread_mutex_unlock(_mutex);
  6079   assert_status(status == 0, status, "mutex_unlock");
  6080   assert (_nParked == 0, "invariant") ;
  6081   // Paranoia to ensure our locked and lock-free paths interact
  6082   // correctly with each other.
  6083   OrderAccess::fence();
  6084   return ret;
  6087 void os::PlatformEvent::unpark() {
  6088   // Transitions for _Event:
  6089   //    0 :=> 1
  6090   //    1 :=> 1
  6091   //   -1 :=> either 0 or 1; must signal target thread
  6092   //          That is, we can safely transition _Event from -1 to either
  6093   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6094   //          unpark() calls.
  6095   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6096   //
  6097   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6098   // that it will take two back-to-back park() calls for the owning
  6099   // thread to block. This has the benefit of forcing a spurious return
  6100   // from the first park() call after an unpark() call which will help
  6101   // shake out uses of park() and unpark() without condition variables.
  6103   if (Atomic::xchg(1, &_Event) >= 0) return;
  6105   // Wait for the thread associated with the event to vacate
  6106   int status = pthread_mutex_lock(_mutex);
  6107   assert_status(status == 0, status, "mutex_lock");
  6108   int AnyWaiters = _nParked;
  6109   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6110   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  6111     AnyWaiters = 0;
  6112     pthread_cond_signal(_cond);
  6114   status = pthread_mutex_unlock(_mutex);
  6115   assert_status(status == 0, status, "mutex_unlock");
  6116   if (AnyWaiters != 0) {
  6117     status = pthread_cond_signal(_cond);
  6118     assert_status(status == 0, status, "cond_signal");
  6121   // Note that we signal() _after dropping the lock for "immortal" Events.
  6122   // This is safe and avoids a common class of  futile wakeups.  In rare
  6123   // circumstances this can cause a thread to return prematurely from
  6124   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  6125   // simply re-test the condition and re-park itself.
  6129 // JSR166
  6130 // -------------------------------------------------------
  6132 /*
  6133  * The solaris and linux implementations of park/unpark are fairly
  6134  * conservative for now, but can be improved. They currently use a
  6135  * mutex/condvar pair, plus a a count.
  6136  * Park decrements count if > 0, else does a condvar wait.  Unpark
  6137  * sets count to 1 and signals condvar.  Only one thread ever waits
  6138  * on the condvar. Contention seen when trying to park implies that someone
  6139  * is unparking you, so don't wait. And spurious returns are fine, so there
  6140  * is no need to track notifications.
  6141  */
  6143 /*
  6144  * This code is common to linux and solaris and will be moved to a
  6145  * common place in dolphin.
  6147  * The passed in time value is either a relative time in nanoseconds
  6148  * or an absolute time in milliseconds. Either way it has to be unpacked
  6149  * into suitable seconds and nanoseconds components and stored in the
  6150  * given timespec structure.
  6151  * Given time is a 64-bit value and the time_t used in the timespec is only
  6152  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6153  * overflow if times way in the future are given. Further on Solaris versions
  6154  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6155  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6156  * As it will be 28 years before "now + 100000000" will overflow we can
  6157  * ignore overflow and just impose a hard-limit on seconds using the value
  6158  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6159  * years from "now".
  6160  */
  6162 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6163   assert (time > 0, "convertTime");
  6164   time_t max_secs = 0;
  6166   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  6167     struct timeval now;
  6168     int status = gettimeofday(&now, NULL);
  6169     assert(status == 0, "gettimeofday");
  6171     max_secs = now.tv_sec + MAX_SECS;
  6173     if (isAbsolute) {
  6174       jlong secs = time / 1000;
  6175       if (secs > max_secs) {
  6176         absTime->tv_sec = max_secs;
  6177       } else {
  6178         absTime->tv_sec = secs;
  6180       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6181     } else {
  6182       jlong secs = time / NANOSECS_PER_SEC;
  6183       if (secs >= MAX_SECS) {
  6184         absTime->tv_sec = max_secs;
  6185         absTime->tv_nsec = 0;
  6186       } else {
  6187         absTime->tv_sec = now.tv_sec + secs;
  6188         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6189         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6190           absTime->tv_nsec -= NANOSECS_PER_SEC;
  6191           ++absTime->tv_sec; // note: this must be <= max_secs
  6195   } else {
  6196     // must be relative using monotonic clock
  6197     struct timespec now;
  6198     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6199     assert_status(status == 0, status, "clock_gettime");
  6200     max_secs = now.tv_sec + MAX_SECS;
  6201     jlong secs = time / NANOSECS_PER_SEC;
  6202     if (secs >= MAX_SECS) {
  6203       absTime->tv_sec = max_secs;
  6204       absTime->tv_nsec = 0;
  6205     } else {
  6206       absTime->tv_sec = now.tv_sec + secs;
  6207       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  6208       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6209         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6210         ++absTime->tv_sec; // note: this must be <= max_secs
  6214   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6215   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6216   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6217   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6220 void Parker::park(bool isAbsolute, jlong time) {
  6221   // Ideally we'd do something useful while spinning, such
  6222   // as calling unpackTime().
  6224   // Optional fast-path check:
  6225   // Return immediately if a permit is available.
  6226   // We depend on Atomic::xchg() having full barrier semantics
  6227   // since we are doing a lock-free update to _counter.
  6228   if (Atomic::xchg(0, &_counter) > 0) return;
  6230   Thread* thread = Thread::current();
  6231   assert(thread->is_Java_thread(), "Must be JavaThread");
  6232   JavaThread *jt = (JavaThread *)thread;
  6234   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  6235   // Check interrupt before trying to wait
  6236   if (Thread::is_interrupted(thread, false)) {
  6237     return;
  6240   // Next, demultiplex/decode time arguments
  6241   timespec absTime;
  6242   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6243     return;
  6245   if (time > 0) {
  6246     unpackTime(&absTime, isAbsolute, time);
  6250   // Enter safepoint region
  6251   // Beware of deadlocks such as 6317397.
  6252   // The per-thread Parker:: mutex is a classic leaf-lock.
  6253   // In particular a thread must never block on the Threads_lock while
  6254   // holding the Parker:: mutex.  If safepoints are pending both the
  6255   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6256   ThreadBlockInVM tbivm(jt);
  6258   // Don't wait if cannot get lock since interference arises from
  6259   // unblocking.  Also. check interrupt before trying wait
  6260   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6261     return;
  6264   int status ;
  6265   if (_counter > 0)  { // no wait needed
  6266     _counter = 0;
  6267     status = pthread_mutex_unlock(_mutex);
  6268     assert (status == 0, "invariant") ;
  6269     // Paranoia to ensure our locked and lock-free paths interact
  6270     // correctly with each other and Java-level accesses.
  6271     OrderAccess::fence();
  6272     return;
  6275 #ifdef ASSERT
  6276   // Don't catch signals while blocked; let the running threads have the signals.
  6277   // (This allows a debugger to break into the running thread.)
  6278   sigset_t oldsigs;
  6279   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6280   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6281 #endif
  6283   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6284   jt->set_suspend_equivalent();
  6285   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6287   assert(_cur_index == -1, "invariant");
  6288   if (time == 0) {
  6289     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6290     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6291   } else {
  6292     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6293     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6294     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6295       pthread_cond_destroy (&_cond[_cur_index]) ;
  6296       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6299   _cur_index = -1;
  6300   assert_status(status == 0 || status == EINTR ||
  6301                 status == ETIME || status == ETIMEDOUT,
  6302                 status, "cond_timedwait");
  6304 #ifdef ASSERT
  6305   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6306 #endif
  6308   _counter = 0 ;
  6309   status = pthread_mutex_unlock(_mutex) ;
  6310   assert_status(status == 0, status, "invariant") ;
  6311   // Paranoia to ensure our locked and lock-free paths interact
  6312   // correctly with each other and Java-level accesses.
  6313   OrderAccess::fence();
  6315   // If externally suspended while waiting, re-suspend
  6316   if (jt->handle_special_suspend_equivalent_condition()) {
  6317     jt->java_suspend_self();
  6321 void Parker::unpark() {
  6322   int s, status ;
  6323   status = pthread_mutex_lock(_mutex);
  6324   assert (status == 0, "invariant") ;
  6325   s = _counter;
  6326   _counter = 1;
  6327   if (s < 1) {
  6328     // thread might be parked
  6329     if (_cur_index != -1) {
  6330       // thread is definitely parked
  6331       if (WorkAroundNPTLTimedWaitHang) {
  6332         status = pthread_cond_signal (&_cond[_cur_index]);
  6333         assert (status == 0, "invariant");
  6334         status = pthread_mutex_unlock(_mutex);
  6335         assert (status == 0, "invariant");
  6336       } else {
  6337         // must capture correct index before unlocking
  6338         int index = _cur_index;
  6339         status = pthread_mutex_unlock(_mutex);
  6340         assert (status == 0, "invariant");
  6341         status = pthread_cond_signal (&_cond[index]);
  6342         assert (status == 0, "invariant");
  6344     } else {
  6345       pthread_mutex_unlock(_mutex);
  6346       assert (status == 0, "invariant") ;
  6348   } else {
  6349     pthread_mutex_unlock(_mutex);
  6350     assert (status == 0, "invariant") ;
  6355 extern char** environ;
  6357 // Run the specified command in a separate process. Return its exit value,
  6358 // or -1 on failure (e.g. can't fork a new process).
  6359 // Unlike system(), this function can be called from signal handler. It
  6360 // doesn't block SIGINT et al.
  6361 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
  6362   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6364   pid_t pid ;
  6366   if (use_vfork_if_available) {
  6367     pid = vfork();
  6368   } else {
  6369     pid = fork();
  6372   if (pid < 0) {
  6373     // fork failed
  6374     return -1;
  6376   } else if (pid == 0) {
  6377     // child process
  6379     execve("/bin/sh", (char* const*)argv, environ);
  6381     // execve failed
  6382     _exit(-1);
  6384   } else  {
  6385     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6386     // care about the actual exit code, for now.
  6388     int status;
  6390     // Wait for the child process to exit.  This returns immediately if
  6391     // the child has already exited. */
  6392     while (waitpid(pid, &status, 0) < 0) {
  6393         switch (errno) {
  6394         case ECHILD: return 0;
  6395         case EINTR: break;
  6396         default: return -1;
  6400     if (WIFEXITED(status)) {
  6401        // The child exited normally; get its exit code.
  6402        return WEXITSTATUS(status);
  6403     } else if (WIFSIGNALED(status)) {
  6404        // The child exited because of a signal
  6405        // The best value to return is 0x80 + signal number,
  6406        // because that is what all Unix shells do, and because
  6407        // it allows callers to distinguish between process exit and
  6408        // process death by signal.
  6409        return 0x80 + WTERMSIG(status);
  6410     } else {
  6411        // Unknown exit code; pass it through
  6412        return status;
  6417 // is_headless_jre()
  6418 //
  6419 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6420 // in order to report if we are running in a headless jre
  6421 //
  6422 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6423 // as libawt.so, and renamed libawt_xawt.so
  6424 //
  6425 bool os::is_headless_jre() {
  6426     struct stat statbuf;
  6427     char buf[MAXPATHLEN];
  6428     char libmawtpath[MAXPATHLEN];
  6429     const char *xawtstr  = "/xawt/libmawt.so";
  6430     const char *new_xawtstr = "/libawt_xawt.so";
  6431     char *p;
  6433     // Get path to libjvm.so
  6434     os::jvm_path(buf, sizeof(buf));
  6436     // Get rid of libjvm.so
  6437     p = strrchr(buf, '/');
  6438     if (p == NULL) return false;
  6439     else *p = '\0';
  6441     // Get rid of client or server
  6442     p = strrchr(buf, '/');
  6443     if (p == NULL) return false;
  6444     else *p = '\0';
  6446     // check xawt/libmawt.so
  6447     strcpy(libmawtpath, buf);
  6448     strcat(libmawtpath, xawtstr);
  6449     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6451     // check libawt_xawt.so
  6452     strcpy(libmawtpath, buf);
  6453     strcat(libmawtpath, new_xawtstr);
  6454     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6456     return true;
  6459 // Get the default path to the core file
  6460 // Returns the length of the string
  6461 int os::get_core_path(char* buffer, size_t bufferSize) {
  6462   const char* p = get_current_directory(buffer, bufferSize);
  6464   if (p == NULL) {
  6465     assert(p != NULL, "failed to get current directory");
  6466     return 0;
  6469   return strlen(buffer);
  6472 /////////////// Unit tests ///////////////
  6474 #ifndef PRODUCT
  6476 #define test_log(...) \
  6477   do {\
  6478     if (VerboseInternalVMTests) { \
  6479       tty->print_cr(__VA_ARGS__); \
  6480       tty->flush(); \
  6481     }\
  6482   } while (false)
  6484 class TestReserveMemorySpecial : AllStatic {
  6485  public:
  6486   static void small_page_write(void* addr, size_t size) {
  6487     size_t page_size = os::vm_page_size();
  6489     char* end = (char*)addr + size;
  6490     for (char* p = (char*)addr; p < end; p += page_size) {
  6491       *p = 1;
  6495   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6496     if (!UseHugeTLBFS) {
  6497       return;
  6500     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6502     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6504     if (addr != NULL) {
  6505       small_page_write(addr, size);
  6507       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6511   static void test_reserve_memory_special_huge_tlbfs_only() {
  6512     if (!UseHugeTLBFS) {
  6513       return;
  6516     size_t lp = os::large_page_size();
  6518     for (size_t size = lp; size <= lp * 10; size += lp) {
  6519       test_reserve_memory_special_huge_tlbfs_only(size);
  6523   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6524     size_t lp = os::large_page_size();
  6525     size_t ag = os::vm_allocation_granularity();
  6527     // sizes to test
  6528     const size_t sizes[] = {
  6529       lp, lp + ag, lp + lp / 2, lp * 2,
  6530       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6531       lp * 10, lp * 10 + lp / 2
  6532     };
  6533     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6535     // For each size/alignment combination, we test three scenarios:
  6536     // 1) with req_addr == NULL
  6537     // 2) with a non-null req_addr at which we expect to successfully allocate
  6538     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6539     //    expect the allocation to either fail or to ignore req_addr
  6541     // Pre-allocate two areas; they shall be as large as the largest allocation
  6542     //  and aligned to the largest alignment we will be testing.
  6543     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6544     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6545       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6546       -1, 0);
  6547     assert(mapping1 != MAP_FAILED, "should work");
  6549     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6550       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6551       -1, 0);
  6552     assert(mapping2 != MAP_FAILED, "should work");
  6554     // Unmap the first mapping, but leave the second mapping intact: the first
  6555     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6556     // mapping, still intact, as "bad" req_addr (case 3).
  6557     ::munmap(mapping1, mapping_size);
  6559     // Case 1
  6560     test_log("%s, req_addr NULL:", __FUNCTION__);
  6561     test_log("size            align           result");
  6563     for (int i = 0; i < num_sizes; i++) {
  6564       const size_t size = sizes[i];
  6565       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6566         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6567         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6568             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6569         if (p != NULL) {
  6570           assert(is_ptr_aligned(p, alignment), "must be");
  6571           small_page_write(p, size);
  6572           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6577     // Case 2
  6578     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6579     test_log("size            align           req_addr         result");
  6581     for (int i = 0; i < num_sizes; i++) {
  6582       const size_t size = sizes[i];
  6583       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6584         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6585         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6586         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6587             size, alignment, req_addr, p,
  6588             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6589         if (p != NULL) {
  6590           assert(p == req_addr, "must be");
  6591           small_page_write(p, size);
  6592           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6597     // Case 3
  6598     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6599     test_log("size            align           req_addr         result");
  6601     for (int i = 0; i < num_sizes; i++) {
  6602       const size_t size = sizes[i];
  6603       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6604         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6605         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6606         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6607             size, alignment, req_addr, p,
  6608             ((p != NULL ? "" : "(failed)")));
  6609         // as the area around req_addr contains already existing mappings, the API should always
  6610         // return NULL (as per contract, it cannot return another address)
  6611         assert(p == NULL, "must be");
  6615     ::munmap(mapping2, mapping_size);
  6619   static void test_reserve_memory_special_huge_tlbfs() {
  6620     if (!UseHugeTLBFS) {
  6621       return;
  6624     test_reserve_memory_special_huge_tlbfs_only();
  6625     test_reserve_memory_special_huge_tlbfs_mixed();
  6628   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6629     if (!UseSHM) {
  6630       return;
  6633     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6635     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6637     if (addr != NULL) {
  6638       assert(is_ptr_aligned(addr, alignment), "Check");
  6639       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6641       small_page_write(addr, size);
  6643       os::Linux::release_memory_special_shm(addr, size);
  6647   static void test_reserve_memory_special_shm() {
  6648     size_t lp = os::large_page_size();
  6649     size_t ag = os::vm_allocation_granularity();
  6651     for (size_t size = ag; size < lp * 3; size += ag) {
  6652       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6653         test_reserve_memory_special_shm(size, alignment);
  6658   static void test() {
  6659     test_reserve_memory_special_huge_tlbfs();
  6660     test_reserve_memory_special_shm();
  6662 };
  6664 void TestReserveMemorySpecial_test() {
  6665   TestReserveMemorySpecial::test();
  6668 #endif

mercurial