src/os/linux/vm/os_linux.cpp

Mon, 25 Feb 2019 21:38:45 +0000

author
phh
date
Mon, 25 Feb 2019 21:38:45 +0000
changeset 9620
97d605522fcb
parent 9599
1485461a0fd1
child 9637
eef07cd490d4
child 9676
bf1c9a3312a4
permissions
-rw-r--r--

8027434: "-XX:OnOutOfMemoryError" uses fork instead of vfork
Summary: On Linux, use vfork in case of an OOM.
Reviewed-by: dholmes, iklam

     1 /*
     2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "osContainer_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/interfaceSupport.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/orderAccess.inline.hpp"
    54 #include "runtime/osThread.hpp"
    55 #include "runtime/perfMemory.hpp"
    56 #include "runtime/sharedRuntime.hpp"
    57 #include "runtime/statSampler.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/memTracker.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/elfFile.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 // put OS-includes here
    73 # include <sys/types.h>
    74 # include <sys/mman.h>
    75 # include <sys/stat.h>
    76 # include <sys/select.h>
    77 # include <pthread.h>
    78 # include <signal.h>
    79 # include <errno.h>
    80 # include <dlfcn.h>
    81 # include <stdio.h>
    82 # include <unistd.h>
    83 # include <sys/resource.h>
    84 # include <pthread.h>
    85 # include <sys/stat.h>
    86 # include <sys/time.h>
    87 # include <sys/times.h>
    88 # include <sys/utsname.h>
    89 # include <sys/socket.h>
    90 # include <sys/wait.h>
    91 # include <pwd.h>
    92 # include <poll.h>
    93 # include <semaphore.h>
    94 # include <fcntl.h>
    95 # include <string.h>
    96 # include <syscall.h>
    97 # include <sys/sysinfo.h>
    98 # include <gnu/libc-version.h>
    99 # include <sys/ipc.h>
   100 # include <sys/shm.h>
   101 # include <link.h>
   102 # include <stdint.h>
   103 # include <inttypes.h>
   104 # include <sys/ioctl.h>
   106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   108 #ifndef _GNU_SOURCE
   109   #define _GNU_SOURCE
   110   #include <sched.h>
   111   #undef _GNU_SOURCE
   112 #else
   113   #include <sched.h>
   114 #endif
   116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   117 // getrusage() is prepared to handle the associated failure.
   118 #ifndef RUSAGE_THREAD
   119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   120 #endif
   122 #define MAX_PATH    (2 * K)
   124 #define MAX_SECS 100000000
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #define LARGEPAGES_BIT (1 << 6)
   130 ////////////////////////////////////////////////////////////////////////////////
   131 // global variables
   132 julong os::Linux::_physical_memory = 0;
   134 address   os::Linux::_initial_thread_stack_bottom = NULL;
   135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   139 Mutex* os::Linux::_createThread_lock = NULL;
   140 pthread_t os::Linux::_main_thread;
   141 int os::Linux::_page_size = -1;
   142 const int os::Linux::_vm_default_page_size = (8 * K);
   143 bool os::Linux::_is_floating_stack = false;
   144 bool os::Linux::_is_NPTL = false;
   145 bool os::Linux::_supports_fast_thread_cpu_time = false;
   146 const char * os::Linux::_glibc_version = NULL;
   147 const char * os::Linux::_libpthread_version = NULL;
   148 pthread_condattr_t os::Linux::_condattr[1];
   150 static jlong initial_time_count=0;
   152 static int clock_tics_per_sec = 100;
   154 // For diagnostics to print a message once. see run_periodic_checks
   155 static sigset_t check_signal_done;
   156 static bool check_signals = true;
   158 static pid_t _initial_pid = 0;
   160 /* Signal number used to suspend/resume a thread */
   162 /* do not use any signal number less than SIGSEGV, see 4355769 */
   163 static int SR_signum = SIGUSR2;
   164 sigset_t SR_sigset;
   166 /* Used to protect dlsym() calls */
   167 static pthread_mutex_t dl_mutex;
   169 // Declarations
   170 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   172 // utility functions
   174 static int SR_initialize();
   176 julong os::available_memory() {
   177   return Linux::available_memory();
   178 }
   180 julong os::Linux::available_memory() {
   181   // values in struct sysinfo are "unsigned long"
   182   struct sysinfo si;
   183   julong avail_mem;
   185   if (OSContainer::is_containerized()) {
   186     jlong mem_limit, mem_usage;
   187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
   188       if (PrintContainerInfo) {
   189         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   190                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   191       }
   192     }
   194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
   195       if (PrintContainerInfo) {
   196         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
   197       }
   198     }
   200     if (mem_limit > 0 && mem_usage > 0 ) {
   201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
   202       if (PrintContainerInfo) {
   203         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
   204       }
   205       return avail_mem;
   206     }
   207   }
   209   sysinfo(&si);
   210   avail_mem = (julong)si.freeram * si.mem_unit;
   211   if (Verbose) {
   212     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
   213   }
   214   return avail_mem;
   215 }
   217 julong os::physical_memory() {
   218   jlong phys_mem = 0;
   219   if (OSContainer::is_containerized()) {
   220     jlong mem_limit;
   221     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
   222       if (PrintContainerInfo) {
   223         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
   224       }
   225       return mem_limit;
   226     }
   228     if (PrintContainerInfo) {
   229       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   230                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   231     }
   232   }
   234   phys_mem = Linux::physical_memory();
   235   if (Verbose) {
   236     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
   237   }
   238   return phys_mem;
   239 }
   241 ////////////////////////////////////////////////////////////////////////////////
   242 // environment support
   244 bool os::getenv(const char* name, char* buf, int len) {
   245   const char* val = ::getenv(name);
   246   if (val != NULL && strlen(val) < (size_t)len) {
   247     strcpy(buf, val);
   248     return true;
   249   }
   250   if (len > 0) buf[0] = 0;  // return a null string
   251   return false;
   252 }
   255 // Return true if user is running as root.
   257 bool os::have_special_privileges() {
   258   static bool init = false;
   259   static bool privileges = false;
   260   if (!init) {
   261     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   262     init = true;
   263   }
   264   return privileges;
   265 }
   268 #ifndef SYS_gettid
   269 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   270   #ifdef __ia64__
   271     #define SYS_gettid 1105
   272   #else
   273     #ifdef __i386__
   274       #define SYS_gettid 224
   275     #else
   276       #ifdef __amd64__
   277         #define SYS_gettid 186
   278       #else
   279         #ifdef __sparc__
   280           #define SYS_gettid 143
   281         #else
   282           #error define gettid for the arch
   283         #endif
   284       #endif
   285     #endif
   286   #endif
   287 #endif
   289 // Cpu architecture string
   290 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   292 // pid_t gettid()
   293 //
   294 // Returns the kernel thread id of the currently running thread. Kernel
   295 // thread id is used to access /proc.
   296 //
   297 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   298 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   299 //
   300 pid_t os::Linux::gettid() {
   301   int rslt = syscall(SYS_gettid);
   302   if (rslt == -1) {
   303      // old kernel, no NPTL support
   304      return getpid();
   305   } else {
   306      return (pid_t)rslt;
   307   }
   308 }
   310 // Most versions of linux have a bug where the number of processors are
   311 // determined by looking at the /proc file system.  In a chroot environment,
   312 // the system call returns 1.  This causes the VM to act as if it is
   313 // a single processor and elide locking (see is_MP() call).
   314 static bool unsafe_chroot_detected = false;
   315 static const char *unstable_chroot_error = "/proc file system not found.\n"
   316                      "Java may be unstable running multithreaded in a chroot "
   317                      "environment on Linux when /proc filesystem is not mounted.";
   319 void os::Linux::initialize_system_info() {
   320   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   321   if (processor_count() == 1) {
   322     pid_t pid = os::Linux::gettid();
   323     char fname[32];
   324     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   325     FILE *fp = fopen(fname, "r");
   326     if (fp == NULL) {
   327       unsafe_chroot_detected = true;
   328     } else {
   329       fclose(fp);
   330     }
   331   }
   332   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   333   assert(processor_count() > 0, "linux error");
   334 }
   336 void os::init_system_properties_values() {
   337   // The next steps are taken in the product version:
   338   //
   339   // Obtain the JAVA_HOME value from the location of libjvm.so.
   340   // This library should be located at:
   341   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   342   //
   343   // If "/jre/lib/" appears at the right place in the path, then we
   344   // assume libjvm.so is installed in a JDK and we use this path.
   345   //
   346   // Otherwise exit with message: "Could not create the Java virtual machine."
   347   //
   348   // The following extra steps are taken in the debugging version:
   349   //
   350   // If "/jre/lib/" does NOT appear at the right place in the path
   351   // instead of exit check for $JAVA_HOME environment variable.
   352   //
   353   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   354   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   355   // it looks like libjvm.so is installed there
   356   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   357   //
   358   // Otherwise exit.
   359   //
   360   // Important note: if the location of libjvm.so changes this
   361   // code needs to be changed accordingly.
   363 // See ld(1):
   364 //      The linker uses the following search paths to locate required
   365 //      shared libraries:
   366 //        1: ...
   367 //        ...
   368 //        7: The default directories, normally /lib and /usr/lib.
   369 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   370 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   371 #else
   372 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   373 #endif
   375 // Base path of extensions installed on the system.
   376 #define SYS_EXT_DIR     "/usr/java/packages"
   377 #define EXTENSIONS_DIR  "/lib/ext"
   378 #define ENDORSED_DIR    "/lib/endorsed"
   380   // Buffer that fits several sprintfs.
   381   // Note that the space for the colon and the trailing null are provided
   382   // by the nulls included by the sizeof operator.
   383   const size_t bufsize =
   384     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   385          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   386          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   387   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   389   // sysclasspath, java_home, dll_dir
   390   {
   391     char *pslash;
   392     os::jvm_path(buf, bufsize);
   394     // Found the full path to libjvm.so.
   395     // Now cut the path to <java_home>/jre if we can.
   396     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   397     pslash = strrchr(buf, '/');
   398     if (pslash != NULL) {
   399       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   400     }
   401     Arguments::set_dll_dir(buf);
   403     if (pslash != NULL) {
   404       pslash = strrchr(buf, '/');
   405       if (pslash != NULL) {
   406         *pslash = '\0';          // Get rid of /<arch>.
   407         pslash = strrchr(buf, '/');
   408         if (pslash != NULL) {
   409           *pslash = '\0';        // Get rid of /lib.
   410         }
   411       }
   412     }
   413     Arguments::set_java_home(buf);
   414     set_boot_path('/', ':');
   415   }
   417   // Where to look for native libraries.
   418   //
   419   // Note: Due to a legacy implementation, most of the library path
   420   // is set in the launcher. This was to accomodate linking restrictions
   421   // on legacy Linux implementations (which are no longer supported).
   422   // Eventually, all the library path setting will be done here.
   423   //
   424   // However, to prevent the proliferation of improperly built native
   425   // libraries, the new path component /usr/java/packages is added here.
   426   // Eventually, all the library path setting will be done here.
   427   {
   428     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   429     // should always exist (until the legacy problem cited above is
   430     // addressed).
   431     const char *v = ::getenv("LD_LIBRARY_PATH");
   432     const char *v_colon = ":";
   433     if (v == NULL) { v = ""; v_colon = ""; }
   434     // That's +1 for the colon and +1 for the trailing '\0'.
   435     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   436                                                      strlen(v) + 1 +
   437                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   438                                                      mtInternal);
   439     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   440     Arguments::set_library_path(ld_library_path);
   441     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   442   }
   444   // Extensions directories.
   445   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   446   Arguments::set_ext_dirs(buf);
   448   // Endorsed standards default directory.
   449   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   450   Arguments::set_endorsed_dirs(buf);
   452   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   454 #undef DEFAULT_LIBPATH
   455 #undef SYS_EXT_DIR
   456 #undef EXTENSIONS_DIR
   457 #undef ENDORSED_DIR
   458 }
   460 ////////////////////////////////////////////////////////////////////////////////
   461 // breakpoint support
   463 void os::breakpoint() {
   464   BREAKPOINT;
   465 }
   467 extern "C" void breakpoint() {
   468   // use debugger to set breakpoint here
   469 }
   471 ////////////////////////////////////////////////////////////////////////////////
   472 // signal support
   474 debug_only(static bool signal_sets_initialized = false);
   475 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   477 bool os::Linux::is_sig_ignored(int sig) {
   478       struct sigaction oact;
   479       sigaction(sig, (struct sigaction*)NULL, &oact);
   480       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   481                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   482       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   483            return true;
   484       else
   485            return false;
   486 }
   488 void os::Linux::signal_sets_init() {
   489   // Should also have an assertion stating we are still single-threaded.
   490   assert(!signal_sets_initialized, "Already initialized");
   491   // Fill in signals that are necessarily unblocked for all threads in
   492   // the VM. Currently, we unblock the following signals:
   493   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   494   //                         by -Xrs (=ReduceSignalUsage));
   495   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   496   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   497   // the dispositions or masks wrt these signals.
   498   // Programs embedding the VM that want to use the above signals for their
   499   // own purposes must, at this time, use the "-Xrs" option to prevent
   500   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   501   // (See bug 4345157, and other related bugs).
   502   // In reality, though, unblocking these signals is really a nop, since
   503   // these signals are not blocked by default.
   504   sigemptyset(&unblocked_sigs);
   505   sigemptyset(&allowdebug_blocked_sigs);
   506   sigaddset(&unblocked_sigs, SIGILL);
   507   sigaddset(&unblocked_sigs, SIGSEGV);
   508   sigaddset(&unblocked_sigs, SIGBUS);
   509   sigaddset(&unblocked_sigs, SIGFPE);
   510 #if defined(PPC64)
   511   sigaddset(&unblocked_sigs, SIGTRAP);
   512 #endif
   513   sigaddset(&unblocked_sigs, SR_signum);
   515   if (!ReduceSignalUsage) {
   516    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   517       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   518       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   519    }
   520    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   521       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   522       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   523    }
   524    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   525       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   526       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   527    }
   528   }
   529   // Fill in signals that are blocked by all but the VM thread.
   530   sigemptyset(&vm_sigs);
   531   if (!ReduceSignalUsage)
   532     sigaddset(&vm_sigs, BREAK_SIGNAL);
   533   debug_only(signal_sets_initialized = true);
   535 }
   537 // These are signals that are unblocked while a thread is running Java.
   538 // (For some reason, they get blocked by default.)
   539 sigset_t* os::Linux::unblocked_signals() {
   540   assert(signal_sets_initialized, "Not initialized");
   541   return &unblocked_sigs;
   542 }
   544 // These are the signals that are blocked while a (non-VM) thread is
   545 // running Java. Only the VM thread handles these signals.
   546 sigset_t* os::Linux::vm_signals() {
   547   assert(signal_sets_initialized, "Not initialized");
   548   return &vm_sigs;
   549 }
   551 // These are signals that are blocked during cond_wait to allow debugger in
   552 sigset_t* os::Linux::allowdebug_blocked_signals() {
   553   assert(signal_sets_initialized, "Not initialized");
   554   return &allowdebug_blocked_sigs;
   555 }
   557 void os::Linux::hotspot_sigmask(Thread* thread) {
   559   //Save caller's signal mask before setting VM signal mask
   560   sigset_t caller_sigmask;
   561   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   563   OSThread* osthread = thread->osthread();
   564   osthread->set_caller_sigmask(caller_sigmask);
   566   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   568   if (!ReduceSignalUsage) {
   569     if (thread->is_VM_thread()) {
   570       // Only the VM thread handles BREAK_SIGNAL ...
   571       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   572     } else {
   573       // ... all other threads block BREAK_SIGNAL
   574       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   575     }
   576   }
   577 }
   579 //////////////////////////////////////////////////////////////////////////////
   580 // detecting pthread library
   582 void os::Linux::libpthread_init() {
   583   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   584   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   585   // generic name for earlier versions.
   586   // Define macros here so we can build HotSpot on old systems.
   587 # ifndef _CS_GNU_LIBC_VERSION
   588 # define _CS_GNU_LIBC_VERSION 2
   589 # endif
   590 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   591 # define _CS_GNU_LIBPTHREAD_VERSION 3
   592 # endif
   594   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   595   if (n > 0) {
   596      char *str = (char *)malloc(n, mtInternal);
   597      confstr(_CS_GNU_LIBC_VERSION, str, n);
   598      os::Linux::set_glibc_version(str);
   599   } else {
   600      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   601      static char _gnu_libc_version[32];
   602      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   603               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   604      os::Linux::set_glibc_version(_gnu_libc_version);
   605   }
   607   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   608   if (n > 0) {
   609      char *str = (char *)malloc(n, mtInternal);
   610      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   611      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   612      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   613      // is the case. LinuxThreads has a hard limit on max number of threads.
   614      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   615      // On the other hand, NPTL does not have such a limit, sysconf()
   616      // will return -1 and errno is not changed. Check if it is really NPTL.
   617      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   618          strstr(str, "NPTL") &&
   619          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   620        free(str);
   621        os::Linux::set_libpthread_version("linuxthreads");
   622      } else {
   623        os::Linux::set_libpthread_version(str);
   624      }
   625   } else {
   626     // glibc before 2.3.2 only has LinuxThreads.
   627     os::Linux::set_libpthread_version("linuxthreads");
   628   }
   630   if (strstr(libpthread_version(), "NPTL")) {
   631      os::Linux::set_is_NPTL();
   632   } else {
   633      os::Linux::set_is_LinuxThreads();
   634   }
   636   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   637   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   638   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   639      os::Linux::set_is_floating_stack();
   640   }
   641 }
   643 /////////////////////////////////////////////////////////////////////////////
   644 // thread stack
   646 // Force Linux kernel to expand current thread stack. If "bottom" is close
   647 // to the stack guard, caller should block all signals.
   648 //
   649 // MAP_GROWSDOWN:
   650 //   A special mmap() flag that is used to implement thread stacks. It tells
   651 //   kernel that the memory region should extend downwards when needed. This
   652 //   allows early versions of LinuxThreads to only mmap the first few pages
   653 //   when creating a new thread. Linux kernel will automatically expand thread
   654 //   stack as needed (on page faults).
   655 //
   656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   658 //   region, it's hard to tell if the fault is due to a legitimate stack
   659 //   access or because of reading/writing non-exist memory (e.g. buffer
   660 //   overrun). As a rule, if the fault happens below current stack pointer,
   661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   662 //   application (see Linux kernel fault.c).
   663 //
   664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   665 //   stack overflow detection.
   666 //
   667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   668 //   not use this flag. However, the stack of initial thread is not created
   669 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   670 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   671 //   and then attach the thread to JVM.
   672 //
   673 // To get around the problem and allow stack banging on Linux, we need to
   674 // manually expand thread stack after receiving the SIGSEGV.
   675 //
   676 // There are two ways to expand thread stack to address "bottom", we used
   677 // both of them in JVM before 1.5:
   678 //   1. adjust stack pointer first so that it is below "bottom", and then
   679 //      touch "bottom"
   680 //   2. mmap() the page in question
   681 //
   682 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   683 // if current sp is already near the lower end of page 101, and we need to
   684 // call mmap() to map page 100, it is possible that part of the mmap() frame
   685 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   686 // That will destroy the mmap() frame and cause VM to crash.
   687 //
   688 // The following code works by adjusting sp first, then accessing the "bottom"
   689 // page to force a page fault. Linux kernel will then automatically expand the
   690 // stack mapping.
   691 //
   692 // _expand_stack_to() assumes its frame size is less than page size, which
   693 // should always be true if the function is not inlined.
   695 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   696 #define NOINLINE
   697 #else
   698 #define NOINLINE __attribute__ ((noinline))
   699 #endif
   701 static void _expand_stack_to(address bottom) NOINLINE;
   703 static void _expand_stack_to(address bottom) {
   704   address sp;
   705   size_t size;
   706   volatile char *p;
   708   // Adjust bottom to point to the largest address within the same page, it
   709   // gives us a one-page buffer if alloca() allocates slightly more memory.
   710   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   711   bottom += os::Linux::page_size() - 1;
   713   // sp might be slightly above current stack pointer; if that's the case, we
   714   // will alloca() a little more space than necessary, which is OK. Don't use
   715   // os::current_stack_pointer(), as its result can be slightly below current
   716   // stack pointer, causing us to not alloca enough to reach "bottom".
   717   sp = (address)&sp;
   719   if (sp > bottom) {
   720     size = sp - bottom;
   721     p = (volatile char *)alloca(size);
   722     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   723     p[0] = '\0';
   724   }
   725 }
   727 void os::Linux::expand_stack_to(address bottom) {
   728   _expand_stack_to(bottom);
   729 }
   731 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   732   assert(t!=NULL, "just checking");
   733   assert(t->osthread()->expanding_stack(), "expand should be set");
   734   assert(t->stack_base() != NULL, "stack_base was not initialized");
   736   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   737     sigset_t mask_all, old_sigset;
   738     sigfillset(&mask_all);
   739     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   740     _expand_stack_to(addr);
   741     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   742     return true;
   743   }
   744   return false;
   745 }
   747 //////////////////////////////////////////////////////////////////////////////
   748 // create new thread
   750 static address highest_vm_reserved_address();
   752 // check if it's safe to start a new thread
   753 static bool _thread_safety_check(Thread* thread) {
   754   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   755     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   756     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   757     //   allocated (MAP_FIXED) from high address space. Every thread stack
   758     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   759     //   it to other values if they rebuild LinuxThreads).
   760     //
   761     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   762     // the memory region has already been mmap'ed. That means if we have too
   763     // many threads and/or very large heap, eventually thread stack will
   764     // collide with heap.
   765     //
   766     // Here we try to prevent heap/stack collision by comparing current
   767     // stack bottom with the highest address that has been mmap'ed by JVM
   768     // plus a safety margin for memory maps created by native code.
   769     //
   770     // This feature can be disabled by setting ThreadSafetyMargin to 0
   771     //
   772     if (ThreadSafetyMargin > 0) {
   773       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   775       // not safe if our stack extends below the safety margin
   776       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   777     } else {
   778       return true;
   779     }
   780   } else {
   781     // Floating stack LinuxThreads or NPTL:
   782     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   783     //   there's not enough space left, pthread_create() will fail. If we come
   784     //   here, that means enough space has been reserved for stack.
   785     return true;
   786   }
   787 }
   789 // Thread start routine for all newly created threads
   790 static void *java_start(Thread *thread) {
   791   // Try to randomize the cache line index of hot stack frames.
   792   // This helps when threads of the same stack traces evict each other's
   793   // cache lines. The threads can be either from the same JVM instance, or
   794   // from different JVM instances. The benefit is especially true for
   795   // processors with hyperthreading technology.
   796   static int counter = 0;
   797   int pid = os::current_process_id();
   798   alloca(((pid ^ counter++) & 7) * 128);
   800   ThreadLocalStorage::set_thread(thread);
   802   OSThread* osthread = thread->osthread();
   803   Monitor* sync = osthread->startThread_lock();
   805   // non floating stack LinuxThreads needs extra check, see above
   806   if (!_thread_safety_check(thread)) {
   807     // notify parent thread
   808     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   809     osthread->set_state(ZOMBIE);
   810     sync->notify_all();
   811     return NULL;
   812   }
   814   // thread_id is kernel thread id (similar to Solaris LWP id)
   815   osthread->set_thread_id(os::Linux::gettid());
   817   if (UseNUMA) {
   818     int lgrp_id = os::numa_get_group_id();
   819     if (lgrp_id != -1) {
   820       thread->set_lgrp_id(lgrp_id);
   821     }
   822   }
   823   // initialize signal mask for this thread
   824   os::Linux::hotspot_sigmask(thread);
   826   // initialize floating point control register
   827   os::Linux::init_thread_fpu_state();
   829   // handshaking with parent thread
   830   {
   831     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   833     // notify parent thread
   834     osthread->set_state(INITIALIZED);
   835     sync->notify_all();
   837     // wait until os::start_thread()
   838     while (osthread->get_state() == INITIALIZED) {
   839       sync->wait(Mutex::_no_safepoint_check_flag);
   840     }
   841   }
   843   // call one more level start routine
   844   thread->run();
   846   return 0;
   847 }
   849 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   850   assert(thread->osthread() == NULL, "caller responsible");
   852   // Allocate the OSThread object
   853   OSThread* osthread = new OSThread(NULL, NULL);
   854   if (osthread == NULL) {
   855     return false;
   856   }
   858   // set the correct thread state
   859   osthread->set_thread_type(thr_type);
   861   // Initial state is ALLOCATED but not INITIALIZED
   862   osthread->set_state(ALLOCATED);
   864   thread->set_osthread(osthread);
   866   // init thread attributes
   867   pthread_attr_t attr;
   868   pthread_attr_init(&attr);
   869   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   871   // stack size
   872   if (os::Linux::supports_variable_stack_size()) {
   873     // calculate stack size if it's not specified by caller
   874     if (stack_size == 0) {
   875       stack_size = os::Linux::default_stack_size(thr_type);
   877       switch (thr_type) {
   878       case os::java_thread:
   879         // Java threads use ThreadStackSize which default value can be
   880         // changed with the flag -Xss
   881         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   882         stack_size = JavaThread::stack_size_at_create();
   883         break;
   884       case os::compiler_thread:
   885         if (CompilerThreadStackSize > 0) {
   886           stack_size = (size_t)(CompilerThreadStackSize * K);
   887           break;
   888         } // else fall through:
   889           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   890       case os::vm_thread:
   891       case os::pgc_thread:
   892       case os::cgc_thread:
   893       case os::watcher_thread:
   894         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   895         break;
   896       }
   897     }
   899     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   900     pthread_attr_setstacksize(&attr, stack_size);
   901   } else {
   902     // let pthread_create() pick the default value.
   903   }
   905   // glibc guard page
   906   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   908   ThreadState state;
   910   {
   911     // Serialize thread creation if we are running with fixed stack LinuxThreads
   912     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   913     if (lock) {
   914       os::Linux::createThread_lock()->lock_without_safepoint_check();
   915     }
   917     pthread_t tid;
   918     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   920     pthread_attr_destroy(&attr);
   922     if (ret != 0) {
   923       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   924         perror("pthread_create()");
   925       }
   926       // Need to clean up stuff we've allocated so far
   927       thread->set_osthread(NULL);
   928       delete osthread;
   929       if (lock) os::Linux::createThread_lock()->unlock();
   930       return false;
   931     }
   933     // Store pthread info into the OSThread
   934     osthread->set_pthread_id(tid);
   936     // Wait until child thread is either initialized or aborted
   937     {
   938       Monitor* sync_with_child = osthread->startThread_lock();
   939       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   940       while ((state = osthread->get_state()) == ALLOCATED) {
   941         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   942       }
   943     }
   945     if (lock) {
   946       os::Linux::createThread_lock()->unlock();
   947     }
   948   }
   950   // Aborted due to thread limit being reached
   951   if (state == ZOMBIE) {
   952       thread->set_osthread(NULL);
   953       delete osthread;
   954       return false;
   955   }
   957   // The thread is returned suspended (in state INITIALIZED),
   958   // and is started higher up in the call chain
   959   assert(state == INITIALIZED, "race condition");
   960   return true;
   961 }
   963 /////////////////////////////////////////////////////////////////////////////
   964 // attach existing thread
   966 // bootstrap the main thread
   967 bool os::create_main_thread(JavaThread* thread) {
   968   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   969   return create_attached_thread(thread);
   970 }
   972 bool os::create_attached_thread(JavaThread* thread) {
   973 #ifdef ASSERT
   974     thread->verify_not_published();
   975 #endif
   977   // Allocate the OSThread object
   978   OSThread* osthread = new OSThread(NULL, NULL);
   980   if (osthread == NULL) {
   981     return false;
   982   }
   984   // Store pthread info into the OSThread
   985   osthread->set_thread_id(os::Linux::gettid());
   986   osthread->set_pthread_id(::pthread_self());
   988   // initialize floating point control register
   989   os::Linux::init_thread_fpu_state();
   991   // Initial thread state is RUNNABLE
   992   osthread->set_state(RUNNABLE);
   994   thread->set_osthread(osthread);
   996   if (UseNUMA) {
   997     int lgrp_id = os::numa_get_group_id();
   998     if (lgrp_id != -1) {
   999       thread->set_lgrp_id(lgrp_id);
  1003   if (os::is_primordial_thread()) {
  1004     // If current thread is primordial thread, its stack is mapped on demand,
  1005     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1006     // the entire stack region to avoid SEGV in stack banging.
  1007     // It is also useful to get around the heap-stack-gap problem on SuSE
  1008     // kernel (see 4821821 for details). We first expand stack to the top
  1009     // of yellow zone, then enable stack yellow zone (order is significant,
  1010     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1011     // is no gap between the last two virtual memory regions.
  1013     JavaThread *jt = (JavaThread *)thread;
  1014     address addr = jt->stack_yellow_zone_base();
  1015     assert(addr != NULL, "initialization problem?");
  1016     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1018     osthread->set_expanding_stack();
  1019     os::Linux::manually_expand_stack(jt, addr);
  1020     osthread->clear_expanding_stack();
  1023   // initialize signal mask for this thread
  1024   // and save the caller's signal mask
  1025   os::Linux::hotspot_sigmask(thread);
  1027   return true;
  1030 void os::pd_start_thread(Thread* thread) {
  1031   OSThread * osthread = thread->osthread();
  1032   assert(osthread->get_state() != INITIALIZED, "just checking");
  1033   Monitor* sync_with_child = osthread->startThread_lock();
  1034   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1035   sync_with_child->notify();
  1038 // Free Linux resources related to the OSThread
  1039 void os::free_thread(OSThread* osthread) {
  1040   assert(osthread != NULL, "osthread not set");
  1042   if (Thread::current()->osthread() == osthread) {
  1043     // Restore caller's signal mask
  1044     sigset_t sigmask = osthread->caller_sigmask();
  1045     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1048   delete osthread;
  1051 //////////////////////////////////////////////////////////////////////////////
  1052 // thread local storage
  1054 // Restore the thread pointer if the destructor is called. This is in case
  1055 // someone from JNI code sets up a destructor with pthread_key_create to run
  1056 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1057 // will hang or crash. When detachCurrentThread is called the key will be set
  1058 // to null and we will not be called again. If detachCurrentThread is never
  1059 // called we could loop forever depending on the pthread implementation.
  1060 static void restore_thread_pointer(void* p) {
  1061   Thread* thread = (Thread*) p;
  1062   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1065 int os::allocate_thread_local_storage() {
  1066   pthread_key_t key;
  1067   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1068   assert(rslt == 0, "cannot allocate thread local storage");
  1069   return (int)key;
  1072 // Note: This is currently not used by VM, as we don't destroy TLS key
  1073 // on VM exit.
  1074 void os::free_thread_local_storage(int index) {
  1075   int rslt = pthread_key_delete((pthread_key_t)index);
  1076   assert(rslt == 0, "invalid index");
  1079 void os::thread_local_storage_at_put(int index, void* value) {
  1080   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1081   assert(rslt == 0, "pthread_setspecific failed");
  1084 extern "C" Thread* get_thread() {
  1085   return ThreadLocalStorage::thread();
  1088 //////////////////////////////////////////////////////////////////////////////
  1089 // primordial thread
  1091 // Check if current thread is the primordial thread, similar to Solaris thr_main.
  1092 bool os::is_primordial_thread(void) {
  1093   char dummy;
  1094   // If called before init complete, thread stack bottom will be null.
  1095   // Can be called if fatal error occurs before initialization.
  1096   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
  1097   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
  1098          os::Linux::initial_thread_stack_size()   != 0,
  1099          "os::init did not locate primordial thread's stack region");
  1100   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
  1101       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
  1102                         os::Linux::initial_thread_stack_size()) {
  1103        return true;
  1104   } else {
  1105        return false;
  1109 // Find the virtual memory area that contains addr
  1110 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1111   FILE *fp = fopen("/proc/self/maps", "r");
  1112   if (fp) {
  1113     address low, high;
  1114     while (!feof(fp)) {
  1115       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1116         if (low <= addr && addr < high) {
  1117            if (vma_low)  *vma_low  = low;
  1118            if (vma_high) *vma_high = high;
  1119            fclose (fp);
  1120            return true;
  1123       for (;;) {
  1124         int ch = fgetc(fp);
  1125         if (ch == EOF || ch == (int)'\n') break;
  1128     fclose(fp);
  1130   return false;
  1133 // Locate primordial thread stack. This special handling of primordial thread stack
  1134 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1135 // bogus value for the primordial process thread. While the launcher has created
  1136 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1137 // JNI invocation API from a primordial thread.
  1138 void os::Linux::capture_initial_stack(size_t max_size) {
  1140   // max_size is either 0 (which means accept OS default for thread stacks) or
  1141   // a user-specified value known to be at least the minimum needed. If we
  1142   // are actually on the primordial thread we can make it appear that we have a
  1143   // smaller max_size stack by inserting the guard pages at that location. But we
  1144   // cannot do anything to emulate a larger stack than what has been provided by
  1145   // the OS or threading library. In fact if we try to use a stack greater than
  1146   // what is set by rlimit then we will crash the hosting process.
  1148   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1149   // If this is "unlimited" then it will be a huge value.
  1150   struct rlimit rlim;
  1151   getrlimit(RLIMIT_STACK, &rlim);
  1152   size_t stack_size = rlim.rlim_cur;
  1154   // 6308388: a bug in ld.so will relocate its own .data section to the
  1155   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1156   //   so we won't install guard page on ld.so's data section.
  1157   //   But ensure we don't underflow the stack size - allow 1 page spare
  1158   if (stack_size >= (size_t)(3 * page_size())) {
  1159     stack_size -= 2 * page_size();
  1162   // Try to figure out where the stack base (top) is. This is harder.
  1163   //
  1164   // When an application is started, glibc saves the initial stack pointer in
  1165   // a global variable "__libc_stack_end", which is then used by system
  1166   // libraries. __libc_stack_end should be pretty close to stack top. The
  1167   // variable is available since the very early days. However, because it is
  1168   // a private interface, it could disappear in the future.
  1169   //
  1170   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1171   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1172   // stack top. Note that /proc may not exist if VM is running as a chroot
  1173   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1174   // /proc/<pid>/stat could change in the future (though unlikely).
  1175   //
  1176   // We try __libc_stack_end first. If that doesn't work, look for
  1177   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1178   // as a hint, which should work well in most cases.
  1180   uintptr_t stack_start;
  1182   // try __libc_stack_end first
  1183   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1184   if (p && *p) {
  1185     stack_start = *p;
  1186   } else {
  1187     // see if we can get the start_stack field from /proc/self/stat
  1188     FILE *fp;
  1189     int pid;
  1190     char state;
  1191     int ppid;
  1192     int pgrp;
  1193     int session;
  1194     int nr;
  1195     int tpgrp;
  1196     unsigned long flags;
  1197     unsigned long minflt;
  1198     unsigned long cminflt;
  1199     unsigned long majflt;
  1200     unsigned long cmajflt;
  1201     unsigned long utime;
  1202     unsigned long stime;
  1203     long cutime;
  1204     long cstime;
  1205     long prio;
  1206     long nice;
  1207     long junk;
  1208     long it_real;
  1209     uintptr_t start;
  1210     uintptr_t vsize;
  1211     intptr_t rss;
  1212     uintptr_t rsslim;
  1213     uintptr_t scodes;
  1214     uintptr_t ecode;
  1215     int i;
  1217     // Figure what the primordial thread stack base is. Code is inspired
  1218     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1219     // followed by command name surrounded by parentheses, state, etc.
  1220     char stat[2048];
  1221     int statlen;
  1223     fp = fopen("/proc/self/stat", "r");
  1224     if (fp) {
  1225       statlen = fread(stat, 1, 2047, fp);
  1226       stat[statlen] = '\0';
  1227       fclose(fp);
  1229       // Skip pid and the command string. Note that we could be dealing with
  1230       // weird command names, e.g. user could decide to rename java launcher
  1231       // to "java 1.4.2 :)", then the stat file would look like
  1232       //                1234 (java 1.4.2 :)) R ... ...
  1233       // We don't really need to know the command string, just find the last
  1234       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1235       char * s = strrchr(stat, ')');
  1237       i = 0;
  1238       if (s) {
  1239         // Skip blank chars
  1240         do s++; while (isspace(*s));
  1242 #define _UFM UINTX_FORMAT
  1243 #define _DFM INTX_FORMAT
  1245         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1246         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1247         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1248              &state,          /* 3  %c  */
  1249              &ppid,           /* 4  %d  */
  1250              &pgrp,           /* 5  %d  */
  1251              &session,        /* 6  %d  */
  1252              &nr,             /* 7  %d  */
  1253              &tpgrp,          /* 8  %d  */
  1254              &flags,          /* 9  %lu  */
  1255              &minflt,         /* 10 %lu  */
  1256              &cminflt,        /* 11 %lu  */
  1257              &majflt,         /* 12 %lu  */
  1258              &cmajflt,        /* 13 %lu  */
  1259              &utime,          /* 14 %lu  */
  1260              &stime,          /* 15 %lu  */
  1261              &cutime,         /* 16 %ld  */
  1262              &cstime,         /* 17 %ld  */
  1263              &prio,           /* 18 %ld  */
  1264              &nice,           /* 19 %ld  */
  1265              &junk,           /* 20 %ld  */
  1266              &it_real,        /* 21 %ld  */
  1267              &start,          /* 22 UINTX_FORMAT */
  1268              &vsize,          /* 23 UINTX_FORMAT */
  1269              &rss,            /* 24 INTX_FORMAT  */
  1270              &rsslim,         /* 25 UINTX_FORMAT */
  1271              &scodes,         /* 26 UINTX_FORMAT */
  1272              &ecode,          /* 27 UINTX_FORMAT */
  1273              &stack_start);   /* 28 UINTX_FORMAT */
  1276 #undef _UFM
  1277 #undef _DFM
  1279       if (i != 28 - 2) {
  1280          assert(false, "Bad conversion from /proc/self/stat");
  1281          // product mode - assume we are the primordial thread, good luck in the
  1282          // embedded case.
  1283          warning("Can't detect primordial thread stack location - bad conversion");
  1284          stack_start = (uintptr_t) &rlim;
  1286     } else {
  1287       // For some reason we can't open /proc/self/stat (for example, running on
  1288       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1289       // most cases, so don't abort:
  1290       warning("Can't detect primordial thread stack location - no /proc/self/stat");
  1291       stack_start = (uintptr_t) &rlim;
  1295   // Now we have a pointer (stack_start) very close to the stack top, the
  1296   // next thing to do is to figure out the exact location of stack top. We
  1297   // can find out the virtual memory area that contains stack_start by
  1298   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1299   // and its upper limit is the real stack top. (again, this would fail if
  1300   // running inside chroot, because /proc may not exist.)
  1302   uintptr_t stack_top;
  1303   address low, high;
  1304   if (find_vma((address)stack_start, &low, &high)) {
  1305     // success, "high" is the true stack top. (ignore "low", because initial
  1306     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1307     stack_top = (uintptr_t)high;
  1308   } else {
  1309     // failed, likely because /proc/self/maps does not exist
  1310     warning("Can't detect primordial thread stack location - find_vma failed");
  1311     // best effort: stack_start is normally within a few pages below the real
  1312     // stack top, use it as stack top, and reduce stack size so we won't put
  1313     // guard page outside stack.
  1314     stack_top = stack_start;
  1315     stack_size -= 16 * page_size();
  1318   // stack_top could be partially down the page so align it
  1319   stack_top = align_size_up(stack_top, page_size());
  1321   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1322   if (max_size > 0) {
  1323     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1324   } else {
  1325     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1326     // clamp it at 8MB as we do on Solaris
  1327     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1332   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1335 ////////////////////////////////////////////////////////////////////////////////
  1336 // time support
  1338 // Time since start-up in seconds to a fine granularity.
  1339 // Used by VMSelfDestructTimer and the MemProfiler.
  1340 double os::elapsedTime() {
  1342   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1345 jlong os::elapsed_counter() {
  1346   return javaTimeNanos() - initial_time_count;
  1349 jlong os::elapsed_frequency() {
  1350   return NANOSECS_PER_SEC; // nanosecond resolution
  1353 bool os::supports_vtime() { return true; }
  1354 bool os::enable_vtime()   { return false; }
  1355 bool os::vtime_enabled()  { return false; }
  1357 double os::elapsedVTime() {
  1358   struct rusage usage;
  1359   int retval = getrusage(RUSAGE_THREAD, &usage);
  1360   if (retval == 0) {
  1361     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1362   } else {
  1363     // better than nothing, but not much
  1364     return elapsedTime();
  1368 jlong os::javaTimeMillis() {
  1369   timeval time;
  1370   int status = gettimeofday(&time, NULL);
  1371   assert(status != -1, "linux error");
  1372   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1375 #ifndef CLOCK_MONOTONIC
  1376 #define CLOCK_MONOTONIC (1)
  1377 #endif
  1379 void os::Linux::clock_init() {
  1380   // we do dlopen's in this particular order due to bug in linux
  1381   // dynamical loader (see 6348968) leading to crash on exit
  1382   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1383   if (handle == NULL) {
  1384     handle = dlopen("librt.so", RTLD_LAZY);
  1387   if (handle) {
  1388     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1389            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1390     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1391            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1392     if (clock_getres_func && clock_gettime_func) {
  1393       // See if monotonic clock is supported by the kernel. Note that some
  1394       // early implementations simply return kernel jiffies (updated every
  1395       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1396       // for nano time (though the monotonic property is still nice to have).
  1397       // It's fixed in newer kernels, however clock_getres() still returns
  1398       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1399       // resolution for now. Hopefully as people move to new kernels, this
  1400       // won't be a problem.
  1401       struct timespec res;
  1402       struct timespec tp;
  1403       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1404           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1405         // yes, monotonic clock is supported
  1406         _clock_gettime = clock_gettime_func;
  1407         return;
  1408       } else {
  1409         // close librt if there is no monotonic clock
  1410         dlclose(handle);
  1414   warning("No monotonic clock was available - timed services may " \
  1415           "be adversely affected if the time-of-day clock changes");
  1418 #ifndef SYS_clock_getres
  1420 #if defined(IA32) || defined(AMD64)
  1421 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1422 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1423 #else
  1424 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1425 #define sys_clock_getres(x,y)  -1
  1426 #endif
  1428 #else
  1429 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1430 #endif
  1432 void os::Linux::fast_thread_clock_init() {
  1433   if (!UseLinuxPosixThreadCPUClocks) {
  1434     return;
  1436   clockid_t clockid;
  1437   struct timespec tp;
  1438   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1439       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1441   // Switch to using fast clocks for thread cpu time if
  1442   // the sys_clock_getres() returns 0 error code.
  1443   // Note, that some kernels may support the current thread
  1444   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1445   // returned by the pthread_getcpuclockid().
  1446   // If the fast Posix clocks are supported then the sys_clock_getres()
  1447   // must return at least tp.tv_sec == 0 which means a resolution
  1448   // better than 1 sec. This is extra check for reliability.
  1450   if(pthread_getcpuclockid_func &&
  1451      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1452      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1454     _supports_fast_thread_cpu_time = true;
  1455     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1459 jlong os::javaTimeNanos() {
  1460   if (Linux::supports_monotonic_clock()) {
  1461     struct timespec tp;
  1462     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1463     assert(status == 0, "gettime error");
  1464     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1465     return result;
  1466   } else {
  1467     timeval time;
  1468     int status = gettimeofday(&time, NULL);
  1469     assert(status != -1, "linux error");
  1470     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1471     return 1000 * usecs;
  1475 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1476   if (Linux::supports_monotonic_clock()) {
  1477     info_ptr->max_value = ALL_64_BITS;
  1479     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1480     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1481     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1482   } else {
  1483     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1484     info_ptr->max_value = ALL_64_BITS;
  1486     // gettimeofday is a real time clock so it skips
  1487     info_ptr->may_skip_backward = true;
  1488     info_ptr->may_skip_forward = true;
  1491   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1494 // Return the real, user, and system times in seconds from an
  1495 // arbitrary fixed point in the past.
  1496 bool os::getTimesSecs(double* process_real_time,
  1497                       double* process_user_time,
  1498                       double* process_system_time) {
  1499   struct tms ticks;
  1500   clock_t real_ticks = times(&ticks);
  1502   if (real_ticks == (clock_t) (-1)) {
  1503     return false;
  1504   } else {
  1505     double ticks_per_second = (double) clock_tics_per_sec;
  1506     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1507     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1508     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1510     return true;
  1515 char * os::local_time_string(char *buf, size_t buflen) {
  1516   struct tm t;
  1517   time_t long_time;
  1518   time(&long_time);
  1519   localtime_r(&long_time, &t);
  1520   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1521                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1522                t.tm_hour, t.tm_min, t.tm_sec);
  1523   return buf;
  1526 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1527   return localtime_r(clock, res);
  1530 ////////////////////////////////////////////////////////////////////////////////
  1531 // runtime exit support
  1533 // Note: os::shutdown() might be called very early during initialization, or
  1534 // called from signal handler. Before adding something to os::shutdown(), make
  1535 // sure it is async-safe and can handle partially initialized VM.
  1536 void os::shutdown() {
  1538   // allow PerfMemory to attempt cleanup of any persistent resources
  1539   perfMemory_exit();
  1541   // needs to remove object in file system
  1542   AttachListener::abort();
  1544   // flush buffered output, finish log files
  1545   ostream_abort();
  1547   // Check for abort hook
  1548   abort_hook_t abort_hook = Arguments::abort_hook();
  1549   if (abort_hook != NULL) {
  1550     abort_hook();
  1555 // Note: os::abort() might be called very early during initialization, or
  1556 // called from signal handler. Before adding something to os::abort(), make
  1557 // sure it is async-safe and can handle partially initialized VM.
  1558 void os::abort(bool dump_core) {
  1559   os::shutdown();
  1560   if (dump_core) {
  1561 #ifndef PRODUCT
  1562     fdStream out(defaultStream::output_fd());
  1563     out.print_raw("Current thread is ");
  1564     char buf[16];
  1565     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1566     out.print_raw_cr(buf);
  1567     out.print_raw_cr("Dumping core ...");
  1568 #endif
  1569     ::abort(); // dump core
  1572   ::exit(1);
  1575 // Die immediately, no exit hook, no abort hook, no cleanup.
  1576 void os::die() {
  1577   // _exit() on LinuxThreads only kills current thread
  1578   ::abort();
  1582 // This method is a copy of JDK's sysGetLastErrorString
  1583 // from src/solaris/hpi/src/system_md.c
  1585 size_t os::lasterror(char *buf, size_t len) {
  1587   if (errno == 0)  return 0;
  1589   const char *s = ::strerror(errno);
  1590   size_t n = ::strlen(s);
  1591   if (n >= len) {
  1592     n = len - 1;
  1594   ::strncpy(buf, s, n);
  1595   buf[n] = '\0';
  1596   return n;
  1599 intx os::current_thread_id() { return (intx)pthread_self(); }
  1600 int os::current_process_id() {
  1602   // Under the old linux thread library, linux gives each thread
  1603   // its own process id. Because of this each thread will return
  1604   // a different pid if this method were to return the result
  1605   // of getpid(2). Linux provides no api that returns the pid
  1606   // of the launcher thread for the vm. This implementation
  1607   // returns a unique pid, the pid of the launcher thread
  1608   // that starts the vm 'process'.
  1610   // Under the NPTL, getpid() returns the same pid as the
  1611   // launcher thread rather than a unique pid per thread.
  1612   // Use gettid() if you want the old pre NPTL behaviour.
  1614   // if you are looking for the result of a call to getpid() that
  1615   // returns a unique pid for the calling thread, then look at the
  1616   // OSThread::thread_id() method in osThread_linux.hpp file
  1618   return (int)(_initial_pid ? _initial_pid : getpid());
  1621 // DLL functions
  1623 const char* os::dll_file_extension() { return ".so"; }
  1625 // This must be hard coded because it's the system's temporary
  1626 // directory not the java application's temp directory, ala java.io.tmpdir.
  1627 const char* os::get_temp_directory() { return "/tmp"; }
  1629 static bool file_exists(const char* filename) {
  1630   struct stat statbuf;
  1631   if (filename == NULL || strlen(filename) == 0) {
  1632     return false;
  1634   return os::stat(filename, &statbuf) == 0;
  1637 bool os::dll_build_name(char* buffer, size_t buflen,
  1638                         const char* pname, const char* fname) {
  1639   bool retval = false;
  1640   // Copied from libhpi
  1641   const size_t pnamelen = pname ? strlen(pname) : 0;
  1643   // Return error on buffer overflow.
  1644   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1645     return retval;
  1648   if (pnamelen == 0) {
  1649     snprintf(buffer, buflen, "lib%s.so", fname);
  1650     retval = true;
  1651   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1652     int n;
  1653     char** pelements = split_path(pname, &n);
  1654     if (pelements == NULL) {
  1655       return false;
  1657     for (int i = 0 ; i < n ; i++) {
  1658       // Really shouldn't be NULL, but check can't hurt
  1659       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1660         continue; // skip the empty path values
  1662       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1663       if (file_exists(buffer)) {
  1664         retval = true;
  1665         break;
  1668     // release the storage
  1669     for (int i = 0 ; i < n ; i++) {
  1670       if (pelements[i] != NULL) {
  1671         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1674     if (pelements != NULL) {
  1675       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1677   } else {
  1678     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1679     retval = true;
  1681   return retval;
  1684 // check if addr is inside libjvm.so
  1685 bool os::address_is_in_vm(address addr) {
  1686   static address libjvm_base_addr;
  1687   Dl_info dlinfo;
  1689   if (libjvm_base_addr == NULL) {
  1690     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1691       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1693     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1696   if (dladdr((void *)addr, &dlinfo) != 0) {
  1697     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1700   return false;
  1703 bool os::dll_address_to_function_name(address addr, char *buf,
  1704                                       int buflen, int *offset) {
  1705   // buf is not optional, but offset is optional
  1706   assert(buf != NULL, "sanity check");
  1708   Dl_info dlinfo;
  1710   if (dladdr((void*)addr, &dlinfo) != 0) {
  1711     // see if we have a matching symbol
  1712     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1713       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1714         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1716       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1717       return true;
  1719     // no matching symbol so try for just file info
  1720     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1721       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1722                           buf, buflen, offset, dlinfo.dli_fname)) {
  1723         return true;
  1728   buf[0] = '\0';
  1729   if (offset != NULL) *offset = -1;
  1730   return false;
  1733 struct _address_to_library_name {
  1734   address addr;          // input : memory address
  1735   size_t  buflen;        //         size of fname
  1736   char*   fname;         // output: library name
  1737   address base;          //         library base addr
  1738 };
  1740 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1741                                             size_t size, void *data) {
  1742   int i;
  1743   bool found = false;
  1744   address libbase = NULL;
  1745   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1747   // iterate through all loadable segments
  1748   for (i = 0; i < info->dlpi_phnum; i++) {
  1749     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1750     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1751       // base address of a library is the lowest address of its loaded
  1752       // segments.
  1753       if (libbase == NULL || libbase > segbase) {
  1754         libbase = segbase;
  1756       // see if 'addr' is within current segment
  1757       if (segbase <= d->addr &&
  1758           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1759         found = true;
  1764   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1765   // so dll_address_to_library_name() can fall through to use dladdr() which
  1766   // can figure out executable name from argv[0].
  1767   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1768     d->base = libbase;
  1769     if (d->fname) {
  1770       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1772     return 1;
  1774   return 0;
  1777 bool os::dll_address_to_library_name(address addr, char* buf,
  1778                                      int buflen, int* offset) {
  1779   // buf is not optional, but offset is optional
  1780   assert(buf != NULL, "sanity check");
  1782   Dl_info dlinfo;
  1783   struct _address_to_library_name data;
  1785   // There is a bug in old glibc dladdr() implementation that it could resolve
  1786   // to wrong library name if the .so file has a base address != NULL. Here
  1787   // we iterate through the program headers of all loaded libraries to find
  1788   // out which library 'addr' really belongs to. This workaround can be
  1789   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1790   data.addr = addr;
  1791   data.fname = buf;
  1792   data.buflen = buflen;
  1793   data.base = NULL;
  1794   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1796   if (rslt) {
  1797      // buf already contains library name
  1798      if (offset) *offset = addr - data.base;
  1799      return true;
  1801   if (dladdr((void*)addr, &dlinfo) != 0) {
  1802     if (dlinfo.dli_fname != NULL) {
  1803       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1805     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1806       *offset = addr - (address)dlinfo.dli_fbase;
  1808     return true;
  1811   buf[0] = '\0';
  1812   if (offset) *offset = -1;
  1813   return false;
  1816   // Loads .dll/.so and
  1817   // in case of error it checks if .dll/.so was built for the
  1818   // same architecture as Hotspot is running on
  1821 // Remember the stack's state. The Linux dynamic linker will change
  1822 // the stack to 'executable' at most once, so we must safepoint only once.
  1823 bool os::Linux::_stack_is_executable = false;
  1825 // VM operation that loads a library.  This is necessary if stack protection
  1826 // of the Java stacks can be lost during loading the library.  If we
  1827 // do not stop the Java threads, they can stack overflow before the stacks
  1828 // are protected again.
  1829 class VM_LinuxDllLoad: public VM_Operation {
  1830  private:
  1831   const char *_filename;
  1832   char *_ebuf;
  1833   int _ebuflen;
  1834   void *_lib;
  1835  public:
  1836   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1837     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1838   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1839   void doit() {
  1840     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1841     os::Linux::_stack_is_executable = true;
  1843   void* loaded_library() { return _lib; }
  1844 };
  1846 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1848   void * result = NULL;
  1849   bool load_attempted = false;
  1851   // Check whether the library to load might change execution rights
  1852   // of the stack. If they are changed, the protection of the stack
  1853   // guard pages will be lost. We need a safepoint to fix this.
  1854   //
  1855   // See Linux man page execstack(8) for more info.
  1856   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1857     ElfFile ef(filename);
  1858     if (!ef.specifies_noexecstack()) {
  1859       if (!is_init_completed()) {
  1860         os::Linux::_stack_is_executable = true;
  1861         // This is OK - No Java threads have been created yet, and hence no
  1862         // stack guard pages to fix.
  1863         //
  1864         // This should happen only when you are building JDK7 using a very
  1865         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1866         //
  1867         // Dynamic loader will make all stacks executable after
  1868         // this function returns, and will not do that again.
  1869         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1870       } else {
  1871         warning("You have loaded library %s which might have disabled stack guard. "
  1872                 "The VM will try to fix the stack guard now.\n"
  1873                 "It's highly recommended that you fix the library with "
  1874                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1875                 filename);
  1877         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1878         JavaThread *jt = JavaThread::current();
  1879         if (jt->thread_state() != _thread_in_native) {
  1880           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1881           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1882           warning("Unable to fix stack guard. Giving up.");
  1883         } else {
  1884           if (!LoadExecStackDllInVMThread) {
  1885             // This is for the case where the DLL has an static
  1886             // constructor function that executes JNI code. We cannot
  1887             // load such DLLs in the VMThread.
  1888             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1891           ThreadInVMfromNative tiv(jt);
  1892           debug_only(VMNativeEntryWrapper vew;)
  1894           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1895           VMThread::execute(&op);
  1896           if (LoadExecStackDllInVMThread) {
  1897             result = op.loaded_library();
  1899           load_attempted = true;
  1905   if (!load_attempted) {
  1906     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1909   if (result != NULL) {
  1910     // Successful loading
  1911     return result;
  1914   Elf32_Ehdr elf_head;
  1915   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1916   char* diag_msg_buf=ebuf+strlen(ebuf);
  1918   if (diag_msg_max_length==0) {
  1919     // No more space in ebuf for additional diagnostics message
  1920     return NULL;
  1924   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1926   if (file_descriptor < 0) {
  1927     // Can't open library, report dlerror() message
  1928     return NULL;
  1931   bool failed_to_read_elf_head=
  1932     (sizeof(elf_head)!=
  1933         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1935   ::close(file_descriptor);
  1936   if (failed_to_read_elf_head) {
  1937     // file i/o error - report dlerror() msg
  1938     return NULL;
  1941   typedef struct {
  1942     Elf32_Half  code;         // Actual value as defined in elf.h
  1943     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1944     char        elf_class;    // 32 or 64 bit
  1945     char        endianess;    // MSB or LSB
  1946     char*       name;         // String representation
  1947   } arch_t;
  1949   #ifndef EM_486
  1950   #define EM_486          6               /* Intel 80486 */
  1951   #endif
  1953   static const arch_t arch_array[]={
  1954     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1955     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1956     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1957     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1958     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1959     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1960     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1961     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1962 #if defined(VM_LITTLE_ENDIAN)
  1963     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
  1964 #else
  1965     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1966 #endif
  1967     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1968     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1969     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1970     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1971     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1972     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1973     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1974   };
  1976   #if  (defined IA32)
  1977     static  Elf32_Half running_arch_code=EM_386;
  1978   #elif   (defined AMD64)
  1979     static  Elf32_Half running_arch_code=EM_X86_64;
  1980   #elif  (defined IA64)
  1981     static  Elf32_Half running_arch_code=EM_IA_64;
  1982   #elif  (defined __sparc) && (defined _LP64)
  1983     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1984   #elif  (defined __sparc) && (!defined _LP64)
  1985     static  Elf32_Half running_arch_code=EM_SPARC;
  1986   #elif  (defined __powerpc64__)
  1987     static  Elf32_Half running_arch_code=EM_PPC64;
  1988   #elif  (defined __powerpc__)
  1989     static  Elf32_Half running_arch_code=EM_PPC;
  1990   #elif  (defined ARM)
  1991     static  Elf32_Half running_arch_code=EM_ARM;
  1992   #elif  (defined S390)
  1993     static  Elf32_Half running_arch_code=EM_S390;
  1994   #elif  (defined ALPHA)
  1995     static  Elf32_Half running_arch_code=EM_ALPHA;
  1996   #elif  (defined MIPSEL)
  1997     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1998   #elif  (defined PARISC)
  1999     static  Elf32_Half running_arch_code=EM_PARISC;
  2000   #elif  (defined MIPS)
  2001     static  Elf32_Half running_arch_code=EM_MIPS;
  2002   #elif  (defined M68K)
  2003     static  Elf32_Half running_arch_code=EM_68K;
  2004   #else
  2005     #error Method os::dll_load requires that one of following is defined:\
  2006          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  2007   #endif
  2009   // Identify compatability class for VM's architecture and library's architecture
  2010   // Obtain string descriptions for architectures
  2012   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2013   int running_arch_index=-1;
  2015   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2016     if (running_arch_code == arch_array[i].code) {
  2017       running_arch_index    = i;
  2019     if (lib_arch.code == arch_array[i].code) {
  2020       lib_arch.compat_class = arch_array[i].compat_class;
  2021       lib_arch.name         = arch_array[i].name;
  2025   assert(running_arch_index != -1,
  2026     "Didn't find running architecture code (running_arch_code) in arch_array");
  2027   if (running_arch_index == -1) {
  2028     // Even though running architecture detection failed
  2029     // we may still continue with reporting dlerror() message
  2030     return NULL;
  2033   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2034     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2035     return NULL;
  2038 #ifndef S390
  2039   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2040     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2041     return NULL;
  2043 #endif // !S390
  2045   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2046     if ( lib_arch.name!=NULL ) {
  2047       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2048         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2049         lib_arch.name, arch_array[running_arch_index].name);
  2050     } else {
  2051       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2052       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2053         lib_arch.code,
  2054         arch_array[running_arch_index].name);
  2058   return NULL;
  2061 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2062   void * result = ::dlopen(filename, RTLD_LAZY);
  2063   if (result == NULL) {
  2064     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2065     ebuf[ebuflen-1] = '\0';
  2067   return result;
  2070 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2071   void * result = NULL;
  2072   if (LoadExecStackDllInVMThread) {
  2073     result = dlopen_helper(filename, ebuf, ebuflen);
  2076   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2077   // library that requires an executable stack, or which does not have this
  2078   // stack attribute set, dlopen changes the stack attribute to executable. The
  2079   // read protection of the guard pages gets lost.
  2080   //
  2081   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2082   // may have been queued at the same time.
  2084   if (!_stack_is_executable) {
  2085     JavaThread *jt = Threads::first();
  2087     while (jt) {
  2088       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2089           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2090         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2091                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2092           warning("Attempt to reguard stack yellow zone failed.");
  2095       jt = jt->next();
  2099   return result;
  2102 /*
  2103  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2104  * chances are you might want to run the generated bits against glibc-2.0
  2105  * libdl.so, so always use locking for any version of glibc.
  2106  */
  2107 void* os::dll_lookup(void* handle, const char* name) {
  2108   pthread_mutex_lock(&dl_mutex);
  2109   void* res = dlsym(handle, name);
  2110   pthread_mutex_unlock(&dl_mutex);
  2111   return res;
  2114 void* os::get_default_process_handle() {
  2115   return (void*)::dlopen(NULL, RTLD_LAZY);
  2118 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2119   int fd = ::open(filename, O_RDONLY);
  2120   if (fd == -1) {
  2121      return false;
  2124   char buf[32];
  2125   int bytes;
  2126   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2127     st->print_raw(buf, bytes);
  2130   ::close(fd);
  2132   return true;
  2135 void os::print_dll_info(outputStream *st) {
  2136    st->print_cr("Dynamic libraries:");
  2138    char fname[32];
  2139    pid_t pid = os::Linux::gettid();
  2141    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2143    if (!_print_ascii_file(fname, st)) {
  2144      st->print("Can not get library information for pid = %d\n", pid);
  2148 void os::print_os_info_brief(outputStream* st) {
  2149   os::Linux::print_distro_info(st);
  2151   os::Posix::print_uname_info(st);
  2153   os::Linux::print_libversion_info(st);
  2157 void os::print_os_info(outputStream* st) {
  2158   st->print("OS:");
  2160   os::Linux::print_distro_info(st);
  2162   os::Posix::print_uname_info(st);
  2164   // Print warning if unsafe chroot environment detected
  2165   if (unsafe_chroot_detected) {
  2166     st->print("WARNING!! ");
  2167     st->print_cr("%s", unstable_chroot_error);
  2170   os::Linux::print_libversion_info(st);
  2172   os::Posix::print_rlimit_info(st);
  2174   os::Posix::print_load_average(st);
  2176   os::Linux::print_full_memory_info(st);
  2178   os::Linux::print_container_info(st);
  2181 // Try to identify popular distros.
  2182 // Most Linux distributions have a /etc/XXX-release file, which contains
  2183 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2184 // file that also contains the OS version string. Some have more than one
  2185 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2186 // /etc/redhat-release.), so the order is important.
  2187 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2188 // their own specific XXX-release file as well as a redhat-release file.
  2189 // Because of this the XXX-release file needs to be searched for before the
  2190 // redhat-release file.
  2191 // Since Red Hat has a lsb-release file that is not very descriptive the
  2192 // search for redhat-release needs to be before lsb-release.
  2193 // Since the lsb-release file is the new standard it needs to be searched
  2194 // before the older style release files.
  2195 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2196 // next to last resort.  The os-release file is a new standard that contains
  2197 // distribution information and the system-release file seems to be an old
  2198 // standard that has been replaced by the lsb-release and os-release files.
  2199 // Searching for the debian_version file is the last resort.  It contains
  2200 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2201 // "Debian " is printed before the contents of the debian_version file.
  2202 void os::Linux::print_distro_info(outputStream* st) {
  2203    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2204        !_print_ascii_file("/etc/mandriva-release", st) &&
  2205        !_print_ascii_file("/etc/mandrake-release", st) &&
  2206        !_print_ascii_file("/etc/sun-release", st) &&
  2207        !_print_ascii_file("/etc/redhat-release", st) &&
  2208        !_print_ascii_file("/etc/lsb-release", st) &&
  2209        !_print_ascii_file("/etc/SuSE-release", st) &&
  2210        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2211        !_print_ascii_file("/etc/gentoo-release", st) &&
  2212        !_print_ascii_file("/etc/ltib-release", st) &&
  2213        !_print_ascii_file("/etc/angstrom-version", st) &&
  2214        !_print_ascii_file("/etc/system-release", st) &&
  2215        !_print_ascii_file("/etc/os-release", st)) {
  2217        if (file_exists("/etc/debian_version")) {
  2218          st->print("Debian ");
  2219          _print_ascii_file("/etc/debian_version", st);
  2220        } else {
  2221          st->print("Linux");
  2224    st->cr();
  2227 void os::Linux::print_libversion_info(outputStream* st) {
  2228   // libc, pthread
  2229   st->print("libc:");
  2230   st->print("%s ", os::Linux::glibc_version());
  2231   st->print("%s ", os::Linux::libpthread_version());
  2232   if (os::Linux::is_LinuxThreads()) {
  2233      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2235   st->cr();
  2238 void os::Linux::print_full_memory_info(outputStream* st) {
  2239    st->print("\n/proc/meminfo:\n");
  2240    _print_ascii_file("/proc/meminfo", st);
  2241    st->cr();
  2244 void os::Linux::print_container_info(outputStream* st) {
  2245 if (!OSContainer::is_containerized()) {
  2246     return;
  2249   st->print("container (cgroup) information:\n");
  2251   const char *p_ct = OSContainer::container_type();
  2252   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
  2254   char *p = OSContainer::cpu_cpuset_cpus();
  2255   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
  2256   free(p);
  2258   p = OSContainer::cpu_cpuset_memory_nodes();
  2259   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
  2260   free(p);
  2262   int i = OSContainer::active_processor_count();
  2263   if (i > 0) {
  2264     st->print("active_processor_count: %d\n", i);
  2265   } else {
  2266     st->print("active_processor_count: failed\n");
  2269   i = OSContainer::cpu_quota();
  2270   st->print("cpu_quota: %d\n", i);
  2272   i = OSContainer::cpu_period();
  2273   st->print("cpu_period: %d\n", i);
  2275   i = OSContainer::cpu_shares();
  2276   st->print("cpu_shares: %d\n", i);
  2278   jlong j = OSContainer::memory_limit_in_bytes();
  2279   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2281   j = OSContainer::memory_and_swap_limit_in_bytes();
  2282   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2284   j = OSContainer::memory_soft_limit_in_bytes();
  2285   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2287   j = OSContainer::OSContainer::memory_usage_in_bytes();
  2288   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2290   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
  2291   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2292   st->cr();
  2295 void os::print_memory_info(outputStream* st) {
  2297   st->print("Memory:");
  2298   st->print(" %dk page", os::vm_page_size()>>10);
  2300   // values in struct sysinfo are "unsigned long"
  2301   struct sysinfo si;
  2302   sysinfo(&si);
  2304   st->print(", physical " UINT64_FORMAT "k",
  2305             os::physical_memory() >> 10);
  2306   st->print("(" UINT64_FORMAT "k free)",
  2307             os::available_memory() >> 10);
  2308   st->print(", swap " UINT64_FORMAT "k",
  2309             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2310   st->print("(" UINT64_FORMAT "k free)",
  2311             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2312   st->cr();
  2315 void os::pd_print_cpu_info(outputStream* st) {
  2316   st->print("\n/proc/cpuinfo:\n");
  2317   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2318     st->print("  <Not Available>");
  2320   st->cr();
  2323 void os::print_siginfo(outputStream* st, void* siginfo) {
  2324   const siginfo_t* si = (const siginfo_t*)siginfo;
  2326   os::Posix::print_siginfo_brief(st, si);
  2327 #if INCLUDE_CDS
  2328   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2329       UseSharedSpaces) {
  2330     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2331     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2332       st->print("\n\nError accessing class data sharing archive."   \
  2333                 " Mapped file inaccessible during execution, "      \
  2334                 " possible disk/network problem.");
  2337 #endif
  2338   st->cr();
  2342 static void print_signal_handler(outputStream* st, int sig,
  2343                                  char* buf, size_t buflen);
  2345 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2346   st->print_cr("Signal Handlers:");
  2347   print_signal_handler(st, SIGSEGV, buf, buflen);
  2348   print_signal_handler(st, SIGBUS , buf, buflen);
  2349   print_signal_handler(st, SIGFPE , buf, buflen);
  2350   print_signal_handler(st, SIGPIPE, buf, buflen);
  2351   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2352   print_signal_handler(st, SIGILL , buf, buflen);
  2353   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2354   print_signal_handler(st, SR_signum, buf, buflen);
  2355   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2356   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2357   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2358   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2359 #if defined(PPC64)
  2360   print_signal_handler(st, SIGTRAP, buf, buflen);
  2361 #endif
  2364 static char saved_jvm_path[MAXPATHLEN] = {0};
  2366 // Find the full path to the current module, libjvm.so
  2367 void os::jvm_path(char *buf, jint buflen) {
  2368   // Error checking.
  2369   if (buflen < MAXPATHLEN) {
  2370     assert(false, "must use a large-enough buffer");
  2371     buf[0] = '\0';
  2372     return;
  2374   // Lazy resolve the path to current module.
  2375   if (saved_jvm_path[0] != 0) {
  2376     strcpy(buf, saved_jvm_path);
  2377     return;
  2380   char dli_fname[MAXPATHLEN];
  2381   bool ret = dll_address_to_library_name(
  2382                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2383                 dli_fname, sizeof(dli_fname), NULL);
  2384   assert(ret, "cannot locate libjvm");
  2385   char *rp = NULL;
  2386   if (ret && dli_fname[0] != '\0') {
  2387     rp = realpath(dli_fname, buf);
  2389   if (rp == NULL)
  2390     return;
  2392   if (Arguments::created_by_gamma_launcher()) {
  2393     // Support for the gamma launcher.  Typical value for buf is
  2394     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2395     // the right place in the string, then assume we are installed in a JDK and
  2396     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2397     // up the path so it looks like libjvm.so is installed there (append a
  2398     // fake suffix hotspot/libjvm.so).
  2399     const char *p = buf + strlen(buf) - 1;
  2400     for (int count = 0; p > buf && count < 5; ++count) {
  2401       for (--p; p > buf && *p != '/'; --p)
  2402         /* empty */ ;
  2405     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2406       // Look for JAVA_HOME in the environment.
  2407       char* java_home_var = ::getenv("JAVA_HOME");
  2408       if (java_home_var != NULL && java_home_var[0] != 0) {
  2409         char* jrelib_p;
  2410         int len;
  2412         // Check the current module name "libjvm.so".
  2413         p = strrchr(buf, '/');
  2414         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2416         rp = realpath(java_home_var, buf);
  2417         if (rp == NULL)
  2418           return;
  2420         // determine if this is a legacy image or modules image
  2421         // modules image doesn't have "jre" subdirectory
  2422         len = strlen(buf);
  2423         assert(len < buflen, "Ran out of buffer room");
  2424         jrelib_p = buf + len;
  2425         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2426         if (0 != access(buf, F_OK)) {
  2427           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2430         if (0 == access(buf, F_OK)) {
  2431           // Use current module name "libjvm.so"
  2432           len = strlen(buf);
  2433           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2434         } else {
  2435           // Go back to path of .so
  2436           rp = realpath(dli_fname, buf);
  2437           if (rp == NULL)
  2438             return;
  2444   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2447 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2448   // no prefix required, not even "_"
  2451 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2452   // no suffix required
  2455 ////////////////////////////////////////////////////////////////////////////////
  2456 // sun.misc.Signal support
  2458 static volatile jint sigint_count = 0;
  2460 static void
  2461 UserHandler(int sig, void *siginfo, void *context) {
  2462   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2463   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2464   // don't want to flood the manager thread with sem_post requests.
  2465   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2466       return;
  2468   // Ctrl-C is pressed during error reporting, likely because the error
  2469   // handler fails to abort. Let VM die immediately.
  2470   if (sig == SIGINT && is_error_reported()) {
  2471      os::die();
  2474   os::signal_notify(sig);
  2477 void* os::user_handler() {
  2478   return CAST_FROM_FN_PTR(void*, UserHandler);
  2481 class Semaphore : public StackObj {
  2482   public:
  2483     Semaphore();
  2484     ~Semaphore();
  2485     void signal();
  2486     void wait();
  2487     bool trywait();
  2488     bool timedwait(unsigned int sec, int nsec);
  2489   private:
  2490     sem_t _semaphore;
  2491 };
  2493 Semaphore::Semaphore() {
  2494   sem_init(&_semaphore, 0, 0);
  2497 Semaphore::~Semaphore() {
  2498   sem_destroy(&_semaphore);
  2501 void Semaphore::signal() {
  2502   sem_post(&_semaphore);
  2505 void Semaphore::wait() {
  2506   sem_wait(&_semaphore);
  2509 bool Semaphore::trywait() {
  2510   return sem_trywait(&_semaphore) == 0;
  2513 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2515   struct timespec ts;
  2516   // Semaphore's are always associated with CLOCK_REALTIME
  2517   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2518   // see unpackTime for discussion on overflow checking
  2519   if (sec >= MAX_SECS) {
  2520     ts.tv_sec += MAX_SECS;
  2521     ts.tv_nsec = 0;
  2522   } else {
  2523     ts.tv_sec += sec;
  2524     ts.tv_nsec += nsec;
  2525     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2526       ts.tv_nsec -= NANOSECS_PER_SEC;
  2527       ++ts.tv_sec; // note: this must be <= max_secs
  2531   while (1) {
  2532     int result = sem_timedwait(&_semaphore, &ts);
  2533     if (result == 0) {
  2534       return true;
  2535     } else if (errno == EINTR) {
  2536       continue;
  2537     } else if (errno == ETIMEDOUT) {
  2538       return false;
  2539     } else {
  2540       return false;
  2545 extern "C" {
  2546   typedef void (*sa_handler_t)(int);
  2547   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2550 void* os::signal(int signal_number, void* handler) {
  2551   struct sigaction sigAct, oldSigAct;
  2553   sigfillset(&(sigAct.sa_mask));
  2554   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2555   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2557   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2558     // -1 means registration failed
  2559     return (void *)-1;
  2562   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2565 void os::signal_raise(int signal_number) {
  2566   ::raise(signal_number);
  2569 /*
  2570  * The following code is moved from os.cpp for making this
  2571  * code platform specific, which it is by its very nature.
  2572  */
  2574 // Will be modified when max signal is changed to be dynamic
  2575 int os::sigexitnum_pd() {
  2576   return NSIG;
  2579 // a counter for each possible signal value
  2580 static volatile jint pending_signals[NSIG+1] = { 0 };
  2582 // Linux(POSIX) specific hand shaking semaphore.
  2583 static sem_t sig_sem;
  2584 static Semaphore sr_semaphore;
  2586 void os::signal_init_pd() {
  2587   // Initialize signal structures
  2588   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2590   // Initialize signal semaphore
  2591   ::sem_init(&sig_sem, 0, 0);
  2594 void os::signal_notify(int sig) {
  2595   Atomic::inc(&pending_signals[sig]);
  2596   ::sem_post(&sig_sem);
  2599 static int check_pending_signals(bool wait) {
  2600   Atomic::store(0, &sigint_count);
  2601   for (;;) {
  2602     for (int i = 0; i < NSIG + 1; i++) {
  2603       jint n = pending_signals[i];
  2604       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2605         return i;
  2608     if (!wait) {
  2609       return -1;
  2611     JavaThread *thread = JavaThread::current();
  2612     ThreadBlockInVM tbivm(thread);
  2614     bool threadIsSuspended;
  2615     do {
  2616       thread->set_suspend_equivalent();
  2617       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2618       ::sem_wait(&sig_sem);
  2620       // were we externally suspended while we were waiting?
  2621       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2622       if (threadIsSuspended) {
  2623         //
  2624         // The semaphore has been incremented, but while we were waiting
  2625         // another thread suspended us. We don't want to continue running
  2626         // while suspended because that would surprise the thread that
  2627         // suspended us.
  2628         //
  2629         ::sem_post(&sig_sem);
  2631         thread->java_suspend_self();
  2633     } while (threadIsSuspended);
  2637 int os::signal_lookup() {
  2638   return check_pending_signals(false);
  2641 int os::signal_wait() {
  2642   return check_pending_signals(true);
  2645 ////////////////////////////////////////////////////////////////////////////////
  2646 // Virtual Memory
  2648 int os::vm_page_size() {
  2649   // Seems redundant as all get out
  2650   assert(os::Linux::page_size() != -1, "must call os::init");
  2651   return os::Linux::page_size();
  2654 // Solaris allocates memory by pages.
  2655 int os::vm_allocation_granularity() {
  2656   assert(os::Linux::page_size() != -1, "must call os::init");
  2657   return os::Linux::page_size();
  2660 // Rationale behind this function:
  2661 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2662 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2663 //  samples for JITted code. Here we create private executable mapping over the code cache
  2664 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2665 //  info for the reporting script by storing timestamp and location of symbol
  2666 void linux_wrap_code(char* base, size_t size) {
  2667   static volatile jint cnt = 0;
  2669   if (!UseOprofile) {
  2670     return;
  2673   char buf[PATH_MAX+1];
  2674   int num = Atomic::add(1, &cnt);
  2676   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2677            os::get_temp_directory(), os::current_process_id(), num);
  2678   unlink(buf);
  2680   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2682   if (fd != -1) {
  2683     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2684     if (rv != (off_t)-1) {
  2685       if (::write(fd, "", 1) == 1) {
  2686         mmap(base, size,
  2687              PROT_READ|PROT_WRITE|PROT_EXEC,
  2688              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2691     ::close(fd);
  2692     unlink(buf);
  2696 static bool recoverable_mmap_error(int err) {
  2697   // See if the error is one we can let the caller handle. This
  2698   // list of errno values comes from JBS-6843484. I can't find a
  2699   // Linux man page that documents this specific set of errno
  2700   // values so while this list currently matches Solaris, it may
  2701   // change as we gain experience with this failure mode.
  2702   switch (err) {
  2703   case EBADF:
  2704   case EINVAL:
  2705   case ENOTSUP:
  2706     // let the caller deal with these errors
  2707     return true;
  2709   default:
  2710     // Any remaining errors on this OS can cause our reserved mapping
  2711     // to be lost. That can cause confusion where different data
  2712     // structures think they have the same memory mapped. The worst
  2713     // scenario is if both the VM and a library think they have the
  2714     // same memory mapped.
  2715     return false;
  2719 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2720                                     int err) {
  2721   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2722           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2723           strerror(err), err);
  2726 static void warn_fail_commit_memory(char* addr, size_t size,
  2727                                     size_t alignment_hint, bool exec,
  2728                                     int err) {
  2729   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2730           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2731           alignment_hint, exec, strerror(err), err);
  2734 // NOTE: Linux kernel does not really reserve the pages for us.
  2735 //       All it does is to check if there are enough free pages
  2736 //       left at the time of mmap(). This could be a potential
  2737 //       problem.
  2738 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2739   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2740   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2741                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2742   if (res != (uintptr_t) MAP_FAILED) {
  2743     if (UseNUMAInterleaving) {
  2744       numa_make_global(addr, size);
  2746     return 0;
  2749   int err = errno;  // save errno from mmap() call above
  2751   if (!recoverable_mmap_error(err)) {
  2752     warn_fail_commit_memory(addr, size, exec, err);
  2753     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2756   return err;
  2759 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2760   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2763 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2764                                   const char* mesg) {
  2765   assert(mesg != NULL, "mesg must be specified");
  2766   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2767   if (err != 0) {
  2768     // the caller wants all commit errors to exit with the specified mesg:
  2769     warn_fail_commit_memory(addr, size, exec, err);
  2770     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2774 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2775 #ifndef MAP_HUGETLB
  2776 #define MAP_HUGETLB 0x40000
  2777 #endif
  2779 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2780 #ifndef MADV_HUGEPAGE
  2781 #define MADV_HUGEPAGE 14
  2782 #endif
  2784 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2785                                   size_t alignment_hint, bool exec) {
  2786   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2787   if (err == 0) {
  2788     realign_memory(addr, size, alignment_hint);
  2790   return err;
  2793 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2794                           bool exec) {
  2795   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2798 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2799                                   size_t alignment_hint, bool exec,
  2800                                   const char* mesg) {
  2801   assert(mesg != NULL, "mesg must be specified");
  2802   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2803   if (err != 0) {
  2804     // the caller wants all commit errors to exit with the specified mesg:
  2805     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2806     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2810 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2811   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2812     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2813     // be supported or the memory may already be backed by huge pages.
  2814     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2818 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2819   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2820   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2821   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2822   // small pages on top of the SHM segment. This method always works for small pages, so we
  2823   // allow that in any case.
  2824   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2825     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2829 void os::numa_make_global(char *addr, size_t bytes) {
  2830   Linux::numa_interleave_memory(addr, bytes);
  2833 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2834 // bind policy to MPOL_PREFERRED for the current thread.
  2835 #define USE_MPOL_PREFERRED 0
  2837 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2838   // To make NUMA and large pages more robust when both enabled, we need to ease
  2839   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2840   // default policy and it will force memory to be allocated on the specified
  2841   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2842   // the specified node, but will not force it. Using this policy will prevent
  2843   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2844   // free large pages.
  2845   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2846   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2849 bool os::numa_topology_changed()   { return false; }
  2851 size_t os::numa_get_groups_num() {
  2852   // Return just the number of nodes in which it's possible to allocate memory
  2853   // (in numa terminology, configured nodes).
  2854   return Linux::numa_num_configured_nodes();
  2857 int os::numa_get_group_id() {
  2858   int cpu_id = Linux::sched_getcpu();
  2859   if (cpu_id != -1) {
  2860     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2861     if (lgrp_id != -1) {
  2862       return lgrp_id;
  2865   return 0;
  2868 int os::Linux::get_existing_num_nodes() {
  2869   size_t node;
  2870   size_t highest_node_number = Linux::numa_max_node();
  2871   int num_nodes = 0;
  2873   // Get the total number of nodes in the system including nodes without memory.
  2874   for (node = 0; node <= highest_node_number; node++) {
  2875     if (isnode_in_existing_nodes(node)) {
  2876       num_nodes++;
  2879   return num_nodes;
  2882 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2883   size_t highest_node_number = Linux::numa_max_node();
  2884   size_t i = 0;
  2886   // Map all node ids in which is possible to allocate memory. Also nodes are
  2887   // not always consecutively available, i.e. available from 0 to the highest
  2888   // node number.
  2889   for (size_t node = 0; node <= highest_node_number; node++) {
  2890     if (Linux::isnode_in_configured_nodes(node)) {
  2891       ids[i++] = node;
  2894   return i;
  2897 bool os::get_page_info(char *start, page_info* info) {
  2898   return false;
  2901 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2902   return end;
  2906 int os::Linux::sched_getcpu_syscall(void) {
  2907   unsigned int cpu = 0;
  2908   int retval = -1;
  2910 #if defined(IA32)
  2911 # ifndef SYS_getcpu
  2912 # define SYS_getcpu 318
  2913 # endif
  2914   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2915 #elif defined(AMD64)
  2916 // Unfortunately we have to bring all these macros here from vsyscall.h
  2917 // to be able to compile on old linuxes.
  2918 # define __NR_vgetcpu 2
  2919 # define VSYSCALL_START (-10UL << 20)
  2920 # define VSYSCALL_SIZE 1024
  2921 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2922   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2923   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2924   retval = vgetcpu(&cpu, NULL, NULL);
  2925 #endif
  2927   return (retval == -1) ? retval : cpu;
  2930 // Something to do with the numa-aware allocator needs these symbols
  2931 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2932 extern "C" JNIEXPORT void numa_error(char *where) { }
  2933 extern "C" JNIEXPORT int fork1() { return fork(); }
  2935 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
  2936 // load symbol from base version instead.
  2937 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2938   void *f = dlvsym(handle, name, "libnuma_1.1");
  2939   if (f == NULL) {
  2940     f = dlsym(handle, name);
  2942   return f;
  2945 // Handle request to load libnuma symbol version 1.2 (API v2) only.
  2946 // Return NULL if the symbol is not defined in this particular version.
  2947 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
  2948   return dlvsym(handle, name, "libnuma_1.2");
  2951 bool os::Linux::libnuma_init() {
  2952   // sched_getcpu() should be in libc.
  2953   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2954                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2956   // If it's not, try a direct syscall.
  2957   if (sched_getcpu() == -1)
  2958     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2960   if (sched_getcpu() != -1) { // Does it work?
  2961     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2962     if (handle != NULL) {
  2963       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2964                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2965       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2966                                        libnuma_dlsym(handle, "numa_max_node")));
  2967       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
  2968                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
  2969       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2970                                         libnuma_dlsym(handle, "numa_available")));
  2971       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2972                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2973       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2974                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
  2975       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
  2976                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
  2977       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2978                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
  2979       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
  2980                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
  2981       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
  2982                                        libnuma_dlsym(handle, "numa_distance")));
  2984       if (numa_available() != -1) {
  2985         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2986         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
  2987         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
  2988         // Create an index -> node mapping, since nodes are not always consecutive
  2989         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2990         rebuild_nindex_to_node_map();
  2991         // Create a cpu -> node mapping
  2992         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2993         rebuild_cpu_to_node_map();
  2994         return true;
  2998   return false;
  3001 void os::Linux::rebuild_nindex_to_node_map() {
  3002   int highest_node_number = Linux::numa_max_node();
  3004   nindex_to_node()->clear();
  3005   for (int node = 0; node <= highest_node_number; node++) {
  3006     if (Linux::isnode_in_existing_nodes(node)) {
  3007       nindex_to_node()->append(node);
  3012 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  3013 // The table is later used in get_node_by_cpu().
  3014 void os::Linux::rebuild_cpu_to_node_map() {
  3015   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  3016                               // in libnuma (possible values are starting from 16,
  3017                               // and continuing up with every other power of 2, but less
  3018                               // than the maximum number of CPUs supported by kernel), and
  3019                               // is a subject to change (in libnuma version 2 the requirements
  3020                               // are more reasonable) we'll just hardcode the number they use
  3021                               // in the library.
  3022   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  3024   size_t cpu_num = processor_count();
  3025   size_t cpu_map_size = NCPUS / BitsPerCLong;
  3026   size_t cpu_map_valid_size =
  3027     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  3029   cpu_to_node()->clear();
  3030   cpu_to_node()->at_grow(cpu_num - 1);
  3032   size_t node_num = get_existing_num_nodes();
  3034   int distance = 0;
  3035   int closest_distance = INT_MAX;
  3036   int closest_node = 0;
  3037   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  3038   for (size_t i = 0; i < node_num; i++) {
  3039     // Check if node is configured (not a memory-less node). If it is not, find
  3040     // the closest configured node.
  3041     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
  3042       closest_distance = INT_MAX;
  3043       // Check distance from all remaining nodes in the system. Ignore distance
  3044       // from itself and from another non-configured node.
  3045       for (size_t m = 0; m < node_num; m++) {
  3046         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
  3047           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
  3048           // If a closest node is found, update. There is always at least one
  3049           // configured node in the system so there is always at least one node
  3050           // close.
  3051           if (distance != 0 && distance < closest_distance) {
  3052             closest_distance = distance;
  3053             closest_node = nindex_to_node()->at(m);
  3057      } else {
  3058        // Current node is already a configured node.
  3059        closest_node = nindex_to_node()->at(i);
  3062     // Get cpus from the original node and map them to the closest node. If node
  3063     // is a configured node (not a memory-less node), then original node and
  3064     // closest node are the same.
  3065     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  3066       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  3067         if (cpu_map[j] != 0) {
  3068           for (size_t k = 0; k < BitsPerCLong; k++) {
  3069             if (cpu_map[j] & (1UL << k)) {
  3070               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
  3077   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  3080 int os::Linux::get_node_by_cpu(int cpu_id) {
  3081   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  3082     return cpu_to_node()->at(cpu_id);
  3084   return -1;
  3087 GrowableArray<int>* os::Linux::_cpu_to_node;
  3088 GrowableArray<int>* os::Linux::_nindex_to_node;
  3089 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  3090 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  3091 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  3092 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
  3093 os::Linux::numa_available_func_t os::Linux::_numa_available;
  3094 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  3095 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  3096 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
  3097 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  3098 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
  3099 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
  3100 unsigned long* os::Linux::_numa_all_nodes;
  3101 struct bitmask* os::Linux::_numa_all_nodes_ptr;
  3102 struct bitmask* os::Linux::_numa_nodes_ptr;
  3104 bool os::pd_uncommit_memory(char* addr, size_t size) {
  3105   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  3106                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  3107   return res  != (uintptr_t) MAP_FAILED;
  3110 static
  3111 address get_stack_commited_bottom(address bottom, size_t size) {
  3112   address nbot = bottom;
  3113   address ntop = bottom + size;
  3115   size_t page_sz = os::vm_page_size();
  3116   unsigned pages = size / page_sz;
  3118   unsigned char vec[1];
  3119   unsigned imin = 1, imax = pages + 1, imid;
  3120   int mincore_return_value = 0;
  3122   assert(imin <= imax, "Unexpected page size");
  3124   while (imin < imax) {
  3125     imid = (imax + imin) / 2;
  3126     nbot = ntop - (imid * page_sz);
  3128     // Use a trick with mincore to check whether the page is mapped or not.
  3129     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3130     // is swapped output but if page we are asking for is unmapped
  3131     // it returns -1,ENOMEM
  3132     mincore_return_value = mincore(nbot, page_sz, vec);
  3134     if (mincore_return_value == -1) {
  3135       // Page is not mapped go up
  3136       // to find first mapped page
  3137       if (errno != EAGAIN) {
  3138         assert(errno == ENOMEM, "Unexpected mincore errno");
  3139         imax = imid;
  3141     } else {
  3142       // Page is mapped go down
  3143       // to find first not mapped page
  3144       imin = imid + 1;
  3148   nbot = nbot + page_sz;
  3150   // Adjust stack bottom one page up if last checked page is not mapped
  3151   if (mincore_return_value == -1) {
  3152     nbot = nbot + page_sz;
  3155   return nbot;
  3159 // Linux uses a growable mapping for the stack, and if the mapping for
  3160 // the stack guard pages is not removed when we detach a thread the
  3161 // stack cannot grow beyond the pages where the stack guard was
  3162 // mapped.  If at some point later in the process the stack expands to
  3163 // that point, the Linux kernel cannot expand the stack any further
  3164 // because the guard pages are in the way, and a segfault occurs.
  3165 //
  3166 // However, it's essential not to split the stack region by unmapping
  3167 // a region (leaving a hole) that's already part of the stack mapping,
  3168 // so if the stack mapping has already grown beyond the guard pages at
  3169 // the time we create them, we have to truncate the stack mapping.
  3170 // So, we need to know the extent of the stack mapping when
  3171 // create_stack_guard_pages() is called.
  3173 // We only need this for stacks that are growable: at the time of
  3174 // writing thread stacks don't use growable mappings (i.e. those
  3175 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3176 // only applies to the main thread.
  3178 // If the (growable) stack mapping already extends beyond the point
  3179 // where we're going to put our guard pages, truncate the mapping at
  3180 // that point by munmap()ping it.  This ensures that when we later
  3181 // munmap() the guard pages we don't leave a hole in the stack
  3182 // mapping. This only affects the main/primordial thread
  3184 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3186   if (os::is_primordial_thread()) {
  3187     // As we manually grow stack up to bottom inside create_attached_thread(),
  3188     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3189     // we don't need to do anything special.
  3190     // Check it first, before calling heavy function.
  3191     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3192     unsigned char vec[1];
  3194     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3195       // Fallback to slow path on all errors, including EAGAIN
  3196       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3197                                     os::Linux::initial_thread_stack_bottom(),
  3198                                     (size_t)addr - stack_extent);
  3201     if (stack_extent < (uintptr_t)addr) {
  3202       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3206   return os::commit_memory(addr, size, !ExecMem);
  3209 // If this is a growable mapping, remove the guard pages entirely by
  3210 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3211 // affects the main/primordial thread, but guard against future OS changes.
  3212 // It's safe to always unmap guard pages for primordial thread because we
  3213 // always place it right after end of the mapped region.
  3215 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3216   uintptr_t stack_extent, stack_base;
  3218   if (os::is_primordial_thread()) {
  3219     return ::munmap(addr, size) == 0;
  3222   return os::uncommit_memory(addr, size);
  3225 static address _highest_vm_reserved_address = NULL;
  3227 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3228 // at 'requested_addr'. If there are existing memory mappings at the same
  3229 // location, however, they will be overwritten. If 'fixed' is false,
  3230 // 'requested_addr' is only treated as a hint, the return value may or
  3231 // may not start from the requested address. Unlike Linux mmap(), this
  3232 // function returns NULL to indicate failure.
  3233 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3234   char * addr;
  3235   int flags;
  3237   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3238   if (fixed) {
  3239     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3240     flags |= MAP_FIXED;
  3243   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3244   // touch an uncommitted page. Otherwise, the read/write might
  3245   // succeed if we have enough swap space to back the physical page.
  3246   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3247                        flags, -1, 0);
  3249   if (addr != MAP_FAILED) {
  3250     // anon_mmap() should only get called during VM initialization,
  3251     // don't need lock (actually we can skip locking even it can be called
  3252     // from multiple threads, because _highest_vm_reserved_address is just a
  3253     // hint about the upper limit of non-stack memory regions.)
  3254     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3255       _highest_vm_reserved_address = (address)addr + bytes;
  3259   return addr == MAP_FAILED ? NULL : addr;
  3262 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3263 //   (req_addr != NULL) or with a given alignment.
  3264 //  - bytes shall be a multiple of alignment.
  3265 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3266 //  - alignment sets the alignment at which memory shall be allocated.
  3267 //     It must be a multiple of allocation granularity.
  3268 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3269 //  req_addr or NULL.
  3270 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3272   size_t extra_size = bytes;
  3273   if (req_addr == NULL && alignment > 0) {
  3274     extra_size += alignment;
  3277   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3278     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3279     -1, 0);
  3280   if (start == MAP_FAILED) {
  3281     start = NULL;
  3282   } else {
  3283     if (req_addr != NULL) {
  3284       if (start != req_addr) {
  3285         ::munmap(start, extra_size);
  3286         start = NULL;
  3288     } else {
  3289       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3290       char* const end_aligned = start_aligned + bytes;
  3291       char* const end = start + extra_size;
  3292       if (start_aligned > start) {
  3293         ::munmap(start, start_aligned - start);
  3295       if (end_aligned < end) {
  3296         ::munmap(end_aligned, end - end_aligned);
  3298       start = start_aligned;
  3301   return start;
  3304 // Don't update _highest_vm_reserved_address, because there might be memory
  3305 // regions above addr + size. If so, releasing a memory region only creates
  3306 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3307 //
  3308 static int anon_munmap(char * addr, size_t size) {
  3309   return ::munmap(addr, size) == 0;
  3312 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3313                          size_t alignment_hint) {
  3314   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3317 bool os::pd_release_memory(char* addr, size_t size) {
  3318   return anon_munmap(addr, size);
  3321 static address highest_vm_reserved_address() {
  3322   return _highest_vm_reserved_address;
  3325 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3326   // Linux wants the mprotect address argument to be page aligned.
  3327   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3329   // According to SUSv3, mprotect() should only be used with mappings
  3330   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3331   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3332   // protection of malloc'ed or statically allocated memory). Check the
  3333   // caller if you hit this assert.
  3334   assert(addr == bottom, "sanity check");
  3336   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3337   return ::mprotect(bottom, size, prot) == 0;
  3340 // Set protections specified
  3341 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3342                         bool is_committed) {
  3343   unsigned int p = 0;
  3344   switch (prot) {
  3345   case MEM_PROT_NONE: p = PROT_NONE; break;
  3346   case MEM_PROT_READ: p = PROT_READ; break;
  3347   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3348   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3349   default:
  3350     ShouldNotReachHere();
  3352   // is_committed is unused.
  3353   return linux_mprotect(addr, bytes, p);
  3356 bool os::guard_memory(char* addr, size_t size) {
  3357   return linux_mprotect(addr, size, PROT_NONE);
  3360 bool os::unguard_memory(char* addr, size_t size) {
  3361   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3364 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3365   bool result = false;
  3366   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3367                  MAP_ANONYMOUS|MAP_PRIVATE,
  3368                  -1, 0);
  3369   if (p != MAP_FAILED) {
  3370     void *aligned_p = align_ptr_up(p, page_size);
  3372     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3374     munmap(p, page_size * 2);
  3377   if (warn && !result) {
  3378     warning("TransparentHugePages is not supported by the operating system.");
  3381   return result;
  3384 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3385   bool result = false;
  3386   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3387                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3388                  -1, 0);
  3390   if (p != MAP_FAILED) {
  3391     // We don't know if this really is a huge page or not.
  3392     FILE *fp = fopen("/proc/self/maps", "r");
  3393     if (fp) {
  3394       while (!feof(fp)) {
  3395         char chars[257];
  3396         long x = 0;
  3397         if (fgets(chars, sizeof(chars), fp)) {
  3398           if (sscanf(chars, "%lx-%*x", &x) == 1
  3399               && x == (long)p) {
  3400             if (strstr (chars, "hugepage")) {
  3401               result = true;
  3402               break;
  3407       fclose(fp);
  3409     munmap(p, page_size);
  3412   if (warn && !result) {
  3413     warning("HugeTLBFS is not supported by the operating system.");
  3416   return result;
  3419 /*
  3420 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3422 * From the coredump_filter documentation:
  3424 * - (bit 0) anonymous private memory
  3425 * - (bit 1) anonymous shared memory
  3426 * - (bit 2) file-backed private memory
  3427 * - (bit 3) file-backed shared memory
  3428 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3429 *           effective only if the bit 2 is cleared)
  3430 * - (bit 5) hugetlb private memory
  3431 * - (bit 6) hugetlb shared memory
  3432 */
  3433 static void set_coredump_filter(void) {
  3434   FILE *f;
  3435   long cdm;
  3437   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3438     return;
  3441   if (fscanf(f, "%lx", &cdm) != 1) {
  3442     fclose(f);
  3443     return;
  3446   rewind(f);
  3448   if ((cdm & LARGEPAGES_BIT) == 0) {
  3449     cdm |= LARGEPAGES_BIT;
  3450     fprintf(f, "%#lx", cdm);
  3453   fclose(f);
  3456 // Large page support
  3458 static size_t _large_page_size = 0;
  3460 size_t os::Linux::find_large_page_size() {
  3461   size_t large_page_size = 0;
  3463   // large_page_size on Linux is used to round up heap size. x86 uses either
  3464   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3465   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3466   // page as large as 256M.
  3467   //
  3468   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3469   // for a line with the following format:
  3470   //    Hugepagesize:     2048 kB
  3471   //
  3472   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3473   // format has been changed), we'll use the largest page size supported by
  3474   // the processor.
  3476 #ifndef ZERO
  3477   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3478                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3479 #endif // ZERO
  3481   FILE *fp = fopen("/proc/meminfo", "r");
  3482   if (fp) {
  3483     while (!feof(fp)) {
  3484       int x = 0;
  3485       char buf[16];
  3486       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3487         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3488           large_page_size = x * K;
  3489           break;
  3491       } else {
  3492         // skip to next line
  3493         for (;;) {
  3494           int ch = fgetc(fp);
  3495           if (ch == EOF || ch == (int)'\n') break;
  3499     fclose(fp);
  3502   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3503     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3504         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3505         proper_unit_for_byte_size(large_page_size));
  3508   return large_page_size;
  3511 size_t os::Linux::setup_large_page_size() {
  3512   _large_page_size = Linux::find_large_page_size();
  3513   const size_t default_page_size = (size_t)Linux::page_size();
  3514   if (_large_page_size > default_page_size) {
  3515     _page_sizes[0] = _large_page_size;
  3516     _page_sizes[1] = default_page_size;
  3517     _page_sizes[2] = 0;
  3520   return _large_page_size;
  3523 bool os::Linux::setup_large_page_type(size_t page_size) {
  3524   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3525       FLAG_IS_DEFAULT(UseSHM) &&
  3526       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3528     // The type of large pages has not been specified by the user.
  3530     // Try UseHugeTLBFS and then UseSHM.
  3531     UseHugeTLBFS = UseSHM = true;
  3533     // Don't try UseTransparentHugePages since there are known
  3534     // performance issues with it turned on. This might change in the future.
  3535     UseTransparentHugePages = false;
  3538   if (UseTransparentHugePages) {
  3539     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3540     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3541       UseHugeTLBFS = false;
  3542       UseSHM = false;
  3543       return true;
  3545     UseTransparentHugePages = false;
  3548   if (UseHugeTLBFS) {
  3549     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3550     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3551       UseSHM = false;
  3552       return true;
  3554     UseHugeTLBFS = false;
  3557   return UseSHM;
  3560 void os::large_page_init() {
  3561   if (!UseLargePages &&
  3562       !UseTransparentHugePages &&
  3563       !UseHugeTLBFS &&
  3564       !UseSHM) {
  3565     // Not using large pages.
  3566     return;
  3569   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3570     // The user explicitly turned off large pages.
  3571     // Ignore the rest of the large pages flags.
  3572     UseTransparentHugePages = false;
  3573     UseHugeTLBFS = false;
  3574     UseSHM = false;
  3575     return;
  3578   size_t large_page_size = Linux::setup_large_page_size();
  3579   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3581   set_coredump_filter();
  3584 #ifndef SHM_HUGETLB
  3585 #define SHM_HUGETLB 04000
  3586 #endif
  3588 #define shm_warning_format(format, ...)              \
  3589   do {                                               \
  3590     if (UseLargePages &&                             \
  3591         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3592          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3593          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3594       warning(format, __VA_ARGS__);                  \
  3595     }                                                \
  3596   } while (0)
  3598 #define shm_warning(str) shm_warning_format("%s", str)
  3600 #define shm_warning_with_errno(str)                \
  3601   do {                                             \
  3602     int err = errno;                               \
  3603     shm_warning_format(str " (error = %d)", err);  \
  3604   } while (0)
  3606 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3607   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3609   if (!is_size_aligned(alignment, SHMLBA)) {
  3610     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3611     return NULL;
  3614   // To ensure that we get 'alignment' aligned memory from shmat,
  3615   // we pre-reserve aligned virtual memory and then attach to that.
  3617   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3618   if (pre_reserved_addr == NULL) {
  3619     // Couldn't pre-reserve aligned memory.
  3620     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3621     return NULL;
  3624   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3625   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3627   if ((intptr_t)addr == -1) {
  3628     int err = errno;
  3629     shm_warning_with_errno("Failed to attach shared memory.");
  3631     assert(err != EACCES, "Unexpected error");
  3632     assert(err != EIDRM,  "Unexpected error");
  3633     assert(err != EINVAL, "Unexpected error");
  3635     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3636     // we can't unmap it, since that would potentially unmap memory that was
  3637     // mapped from other threads.
  3638     return NULL;
  3641   return addr;
  3644 static char* shmat_at_address(int shmid, char* req_addr) {
  3645   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3646     assert(false, "Requested address needs to be SHMLBA aligned");
  3647     return NULL;
  3650   char* addr = (char*)shmat(shmid, req_addr, 0);
  3652   if ((intptr_t)addr == -1) {
  3653     shm_warning_with_errno("Failed to attach shared memory.");
  3654     return NULL;
  3657   return addr;
  3660 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3661   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3662   if (req_addr != NULL) {
  3663     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3664     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3665     return shmat_at_address(shmid, req_addr);
  3668   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3669   // return large page size aligned memory addresses when req_addr == NULL.
  3670   // However, if the alignment is larger than the large page size, we have
  3671   // to manually ensure that the memory returned is 'alignment' aligned.
  3672   if (alignment > os::large_page_size()) {
  3673     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3674     return shmat_with_alignment(shmid, bytes, alignment);
  3675   } else {
  3676     return shmat_at_address(shmid, NULL);
  3680 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3681   // "exec" is passed in but not used.  Creating the shared image for
  3682   // the code cache doesn't have an SHM_X executable permission to check.
  3683   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3684   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3685   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3687   if (!is_size_aligned(bytes, os::large_page_size())) {
  3688     return NULL; // Fallback to small pages.
  3691   // Create a large shared memory region to attach to based on size.
  3692   // Currently, size is the total size of the heap.
  3693   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3694   if (shmid == -1) {
  3695     // Possible reasons for shmget failure:
  3696     // 1. shmmax is too small for Java heap.
  3697     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3698     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3699     // 2. not enough large page memory.
  3700     //    > check available large pages: cat /proc/meminfo
  3701     //    > increase amount of large pages:
  3702     //          echo new_value > /proc/sys/vm/nr_hugepages
  3703     //      Note 1: different Linux may use different name for this property,
  3704     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3705     //      Note 2: it's possible there's enough physical memory available but
  3706     //            they are so fragmented after a long run that they can't
  3707     //            coalesce into large pages. Try to reserve large pages when
  3708     //            the system is still "fresh".
  3709     shm_warning_with_errno("Failed to reserve shared memory.");
  3710     return NULL;
  3713   // Attach to the region.
  3714   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3716   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3717   // will be deleted when it's detached by shmdt() or when the process
  3718   // terminates. If shmat() is not successful this will remove the shared
  3719   // segment immediately.
  3720   shmctl(shmid, IPC_RMID, NULL);
  3722   return addr;
  3725 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3726   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3728   bool warn_on_failure = UseLargePages &&
  3729       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3730        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3731        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3733   if (warn_on_failure) {
  3734     char msg[128];
  3735     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3736         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3737     warning("%s", msg);
  3741 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3742   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3743   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3744   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3746   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3747   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3748                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3749                              -1, 0);
  3751   if (addr == MAP_FAILED) {
  3752     warn_on_large_pages_failure(req_addr, bytes, errno);
  3753     return NULL;
  3756   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3758   return addr;
  3761 // Reserve memory using mmap(MAP_HUGETLB).
  3762 //  - bytes shall be a multiple of alignment.
  3763 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3764 //  - alignment sets the alignment at which memory shall be allocated.
  3765 //     It must be a multiple of allocation granularity.
  3766 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3767 //  req_addr or NULL.
  3768 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3769   size_t large_page_size = os::large_page_size();
  3770   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3772   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3773   assert(is_size_aligned(bytes, alignment), "Must be");
  3775   // First reserve - but not commit - the address range in small pages.
  3776   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3778   if (start == NULL) {
  3779     return NULL;
  3782   assert(is_ptr_aligned(start, alignment), "Must be");
  3784   char* end = start + bytes;
  3786   // Find the regions of the allocated chunk that can be promoted to large pages.
  3787   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3788   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3790   size_t lp_bytes = lp_end - lp_start;
  3792   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3794   if (lp_bytes == 0) {
  3795     // The mapped region doesn't even span the start and the end of a large page.
  3796     // Fall back to allocate a non-special area.
  3797     ::munmap(start, end - start);
  3798     return NULL;
  3801   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3803   void* result;
  3805   // Commit small-paged leading area.
  3806   if (start != lp_start) {
  3807     result = ::mmap(start, lp_start - start, prot,
  3808                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3809                     -1, 0);
  3810     if (result == MAP_FAILED) {
  3811       ::munmap(lp_start, end - lp_start);
  3812       return NULL;
  3816   // Commit large-paged area.
  3817   result = ::mmap(lp_start, lp_bytes, prot,
  3818                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3819                   -1, 0);
  3820   if (result == MAP_FAILED) {
  3821     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3822     // If the mmap above fails, the large pages region will be unmapped and we
  3823     // have regions before and after with small pages. Release these regions.
  3824     //
  3825     // |  mapped  |  unmapped  |  mapped  |
  3826     // ^          ^            ^          ^
  3827     // start      lp_start     lp_end     end
  3828     //
  3829     ::munmap(start, lp_start - start);
  3830     ::munmap(lp_end, end - lp_end);
  3831     return NULL;
  3834   // Commit small-paged trailing area.
  3835   if (lp_end != end) {
  3836       result = ::mmap(lp_end, end - lp_end, prot,
  3837                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3838                       -1, 0);
  3839     if (result == MAP_FAILED) {
  3840       ::munmap(start, lp_end - start);
  3841       return NULL;
  3845   return start;
  3848 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3849   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3850   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3851   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3852   assert(is_power_of_2(os::large_page_size()), "Must be");
  3853   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3855   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3856     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3857   } else {
  3858     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3862 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3863   assert(UseLargePages, "only for large pages");
  3865   char* addr;
  3866   if (UseSHM) {
  3867     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3868   } else {
  3869     assert(UseHugeTLBFS, "must be");
  3870     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3873   if (addr != NULL) {
  3874     if (UseNUMAInterleaving) {
  3875       numa_make_global(addr, bytes);
  3878     // The memory is committed
  3879     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3882   return addr;
  3885 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3886   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3887   return shmdt(base) == 0;
  3890 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3891   return pd_release_memory(base, bytes);
  3894 bool os::release_memory_special(char* base, size_t bytes) {
  3895   bool res;
  3896   if (MemTracker::tracking_level() > NMT_minimal) {
  3897     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3898     res = os::Linux::release_memory_special_impl(base, bytes);
  3899     if (res) {
  3900       tkr.record((address)base, bytes);
  3903   } else {
  3904     res = os::Linux::release_memory_special_impl(base, bytes);
  3906   return res;
  3909 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3910   assert(UseLargePages, "only for large pages");
  3911   bool res;
  3913   if (UseSHM) {
  3914     res = os::Linux::release_memory_special_shm(base, bytes);
  3915   } else {
  3916     assert(UseHugeTLBFS, "must be");
  3917     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3919   return res;
  3922 size_t os::large_page_size() {
  3923   return _large_page_size;
  3926 // With SysV SHM the entire memory region must be allocated as shared
  3927 // memory.
  3928 // HugeTLBFS allows application to commit large page memory on demand.
  3929 // However, when committing memory with HugeTLBFS fails, the region
  3930 // that was supposed to be committed will lose the old reservation
  3931 // and allow other threads to steal that memory region. Because of this
  3932 // behavior we can't commit HugeTLBFS memory.
  3933 bool os::can_commit_large_page_memory() {
  3934   return UseTransparentHugePages;
  3937 bool os::can_execute_large_page_memory() {
  3938   return UseTransparentHugePages || UseHugeTLBFS;
  3941 // Reserve memory at an arbitrary address, only if that area is
  3942 // available (and not reserved for something else).
  3944 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3945   const int max_tries = 10;
  3946   char* base[max_tries];
  3947   size_t size[max_tries];
  3948   const size_t gap = 0x000000;
  3950   // Assert only that the size is a multiple of the page size, since
  3951   // that's all that mmap requires, and since that's all we really know
  3952   // about at this low abstraction level.  If we need higher alignment,
  3953   // we can either pass an alignment to this method or verify alignment
  3954   // in one of the methods further up the call chain.  See bug 5044738.
  3955   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3957   // Repeatedly allocate blocks until the block is allocated at the
  3958   // right spot. Give up after max_tries. Note that reserve_memory() will
  3959   // automatically update _highest_vm_reserved_address if the call is
  3960   // successful. The variable tracks the highest memory address every reserved
  3961   // by JVM. It is used to detect heap-stack collision if running with
  3962   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3963   // space than needed, it could confuse the collision detecting code. To
  3964   // solve the problem, save current _highest_vm_reserved_address and
  3965   // calculate the correct value before return.
  3966   address old_highest = _highest_vm_reserved_address;
  3968   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3969   // if kernel honors the hint then we can return immediately.
  3970   char * addr = anon_mmap(requested_addr, bytes, false);
  3971   if (addr == requested_addr) {
  3972      return requested_addr;
  3975   if (addr != NULL) {
  3976      // mmap() is successful but it fails to reserve at the requested address
  3977      anon_munmap(addr, bytes);
  3980   int i;
  3981   for (i = 0; i < max_tries; ++i) {
  3982     base[i] = reserve_memory(bytes);
  3984     if (base[i] != NULL) {
  3985       // Is this the block we wanted?
  3986       if (base[i] == requested_addr) {
  3987         size[i] = bytes;
  3988         break;
  3991       // Does this overlap the block we wanted? Give back the overlapped
  3992       // parts and try again.
  3994       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3995       if (top_overlap >= 0 && top_overlap < bytes) {
  3996         unmap_memory(base[i], top_overlap);
  3997         base[i] += top_overlap;
  3998         size[i] = bytes - top_overlap;
  3999       } else {
  4000         size_t bottom_overlap = base[i] + bytes - requested_addr;
  4001         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  4002           unmap_memory(requested_addr, bottom_overlap);
  4003           size[i] = bytes - bottom_overlap;
  4004         } else {
  4005           size[i] = bytes;
  4011   // Give back the unused reserved pieces.
  4013   for (int j = 0; j < i; ++j) {
  4014     if (base[j] != NULL) {
  4015       unmap_memory(base[j], size[j]);
  4019   if (i < max_tries) {
  4020     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  4021     return requested_addr;
  4022   } else {
  4023     _highest_vm_reserved_address = old_highest;
  4024     return NULL;
  4028 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  4029   return ::read(fd, buf, nBytes);
  4032 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  4033 // Solaris uses poll(), linux uses park().
  4034 // Poll() is likely a better choice, assuming that Thread.interrupt()
  4035 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  4036 // SIGSEGV, see 4355769.
  4038 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  4039   assert(thread == Thread::current(),  "thread consistency check");
  4041   ParkEvent * const slp = thread->_SleepEvent ;
  4042   slp->reset() ;
  4043   OrderAccess::fence() ;
  4045   if (interruptible) {
  4046     jlong prevtime = javaTimeNanos();
  4048     for (;;) {
  4049       if (os::is_interrupted(thread, true)) {
  4050         return OS_INTRPT;
  4053       jlong newtime = javaTimeNanos();
  4055       if (newtime - prevtime < 0) {
  4056         // time moving backwards, should only happen if no monotonic clock
  4057         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4058         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4059       } else {
  4060         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4063       if(millis <= 0) {
  4064         return OS_OK;
  4067       prevtime = newtime;
  4070         assert(thread->is_Java_thread(), "sanity check");
  4071         JavaThread *jt = (JavaThread *) thread;
  4072         ThreadBlockInVM tbivm(jt);
  4073         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  4075         jt->set_suspend_equivalent();
  4076         // cleared by handle_special_suspend_equivalent_condition() or
  4077         // java_suspend_self() via check_and_wait_while_suspended()
  4079         slp->park(millis);
  4081         // were we externally suspended while we were waiting?
  4082         jt->check_and_wait_while_suspended();
  4085   } else {
  4086     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4087     jlong prevtime = javaTimeNanos();
  4089     for (;;) {
  4090       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  4091       // the 1st iteration ...
  4092       jlong newtime = javaTimeNanos();
  4094       if (newtime - prevtime < 0) {
  4095         // time moving backwards, should only happen if no monotonic clock
  4096         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4097         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4098       } else {
  4099         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4102       if(millis <= 0) break ;
  4104       prevtime = newtime;
  4105       slp->park(millis);
  4107     return OS_OK ;
  4111 //
  4112 // Short sleep, direct OS call.
  4113 //
  4114 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  4115 // sched_yield(2) will actually give up the CPU:
  4116 //
  4117 //   * Alone on this pariticular CPU, keeps running.
  4118 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  4119 //     (pre 2.6.39).
  4120 //
  4121 // So calling this with 0 is an alternative.
  4122 //
  4123 void os::naked_short_sleep(jlong ms) {
  4124   struct timespec req;
  4126   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  4127   req.tv_sec = 0;
  4128   if (ms > 0) {
  4129     req.tv_nsec = (ms % 1000) * 1000000;
  4131   else {
  4132     req.tv_nsec = 1;
  4135   nanosleep(&req, NULL);
  4137   return;
  4140 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  4141 void os::infinite_sleep() {
  4142   while (true) {    // sleep forever ...
  4143     ::sleep(100);   // ... 100 seconds at a time
  4147 // Used to convert frequent JVM_Yield() to nops
  4148 bool os::dont_yield() {
  4149   return DontYieldALot;
  4152 void os::yield() {
  4153   sched_yield();
  4156 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  4158 void os::yield_all(int attempts) {
  4159   // Yields to all threads, including threads with lower priorities
  4160   // Threads on Linux are all with same priority. The Solaris style
  4161   // os::yield_all() with nanosleep(1ms) is not necessary.
  4162   sched_yield();
  4165 // Called from the tight loops to possibly influence time-sharing heuristics
  4166 void os::loop_breaker(int attempts) {
  4167   os::yield_all(attempts);
  4170 ////////////////////////////////////////////////////////////////////////////////
  4171 // thread priority support
  4173 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  4174 // only supports dynamic priority, static priority must be zero. For real-time
  4175 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  4176 // However, for large multi-threaded applications, SCHED_RR is not only slower
  4177 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  4178 // of 5 runs - Sep 2005).
  4179 //
  4180 // The following code actually changes the niceness of kernel-thread/LWP. It
  4181 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  4182 // not the entire user process, and user level threads are 1:1 mapped to kernel
  4183 // threads. It has always been the case, but could change in the future. For
  4184 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  4185 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  4187 int os::java_to_os_priority[CriticalPriority + 1] = {
  4188   19,              // 0 Entry should never be used
  4190    4,              // 1 MinPriority
  4191    3,              // 2
  4192    2,              // 3
  4194    1,              // 4
  4195    0,              // 5 NormPriority
  4196   -1,              // 6
  4198   -2,              // 7
  4199   -3,              // 8
  4200   -4,              // 9 NearMaxPriority
  4202   -5,              // 10 MaxPriority
  4204   -5               // 11 CriticalPriority
  4205 };
  4207 static int prio_init() {
  4208   if (ThreadPriorityPolicy == 1) {
  4209     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4210     // if effective uid is not root. Perhaps, a more elegant way of doing
  4211     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4212     if (geteuid() != 0) {
  4213       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4214         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4216       ThreadPriorityPolicy = 0;
  4219   if (UseCriticalJavaThreadPriority) {
  4220     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4222   return 0;
  4225 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4226   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4228   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4229   return (ret == 0) ? OS_OK : OS_ERR;
  4232 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4233   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4234     *priority_ptr = java_to_os_priority[NormPriority];
  4235     return OS_OK;
  4238   errno = 0;
  4239   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4240   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4243 // Hint to the underlying OS that a task switch would not be good.
  4244 // Void return because it's a hint and can fail.
  4245 void os::hint_no_preempt() {}
  4247 ////////////////////////////////////////////////////////////////////////////////
  4248 // suspend/resume support
  4250 //  the low-level signal-based suspend/resume support is a remnant from the
  4251 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4252 //  within hotspot. Now there is a single use-case for this:
  4253 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4254 //      that runs in the watcher thread.
  4255 //  The remaining code is greatly simplified from the more general suspension
  4256 //  code that used to be used.
  4257 //
  4258 //  The protocol is quite simple:
  4259 //  - suspend:
  4260 //      - sends a signal to the target thread
  4261 //      - polls the suspend state of the osthread using a yield loop
  4262 //      - target thread signal handler (SR_handler) sets suspend state
  4263 //        and blocks in sigsuspend until continued
  4264 //  - resume:
  4265 //      - sets target osthread state to continue
  4266 //      - sends signal to end the sigsuspend loop in the SR_handler
  4267 //
  4268 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4269 //
  4271 static void resume_clear_context(OSThread *osthread) {
  4272   osthread->set_ucontext(NULL);
  4273   osthread->set_siginfo(NULL);
  4276 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4277   osthread->set_ucontext(context);
  4278   osthread->set_siginfo(siginfo);
  4281 //
  4282 // Handler function invoked when a thread's execution is suspended or
  4283 // resumed. We have to be careful that only async-safe functions are
  4284 // called here (Note: most pthread functions are not async safe and
  4285 // should be avoided.)
  4286 //
  4287 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4288 // interface point of view, but sigwait() prevents the signal hander
  4289 // from being run. libpthread would get very confused by not having
  4290 // its signal handlers run and prevents sigwait()'s use with the
  4291 // mutex granting granting signal.
  4292 //
  4293 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4294 //
  4295 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4296   // Save and restore errno to avoid confusing native code with EINTR
  4297   // after sigsuspend.
  4298   int old_errno = errno;
  4300   Thread* thread = Thread::current();
  4301   OSThread* osthread = thread->osthread();
  4302   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4304   os::SuspendResume::State current = osthread->sr.state();
  4305   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4306     suspend_save_context(osthread, siginfo, context);
  4308     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4309     os::SuspendResume::State state = osthread->sr.suspended();
  4310     if (state == os::SuspendResume::SR_SUSPENDED) {
  4311       sigset_t suspend_set;  // signals for sigsuspend()
  4313       // get current set of blocked signals and unblock resume signal
  4314       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4315       sigdelset(&suspend_set, SR_signum);
  4317       sr_semaphore.signal();
  4318       // wait here until we are resumed
  4319       while (1) {
  4320         sigsuspend(&suspend_set);
  4322         os::SuspendResume::State result = osthread->sr.running();
  4323         if (result == os::SuspendResume::SR_RUNNING) {
  4324           sr_semaphore.signal();
  4325           break;
  4329     } else if (state == os::SuspendResume::SR_RUNNING) {
  4330       // request was cancelled, continue
  4331     } else {
  4332       ShouldNotReachHere();
  4335     resume_clear_context(osthread);
  4336   } else if (current == os::SuspendResume::SR_RUNNING) {
  4337     // request was cancelled, continue
  4338   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4339     // ignore
  4340   } else {
  4341     // ignore
  4344   errno = old_errno;
  4348 static int SR_initialize() {
  4349   struct sigaction act;
  4350   char *s;
  4351   /* Get signal number to use for suspend/resume */
  4352   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4353     int sig = ::strtol(s, 0, 10);
  4354     if (sig > 0 || sig < _NSIG) {
  4355         SR_signum = sig;
  4359   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4360         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4362   sigemptyset(&SR_sigset);
  4363   sigaddset(&SR_sigset, SR_signum);
  4365   /* Set up signal handler for suspend/resume */
  4366   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4367   act.sa_handler = (void (*)(int)) SR_handler;
  4369   // SR_signum is blocked by default.
  4370   // 4528190 - We also need to block pthread restart signal (32 on all
  4371   // supported Linux platforms). Note that LinuxThreads need to block
  4372   // this signal for all threads to work properly. So we don't have
  4373   // to use hard-coded signal number when setting up the mask.
  4374   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4376   if (sigaction(SR_signum, &act, 0) == -1) {
  4377     return -1;
  4380   // Save signal flag
  4381   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4382   return 0;
  4385 static int sr_notify(OSThread* osthread) {
  4386   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4387   assert_status(status == 0, status, "pthread_kill");
  4388   return status;
  4391 // "Randomly" selected value for how long we want to spin
  4392 // before bailing out on suspending a thread, also how often
  4393 // we send a signal to a thread we want to resume
  4394 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4395 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4397 // returns true on success and false on error - really an error is fatal
  4398 // but this seems the normal response to library errors
  4399 static bool do_suspend(OSThread* osthread) {
  4400   assert(osthread->sr.is_running(), "thread should be running");
  4401   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4403   // mark as suspended and send signal
  4404   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4405     // failed to switch, state wasn't running?
  4406     ShouldNotReachHere();
  4407     return false;
  4410   if (sr_notify(osthread) != 0) {
  4411     ShouldNotReachHere();
  4414   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4415   while (true) {
  4416     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4417       break;
  4418     } else {
  4419       // timeout
  4420       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4421       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4422         return false;
  4423       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4424         // make sure that we consume the signal on the semaphore as well
  4425         sr_semaphore.wait();
  4426         break;
  4427       } else {
  4428         ShouldNotReachHere();
  4429         return false;
  4434   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4435   return true;
  4438 static void do_resume(OSThread* osthread) {
  4439   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4440   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4442   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4443     // failed to switch to WAKEUP_REQUEST
  4444     ShouldNotReachHere();
  4445     return;
  4448   while (true) {
  4449     if (sr_notify(osthread) == 0) {
  4450       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4451         if (osthread->sr.is_running()) {
  4452           return;
  4455     } else {
  4456       ShouldNotReachHere();
  4460   guarantee(osthread->sr.is_running(), "Must be running!");
  4463 ////////////////////////////////////////////////////////////////////////////////
  4464 // interrupt support
  4466 void os::interrupt(Thread* thread) {
  4467   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4468     "possibility of dangling Thread pointer");
  4470   OSThread* osthread = thread->osthread();
  4472   if (!osthread->interrupted()) {
  4473     osthread->set_interrupted(true);
  4474     // More than one thread can get here with the same value of osthread,
  4475     // resulting in multiple notifications.  We do, however, want the store
  4476     // to interrupted() to be visible to other threads before we execute unpark().
  4477     OrderAccess::fence();
  4478     ParkEvent * const slp = thread->_SleepEvent ;
  4479     if (slp != NULL) slp->unpark() ;
  4482   // For JSR166. Unpark even if interrupt status already was set
  4483   if (thread->is_Java_thread())
  4484     ((JavaThread*)thread)->parker()->unpark();
  4486   ParkEvent * ev = thread->_ParkEvent ;
  4487   if (ev != NULL) ev->unpark() ;
  4491 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4492   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4493     "possibility of dangling Thread pointer");
  4495   OSThread* osthread = thread->osthread();
  4497   bool interrupted = osthread->interrupted();
  4499   if (interrupted && clear_interrupted) {
  4500     osthread->set_interrupted(false);
  4501     // consider thread->_SleepEvent->reset() ... optional optimization
  4504   return interrupted;
  4507 ///////////////////////////////////////////////////////////////////////////////////
  4508 // signal handling (except suspend/resume)
  4510 // This routine may be used by user applications as a "hook" to catch signals.
  4511 // The user-defined signal handler must pass unrecognized signals to this
  4512 // routine, and if it returns true (non-zero), then the signal handler must
  4513 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4514 // routine will never retun false (zero), but instead will execute a VM panic
  4515 // routine kill the process.
  4516 //
  4517 // If this routine returns false, it is OK to call it again.  This allows
  4518 // the user-defined signal handler to perform checks either before or after
  4519 // the VM performs its own checks.  Naturally, the user code would be making
  4520 // a serious error if it tried to handle an exception (such as a null check
  4521 // or breakpoint) that the VM was generating for its own correct operation.
  4522 //
  4523 // This routine may recognize any of the following kinds of signals:
  4524 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4525 // It should be consulted by handlers for any of those signals.
  4526 //
  4527 // The caller of this routine must pass in the three arguments supplied
  4528 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4529 // field of the structure passed to sigaction().  This routine assumes that
  4530 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4531 //
  4532 // Note that the VM will print warnings if it detects conflicting signal
  4533 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4534 //
  4535 extern "C" JNIEXPORT int
  4536 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4537                         void* ucontext, int abort_if_unrecognized);
  4539 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4540   assert(info != NULL && uc != NULL, "it must be old kernel");
  4541   int orig_errno = errno;  // Preserve errno value over signal handler.
  4542   JVM_handle_linux_signal(sig, info, uc, true);
  4543   errno = orig_errno;
  4547 // This boolean allows users to forward their own non-matching signals
  4548 // to JVM_handle_linux_signal, harmlessly.
  4549 bool os::Linux::signal_handlers_are_installed = false;
  4551 // For signal-chaining
  4552 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4553 unsigned int os::Linux::sigs = 0;
  4554 bool os::Linux::libjsig_is_loaded = false;
  4555 typedef struct sigaction *(*get_signal_t)(int);
  4556 get_signal_t os::Linux::get_signal_action = NULL;
  4558 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4559   struct sigaction *actp = NULL;
  4561   if (libjsig_is_loaded) {
  4562     // Retrieve the old signal handler from libjsig
  4563     actp = (*get_signal_action)(sig);
  4565   if (actp == NULL) {
  4566     // Retrieve the preinstalled signal handler from jvm
  4567     actp = get_preinstalled_handler(sig);
  4570   return actp;
  4573 static bool call_chained_handler(struct sigaction *actp, int sig,
  4574                                  siginfo_t *siginfo, void *context) {
  4575   // Call the old signal handler
  4576   if (actp->sa_handler == SIG_DFL) {
  4577     // It's more reasonable to let jvm treat it as an unexpected exception
  4578     // instead of taking the default action.
  4579     return false;
  4580   } else if (actp->sa_handler != SIG_IGN) {
  4581     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4582       // automaticlly block the signal
  4583       sigaddset(&(actp->sa_mask), sig);
  4586     sa_handler_t hand = NULL;
  4587     sa_sigaction_t sa = NULL;
  4588     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4589     // retrieve the chained handler
  4590     if (siginfo_flag_set) {
  4591       sa = actp->sa_sigaction;
  4592     } else {
  4593       hand = actp->sa_handler;
  4596     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4597       actp->sa_handler = SIG_DFL;
  4600     // try to honor the signal mask
  4601     sigset_t oset;
  4602     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4604     // call into the chained handler
  4605     if (siginfo_flag_set) {
  4606       (*sa)(sig, siginfo, context);
  4607     } else {
  4608       (*hand)(sig);
  4611     // restore the signal mask
  4612     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4614   // Tell jvm's signal handler the signal is taken care of.
  4615   return true;
  4618 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4619   bool chained = false;
  4620   // signal-chaining
  4621   if (UseSignalChaining) {
  4622     struct sigaction *actp = get_chained_signal_action(sig);
  4623     if (actp != NULL) {
  4624       chained = call_chained_handler(actp, sig, siginfo, context);
  4627   return chained;
  4630 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4631   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4632     return &sigact[sig];
  4634   return NULL;
  4637 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4638   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4639   sigact[sig] = oldAct;
  4640   sigs |= (unsigned int)1 << sig;
  4643 // for diagnostic
  4644 int os::Linux::sigflags[MAXSIGNUM];
  4646 int os::Linux::get_our_sigflags(int sig) {
  4647   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4648   return sigflags[sig];
  4651 void os::Linux::set_our_sigflags(int sig, int flags) {
  4652   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4653   sigflags[sig] = flags;
  4656 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4657   // Check for overwrite.
  4658   struct sigaction oldAct;
  4659   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4661   void* oldhand = oldAct.sa_sigaction
  4662                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4663                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4664   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4665       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4666       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4667     if (AllowUserSignalHandlers || !set_installed) {
  4668       // Do not overwrite; user takes responsibility to forward to us.
  4669       return;
  4670     } else if (UseSignalChaining) {
  4671       // save the old handler in jvm
  4672       save_preinstalled_handler(sig, oldAct);
  4673       // libjsig also interposes the sigaction() call below and saves the
  4674       // old sigaction on it own.
  4675     } else {
  4676       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4677                     "%#lx for signal %d.", (long)oldhand, sig));
  4681   struct sigaction sigAct;
  4682   sigfillset(&(sigAct.sa_mask));
  4683   sigAct.sa_handler = SIG_DFL;
  4684   if (!set_installed) {
  4685     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4686   } else {
  4687     sigAct.sa_sigaction = signalHandler;
  4688     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4690   // Save flags, which are set by ours
  4691   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4692   sigflags[sig] = sigAct.sa_flags;
  4694   int ret = sigaction(sig, &sigAct, &oldAct);
  4695   assert(ret == 0, "check");
  4697   void* oldhand2  = oldAct.sa_sigaction
  4698                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4699                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4700   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4703 // install signal handlers for signals that HotSpot needs to
  4704 // handle in order to support Java-level exception handling.
  4706 void os::Linux::install_signal_handlers() {
  4707   if (!signal_handlers_are_installed) {
  4708     signal_handlers_are_installed = true;
  4710     // signal-chaining
  4711     typedef void (*signal_setting_t)();
  4712     signal_setting_t begin_signal_setting = NULL;
  4713     signal_setting_t end_signal_setting = NULL;
  4714     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4715                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4716     if (begin_signal_setting != NULL) {
  4717       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4718                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4719       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4720                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4721       libjsig_is_loaded = true;
  4722       assert(UseSignalChaining, "should enable signal-chaining");
  4724     if (libjsig_is_loaded) {
  4725       // Tell libjsig jvm is setting signal handlers
  4726       (*begin_signal_setting)();
  4729     set_signal_handler(SIGSEGV, true);
  4730     set_signal_handler(SIGPIPE, true);
  4731     set_signal_handler(SIGBUS, true);
  4732     set_signal_handler(SIGILL, true);
  4733     set_signal_handler(SIGFPE, true);
  4734 #if defined(PPC64)
  4735     set_signal_handler(SIGTRAP, true);
  4736 #endif
  4737     set_signal_handler(SIGXFSZ, true);
  4739     if (libjsig_is_loaded) {
  4740       // Tell libjsig jvm finishes setting signal handlers
  4741       (*end_signal_setting)();
  4744     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4745     // and if UserSignalHandler is installed all bets are off.
  4746     // Log that signal checking is off only if -verbose:jni is specified.
  4747     if (CheckJNICalls) {
  4748       if (libjsig_is_loaded) {
  4749         if (PrintJNIResolving) {
  4750           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4752         check_signals = false;
  4754       if (AllowUserSignalHandlers) {
  4755         if (PrintJNIResolving) {
  4756           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4758         check_signals = false;
  4764 // This is the fastest way to get thread cpu time on Linux.
  4765 // Returns cpu time (user+sys) for any thread, not only for current.
  4766 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4767 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4768 // For reference, please, see IEEE Std 1003.1-2004:
  4769 //   http://www.unix.org/single_unix_specification
  4771 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4772   struct timespec tp;
  4773   int rc = os::Linux::clock_gettime(clockid, &tp);
  4774   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4776   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4779 /////
  4780 // glibc on Linux platform uses non-documented flag
  4781 // to indicate, that some special sort of signal
  4782 // trampoline is used.
  4783 // We will never set this flag, and we should
  4784 // ignore this flag in our diagnostic
  4785 #ifdef SIGNIFICANT_SIGNAL_MASK
  4786 #undef SIGNIFICANT_SIGNAL_MASK
  4787 #endif
  4788 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4790 static const char* get_signal_handler_name(address handler,
  4791                                            char* buf, int buflen) {
  4792   int offset = 0;
  4793   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4794   if (found) {
  4795     // skip directory names
  4796     const char *p1, *p2;
  4797     p1 = buf;
  4798     size_t len = strlen(os::file_separator());
  4799     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4800     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4801   } else {
  4802     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4804   return buf;
  4807 static void print_signal_handler(outputStream* st, int sig,
  4808                                  char* buf, size_t buflen) {
  4809   struct sigaction sa;
  4811   sigaction(sig, NULL, &sa);
  4813   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4814   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4816   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4818   address handler = (sa.sa_flags & SA_SIGINFO)
  4819     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4820     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4822   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4823     st->print("SIG_DFL");
  4824   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4825     st->print("SIG_IGN");
  4826   } else {
  4827     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4830   st->print(", sa_mask[0]=");
  4831   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4833   address rh = VMError::get_resetted_sighandler(sig);
  4834   // May be, handler was resetted by VMError?
  4835   if(rh != NULL) {
  4836     handler = rh;
  4837     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4840   st->print(", sa_flags=");
  4841   os::Posix::print_sa_flags(st, sa.sa_flags);
  4843   // Check: is it our handler?
  4844   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4845      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4846     // It is our signal handler
  4847     // check for flags, reset system-used one!
  4848     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4849       st->print(
  4850                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4851                 os::Linux::get_our_sigflags(sig));
  4854   st->cr();
  4858 #define DO_SIGNAL_CHECK(sig) \
  4859   if (!sigismember(&check_signal_done, sig)) \
  4860     os::Linux::check_signal_handler(sig)
  4862 // This method is a periodic task to check for misbehaving JNI applications
  4863 // under CheckJNI, we can add any periodic checks here
  4865 void os::run_periodic_checks() {
  4867   if (check_signals == false) return;
  4869   // SEGV and BUS if overridden could potentially prevent
  4870   // generation of hs*.log in the event of a crash, debugging
  4871   // such a case can be very challenging, so we absolutely
  4872   // check the following for a good measure:
  4873   DO_SIGNAL_CHECK(SIGSEGV);
  4874   DO_SIGNAL_CHECK(SIGILL);
  4875   DO_SIGNAL_CHECK(SIGFPE);
  4876   DO_SIGNAL_CHECK(SIGBUS);
  4877   DO_SIGNAL_CHECK(SIGPIPE);
  4878   DO_SIGNAL_CHECK(SIGXFSZ);
  4879 #if defined(PPC64)
  4880   DO_SIGNAL_CHECK(SIGTRAP);
  4881 #endif
  4883   // ReduceSignalUsage allows the user to override these handlers
  4884   // see comments at the very top and jvm_solaris.h
  4885   if (!ReduceSignalUsage) {
  4886     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4887     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4888     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4889     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4892   DO_SIGNAL_CHECK(SR_signum);
  4893   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4896 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4898 static os_sigaction_t os_sigaction = NULL;
  4900 void os::Linux::check_signal_handler(int sig) {
  4901   char buf[O_BUFLEN];
  4902   address jvmHandler = NULL;
  4905   struct sigaction act;
  4906   if (os_sigaction == NULL) {
  4907     // only trust the default sigaction, in case it has been interposed
  4908     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4909     if (os_sigaction == NULL) return;
  4912   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4915   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4917   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4918     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4919     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4922   switch(sig) {
  4923   case SIGSEGV:
  4924   case SIGBUS:
  4925   case SIGFPE:
  4926   case SIGPIPE:
  4927   case SIGILL:
  4928   case SIGXFSZ:
  4929     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4930     break;
  4932   case SHUTDOWN1_SIGNAL:
  4933   case SHUTDOWN2_SIGNAL:
  4934   case SHUTDOWN3_SIGNAL:
  4935   case BREAK_SIGNAL:
  4936     jvmHandler = (address)user_handler();
  4937     break;
  4939   case INTERRUPT_SIGNAL:
  4940     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4941     break;
  4943   default:
  4944     if (sig == SR_signum) {
  4945       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4946     } else {
  4947       return;
  4949     break;
  4952   if (thisHandler != jvmHandler) {
  4953     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4954     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4955     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4956     // No need to check this sig any longer
  4957     sigaddset(&check_signal_done, sig);
  4958     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4959     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4960       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4961                     exception_name(sig, buf, O_BUFLEN));
  4963   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4964     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4965     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4966     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4967     // No need to check this sig any longer
  4968     sigaddset(&check_signal_done, sig);
  4971   // Dump all the signal
  4972   if (sigismember(&check_signal_done, sig)) {
  4973     print_signal_handlers(tty, buf, O_BUFLEN);
  4977 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4979 extern bool signal_name(int signo, char* buf, size_t len);
  4981 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4982   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4983     // signal
  4984     if (!signal_name(exception_code, buf, size)) {
  4985       jio_snprintf(buf, size, "SIG%d", exception_code);
  4987     return buf;
  4988   } else {
  4989     return NULL;
  4993 // this is called _before_ most of the global arguments have been parsed
  4994 void os::init(void) {
  4995   char dummy;   /* used to get a guess on initial stack address */
  4997   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4998   // is different than the pid of the java launcher thread.
  4999   // So, on Linux, the launcher thread pid is passed to the VM
  5000   // via the sun.java.launcher.pid property.
  5001   // Use this property instead of getpid() if it was correctly passed.
  5002   // See bug 6351349.
  5003   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  5005   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  5007   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  5009   init_random(1234567);
  5011   ThreadCritical::initialize();
  5013   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  5014   if (Linux::page_size() == -1) {
  5015     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  5016                   strerror(errno)));
  5018   init_page_sizes((size_t) Linux::page_size());
  5020   Linux::initialize_system_info();
  5022   // _main_thread points to the thread that created/loaded the JVM.
  5023   Linux::_main_thread = pthread_self();
  5025   Linux::clock_init();
  5026   initial_time_count = javaTimeNanos();
  5028   // pthread_condattr initialization for monotonic clock
  5029   int status;
  5030   pthread_condattr_t* _condattr = os::Linux::condAttr();
  5031   if ((status = pthread_condattr_init(_condattr)) != 0) {
  5032     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  5034   // Only set the clock if CLOCK_MONOTONIC is available
  5035   if (Linux::supports_monotonic_clock()) {
  5036     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  5037       if (status == EINVAL) {
  5038         warning("Unable to use monotonic clock with relative timed-waits" \
  5039                 " - changes to the time-of-day clock may have adverse affects");
  5040       } else {
  5041         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  5045   // else it defaults to CLOCK_REALTIME
  5047   pthread_mutex_init(&dl_mutex, NULL);
  5049   // If the pagesize of the VM is greater than 8K determine the appropriate
  5050   // number of initial guard pages.  The user can change this with the
  5051   // command line arguments, if needed.
  5052   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  5053     StackYellowPages = 1;
  5054     StackRedPages = 1;
  5055     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  5059 // To install functions for atexit system call
  5060 extern "C" {
  5061   static void perfMemory_exit_helper() {
  5062     perfMemory_exit();
  5066 void os::pd_init_container_support() {
  5067   OSContainer::init();
  5070 // this is called _after_ the global arguments have been parsed
  5071 jint os::init_2(void)
  5073   Linux::fast_thread_clock_init();
  5075   // Allocate a single page and mark it as readable for safepoint polling
  5076   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5077   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  5079   os::set_polling_page( polling_page );
  5081 #ifndef PRODUCT
  5082   if(Verbose && PrintMiscellaneous)
  5083     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5084 #endif
  5086   if (!UseMembar) {
  5087     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5088     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  5089     os::set_memory_serialize_page( mem_serialize_page );
  5091 #ifndef PRODUCT
  5092     if(Verbose && PrintMiscellaneous)
  5093       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5094 #endif
  5097   // initialize suspend/resume support - must do this before signal_sets_init()
  5098   if (SR_initialize() != 0) {
  5099     perror("SR_initialize failed");
  5100     return JNI_ERR;
  5103   Linux::signal_sets_init();
  5104   Linux::install_signal_handlers();
  5106   // Check minimum allowable stack size for thread creation and to initialize
  5107   // the java system classes, including StackOverflowError - depends on page
  5108   // size.  Add a page for compiler2 recursion in main thread.
  5109   // Add in 2*BytesPerWord times page size to account for VM stack during
  5110   // class initialization depending on 32 or 64 bit VM.
  5111   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  5112             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  5113                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  5115   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5116   if (threadStackSizeInBytes != 0 &&
  5117       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  5118         tty->print_cr("\nThe stack size specified is too small, "
  5119                       "Specify at least %dk",
  5120                       os::Linux::min_stack_allowed/ K);
  5121         return JNI_ERR;
  5124   // Make the stack size a multiple of the page size so that
  5125   // the yellow/red zones can be guarded.
  5126   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5127         vm_page_size()));
  5129   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  5131 #if defined(IA32)
  5132   workaround_expand_exec_shield_cs_limit();
  5133 #endif
  5135   Linux::libpthread_init();
  5136   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  5137      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  5138           Linux::glibc_version(), Linux::libpthread_version(),
  5139           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  5142   if (UseNUMA) {
  5143     if (!Linux::libnuma_init()) {
  5144       UseNUMA = false;
  5145     } else {
  5146       if ((Linux::numa_max_node() < 1)) {
  5147         // There's only one node(they start from 0), disable NUMA.
  5148         UseNUMA = false;
  5151     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  5152     // we can make the adaptive lgrp chunk resizing work. If the user specified
  5153     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  5154     // disable adaptive resizing.
  5155     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  5156       if (FLAG_IS_DEFAULT(UseNUMA)) {
  5157         UseNUMA = false;
  5158       } else {
  5159         if (FLAG_IS_DEFAULT(UseLargePages) &&
  5160             FLAG_IS_DEFAULT(UseSHM) &&
  5161             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  5162           UseLargePages = false;
  5163         } else {
  5164           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  5165           UseAdaptiveSizePolicy = false;
  5166           UseAdaptiveNUMAChunkSizing = false;
  5170     if (!UseNUMA && ForceNUMA) {
  5171       UseNUMA = true;
  5175   if (MaxFDLimit) {
  5176     // set the number of file descriptors to max. print out error
  5177     // if getrlimit/setrlimit fails but continue regardless.
  5178     struct rlimit nbr_files;
  5179     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5180     if (status != 0) {
  5181       if (PrintMiscellaneous && (Verbose || WizardMode))
  5182         perror("os::init_2 getrlimit failed");
  5183     } else {
  5184       nbr_files.rlim_cur = nbr_files.rlim_max;
  5185       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5186       if (status != 0) {
  5187         if (PrintMiscellaneous && (Verbose || WizardMode))
  5188           perror("os::init_2 setrlimit failed");
  5193   // Initialize lock used to serialize thread creation (see os::create_thread)
  5194   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  5196   // at-exit methods are called in the reverse order of their registration.
  5197   // atexit functions are called on return from main or as a result of a
  5198   // call to exit(3C). There can be only 32 of these functions registered
  5199   // and atexit() does not set errno.
  5201   if (PerfAllowAtExitRegistration) {
  5202     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5203     // atexit functions can be delayed until process exit time, which
  5204     // can be problematic for embedded VM situations. Embedded VMs should
  5205     // call DestroyJavaVM() to assure that VM resources are released.
  5207     // note: perfMemory_exit_helper atexit function may be removed in
  5208     // the future if the appropriate cleanup code can be added to the
  5209     // VM_Exit VMOperation's doit method.
  5210     if (atexit(perfMemory_exit_helper) != 0) {
  5211       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5215   // initialize thread priority policy
  5216   prio_init();
  5218   return JNI_OK;
  5221 // Mark the polling page as unreadable
  5222 void os::make_polling_page_unreadable(void) {
  5223   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5224     fatal("Could not disable polling page");
  5225 };
  5227 // Mark the polling page as readable
  5228 void os::make_polling_page_readable(void) {
  5229   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5230     fatal("Could not enable polling page");
  5232 };
  5234 static int os_cpu_count(const cpu_set_t* cpus) {
  5235   int count = 0;
  5236   // only look up to the number of configured processors
  5237   for (int i = 0; i < os::processor_count(); i++) {
  5238     if (CPU_ISSET(i, cpus)) {
  5239       count++;
  5242   return count;
  5245 // Get the current number of available processors for this process.
  5246 // This value can change at any time during a process's lifetime.
  5247 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5248 // If anything goes wrong we fallback to returning the number of online
  5249 // processors - which can be greater than the number available to the process.
  5250 int os::Linux::active_processor_count() {
  5251   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5252   int cpus_size = sizeof(cpu_set_t);
  5253   int cpu_count = 0;
  5255   // pid 0 means the current thread - which we have to assume represents the process
  5256   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5257     cpu_count = os_cpu_count(&cpus);
  5258     if (PrintActiveCpus) {
  5259       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5262   else {
  5263     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5264     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5265             "which may exceed available processors", strerror(errno), cpu_count);
  5268   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
  5269   return cpu_count;
  5272 // Determine the active processor count from one of
  5273 // three different sources:
  5274 //
  5275 // 1. User option -XX:ActiveProcessorCount
  5276 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
  5277 // 3. extracted from cgroup cpu subsystem (shares and quotas)
  5278 //
  5279 // Option 1, if specified, will always override.
  5280 // If the cgroup subsystem is active and configured, we
  5281 // will return the min of the cgroup and option 2 results.
  5282 // This is required since tools, such as numactl, that
  5283 // alter cpu affinity do not update cgroup subsystem
  5284 // cpuset configuration files.
  5285 int os::active_processor_count() {
  5286   // User has overridden the number of active processors
  5287   if (ActiveProcessorCount > 0) {
  5288     if (PrintActiveCpus) {
  5289       tty->print_cr("active_processor_count: "
  5290                     "active processor count set by user : %d",
  5291                     ActiveProcessorCount);
  5293     return ActiveProcessorCount;
  5296   int active_cpus;
  5297   if (OSContainer::is_containerized()) {
  5298     active_cpus = OSContainer::active_processor_count();
  5299     if (PrintActiveCpus) {
  5300       tty->print_cr("active_processor_count: determined by OSContainer: %d",
  5301                      active_cpus);
  5303   } else {
  5304     active_cpus = os::Linux::active_processor_count();
  5307   return active_cpus;
  5310 void os::set_native_thread_name(const char *name) {
  5311   // Not yet implemented.
  5312   return;
  5315 bool os::distribute_processes(uint length, uint* distribution) {
  5316   // Not yet implemented.
  5317   return false;
  5320 bool os::bind_to_processor(uint processor_id) {
  5321   // Not yet implemented.
  5322   return false;
  5325 ///
  5327 void os::SuspendedThreadTask::internal_do_task() {
  5328   if (do_suspend(_thread->osthread())) {
  5329     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5330     do_task(context);
  5331     do_resume(_thread->osthread());
  5335 class PcFetcher : public os::SuspendedThreadTask {
  5336 public:
  5337   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5338   ExtendedPC result();
  5339 protected:
  5340   void do_task(const os::SuspendedThreadTaskContext& context);
  5341 private:
  5342   ExtendedPC _epc;
  5343 };
  5345 ExtendedPC PcFetcher::result() {
  5346   guarantee(is_done(), "task is not done yet.");
  5347   return _epc;
  5350 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5351   Thread* thread = context.thread();
  5352   OSThread* osthread = thread->osthread();
  5353   if (osthread->ucontext() != NULL) {
  5354     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5355   } else {
  5356     // NULL context is unexpected, double-check this is the VMThread
  5357     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5361 // Suspends the target using the signal mechanism and then grabs the PC before
  5362 // resuming the target. Used by the flat-profiler only
  5363 ExtendedPC os::get_thread_pc(Thread* thread) {
  5364   // Make sure that it is called by the watcher for the VMThread
  5365   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5366   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5368   PcFetcher fetcher(thread);
  5369   fetcher.run();
  5370   return fetcher.result();
  5373 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5375    if (is_NPTL()) {
  5376       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5377    } else {
  5378       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5379       // word back to default 64bit precision if condvar is signaled. Java
  5380       // wants 53bit precision.  Save and restore current value.
  5381       int fpu = get_fpu_control_word();
  5382       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5383       set_fpu_control_word(fpu);
  5384       return status;
  5388 ////////////////////////////////////////////////////////////////////////////////
  5389 // debug support
  5391 bool os::find(address addr, outputStream* st) {
  5392   Dl_info dlinfo;
  5393   memset(&dlinfo, 0, sizeof(dlinfo));
  5394   if (dladdr(addr, &dlinfo) != 0) {
  5395     st->print(PTR_FORMAT ": ", addr);
  5396     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5397       st->print("%s+%#x", dlinfo.dli_sname,
  5398                  addr - (intptr_t)dlinfo.dli_saddr);
  5399     } else if (dlinfo.dli_fbase != NULL) {
  5400       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5401     } else {
  5402       st->print("<absolute address>");
  5404     if (dlinfo.dli_fname != NULL) {
  5405       st->print(" in %s", dlinfo.dli_fname);
  5407     if (dlinfo.dli_fbase != NULL) {
  5408       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5410     st->cr();
  5412     if (Verbose) {
  5413       // decode some bytes around the PC
  5414       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5415       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5416       address       lowest = (address) dlinfo.dli_sname;
  5417       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5418       if (begin < lowest)  begin = lowest;
  5419       Dl_info dlinfo2;
  5420       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5421           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5422         end = (address) dlinfo2.dli_saddr;
  5423       Disassembler::decode(begin, end, st);
  5425     return true;
  5427   return false;
  5430 ////////////////////////////////////////////////////////////////////////////////
  5431 // misc
  5433 // This does not do anything on Linux. This is basically a hook for being
  5434 // able to use structured exception handling (thread-local exception filters)
  5435 // on, e.g., Win32.
  5436 void
  5437 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5438                          JavaCallArguments* args, Thread* thread) {
  5439   f(value, method, args, thread);
  5442 void os::print_statistics() {
  5445 int os::message_box(const char* title, const char* message) {
  5446   int i;
  5447   fdStream err(defaultStream::error_fd());
  5448   for (i = 0; i < 78; i++) err.print_raw("=");
  5449   err.cr();
  5450   err.print_raw_cr(title);
  5451   for (i = 0; i < 78; i++) err.print_raw("-");
  5452   err.cr();
  5453   err.print_raw_cr(message);
  5454   for (i = 0; i < 78; i++) err.print_raw("=");
  5455   err.cr();
  5457   char buf[16];
  5458   // Prevent process from exiting upon "read error" without consuming all CPU
  5459   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5461   return buf[0] == 'y' || buf[0] == 'Y';
  5464 int os::stat(const char *path, struct stat *sbuf) {
  5465   char pathbuf[MAX_PATH];
  5466   if (strlen(path) > MAX_PATH - 1) {
  5467     errno = ENAMETOOLONG;
  5468     return -1;
  5470   os::native_path(strcpy(pathbuf, path));
  5471   return ::stat(pathbuf, sbuf);
  5474 bool os::check_heap(bool force) {
  5475   return true;
  5478 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5479   return ::vsnprintf(buf, count, format, args);
  5482 // Is a (classpath) directory empty?
  5483 bool os::dir_is_empty(const char* path) {
  5484   DIR *dir = NULL;
  5485   struct dirent *ptr;
  5487   dir = opendir(path);
  5488   if (dir == NULL) return true;
  5490   /* Scan the directory */
  5491   bool result = true;
  5492   char buf[sizeof(struct dirent) + MAX_PATH];
  5493   while (result && (ptr = ::readdir(dir)) != NULL) {
  5494     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5495       result = false;
  5498   closedir(dir);
  5499   return result;
  5502 // This code originates from JDK's sysOpen and open64_w
  5503 // from src/solaris/hpi/src/system_md.c
  5505 #ifndef O_DELETE
  5506 #define O_DELETE 0x10000
  5507 #endif
  5509 // Open a file. Unlink the file immediately after open returns
  5510 // if the specified oflag has the O_DELETE flag set.
  5511 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5513 int os::open(const char *path, int oflag, int mode) {
  5515   if (strlen(path) > MAX_PATH - 1) {
  5516     errno = ENAMETOOLONG;
  5517     return -1;
  5519   int fd;
  5520   int o_delete = (oflag & O_DELETE);
  5521   oflag = oflag & ~O_DELETE;
  5523   fd = ::open64(path, oflag, mode);
  5524   if (fd == -1) return -1;
  5526   //If the open succeeded, the file might still be a directory
  5528     struct stat64 buf64;
  5529     int ret = ::fstat64(fd, &buf64);
  5530     int st_mode = buf64.st_mode;
  5532     if (ret != -1) {
  5533       if ((st_mode & S_IFMT) == S_IFDIR) {
  5534         errno = EISDIR;
  5535         ::close(fd);
  5536         return -1;
  5538     } else {
  5539       ::close(fd);
  5540       return -1;
  5544     /*
  5545      * All file descriptors that are opened in the JVM and not
  5546      * specifically destined for a subprocess should have the
  5547      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5548      * party native code might fork and exec without closing all
  5549      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5550      * UNIXProcess.c), and this in turn might:
  5552      * - cause end-of-file to fail to be detected on some file
  5553      *   descriptors, resulting in mysterious hangs, or
  5555      * - might cause an fopen in the subprocess to fail on a system
  5556      *   suffering from bug 1085341.
  5558      * (Yes, the default setting of the close-on-exec flag is a Unix
  5559      * design flaw)
  5561      * See:
  5562      * 1085341: 32-bit stdio routines should support file descriptors >255
  5563      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5564      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5565      */
  5566 #ifdef FD_CLOEXEC
  5568         int flags = ::fcntl(fd, F_GETFD);
  5569         if (flags != -1)
  5570             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5572 #endif
  5574   if (o_delete != 0) {
  5575     ::unlink(path);
  5577   return fd;
  5581 // create binary file, rewriting existing file if required
  5582 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5583   int oflags = O_WRONLY | O_CREAT;
  5584   if (!rewrite_existing) {
  5585     oflags |= O_EXCL;
  5587   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5590 // return current position of file pointer
  5591 jlong os::current_file_offset(int fd) {
  5592   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5595 // move file pointer to the specified offset
  5596 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5597   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5600 // This code originates from JDK's sysAvailable
  5601 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5603 int os::available(int fd, jlong *bytes) {
  5604   jlong cur, end;
  5605   int mode;
  5606   struct stat64 buf64;
  5608   if (::fstat64(fd, &buf64) >= 0) {
  5609     mode = buf64.st_mode;
  5610     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5611       /*
  5612       * XXX: is the following call interruptible? If so, this might
  5613       * need to go through the INTERRUPT_IO() wrapper as for other
  5614       * blocking, interruptible calls in this file.
  5615       */
  5616       int n;
  5617       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5618         *bytes = n;
  5619         return 1;
  5623   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5624     return 0;
  5625   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5626     return 0;
  5627   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5628     return 0;
  5630   *bytes = end - cur;
  5631   return 1;
  5634 int os::socket_available(int fd, jint *pbytes) {
  5635   // Linux doc says EINTR not returned, unlike Solaris
  5636   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5638   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5639   // is expected to return 0 on failure and 1 on success to the jdk.
  5640   return (ret < 0) ? 0 : 1;
  5643 // Map a block of memory.
  5644 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5645                      char *addr, size_t bytes, bool read_only,
  5646                      bool allow_exec) {
  5647   int prot;
  5648   int flags = MAP_PRIVATE;
  5650   if (read_only) {
  5651     prot = PROT_READ;
  5652   } else {
  5653     prot = PROT_READ | PROT_WRITE;
  5656   if (allow_exec) {
  5657     prot |= PROT_EXEC;
  5660   if (addr != NULL) {
  5661     flags |= MAP_FIXED;
  5664   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5665                                      fd, file_offset);
  5666   if (mapped_address == MAP_FAILED) {
  5667     return NULL;
  5669   return mapped_address;
  5673 // Remap a block of memory.
  5674 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5675                        char *addr, size_t bytes, bool read_only,
  5676                        bool allow_exec) {
  5677   // same as map_memory() on this OS
  5678   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5679                         allow_exec);
  5683 // Unmap a block of memory.
  5684 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5685   return munmap(addr, bytes) == 0;
  5688 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5690 static clockid_t thread_cpu_clockid(Thread* thread) {
  5691   pthread_t tid = thread->osthread()->pthread_id();
  5692   clockid_t clockid;
  5694   // Get thread clockid
  5695   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5696   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5697   return clockid;
  5700 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5701 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5702 // of a thread.
  5703 //
  5704 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5705 // the fast estimate available on the platform.
  5707 jlong os::current_thread_cpu_time() {
  5708   if (os::Linux::supports_fast_thread_cpu_time()) {
  5709     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5710   } else {
  5711     // return user + sys since the cost is the same
  5712     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5716 jlong os::thread_cpu_time(Thread* thread) {
  5717   // consistent with what current_thread_cpu_time() returns
  5718   if (os::Linux::supports_fast_thread_cpu_time()) {
  5719     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5720   } else {
  5721     return slow_thread_cpu_time(thread, true /* user + sys */);
  5725 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5726   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5727     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5728   } else {
  5729     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5733 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5734   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5735     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5736   } else {
  5737     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5741 //
  5742 //  -1 on error.
  5743 //
  5745 PRAGMA_DIAG_PUSH
  5746 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5747 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5748   static bool proc_task_unchecked = true;
  5749   static const char *proc_stat_path = "/proc/%d/stat";
  5750   pid_t  tid = thread->osthread()->thread_id();
  5751   char *s;
  5752   char stat[2048];
  5753   int statlen;
  5754   char proc_name[64];
  5755   int count;
  5756   long sys_time, user_time;
  5757   char cdummy;
  5758   int idummy;
  5759   long ldummy;
  5760   FILE *fp;
  5762   // The /proc/<tid>/stat aggregates per-process usage on
  5763   // new Linux kernels 2.6+ where NPTL is supported.
  5764   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5765   // See bug 6328462.
  5766   // There possibly can be cases where there is no directory
  5767   // /proc/self/task, so we check its availability.
  5768   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5769     // This is executed only once
  5770     proc_task_unchecked = false;
  5771     fp = fopen("/proc/self/task", "r");
  5772     if (fp != NULL) {
  5773       proc_stat_path = "/proc/self/task/%d/stat";
  5774       fclose(fp);
  5778   sprintf(proc_name, proc_stat_path, tid);
  5779   fp = fopen(proc_name, "r");
  5780   if ( fp == NULL ) return -1;
  5781   statlen = fread(stat, 1, 2047, fp);
  5782   stat[statlen] = '\0';
  5783   fclose(fp);
  5785   // Skip pid and the command string. Note that we could be dealing with
  5786   // weird command names, e.g. user could decide to rename java launcher
  5787   // to "java 1.4.2 :)", then the stat file would look like
  5788   //                1234 (java 1.4.2 :)) R ... ...
  5789   // We don't really need to know the command string, just find the last
  5790   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5791   s = strrchr(stat, ')');
  5792   if (s == NULL ) return -1;
  5794   // Skip blank chars
  5795   do s++; while (isspace(*s));
  5797   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5798                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5799                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5800                  &user_time, &sys_time);
  5801   if ( count != 13 ) return -1;
  5802   if (user_sys_cpu_time) {
  5803     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5804   } else {
  5805     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5808 PRAGMA_DIAG_POP
  5810 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5811   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5812   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5813   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5814   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5817 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5818   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5819   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5820   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5821   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5824 bool os::is_thread_cpu_time_supported() {
  5825   return true;
  5828 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5829 // Linux doesn't yet have a (official) notion of processor sets,
  5830 // so just return the system wide load average.
  5831 int os::loadavg(double loadavg[], int nelem) {
  5832   return ::getloadavg(loadavg, nelem);
  5835 void os::pause() {
  5836   char filename[MAX_PATH];
  5837   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5838     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5839   } else {
  5840     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5843   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5844   if (fd != -1) {
  5845     struct stat buf;
  5846     ::close(fd);
  5847     while (::stat(filename, &buf) == 0) {
  5848       (void)::poll(NULL, 0, 100);
  5850   } else {
  5851     jio_fprintf(stderr,
  5852       "Could not open pause file '%s', continuing immediately.\n", filename);
  5857 // Refer to the comments in os_solaris.cpp park-unpark.
  5858 //
  5859 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5860 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5861 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5862 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5863 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5864 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5865 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5866 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5867 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5868 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5869 // of libpthread avoids the problem, but isn't practical.
  5870 //
  5871 // Possible remedies:
  5872 //
  5873 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5874 //      This is palliative and probabilistic, however.  If the thread is preempted
  5875 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5876 //      than the minimum period may have passed, and the abstime may be stale (in the
  5877 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5878 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5879 //
  5880 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5881 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5882 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5883 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5884 //      thread.
  5885 //
  5886 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5887 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5888 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5889 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5890 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5891 //      timers in a graceful fashion.
  5892 //
  5893 // 4.   When the abstime value is in the past it appears that control returns
  5894 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5895 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5896 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5897 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5898 //      It may be possible to avoid reinitialization by checking the return
  5899 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5900 //      condvar we must establish the invariant that cond_signal() is only called
  5901 //      within critical sections protected by the adjunct mutex.  This prevents
  5902 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5903 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5904 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5905 //
  5906 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5907 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5908 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5909 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5910 //
  5911 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5912 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5913 // and only enabling the work-around for vulnerable environments.
  5915 // utility to compute the abstime argument to timedwait:
  5916 // millis is the relative timeout time
  5917 // abstime will be the absolute timeout time
  5918 // TODO: replace compute_abstime() with unpackTime()
  5920 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5921   if (millis < 0)  millis = 0;
  5923   jlong seconds = millis / 1000;
  5924   millis %= 1000;
  5925   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5926     seconds = 50000000;
  5929   if (os::Linux::supports_monotonic_clock()) {
  5930     struct timespec now;
  5931     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5932     assert_status(status == 0, status, "clock_gettime");
  5933     abstime->tv_sec = now.tv_sec  + seconds;
  5934     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5935     if (nanos >= NANOSECS_PER_SEC) {
  5936       abstime->tv_sec += 1;
  5937       nanos -= NANOSECS_PER_SEC;
  5939     abstime->tv_nsec = nanos;
  5940   } else {
  5941     struct timeval now;
  5942     int status = gettimeofday(&now, NULL);
  5943     assert(status == 0, "gettimeofday");
  5944     abstime->tv_sec = now.tv_sec  + seconds;
  5945     long usec = now.tv_usec + millis * 1000;
  5946     if (usec >= 1000000) {
  5947       abstime->tv_sec += 1;
  5948       usec -= 1000000;
  5950     abstime->tv_nsec = usec * 1000;
  5952   return abstime;
  5956 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5957 // Conceptually TryPark() should be equivalent to park(0).
  5959 int os::PlatformEvent::TryPark() {
  5960   for (;;) {
  5961     const int v = _Event ;
  5962     guarantee ((v == 0) || (v == 1), "invariant") ;
  5963     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5967 void os::PlatformEvent::park() {       // AKA "down()"
  5968   // Invariant: Only the thread associated with the Event/PlatformEvent
  5969   // may call park().
  5970   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5971   int v ;
  5972   for (;;) {
  5973       v = _Event ;
  5974       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5976   guarantee (v >= 0, "invariant") ;
  5977   if (v == 0) {
  5978      // Do this the hard way by blocking ...
  5979      int status = pthread_mutex_lock(_mutex);
  5980      assert_status(status == 0, status, "mutex_lock");
  5981      guarantee (_nParked == 0, "invariant") ;
  5982      ++ _nParked ;
  5983      while (_Event < 0) {
  5984         status = pthread_cond_wait(_cond, _mutex);
  5985         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5986         // Treat this the same as if the wait was interrupted
  5987         if (status == ETIME) { status = EINTR; }
  5988         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5990      -- _nParked ;
  5992     _Event = 0 ;
  5993      status = pthread_mutex_unlock(_mutex);
  5994      assert_status(status == 0, status, "mutex_unlock");
  5995     // Paranoia to ensure our locked and lock-free paths interact
  5996     // correctly with each other.
  5997     OrderAccess::fence();
  5999   guarantee (_Event >= 0, "invariant") ;
  6002 int os::PlatformEvent::park(jlong millis) {
  6003   guarantee (_nParked == 0, "invariant") ;
  6005   int v ;
  6006   for (;;) {
  6007       v = _Event ;
  6008       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6010   guarantee (v >= 0, "invariant") ;
  6011   if (v != 0) return OS_OK ;
  6013   // We do this the hard way, by blocking the thread.
  6014   // Consider enforcing a minimum timeout value.
  6015   struct timespec abst;
  6016   compute_abstime(&abst, millis);
  6018   int ret = OS_TIMEOUT;
  6019   int status = pthread_mutex_lock(_mutex);
  6020   assert_status(status == 0, status, "mutex_lock");
  6021   guarantee (_nParked == 0, "invariant") ;
  6022   ++_nParked ;
  6024   // Object.wait(timo) will return because of
  6025   // (a) notification
  6026   // (b) timeout
  6027   // (c) thread.interrupt
  6028   //
  6029   // Thread.interrupt and object.notify{All} both call Event::set.
  6030   // That is, we treat thread.interrupt as a special case of notification.
  6031   // The underlying Solaris implementation, cond_timedwait, admits
  6032   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  6033   // JVM from making those visible to Java code.  As such, we must
  6034   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  6035   //
  6036   // TODO: properly differentiate simultaneous notify+interrupt.
  6037   // In that case, we should propagate the notify to another waiter.
  6039   while (_Event < 0) {
  6040     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  6041     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6042       pthread_cond_destroy (_cond);
  6043       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  6045     assert_status(status == 0 || status == EINTR ||
  6046                   status == ETIME || status == ETIMEDOUT,
  6047                   status, "cond_timedwait");
  6048     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  6049     if (status == ETIME || status == ETIMEDOUT) break ;
  6050     // We consume and ignore EINTR and spurious wakeups.
  6052   --_nParked ;
  6053   if (_Event >= 0) {
  6054      ret = OS_OK;
  6056   _Event = 0 ;
  6057   status = pthread_mutex_unlock(_mutex);
  6058   assert_status(status == 0, status, "mutex_unlock");
  6059   assert (_nParked == 0, "invariant") ;
  6060   // Paranoia to ensure our locked and lock-free paths interact
  6061   // correctly with each other.
  6062   OrderAccess::fence();
  6063   return ret;
  6066 void os::PlatformEvent::unpark() {
  6067   // Transitions for _Event:
  6068   //    0 :=> 1
  6069   //    1 :=> 1
  6070   //   -1 :=> either 0 or 1; must signal target thread
  6071   //          That is, we can safely transition _Event from -1 to either
  6072   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6073   //          unpark() calls.
  6074   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6075   //
  6076   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6077   // that it will take two back-to-back park() calls for the owning
  6078   // thread to block. This has the benefit of forcing a spurious return
  6079   // from the first park() call after an unpark() call which will help
  6080   // shake out uses of park() and unpark() without condition variables.
  6082   if (Atomic::xchg(1, &_Event) >= 0) return;
  6084   // Wait for the thread associated with the event to vacate
  6085   int status = pthread_mutex_lock(_mutex);
  6086   assert_status(status == 0, status, "mutex_lock");
  6087   int AnyWaiters = _nParked;
  6088   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6089   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  6090     AnyWaiters = 0;
  6091     pthread_cond_signal(_cond);
  6093   status = pthread_mutex_unlock(_mutex);
  6094   assert_status(status == 0, status, "mutex_unlock");
  6095   if (AnyWaiters != 0) {
  6096     status = pthread_cond_signal(_cond);
  6097     assert_status(status == 0, status, "cond_signal");
  6100   // Note that we signal() _after dropping the lock for "immortal" Events.
  6101   // This is safe and avoids a common class of  futile wakeups.  In rare
  6102   // circumstances this can cause a thread to return prematurely from
  6103   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  6104   // simply re-test the condition and re-park itself.
  6108 // JSR166
  6109 // -------------------------------------------------------
  6111 /*
  6112  * The solaris and linux implementations of park/unpark are fairly
  6113  * conservative for now, but can be improved. They currently use a
  6114  * mutex/condvar pair, plus a a count.
  6115  * Park decrements count if > 0, else does a condvar wait.  Unpark
  6116  * sets count to 1 and signals condvar.  Only one thread ever waits
  6117  * on the condvar. Contention seen when trying to park implies that someone
  6118  * is unparking you, so don't wait. And spurious returns are fine, so there
  6119  * is no need to track notifications.
  6120  */
  6122 /*
  6123  * This code is common to linux and solaris and will be moved to a
  6124  * common place in dolphin.
  6126  * The passed in time value is either a relative time in nanoseconds
  6127  * or an absolute time in milliseconds. Either way it has to be unpacked
  6128  * into suitable seconds and nanoseconds components and stored in the
  6129  * given timespec structure.
  6130  * Given time is a 64-bit value and the time_t used in the timespec is only
  6131  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6132  * overflow if times way in the future are given. Further on Solaris versions
  6133  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6134  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6135  * As it will be 28 years before "now + 100000000" will overflow we can
  6136  * ignore overflow and just impose a hard-limit on seconds using the value
  6137  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6138  * years from "now".
  6139  */
  6141 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6142   assert (time > 0, "convertTime");
  6143   time_t max_secs = 0;
  6145   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  6146     struct timeval now;
  6147     int status = gettimeofday(&now, NULL);
  6148     assert(status == 0, "gettimeofday");
  6150     max_secs = now.tv_sec + MAX_SECS;
  6152     if (isAbsolute) {
  6153       jlong secs = time / 1000;
  6154       if (secs > max_secs) {
  6155         absTime->tv_sec = max_secs;
  6156       } else {
  6157         absTime->tv_sec = secs;
  6159       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6160     } else {
  6161       jlong secs = time / NANOSECS_PER_SEC;
  6162       if (secs >= MAX_SECS) {
  6163         absTime->tv_sec = max_secs;
  6164         absTime->tv_nsec = 0;
  6165       } else {
  6166         absTime->tv_sec = now.tv_sec + secs;
  6167         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6168         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6169           absTime->tv_nsec -= NANOSECS_PER_SEC;
  6170           ++absTime->tv_sec; // note: this must be <= max_secs
  6174   } else {
  6175     // must be relative using monotonic clock
  6176     struct timespec now;
  6177     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6178     assert_status(status == 0, status, "clock_gettime");
  6179     max_secs = now.tv_sec + MAX_SECS;
  6180     jlong secs = time / NANOSECS_PER_SEC;
  6181     if (secs >= MAX_SECS) {
  6182       absTime->tv_sec = max_secs;
  6183       absTime->tv_nsec = 0;
  6184     } else {
  6185       absTime->tv_sec = now.tv_sec + secs;
  6186       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  6187       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6188         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6189         ++absTime->tv_sec; // note: this must be <= max_secs
  6193   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6194   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6195   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6196   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6199 void Parker::park(bool isAbsolute, jlong time) {
  6200   // Ideally we'd do something useful while spinning, such
  6201   // as calling unpackTime().
  6203   // Optional fast-path check:
  6204   // Return immediately if a permit is available.
  6205   // We depend on Atomic::xchg() having full barrier semantics
  6206   // since we are doing a lock-free update to _counter.
  6207   if (Atomic::xchg(0, &_counter) > 0) return;
  6209   Thread* thread = Thread::current();
  6210   assert(thread->is_Java_thread(), "Must be JavaThread");
  6211   JavaThread *jt = (JavaThread *)thread;
  6213   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  6214   // Check interrupt before trying to wait
  6215   if (Thread::is_interrupted(thread, false)) {
  6216     return;
  6219   // Next, demultiplex/decode time arguments
  6220   timespec absTime;
  6221   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6222     return;
  6224   if (time > 0) {
  6225     unpackTime(&absTime, isAbsolute, time);
  6229   // Enter safepoint region
  6230   // Beware of deadlocks such as 6317397.
  6231   // The per-thread Parker:: mutex is a classic leaf-lock.
  6232   // In particular a thread must never block on the Threads_lock while
  6233   // holding the Parker:: mutex.  If safepoints are pending both the
  6234   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6235   ThreadBlockInVM tbivm(jt);
  6237   // Don't wait if cannot get lock since interference arises from
  6238   // unblocking.  Also. check interrupt before trying wait
  6239   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6240     return;
  6243   int status ;
  6244   if (_counter > 0)  { // no wait needed
  6245     _counter = 0;
  6246     status = pthread_mutex_unlock(_mutex);
  6247     assert (status == 0, "invariant") ;
  6248     // Paranoia to ensure our locked and lock-free paths interact
  6249     // correctly with each other and Java-level accesses.
  6250     OrderAccess::fence();
  6251     return;
  6254 #ifdef ASSERT
  6255   // Don't catch signals while blocked; let the running threads have the signals.
  6256   // (This allows a debugger to break into the running thread.)
  6257   sigset_t oldsigs;
  6258   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6259   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6260 #endif
  6262   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6263   jt->set_suspend_equivalent();
  6264   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6266   assert(_cur_index == -1, "invariant");
  6267   if (time == 0) {
  6268     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6269     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6270   } else {
  6271     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6272     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6273     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6274       pthread_cond_destroy (&_cond[_cur_index]) ;
  6275       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6278   _cur_index = -1;
  6279   assert_status(status == 0 || status == EINTR ||
  6280                 status == ETIME || status == ETIMEDOUT,
  6281                 status, "cond_timedwait");
  6283 #ifdef ASSERT
  6284   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6285 #endif
  6287   _counter = 0 ;
  6288   status = pthread_mutex_unlock(_mutex) ;
  6289   assert_status(status == 0, status, "invariant") ;
  6290   // Paranoia to ensure our locked and lock-free paths interact
  6291   // correctly with each other and Java-level accesses.
  6292   OrderAccess::fence();
  6294   // If externally suspended while waiting, re-suspend
  6295   if (jt->handle_special_suspend_equivalent_condition()) {
  6296     jt->java_suspend_self();
  6300 void Parker::unpark() {
  6301   int s, status ;
  6302   status = pthread_mutex_lock(_mutex);
  6303   assert (status == 0, "invariant") ;
  6304   s = _counter;
  6305   _counter = 1;
  6306   if (s < 1) {
  6307     // thread might be parked
  6308     if (_cur_index != -1) {
  6309       // thread is definitely parked
  6310       if (WorkAroundNPTLTimedWaitHang) {
  6311         status = pthread_cond_signal (&_cond[_cur_index]);
  6312         assert (status == 0, "invariant");
  6313         status = pthread_mutex_unlock(_mutex);
  6314         assert (status == 0, "invariant");
  6315       } else {
  6316         // must capture correct index before unlocking
  6317         int index = _cur_index;
  6318         status = pthread_mutex_unlock(_mutex);
  6319         assert (status == 0, "invariant");
  6320         status = pthread_cond_signal (&_cond[index]);
  6321         assert (status == 0, "invariant");
  6323     } else {
  6324       pthread_mutex_unlock(_mutex);
  6325       assert (status == 0, "invariant") ;
  6327   } else {
  6328     pthread_mutex_unlock(_mutex);
  6329     assert (status == 0, "invariant") ;
  6334 extern char** environ;
  6336 // Run the specified command in a separate process. Return its exit value,
  6337 // or -1 on failure (e.g. can't fork a new process).
  6338 // Unlike system(), this function can be called from signal handler. It
  6339 // doesn't block SIGINT et al.
  6340 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
  6341   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6343   pid_t pid ;
  6345   if (use_vfork_if_available) {
  6346     pid = vfork();
  6347   } else {
  6348     pid = fork();
  6351   if (pid < 0) {
  6352     // fork failed
  6353     return -1;
  6355   } else if (pid == 0) {
  6356     // child process
  6358     execve("/bin/sh", (char* const*)argv, environ);
  6360     // execve failed
  6361     _exit(-1);
  6363   } else  {
  6364     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6365     // care about the actual exit code, for now.
  6367     int status;
  6369     // Wait for the child process to exit.  This returns immediately if
  6370     // the child has already exited. */
  6371     while (waitpid(pid, &status, 0) < 0) {
  6372         switch (errno) {
  6373         case ECHILD: return 0;
  6374         case EINTR: break;
  6375         default: return -1;
  6379     if (WIFEXITED(status)) {
  6380        // The child exited normally; get its exit code.
  6381        return WEXITSTATUS(status);
  6382     } else if (WIFSIGNALED(status)) {
  6383        // The child exited because of a signal
  6384        // The best value to return is 0x80 + signal number,
  6385        // because that is what all Unix shells do, and because
  6386        // it allows callers to distinguish between process exit and
  6387        // process death by signal.
  6388        return 0x80 + WTERMSIG(status);
  6389     } else {
  6390        // Unknown exit code; pass it through
  6391        return status;
  6396 // is_headless_jre()
  6397 //
  6398 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6399 // in order to report if we are running in a headless jre
  6400 //
  6401 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6402 // as libawt.so, and renamed libawt_xawt.so
  6403 //
  6404 bool os::is_headless_jre() {
  6405     struct stat statbuf;
  6406     char buf[MAXPATHLEN];
  6407     char libmawtpath[MAXPATHLEN];
  6408     const char *xawtstr  = "/xawt/libmawt.so";
  6409     const char *new_xawtstr = "/libawt_xawt.so";
  6410     char *p;
  6412     // Get path to libjvm.so
  6413     os::jvm_path(buf, sizeof(buf));
  6415     // Get rid of libjvm.so
  6416     p = strrchr(buf, '/');
  6417     if (p == NULL) return false;
  6418     else *p = '\0';
  6420     // Get rid of client or server
  6421     p = strrchr(buf, '/');
  6422     if (p == NULL) return false;
  6423     else *p = '\0';
  6425     // check xawt/libmawt.so
  6426     strcpy(libmawtpath, buf);
  6427     strcat(libmawtpath, xawtstr);
  6428     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6430     // check libawt_xawt.so
  6431     strcpy(libmawtpath, buf);
  6432     strcat(libmawtpath, new_xawtstr);
  6433     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6435     return true;
  6438 // Get the default path to the core file
  6439 // Returns the length of the string
  6440 int os::get_core_path(char* buffer, size_t bufferSize) {
  6441   const char* p = get_current_directory(buffer, bufferSize);
  6443   if (p == NULL) {
  6444     assert(p != NULL, "failed to get current directory");
  6445     return 0;
  6448   return strlen(buffer);
  6451 /////////////// Unit tests ///////////////
  6453 #ifndef PRODUCT
  6455 #define test_log(...) \
  6456   do {\
  6457     if (VerboseInternalVMTests) { \
  6458       tty->print_cr(__VA_ARGS__); \
  6459       tty->flush(); \
  6460     }\
  6461   } while (false)
  6463 class TestReserveMemorySpecial : AllStatic {
  6464  public:
  6465   static void small_page_write(void* addr, size_t size) {
  6466     size_t page_size = os::vm_page_size();
  6468     char* end = (char*)addr + size;
  6469     for (char* p = (char*)addr; p < end; p += page_size) {
  6470       *p = 1;
  6474   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6475     if (!UseHugeTLBFS) {
  6476       return;
  6479     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6481     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6483     if (addr != NULL) {
  6484       small_page_write(addr, size);
  6486       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6490   static void test_reserve_memory_special_huge_tlbfs_only() {
  6491     if (!UseHugeTLBFS) {
  6492       return;
  6495     size_t lp = os::large_page_size();
  6497     for (size_t size = lp; size <= lp * 10; size += lp) {
  6498       test_reserve_memory_special_huge_tlbfs_only(size);
  6502   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6503     size_t lp = os::large_page_size();
  6504     size_t ag = os::vm_allocation_granularity();
  6506     // sizes to test
  6507     const size_t sizes[] = {
  6508       lp, lp + ag, lp + lp / 2, lp * 2,
  6509       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6510       lp * 10, lp * 10 + lp / 2
  6511     };
  6512     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6514     // For each size/alignment combination, we test three scenarios:
  6515     // 1) with req_addr == NULL
  6516     // 2) with a non-null req_addr at which we expect to successfully allocate
  6517     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6518     //    expect the allocation to either fail or to ignore req_addr
  6520     // Pre-allocate two areas; they shall be as large as the largest allocation
  6521     //  and aligned to the largest alignment we will be testing.
  6522     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6523     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6524       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6525       -1, 0);
  6526     assert(mapping1 != MAP_FAILED, "should work");
  6528     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6529       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6530       -1, 0);
  6531     assert(mapping2 != MAP_FAILED, "should work");
  6533     // Unmap the first mapping, but leave the second mapping intact: the first
  6534     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6535     // mapping, still intact, as "bad" req_addr (case 3).
  6536     ::munmap(mapping1, mapping_size);
  6538     // Case 1
  6539     test_log("%s, req_addr NULL:", __FUNCTION__);
  6540     test_log("size            align           result");
  6542     for (int i = 0; i < num_sizes; i++) {
  6543       const size_t size = sizes[i];
  6544       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6545         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6546         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6547             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6548         if (p != NULL) {
  6549           assert(is_ptr_aligned(p, alignment), "must be");
  6550           small_page_write(p, size);
  6551           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6556     // Case 2
  6557     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6558     test_log("size            align           req_addr         result");
  6560     for (int i = 0; i < num_sizes; i++) {
  6561       const size_t size = sizes[i];
  6562       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6563         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6564         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6565         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6566             size, alignment, req_addr, p,
  6567             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6568         if (p != NULL) {
  6569           assert(p == req_addr, "must be");
  6570           small_page_write(p, size);
  6571           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6576     // Case 3
  6577     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6578     test_log("size            align           req_addr         result");
  6580     for (int i = 0; i < num_sizes; i++) {
  6581       const size_t size = sizes[i];
  6582       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6583         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6584         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6585         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6586             size, alignment, req_addr, p,
  6587             ((p != NULL ? "" : "(failed)")));
  6588         // as the area around req_addr contains already existing mappings, the API should always
  6589         // return NULL (as per contract, it cannot return another address)
  6590         assert(p == NULL, "must be");
  6594     ::munmap(mapping2, mapping_size);
  6598   static void test_reserve_memory_special_huge_tlbfs() {
  6599     if (!UseHugeTLBFS) {
  6600       return;
  6603     test_reserve_memory_special_huge_tlbfs_only();
  6604     test_reserve_memory_special_huge_tlbfs_mixed();
  6607   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6608     if (!UseSHM) {
  6609       return;
  6612     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6614     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6616     if (addr != NULL) {
  6617       assert(is_ptr_aligned(addr, alignment), "Check");
  6618       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6620       small_page_write(addr, size);
  6622       os::Linux::release_memory_special_shm(addr, size);
  6626   static void test_reserve_memory_special_shm() {
  6627     size_t lp = os::large_page_size();
  6628     size_t ag = os::vm_allocation_granularity();
  6630     for (size_t size = ag; size < lp * 3; size += ag) {
  6631       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6632         test_reserve_memory_special_shm(size, alignment);
  6637   static void test() {
  6638     test_reserve_memory_special_huge_tlbfs();
  6639     test_reserve_memory_special_shm();
  6641 };
  6643 void TestReserveMemorySpecial_test() {
  6644   TestReserveMemorySpecial::test();
  6647 #endif

mercurial